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Abstract. Incremental on-line learning is an important branch of ma-
chine learning. One class of approaches particularly well-suited to such
tasks are Adaptive Resonance Theory (ART) neural networks. This pa-
per presents a novel ART network combining the ability of noise-insensi-
tive, incremental clustering and topology learning at different levels of
detail from TopoART with Euclidean similarity measures and hyper-
spherical categories from Hypersphere ART. As a result of the modified
internal representations, several limitations of the original TopoART net-
work are lifted. In particular, the presented network can process arbitrar-
ily scaled values even if their range is not entirely known in advance.

Keywords: Incremental learning, On-line learning, Hierarchical clus-
tering, TopoART, Adaptive Resonance Theory.

1 Introduction

In order to solve tasks involving incomplete knowledge or non-stationary data
distributions, clustering methods capable of incremental on-line learning are ne-
cessary. Some examples for such tasks are the representation of visual concepts
in robotic scenarios [1,2], dynamic topic mining [3], and protein localisation [4].

In comparison to traditional clustering approaches, such as the k-means algo-
rithm [5], that require distinct training, validation, and test phases, incremental
methods have to deal with additional problems:

1. How are new data incorporated into the model without impairing current
knowledge? (stability-plasticity dilemma [6])

2. How is noise separated from relevant information?
3. How can data be correctly preprocessed, e.g., normalised to a given interval,

if the input distribution is only partially known?

Adaptive Resonance Theory (ART) neural networks are particularly well-
suited for incremental on-line learning, as they constitute a solution to the
stability-plasticity dilemma. The first network of this family (ART1), which is
limited to binary data, was published in 1987 [7]. Some well-known extensions,
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are Fuzzy ART [8], Gaussian ART [9], and Hypersphere ART [10]. ART neural
networks incrementally learn a set of templates called categories. The properties
of these categories may differ considerably between different networks. While
the categories of Fuzzy ART have the shape of hyperrectangles, Hypersphere
ART applies hyperspheres. Furthermore, the categories of Gaussian ART are
Gaussians, which diminishes its sensitivity to noise in comparison to Fuzzy ART
and Hypersphere ART, but impairs the stability of learnt representations.

From a representational point of view, Gaussian ART is strongly related to
on-line Kernel Density Estimation (oKDE) [11]: oKDE incrementally estimates
a Gaussian mixture model representing a given data distribution. Although, the
focus of oKDE is on on-line adaptability, it achieves a certain degree of stability.

An alternative approach to on-line clustering is provided by topology-learning
neural networks, such as Growing Neural Gas (GNG) [12]. Although the original
GNG algorithm does not explicitly deal with the problems resulting from the
stability-plasticity dilemma, there are several extensions tailored to incremental
on-line learning, e.g., Incremental Growing Neural Gas (IGNG) [13] and the Self-
Organising Incremental Neural Network (SOINN) [14]. But they do not reach
the same degree of stability as ART networks. This is partially caused by the
chosen type of internal representation: any adaptation of the neurons’ weights,
which correspond to prototype vectors in the input space, inevitably causes some
loss of information. However, on the other hand, these neural networks are less
prone to noise.

Recently, a topology-learning ART network called TopoART (see Section 2)
[15,16] has been published as a combination of Fuzzy ART and SOINN. Since it is
based on Fuzzy ART, TopoART shares some of its properties and limitations: hy-
perrectangular categories, adaptation mechanisms based on the city-block norm,
and the mandatory normalisation of input to the interval [0, 1]. These properties
may not be optimal as shown in [10,1]. In addition, the input normalisation can
barely be performed if too less knowledge about the data is available. Therefore,
this paper presents a novel TopoART network using hyperspherical categories
and learning mechanisms adopted from Hypersphere ART (see Section 3). As a
result, arbitrary real-valued input can be processed directly, the input domain
does not need to be fixed, and the city-block norm is substituted by a Euclidean
norm. Due to the shape of its categories, this network is called Hypersphere
TopoART. It was evaluated using stationary and non-stationary synthetic data
as well as real-world data (see Section 4).

2 TopoART

TopoART [15,16] is a modular neural network consisting of two major compo-
nents clustering the input data at two different levels of detail (see Fig. 1). These
components are referred to as TopoART a (TA a) and TopoART b (TA b). They
have a similar structure that consists of two layers (F1 and F2). Input to both
modules originates from the common input layer (F0). Furthermore, input to
TA b is filtered by TA a.
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Fig. 1. Structure of a TopoART network for two-dimensional input vectors. TopoART
comprises two modules called TA a and TA b that share a common input layer (F0).

For training, input vectors have to be provided at the F0 layer in discrete
time steps t. If a new d-dimensional input vector

x(t) =
[
x1(t), . . . , xd(t)

]T
(1)

is presented, it is first complement-coded. Then, the encoded vector

xF1(t) =
[
x1(t), . . . , xd(t), 1− x1(t), . . . , 1− xd(t)

]T
(2)

is propagated to the F1 layer of TA a. Due to the complement-coding, each
element xi(t) of the input vector x(t) must lie in the interval [0, 1].

The complement-coded vector xF1(t) is used to activate the nodes of the F2
layer. Here, each node j possesses a weight vector

wF2
j (t) =

[
wj,1(t), . . . , wj,d(t), wj,d+1(t), . . . , wj,2d(t)

]T
. (3)

wF2
i (t) defines a hyperrectangular category: the elements from 1 to d specify

the lower left corner and the elements from d+1 to 2d represent the complement
of the upper right corner. The activation

zF2
j (t) =

∥∥xF1(t) ∧ wF2
j (t)

∥∥
1

α+
∥∥wF2

j (t)
∥∥
1

with α = 0.001, (4)

which is also called choice function, measures the similarity of an input vector
with the category of node j. Here, ∧ denotes an element-wise minimum opera-
tion. The division by α+

∥∥wF2
j (t)

∥∥
1

leads to a preference of small categories over
large categories.

Besides the activation, a check (match function) is made to determine whether
the corresponding category is able to grow and enclose the current input without
exceeding a maximum category size
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Smax = d(1− ρ) (5)

depending on the vigilance parameter ρ:∥∥xF1(t) ∧ wF2
j (t)

∥∥
1∥∥xF1(t)

∥∥
1

≥ ρ. (6)

Those nodes having the highest and the second highest activation while ful-
filling (6) are referred to as the best-matching (bm) neuron and the second-best-
matching (sbm) neuron, respectively. If adequate neurons bm and sbm have been
be found, they are adapted:

wF2
j (t+ 1) = βj

(
xF1(t) ∧ wF2

j (t)
)

+ (1− βj)wF2
j (t)

with j ∈ {bm, sbm} and βbm = 1. (7)

This corresponds to an extension of the categories in the direction of the input
vector x(t) (cf. [8]). The adapted category of bm even encloses x(t). The degree
of the adaptation of the weights of sbm depends on the choice of its learning rate
βsbm. As the categories cannot shrink, the learning process is entirely stable.

In addition to the growth of the categories, bm and sbm are connected by
an edge. Existing edges are not modified. Assuming that no node is available or
(6) cannot be fulfilled for any existing node, a new neuron is incorporated. Its
weights wF2

new(t+ 1) are set to xF1(t). This corresponds to a category enclosing
only x(t).

In order to reduce its sensitivity to noise in comparison to Fuzzy ART,
TopoART equips all F2 neurons with a counter nj , counting the number of
input samples they have learnt. Every τ learning cycles, all nodes with nj<φ are
removed.1 Therefore, such neurons are called node candidates. Once nj equals
or surpasses φ, the corresponding neuron becomes a permanent node. While
node candidates are subject to node removal, permanent nodes are guaranteed
to be stable. Therefore, xF1(t) is only propagated to TA b, if a permanent node
fulfilling (6) was found in TA a.

The training process of TA b is identical to TA a, but the value of the vigilance
parameter is increased:

ρb =
1

2
(ρa + 1). (8)

This relation diminishes the maximum category size by 50%, which results in
a refined clustering. In particular, links between nodes of TA a can be split in
TA b. In this way, a hierarchical representation of the input data is computed.

If cluster labels are to be predicted for unknown input vectors, input is sim-
ultaneously propagated to the F2 layers of both modules without any filtering.
Here, an alternative activation function is applied:

1 Based on previous experiments, τ is always set to 200 in this paper.
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zF2
j (t) = 1−

∥∥(xF1(t) ∧ wF2
j (t)

)
− wF2

j (t)
∥∥
1

d
(9)

In contrast to (4), (9) ensures that predictions are independent of the category
size. This modification is important, as test samples often lie outside all cat-
egories. Using (4), smaller but more dissimilar categories would be preferred of
larger but more similar categories.

The predictions are separately computed for each module and consist of an
output vector yF2(t) with

yF2
j (t) =

{
0 if j 6= bm
1 if j = bm

(10)

as well as a vector cF2(t) providing the cluster labels of all F2 nodes (cf. [15,16]).
The labelling algorithm assigns unique integer labels to connected components
of F2 nodes. For reasons of stability, node candidates are ignored during the
computation of yF2(t) and cF2(t).

3 Hypersphere TopoART

The structure of Hypersphere TopoART (see Fig. 2) closely resembles the struc-
ture of TopoART (cf. Fig. 1). It consists of two modules called HTA a and HTA b
sharing the input layer F0. Here, each input vector x(t) is extended by a single
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Fig. 2. Structure of a Hypersphere TopoART network for two-dimensional input vec-
tors. Like TopoART, Hypersphere TopoART consists of two modules (HTA a and
HTA b), has a three-layered structure, and the propagation of input to HTA b depends
on the activation of HTA a.

element of value zero. The resulting vector



6 Marko Tscherepanow

xF1(t) =
[
x1(t), . . . , xd(t), 0]T (11)

is propagated to the respective F1 layer. This type of encoding has a similar
effect to the complement-coding performed by TopoART: it corresponds to an
initial category which encloses only the current input vector. This is reflected by
the weights of the F2 nodes, which in contrast to TopoART, encode the mean
µ
j
(t) and the radius Rj(t) of a hyperspherical category:

wF2
j (t) =

[
µ
j
(t)

Rj(t)

]
=
[
µj,1(t), . . . , µj,d(t), Rj(t)]

T . (12)

This type of representation reduces the length of the weight vectors from 2d to
d+1, which may be relevant for memory-intensive applications.

Due to the hyperspherical shape of the categories, the activation function of
the F2 nodes (choice function) was adopted from Hypersphere ART [10]:

zF2
j (t) =

R̄−max
(
Rj ,

∥∥|x(t)− µ
j
(t)
∥∥
2

)
R̄−Rj + α

with α = 0.001. (13)

Similar to the denominator in the choice function of TopoART (4), the divi-
sion by R̄−Rj+α results in a preference for small categories. The radial extend
R̄ originates from Hypersphere ART. It denotes the maximum category radius if
the respective vigilance parameter ρ equals zero. In order to be compatible with
TopoART, R̄ is chosen in such a way that in this case each category can span
the entire input domain:

R̄ =
1

2

√√√√ d∑
i=1

(
xmax
i − xmin

i

)2
. (14)

Here, xmax
i and xmin

i denote the expected maximum value and the expected
minimum value of input along dimension i, respectively. Since these values are
not used for an input normalisation as required by complement-coding, rough
estimates are sufficient and even modifications during learning are possible.

Similar to TopoART, a check is made, whether a category is allowed to grow
or not. The match function

1−
max

(
Rj ,

∥∥x(t)− µ
j
(t)
∥∥
2

)
R̄

≥ ρ (15)

that tests whether the resulting category would exceed the maximum category
size

Smax = R̄(1− ρ) (16)

is applied in the same way as with TopoART. However, as Smax does not directly
depend on the dimension of the input space d (cf. (5)), the flexibility of the
network is increased.
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The weights of the best-matching neuron bm and the second-best-matching
neuron sbm are adapted as follows:

µ
j
(t+ 1) = µ

j
(t) +

βj
2

(
1−

min
(
Rj(t),

∥∥dj(t)∥∥2)∥∥dj(t)∥∥2
)
dj(t) and (17)

Rj(t+ 1) = Rj(t) +
βi
2

(
max

(
Rj(t),

∥∥dj(t)∥∥2)−Rj(t)
)

(18)

with dj(t) = x(t)− µ
j
(t), j ∈ {bm, sbm}, and βbm = 1. (19)

These equations guarantee that all samples enclosed by a category will still be
enclosed after adaptation [10]. Hence, Hypersphere TopoART learns in a stable
way like TopoART.

The activation function used for prediction had to be adapted to the new
type of internal representation as well:

zF2
j (t) = 1−

max
(∥∥x(t)− µ

j
(t)
∥∥
2
−Rj , 0

)
2R̄

. (20)

Instead of the city-block distance, (20) measures the Euclidean distance between
a category and an input vector x(t). Like (9), it is independent from the category
size.

The further functioning of Hypersphere TopoART is identical to TopoART.
As a consequence, Hypersphere TopoART adopts its beneficial properties (e.g.,
the insensitivity to noise and the ability to learn arbitrarily shaped clusters) and
shares its input/output behaviour.

4 Results

For the evaluation two datasets that had been used for the analysis of TopoART
(TA) [16] were applied. First, a synthetic two-dimensional dataset was used. It
consists of five components (A–E), each of which encompasses 18,000 samples.
In addition, it contains 10% of uniformly distributed random noise. All samples
had been mixed randomly to create a stationary input distribution. In order to
illustrate the benefits of Hypersphere TopoART, this dataset was scaled to the
interval [−5, 5] (see Fig. 3a). However, the data had to be rescaled to the interval
[0, 1] for Fuzzy ART and TopoART so as to allow for complement-coding.

In contrast to Fuzzy ART (see Fig. 3b) and Hypersphere ART (see Fig. 3c),
which are very sensitive to noise, TopoART2 (see Fig. 3f) and Hypersphere
TopoART (see Fig. 3h) were able to find the five components of the input distri-
bution, although the corresponding parameters3 were set to equal values. oKDE
(see Fig. 3d) demonstrated a significantly higher tolerance to noise than Fuzzy

2 LibTopoART (version 0.35), available at www.LibTopoART.eu
3 ρa=ρ=0.92, βbm=β=γ=1, and R̄ was set according to (14).

www.LibTopoART.eu
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Fig. 3. Two-dimensional data distribution and clustering results. Different clusters are
painted with different colours. The Gaussians determined by oKDE are draw as ellipses
marking the standard deviations.

ART and Hypersphere ART but does not reflect the topology of the data. Both
TopoART and Hypersphere TopoART refined the representation from module a
(see Figs. 3e and 3g) to module b (see Figs. 3f and 3h). In addition, the single
noise category learnt by module a disappeared in the clustering of module b.

During incremental learning, the data distribution may change over time.
Therefore, an incremental on-line clusterer like Hypersphere TopoART has to
cope with non-stationary data. In order to analyse this capability, the samples
from the previous experiment were reordered and presented in four subsequent
phases (see Fig. 4). In addition to the distribution itself, the input domain was
modified. It encompasses all samples of the current phase and the regions known
from previous training phases. Hence, the considered region of the input space
is growing so as to simulate a gradual extension of knowledge. Thus, the param-
eter R̄ was individually set for each phase according to (14). Furthermore, new
noise samples fitting into the considered regions of the input space had to be
determined: while the percentage of noise was adopted from the first experiment,
the modification of the input domain results in a higher density of noise samples
during the first three training phases, as the considered region of the input space
is diminished there.

Hypersphere TopoART was able to correctly learn the underlying compo-
nents (cf. Fig. 3a) despite the non-stationary nature of the input distribution
and the variable range of the input vectors (see fourth column of Fig. 4). The
resulting clustering is qualitatively equal to the one obtained from the stationary
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Fig. 4. Clustering results for non-stationary data from a growing input domain. The
training of a Hypersphere TopoART network was performed in four subsequent phases
with different numbers of training samples n. The respective input data are shown in
the top row. The considered regions of the input space are indicated by the distribution
of the noise samples. As the input domain is growing, the parameter R̄ was individually
set for each phase. The clustering results are shown below the respective training data.
Here, different clusters are painted with different colours.

distribution (cf. Figs. 3g and 3h). This is remarkable as just one parameter had
to be altered in comparison to the first experiment: φ was increased so as to
account for the higher density of noise samples during the early training phases.
The ability to adapt to changes of the input domain is a major improvement in
comparison to TopoART, which is limited by complement-coding.

In addition to the synthetic data, the clustering capabilities of Hypersphere
TopoART were analysed using a real-world dataset derived from facial images
of 32 people (12 female, 20 male) showing 28 predefined facial expressions under
two lighting conditions (see Fig. 5).

This dataset was originally compiled for training the user-interface robot iCat
to imitate human facial expressions [17]. As during the recording of the data a few
facial expressions were skipped by some persons, the total number of available
images amounts to 1783. The main advantage of this dataset is the availability
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Fig. 5. The iCat dataset. This dataset consists of 1783 images taken by the user-
interface robot iCat. They show 32 persons performing 28 different facial expressions
under two lighting conditions.

of several partitionings according to different criteria that were collected when
the data were recorded. These criteria are the gender, the usage of glasses, the
facial expressions, the lighting conditions, and the persons themselves. Due to
the different characteristics of the underlying partitionings, this dataset is an
excellent basis for comparing different clustering approaches.

In order to reduce the dimensionality of the input space, the images were
converted to grayscale. Then, those image regions containing the face were cut
out and scaled to a size of 64×64 pixels. Finally, the resulting images were sub-
jected to principal component analysis keeping 90% of the total variance, which
had proven advantageous for the direct imitation of human facial expressions
(cf. [17]). Due to this extensive dimensionality reduction, the training samples
comprise only 45 features.

Using the iCat dataset, we compared those methods that performed well
on the synthetic data; i.e., TopoART and Hypersphere TopoART. During the
evaluation, two standard measures, namely the Rand index R and the Jaccard
coefficient J [18], were used. These similarity measures provide values between
0 and 1, with higher values indicating a higher degree of similarity.

In order to find appropriate values for the relevant parameters, a grid search
was performed: βsbm, φ, and ρa were iterated in their respective intervals in
order to maximise R and J for the different partitionings. The lower number of
training samples in comparison to the previous experiment was compensated for
by presenting the complete dataset 25 times. The best results for both neural
networks are given in Table 1.

Table 1 shows that the type of internal representation has an impact on the
clustering results. While TopoART performed best for the partitionings accord-
ing to the gender and the usage of glasses, Hypersphere TopoART achieved the
highest similarity with the partitionings according to the lighting conditions and
the persons. Hence, both neural networks can be considered as complementary
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Table 1. Clustering results for the iCat dataset. The bold numbers indicate the best
result for each partitioning. If R or J did not differ between the modules and networks
for a certain partitioning, no results were highlighted.

partitioning TopoART Hypersphere TopoART

R J R J

TA a/TA b TA a/TA b HTA a/HTA b HTA a/HTA b

gender 0.583/0.587 0.532/0.532 0.532/0.532 0.532/0.532

usage of glasses 0.843/0.853 0.838/0.850 0.833/0.833 0.833/0.833

facial expressions 0.965/0.965 0.035/0.035 0.965/0.965 0.035/0.035

lighting conditions 0.939/0.939 0.885/0.885 1.000/0.986 1.000/0.972

persons 0.976/0.976 0.225/0.249 0.981/0.981 0.410/0.401

to each other, since they perform differently for different problems similar to the
kernel functions of support vector machines [19].

In addition to the analysis of the general clustering properties, the capability
to compute a hierarchical clustering reflecting different partitionings was exam-
ined. The partitionings according to the lighting conditions and the persons were
chosen as examples, since these partitionings had been used for the analysis of
TopoART before [15,16]. Here, the parameters βsbm, φ, and ρa were iterated
in their respective intervals in order to maximise the Jaccard coefficient for the
partitioning according to the different people. The results depending on the most
sensitive parameter ρa are shown in Fig. 6.
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Fig. 6. Results for the hierarchical clustering task. The vertical red line marks ex-
emplary values of ρa for which module a is sensitive to the lighting conditions and
module b is sensitive to the different people.
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For both partitionings, Hypersphere TopoART achieved higher values of
the Jaccard coefficient than TopoART. Furthermore, it inherits the property of
TopoART to separately represent both partitionings: while HTA a is more sen-
sitive to the lighting conditions, HTA b better reflects the partitioning according
to the person. Thus, if the vigilance parameter ρa is chosen appropriately, two
different clusterings can be learnt simultaneously.

5 Conclusion

In this paper, a novel neural network based on the TopoART architecture was
presented. It adopts the basic properties of TopoART, in particular, stable on-
line clustering and topology learning at two levels of detail. But in contrast, it
allows for the direct learning of input without rescaling and can adapt to mod-
erate changes of the input domain. In addition, it constitutes an alternative for
problems that do not fit the city-block norm or the hyperrectangular categories
used by TopoART. In the future, Hypersphere TopoART could be applied in
a similar way to TopoART in order to construct further networks, e.g., an as-
sociative memory equivalent to TopoART-AM [16] or a regression method like
TopoART-R [20].
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