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Chapter 1

Introduction

Motivation

Since formulating the millennium goals, reducing of glopaverty and harmoniza-
tion of worldwide standards of living is one of the main ainngldhe most compli-

cated challenge for the United Nations. There are many iqussivhich are relevant
in this context. For transmitting the right impulses, poiégns need to know how
those convergence processes can be achieved and undewstiahddeterminants
are crucial in this context. Thus, in addition to analyzihg theoretical context
scientists are consulted dealing with the question of engdimeasurability of con-

vergence processes for developing meaningful forecastindels. Convergence
processes are conditioned by the existence of economiclgiowoor countries.

Thus, analyzing the determinants of economic growth is am@ian in convergence
analysis. Modeling and analyzing convergence processes isnly important on

cross-country but also on regional level. For exampld, XMilyears after the reuni-
fication the convergence process between eastern and wdggicts in Germany
dominates local and nationwide affairs illustrated in tleedssion of abolishing the

solidarity tax or equalization of eastern and western wagels.



Purpose and aims

On the one hand this thesis deals with the questions: Whicbeqis are reliable
for measuring economic growth and growth convergence, hmwhdy work and
which assumptions are made? Comparing classical and modewvergence and
growth concepts on the basis of well-established crossicpuatasets the ques-
tions above should be answered. Using the results and rigeeature the concepts
are analyzed w.r.t. their limitations and potential errofpplying modern sta-
tistical and econometric methods the convergence coneeptsombined thus the
advantages of individual concepts are emphasized whilentheences of potential

problems are reduced or even eliminated.

On the other hand the question whether growth and conveegemecepts offer
similar results for different levels of aggregation is seatd Thus, in addition to

cross-country data an analysis of German regional datanis.do

Structure of this thesis

The thesis is organized as follows. Chapter 2 deals with tBedtrang of ques-
tions: which convergence concepts exist, how do they wodkvamch restrictions
exist? In detail, Section 2.1 describes economic growthetsodThe first one is
the neoclassical growth model lof So MQSG) explainirapdards of living by

growth of population and saving rate and is outlined in Satiee 2.1.1. In 2.1.2 an

extension of the neoclassical model proposed by Mankiw. 4199:2) Is presented

where human capital is considered as an additional detarmhifinally, in Subsec-

tion 2.1.3 the spatial augmented Solow model of Ertur & K (7) is discussed.

Section 2.2 describes classical convergence conceptandsepopular concept in
this context i3-convergence, which is discussed in Subsection 2.2.1.ddseadf(3-

convergence is that poor economies grow faster than rick ané the concept can

be put to testin a linear regression model where the grovétofgoer capita income
tgL]l)%w Subsection 2.2.2

is explained by initial income (compare e.g. Barro e

2



o-convergence is outlined (see Sala-i Mairtin, 199@byonvergence is assumed if a

reduction of the standard deviation of per capita income tinee is achieved. The

concept of convergence in relative per capita income (Qgah,1993a,h, 1997)

Is presented in Subsection 2.2.3. The idea of this concetpiatsconvergence is
assumed if all economies share the same fraction of mearapgaéncome. Sub-

section 2.2.4 outlines the relationship between thesee tboacepts. Subsection

2.2.5 describes alternative nonparametric convergenueepds of Maasoumi et al.

2007). Applying these concepts the conditional cumuldttsity functions (CDF)

of estimated growth rates for a priori defined groups of eauiee are compared.
Convergence is assumed if the conditional CDFs of the poooeipgstochastically
dominates the one of the richer group. Subsection 2.2.6 deigh the question
how much of available information is used by the differentveargence concepts.
Although most datasets consist of yearly data, some of thgemted concepts use
only parts of this information, e.g. only values from startidinal period or data
of subperiods. This lack of used information may cause rregmmetation and mis-
specification. Thus, this Subsection outlines which cotgapes which degree of
available information. Subsection 2.2.7 generally disesghe problem of global
convergence (all countries convergence) and alterngitprelsents the idea of club
convergence. Club convergence means that if there is nolglobhaergence there
may be at least clubs of economies with common convergenrtavize. This is a
very important point because empirical studies show thaiany applications there

is no evidence for global convergence.

Chapter 3 deals with problems and limitations of classicaVeegence analysis and
provides methods for avoiding this problems. The first @mroblem discussed in
Section 3.1 is the definition and selection of growth detaants. This Section sum-
marizes different definitions for several growth determisgound in the literature

and focuses on the problem, which determinants influencetgrand convergence.
A second problem is that many convergence concepts assugag tionvergence re-

lationships. This assumption is very restrictive and thargioversial. For example,

Haupt & Petring!(2011) find nonlinear convergence procesSestion 3.2 offers a



review of current literature concerning the problem of muedrity. Subsection 3.2.1

presents a nonparametric alternative of Racine!& Li (200byahg for nonlinear-

ities, while Subsection 3.2.2 describes a test of Hsiao €280D7) which checks

for parametric misspecification and may detect nonliniestitAnother widespread
problem of convergence analysis is omitted heterogendiilevheterogeneity may

occur in different ways| Phillips & §u (2003, 20 a&jy)ﬁﬁd heterogeneous

convergence behavior when explaining average per capitaria caused by indi-

vidual country-specific and time-dependent effects sucim@isidual technology

levels. Mello & Perrelli((2003) detect heterogeneous cogeece behavior for dif-

ferent parts of cross-country income distributions. Retitamature dealing with the
problem of omitted heterogeneity is summarized in Secti@n Allowing for het-

erogeneous convergence behavior over different quaofitbe income distribution
guantile regression is described in Subsection 3.3.1.68tibs 3.3.2 outlines a dy-

namic factor model c illi ul (20 b, 2009 sidering individual

effects.

Haupt & Petring|(2011) and Haupt & Meier (2011) find that noahrities and het-

erogeneity arise simultaneously in convergence analybis.argumentation is out-

lined in Section 3.4. Subsection 3.4.1 describes nonpdranggiantile regression
as a solution for considering both problems. An alternatiathod in this context

is the two-step procedure of Haupt & Meier (2011) outlinedSubsection 3.4.2.

The method includes heterogeneity considered by conveegelnbs in a flexible

nonparametric convergence model. Finally, Section 3.1sdeith the problem of

spatial associations. Several papers find that neighboeg@ns influence eco-
nomic growth and convergence of an economy. Subsectioh S8umarizes mod-
els capturing different kinds of spatial associations Whiay occur in three forms,
dependence in the dependent variable, the explanatobVesior correlated other
effects. Subsection 3.5.2 deals with the problem whichhimgs should be con-
sidered in modeling spatial associations and which weigtdsidual neighbors

should get. Testing procedures for spatial dependenceesided in Subsection
3.5.3.



In Chapter 4 the second aim of this thesis is discussed, tr&tiqunavhether there
are differences in the analysis of different aggregativalke The section starts with
a summary of current literature. The following subsectidescribe the datasets on

different levels of aggregation which are analyzed in theiecal part of this thesis.

Chapter 5 outlines applications of the methods describedaptéh 3 applied on the
data presented in Chapter 4. The application chapter certdigtiree working pa-
pers, which are joint works with Harry Haupt and Joachim $chus. The follow-

ing descriptions are the summaries taken from the arti@estion 5.1 is a part of

Haupt & Petring|(2011). “A fully nonparametric analysis go#ied to address the

problems of nonlinearity and heterogeneity in classicalngin regression models
using original data from seminal contributions in this fielonparametric spec-
ification tests and in-sample goodness-of-fit measures,eflsaw cross-validation
based out-of-sample measures provide considerable @aden parametric mis-
specification and a superior performance of a nonparametoidel, despite the
small sample size. In contrast to recent contributionstitieng heterogeneity
as the primal source of misspecification, a formal and ggblanalysis does not

reveal evidence for heterogeneity in a parametric and rmanpetric quantile re-

ression frameworlH’Section 5.2 refers the application section of Haupt & Meier

2011). The methodical part of the paper is already predaent8ubsections 3.3.2
and 3.4.2. “While classical growth convergence regresdaihg account for var-
lous sources of heterogeneity and nonlinearity and reaarttibutions are able to
address either the one or the other, this paper presentpéedino-step method to
address both issues. Based on a slightly augmented versareoéntly proposed
clubbing algorithm to identify convergence clubs, we fotate a flexible nonlinear
modeling framework which allows for analyzing convergegréfects on both indi-
vidual and club level while alleviating potential misclégstion in the club forma-
tion process using simultaneous smoothing over the clufctstre. The proposed
method is illustrated with applications to different d’EEa.The third application

1This abstract is cited from the summary_of Haupt & Pe rlnrﬂﬂlao
2This abstract is cited from the summary of Haupt & Meier Yi&rsion: October 19, 2011.




displayed in Section 5.3 is Haupt et al. (2011). “Classicab®eype convergence

regressions have been found to suffer from at least threee®wf misspecifica-
tion. First, due to latent heterogeneity of convergencegsses, second, due to
latent spatial associations, and third, due to a too réisgiparametric functional
form of the regression function. The recent literature psgs several methods to
address one or two of these caveats. As all three sourcessepatification may
be tightly related the present paper proposes a comprefemsideling approach.
As a first step — to allow for heterogeneities induced by nlmib@ convergence
processes — we identify convergence (and divergence) @tabsa dynamic fac-
tor model using panel data. In the second step further patdmdterogeneities in
the extended model are assumed to be generated by spatieiatiens between
regions in a cross-section model. As an encompassing stépsivéor parametric
misspecification of the extended model and check the walmfitthe club struc-
ture generated from panel data to capture heterogeneitgrvecgence processes
in a cross-section model. The employed nonparametric asammethod allows
to investigate potential club-specific nonlinearitiesour empirical application we
study growth and convergence of the high-skilled employes#sg panel data for
German regions. Model selection results suggest thatdimduconvergence (and
divergence) club-specific effects dominate spatially agigied Solow models: The
residual heterogeneity in classic models seems to be eaphbyrthe club structure
identified in the first step of our analysis. If, however, th&dnformation is ne-
glected, spatial econometric tests suggest the existdrsgabal association in the
model. We check the robustness of our findings with a secopiecapion, where we
analyze data from the literature used to illustrate thetsefispatial Solow models.
Again the evidence is clearly in favor of our findings thatteggdaassociations can

be captured by the allowing convergence paths on the cléd:

3This abstract is cited from the summar)l of Haupt é@lzme:)sion: November 29, 2011.
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Chapter 2

Classical Solow-type growth and

convergence modeling

Analyzing economic growth and convergence is one of the i@ans of economics.
Hence, it is not surprising that there are many growth and/exgence models

whose structures differ from simple to complex. A famous amdple model is

the growth model af Solaw (1956). This approach explainsddads of living with
only two or in the extended version three variables. SincekWaet al. (1992),
hereafter MRW, published their seminal paper, growth nmdisio get into the focus

of econometrics. The authors provide empirical evidencéhenclassical growth

model of Solow|(1956). Additionally, MRW analyze a by humapital extended

version of the model and investigate the question of correrg. In this chapter
classical growth and convergence concepts are preseniet ate of importance
for the following sections in this thesis, while Section 2dals with growth and

Section 2.2 with convergence models.



2.1. GROWTH MODELS

2.1 Growth models

Solow (1956) propose one of the most popular economic gravattiels explaining

standards of living by only two covariates. Although thismple model is about
55 years old it is still a topic in current literature. Sevathers provide economic
extensions of the model and simultaneously its empiricitlitg is analyzed in

l., 1992; Barro, 1991; Barro &a$éartin, 2004).

Thus, the following section deals with the Solow model, k&easions and its em-

econometrics (e.g. Mankiw et

(a}}

pirical content. In Section 2.1.1 the Solow model and itavad¢ion is described.

Section 2.1.2 outlines the extension of the Solow model bydnucapital proposed

by IMankiw et al. (1992). Finally, in Section 2.1.3 the spitiaugmented Solow

model of Ertur & Koch|(2007) is presented which capturesiapdependence and

spillovers.

2.1.1 Neoclassical growth model

The classical growth model of Solow (1956) can be deriveddsuming a Cobb-
Douglas production function

Y =F(Kp,L) =AKSLY @ O<a<1l

The total OutpulY depends on the factors of production capital (the commisnity
accumulated stock of capitd), and labor (the population of working ags)where

a gives the partial elasticity of production for capital ahd a constant scale factor
measuring the level of technology. For assessing the groft#bor, the population
growth is assumed to be exogenous at a constantirstethatl can be expressed
as

L(t) = Loe™. (2.1)

Further, it is assumed that the total Outputan be divided into gross investment
and consumption. Gross investment is interpreted as thegeates,, in the sense,
that this is the share of total output saved for increasingréuoutput. The net

8



2.1. GROWTH MODELS

investment results from the difference between gross imest and depreciation

as
Kp = S¢,Y — OKp, (2.2)

whered is the depreciation rate measuring the share of the totplbuthich needs
to be invested to hold the actual level of output. The aim ef$lolow model is to

explain the standard of living approximated by the per eapittput

Y AK§L@ KS
Hence, the output per capijedepends on the capital-labor rakg measuring the
relation between the costs for production factors capitdllabor. From Equation
(2Z3) and [ZR) followsKp/Kp = s, (Y/Kp) — 3 andL/L = n, respectively. Hence,

the growth rate of the capital-labor ratio is given by

Kp Y
Kp Sog, 07"
and leads to
Ko = Sk, — kp(8+1). (2.4)

In its steady-state the capital-labor ratio needs to betaahsnserting[(2.13) il (214)
and simple calculus yields the steady-state valug,of

1
* S’(PA o
ks = (5+ n) . (2.5)

Following from equatior(Z]5) the equilibrium of the capil@bor ratio is positively
related to the saving rate and negatively to the growth ritiesoworking-age pop-
ulation. The steady-state output per capita can be deriyeibstituting[(2.b) into

23),

SA\TE 1 e
v =A(gsy) A,
or, taking logs,
log(A a a



2.1. GROWTH MODELS

Analyzing this model empirically MRW derive a corresporgliregression formu-
lation log(y) ~ X'B (X is the matrix of explanatory variables) assuming

E(log(yi)|X) = B1+ Bzlog (s«,,i) +Bzlog (d+ni), (2.7)

where lody;) is the observed output in economB; = %, B2 = %5 andBs =

1-a-
Assessing the empirical performance of the model, t-testsuaed to check the
correct signs of parameters for empirical data. Hence, thedieck is whethes,

Is significantly positive and iB3 is negative. Furthermore, both parameters should

have roughly the same magnitude equak#h.|. Using several sets of cross-section

data and existing empirical evidence (e.g, Jorgenson,di%7) MRW suggest that

the capital’'s share of outpatis roughly constant over time and economies at a level
of approximately one third. ThuBp and3 are expected to be approximately equal
to one half in absolute value.

2.1.2 Extended neoclassical growth model

As an extension MRW add human capital to the classical to thexsmodel. The

use of human capital as a determinant of economic growth ite gommon in

earlier literature (e.d. Lucas, 1988). Again, a Cobb-Dosigladuction function is

used and generalized to
1—a—
Y = AKpKyLY Y,

whereK}, denotes the accumulated human capital. In analody tb (2&3)utput per

capita is given by

LY AKpKpLIT
L

def
y= LopLvpl-a-v :Akgkz’ (2'8)

wherek, denotes the human capital per worker and the share of human capital

in production.

10
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In analogy to[(2.R), the net investment in human capitallte$tom the difference

between gross investment and depreciation
kn = S,Y — 3K

In the adjusted model two different saving rates, sgyandsy,, represent gross
investment folK, andKy. Then, in analogy td (214), the growth of human capital

can be written as

kn = Sy — (3-+ N)kn. (2.9)

The equilibrium condition in this model is that botk, andky, are constant, i.e.

kp = 0 andk, = 0. The solution of this system of differential equationsKgrand

kn is given by
As’i_v% T-a-v
* P
kp—< 5n ) (2.10)
1
A# —a\ I—-a-v
ki, = ( 6:#:1 ) : (2.11)
Thus, the steady-state output per capita is equal to
P 2 | T
y'=ATav 45 Y 4 (34 nTav 457, (2.12)
or, taking logs,
_log(A)
a+

v
—1_0(—_\)Iog(6+n)+

A regression representation of model (2.13) is given byyigg~ X' assuming

Y
T a_v log (Si,)- (2.13)

E(log(yi)[X) = B1+ B210g(Sk,,i) + Bslog(d+ i) + Balog(sk,,i)- (2.14)

According to [2.1B)B, and[34 are expected to be positive whilg should be neg-
ative. Obviously, the magnitude of the parameters dependiseoempirical equiv-
alent of the share of human capital MRW assume» = a = 1/3. Thus,3; and
B4 should be approximately equal to one dxdshould be approximately equal to
minus two.

11
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2.1.3 Spatial neoclassical growth model

Again, based on the Cobb-Douglas production function (2r8)r& Koch (2007)
propose a spatially augmented model of Solow (1956). Thiecasitassume that

the global technology levé is not constant over time and countries and that there
are interpedendencies between countries or regions. Dkmeoiwledge spillovers
these interdependencies are affected by the spatial fadtaghboring economies

influence each other more than spatially distant economies.

Ertur & Koch (2007) model the interdependencies using sedaArrow-Romer
externalities (see Arr \/\4_19J6 . Romer, 1086). The log tetdgywlevel A is as-
sumed as

log(A) =10g(Q) + @log(kp) + YW log(A). (2.15)

A depends on a common technology leRalith constant exogenous growth which
is available for all economies. Furthermore, the technpllegel rises with the
capital per worker (knowledge spillover), whiggmeasures the size of the effect.
There is also a spatial effeck is assumed to depend on a geometrically weighted
mean of the neighbors stocks of technology. The weightsiges gn a nonsingular
weighting matriXW andy indicates the rate of dependence from worldwide level of

technology.

Solving Equation[(Z.15) yields
log(A) = (I — W)~ *log(Q) + @l — W) *log(kp). (2.16)
For developing the steady state per capita income we bugksldd [2.3)

log(y) = log(A) + alog(kp) (2.17)

and replace logd) by Equation[(2.16) such that

log(y) = (I —WV) 'log(Q) +@(I — W) *log(kp) +alog(kp) (2.18)
log(y) = log(Q)+ (a-+ @)k, —yaWlog(kp) +yWlog(y). (2.19)

12
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Analogously to the neoclassical growth model it can be shilvahthe steady-state
per capita income is given by

a+ao a+o

1
log(y") = mlog(ﬂ) + m Og(Skp) - m|09(5+ n)
ZW. 109(Sc, ZW. ilog(8+n;j) +
Jsél Jsél

Zw, ilog(yj)), (2.20)
P

wherew; j is the element of the weighting matiiX giving the influence of neighbor

j on economy.

Empirically this steady-state is estimated with a regmssiodel assuming

E(log(yi)|X) = Bo+B1log(Se,i) —B2l0g(8+n) —61) wi jlog(s,j
J#i

02 wijlog(d+n;)+p)  wi;log(y))). (2.21)
J#i J#i
The result is a spatial version of the neoclassical growtdehwith spatial lags of
endogenous and exogenous variables. Attention shouldidg@the fact that in

this caseX includes an endogenous variable.

2.2 Convergence concepts

Current literature focuses on the analysis of convergenaeiaianstead of growth
models (e.g. Barro & Sala-i Mar ilj, 1992; Barro etlal., 1991as rtin,[1996a,b).

In this context convergence is assumed if differences mdstads of living between

economies become smaller or even disappear over time.

Classical literature offers different concepts of convamge The most popular one
IS B-convergence meaning that poor economies growth fasterriba ones (see
Sala-i Martin, 1996a.b). This concept is outlined in Subsae2.2.1.! Sala-i Martin

1996a) proposes another related conceptonvergence, which is described in

13
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Subsection 2.2.2. The idea ofconvergence is a decreasing dispersion of cross-
sectional per capita income over time. Furthermore, Suiogse2.2.3 describes the

concept of convergence in relative per capita income &QMJL 1993alh, 1997) as-

suming an equally fraction of mean per capita income for@h®mies over time.

Subsection 2.2.4 shows the relationship between thesed¢breepts. The nonpara-

metric convergence concepts proposed by Maasoumi et &l7)20e described in

Subsection 2.2.5. Applying these concepts the sample oftdes is divided into
different groups whose complete distribution of growttesats estimated nonpara-
metrically while convergence is assumed if the growth reggidution of one group

stochastically dominates the one of another group.

Subsection 2.2.6 compares the different grades of infoomaitilization of the dif-
ferent concepts. Finally, 2.2.7 deals with the questionetiver there is always
“global convergence” or whether convergence clubs occur.

2.2.1 [(-convergence

3-convergence is the most popular concept for analyzingexgence (e.g.

Barro & Sala-i Martin, 1992). A main advantage of the concsphat it is founded

in the theory of the Solow model and thus a theory-basedgretation of the re-
sults is possible3-convergence means that poor economies grow faster thian ric
ones implying that the corresponding income gap diminisiégrefore the linear

regression model

Vi = Bo—B1log(yio) +&i (2.22)

is used, where; = log(yi 1) —log(yi o) is the growth rate of per capita income
in countryi, T is the final period, and | o) is the initial income of economy
i. Equation[(2.2R) measures so-called “absolute conveeajeh@; is significantly
greater than 0. It is called absolute convergence becalgéherinitial incomes are
used to explain growth rates. Hence, the meanirgy@$ that a marginal reduction
of initial income yields a higher growth rate. In the caselss@utep-convergence
all economies converge to the same steady-state.

14
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Analyzing the shape ¢#-convergence for different values®f we rewrite Equation

2.22) to
log(yit) = Bo+ (1 —P1)log(yio) +&i. (2.23)

B1=0.5

log(yz)
log(yy)

log(yo) log(yo)

Bi=1.5

log(y)

log(yo)

Figure 2.1: Different shapes @kconvergence depending on valuefaf Dashed

lines display the extreme case®f= 0.

We differentiate between the three cases B1 < 1, 1 =1 andf; > 1. For all

of them [3-convergence is assumed becafige- 0. The first caseff; = 0.5) is
displayed in the upper left panel in Figure]2.1. In this cdmeihcomes of poor
economies are catching up to rich ones, bul ithe steady-state income has not
been reached. Fd; = 1 convergence is reached. Independently from the income
in period 0, the income in period is close to the steady-state income on cross-

economy average. Fd¥ > 1 the economies which are poor in O are richTin
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2.2. CONVERGENCE CONCEPTS

and vice versa._Sala-i Martin (1996b) rules the cases twotlrek out calling
them “leapfrogging” and “overshooting” because poor ecnies systematically
get ahead of rich ones which is not feasible. The author assx 31 < 1 and

excludes the other cases.

The assumption of a common steady-state implies that theoeaes differ only

in their initial income is often implausible. The Solow mdbgeedicts different
steady-states for economies depending on the values obtlaiates population
growth, physical capital and human capital. Thus, we candam another con-
cept of convergence, namely conditiofiatonvergence. This concept means that
poor economies return faster to their individual steadyest than rich economies.
The individual steady-states depend on country specifiownents measured by

different covariates, basically physical capital and hnroapital.

The corresponding model can be derived from the growth mitgdysical [2.4)
and human capital (2.9). From the production function fefidhat the growth rate

of the output per capitgtis the weighted average of the growth rates of the inputs

y/y = a(kp/kp) + V(kn/kn). We can rewrite[(2]4) and(2.9) depending on(lqg
and lodky) respectively such that

ko/Kp = s, Ae (1-@logke)gvloglia) _ (5.4 ) (2.24)
kh/kh — 5, A" log(kp) g—(1-V)log(kn) _ (84n). (2.25)

Taking a two-dimensional first-order Taylor approximatioom these equations

leads to

y/y — [ag(pA(_(]_ _ a))e‘(l_a) |09(k?))e\’|°9(kf*1) + VSKhAGGIOQ(kF’)e_(l_V) |09(k;)]
-[log(kp) —log(kp)] + [askpAe—(l—a) log(kp)y,gvlog(ky)
VS AE09) (—(1 - v))e V199 log(ky) — log(K;)]. (2.26)

By using the steady-state conditions kgrandk;, (2.10) and[(Z.111) we can simplify
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(2.28) to

y/y = —b[log(y) —log(y")], (2.27)

whereb = (1—a —v)(d+n) is the convergence coefficient, which measures the

speed of convergence (see Barro & Sala-i Martin, 2004).

A useful interpretation ob can be derived from the solution of the differential
equation[(2.2]7) which is given by

log(y(T)) = (1 e °T)log(y") + e T log(y(0)), (2.28)

wherey(0) is the initial output per capita. The half-life (the time wadog(y(T))
is halfway between the initial level and the steady-stagea)iven by the condition
e °T = 1/2, which is equivalent td = log(2)/b. For example, ifo = 0.02 the
economy requires about 35 years to move halfway to its stetatg.

In the next step we derive the new model for analyzing coremeg based on the
previous approach. For that we subtract(ig@)) from both sides of[{2.28) and
replace logyx) by (2.13). Thus we obtain the model

log(y(T)) —log(y(0)) = — (1€ °T)log(y(0))

+ (1-eT) log(s)

+ (1- e‘bT)% log(sx,)

_ (1—e‘bT)a—:)_vlog(6+ n. (229

Equation[[Z.2B) can be transformed into the general regressodel assuming
E(uilX) = Bo—B1log(yio) +B2log(sk,.i) + Bslog(sk,.i)
+Balog(3+ny), (2.30)

where
Br=1—e 0T (2.31)

Conditional 3-convergence can be assumedifs greater than 0. For assessing
b Equation[[2.301) is solved for the parameter. A detailedudison of situations
where the different concepts should be used is given in Chédpte
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The spatial augmented convergence model can be derivee isatne way while
the single steps are more complicated due to the large nuohlbevariates and the

problem of an endogenous explanatory variable. The detegldeft out here and

can be found in_Ertur & Koch (2007). The resulting model is

log(y(T)) —log(y(0)) = —(1—e %T)log(y(0))
(1_edT) OTP
l1-a—-0¢

(1 _ 0T a+o
(1—e )—1_a_(plog(6+n)
—diT y<1_a) . )
+(1-e )m%wl,ﬂ‘)g(yj (0))
—aiT ay - .
—(1-e )m%wl,ﬂ()g(%,ﬂ
—diT ay . )
+(1—e )mgwulog(é—'—nj)
y(1—a)
l1-a—-0

1
.%;atgﬁﬂwummWT»—mmwm»

log(sk,)

+(1-e 9T

whered; is an individual convergence parameter depending on theidhl level
of technology.

2.2.2 0-convergence

Another important convergence conceptisonvergence. The idea of this concept
is that convergence is assumed if the dispersion measurtxt lsyandard deviation
o of cross-economy per capita income declines over time go tha

Ot+t < Gt, (2.32)

wheret =1, ..., T. The concept ob-convergence does not deal with the question to
which steady-state the incomes convergence and thus, arttbhaverage income

rise or fall over time. For analyzing-convergence the only important question is
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whether the cross-economy variance of(lpg) decreases over time and thus if the

incomes at large come closer.

The concepts of- andf-convergence are related (see Sala-i Martin, 1996b). Based

on Equation[(2.23) the error termg are assumed to have a zero mean and a con-
stant varianceo? for all time periods and economies. Furthermore, the sample
variance of logy; ) is given by

N
af =N~ “[log(yir) —log(yi)]%, (2.33)

i=1

where thdog(yi t) is the mean of logy; ) int. Calculating the variance for Equation

(2.23[1 using the assumptions above yields

Var(log(yir)) = Var(Bo)+Var((1—PBa)log(yit1)+Var(eir) (2.34)
ot = (1-By)’cf 1+0Z. (2.35)

Resulting from assuming that? is constant,o? decreases i3; > 0 and thus,
o-convergence cannot occur withoftconvergence. 3-convergence is a neces-
sary condition foro-convergence. The dispersion of cross-sectional peraapit
come may only reduce if poor economies grow faster than ritdso However,
B-convergence is not a sufficient condition for the existerfo-convergence. The
steady-state of the linear difference equation given indiqn (2.35) is given by its

iInhomogeneous solution
02
u

1-(1-P1)

Developing the first-order Taylor approximation gives tb&igon of the equation

02 = (2.36)

depending on the steady-state variance
0f = 0%+ (1—B1)?[0f 1 — 07 (2.37)

Equation [(2.3I7) suggests th@atconvergence is only a necessary but not a suffi-
cient condition foro-convergence. IB-convergence is presem? can increase or
decrease. The direction of change depends on whethi below or above the

steady-state.

4Here the initial period 0 is set to- 1.
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2.2.3 Convergence in relative per capita income

Current literature deals with many more convergence cosaepere only the most

popular ones are presented in this thesis. In this chapgecdhcept of conver-

gence in relative per capita income is described (see | Qu2818¢ 1997) which

is used below. Quah (1993a,b, 1997) initiates the critia@snonly investigating3-

convergence on average. The author argues that time-avgragth rates are not
appropriate for deriving time dynamical implications. Tpr@blem in this context
Is the comparison of realizations of the same random variabldifferent points
in time. A linear regression of those variables is cloudedjton’s Fallacy of re-
gression towards the mean which means that economies lgomgaross-economy
average generally lie below the average in the second panddice versa because
the realizations above the average are only randomly hithiaer the average. The
mean of those higher individuals will be considerably seraith the later period,
because the high values in the first period are only causedrimjom effects. This
is the reason why a coefficient of a regressioggfony, ; always tends to be nega-
tive and hence cannot imply anything useful about an assiimil of incomes over

time.

AIternativer,QAah (19934,b, 1997) presents a new coeverg concept. He nor-

malizes the income by dividing the output per worker of evecpnomy by a
weighted cross-economy average for every ydaigh weights are used for coun-

tries with large populations or simply the mean)

log(yit)
hi = ’ , 2.38
N wilog(yi) (2:39)

where " ;w; = 1. The interpretation of the ratio is that the output per veordf

economyi is hj¢-times as big as the weighted cross-economy average. Cemgsg

over time is assumed if thg; — 1 fort — oo,

Figure 2.2 offers a graphical example for convergence atiked per capita income.
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Figure 2.2: Example for convergence in relative per capicame

1.05 1.10 1.15
| | |

1.00

Relative Transition

0.90 0.95
| |

0.85
|

0.80
|

The relative transition coefficients; for several years and economies are plotted
while the coefficients from the individual economies arereted to the relative
transition paths of the economies. The black line is equalnt®. This group of
economies converges because all transition paths are tdosee in final period

than in initial period 0.

2.2.4 The relationship betweerf8-convergenceg-convergence and

convergence in relative per capita income

For comparing the different convergence concepts onlyrheli and final period

are taken into account becayseonvergence does not consider intermediate peri-
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ods. Convergence in relative per capita income investightebehavior of the rel-
ative transition coefficientls; ; = Iog(yu)/(N—lZ!\'leog(yi,t)) (Note that for sim-
plification the unweighted average is used). Convergencssisnaed it — 1 for

all i if t — oo,

If convergence in the latter sense is fulfilled over the pfiom [0, T] all economies
have approximately the same per capita income,imvhich is on the level of the
mean income i independently from their initial income in 0. Figure 2.3 aiso
the relationship between initial and final per capita incameder the assumption of
convergence in relative per capita income. Independertin the initial income,
the income in the final period is approximately equal to theumimcome for all

economies (in this case all points lie on the regression.line

log(y))
mean( log(y[T]) )
o

log(yo)

Figure 2.3: Initial and final per capita income under the ag#ion of convergence

in relative per capita income

In empirical samples the points do not lie exactly on a linethbay spread sparsely

around the mean. Specifying the relationship in a lineareggion model yields
log(yi 1) = Bo -+ blog(yi o) +&i, (2.39)
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whereb = 0 under convergence in per capita hypothesis.

At this point the relationship betwe@rconvergence and the convergence in relative
per capita income becomes clear. Equafion (2.39) can hlg gasisformed into the

B-convergence model.

log(yit) = Bo+ (1—B1)log(yio) +&i, (2.40)

Thus, convergence in the sense_of )ua_h_uj&' a,b/ 1997) iscabpase of3-
convergence wher; = 1. For the existence of convergence in this sense another

assumption must also be fulfilled. It is not sufficient that 0 in Equation[(2.39).
Additionally the dispersion has to be small and unsystematt or at least the
dispersion inT must be smaller than in 0. This is fulfilled d-convergence is
present. Thug}- ando-convergence are necessary but not sufficient conditians fo

convergence in relative per capita income.

2.2.5 Nonparametric convergence concepts

lMa.a.s_QumLel_al (2007) present two new convergence conasipig nonparametric
approaches. The main idea of both concepts is to analyzesggamnce between

a priori defined groups of economies instead of generallwéen poor and rich
economies. On the one hand this is a very strong and regtracssumption, because
the a priori classification of the convergence direction lc@e “real” directions of
convergence. On the other hand the concept allows to foljpeciic questions
about several groups. For example, German regional dat#\aded into east and

west to check if eastern districts close the gap on the wedistricts.

Applying the first concept, a nonparametric regression oiwjn rates of per capita
income on the most popular conditioning variables (popaegrowth, human cap-
ital and investment rate) is conducted. Second, the camditiprobability density
function (PDF) and the conditional cumulative distribatifunction (CDF) of the
nonparametric growth rates depending on groups and timedseare estimated.
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Final stage is a check for stochastic dominance of CDFs féeréifit groups and
for different periods. The distribution of the random vateX; first order stochas-
tically dominates the distribution of; if the conditional cumulative distribution

function of X; lies under the conditional CDF &% at every poink (F1(x) < F»(X))

Lﬁsg).

Two questions can be analyzed with this concept. Mainlyait checked if per

U

(see Hadar & Russ

capita income from eastern and western districts convergeimparing the condi-
tional growth rate CDFs of both groups at the same time. Inabigext per capita
income convergence between groups is assumed if the greweldistribution of
the initially poorer group stochastically dominates the o the other group. For
the present example this means, that all parts and henceaaititps of the distri-
bution of east districts grow faster than districts in thesiv@ hus, the poorest 10%
of the eastern districts grow faster than the poorest 10%eoihviestern districts and
so on. If the growth rates of the districts in the east aredrghan the ones of the
districts in the west at all quantiles of the growth rate riisition, the per capita
income in all districts of the former German Democratic RépulisDR) growths

faster and thus the gap between income in both former pa@&wohany dissolves.

Furthermore, the difference between absolute and conditiconvergence can be
considered. For analyzing absolute convergence, the fitkeks of the nonpara-
metric regression are used as growth rates of per capita@c&onditional con-
vergence can be analyzed if the residuals of the nonparamegression are used
for growth rates. The residuals stand for conditional cogeece because they are
the growth rates after controlling for the influences of tladitioning variables.
In addition to analyzing convergence between groups, isis possible to analyze
convergence within groups by regarding the conditional Caffese group for dif-
ferent periods. How the nonparametric regression work$easeen in Subsection
3.2.1.

Stochastic dominance can be analyzed graphically, thdugesults of a formal

test are presented by Linton et al. (2005). Using an exteKdédogorov-Smirnov
test for stochastic dominance| of MgFadden (1989) the asifmapose a consistent
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procedure for estimating critical values. The test ideaibuild pairwise differ-
ences between the conditional CDF X and X, for everyx and to observe the
corresponding maximum. Then, differences between theittondl CDFs ofX;
andX; are calculated too. From both maxima the minimum is taken

d* = minsugF(x) — R (X)].

k#l xeX
The hypotheses of the test are

Ho:d* <0vs.Hp:d* > 0.

The null hypothesis means a negative minimal differencevéen the CDFs which
is equivalent to the fact th& lies unders and thuds first order dominateBy. So,
if the null is not rejected, stochastic dominance betweento distributions can

be assumed. The test statistic is the empirical analogdé of

Dy = minsupy/N[F(x) — Fin (X))

I xex
where R/ denotes the number of observationsXf which are smaller than,

divided byN. The distribution oDy is obtained by a subsample bootstrap. There-
fore,N — b+ 1 subsamples of sizeand the test statistic are computed. The null is

rejected ifDy is greater than thél — a)-quantile of the resampled distribution.

Taking a step forward the second convergence concept of dMad<t al. (2007)

uses entropy measures to capture the exact distances heatigeéutions of sev-
eral groups for different timets Thus, for every period the difference between the
conditional CDFs of the growth rates of eastern and westatricts are calculated.
Convergence is assumed if the distance became smaller odsgaives over time.

For measuring the distance the authors use an entropy véaciditionally a metric

proposed by Granger etlal. (2004)

%:E/ / (ff—ff) dxdy

where f; and f, are the marginal densities of the growth rates for east arsd. we

S, lies between 0 and 1, while 0 means, that there is no distaetveebn both
distributions. Thus, it can be tested if the distributions @qual by testing the null
hypothesiss, = 0.
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2.2. CONVERGENCE CONCEPTS

2.2.6 Utilization of available information

As described in the previous sections the different corererg concepts make dif-
fering uses of levels of available data. lllustrating thaistfthis Subsection contrasts
the different concepts with respect to this issue. For alicepts there are avail-
able information fot = 0,..., T, but not all concepts use all information. In Figure

[2.4 the considered information of the different conceptdisplayed. There are

Figure 2.4: Utilization of information of different convggnce concepts
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three utilization-levels of available information. Thencept convergence in rel-
ative per capita income ana-convergence are arranged on the first level. Both
concepts use the information for all available peribégsl,...,T. The concepts of
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2.2. CONVERGENCE CONCEPTS

M mi et &al. (2007) are arranged on the second level. pbelythe data and

divide the time horizon into several subperiods and use ioidymation for initial
and final period and the borders of the subperidads {0,T1,T2,...,T}). Thus,
these concepts ignore the information for intermediategdsr-convergence con-
siders only small parts of information. For estimating tliaept only informa-
tion of initial and final period are usede {0, T}. This is a clear handicap ¢&-
convergence, because ignoring of available informatiopn caaise incorrect results
and wrong conclusions. Generally, available informatioowdd be fully considered

for achieving the best model performance.

2.2.7 Convergence clubs

There are many works suggesting that especially for crossicy data there is no
global convergence for all countries independently froexthderlying convergence
concept. Thus, several authors try to identify groups oheodes with common

convergence behavior, the so-called convergence clubs.

The seminal paper dealing with the question whether coevesgis really global

1986). The author asks: “Does convergence [.tdrekbeyond the [...]

isiBaum

countries? Or is the convergence club a very exclusive argaon?” (Baumol,

1986, p. 1079). Analyzing the relationship between the &Bxsmestic Product per
capita in 1950 and its growth rate between 1950 and 1980 utheafinds visually
two convergence clubs. The first club consists of the sixitedunstrialized countries

in the sample and the second one contains of the centralipgetheconomies. As a
formal validation of his assumption he finds falling Gini ffiezents for the decades
1950 to 1980 inside the two clubs. A falling Gini coefficienticates that the

income distribution inside a club becomes more equal.

The work of Baumol((1986) gives rise to a circumstantial déston about conver-

gence clubs. The main papers in this context which are uded/lage summarized

in this subsection.

Using panel data for 118 countries and from 1962 to 1985 dmeaa(a) finds a
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2.2. CONVERGENCE CONCEPTS

trend to extremes as the upper part of the income distribaimverges to the rich-
est countries, while the poor countries become poorer. &kelting bi-modality

gives rise to the concept of “convergence clubs”.

Durlauf & Johnson|(1995) find misspecification of the lineaydal on the MRW
data. However, using regression tree analysis the auttiersify clubs for which

the linear model and thysconvergence is fulfilled on a club-level.

Seitz (1995) analyze-convergence in West German regions for data of the dis-
tricts and district-free cities from 1980 till 1990. The laot does not find “global”
convergence, but he discovers convergence clubs based gratite of urbanization.

For that the districts are divided into three categoriestridt free cities, districts in

direct neighborhood to such cities and the other distrantsévay from a city.

Hobijn & Franses (2000) use a consistent clustering algoréllowing for endoge-
nous cluster selection. For several datasets (e.g. Pend Myle) they find many

clusters, but their sizes are frequently very small.

Phillips & Sul (2003 2007 EI . 2009) develop a data-basedbihg algorithm and

find convergence clubs for several sets of data.

ith Quah, 1@319%") Canova (2004)

presents an algorithm determining the number of clubsy tbeation and break

Based on the predictive density (related v

points between clubs. Using data on 144 European NHTlBﬂS, the authors
apply the algorithm and estimate a single convergence cagftifor every club.

Juérez & Steel (2010) use an autoregressive and model-bégaithm for panel

data. The advantage of the method is that it offers memhesiobabilities for
every economy and cluster. They analyze data on 258 Eurdg&dis2 regions
from 1995 to 2004 and 738 manufacturing firms from Spain ardi dlasters for

both data sets.

SNUTS (Nomenclature des unités territoriales statistiyjisea hierarchical geographical classi-
fication of European official statistics. Level 2 are unitsmeérmediate size.
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Chapter 3

Remedies for problems of classical

convergence concepts

The work of MRW gives rise to an intensive and on-going diseuson the quality
and validation of classical convergence models. The airhiefahapter is to offer
a survey of current literature for detecting problems osieal growth and con-
vergence modeling and potential remedies. Therefore, rnbl@lgms are structured
in five strands presented in the next sections. Every sestamts with a survey
of current literature dealing with the appropriate problefrclassical modeling.
The corresponding subsections describe selected ecottoemices and economet-
ric methods offering improvements in details. The presntethods are the basis

for the empirical analysis in Chapter 5.

Section 3.1 covers papers dealing with the question of bridefinition and selec-
tion, more precisely the papers analyze which determinaatly influence growth
and convergence. Furthermore, in this section differefibitiens of the growth

determinants are presented. Section 3.2 summarizes pdpatdying neglected

nonlinearities as a source ferconvergence being invalid for several data sets. A

nonparametric alternative is discussed and a test of Hsialo 007) for paramet-

ric misspecification is described in this section. Sectidghdals with the problem

of omitted heterogeneity and two different methods for gepg heterogeneity are
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3.1. GROWTH DETERMINANTS

presented, on the one hand quantile regression_(see Kokra@&sseit, 1978) for
considering location scale effects of the conditional ghodistribution and on the
other hand the log regression olf Phillips & Sul (20 12_20_& b, 2009). Section

3.4 describes two methods combining the problems of negfldotterogeneity and

nonlinearities. First, nonparametric quantile regres¢see Li & Racine, 2008) is

described which captures nonlinear location scale effaestssecond, a two step

procedure olf_lzla.upl_&_Mﬁ'Ls (2011) combining the lbgegression Phillips & Sul

2003,/ 2007 2009) with nonparametric methods is ptederFinally, Section

3.5 summarizes papers dealing with the problem of spatsalcation. In this sec-
tion spatial convergence models, the influence of neighlgegconomies, and tests

for spatial dependence are presented.

3.1 Growth determinants

A first big wave of literature discusses the definition of &htes in empirical anal-
ysis and the influence of potential additional covariatesugment classical growth

models and conditiongd-convergence.

The Solow model extended by human capital predicts a lineateinwhere the
standard of living is explained by the saving rate, the ghoaftworking age pop-
ulation and human capital. All these variables can be definsgveral ways and

their definitions may have a noticeable influence on the edton results.

As a measure for standards of living MRW use per capita incor@asured by the
real GDP divided by the working-age population (15-64 yedda$. This is common

in literature.

The first explanatory variable is the saving rate MRW proxy this variable by
the GDP share of investment (including government investjndivided by 100.

Taking investment rates as a measure for savings rates isbraius at the first
sight. Investment rates are the share of output which is tsegplace or enlarge

the stock of physical capital. Analyzing regional data salvauthors use other
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3.1. GROWTH DETERMINANTS

definitions of this variable. E.g. Seitz (1995) uses the hibsanvestment in the

manufacturing industry. Kosfeld etlal. (2006) use the nunab@ewly established

enterprises relative to the working population as an irtdidar the investment rate.

MRW proxy the growth rate of the working-age populatioioy the growth rate
of total population because there is no reliable data foersd\wdeveloping coun-
tries. The depreciation rafieis assumed to be constant over time and countries at
a value ofd = 0.05. Taking population growth as a proxy is common in literatu
independently from the level of aggregation. The size ofdbpreciation rate is

disputable. Especially for regional data other depremmatates might be assumed

than for cross-country data (elg. Kosfeld etlal., 2006).

The last and most complicated variable is human capitaMRW use the share
of working-age population, which attends the secondarpaichThis variable is
compounded by the fraction of eligible population (12-1ig)ting secondary school
multiplied with the fraction of people from the working-agepulation in school
age (15-17). Other authors (elg. Kalaitzidakis

schooling. Analyzing German regional data these conceptid human capital are

v

al., 2@Qke the mean years of

not useful because these variables are similar for all nsgiio disaggregated data.
Alternatively, many authors use the share of workers withdemic degree (e.qg.
Kosfeld et al.; 2006; Se t‘L_1£J95) or the proportion of passwith “Abitur” (e.g.
Herz & Roger, 1995). Funke & Niebuhr (2005) consider the dgmagiemployment
in Research and Development for this covariate.

Some authors focus on the influence of human capital on ogtputth. For exam-

pleﬁen_h&ib_&_s_pi_ede (1994) find an insignificant or even tiegaelationship

between human capital and growth rates of per capita incomesimg the mean

years of schooling as a proxy for human capital, while MRW firgignificant pos-
itive correlation when human capital is represented by lénemt rates. Thus, the
way how human capital is approximated empirically seemslag pn important
role.

A huge part of early convergence analysis is devoted to fezgnice tests as there
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3.2. NONLINEARITIES

are many co-existing strands of reasoning using differahhbt necessarily mutu-
ally disjunct sets of explanatory variables and differeatadsets on different levels

of aggregation (sele Evans, 1998; Seitz, 1995; Herz & Rog&5;18lam, 5;

Lee et al., 1997 for recent contributions).

Barro (1991) is the essential reference which tries to findieoab evidence for

the influence of other variables, for example geographigsitipn, government ex-
penditure, political stability, economic system and madistortions. Afterwards,
a lot of articles introduce more and more new explanatoriatségs which may be
related with output growth. The problem in this context sedmbe that every
researcher considers a certain set of variables which dyesmgmificant in the cor-
responding constellation. Sala-i Martin (1997) and Dur&@uah (1999) finally

try to identify the variables which “really” influence ecana& growth. They do so

by conducting regressions with numerous combinations tdrg@l variables and

noting which of them are significant frequently.

3.2 Nonlinearities

Current literature leaves the platform of simple replicasiof MRW with new data
sets and variables and instead criticizes the classicalecgance model for sev-
eral reasons by proposing basic extensions in an economie@mnometric sense.
First, one main strand of this literature criticizes thekla€ flexibility of MRW'’s
(least squares) estimation of a linear regression mode$tant$ a discussion about
alternative functional forms. Second, the concepB-@bnvergence is criticized as
it only covers one aspect - the mean effect - of initial incanehe distribution of

income growth rates.

Addressing the former issue “Kalaitzidakis et al. (200198 semi-parametric esti-

mation techniques [to the extended specification] and findrdimear effect of hu-
man capital measured by the mean years of schooling on ec¢omgoowth. When
using the enrollment rates to describe human capital, fecteis linear. Earlier
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3.2. NONLINEARITIES

results by Liu & Stengos (1999), based on ideas of Durlauf (1995), con-

firm these findings, [though the authors do not back up thewlte with formal

tests].

The problem of potential nonlinearities in growth (and cengence) regressions

has also been recently addressed by applying fully nonpgetramamethods for re-

gression and specification testing (see Haupt & Petringl 20The authors use a

local linear kernel estimator with a generalized produchk&Efunction proposed by
Racine & Li (2004) and Li & Racine (2004). Using data from PennrM/@ables

also used by Mankiw et al. (1992) they find considerable exddefor parametric

misspecification and a superior performance of a nonparanmeddel.

Qual (199 El ,1997) initiates the criticism of the concémnly investigating3-

convergence on average (see Subsection 2.2.3). He expistabution dynamics

and heterogeneity by comparing the per capita income loligions over time and
by estimating transition matrices. Comparing those matrioeseveral subperiods
provides an informal basis to detect convergence or divegye different parts of
the income distribution. Using panel data for 118 countfies 1962 to 1985 he
finds a trend to extremes as the upper part of the distribetionerges to the most
rich countries, while poor countries become poorer. Theltieg bi-modality gives

rise to the concept of “convergence clubs” (see Subsectiid)2

Bringing both lines together Maasoumi et al. (2007) intragdacovel nonparamet-

ric concept for convergence estimation and testing (seseltion 2.2.5). In their
application to cross-country panel data over five periodg tompare the distribu-
tion of growth rates for OECD and Non-OECD countries. Usinglséstic domi-
nance (SD) rankings, the idea is to assume convergence tdromeh distribution
dominates the other stochastically. The authors find cleideace for both non-
linearities and convergence clubs. Furthermore, they osemy measures to as-
sess the numerical value of distance between the distimifor several periods.

The idea of convergence in this context is that the distapt@den the distributions

Scited from Haupt & Petrind (2011).
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might shrink over time. In this vein Henderson (2010) agptienparametric kernel

estimation to the data of Maasoumi et al. and also finds cgevee clubs by ana-
lyzing the estimated distribution of the partial effectsrofial income and applying

a test for multi-modality.

Funke & Niebuhr|(2005) use nonparametric kernel estimatasalyze the income

distribution over time in West German planning units betw&876 and 1996. They
find a bimodal distribution and following this awarenessyttest for multiple equi-
libria using threshold estimation. The result are threeilamgroups of regions

being a hint for convergence clubs. Juessen (2009) analyee®-called “distribu-

tion dynamics” for 271 labor market regions between 199220G# in the manner
ofQuah (1993a.b, 1997). Investigating the distributiohe@tive GDP per worker

for different years with nonparametric methods shows pedo® convergence be-

tween East and West. Using a test for multimodality yieldsnadadlal distribution
for 1992 and therefore significant differences between &adtVest. Analyzing the
distribution of 2004 offers no longer substantial differea between both German

parts.

In the following Subsections the focus is on the first isswamely nonlinearities
in growth regressions. In Subsection 3.2.1 the already ioveed concept of non-
parametric kernel density estimation is described and &ifios 3.2.2 deals with

testing for parametric misspecification.

3.2.1 Nonparametric kernel density estimation

A nonparametric alternative to classical linear modelsg local linear kernel es-

timation with regression function
E[yIX] = g(X) +E[u[X],

where it is assumed that E[u|X]=0. In analogy to parametodeting, the regres-
sion function estimates the conditional mean of the respwasable depending on

covariates. However, the specific form of the function is mestricted but it is a
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3.2. NONLINEARITIES

general functiorg() allowing for all forms of interactions between covariates.

The idea of a local linear kernel estimation is that a modelefery observation
in its direct neighborhood with respect to the covariates estimated. The size
of the neighborhood is given by the bandwidth In addition, the points in the
neighborhood are weighted differently, vary the kernettion K().

Racine & Li (2004) consider the specific situation where bahtinuous and cat-

egorical data are used. They use a generalized productlKernk. A mixed
covariate vector with continuous and categorical varsleassumed while the

categorical variables are divided in ordered and unordeagdbles. The idea of

Racine & Li (2004) is that all types of variables with respeztheir scale level

require a specific weighting function and bandwidth.

For continuous variables a second order Gaussian kernstds u

N2
[(Xi,X,A) = ﬁexp{—% (¥) }.

Following from the Gaussian distribution points closextget higher weights than
boundary points. For continuous variables the bandw\diain get all values greater
than 0. A small bandwidth close to 0 means that the neighloati®very small.

Thus, only a few points are used to estimate the local passiand therefore the
estimated parameters may vary considerably for diffexefithis case allows for a
high degree of nonlinearity concerning the relationshipgveen the variables. In
contrast, a high bandwidth means that most points are cemresldor estimating

the parameters which are similar for different The influence of the continuous

variable is almost linear in this case.

For unordered categorical variables Racine & Li (2004) psegbe kernel function

1, if Xi=x

|()<|7X7)\) = )
A, otherwise

where the bandwidth lies in [0,1]. For a bandwidth equal to zel@X;,x,0) is an
indicator function for category. For example, if a binary variable with categories
west and east is analyzed, a the bandwidth for this varidbkedo 0 means that
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only observations lying in the west are used for this catgegdce versa for estimat-
ing the regression function for eastern Germany only olagems from the east are
taken into account. This implies that the influence of théade or in other words
the differences between these categories are such huge¢hsample is divided

into west and east both subsamples are estimated separately

A bandwidth of 1 means that{X;,x,1) is a constant function. For example, for
smoothing category west all observations are used, those fine west and the
east. Thus, there is no difference between both categdndhis case there is no

influence of the underlying covariate and it is “smoothed.out

For ordered categorical variables Racine &[Li (2004) prookernel function

1%, %, A\) = A=,

Again, the bandwidti lies in[0,1]. ForA =0, 1(X;,x,0) is also an indicator func-
tion for categoryx and forA = 1, the kernel function is constant. The interpretation
Is equal to unordered case. If the bandwidth lies betweenl @ aobservations from
the same category get the weight 1. Direct neighbor categarie weighted with
A and observations with one intermediate category WithCategories close to the

category of interest get higher weights than distant ones.

The product kerneK is the product of the weighting functions fBrregressors

=
K =TT 1(Xip. Xp. Ap). (3.1)
p=1

The estimation is done by local polynomial estimation. Hdhne focus is on the
two simplest cases of local constant and local linear esioma In the case of
local constant for every only an intercept is estimated. In the case of local linear
estimation an intercept and a slope parameter are calddigtsolving the resulting
minimization problem which is a weighted local least sqagm®blem

n

> I —a(x®) = (6 —x°) Th(x)I*K(-),

i=1

36



3.2. NONLINEARITIES

while the “local” part is considered by the dependence ofghemetersa andb
on continuous regressoxS. Thus, the parameter estimation on the space of the

continuous regressors is weighted by all smoothed coeariat

The remaining problem is finding optimal values of the bartiiwivector

A=(\1,....Ap)

which can be obtained in two ways. One possibility is minimigthe improved
Akaike Information Criterion for nonparametric methods airiich et al. (L9_d8)

which is given by
1+tr(B)/n
1—{tr(B)+2}/n

AICc = In(6?) +
where

b 1 . , ,
62 = ﬁ;{vi ~60%)}2=Y'(1 -B)'(I —B)Y/n.

d(X) is the estimated nonparametric regression functionBaiscthen x n hat ma-

trix including the kernel weights.

Alternatively, |Li & Racine (2004) propose obtainingusing a data-driven least

squares cross-validation approach, where the objectivaifin
n
CVA) =n"1> (% —§-i(X)°M(X)
i=1

is minimized whileg”(z) is the leave-one-out kernel estimator of regression func-
tion g, andM is a weighting function bounded between 0 and 1, usuallyoddt+ 1
(see Li & Racinge, 2004).

The inclusion and smoothing of discrete covariates is astulee in the area of
nonparametric kernel density estimation. Basically ofidor continuous variables

many problems could not be answered because in empiricgllsarhere are usu-

ally also discrete covariates. Before Racine &ILi (2004) pssptheir new method

there was only the so-called frequency approach for conegldiscrete data. Ap-
plying the frequency approach the sample is divided in @zltsh with observations

offering the same combination of categories of the discrat@bles. For every cell
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a single nonparametric kernel regression is estimatedendhtinuous covariates.
Obviously, even a small number of discrete regressors maguge so many cells,
that there are only a few or even no observations in sevelial cEhe advantage
of a generalized product kernel is that due to smoothing oficoous and discrete
data always all observations are used for the estimatiorsaméliable information

even about observations from sparsely populated cellstéroda.

Furthermore, the use of a nonparametric approach involv@mportant advantage
in comparison to MRW'’s parametric regression. The nonpat@en@aodel allows

all kinds of interactions between variables, both lineat higher order.

3.2.2 Testing for parametric misspecification

Thus there are arguments from an economic perspective dasaiig nonparametric
models, but in which cases should nonparametric modelskba tato account from

an econometric perspective?

When is the adaption of the more complicated nonparametrideimoeneficial?
First hints come from the estimated bandwidths. If they psgpnonlinear influ-

ences of several variables, this is a hint for a parametrgspacification. This can

be tested with a formal test for parametric misspecificghimposed by Hsiao et al.

2007) (hereafter Hsiao-Li-Racine-test).

The main idea of the test is that if the parametric specificais right, the con-
ditional mean of the response variable is equal to the lispacification. This is

equivalent to the null hypothesis that the conditional mefathe residuals is zero
Ho: E(ui|X) = 0.
The population test statistic for the null is given by
| = E[WE(ui[X)f(X)] =0

and itis zero if the null is true. Deriving the sample testiste E (u;) is replaced by
the sample mean of the residuals and the conditional me&e oésiduals weighted
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by the density of the regressoEsu;|X;) f (X;), is estimated by a leave-one-out ker-
nel estimator. Thus, the sample test statistic is given by

n

1 N 1 .
In:ﬁZUi m Z UJK()

i=1 j=1,j#i
The distribution ofl, is obtained by resampling. Therefore, a bootstrap santpde, t
related residuals and the test statistic is computed a lauggber of times. The
test decision is as follows: Reject the null if the test stiatis larger than theu-

percentile of the resampled distribution.

There are a lot of set-up-parameters which can be changedhe.types of kernel

functions for different kinds of variables, the method fonmputing the bootstrap

sample and bandwidth selection and so on. Haupt et al. (28di@) out that the
test may be sensitive w.r.t. the test setup. Thus, diffesettings should be used to
check potential sensitivity of a decision.

What does it mean if the parametric specification of clasfleabnvergence is re-
jected? The classical analysis is derived from economuarihend thus, the implicit
linear model which is assumed to be adaptive for all convergelata. If the lin-
earity assumption is rejected also the convergence comcaptalid. In this case
other convergence concepts should be used which are agléptinonparametric
methods.

3.3 Heterogeneity

Another main point of criticism of the classical convergemnegression is that there
are several forms of neglected heterogeneity causingdhesiimation results. First,

heterogeneity arises from the conditional distributiortted regressand. Second,
heterogeneity may occur in the cross-sectional dimenseaming countries behave
heterogeneously. Third, the problem can also be causedamgel over times.

Addressing the first issue “Canarella & Pol a]r_¢(_004) appilgdr quantile regres-
sion [using the by human capital extended growth model (andWRW'’s original

N

39



3.3. HETEROGENEITY

data)] and find parameter heterogeneity between lower gyftehguantiles of the
income distribution for all explanatory variables but hayapeity inside the lower

and higher quantiles._Ram (2008), focusing on conditigqatonvergence, finds

heterogeneity in convergence rates (and other explaneoigbles) for bottom and

top quartiles, but does not back up his results with a forestli1. IMello & Perrell

2003) test for location shift in different growth models. dontrast to recent con-

tributions identifying heterogeneity as the primal souofemisspecification, the

formal and graphical analysis of Haupt & Petring (2011) doefsreveal evidence

for heterogeneity in a parametric and nonparametric gleanggression framework.

Several works cover the latter two issues. Using panel dateO2 non-oil-producing

countries_Lee et all (1997) allow for individual convergeromefficients and find

considerably different coefficients. “Masanjala & Papageni (2004) use nonlin-
earities in the production function to verify and explaingial parameter hetero-
geneity. The nonlinearity is introduced by using a ConsEasticity-of-Substitution
specification instead of Cobb-Douglas as the latter is eissdot the linearity of

the modeIAII_o_el_zi .1(2008) test for cross-country heterwgty by using bivariate
mixture modelﬂ. Furthermore, Phillips & Sul (20 &ZQCL .b, 2009) devealdqg

t regression for analyzing convergence of countries or regimder heterogeneity.

For the case of divergence they also propose a clusterimgitilgn for searching
convergence clubs instead of assuming “global” convergenc

In the following subsections two methods for capturingetiéint kinds of hetero-

geneity are described. In Subsection 3.3.1 quantile regmess presented. The

method is proposed by Koenker & Bassett (1978) and allowsdtealing location

scale effects of the conditional distribution of per cajigome growth rates. Sub-

section 3.3.2 describes the logegression and a clubbing algorithm of Phillips & Sul
2003,2007a.h, 2009) considering heterogeneity by atigior individual effects
and individual technology levels.

“Cited from.Haunt & Petridd (20 1).
8Cited from Haupt & Petring (2011).
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3.3.1 Location scale effects of growth rate distribution: quantile

regression

For analyzing heterogeneity over the conditional distrdou of the growth rates

guantile regression of Koenker & Bassett (1978) is useful.w&f as OLS, with
guantile regression the relationship between the growtth ahiper capita income
and explanatory variables can be analyzed. The differeatieden both methods
is the aspect of the conditional distribution of the growdkes which is estimated.
OLS estimates the conditional mean of the dependent variahlle quantile re-
gression estimates one conditional quantile or a set ofitondl quantiles. Thus,
instead of only one characteristic the whole conditionaldh rate distribution can
be estimated. The estimated coefficients for individuaingjles can be compared
and checked for heterogeneity. A location scale effect imgethat the slope param-
eters of the individual conditional quantiles differ, indtes this kind heterogene-
ity across the growth distribution. In this case the coodiil quantiles should be
analyzed separately because different regression moaelsaumed for different
guantiles. After describing quantile regression gengialbrocedure for detecting

location scale effects is discussed at the end of this stibeec

Quantile regression uses another loss function than OLS8.idéa of regression
analysis is that the regression line should be estimatduthatthe expected “loss”,
the weighted differencel between the observed and estimated values § —
Ely|X]), is minimal. The loss function gives the weights for diéat errors. OLS
is based on a symmetric and quadratic function of the fofm) = u? proposed by
Legendre and Gauss about 1800. Using the quadratic lossptimeal predictor for
yis its expectatiorE(y). E(y) also minimizes the mean squared error.

However, quantile regression is based on an asymmetriduabsoss function

(1—1)|ul, ifu<O

L(u) = :
T|ul, ifu>0

The optimal predictor in this case is tingh quantile ofy.
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In which situations does quantile regression provide autthil benefit? From the
discussion about loss functions it can be seen that it is dngpke mean which
minimizes the quadratic loss function. For computing thamthe values of the
observations are used.. Thus, the instrument is highlyitsen® outliers iny. On

the other hand quantile regression estimates the mediather quantiles, which
are not sensitive to outliers ymbecause for computing quantiles the ranks of the
observations are used instead their values. The main ay@of this method is
that it allows estimating the whole distribution insteadaddingle characteristic of

the dependent variable.

The minimization calculus of quantile regression is
n
ég]iRnkZﬂyi—>43|++(1—T)!yi—xi'[3\_, (3.2)
i=1

where |y, — X/B|" is a notation for positive residuals amg — x|~ denotes the
negative residuals. Because of the absolute values theoecissed-form solution,

but it can be transformed into linear programming.

This yields the minimization problem

min ~_ {tu+(1-1)vVIXB+u—v=y}, (3.3)
(B,u,v)ERKx R

whereu is a(n x 1)-vector with the positive parts of the residualds a (n x 1)-

vector with the negative parts of the residuals &nid the(n x k) regression design
matrix. Thus the sum of the absolute residuals is minimizdtereas the positive
parts are weighted with and the negative witlil — 1) under the constraint of the

validation of the regression function. The solution of theimization problem can

be found by using a simplex or interior-point algorithm ( nker,_ZD_dS). The

optimal vector of parameters is denoted V\ﬁm;y, X).

In addition to already described advantages, quantilessgsn comes with another
characteristic, namely the equivariance propertieﬁ(u‘fy,X). Equivariance means
that shift or scale transformations on one or more variab&® no fundamental
influence on the interpretation of the estimates. The basiogsties are:
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() B(t;ay.X) = aB(T;y, X)
(i) B(t;—ay.X) = —aB(1-T;y,X)
(i) BT y+Xy,X) =B(T;y,X) +y

(iv) B(T;y,AX) = A"1B(T;y.X)

The properties (i) and (ii) constitute some kind of scaleiejiance. However,
property (iii) indicates a shift equivariance and (iv) idled equivariance to repa-

rameterization of design.

There is another, much more fundamental property whichemehtary to under-
stand the real possibilities of quantile regression. Thibé equivariance to mono-
tone transformationy) (1) = h(Qy (1)), whereh(Y) is a nondecreasing function
onR. Hence, the quantiles of a transformed random variableher¢ransformed
quantiles of the untransformated variable. This is a venyartant property which

the mean does not have in general.

Under homoscedasticity conditional quantiles lie patdtbeeach other and thus
have the same slope parameter. In this case differencesaniates shift the quan-
tile curves but they do not change their shape or scale. Tthase is parameter

homogeneity over quantiles and analyzing the median afexfficient.

Testing the equality of slope parametlgrs Koenker & Bgls;:&@lpropose a Wald-

test. The test allows for linear restrictions of the vectbslope parameter =

(Bry, ---5 Bryy) Which are summarized in the matfRwith rankg. The null hypothesis
has the form
Ho:RB=r,

wherer is a vector of constants. The test statistic is given by
T=(RB—r)(AVar(RB—r1) ) (RB—1) ~ X5

If the null hypothesis is rejected, heterogeneity over ttwevth rate distribution is
assumed.
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3.3.2 Individual effects and technology levels

This subsection is retained from Haupt & M =i|er (2011).

Phillips and Sul (2003, 2007a,b, 2009), hereafter PS, attgateclassical conver-
gence analysis based dn (2.23) is prone to deliver inc@méisésults and invalid
convergence tests due to potential heterogeneity in theecgance parametdy

over time, countries, and individual technology levels.9A8w that due to omitted
heterogeneity the error term in (2123) includes endogenatiables and variables
which are correlated with dependent and independent tasal\s a remedy PS
suggest to enable a variation of the transition parametigamwth rate over dis-

tricts and tim@. They propose a nonlinear dynamic factor model

ai +X| t def
10g(¥.) = i+ Xist = (%) N (3.4)

wherex;; is an individual technology process paramet®gy, is the idiosyncratic
time-varying element ang a common trend factor measuring global technological

progress.

Thenb;j ¢ can be interpreted as the transition path of econbtoyhe global growth
pathpg and is calculated as the log per capita income of distrigtperiodt. By

eliminating the global growth component, the relative siian path

N N
hix =log(yie)/N~* ) log(yis) =bit/N™* byt
i—1 i—1

measures the transition element for econanny periodt in relation to a cross-
section average. Then global convergence — all countries tiee same fraction

of global per capita income — is assumed to be present if

hit — 1, foralli, ast— oo. (3.5)

9Note that heterogeneity of parameters[in (.22) may alsaroacross the conditional distri-
bution of the growth rateg;;. Haupt and Petring (2011) apply quantile regression esthmand
test but do not find empirical evidence in favor of such typekeaterogeneity using the data from
Mankiw et al. (1992). Hence this issue will not be pursuecher
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The logt regression of Phillips and Sul (2007a,b, 2009)
log (Ho/Ht) — 2log(log(t)) = a+ylog(t) + u (3.6)

now tests[(315) using the mean square transition diffeabidti= ﬁZiN:l(hi_‘t —1)2
In case of global convergenddy — 0 ast — c. The authors show that; ~
A/log(t)%t>™ ast — o, whereA > 0 is a constant and equals the rate of cross-
section transition variation dissolving over time. Unde tull hypothesis the re-
gressor diverges te and under the alternative the regressor divergesd¢o A
negative value, however, does not necessarily imply tleaetts divergence but that
there may exist some convergence clubs instead of globakogence. Using a

one-sided t-test we test the null hypothesig of 0.

Instead of global convergence there could be some conveggeubs. To identify
convergence clubs PS use a clubbing algorithm consistifigeo$teps

<1.> (Cross-section ordering): Order countries according to the log(y; ) in final period.
<2.> (Form a core group of k*, 2 < k* < N, countries):

<2.1> Find the first two highest successive countries for which the log t test statistic
tx > —1.65. If the condition does not hold for any k = 2, drop the country with

highest log(y; t) and restart the procedure with the remaining countries.

<2.2> Start with the k = 2 countries identified in 2.1, increase k proceeding with the
subsequent country from order, run the log t regression, and calculate tx. Stop
increasing K if convergence hypothesis fails to hold (i.e. tx < —1.65). Take
the k* countries with the highest test statistic from all k countries satisfying the

convergence hypothesis for core group.
<3.> (Sieve the data for new club members):

<3.1> Form a complementary core group with all remaining countries.

<3.2> Add one country at a time from the complementary core group to the core group,
run the log t regression, add the country to a club candidate group if the conver-
gence test statistic is greater than a critical value ¢c* = 0. Form a convergence

club of the candidate group and the core group.
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<4.> (Recursion and stopping rule): Form a second group from all countries which fail the
sieve condition in step 3 and run log t regression. If the convergence hypothesis
cannot be rejected, all remaining countries form a new convergence club. Otherwise,

for the remaining countries start again with step 2 for finding a new k*.

<5.> (Club merging): Run log t regression for all groups of subsequent clubs. Merge those

clubs fulfilling the convergence hypothesis commonly.

Composing the clubs in accordance to this algorithm doesmsire that the con-
vergence hypothesis holds for each respective club. PS7j29@ aware of this
problem and propose to increase the critical vaiuéor raising the power of the
corresponding test. Such a remedy, however, does not wagdnaral, for instance
for the German district-level data discussed in Subsefii22 or when we replace
the initial cross-section ordering rule by an (equally glale) alternative. Thus,
we may want to augment step <3.> of the algorithm in a way suahdonvergence
is assured using a data-based criterion. A straightforwathod is to search for
the largest group size for whose respective members caawveegholds. In a first
step we leave one country out at a time and run & lagression. We form a con-
vergence group from the countries with highest test statigeater than -1.65. If
there is no group of countries with test statistic highentkia65 we leave out two
countries at a time in a second step and so on. If there is rharedne conver-
gent combination of countries at one step, we choose theicatidn with highest
test statistic. The advantage is that we get the largespgrbuountries satisfying
convergence without the existence of path dependence. iEhdwntage is that
for inappropriate constellations of countries caused Igh lsample sizes or spe-
cial sorting methods the computing time increases exaortytaThus, we propose

another method which we include in the clubbing algorithr3.8s

<3.3> If the countries from core and candidate group hold convergence hypothesis com-
monly, go to step 4. If not, form a convergence club with the candidate country with
highest test statistic and the core group. Add one candidate country at a time to con-

vergence club, run log t regression and add the country with highest test statistic to

46



3.4. INTERACTION OF NONLINEARITY AND HETEROGENEITY

the convergence club. Continue adding new countries to the convergence club until

no further candidate country fulfills convergence hypothesis.

In all empirical applications discussed in Section 5.2 wd fimat the shape of ob-
served points in the logregression(316) to be parabolic and convex for convergence
clubs. This is due to the construction of the regressor. Uttgenull hypothesis
H; converges to zero ds— o as a monotonically decreasing convex function. Cal-
culatingHo/H; inverts this shape into a monotonically increasing conuection.
Taking the logarithm damps the curvature or even linearikescurve. The sec-
ond part of the regressor 21dgg(t)) is a monotonically increasing concave curve.
Subtracting this second concave part from the first convedt curve leads to a
parabolic and convex trajectory. Thus, under the null weeekp nonlinear regres-
sion relationship. Those results suggest that the intexfioe of the log regression
should be handled with care.

3.4 Interaction of nonlinearity and heterogeneity

Currently there are only two papers directly linking the penhs of heterogeneity
and nonlinearity in classical growth regressions.

Using parametric quantile regression Haupt & Peltring (2@halyze if there is het-

erogeneity over the conditional distribution of the regeesl in the classical growth
model applied to MRW data. In a second step they check forimeaulities of re-

gression quantiles using nonparametric quantile regressin contrast to recent
contributions identifying heterogeneity as the primalrseuof misspecification, a

formal and graphical analysis does not reveal evidencedtarbgeneity.

Haupt & Meier (2011) address another form of heterogenaigynely heteroge-

neous behavior over time and countries. Using the algoridfirRhillips & Su

2007 2009) they first group countries or regions intehsswith homogeneous

members. In a second step they estimate a classical grogttésseon nonpara-
metrically while considering the heterogeneity by captgra variable with club
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information.

In the following subsections both methods, nonparametrantjle regression and

the two-step procedure of Haupt & Meier (2011), are desdribe

3.4.1 Nonlinear location scale effects: nonparametric

guantile regression

As mentioned in Subsection 3.3.1, quantile regression regyé&ferred to classical
mean regression in several situations because the methmodust to outliers and
it offers a broad overview of the whole conditional disttibn of the regressand
instead of a single point, the conditional mean. Thus, gleargigression allows for

a detection of heterogeneity over the conditional distrdsu

However, linear quantile regression is not valid in the caka nonlinear rela-

tionship between regressand and covariates. Thus, Li& a&@QJB) propose
a method for estimating conditional quantiles nonparaicaty. In contrast to

Koenker & Bassett (1978) the authors avoid to determine ¢iomail quantiles by

a check function given in Equation (8.2). They obtain thedittonal quantile by
inverting the conditional CDF of givenx at the selected portion. Thus, the condi-
tional quantile is given by the empirical distribution fuion (EDF)

o (x) = F(1]x),

whereF is the conditional CDF oy givenx which can generally be estimated by

F="> 1Y <y), (3.7)

i=1
wherel is an indicator function which is equal to 1¥f <y and otherwise 0. Al-

ternatively, the distribution functioR may be estimated by a weighted version of

Equation[(3.I7). Li & Racine (2008) propose a weighting fumctivhich is equal to

their generalized product kernel. The weighted versioh &f given by

e YL (M < YK(X,X)
nilzinle(xiax) ’
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whereK is a generalized product kernel.

In the case of a continuous dependent variable it can alsmbetbed. Therefore
another estimator of the conditional CDFyois used
e _ N G((y—Yi)/ho)K (%, %)
n_lzin:lK(xiaX) 7

whereG is the CDF of the underlying kernel function for continuousiables and

ho is the bandwidth for smoothing

For bandwidth selectioln_LL&_Rasin 2 (2008) propose a dateedrprocedure. The
optimal bandwidth vector is obtained by minimizing the creslidation objective

function
n

1 G_i(X)s Y.,x 6.i(Yi, X)s(¥i, %)
CV= Zn 1z|_1n Z 12|_1n <X|)’

whereG_j, g-i and K_; are leave-one-out estimators @f g andK andsis non-

negative weighting function.

3.4.2 Nonlinear modeling with convergence clubs: a two-step

procedure

This subsection is taken frO‘m_I:Iaupl_&_Ms*i 2r (2011).

We want to apply a classical convergence analysis in theeseihMankiw et al.

(1992) while allowing for data-driven heterogeneity andlinearity. Thus, in a first
step, we assign the regions to clubs using the algorithnuslssd above. In a second
step we include a categorical club variableb; in (Z.22) via thej dummy variables
club j which are equal to 1 if countryis in club j. The resulting baseline model

allows to estimate a regression lide+ 11jlog(yi o) for every clubj, 1< j <m,i.e.
m m
V= djclubj+) mjlog(yio)-clubyj+ uiy. (3.8)

In contrast to the classical convergence model {2.22), #selme model(318) al-
lows for a considerable degree of heterogeneity. Howeweretare very small
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clubs for several applications and thus the interpretaifdhe parameters for those
clubs should be handled with care. The main point of criticisowever, is that
this model may suffer from potential misclassification af ttiub composition (see

Subsection 3.2.2). Furthermore, the model does not allofufther nonlinearities.

In order to address the problem of potential nonlinearitvescan employ a fully

nonparametric alternative (see Subsection 3.2.1)

V; = g(log(Yio),cluby) + uit. (3.9

This approach allows to estimate not only club-level effeet which Durlauf and
Johnson (1995) interpret to represent averages of the lyimdgindividual effects

for each country — but further nonlinearities.

In contrast to model based clubbing algorithms (e.g. JuanezSteel, 2010), the
method of Phillips and Sul (2007a,b, 2009) discussed in@e8t3.2 does not pro-
vide estimates of the misclassification probabilities fackeclub member. A first
step towards exploring potential classification error ishieck for hints on the ex-
istence of positive error probabilities by inspecting wiegtthe “selection of core
groups is robust to initial data orderings” (see Phillipsl &ul, 2009, footnote 11,
p. 1170). Considering the problem of an unknown true ordemihg) (see Canova,
2004) we try different concepts in step.> and check whether considerable dif-
ferences in club composition are obtained. This indicaiegel uncertainties which

should be addressed in empirical convergence analysis.

As alternatives to the amount of final period income (finaleoirn), hereafter de-
noted as ordering rule (1), as used by Phillips and Sul (20@¢mploy the follow-
ing. (II) Order corresponding to the average income of alirggaverage ordering)
for capturing potential time series volatility. Phillipsiéh Sul (2007) propose to
average over the last fraction of the sample to ensure a higfieence of recent
periods. (lll) Another alternative is ordering accordimgthe difference between
final period income and income in first period, capturing th@ime change over
time (difference ordering). (IV) Finally, combining thegds on the final period and
capturing volatility, a decreasing weights ordering is éyed.
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We note that in all of our applications discussed below tleeaislifferent ordering
rules leads to considerable differences in club sizes antgposition, respectively.
For evaluating the empirical performance we compare theobaample perfor-
mance of the convergence regression models for orderieg (U)-(IV). As an a
posteriori selection criteria for ordering rules we run ess-validation (e.g., Haupt
and Petring, 2011) and choose the model with the smalleshgeesquared error of

prediction.

While there is no obvious remedy for the misclassificatiorbfgm in the paramet-
ric model [3.8), the nonparametric model (3.9) may offer.obata-driven band-
width selection for the club variable deals with the questb uncertainty of club
composition. Using the kernels proposed by Racine and Li4pQa8e optimal es-
timated bandwidth is bounded between 0 and 1. A bandwidtlppfaximately
0 means that the influence of this variable is such that fomesihg the function
(3:9) for a club only observations from this club are usedis Ttcurs when the
functional form is sufficiently different with respect toethlifferent clubs or if the
observations show sulfficiently different convergence biglmaWe can interpret this
in the sense that there is a rather low probability of missgation, thus the clubs
are well chosen. With increasing values of the bandwidthetiner probability for
club membership rises. If the bandwidth is considerablaggethan 0, observa-
tions from all clubs are used to estimated regression fanstfor each club and
thus, there is no influence of the variable. This suggestdliee is evidence in fa-
vor of an only weak or even non-existent club structure. Tthesbandwidth of the
categorical club variable serves for an a posteriori qiaation of the classification

(and underlying error probabilities) as a whole.

By using the nonparametric approach including the club éegiave obtain individ-
ual influences of each observation while considering theetamty with respect
to club membership, instead of a single fixed convergenaessmn line for each
club in the parametric approach. The club-structure on therdhand has the ad-
vantage of being backed up by economic theory. Although it praduce a faulty

number and/or composition of clubs, the simultaneous shiregbf the continuous
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and the categorical variable is capable of alleviating phablem. In summary we
include heterogeneity in the sense of Phillips and Sul, cedwncertainty of club
composition, and capture potential nonlinearities, amtthere able to address the

main points of criticism of convergence regressions inmebgerature.

Given a set of data the initial problem a researcher facelsaesing either a para-
metric models such as (3.8) or a nonparametric model sugh®s (n the context of

mixed continuous and categorical covariates as in the pregample this problem
can be addressed by applying the test of Hsiao et al. (20@rg¢dfter HLR test),

which is based on the generalized product kernel estimatprgged by Racine and
Li (2004) discussed in Subsection 3.2.1.

Using the same nonparametric configurations used for thparametric regression
the HLR test checks if the parametric null model3.8) is ectly specified. When-
ever the HLR test rejects the null we apply the fully nonpaetiia model, enjoying

the benefits discussed in the previous sections.

As the HLR test employs the bandwidths of the nonparametgeassion, we are
able to assess the error probabilities already after applihe test. Thus, if the
test does not reject the parametric null hypothesis, weeittsihe bandwidth\g

of the cluster variable: Iy is close to zero, the parametric and nonparametric
model work analogously and we may use the parametric modeluse there are
no hints for club misclassification. If the bandwidthis greater than zero positive
classification errors have a higher probability. In thise;dsowever, we can still
estimate a nonparametric model for the theoretical priedfmiency loss compared

to the parametric model.

3.5 Spatial association

Another important point of criticism for analyzing converge data can be seen in

the assumption of spatial independence of economies.

Considering technological interdependencies betweenossi@s and knowledge
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spillover effects Ertur & Kochl (2007) present a spatiallgauented Solow model
(see Subsection 2.1.3). For the Non-Oil countries of MRWatthors find a sig-

nificant influence of spatial externalities for a period fra860 to 1995. Further-

more) Moreno & Trehan (1997) test for different kinds of kpiérs between neigh-

boring economies. Using cross-country data they find smh® in absolute and
conditionalf-convergence regressions. Applying three tests for dymattacorrela-
tion Njﬂtluh|r (2001) identifies spatial autocorrelation7arof the 75 West German

planning units between 1976 and 1996 and proposes a spgralssion model to

address this problem for absolute as well as conditionalegencel. Kosfeld et al.

2006) find spatial correlation up to order three in 180 labarket regions in Ger-
many, defined by Eckey (2001) for the period from 1992 to 2008ing a spatial
ARMA model they identify unconditional and conditiorflando-convergence for

east German regions after 1990 but ofifgonvergence for west German regions.

Hence, east German regions seem to catch up. Eckey et al)(286 geograph-

ically weighted regression to prog&convergence for German labor productivity.

For the same regions as Kosfeld et al. (2006) they find diffecenvergence rates

for several regions. In contrast to most of the other pubboa the authors find an
emerging gap between the south and the north instead of eéistest. Varying
convergence coefficients leave considerable doubt on #halent global conver-

gence model.

The analysis in this thesis follow the ideas of Ertur & Kocl@Z). In Subsection

3.5.1 different spatial models are described. Subsectibi2 liscusses different
kinds of weighting matrices and Subsection 3.5.3 presesting procedures for
spatial dependence.

3.5.1 Spatial patterns in convergence models

Basically, there are three forms of spatial dependence vehichld be taken into ac-

count (see Elhorst, 2010). First, there may exist endogespatial effects meaning

that the dependent variable of an economy depends on the gathe dependent
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variable of the other economies. Second, exogenous etiettie explanatory vari-
ables of the other economies are of significance. Thirdethes correlated effects

of unobserved lagged covariates yielding spatial colmiat

Capturing the case of endogenous effects, the so-calledispatoregressive pro-

cess (e.g.Whittle, 1954) is used. The name follows its times@endant where the

response variable depends on its own past values. In th@tgsegraphical data it
depends on neighboring geographical units. This fact isidened in the first order

spatial autoregressive process given by

n
V=P Wijyj+BXit .. +Bxik+e,1<i<n, (3.10)

J#i
with & ~ N(0,0?). The unknown parametgris assumed to measure the strength
of the spatial dependence. The spatial parameter is estinved Maximum Like-
lihood estimation. The terd ;. , w; jy;j is denoted as spatial lag, which is a linear
combination of neighboring-values. The weights; j (can) vary for every neigh-
boring region and can be summarized to :an matrix of spatial weightsyw, see
Subsection 3.5.2 for a thorough discussion. Thus, we canteeiaguation [(3.10)
for all i in vector notation as

y=pWy+XB+E¢, (3.12)

with € ~ N(0,021).

A second spatial model is the spatial error model which useatrelated effects in
the error term occur. This model is given by a linear modehwitspatial autore-

gressive process in the error term

y = XB+u (3.12)
u = (Wu+e. (3.13)
The formulation in Equatiori (3.13) for the spatial error rabd analogous to the

spatial lag model in Equation (3110). For notational simipli all spatial weight
matrices are denoted ¥$. The spatial error model is the cross-section counterpart
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of a moving average process in a time series context. Hezal@épendent variable
is not explicitly affected by spatially lagged dependengxplanatory variables, but
there are other spatial effects which are correlated wihd#fpendent and explana-
tory variables. These effects should be considered, otker@LS-estimators are

biased due to omitted variable bias.

Modeling spatial error and spatial lag models as well asiapaffects of the ex-
planatory variables of other economies, the spatial Dumrmdel is used (see
Lesage & Pace, 2009)

y=pWy+XB+WX0+e¢. (3.14)

Spatial lag and spatial error are nested in the spatial Durimdel and obtained
wheneve® = 0 (spatial lag) o8 = —p (spatial error). Thus, the estimators of the
spatial Durbin model are unbiased even if the true GDP isapag or spatial error
(see Elhorst, 2010). The spatial Durbin model is used fameding the spatial

augmented Solow model from Subsection 2.1.3 because itdaslspatial lags of

dependent and explanatory variables.

3.5.2 Influence of neighboring economies

An important issue in the context of spatial modeling is teérdtion of the weight-
ing matrixW as it determines direction and concrete forms of the speffiatts and

all the results of the analysis dependwn

For defining the weighting matriw/ mainly neighbor or distance matrices are used

(e.g.Lesage & Pace, 2009; Ord, 1975). The elemenisof a neighbor matrix are

defined as )

1, if iandj are neighbors anid# j

Wi j = (3.15)

0, otherwise
\

while two regions are called neighbors if they share a combuwder. This classifi-
cation is not without difficulties as for example, islandedapecial rules. Usually

the main diagonal of the weighting matrix is set to zero, heeaan economy is not
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its own neighbor per convention (See Lesage & Pace,/2009).

An alternative definitioWV is a distance matrix, where the weights may depend on

the distancel; ; between economyandj as

wi j = f(dij),

where usuallyf(d; ;) = 1/,/di ; (see Bivand et a

are far apart impact smaller than neighbors. There are aepeints to consider

., 2010). Thus, economies that

for measuring the distance between two economies. Fimstaference point for
measuring the distance has to be defined. This referenceqmild be chosen on
the basis of geographical aspects (e.g. middle of the rggemonomical aspects
(e.g. point with highest GDP), or political aspects (e.gordinates of the capi-
tol). Second, the unit of distance measurement has to bectl{esy. geographical
coordinates, kilometers). Furthermore, the fact that tt@nemies are arranged
on the earth has to be considered, thus on a curved surfacacand a plane.

Ertur & Koch (2007) propose using the great-circle distawbéch is the shortest

distance between two points on the earth surface quantitdidivg over the earth’s

surface instead of going through the earth’s interior.

The difference between neighbor and distance matricegaisrtmeighbor matrices
most entries are zero as usually a region only has few neightaile in distance
matrices all entries are strict positive. For an easierpmétation the weighting ma-
trix often is standardized. Therefore all entries are @idily the corresponding row
sum, yielding rows that sum to one for the standardized weighmatrix. Hence,
average spatial weights are obtained w.r.t. each econdraycan be interpreted
straightforward. Most testing procedures for spatial deleace (discussed in the

subsequent subsection) assume those row-standardizedasat

3.5.3 Testing for spatial association

There are several tests for different kinds of spatial dafoa. A general check

for spatial association is Moranisproposed by Moran (1950). The test does not
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assume a certain alternative model, it checks for geneagiasgorrelation given a
fixed spatial structure of the row-standardized weightiregrimW. Thus, Moran’s
| may be interpreted as the spatial pendant to the classicalaton coefficient

Pearson’s and is usually calculated for OLS residuals. The test si@tis

_ N 2 wiE—E)(E—E)
Doi 2o Wi >i(8i—€)?

measures the correlation between the residuals and thalgpaigged residuals by

dividing their covariance by the residuals variance muégwith a variance cor-
rection factor given in the first fraction. The idea of Momh’'can be visualized
by the so-called Moran scatter plot (see Anselin, 1995) isdisplayed in Fig-
ure[3.1. The variable of interest, is plotted against its spatial lags. The dashed

lines display the means of the variables such that four quasii(l, II, 11, IV) are

obtained. Assuming no correlation the points should be lggdespersed over all
guadrants. If there is a positive correlation there are rpoiets in Il and Il than

in the other quadrants meaning that an observation whicigieeh (lower) than the
mean inx is also higher (lower) than the mean of the spatially lagged average.
In this case a positive slope is obtained, when a regressien(the solid line) is
estimated. Vice versa, a negative correlation means teat tre more points in |

and IV. The plot also allows for a visual outliers detection.

The remaining question is, whether the correlation is §icamt. Thus, the expec-
tation of Moran’sl under the null of no spatial correlation is needed whichvegi
by E(1) = —1/(N—1) (see Elhorst, 2010). The corresponding test hypotheses are

-1
vs.Hi il > —

HO:I:N—l N_1°

Transforming the test statistic to standard normal distrdn the test is easily done.
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Figure 3.1: A Moran Scatter plot example
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There are other tests, where a specific spatial model is uhdeiternative. Using
the Lagrange Multiplier (LM) tests proposed by Anselin (&8) different spatial
models can be compared in classical OLS framework. Geggeaipatial model

with a spatial lag and spatial errors is assumed

y=pWy+XpB+u
u=<_{Wu+e¢e, (3.16)

where it is assumed that~ N(0,0?). There are four models nested in this general

spatial model.

) p=0and{ =0, y=XB+¢ (simple linearregression model)
i) p#£0and( =0, y=pWy+XB+e (spatial autoregressive model)
i) p=0andl#0, y=XB+(1-2lW) e (spatial error model)

V) p£0andl#0, y=pWy+XB+(l—IW) e (spatial autoregressive
and spatial error model)
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Starting with the most restrictive model (classical OLS)Hg, it can be tested
whether the simple linear regression model (i) is prefetcedne or more of the
models (ii), (iii), and (iv). Therefore, model (i) and thdaexhative of interest (i),
(iii), or (iv) are estimated and the LM test statistic eva&dhunder the null is com-
puted "

LM = 1= ~x*(a),
0

whereq is the number of restrictionsl = dlog(L) is the slope of the log likelihood

under the null andg is the Fisher Information. For the three tests Anselin et al.

1996) develop robust alternatives where the details appel here. Analogously,
it can be tested whether the spatial Durbin model{3.14)e$epred to the spatial
lag or spatial error model. Therefore, the spatial Durbirdelés estimated as alter-

native and compared by the LM test with the restricted moHegls6 = 0 (spatial
lag) orHp : 8 = —pp3 (spatial error) (seiEM“t. 2010).
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Chapter 4

Level of aggregation

Primarily, growth and convergence modeling was developedhalyzing cross-
country data. The question of convergence is also inteige$ir lower aggregated
units within a country or a group of countries, e.g. betweeddral states or dis-

tricts. There are a lot of publications in current literaabout regional convergence

analysis (e.gl._Sala-i Martin, 1996b) using the same cosdepdifferent aggrega-
tion levels. Is this reasonable or differ the results fofed#nt levels of aggregation?
Barro & Sala-i Martin|(2004) deal with this question.

B-convergence is divided into two approaches, absolute amdittonal3-convergence
(see Subsection 2.2.1). Absolute convergence means thaiuadtries tend to a
common steady state while applying conditional convergesmesumes different
steady states for all or even most countries. That is to saglitonal convergence
should be used if there are different steady states andwbsobnvergence is a

common steady state is assumed.

What is about different aggregation levels? The basic paes@r example tech-
nology, preferences and institutions are similar for hygtlsaggregated regional
units. Probably, there are differences but they are smdlis ifnplies that similar
or even equal steady states are assumed for disaggregated Thus, for highly
disaggregated data absolute convergence may be applidde@antrary, different
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countries which are highly aggregated units (especiatlyay are not grouped, e.g.
in OECD members) offer big differences in the factors tecbggl preferences and
institutions. Thus, different steady states are assumedigily aggregated units

and in this case condition@lconvergence may be applied.

Within this thesis units of different levels of aggregatame regarded and empiri-
cally analyzed. In the following sections the data witheliént levels of aggregation

used in Chapter 5 are described.

4.1 Cross-country data

On cross-country level the data sets which are analyzed ipt€h& are taken
from Penn World Tables. From this bases MRW and PS seleerdiif groups of
countries which are presented in the following subsectidrige original data are

used in several of our applications in Chapter 5.

4.1.1 Dataof MRW

The database of MRW includes countries, which are selected) uhe following
criteria. First, all considered variables must be avaddbt the countries. Second,
oil production may not be the dominant industry in the coestr Furthermore
the authors divide the resulting countries into three @maing groups. The first
group consists of the so-called “Non-Oil countries”. Themmbers of this group
are 98 countries achieving the criteria mentioned above.sBtond sub-sample is
called “Intermediate countries”. Included in this groug éine Non-Oil countries
with more than one million citizens. The name intermediaa be seen in the
sense of “representative” and that is the reason why veryl smantries (which
are not representative) are excluded. The subsample oeriiai countries. The
third subsample is called “OECD-countries”. This sampldudes the 22 OECD
member states with more than one million citizens.
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4.1. CROSS-COUNTRY DATA

The countries are listed in Talle ’A.1 in the appendix.

The authors analyze both absolute and conditifrabnvergence. Therefore, data
on standard of living, the saving rate, the growth rate ofkivag-age population,
and human capital are needed.

For per capita income the real GDP per capita is taken. Usatg flom the Penn
World Table | Mankiw et al.[(1992) take the real GDP in 1985 diwille it by the

working-age population (15-64 years old) of the same yed&e ihitial income is

developed in the same manner but the data come from 1960.

The saving rate is represented by the GDP share of invesifinehiding govern-
ment investment) divided by 100. Taking investment rates m&asure for savings
rates is not obvious at first sight, but the idea is comprabinsinvestment rates
are the share of output which is used to replace or enlargsttoi of physical
capital. This investment can be interpreted as the part iplubuvhich is not spend
for the presence but which is invested or saved for futurelycion. The data of

investment rate is derived from the Real National Accounts.

The growth rate of the working-age population is assessethdyrowth rate of
total population. The reason for that constraint is thatel@ble data is available
for several developing countries. The average growth @testhe period of 1965
to 1985, divided by 100, are u The depreciation raté is assumed to be

constant over time and countries, so that 0.05.

The last and most complicated variable is human capital. Kihaat al. (1992) uses

the share of working-age population, which attends thersgany school. This vari-

able is compounded by two factors. First, there is the foaadif eligible population

(12-17) visiting a secondary school, which is taken from ) (1988B). Sec-

ond, this variable will be multiplied by the fraction of pdefrom the working-age
population in school age (15-17). The authors discuss aksgsues which may be

critical applying such a construction of this variable.

10The data stem from t&mﬂmmmammmmwgmdnhmksy
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4.1.2 Data of Phillips and Sul

For estimating their dynamic factor model considering fageneity in form of in-

dividual effects and technology levels Phillips & .2009) only consider

one covariate, the per capita income over several years.

In Phillips & Sul (2009) the authors use data from Penn Woddl& Version 6.2.
The data set includes 152 countries from 1970 to 2003. Tleadtatsummarized in
Table[A2.

4.2 Intermediate aggregation level

The data of Japanese prefectures are useLd_b;LB_aLLo_&_SaLaitJI\@_@l) for an-

alyzing absolute convergence. The data set includes tloen@dn billion yen for

the 47 Japanese Prefectures from 1950 to [1D9he prefectures are displayed in
Table[A3 in the appendix.

4.3 Regional data

The data are taken from the regional data base of the statesgiencies of German
states and the federation http://www.regionalstatidék.For the initial per capita
income the GDP of the 439 districts and district-free citgsedivided by the number
of their citizens. This variable is available for the periofd1995 to 2006. For

analyzing periods longer than one year, the initial incornefthe beginning of the
period is used. For analyzing convergence, the growth of@gita income is given

by the natural logarithm of the per capita income at the erti@period minus the

natural logarithm of the per capita income at the beginniriy® period.

The population growth is calculated by the difference betwthe number of cit-

UThe data are taken from http://www.columbia.edw$23/data.htm.
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4.3. REGIONAL DATA

izens in the final and the previous period divided by the nunobeitizens in the
previous period. Population data can be found for 1995 866I7. The constant de-
preciation rate of 5% is added to the growth rate and for lopgeods the average

growth rates over all years in the period are used.

It is difficult to find data for the share of investment, as éhisrno data available for

every economic sector at regional level. Hence, the alsoluestment in the man-

ufacturing industry is used as this is common in literatanpare _Seitz (1995).

Here, the problem is that the share of investment is underat&d because only the
investment in the manufacturing industry is consideredhd@ugh this is one of the
largest sectors in most districts, it should be noted thastiare of manufacturing

industry on the whole economy influences the value of investm

Another problem in this context is that the investment datatain several missing
values because the statistics agencies are sworn to sdoremyme districts and
times. Thus, the missing values have to be estimated. Tdretghe data are ana-
lyzed by year and federal state (Bundesland). The aggregatees for the federal
states are available for every year. So, for every year atetéé state, the available
values are added and the difference to the aggregate is belkt, the resulting
difference is splitted on the missing districts in accoxato their proportions on
investment, which is estimated by proportions from avaddgkeriods. In the fol-

lowing the estimation of several missing observations sdbed.

Table[A.4 lists the missing values with regard to the assedifederal state and
year. The last column additionally names the years in whicblkservations for

the missing values are available. These years are usedcudatal the mean pro-
portion on investment for the missing districts. For exaenpi 1995 in Nordrhein-

Westfalen there are no observations for the district-fieescKoln and Leverkusen.
Thus, the differences between disaggregate and aggremasssse splitted for these
two cities based on shares calculated for the years, in wiiktles of both cities are
available (here 1996, 2002, 2004, 2005). Using the meare sharrest investment

in 1995 is splitted on Koéln and Leverkusen.
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In contrast to MRW and other studies about cross-country dsihg shares of stu-
dents visiting secondary school or years of schooling asuorea for human cap-
ital recent contributions for regional data is followed.uRded in the compulsory
schooling in Germany both variables can not differ signifttaover the districts.
Thus, human capital is measured by the number of employagads for social insur-
ance, who finished professional school, university of aap$icience, or university.

Further this variable is divided by the number of all emplksyédiable for social

insurance. This is common in literature (e.g. Seitz 2001).

=
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Chapter 5

Empirical applications

5.1 Assessing parametric misspecification in classical

growth regression

This section is taken fran_I:Iﬁup_t_&_Bel[ g (2011). In thistsetwe pursue the

criticisms of nonlinearity and heterogeneity, by analgzMRW'’s basic growth

model and using the original data set with only= 75 observations. This contrasts
most of the empirical contributions, who use both extendedets and extended
data sets or several waves of panel data. Our point is thatrdposed robust and
nonparametric methods work very well even in this problecrddta situation with a
small number of observations, where some of these obsemadive high leverage.
Our proposal is based on the tight connection of the issuasmfnearity and het-
erogeneity with the problem of potential non-robustnes$e [atter has been widely
neglected in the growth regression literature as arguémMI. (2001). The
use of full nonparametric regression is found to be the madstaate approach to

MRW'’s classic growth model.

The remainder of the section is structured as follows. Fwst briefly introduce
MRW'’s basic growth model and carefully investigate the goestwhether there

Is evidence for parametric misspecification by applying@n¢ly proposed non-

66
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parametric test. In addition we calculate (the distributod) goodness-of-fit mea-
sures and perform a robustness check via repeated samipiiegpor both para-
metric and nonparametric models of conditional mean (8ed&i2.1). Second, we
investigate the heterogeneity across the growth distabuty applying both para-
metric and nonparametric quantile regressions (Sectidr2b. Finally, we briefly

summarize our results (Section 5.2.3).

5.1.1 Original data analysis and parametric misspecification

For the following analysis we use MRW'’s original data (diyed in their paper)

and first consider the classical growth model (see MRW, cedt)

| 85; = B1+ B2l i gdp; + B3l pop; + &, (5.1)

wherel 85 is the logarithm of total output measured by the real GDP BbEldivided

by the working-age population aged 15-64 years in the sarag lyiegdp denotes
the natural logarithm of the saving rate represented by DB &hare of investment
divided by 100] pop is population growth measured as the natural logarithmef th
average growth rates over the period from 1965 until 198kldd/by 100, plus the
depreciation rate assumed to be constant at 0.i8%n index of a cross-section of

countries, and is an error term.

Ordinary least squares regression of this model —whichistthe workhorse in
any growth econometrics text and works reasonably well aitfR? of 59.9%—
will serve as our parametric benchmark model. A thoroughesuand discussion
of the literature following MRW on growth (and convergenceressions can be
found in Durlauf & Quahi(1999).

As a first check of potential misspecification we test thid hypothesis of a linear

parametric mode[(5l1) against an alternative of parametrsspecification, using
the test proposed ' t al. (2007), hereafter denstet$i@ao-Li-Racine-test.

Employing the wild bootstrap variant of the test the p-vakiéound to be equal

to 0.09. Thus, there is some but no decisive evidence agéiestull (see also
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[Ma.a.SQumLel_al 2007 and earlier work in this vein_of Durl&ufohnson| 1995).
The p-values for alternative bootstrap methods are slidtwver.

A further criterion can be found by comparing the in- and ofisample perfor-
mance of the parametric modEL({5.1) and a nonparametrimatiee. For the latter,

the linear parametric conditional mean assumption
E[l 85i[l i gdp;,| popi] = B1+ B2l i gdpj + Bal pop; (5.2)
in (5.1) is replaced by a nonparametric conditional meanrapson
E[1 85i'i gdp;,! popi] = g(l i gdp;, ! popi), (5.3)

l.e. a general nonparametric specification of the systenpatit with unknown re-

gression functiorg(.). The first application of a fully nonparametric approach to

growth convergence regression is Maasoumi et al. (2007 )arl@Jeapproach{5]3)

allows for a very general production technology without tieed to assume the
validity of a local linearisation (compare e.g., Masang@lBapageorgiau, 2004).

The (pseudo) goodness-offi€, measured by the squared correlation between ac-
tual and fitted response, shows the higher in-sample agcofdhe nonparametric
mode@ compared to the parametric model withi&hof 0.599 for the former com-
pared to 0.663 for the latter. This may be expected a prigitdithe higher flexi-
bility and thus potential overfitting of the nonparametrioarl. To avoid the latter
problem we check the accuracy of both models with respedtetio but-of-sample

performance employing a hold-out-sample strategy.

Thus, as a cross-validation, we randomly split the samptear®0% sub-sample for
estimation, which is then used to predict the remaining 10#beobservations (see
Hﬁ.LLplﬁlA.. 2010, 2009 for a detailed description of craditation with nonpara-

metric regressions and R code). From the latter we can edéctie mean squared

More specific, we estimate a local-linear model using theeetgrl Kullback-Leibler cross-

validation proposed kJ;LI:I_LmLi_Qh_eﬂM%) and a seconde©Gaussian kernel. The bandwidths
for the covariates pop and| i gdp are 0.0934 (scale factor: 1.3497) and 1.1431 (scale factor:
5.2912), respectively. For all nonparametric computatiomthis paper we use version 0.30-1 of

thenp-package foR from|Hayfield & RaginH_(;O_dS).
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error of prediction (MSEP) for both models (denoted as,MgyandMy3), and the
relative MSEP as MSEf,/MSERy, . If this ratio is larger than one, then the non-
parametric model has a superior out-of-sample performanicis calculation step
is iterated 10,000 times and figlre B.1 displays the empidensity of the obtained
relative MSEP.

We observe that in approximately 73% of the cases the nogmm model has a
smaller MSEP compared to the parametric model. In ordestoit®r the statistical

significance of this result we employ the following hypotbgs

Ho : E[MSERy,] — E[MSERy,] <O,
Hi : E[MSER,,] — E[MSERy,] > 0.

The resulting p-values support our former result and delil@ar evidence against
the null (see tableAl7 below). Additionally, using the I@0bservations of the
sub-sampling distribution we calculate the median (aneuwpper quartiles) dg?
for the nonparametric mean model with 0.663 (0.650; 0.67A@)far the parametric
model 0.597 (0.582; 0.612), respectively.

All'in all, these results cast considerable doubt on theembparametric specifica-
tion of model [5.1). The estimated manifold of the nonparaimenean regression
displayed in figuréBl2, nicely reveals the different formsoofal nonlinear impacts
that the two covariatelspop andl i gdp exert on the response variabl@5. These

findings are supported by the detailed results on crosdatadins for all models

presented in this and the following section (see tables 3.to 5

5.1.2 Robustness, heterogeneity, and conditional quantiles

A RESET specification test of Ramsey (1969) based on OLS estimat (5.1)
cannot reject the null at any reasonable significance levieéreas specification

tests based on subsets of the data such as Harvey & Collier (28 51(1982)

clearly reject the null. The latter two, applied to the datdeved byl 85, sug-

BBwe thank Jeff Racine for suggesting a formal test here.
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gest that functional form may vary across the distributibthe response variable.
Standard outlier diagnostics based on OLS residuals révaeathere are three ob-
servations (Venezuela, Tanzania, Zambia) with ratherelaegiduals, which may
cast some doubt on the validity of MRW’s OLS results (see {A. Zaman et al.
2001) propose the use lof Rousseeuw (1984) least trimmedesy(la S) as a ro-

bust alternative. The robust estimator reported in tabRié\calculated by apply-

ing the procedure outlined in Zaman et al. (2001). It dissamly two observations

(Venezuela and Zambia), and leads to a considerable irecieRS to 67.5%.

An alternative robust method — quantile regression (KoegkBasseit, 1978) —
allows a direct investigation of the assumption of paramietenogeneity, without

the need to sacrifice certain outlier observations, whicly beawkward without
further subject matter knowledge or respective a priogrimfation. For linear quan-
tile regressions we replace assumptionl(5.2) by the linaearpetric conditional

quantile assumption

Qg [l 85i|l'i gdpj, | pop;] = B1+ B2l i gdp; + B3l pop;, (5.4)

for a quantiled, whered € (0,1) andQy—o5[.|.] is the conditional median. Hence,
in table[A.% we compare the results of OLS estimation (MRWhl&d) of (5.1)
and the robust LTS-based regression, with linear medigpeugnd lower quartile

regressions.

At first view, there is some difference in numerical valuesaaen the slope co-

efficient estimates for the lower, upper, and median qearggression, respec-

tively. In contrast to Ram (2008), however, we wish to applyaral test for

the statistical significance of this difference. Applyirgetjoint robust Wald test

-

of [Koenker & Bassett (1982) for the null hypothesis of idealtislope parameters

across quartiles gives a p-value of 0.09 and thus no cledeege for heterogeneity
using approach (5.4).
As a further generalization, we compare the results frommesion of the nonpara-

metric conditional meari (53.3) with the results from a fulynparametric quantile

regression following as recently proposed/by Li & Racine €0y employing
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the nonparametric conditional quantile assumption

Qs |l 85i[l i gdpy, | popi] = g(l i gdp;,! pop;), (5.5)

the latter approach combines the functional flexibility loé tfully nonparametric
approach with the capability to capture potential hetemegg across the condi-
tional growth distribution from quantile regression, ahe tadditional benefit of
robustness. Figufe B.3 shows the conditional partial effércim the nonparamet-
ric quartile regression model and the nonparametric megression, where we
observe the impact of varying one covariate while the otlogagate is held con-
stant at its mean or median value, respectively. In analogye linear models
displayed in table"Al5, we again observe differences betwesan and median es-
timates. Although the results from quartile regressiorea¢\some differences to
the nonparametric mean approach, again there are no visftdeences in (local)

curvature across the conditional growth distribution.

Finally, we summarise the performance of approaches$ (5.3)-with respect to
goodness-of-fit and cross-validation. The cross-valhatnedian (and interquartile
ranges) ofR2 are displayed in tablEA.6. Table A.7 displays the p-valuesf
pairwise t-tests on cross-validated MSEP as outlined in@e2, where we observe
that approacH (513) dominates all other approaches witreotso both MSEP and
MAEP.

Following MRW we extend our analysis to a larger datasetluging the Non-
Oil countries. The different variants of the Hsiao-Li-Razitest produces p-values
smaller or equal to 0.02. The cross-validation revealsttimhonparametric model
dominates the parametric model in 76% of the cases and dspiber result of
the Hsiao-Li-Racine-test. Using quantile regression werafjad no evidence for
heterogeneity, as the Wald test for the null hypothesis@ftidal slope parameters

across quatrtiles has a p-value of 0.78.
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5.1.3 Conclusion

The findings of our empirical analysis can be summarisederfalowing points.

First, in accordance to some contributions in the litemilusing alternative data
and models), our results generate additional empiricalesge on parametric mis-
specification of classical growth regression models pregdsy MRW. Second,
in sharp contrast to recent contributions, we cannot findeswe for heterogene-
ity even for the extremely parsimonious model under studg h&mploying the

method of quantile regression we find that this holds truebfith parametric and
nonparametric approaches. Third, even for very small sasipes, nonparametric
approaches dominate parametric approaches with respeetdaad out-of-sample
measures of fit and predictive ability, respectively. Foudtl results also hold for

an extended sample of countries.

5.2 Dealing with heterogeneity, nonlinearity and club
misclassification in growth convergence: A non-

parametric two-step approach

This section is retained from Haupt & Meier (2011).

In the following subsections the method proposed in Chapt#P 3s illustrated

with applications to three data sets based on differentdesfeaggregation — the
countries from the Penn World Tables, the prefectures cdrdagnd the districts
from reunified Germany. These applications allow replara®f our method and
previous results in a wide sense. We use different levelgygfemation because
we expect different levels of heterogeneity. Regions orridisievel come with

similar technology and thus regions on this level conveage similar or even the
same steady state. This is the reason why the concept ofusdsanvergence is
generally used for disaggregated data. However, differenntries behave much

more heterogeneously, because there are highly diffeevejd of technology. This
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is the reason why countries typically converge to differgetady states. Classical
convergence analysis captures this problem by extendigg)2ith additional co-

variates (e.g. investment rate, human capital) determidifferent steady states

(see Sala-i Martin, 1996b). In our approach we use the caméegbsolute conver-

gence for all levels of aggregation because we allow foedsffit steady states on
club level by capturing the club variable. Independentbnirthe aggregation level
members of one club are assumed to offer homogenous coneergehavior and

thus, we can assume similar steady states in a club. Witlecesp the aggrega-

tion level our empirical results reveal considerable défees in nonlinearity and
heterogeneity, while we do not find clear evidence on theitahsof results with

respect to the ordering rules discussed ve

5.2.1 Penn World Table country-level data

Using our two-step procedure we analyze convergence far Rémld Table (PWT)
data of 152 countries over the years from 1970 to 2003. Asagjlotnvergence is
clearly rejected (p-value: 0), the clubbing algorithm is applied. Table 1 displays
parameter estimates and standard deviations before ardcafb merging for or-
dering rules (1)-(1V).

Final ordering (1) offers seven convergence clubs and nerdiag countri@ while

one third of the countries are members of the first club. Afterging six clubs re-
main. Using the other ordering rules we get different resulverage ordering
(1) produces basically nine convergence clubs, but using merging the num-
ber of clubs can be reduced to six clubs and the divergeneggnd similarly to
final ordering, the first club is the biggest one and consi&/acountries, while
the other clubs are much smaller. The divergence group Rasesinbers. Differ-

14All computations in this paper are done using the softviRasersion 2.11.0, and version 0.40-4

of the np-package o i i 08). Of course, data and @rdeavailable from the
authors.
5ysing the same datla, Phillips & Hgl (2d)09) only identify fivengergence clubs. For those

clubs, however, we find the same parameter estimates archstiaeviations.
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ence ordering (Ill) produces only five non-mergeable caysece clubs (and one
diverging country), while also 67 of the countries are merslof the first conver-
gence club. Decreasing weights ordering (IV) generatesrselubs which persist
after merging. About half of the countries belong to the fitab. In summary, the
composition and number of convergence clubs seems to béytgghsitive with

respect to the choice of the ordering rule.

The convergence behavior of the six clubs using final ordeflipnis displayed in
Figure[B.4, where the relative transition coefficients am@tptl against time. A

closer look at the respective club members listed in Tab2&Pmay raise some sus-

picion. For example Club 1 contains the USA and Botswana (Blglli :

2009). In absolute values the per capita income of the USA#D1s about 17429

US Dollars, compared to 1184 US Dollars in Botswana. Thougibsolute values
this gap rises considerably until 2003 (see Fidurd B.5), lative numbers it de-
creases over time. While in 1970 the per capita income in Batawsabout 7% of
the per capita income in the USA, in 2003 it is about 23%. Botewalso catches
up in international comparison with respect to the relatigasition coefficients.

In 1970 the per capita income in Botswana lies at about 80% (l1328%) of the

cross-country average, while it rises to 91% in 2003 (USA%Y0 Thus, although
the absolute incomes between these two countries diffeerely, the countries

converge in the sense of Phillips and Sul as the respdttizenverge to 1.

In Figure[B.6 the box-plots of income in final period are digpldfor the six clubs
found by final ordering (I). While the incomes inside the cl@e close to each
other, the income distribution between the clusters is etgrogeneous. For the
same clubs in Figufe B.7 we display scatter plots of the legressiong (BI8). The
shape suggested by the trajectories in clubs 1 to 4 is pacaoad convex and thus
may be interpreted in a way that in initial periods there argshfor divergence,
while over the years we observe convergence because oftavpatope. For club
5 we detect more complex nonlinearities and convergencesisnaed becausge

is not significantly negative but the regressand decreasb® &nd of the period,
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indicating that there is no converge@eThus, to avoid a misinterpretation of the
estimation and test results, the inspection of thet laggression scatter plots seems

to be highly recommended.

The clustering algorithm may also be sensitive with respethe respective time
horizon. Thus, for the Penn World Table data we exemplaniglyze for final
ordering whether number, size, and composition of clusserenstant for different
time periods. We compare the results for the whole time barfrom 1970 to 2003
with consecutively shorter partial time spans, one from8l®72003 and the other
from 1986 to 2003. The reason why we choose both periods katkhiey also end
in 2003 is that the income in the final period is the orderinggda. Using the same
final period enables to analyze how the length of the timezboraffects the cluster
composition and the number of clusters.

Table[A.9 displays numbers, sizes, and compositions ofarisior the complete
time horizon 1970 to 2003 and the period from 1978-2003,eetbely. The clus-
ter sizes for the complete time horizon is given in the lastirom containing the
row sums, the clusters of the partial period 1978 to 2003 mengn the last row
containing the column sums. For the partial horizon we finchdditional con-
vergence club and a divergence group. Although the numbelusfers changed,
their composition is quite stable as countries belonginth&ofirst clubs over the
complete horizon predominantly also are members of thediukts in the partial
horizon (and vice versa). As can bee seen from Table]A.1uheber of clusters
rises to eight and one divergence group when comparing thréestpartial period
from 1986 to 2003 to the complete time horizon. Again, thotighnumber of clus-
ters varies over time, the club composition seems to be gtatde over time. This
results support the assumption that the club structure eamdtuded as an ordered

categorical variable when analyzifigconvergence.

Step one reveals hints for non-robust club sizes and clulpositions with respect

to ordering rules and time horzion as well as neglected nealities in log regres-

16Note that for other ordering rules and data sets, more chdhibie such a behavior.

75



5.2. DEALING WITH HETEROGENEITY, NONLINEARITY AND CLUB
MISCLASSIFICATION IN GROWTH CONVERGENCE: A
NONPARAMETRIC TWO-STEP APPROACH

sions. Both findings raise the question if potential misdfesdion of convergence
clubs will affect estimation and inference within this frework. Thus, in the sec-
ond step, we analyze the robustness of the club compositesdting from the
differing ordering rules (I)-(IV). For each ordering ruleevestimate the parametric
model [3:8) and the nonparametric model(3.9) and apply ttie tést. Finally, by
running an out-of-sample cross validation analysis wecsela optimal ordering

rule according to lowest average squared error of predi¢hSEP).

The output for a classicfd-convergence regressidn (2.23) is given in Table A.11.
The estimated convergence coefficient is negative, bug tisaro statistical signifi-
cance. Advancing to the baseline model}(3.8) including thie v:ariabl@ suggests
strong evidence for the existence of heterogeneity. Themattd coefficients are
displayed in Table"A. 12 and the resulting club-level regi@s lines can be seen
in Figure[B__._@. The convergence coefficients are significant for convergeafub
one to five, but not for the sixth club (which consists of onyptcountries). The
p-values of HLR tests (see column 3 of Table A.13) are appnately equal to zero
in all four cases suggesting the application of the nonpatacmodel[(3.P). Table
[A. 13 displays the resulting bandwidth for nonparametricleis. For ordering rules
(D-(IV) the estimated bandwidth for continuous regregs@maller or equal to its
standard deviation (1.09), respectively, also indicaimgpnlinear influence of the

regressor lofyi o).

Overall, the clubs seem to be well chosen because the batmdefithe club vari-
able is very small independently from the respective choicerdering rule. An
out-of-sample cross-validation, however, offers a cleakmg for ordering rules
with respect to ASEP. The pairwise comparison of the modeéngn Tabld A T1#
reveals that ordering rule (1) suggested by Phillips and (8009) dominates all

other ordering rules for the present data.

"\We only present results for ordering rule (1) because latere find that this rule performs best.

The results for other ordering rules are similar.
18The estimated coefficients for quartile regression arelairto mean regression. Thus, there is

no more heterogeneity over the conditional distributiothefregressand.
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5.2.2 District-level data from reunified Germany

For this application data on the 439 German administratiseicts are taken from
the regional data base of the statistical agencies of Gerfioamper capita income
measured as the GDP divided by the corresponding numbetizirts for the years
1996 to 2005. The logregression for German regional data suggests clear evadenc
against global convergence (p-vakt), but we are able to find the clubs summa-
rized in Tabled A Ib for the four ordering rules and classtfaa before merging
and after merging. Again, difference ordering producesef@wumber of clubs,
only eight before and five after merging. Average and deangaseights ordering
reveal highest number of clubs, 24 before and ten respéctight after merging.
Notably, the first two clubs and the divergence group for athadl orderings ex-
cept difference ordering are very small while for differerardering the first club
includes about 25% of data and the divergence group evenhinte FigureB.9
plots the relative transition coefficients over time for toevergence clubs and the
diverging group of final ordering. The plots support the @gence hypothesis
for the clubs and show diverging behavior of the divergingugr. The boxplots in
Figure[B.10D reveal the heterogeneity (homogeneity) betwehin) the clubs.

Analyzing logt regression scatter-plots for regional data offers sinriéaults to
the PWT data. Figure B.11 exemplifies the results for final anderMost of the
convergence clubs offer a parabolic and convex shape whedmmma nonlinear
relationship but no harm for convergence interpretationt, Bur the second club
the regressand becomes smaller in the last period whick dsabt on the club

convergence

Investigating3-convergence yields to the regression output displayedlielA. 16.
The estimated coefficient is significantly negative. Theested coefficients of the
baseline model(318) briefed in Tallle Al17 offgéiconvergence for all clubs, but
divergence for the divergence group. The estimated ragresses for the ten
convergence clubs after merging are displayed in Figurel BAE2the p-values in
Table[A.IB) reveal, for ordering rules (1) and (1) the hytpesis of correct paramet-
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ric specification of the baseline modgl(3.8) cannot be tefbat any reasonable
significance level, while there are hints for misspecifmatin (111) and (IV). For
assessing the quality of clubbing we estimate nonparacn@iodels for all cases.
The estimated bandwidths are displayed in Table JA.18. Wiéhetxception of (1)
the bandwidths for lo@;i o) point to nonlinear influences of the regressor. The
bandwidths for the club variable are all close to zero. Tlelidy compositions are
well chosen for all ordering rules. The out-of-sample cresglation analysis of-
fers a strict ranking of ordering rules @)1V) = (1) = (Ill), where = means that the
ordering rule on the left has a lower ASEP than the rule onittg.r

5.2.3 Prefecture-level data from Japan

In addition to PWT data on country-level and german regioas dn district-level
we analyze an in-between — data on 47 Japanese prefecturesebel 956 and
199@. The results on merged clubs are displayed in TablelA.2thd feial order-
ing and difference ordering we find three convergence clutisiwcan be merged
to two clubs. Average ordering and decreasing weights org@ropose exactly the
same results. There are four convergence clubs and ongeina group consist-
ing of three countries. After merging there are only two slaind one divergence
group. The relative transition coefficients over time fog tonvergence clubs af-
ter merging are exemplarily shown for final ordering in Figil8.13, where club
convergence is indicated as the transition coefficientserge to one. Again, het-
erogeneity between clubs can be observed from Figurd B.14.sTatter-plots of
log t regression for final ordering displayed in Figlre B.15 showegdifferent
results than for the other examples. For all three clubs tise Half of the time
horizon show parabolic and convex points. In the second trefpoints of clubs
one and three stagnate in contrast to convergence assamptie results of log

regressions should be handled with care. Analyzing claBiconvergencd (2.23)

9The data of Barro and Sala-i-Martin  (2004) are downloaded omfr
http://www.columbia.edu/xs23/data.htim at June 15, 2011.
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proposes a positive coefficient which is significant on 1@4el (see Tabl@.
Thus, there are no hints f@rconvergence over all prefectures. The estimated con-
vergence coefficients for the baseline model reveal negaiiyns for both clubs,
which are, however, not significantly different from zeredsTabld_A.2R). The
estimated regression lines are plotted in Figure B.16.

Investigating parametric misspecification the HLR test bamll p-values (with
maximum of around 11%) for all ordering rules. For all ordgrrules the band-
width of cluby is approximately 0.01 or even smaller. Thus, the clustezmseo
be well chosen for all methods. The bandwidth for(lpg) proposes a linear influ-
ence of this variable for ordering rule (I) and (lll) and a hioear influence for (I1)
and (IV). The p-values and bandwidths for nonparametricaggjon can be found
in Table[A.Z3. The out-of-sample cross-validation offérs following sequence of
ordering rules (I}-(I11) =(1D=(I1V).

5.2.4 Conclusion

As classical convergence regressions often fail to acctarnteterogeneity and
nonlinearity and recent contributions are able to addriéssrehe one or the other,
a simple two-step method is proposed to address both isEBugsloying a slightly

augmented version of the clubbing algorithm of Phillips &udl (2007a,b, 2009) in
step one, we find (i) considerable sensitivity of results onvergence club struc-
tures with respect to different initial data orderings. thar, (ii) visual inspections
of log t regression scatter plots reveal that the “convergencepir@tation” of the

results of such a linear regression should be handled wrth das a second step
we propose the use of a nonparametric test and regressich afows to analyze
convergence effects on both individual and club level whileviating potential

misclassification in the club formation process using siemg¢ous smoothing over

the club structure.

Three empirical exercises using data on different levelaggfregation, countries

20Again, we only present results for initial ordering.
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from the Penn World Tables, Japanese prefectures, anatigtom reunified Ger-
many, respectively, illustrate the proposed two-step @ggir. For all applications,
we find considerable evidence for club-based heterogemedgnvergence analy-
sis by adding the clubs identified in step one as a categaraariate. Our non-
parametric estimation results suggest that the club comnposs well chosen. An
out-of-sample analysis reveals that initial ordering rfolestarting the club identi-

fication algorithm (in step one) proposed by Phillips and@rforms best.

5.3 Convergence of the high-skilled in German re-
gions: Using panel and cross-section information
to identify clubs, spatial patterns, and nonlinear-

ities

This section is a joint work with Harry Haupt and Joachim Sabus, see Haupt et/al.
2011).

5.3.1 Classical convergence regression analysis of the high-skilled

employees in German regions

High-skilled employees are the basis for developing newrielogies and eco-
nomic growth. Lumpy provision of high-skilled labor acrd@ssrman regions may
slow-down growth and increase already existing gaps invaton and productiv-
ity. Itis thus of obvious interest to study the spatial disition and spatio-temporal
diffusion of high-skilled labor and develop statisticaltmeds to study existence and
patterns of eventually occurring convergence and divergenocesses. In our study
region-specific shares of highly educated employees akasa proxy for high-
skilled labor. More precisely, the dependent variable inmoadel is the growth rate

grschool ; = log(school i.2005) —log(school  1996), Whereschool i represents the
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share of employees liable for social security insuranceegioni (i =1,...,439)
(as a place-of-work) and yeaft = 1996...,2005), who have at least eleven years
of schooling and a degree. Hereafter we will denote thisesharithe share of high-

skilled employees.

Adapting the approach of Barro & Sala-i Martin (1992) our gea is based on the
unconditionalB-convergence, where the key explanatory variablectsool 0; =
school j 1996 the share of high-skilled employees in regian the year 1996. Fig-
ure[B.1T provides a first impression of the spatial distrinuf the key variables
grschool andschool . Both maps reveal obvious patterns due to the former sepa-
ration of Germany in Federal Republic of Germany (FRG) and GarBemocratic
Republic (GDR), hereafter denoted as west and east. To rdfiscsttuctural in-
formation the binary variableest — which is equal to one for west regions and
zero for east regions — is included in all subsequent anslydete that we primar-

ily considerwest as a political variable, although it is of obvious economid as

a consequence spatial — due to spill-over effects — releyaion. Interestingly,

the share of high-skilled employees in east regions in 1@@és to be somewhat
higher on average compared to the majority of west regiomshérp contrast the
growth-rate (between 1996 and 2005) is higher on averagenémt of the west
regions compared to the east regions, where some of the éatt@ experienced
negative growth-rates. This phenomenon, often denoteldeagdst-reunion brain-

drain, is obviously still in progress many years after tHeci@l reunion in 1990.

Our baseline moc@ is the classical convergence regression model proposed by

(1992), hereafter MRW, where in the light of axonsiderations

above we allow for specific convergence parameters of wakeast regions, re-

2INote that the estimation of equatidn (5.6) is based on csestion data, where only information
in the initial and final time period is employed. The a prialextion oft = 0 andt = T, respectively,
may have a crucial impact on the outcome. We will not discuss sources of non-robustness in

this study.
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spectively, that is

grschool; = awest;+oaz(1l—west;)+p1log(school 0;j)west

+ Bzlog(school 0;)(1—west ;) +¢;, (5.6)

andp-convergence of west regions is assumed to be presgntifo (an analogous
interpretation for east regions applies@g). Then skill concentration differences
across the regions decrease as regions with a lower coatientof high-skilled
employees increase their concentration faster than regitth a higher concentra-

tion.

The OLS (ordinary least squares) estimation results forb#meline convergence
regression[(5]6) are displayed in Table A.29. We will no¢ss$rthese preliminary
results, as the baseline model obviously suffers from ld@conomic content and
consequently various sources of misspecification are atelicby a battery of tests.
For this reason we also do not report adjusted standardsdrese. Given this dis-
claimer, the convergence coefficient is significantly niegdbr both parts of Ger-
many and the fit, measured as squared correlation of obsanafitted response
values PR?), is moderate at about 50%. Thus, the results may be integas
slightly suggestive in favor of converging shares of highlesd employees over all

administrative regions.

Following the main contributions of among others Barr rtin (1992),
Barro et al.[(1991), arJd Mankiw et all. (1992), a plethora ofksappear address-

ing several strands of criticism confronting the baseliméo® model (see e.qg.,

Haupt & Petring; 2011 for a recent survey). In the followingesition we pick

up three main points of criticism.

Equation [5.B) can be written compactly gs= x/B + €. However, let us as-
sume that the true conditional expectatioryofiven all relevant explanatory vari-
ables is equal t@(x;,z), whereg is an unknown function and are unobserv-
able explanatory variables. Then the correctly specifiedehts given byy, =
0(xi,z) + &i. When estimating the misspecified model{5.6), the error isaktp

& = 9(xi,z) —x{B+ & where{&;} is an error process. The three points of criti-
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cism we will consider here reflect three potential sourcethefspecification er-
ror A = g(xi,z) — x{B. First, neglected heterogeneity due to incorrectly assgmi
global convergence, while there may coexist clubs with hgeneous convergence
behavior and a group of divergent regions (Sedfion b.3.2L08d, neglected het-
erogeneity induced by spatial association due to spill-anel repercussion effects
between German regions (Section 5.3.3) . Third, misspatiific due to neglected
nonlinearities in the regression function (Secfion 5.3EMpirical evidence on all
three issues is analyzed for the high-skilled employeesam@an regions. In or-
der to provide a hint for the robustness of our findings we aae the data of
the recent exposition of Ertur & Koch (2007) in Section 5, 3hile Sectiori 5.316

concludes.

5.3.2 Heterogeneity due to convergence (and divergence) clubs

One of the main points of criticism confronting the claskozmvergence regression
(5.8) is that there are several forms of neglected heter using invalid esti-
mation results (compare e.E.. Masanjala & Papagec rﬁﬁ

2004, Ertur & Koch, 2007; al., 2008 and

Haupt & Meier/2011).

In a series of seminal contributioL:us_thJijs_&S‘uL(ZOO_SD_ZM) 2009) (hereafter

PS) build on the ideas of Durlauf & Q abj (1999) and suggedtlibterogeneity
may occur due to individual effects and different techngldevels. Consider-

narella & Pollard,

ing these effects they propose a dynamic factor model bdsedirhe trajectory
{school jt}+—o_. T Of each region. Their convergence concept — which we label
as “club convergence” hereafter — is based on the idea tingecgence is assumed
if all regions have the (approximately) same share of higlesl employees in the
final periodT. Hence club convergence is based on panel data in contrfst to
convergence, the latter only relying on cross-sectiongieinitial and final period

0 andT.

If there is no evidence (from a so-called logegression test) in favor of global con-
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vergenc@, PS introduce a clustering algorithm for identifying corgence clubs
empirically. The idea of convergence clubs is that theregaoeips of countries
with common convergence (or divergence) behavior. Therdlgo proposes a

classification of convergence clubs, while it is not pogstblanalyze convergence

behavior on a club-level in the sense of Mankiw etal. (1982kr 1(1991);
Barro & Sala-i Martin|(1992). Thus we adopt the proposal of ptaki Meier (2011)

to introduce a club variable in the baseline modell(5.6). Ipipg an augmented

form (see Haupt & Meier, 2011) of the clubbing algorithm of SGerman re-

gions yields a discrete covariateub; with 11 categories, i.e. 10 convergence clubs

and a divergence group.

In a first step we include the convergence clubs in the clag$iconvergence anal-
ysis usingndummy variables| ub; j representing the categories of the underlying

discrete variable,

grschool; = opwest;+aqlog(school 0j)-west
m m
+ > Bjclubij+ ) yjlog(school 0)-cl ubjj+&. (5.7)
j=1 j=1

Table[A.30 contains the occupation frequencies aoflalb-categories for both Ger-
man regions. The clubs 1 and 10 as well as the divergence gmaupoorly oc-
cupied each having a total of less than five observations.cltss 8, 9, and 10,
as well as for divergence group 11 there are no observatmmhé east regions
of Germany. In Sectioh 5.3.4 we will address potential issoiesparsely popu-
lated cells. The results for OLS estimation of Equatlonl(areé displayed in Table
[A.31. The estimated convergence coefficients are signtficaegative for club 1
to 9. Thus, for these clubB-convergence can be assumed. For club 10 and the
divergence group 11 there is no significant convergencee MNait we only have
three observations (all in west regions) in these categoii®e do not find differ-
ences in the convergence behavior between west and easisegs the coefficient

of the interaction betweemest ; j andschool 0; is not significantly different from

22In the present case of high-skilled employees in Germamnsghe corresponding ldgegres-

sion reveals no evidence in favor of global convergence gneasonable significance level.
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0. ThePR? is approximately 90% and also Akaike-Information-CriterigAIC)

and Schwarz-Information-Criterion (SIC) suggest a cleaegogty in comparison

with the baseline model(3.6). The next natural questiorskoiswhether the latter

model is also capable of capturing potential spatial paster the data.

5.3.3 Spatial association

Another source of misspecification of classical convergeegressions may be ne-

glected spatial association (elg., Pfafferr: 2009;eMor& Trehan, 1997; Sudek

2008). We want to analyze whether our estimation resultssalffer from neglected

spatial association. In a regression context, spatialczsmn can occur w.r.t. the

response variable, w.r.t. the

proach of Ertur & Kochl(20

covariates, and w.r.t. ther é8rm. We follow the ap-

7) who propose a spatially augreéntersion of the

classicalp-convergence model. The basic idea is that interdepeneeiotitech-

nology and knowledge spillovers are a source of spatialcson. Founded in

economic theory the model

spatially lagged explanatory

includes the spatially laggededéent variable and

variables as

y =pWy + XB+WX6+¢, (5.8)

with regressor matriX, response vectaor, error vectore, a row-standardized x n-

matrix of spatial weight8V with corresponding parametgyas well as the parame-

ter vectorg3, andB. We switch to matrix notation, as this simplifies the subsequ

derivations. Model(5]8) is denoted as spatial Durbin madel can be consistently

estimated by Maximum Likelihood. The Durbin model nestsdpatial lag model,

which is obtained fof = 0 as

y =pWy +XB+E¢, (5.9)

and the spatial error model (fér= —pp) as

y=XB+u, (5.10)
u=AWu +E¢.
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A comprehensive summary of recent contributions concgrtiiese models can be

found in Elhorstl(2010). We check for spatial associatiangisnodel selection cri-
teria and tests. For the latter we estimate the baselinessign[(5.6) and the club

convergence regressidn (b.7) without spatial effects aedlcthe respective resid-

uals for spatial influences using the Lagrange Multiplistgaliscussed in Anselin

1988b) and Anselin et al. (1996). The tests compare thespatial models against

a spatial lag alternative, a spatial error alternative asratwnation of both, respec-
tively. The results of the LM-tests in the upper panel of €&BI33 reveal clear
evidence for neglected spatial effects in the baseline M&d&). The test results
for the club convergence regression [5.7) displayed indhet panel suggest oth-
erwise, however. There only seems to be some weak evideifeeoinof the spatial
lag alternative with a p-value of 0.07. Further we compaleradels by means
of the AIC and the SIC, displayed in Taljle_Al32. Due to consiikr differences
in the number of parameters of the compared spatial model®Nesv the SIC
in our argumentation because it more heavy penalized thesioo of additional

covariates.

With respect to AIC and for models based on club convergemedést model is
the spatial lag model which, however, is only slightly sugeto model [5.7). If

the club structure is neglected there is clear evidencevor faf the spatial models,
especially the spatial Durbin model. With respect to SIC eldd.7) is clearly pre-

ferred to all other models. For models without club struetiine spatial error model
performs best, while the model without spatial effects aral gpatial lag model
perform equally. Obviously there is a relation between djaksed heterogeneity
and spatial association. However, models including the staucture seem to be

capable of capturing spatial associations.

5.3.4 Misspecification of parametric functional form

Several authors identify neglected nonlinearities as acgoaf invalidity of clas-
al.,1200u & Stengos/ 1999;

U

sical convergence analysis ( elg. Kalaitzidakis
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M mi et all, 2007; Quah, 1998a, 1997; Henderson, 2G40 an
Haupt & Petring, 2011). Following the proposalpf_Haupj_&M&e 2011) we ad-

dress this issue by employing a fully nonparametric apgroac

The nonparametric convergence regression model
grschool j = f (log(school 0),cl ubj,west ;) +¢;, (5.11)

allows for nonlinearities and interactions among all c@tas within the regression
function f(-). In the previous section the club membership is shown tocsesffily
reflect the spatial association. Hence we include this mé&ion also as ordered
discrete covariatel ub in the nonparametric regression. For the present problem

we have a mix of continuous and discrete covariates. We d@pplyonparametric

mixed kernel regression approach of Li and Racine (compa&Racine, 2004,
2007; Racine & Li, 2004). Recently, Haupt & Petting (2011) fduhe superior

performance of this approach (compared to parametric ssgne function speci-

fications) in the context of growth regressions for the orgidata of MRW. The

corresponding minimization calculus for a local linear edxernel regression is
n
min ( grschool j —a(xg) — ﬁ(xo) - (log(school 0;) —
a(xo0),B(x0) =1

log(school 0g)))?- K (xo, i, b). (5.12)

The vectorx; = (log(school 0;),cl ubj,west ;)" contains the covariate values of the
ith administrative region. Analogousl refers to the covariate position
(log(school 0¢),cl ubg,west o) where the regression function is estimated locally.
The estimated mean regression effect at this covariatéqoss denoted byi(xo)
while the corresponding estimated first partial derivativet. log(school 0) is de-
noted by@(xo). Observations are weighted by the generalized producekérnc-

tion K(xp, Xi,b), the product of the kernels of the three covariates.

First, the continuous covariate I@ghool 0;) is weighted by a second order Gaus-

sian kernel

1 hool 0; —school 0
Kschool 0(School 0g,school 0j,bschooi0) = (SC ool Uj —schoo 0)7

bschool 0 bschool 0

(5.13)
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whereq(.) is the standard normal density and the smoothing pararngte, «|.
The smoothing parameters are denoted bandwidths in a kestiehation con-
text. Small bandwidths lead to reasonable weights only bseovations where
|school 0; —school Og| is small, i.e. the number of high-skilled employegshol 0;)

is close toschool 0g. Contrary, large bandwidths yield almost equal weights for
all observations, thus indicating a linear relationshipneen logschool 0) and
grschool . Second, unordered categorical covariates suekstsare weighted by

1 for west; =west g,

k\I\ESt (V\BSI OaV\BSt i;b\l\BSt ) = (514)
Buest for west; # west o,

as suggested mLLi_&_Ra.QiInE_QL 04). Third, the ordered vagidhib — where our

reasoning in favor of a natural ordering is based on Figur& B-lis weighted by

Ket ub (€l Ubo, C1 Uby, bey up ) = bl¢! uPi—¢t ubol (5.15)

club

The bandwidths for both discrete kernels take valuefjd|, where a value of

0 means that the regression function is separately estihiatehe observations of

different covariate categories, i.e. the so-called fregy@pproach (see Li ine,

2007, chapter 3). For a bandwidth of 1 we obtain equal weilgntfie observations

of all categories of the underlying covariate, which is thruslevant.

The bandwidths have to be determined prior to the kerneéssjpn estimation. In

a mixed covariate context, data-driven bandwidth estomais required. We esti-

mate the bandwidths by least-squares cross-validatiompace Li & Racine! (2007,
chapter 4).

Table[A.34 displays the estimated bandwidth values for thedates. The esti-
mated bandwidth of the continuous covariate is about hdém@e as the standard
deviation of logschool 0) (which is 0.4816), thus the model allows for consider-
able nonlinearity with respect to this covariate indicgtinat neglected nonlinearity
may indeed be a problem of the proposed approach. The estimandwidths of
the discrete covariates are low. Rest the total weight of about 6 1/0.1711)

observations of the other category corresponds to the Wwefgine observation of
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the corresponding category for an estimation. Accordirbag_pj_m@er (2011),
a bandwidth value of close to O for tkeéub variable indicates that the convergence

clubs are well chosen. Thus, as the bandwidth of 0.0027 sedio O, there might
only be small probability of club-misspecification. TR of the correspond-

ing estimation is 0.901 and thus slightly higher than thahefOLS estimation of

equation[(5.J7). Applying the corresponding test of Hsiaale2007) for paramet-

ric misspecification as suggested by Haupt & Meier (2011) btaio ap-value of

0.048. Hence we can reject the null hypothesis of a correenpetric specification

at a 5%-level, indicating that the nonparametric approaeins preferable.

The estimated partial effects w.r.t. Iaghool 0) for the nonparametric mixed ker-
nel approach are obtained é(sxo), compare Equatioi(5.12). In principle these
partial effects could be evaluated for a grid covering thegeaof logschool 0)-
values for each of the 22 category combinations of the dis@@variates (or more
generally for anyxg). But, as the region-structure of Germany is rather fixed, we
only focus on the evaluation of the partial effects for theegi439 observed covari-
ate value combinations. The vertical lines indicate theregton uncertainty and
correspond to (asymptotic) confidence intervals. We alsieddhe estimated par-
tial effects from the OLS estimation of Equatidn (5.7), cargTablé_A3. Here
we can see a clear difference between parametric and nenggi@estimation only
for the clubs 2-6, the partial effects for the other clubgi(divergence group) seem
to be reasonably estimated by the parametric specificafidalie[A.31. For the
clubs 2-6, the nonparametrically estimated partial effaceé not constant.

The nonparametric mixed kernel approac J_o_f_LL&_Ra|c ne (2@@4) also partially
deal with the issue of poorly occupied category combinatiofror demonstrat-

ing this we propose a new measure, the “virtual number ofreasens”, n,. We

have previously seen that a certain estimated bandwidtla fdiscrete covariate
determines the extent of smoothing for this covariate é&oelst, up to here this
also holds true for continuous covariates), i.e. to whatreglegre observations
of other categories used to estimate the regression funéioa certain covari-

ate category. We have seen that roughly 6 observations dfG&siany have
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the same weight than one observation of West-Germany foestimation of the
West-German regression function and vice versa.of a certain category com-
bination is simply the sum of all observations in all catggoombinations multi-
plied by the corresponding discrete kernel weights whig. dimilarity of the cat-
egory combinations to that of interest. Consider e.g. thegmay combination
west = 1,cl ub = 4, according to Table_A.30 this category combination is eccu
pied by 41 observations(west = 1 cl ub = 4) is thus equal to 41 plus the ob-
servations inmest = 1,cl ub = 3 or 5 weighted by 0.0027 plus the observations
west = 1,cl ub = 2 or 6 weighted by @027 plus ... plus the observations in all
the east categories weighted by 0.1711 times the corresmpsinilarity to the
club=4.

Table[A.3% shows that because of the very low bandwidth {tlaatates a low prob-
ability of club-misspecification) we have only a rather lom@unt of smoothing
over the categories of the discrete covariates, such thegaaes that were poorly

occupied before also are so while estimating the nonparamegression.

5.3.5 Re-analyzing Penn World Tables data

In a seminal paper Ertur & Koch (2007) develop the theorébeais to allow for

technological interactions between cross-sectionalsufuié. regions, countries
,...) In growth modeling. Their spatially augmented cogegice model will be
denoted as spatial Solow model hereafter. In order to chieekrdbustness of
our empirical findings we re-analyze data from the Penn Waddles (PWT),
used by Ertur & Koch!(2007) to illustrate the merits of the tegdaSolow model.
Ertur & Koch (2007) estimate a condition@tconvergence regression model for

explaininggy, the average growth rate of per capita income over the pd96d
to 1995 for 91 countries. In addition tay60, the log initial income in 1960, the
authors employ the log saving rdtes and the log growth rate of working-age pop-

ulationl nngd as further explanatory variables. Based on estimation araigivis

) test results (see the rightmost column in Table Ill, p. 1L,O& [Ertur & Koch,
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2007, and the middle column in Talile_Al36) the authors findrchents for spa-
tial structures and estimate a spatial Durbin model witlyéabdependent and ex-
planatory variables. Our results displayed in Tdble A.3ificm their results to
employ a spatial model with spatial lags and spatial errditse model selection
criteria displayed in the upper part of Talhle A.38 suggeat the spatial Durbin
model (AIC) or the spatial error model (SIC) perform best, wliile classical base-
line model performs worst. After estimating (unconditibaad conditional) spatial

Solow models under a homogeneity assumption (i.e. coeaftE@o not vary across

countries), Ertur & Koch((2007) also estimate a local sp&tiabin model to allow

for country-specific parameters. They find (visual) evidefar heterogeneities in

the model coefficients. In summary Ertur & Koch (2007) idntivo sources of

heterogeneity: First, due to spatial structures and sechreito individual effects.

Following our argumentation above we start by construcairmtub variable for the
PWT data. The OLS estimation (and Moran'’s | test) results émddional conver-

gence with clubs are outlined in the rightmost column of €&RI38. The LM tests

displayed in Table’A.37 and the model selection criteriagansons in Table’A.38
indicate a quite good performance of the baseline modalidiat a club variable.
The estimated bandwidths of a nonparametric resgressedigplayed in Table
[A.39. Again a bandwidth close to O for the club variable iadés a well-chosen

club classification. Applying the test of Hsiao et al. (20@#)parametric misspec-

ification we obtain g-value of 0.391. Hence we can not reject the null hypothesis
of correct parametric specification. In analogy to the asialgf the German district
data, we find the following: First, we find clear evidence fubs being an im-
portant source of heterogeneity also in the PWT data. Seedtsd,controlling for
club effects there is only very weak empirical evidence wofaf spatial structures.

Third, the club-level heterogeneity on the one hand is bleaore restrictive than

the individual-level heterogeneity employed by Ertur & 007). Fourth, on

the other hand the latter is based on the assumption of gtolbakrgence, whereas
the former also allows for diverging countries. Fifth, nangmetric mixed kernel

regression of the club-level model also allows to estimatalile club-level effects
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but for PWT data the parametric specification can not be ject

In summary our findings are in line with_Ertur & Kach (2007) thhe textbook

Solow model is misspecified due to neglected heterogernbdygh our modeling
approaches slightly diffefor the present dataThis conclusion does not imply that
the different approaches address different sources opet#fgcation. Of course the

method proposed by us can be readily employed in the contéxé spatial Solow

model of| Ertur & Koch i(2007), whenever economic interess lie estimation of

direct, indirect, and spatial spill-over effects (e.g.ct8® 6 in/Elhorst, 2010).

5.3.6 Conclusion

Applying classical convergence analysis of German higteskemployees we in-
vestigate three potential sources of misspecification:t@thheterogeneity due to
convergence clubs, due to spatial associations betweghbwing regions, and
due to potential nonlinearities in convergenge behavisraAirst step - to allow for
heterogeneities induced by non-global convergence pseseswve identify conver-
gence (and divergence) clubs from a dynamic factor modabysanel data. In the
second step further potential heterogeneities in the detmodel are assumed to
be generated by spatial associations between regions wsa-section model. As
an encompassing step we test for parametric misspecificatite extended model
and check the validity of the club structure generated frangb data to capture
heterogeneity of convergence processes in a cross-sentdel. The employed
nonparametric estimation method allows to investigatemial club-specific non-

linearities.

The proposed modeling framework is applied to two data @moislon different lev-
els of spatial aggregation: Analyzing the unconditionalgh convergence of high-
skilled employees in German regions and analyzing a camditigrowth model for
countries from the Penn World Tables. Model selection tessuiggest that for
both data examples there is no clear empirical evidencevor t& including further

spatial model components. The residual heterogeneityassidal models can be
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captured quite good by controlling for the club structurentified in the first step
of our analysis. If, however, the club information is neggel; model selection cri-
teria and tests suggest the existence of spatial assaciatibe model. Tests for
parametric misspecification and visual inspection of estiad partial effects reveal
some but not clear evidence for nonlinearities.

We stress that our findings do not suggest that there are tialspdernalities, spill-
overs, or repercussion effects. We just find that the comverg (and divergence)
club-level parameters seem to be capable to control foetbffsctsfor the present
data sets
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A. TABLES

A Tables

Table A.1: Samples of Countries used by Mankiw et al. (1992)
Non-Oil Countries: Algeria, Angola, Argentinia, Australia, Austria, Bangladesh, Belgium,

Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burma, Burundi, Carmey Canada, Cen
tral African Republic, Chad, Chile, Colombia, Democratic Republic of Cogsta Rica,
Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, dnl&rance,
Germany, Ghana, Greece, Guatemala, Haiti, Honduras, Hong Kong, lmdlonesia,
Ireland, Israel, Italy, Ivory Coast, Jamaica, Japan, Jordan, Kdriparia, Madagascar,
Malawi, Malaysia, Mali, Mauritania, Mauritius, Mexico, Morocco, MozamizgiNepal,
Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Raki®anama, Papua
New Guinea, Paraguay, Peru, Philippines, Portugal, Republic of KR@anda, South
Africa, Senegal, Sierra Leone, Singapore, Somalia, Spain, Sri |.&@kdan, Sweden,
Switzerland, Syrian Arabian Republic, Tanzania, Thailand, Togo, Tadhighd Tobago,
Tunisia, Turkey, Uganda, United Kingdom, United States, Uruguay, Mexla, Zaire, Zam-
bia, Zimbabwe
Intermediate Countries: Algeria, Argentinia, Australia, Austria, Bangladesh, Belgium,
Bolivia, Botswana, Brazil, Burma, Cameroon, Canada, Chile, ColombistaRica, Den-
mark, Dominican Republic, Ecuador, El Salvador, Ethiopia, Finland, desa@Germany.
Greece, Guatemala, Haiti, Honduras, Hong Kong, India, Indonesianht, Israel, Italy,
Ivory Coast, Jamaica, Japan, Jordan, Kenya, Madagascar, Mdataysia, Mali, Mex-
ico, Morocco, Netherlands, New Zealand, Nicaragua, Nigeria, NgriRakistan, Panama,

Paraguay, Peru, Philippines, Portugal, Rebublic of Korea, Southaf8enegal, Singa

pore, Spain, Sri Lanka, Sweden, Switzerland, Syrian Arabian RiepUlanzania, Thai-
land, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, United Statesguay,
Venezuela, Zambia, Zimbabwe

OECD Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Greece, Ireland, Italy, Japan, Netherlands, New ZealanayaypPortugal, Spain,

Sweden, Switzerland, Turkey, United Kingdom, United States,
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Table A.2: Penn World Table data of 152 Countries
Afghanistan, Algeria, Antigua, Argentina, Australia, Aua, Bahamas, Bahrain,

Barbados, Belgium, Belize, Benin, Bermuda, Bhutan, Bolivia, Botaw®razil,
Brunei, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cage,\@en-
tral African Republic, Chad, Chile, China, Colombia, Comoros, &€&dta, Cote
d’lvoire, Cuba, Cyprus, Democratic Republic of Korea, DemtcrRepublic of
Congo, Denmark, Dominica, Dominican Republic, Ecuador, Egp Salvador,
Equatorial Guinea, Ethiopia, Federated States of Micrian&gi, Finland, France
Gabon, Germany, Ghana, Greece, Grenada, Guatemala, G@Enegeea Bissau,
Honduras, Hong Kong, Hungary, Iceland, India, Indonesaa,liraq, Ireland, Is;
rael, Italy, Jamaica, Japan, Jordan, Kenya, Kiribati, Kipzaos, Lesotho, Liberia,
Luxembourg, Macao, Madagascar Malawi, Malaysia, Maldivsli, Malta, Mau-
ritania, Mauritius, Mexico, Mongolia, Morocco, Mozamb&uNamibia, Nepal
Netherlands, Netherlands Antilles, New Zealand, Nicaaag\iger, Nigeria, Nor-
way, Oman, Pakistan, Panama, Papua New Guinea, Paraguay,PPdippines,
Poland, Portugal, Puerto Rico, Qatar, Republic of Congo, RepabKorea, Ro-
mania, Rwanda, Samoa, Sao Tome and Principe, Saudi Aralnag&e Sierra
Leone, Singapore, Solomon Islands, Somalia, South AfGgain, Sri Lanka, St.
Kitts and Nevis, St. Lucia, St. Vincent and the Grenadinagja®, Suriname

Swaziland, Sweden, Switzerland, Syria, Taiwan, Tanzdrajland, The Gambia,

Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Ugahltdted Arab Emirates

United Kingdom, United States, Uruguay, Vanuatu, Venezughmbia, Zimbabwe

Table A.3: Intermediate aggregation level data: 47 JapaResfectures
Aichi, Akita, Aomori, Chiba, Ehime, Fukui, Fukuoka, Fukusta, Gifu, Gumma

Hiroshima, Hokkaido, Hyogo, Ibaraki, Ishikawa, Iwate, lemg, Kagoshima

Kanagawa, Kochi Kumamoto, Kyoto, Mie, Miyagi, Miyazaki, §§#no, Nagasaki,
Nara, Niigata, Oita, Okayama, Okinawa, Osaka, Saga, Sajt&miga, Shimane,
Shizuoka, Tochigi, Tokushima, Tokyo, Tottori, Toyama, \&%&ma, Yamagata, Ya

maguchi, Yamanashi
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Table A.4: Missing observations and years used for estngatiissing values.
Federal State year Missing Observation years used to estimate proportions
Niedersachsen 1995 | Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005
1996 | Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005
1997 Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005
Nordrhein-Westfalen 1995 | Koln, Leverkusen 1996,2002,2004,2005
1997 Muhlheim, Oberhausen, Aachen, Leverkusen, Bottrop, Miinste 1996,2002,2004,2005
1998 Bonn, Leverkusen, Bottrop, Munster 1996,2002,2004,2005
1999 | Koln, Leverkusen 1996,2002,2004,2005
2000 KolIn, Leverkusen 1996,2002,2004,2005
2001 | Koln, Leverkusen 1996,2002,2004,2005
2003 | Koln, Leverkusen 1996,2002,2004,2005
Rheinland-Pfalz 2002 | Neustadta.d W., Rhein-Pfalz-Kreis 1995,1996,1997,1998,1999,2000,2001,2003,2004,2005
Bayern 2001 Ingolstadt, Freising, Neuburg, Starnberg, Regen, Rottedu$ing, 1995,1996,1997,1998,1999,2000
Dingolfing
2002 | Ingolstadt, Bad Télz, Garmisch-Patenkirchen, Neuburg, Rege 1995,1996,1997,1998,1999,2000
Rottal, Straubing, Dingolfing
2003 Ingolstadt, Neuburg, Regen, Rottal, Straubing, Dingolfingstach, | 1995,1996,1997,1998,1999,2000
Neustadt
2004 | Ingolstadt, Rosenheim, Berchtesgarden, Neuburg, Regen),Rotta| 1995,1996,1997,1998,1999,2000
Straubing, Dingolfing, Ansbach, Neustadt
2005 Ingolstadt, Rosenheim, Berchtesgarden, Neuburg, Land?kgen, 1995,1996,1997,1998,1999,2000
Straubing, Dingolfing
Brandenburg 2004 Frankfurt, Uckermark 1995,1996,1997,1998,1999,2000,2001,2002,2003
2005 | Frankfurt, Spree-NeiBe-Kreis 1995,1996,1997,1998,1999,2000,2001,2002,2003
Mecklenburg-Vorpommern| 1995 | Wismar, Mecklenburg 1997,1998,1999,2000,2001,2002,2003,2004,2005
1996 | Stralsund, Wismar 1997,1998,1999,2000,2001,2002,2003,2004,2005
2003 Rugen, Uecker-Randow 1995,1996,1997,1998,1999,2000,2001,2002,2004,2005
Sachsen 1996 | Plauen, Zwickauer Land 1995,1997,1998,1999,2000,2001,2002,2003,2004,2005
Thiringen 2001 | Weimar, Eisenach 1995,1996,1997,1998,1999,2000
2002 | Suhl, Eisenach 1995,1996,1997,1998,1999,2000
2003 Gera, Eisenach 1995,1996,1997,1998,1999,2000
2004 | Weimar, Eisenach 1995,1996,1997,1998,1999,2000
2005 | Kyffhauserkreis, Eisenach 1995,1996,1997,1998,1999,2000
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Table A.5: OLS (MRW, Table I), LTS based, and quartile regi@s coefficients.

OLS ROBUST Qo2s Qoso  Qors
(Intercept) 5.3459 5.6938 5.2145 5.7021 7.9470
l'igdp 1.3176 1.4445 1.3584 1.6318 1.3543
| pop -2.0172 -1.9716 -1.9795 -2.0903 -1.2347

Table A.6: Median and quartiles of pseul®based orB = 10,000 replications.

Median (lower; upper)

linear mean approach (5.2) 0.597 (0.582;0.612)
nonparametric mean approdch(5.3) 0.663 (0.650; 0.676)
linear median approach(5.4) 0.595 (0.580;0.610)

nonparametric median approa€h {5.5) 0.667 (0.654; 0.681)
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Table A.7: P-values for test of hypothesds : E[g(Y,¥)row] — E[9(Y,¥)columd <
0 vs. Hi: E[9(Y,Y)row] — E[A(Y,¥)columd > O based orB = 10,000 replications,
g(y,y) =MSEP (upper display), MAEP (central display) aRd(lower display).

approachl(5]2) approadh(b.3) approdchi(5.4) apprdach (5.5)

approach[(5]2) - 0 1 0
approach[(5]3) 1 - 1 0.509
approach[(5l4) 0 0 - 0
approach[(5]5) 1 0.491 1 -
approach[(5]2) - 0 1 0
approach[(513) 1 - 1 1
approach[(5]4) 0 0 - 0
approach[(5]5) 1 0 1 )
approach[(5]2) - 1 0 1
approach[{5]3) 0 - 0 1
approach[(5]4) 1 1 . 1
approach[(5]5) 0 0 0 )
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Table A.8: Results of clubbing algorithm for PWT data. Club sige brackets),
estimates fory and standard errors of the lagegression[(316) are displayed for
different ordering rules. a) of each ordering rule givestitel classification before
club merging, b) gives the final classification after merging

(I1) Average ordering
a) initial classification b) final classification

(1) Final ordering

a) initial classification b) final classification

¥ (SE of§) ¥ (SE of{) ¥ (SE of §) ¥ (SE of§)
Club 1 [50] 0.38(0.04) | Club 1 [50] 0.38(0.04) | Club 1[67] 0.09 (0.03) | Club 1[67] 0.09 (0.03)
Club 2 [30] 0.24(0.03) | Club 2[30] 0.24(0.03) | Club2[8] 0.36 (0.04) | Club2[18] 0.03 (0.03)
Club 3[21] 0.11(0.03) | Club 3[21] 0.11(0.03) | Club 3[10] -0.001 (0.02)
Club 4 [24] 0.13(0.06) | Club 4 [38] -0.44 (0.07) | Club4[12] -0.01 (0.06) | Club 3[12] -0.01 (0.06)
Club 5 [14] 0.19 (0.11) Club5[21] 0.03(0.05) | Club 4 [23] 0.04 (0.05)
Club 6 [11] 1.00(0.17) | Club5(11] 1.00(0.17) | Club6[2] 0.10 (0.31)
Club 7 [2] -0.47 (0.84) | Club6[2] -0.47 (0.84) | Club 7 [9] 0.07 (0.05) | Club5([16] 0.06 (0.10)
Club 8[7] 0.15(0.12)
Club 9 [10] 1.39 (0.15) | Club6[10] 1.39 (0.15)
Group 10 [6] -2.04 (0.02) | Group7[6] -2.04 (0.02)

(1) Difference ordering
a) initial classification

b) final classification

a) initial classification

(IV) Decreasing weights ordering

b) final classification

¥ (SE of§) ¥ (SE of{) ¥ (SE of§) ¥ (SE of§)
Club 1[67] -0.003 (0.007)| Club 1[67] -0.003 (0.007)| Club 1[73] 0.01(0.03) | Club1([73] 0.01 (0.03)
Club 2[32] 0.71(0.06) | Club 2[32] 0.71(0.06) | Club 2 [24] 0.09 (0.02) | Club 2 [24] 0.09 (0.02)
Club 3 [42] -0.05 (0.05) | Club 3 [42] -0.05 (0.05) | Club 3[22] 0.05(0.05) | Club3([31] -0.05 (0.05)
Club 4 [4] 1.48(0.09) | Club 4 [4] 1.48 (0.09) | Club 41[9] 0.08 (0.06)
Club 5[6] 0.43(0.12) | Club5]6] 0.43(0.12) | Club5[2] 0.08 (0.19) | Club4[2] 0.08 (0.19)
Group 6 [1] Group 6 [1] Club 6 [7] 0.15(0.11) | Club5][15] -0.07 (0.12)
Club 7 [8] 1.411 (0.18)
Group 8[7] -1.80 (0.02) | Group6[7] -1.80 (0.02)

Table A.9: Comparison of club number, size, and compositwPWT data and
final ordering (I) for different time horizons. The club stture for complete

time horizon 1970 to 2003 (partial horizon from 1978 to 20&3yiven in rows

(columns).

Cl C2 C3 C4 C5 C6 GT nc

cCij/49 0 0 0 0 0 1 50

C2/13 16 1 O O O 0 30

C3 10 8 3 0 O 0 21

C4 1 23 14 O 0 38

C5 0 7 0 11

C6 0 0 2| 2

n| 62 26 10 26 18 7 3 152
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Table A.10: Comparison of club number, size, and composittsnPWT data
and final ordering (I) for different time horizons. The clubusture for complete
time horizon 1970 to 2003 (partial horizon from 1986 to 20@3yiven in rows

(columns).

Cl C2 C3 C4 C5 Cb6 C7 C8 GY nc

Ci1/43 4 2 0 0 O O 1 0 50

c2| 5 10 13 2 O O O O Q 30

C3| O 9 2 1 0 0 0 21

C4| O 4 8 22 4 0 0 38

C5| O 0O 0 1 10 O Q 11

Ce| O O 0 O 0 1 1 2

nc| 48 14 24 15 10 24 14 2 1152

Table A.11: OLS estimates of classical convergence modeBf2or PWT data.
Estimate Std. Error tvalue Px(t|)

(Intercept)  0.5997 0.4037 1.49 0.1395
log(vi.0) -0.0126 0.0495 -0.25 0.7995
ad |.R?=-0.006,AlC=-752.24 n=152

Table A.13: Estimated bandwidths for nonparametric basethodel estimation
using a mixed kernel estimation for PWT data and orderingsr(le(IV) and p-

values for Hsiao-Li-Racine tests.

bandwidth of lody; o) bandwidth ofclub p-value of HLR test
0] 1.054 0.006 0.0125
(I1) 0.839 0.01 ~0
(1) 0.812 ~0 ~0
(IV) 1.1205 0.028 ~0
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Table A.12: OLS estimates of baseline modell(3.9) for PWT.data
Estimate Std. Error tvalue Px(t|)

Club 1 5.9291 0.3352 17.69 0.0000
Club 2 4.1480 0.5241 7.91 0.0000
Club 3 4.0241 0.6178 6.51 0.0000
Club 4 2.9553 0.5387 5.49 0.0000
Club 5 7.1889 2.3127 3.11 0.0023
Group 6 11.3003 8.4093 1.34 0.1812

Club 1:logfio) -0.5566  0.0373 -14.92  0.0000

Club 2:logfio) -0.4191  0.0620 -6.75 0.0000

Club 3:logfio) -0.4499  0.0780 -5.77  0.0000

Club 4:logfio) -0.3899  0.0750 -5.20  0.0000

Club5ilogfio) -1.0743 03279 -3.28 0.0013

Club 6ilogfio) -1.7197  1.1323 -1.52 0.1311
ad j.R?=0.8486 AIC=-1014.564N=152

Table A.14: Pairwise comparisons of cross-validationgrenince. Number equals
share oB = 10,000 replications in which model in column has smaller ASER (a
erage squared error of prediction) than model in row for PWa.da
O @ am av)

() - 0.17 0.21 0.07

@ 0.83 - 049 0.25

(my 0.79 051 - 0.34

(Iv) 093 0.75 0.66 -
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Table A.15: Results of clubbing algorithm for German distdata. Club sizes
(in brackets), estimates fqrand standard errors of the lagegression[(316) are
displayed for different ordering rules. a) of each orderug gives the initial clas-
sification before club merging, b) gives the final classif@atfter merging.

(1) Final ordering (I1) Average ordering
a) initial classification b) final classification a) initial classification b) final classification
¥ (SE of§) V(SE ofy) ¥ (SE ofy) ¥ (SE of{)
Club 1 [3] 0.84(0.26) | Club1[3] 0.84(0.26) | Club1[3] 0.84 (0.26) | Club1[3] 0.84 (0.26)
Club 2 [5] 0.01(0.05) | Club2[5] 0.01(0.05) | Club2[3] 0.99 (0.30) | Club2[3] 0.99 (0.30)
Club 3[4] 0.19 (0.16) | Club 3[10] 0.03(0.14) | Club 3[4] 0.34(0.16) | Club3[12] -0.08 (0.12)
Club 4 [6] 0.15 (0.16) Club 48] 0.11 (0.15)
Club 5 [30] 0.09 (0.14) | Club 4 [30] 0.09(0.14) | Club5[20] 0.08(0.14) | Club 4 [33] 0.02 (0.13)
Club 6 [24] 0.15(0.16) | Club5([72] -0.14 (0.11) | Club 6[13] 0.13(0.16)
Club 7 [14] 0.12 (0.16) Club 7 [26] 0.08 (0.15) | Club 5 [48] 0.01(0.13)
Club 8 [14] 0.11 (0.15) Club 8 [8] 0.05 (0.15)
Club 9[7] 0.03 (0.14) Club 9[14] 0.11 (0.15)
Club 10[13] 0.30 (0.15) Club 10 [33] 0.21(0.15)| Club 6[86] -0.07 (0.12)
Club 11 [16] 0.20(0.16) | Club 6 [76] -0.07 (0.12) | Club 11 [6] 1.42 (0.19)
Club 12 [33] 0.11(0.15) Club 12 [17] 0.39(0.17)
Club 13[27] 0.16 (0.16) Club 13 [12] 0.07 (0.15)
Club 14 [90] 0.10 (0.15) | Club 7 [90] 0.01(0.15) | Club 14 [18] 0.11 (0.16)
Club 15 [80] 0.15(0.14) | Club 8[80] 0.15(0.14) | Club 15 [85] -0.05 (0.13)| Club 7[134] -0.13(0.11)
Club 16 [56] 0.04 (0.11) | Club9[56] 0.04 (0.11) | Club 16[2] 0.66 (1.97)
Club 17 [13] 0.09 (0.12) | Club 10[13] 0.09 (0.12) | Club 17 [30] 0.06 (0.15)
Group 18 [4] -1.33(0.03) | Group 11 [4] -1.33(0.03) | Club18[17] 0.05 (0.15)
Club 19 [18] 0.04 (0.15)| Club 8[85] -0.18 (0.11)
Club 20 [26] 0.04 (0.14)
Club 21 [25] 0.03(0.14)
Club 22 [16] 0.11 (0.15)
Club 23 [16] 0.56 (0.17)| Club9[16] 0.56 (0.17)
Club 24 [8] -0.03(0.12) | Club 10[8] -0.03 (0.12)
Group 25 [11] -1.39(0.02) | Group11[11] -1.39(0.02)
(1) Difference ordering (IV) Decreasing Weights ordering
a) initial classification b) final classification a) initial classification b) final classification
V(SE off) V(SE off) ¥ (SE off) ¥ (SE off)
Club 1[67] -0.01(0.01) | Club 1[114] -0.11(0.09) | Club1[5] 0.31(0.09) | Club1([5] 0.31 (0.09)
Club 2[32] 0.66 (0.07) Club 28] 0.11(0.15) | Club2[8] 0.11 (0.15)
Club 3 [41] 0.67(0.15) | Club 2[83] -0.10 (0.07) | Club 3 [24] 0.03(0.14) | Club3[32] 0.14 (0.37)
Club 4 [11] 0.36 (0.18) Club 48] 0.18 (0.16)
Club 5[27] 0.50 (0.09) Club 5[26] 0.08 (0.15) | Club 4 [48] 0.01(0.13)
Club 6 [34] -0.07 (0.05) | Club 3[34] -0.07 (0.05) | Club 6[8] 0.05 (0.15)
Club 7 [24] 0.35(0.67) | Club 4[24] 0.35(0.67) | Club 7 [14] 0.11 (0.15)
Club 8[36] -0.09(0.12) | Club 5[36] -0.09(0.12) | Club 8[32] 0.21(0.15) | Club5[94] -0.14 (0.11)
Group 9 [148] -1.08 (0.04) | Group 6 [148] -1.08 (0.04) | Club9[14] 0.21(0.16)
Club 10 [4] 1.21(0.32)
Club 11 [4] 0.48(0.12)
Club 12 [6] 0.34(0.17)
Club 13 [12] 0.07 (0.15)
Club 14 [22] -0.01(0.14)
Club 15 [46] 0.38(0.14) | Club 6 [141] -0.17 (0.11)
Club 16 [3] 0.52 (0.83)
Club 17 [81] -0.63(0.13)
Club 18 [3] 3.16 (0.96)
Club 19 [5] 2.52(0.58)
Club 20 [3] 0.82(0.17)
Club 21 [53] -0.03(0.11) | Club7[72] -0.13(0.11)
Club 22 [15] 0.94 (0.25)
Club 23 [4] 0.42 (0.24)
Club 24 [22] -0.10(0.08) | Club8[22] -0.10 (0.08)
Group 25 [17] -1.28(0.03) Group 9 [17] -1.28 (0.03)
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Table A.16: OLS estimates of classical convergence méd2Bj2Zor German dis-

trict data.
Estimate Std. Error tvalue Px(t|)

(Intercept)  0.9115 0.1337 6.82 0.0000
log(yi.0) -0.0734 0.0135 -5.43 0.0000
ad |.R?=0.0632,AIC=-790.441N = 439
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Table A.17: OLS estimates of baseline modell(3.9) for Gerdistmict data.

Estimate Std. Error tvalue Px(t|)

Club 1 10.0508  1.3900  7.23  0.0000
Club 2 8.6208  1.2689  6.79  0.0000
Club 3 5.4437 09146 595 0.0000
Club 4 52388  0.3163 16.57 0.0000
Club 5 4.8481  0.2306 21.02 0.0000
Club 6 52649  0.3290 16.00 0.0000
Club 7 54732 02214 24.72  0.0000
Club 8 55146  0.2706 20.38  0.0000
Club 9 5.4455 03927 13.87  0.0000
Club 10 5.2947 09082  5.83 0.0000
Group 11 -1.5484  0.2915 -5.31  0.0000
Club 1:log; o) -0.8943  0.1284 -6.96 0.0000
Club 2:log; o) -0.7807  0.1180 -6.62  0.0000
Club 3:l0g; o) -0.4938  0.0862 -5.73  0.0000
Club 4:log ;o) -0.4851  0.0303 -16.00 0.0000
Club 5:l0g; o) -0.4589  0.0228 -20.11 0.0000
Club 6:10g; o) -0.5093  0.0330 -15.41 0.0000
Club 7:log; o) -0.5397  0.0226 -23.88 0.0000
Club 8:l0g; o) -0.5519  0.0280 -19.74  0.0000
Club 9:log; o) -0.5546  0.0412 -13.46  0.0000

Club 10:logfio)  -0.5499 0.0960 -5.73  0.0000
Group 11:loggio)  0.1780 0.0293  6.07 0.0000
ad j.R°=0.852,AIC=-1567.249N = 439
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Table A.18: Estimated bandwidths for nonparametric basethodel estimation
using a mixed kernel estimation for German district data@aéring rules (1)-(1V)

and p-values for Hsiao-Li-Racine tests.

bandwidth of logy; o) bandwidth ofclub p-value of HLR test
)] 0.133 0.0002 0.61
(I 16092882 0.007 0.99
(1 0.121 0.0013 0.01
(V) 0.176 0.0053 ~0

Table A.19: Pairwise comparisons of cross-validationgranince. Number equals
share ofB = 10,000 replications in which model in column has smaller ASER (a
erage squared error of prediction) than model in row foraegi data.
0 am am av)

() - 024 0.18 0.25

@ 0.76 - 0.16 0.56

(my 0.82 084 - 0.89

(V) 0.75 0.44 011 -
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Table A.20: Results of clubbing algorithm for Japanese ptafe-level data. Club
sizes (in brackets), estimates fpand standard errors of the logegression[(316)
are displayed for different ordering rules. a) of each drdgerule gives the initial
classification before club merging, b) gives the final ckisation after merging.

(1) Final ordering (11) Average ordering

a) initial classification

b) final classification

a) initial classification

b) final classification

¥ (SE of{) ¥ (SE of§) ¥ (SE of§) ¥ (SE of{)
Club 1[28] 0.09 (0.01) | Club 1 [28] 0.09(0.01) | Club1[17] 0.12(0.01) | Club 1 [35] 0.01(0.01)
Club2[17]  0.09(0.01)| Club2[19]  0.00(0.01) | Club2[10] 0.10 (0.01)
Club 3[2] 0.10 (0.02) Club 3[8] 0.05 (0.01)
Club 4 [9] 0.18 (0.00) | Club2[9] 0.18 (0.00)
Group 5 [3] -0.47 (0.01) | Group 3[3] -0.47 (0.01)

(I11) Difference ordering

a) initial classification

b) final classification

(IV) Decreasing Weights ordering

a) initial classification

b) final classification

¥ (SE of{) ¥ (SE of§) ¥ (SE of§) ¥ (SE of{)
Club1[12]  0.23(0.01)| Club1[29]  0.08(0.01) | Club1[17] 0.12(0.01) | Club 1[35] 0.01 (0.01)
Club 2[17] 0.22 (0.01) Club 2[10] 0.10 (0.01)
Club 3[18] 0.02(0.01) | Club2[18] 0.02 (0.01) | Club318] 0.05 (0.01)
Club 4 [9] 0.18 (0.00) | Club2[9] 0.18 (0.00)
Group 5 [3] -0.47 (0.01) | Group 3[3] -0.47 (0.01)

Table A.21: OLS estimates of classical convergence mad2B)ZXor Japanese

prefecture-level data.

Estimate Std. Error tvalue Ps(t|)
(Intercept)  3.1863 0.2885 11.05 0.0000
log(yio)  0.1037 0.0597 1.74 0.0891

adj.R?=0.042 AIC=21.17 N = 47

Table A.22: OLS estimates of baseline modell(3.9) for Japampeefecture-level

data.

Estimate Std. Error tvalue Px(t|)
Club1  3.9644 0.3179 12.47 0.0000
Club2  3.6674 0.8260 4.44 0.0001
Club 1:logfio) -0.0273 0.0619 -0.44 0.6615
Club 2:logfio) -0.0453 0.1898 -0.24 0.8124

ad .R?=0.2615AIC=7.5555N = 47
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Table A.23: Estimated bandwidths for nonparametric basethodel estimation
using a mixed kernel estimation for Japanese prefectued-bata and ordering
rules (1)-(IV) and p-values for Hsiao-Li-Racine tests.

bandwidth of logyi o) bandwidth ofclub p-value of HLR test
0] 2721352 0.01 0.04
(n/av) 2 2.366 0.01 0.11
(D) 1776859 0.003 0.05

Table A.24: Pairwise comparisons of cross-validationgraneince. Number equals
share ofB = 10,000 replications in which model in column has smaller ASER (a

erage squared error of prediction) than model in row for dapa prefecture-level

data.
O an/avy (m
() - 0.43 0.48
(in/avy 0.57 - 0.57

() 052 043 -
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Table A.25: Resulting clubs for PWT country level data
Club 1: Antigua, Australia, Austria, Belgium, Bermuda, BotswaBa,inei, Canada, Cape Verde,
Chile, China, Cyprus, Denmark, Dominica, Equatorial Gain€inland, France, Germany, Hong
Kong, Iceland, Ireland, Israel, Italy, Japan, Republic afréa, Kuwait, Luxembourg, Macao,
Malaysia, Maldives, Malta, Mauritius, Netherlands, Nevalzad, Norway, Oman, Portugal, Puerto
Rico, Qatar, Singapore, Spain, St. Kitts and Nevis, St. &mand the Grenadines, Sweden, Switzer-
land, Taiwan, Thailand United Arab Emirates, United KingddJnited States

Club 2: Argentina, Bahamas, Bahrain, Barbados, Belize, Brazilp@bia, Costa Rica, Dominican
Republic, Egypt, Gabon, Greece, Grenada, Hungary, Imitpresia, Mexico, Netherlands Antilles,
Panama, Poland, Saudi Arabia, South Africa, Sri Lanka, 8tid, Swaziland, Tonga, Trinidad and
Tobago, Tunisia, Turkey, Uruguay

Club 3: Algeria, Bhutan, Cuba, Ecuador, El Salvador, Fiji, Guat@mbfran, Jamaica, Lesotho,
Federated States of Micronesia, Morocco, Namibia, Pakiftapua New Guinea, Paraguay, Peru,
Philippines, Romania, Suriname, Venezuela

Club 4: Benin, Bolivia, Burkina Faso, Cameroon, Cote d’'lvoire, iBfia, Ghana, Guinea,
Honduras, Jordan, Democratic Republic of Korea, Laos, Md#uritania, Mozambique, Nepal,
Nicaragua, Samoa, Solomon Islands, Syria, Tanzania, Wgavghuatu, Zimbabwe, Cambodia,
Chad, Comoros, Republic of Congo, The Gambia, Iraq, Kenydbhati, Malawi, Mongolia, Nige-
ria, Sao Tome and Principe, Senegal, Sudan

Club 5: Afghanistan, Burundi, Central African Republic, Guineas&iu, Madagascar, Niger,
Rwanda, Sierra Leone, Somalia, Togo, Zambia

Club 6: Democratic Republic of Congo, Liberia
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Table A.26: Resulting clubs for German district level data

Club 1: WoIfsburg(DF(ﬂ, Frankfurt am Main(DFC), Schweinfurt(DFC)

Club 2: Dusseldorf(DFC), Ludwigshafen am Rhein(DFC),Stuttd2(C), Ingolstadt(DFC), Re-
gensburg(DFC)

Club 3: Mannheim(DFC), Minchen(DFC), Erlangen(DFC), AschafiegDFC), Darm-
stadt(DFC), Koblenz(DFC), Ulm(DFC),Passau(DFC), Difligg-Landau, Bamberg(DFC)

Club 4: Hamburg(DFC), Bremen(DFC), KoIn(DFC), Leverkusen(DFQlnster(DFC),
Offenbach am Main(DFC), Wiesbaden(DFC), Kassel(DFC), nd@FC), Heilbronn(DFC),
Baden.Baden(DFC), Karlsruhe(DFC), Heidelberg(DFC),otihg, Freising, Landshut(DFC),
Straubing(DFC), Amberg(DFC), Weiden in der Oberpfalz()FBayreuth(DFC), Coburg(DFC),
Ansbach(DFC), Furth(DFC), Nurnberg(DFC), Wirzburg(DFR)gsburg(DFC), Kempten im All-
gau(DFC), Memmingen(DFC), Teltow-Flaming, Merseburge@urt

Club 5: Braunschweig(DFC), Salzgitter(DFC), Emden(DFC), OldegtDFC), Osnabriick(DFC),
Essen(DFC), Krefeld(DFC), Rhein-Kreis Neuss, Bonn(DFBpchtaunuskreis, Main-Taunus-
Kreis, Trier(DFC), Main-Taunus-Kreis, Kaiserslauteri&®), Landau in der Pfalz(DFC), Freiburg
im Breisgau(DFC), Biberach, Rosenheim(DFC), Hof(DFChwabach(DFC), Donau-Ries, Wis-
mar(DFC), Dresden(DFC), Jena(DFC), Sémmerda, Kiel(DPF@¢hta, Aachen(DFC), Dort-
mund(DFC), Offenbach, Bd&blingen, Rastatt, Bodenseekr&avensburg, Glnzburg, Saar-
briicken(DFC), Saarpfalz-Kreis, Zwickau(DFC), Eisen&dfC), Flensburg(DFC), Bremer-
haven(DFC), Fulda, Speyer(DFC), Heilbronn, Pforzheim@pFOrtenaukreis, Rottweil, Tuttlin-
gen, Pfaffenhofen an der llm, Starnberg, Weilheim-Schandaottbus(DFC), Schwerin(DFC),
Region Hannover, Wesermarsch, Hersfeld-Rotenburg, Benmsg{DFC), Hohenlohekreis, Ostal-
bkreis, Frankfurt Oder(DFC), Wilhelmshaven(DFC), Bieledf DFC), Olpe, Zweibrticken, Ludwigs-
burg, Schwabisch Hall, Reutlingen, Mihldorf am Inn, Liaifeds, Main-Spessart, Neu-Ulm, Pots-
dam(DFC), Ohrekreis

24DFC=District-free city
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Club 6: Duisburg(DFC), Gutersloh, Bochum(DFC), Lahn-Dill-Krei$Valdeck-Frankenberg,
Esslingen, Bad-Toélz-Wolfratshausen, Rosenheim, Degyg&n@ham, Neumarkt in der Oberpfalz,
Kaufbeuren(DFC), Augsburg, Neubrandenburg(DFC), D€&¥a@), Erfurt(DFC), Libeck(DFC),
Neumunster(DFC), Pinneberg, Stormarn, Osterode am HaarleSEmsland, Mulheim an der
Ruhr(DFC), Remscheid.(DFC), Wuppertal(DFC), Herford, gelaDFC), Siegen-Wittgenstein,
Bergstrale, Main-Kinzig-Kreis, Giel3en, Marburg-Biedaplk Main-Tauber-Kreis, Karlsruhe,
Schwarzwald-Baar-Kreis, Konstanz, Dachau, Neuburg@&wsrhausen, Traunstein, Schwan-
dorf, Kronach, Ansbach, Erlangen-Hochstadt, Rhon-Gidpf#liltenberg, Ostallgdu, Chem-
nitz(DFC), Magdeburg(DFC), Nordfriesland, Monchenglaci(DFC), Mettmann, Minden-
Libbecke, Markischer Kreis, Wetteraukreis, Frankentifdalg, DFC), Worms(DFC), Germer-
sheim, Rems-Murr-Kreis, Heidenheim, Freudenstadt, labrr&ollernalbkreis, Miesbach, Land-
shut, Weil3enburg-Gunzenhausen, Aschaffenburg, Kitningmdau(Bodensee), Oberallgau, Saar-
louis, Greifswald(DFC), Rostock(DFC), Leipzig(DFC), ®itfeld, Suhl(DFC)

Club 7: Dithmarschen, Segeberg, Steinburg, Géttingen, Diephtdmeln-Pyrmont, Hildesheim,
Soltau-Fallingbostel, Verden, Cloppenburg, Oberhal3eg{, Solingen(DFC), Kleve, Rhein-Erft-
Kreis, Euskirchen, Oberbergischer-Kreis, Gelsenkir¢B&i), Borken, Warendorf, Lippe, Pader-

born, Ennepe-Ruhr-Kreis, Hochsauerlandkreis, Soestn@aekreis, Limburg-Weilburg, Kas-
sel, Schwalm-Eder-Kreis, Werra-Meil3ner-Kreis, Mayerblenz, Neuwied, Rhein-Hunsriick-Kreis,
Westerwaldkreis, Bernkastel-Wittlich, Eifelkreis-Bitty-Priim, Neustadt an der Weinstral3e, Mainz-
Bingen, Goppingen, Neckar-Odenwald-Kreis, Rhein-Nedkais, Enzkreis, Waldshut, Tubingen,
Alb-Donau-Kreis, Sigmaringen, Berchtesgadener-Lancergtterg, Eichstatt, Erding, Garmisch-
Partenkirchen, Landsberg am Lech, Kelheim, Passau, RBg#tal-Inn, Tirschenreuth, Hof, Kulm-
bach, Wunsiedel im Fichtelgebirge, Nurnberger-Land, RB#d-Kissingen, HalRberge, Wirzburg,
Aichach-Friedberg, Dillingen an der Donau, Unterallgat, ®endel, Berlin(DFC), Brandenburg
an der Havel, Oder-Spree, Uckermark, Stralsund(DFC), Bertg Chemnitzer Land, Freiberg,
Riesa-GroRenhain, Do6beln, Bernburg, Halle (Saale, DFGxharsleben-Stal3furt, Jerichower
Land, Wernigerode, Altmarkkreis Salzwedel, Gera(DFC)tiagkreis, Schmalkalden-Meiningen,
Gotha, Sonneberg, Saale-Orla
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Club 8: Ostholstein, Rendsburg-Eckernforde, Goslar, Northeimlzidinden, Nienburg Weser,
Celle, Liichow-Dannenberg, Liineburg, Rotenburg Wiimme, éelDelmenhorst(DFC, )Ammer-
land, Friesland, Grafschaft Bentheim, Leer, Osnabriogsén, Wesel, Aachen, Diren, Rheinisch-
Bergischer Kreis, Rhein-Sieg-Kreis, Coesfeld, Recklauggen, Steinfurt, Héxter, Hamm(DFC),
Unna, Darmstadt-Dieburg, Rheingau-Taunus-Kreis, Vdgtgkreis, Altenkirchen (Westerwald),
Bad Kreuznach, Birkenfeld, Cochem Zell, Rhein-Lahn-Kréislkaneifel, Alzey-Worms, Don-
nersbergkreis, Sudliche WeinstralRe, Calw, Breisgau Hbebarzwald, Emmendingen, Firstenfeld-
bruck, Freyung-Grafenau, Straubing-Bogen, Amberg-SwdiabNeustadt an der Waldnaab, Regens-
burg, Bamberg, Coburg, Forchheim, Firth, Neustadt an dehABad Windsheim, Merzig-Wadern,
Neunkirchen, Dahme (Spreewald), Oberhavel, Oberspréevalsitz, Ostprignitz-Ruppin, Prig-
nitz, Demmin, Mdritz, Rugen, Plauen(DFC), Mittweida, $terg, Bautzen, MeilRen, Kamenz,
Torgau-Oschatz, Wittenberg, Weil3enfels, Bordekreis,nveei Eichsfeld, Hildburghausen, [Im-
Kreis, Saalfeld-Rudolstadt

Club 9: Herzogtum Lauenburg, Pl6n, Schleswig-Flensburg, Heldtskeine, Schaumburg, Cux-
haven, Harburg, Osterholz, Aurich, Oldenburg, Wittmundjrtdberg, Bottrop(DFC), Herne(DFC),
Ahrweiler, Trier-Saarburg, Bad Dirkheim, Kaiserslautelkusel, Bayreuth, Schweinfurt, Elbe-
Elster, Potsdam-Mittelmark, Spree-Neif3e, Bad Doberasft@w, Ludwigslust, Parchim, Vogtland-
kreis, Mittlerer Erzgebirgskreis, Aue-Schwarzenbergrli&) Hoyerswerda, Niederschlesischer-
Oberlausitzkreis, Lobau-Zittau, Sachsische Schweiz,Réfiizkreis, Delitzsch, Muldentalkreis,
Anhalt-Zerbst, Kéthen, Burgenlandkreis, Mansfelder LaBdalkreis, Sangerhausen, Halberstadt,
Stendal, Quedlinburg, Schoénebeck, Nordhausen, Unstirti¢h-Kreis, Weimarer Land, Saale-
Holzland-Kreis, Greiz, Altenburger Land

Club 10: Gifhorn, Wolfenbittel, Barnim, Havelland, Markisch Odertl, Mecklenburg-Strelitz,
Nordvorpommern, Nordwestmecklenburg, OstvorpommernckeleRandow, Zwickauer Land,

Leipziger Land, Kyffhauserkreis

Group 11: GroR Gerau, Rhein-Pfalz-Kreis, Stidwestpfalz, Miinchen

Table A.27: Resulting clubs for Japanese prefecture leval da
Club 1: Hokkaido, Miyagi, Fukushima, Niigata, Ibaraki, Tochigiu@ma, Saitama, Chiba, Tokyo,
Kanagawa, Yamanashi, Nagano, Shizuoka, Gifu, Aichi, Mi@g&, Kyoto, Osaka, Hyogo, Nara,
Hiroshima, Fukuoka, Kumamoto, Oita, Kagoshima, Okinawa

Club 2: Aomori, Iwate, Akita, Yamagata, Toyama, Ishikawa, Fukwitdri, Shimane, Okayama,
Yamaguchi, Tokushima, Kagawa, Ehime, Saga, Nagasaki,2dkiaWakayama, Kochi
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Table A.28: German regional data. Summary statistics oftimtinuous variables.
Variable ‘ Min. 1.Quart. 2.Quart. 3.Quart. Max.Mean Std.-Dev.

grschool | -0.208 0.136 0.219 0.289  0.8010.205 0.149
school o 0.019 0.038 0.054 0.080 0.2220.063 0.033

Table A.29: German regional data. Regression output for mus.6).
Estimate Std. Error tvalue Px(t|)

west  0.08816  0.04038 2.183 0.0296

l-west -0.19617  0.08016 -2.447 0.0148

west :l og(school 0) -0.05825  0.01318 -4.421 0.0000

(1-west )eastt og(school 0) -0.09214 0.03233 -2.850 0.0046
PR = 0.504,AIC = —72531,SIC= —70489

Table A.30: German regional data. Occupation frequencyhieicategory combi-

nations of the discrete covariates.
club |1 2 3 4 5 6 7 8 9 10 11 total

east |1 5 6 18 52 24 6 0 O O O 112
west |3 14 18 41 87 86 48 13 11 3 3 327
4 19 24 59 139 110 54 13 11 3 B 439

total
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Table A.31: German regional data. Regression output for muéb. 7).
Estimate Std. Error tvalue Px(t|)

Clubl -0.6634 0.2349 -2.82 0.0050

Club2 -0.8543 0.0867 -9.86 0.0000

Club3 -1.0384 0.0876 -11.86 0.0000

Club4 -0.9782 0.0685 -14.28 0.0000

Club5 -1.2090 0.0593 -20.39 0.0000

Club6 -1.2928 0.0760 -17.01 0.0000

Club7 -1.3670 0.1082 -12.63 0.0000

Club8 -1.6421 0.3127 -5.25 0.0000

Club9 -1.7918 0.4597 -3.90 0.0001

Club 10 -0.9817 15052 -0.65 0.5146

Group 11  -0.9182 1.3978 -0.66 0.5116

West  0.0525 0.0483 1.09 0.2772

Club 1:log(school0) -0.4763 0.1379 -3.46 0.0006
Club 2:log(school0)  -0.5105 0.0417 -12.23 0.0000
Club 3:log(school0)  -0.5439 0.0377 -14.43 0.0000
Club 4:log(school0)  -0.4658 0.0279 -16.71  0.0000
Club 5:log(school0)  -0.4973 0.0231 -21.53 0.0000
Club 6:log(school0)  -0.4730 0.0273 -17.32  0.0000
Club 7:log(school0)  -0.4629 0.0354 -13.08 0.0000
Club 8:log(school0) -0.5194 0.0890 -5.84 0.0000
Club 9:log(school0)  -0.5462 0.1274  -4.29 0.0000
Club 10:log(school0)  -0.2972 0.3975 -0.75 0.4551
Groupll:log(school0) -0.2923 0.3647 -0.80 0.4234
West:log(school0) 0.0071 0.0188 0.38 0.7063

PR2 = 0.896,AIC = —137289,SIC= —127Q78
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Table A.32: German regional data. AIC and SIC for baselipatial error, spatial

lag, and spatial Durbin model with and without convergeriab gariable

Models withoufc| ub variable

baseline spatial error spatiallag spatial Durbin
AIC  -725.31 -734.54 -729.10 -735.36
SIC  -704.90 -710.04 -704.55 -698.60

Models includingcl ub variable

baseline spatial error spatial lag spatial Durbin
AIC -1373.89 -1372.01  -1374.70 -1370.73
SIC -1270.78 -1265.81  -1268.51 -1170.59

Table A.33: German regional data. Results of LM-tests fotiapdependencies in
the residuals of Equatiof (5.6) ad (5.7)

Test results for Equation (3.6)

Statistic df p.value
LM-test for spatial error 10.87 1.00 0.00

LM-test for spatial lag 430 1.00 0.04
LM-test for spatial error and spatial lag 17.50 2.00 0.00
Test results for Equation (3.7)

Statistic df p.value
LM-test for spatial error 0.00 1.00 0.98

LM-test for spatial lag 3.20 1.00 0.07
LM-test for spatial error and spatial lag 426 2.00 0.12

122



A. TABLES

Table A.34: German regional data. Estimated bandwidthmgusast-squares cross-
validation for nonparametric mixed-kernel regression.

covariate ‘ kernel function  hy € hi

log(school 0) | of Equation[[5.IB) ]0,c[ 0.2820
club of Equation[[(5.Ib) [0,1] 0.0027
west of Equation[[5.14) [0,1] 0.1711

Table A.35: German regional data. Virtual number of obst@na for the category
combinations of the discrete covariates according to thienated bandwidths of
the discrete covariates for nonparametric mixed-kerrgssion.

club | 1 2 3 4 5 6 7 8 9 10 11 total
east | 1.5 74 92 252 671 389 143 23 19 05 056838
west | 3.2 149 192 444 963 905 493 132 11.0 3.0 [3328.0
total | 4.7 223 284 69.6 1634 1294 63.6 155 129 35 |($H36.8
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Table A.36: Penn World Tables data. Regression results foditonal conver-
gence analysis without (second column) and includingdtbaiumn) club variable

(p-values in parentheses).

Dep.Var.| model withoutcl ub variable | model withcl ub variable

I ntercept 0.030 (0.359) 0.131 (0.000)
I ny60 | -0.007 (0.000) -0.015 (0.000)
I ns 0.021 (0.000) 0.009 (0.000)
Inngd | -0.032 (0.008) -0.018 (0.011)
factor(club)2 -0.056 (0.020)
factor(club)3 -0.110 (0.001)
factor(club)4 -0.064 (0.009)
factor(club)5 -0.078 (0.023)
factor(club)6 -0.333 (0.000)
factor(club)2:1ny60 0.005 (0.074)
factor(club)3:1ny60 0.010 (0.009)
factor(club)4:1ny60 0.004 (0.221)
factor(club)5:1ny60 0.004 (0.351)
factor(club)6:1ny60 0.034 (0.000)
Moran's I(W1) | 0.230 (0.000) 0.058 (0.151)
Moran's | (W2) | 0.264 (0.000) 0.087 (0.094)

AIC | -522.15 -635.28

SIC | -509.60 -597.62
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Table A.37: Penn World Tables data. Results of LM-tests fatiapdependen-

cies in the residuals of conditional convergence analyEysiétion (21), p. 1041 in
Ertur & Koch, 2007).

model withoutc| ub-variable

Statistic df p.value

2725 1.00 0.099
0.20 1.00 0.652

11.441 2.00 0.003
model withcl ub-variable

LM-test for spatial error

LM-test for spatial lag
LM-test for spatial error and spatial lag

Statistic df p.value

0.011 1.00 0.915
2.012 1.00 0.156
2.717 2.00 0.257

LM-test for spatial error

LM-test for spatial lag
LM-test for spatial error and spatial lag

Table A.38: Penn World Tables data. AIC and SIC for differetdels estimating
conditional convergence.

model withoutc| ub variable

baseline spatial error
AIC -522.15 -532.62
SIC  -509.60

spatial lag spatial Durbin

-526.86 -537.56
-517.56 -511.80
model includingcl ub variable

baseline spatial error

AIC -635.28

SIC  -597.62

-514.96

spatial lag spatial Durbin
-634.52 -635.83

-594.34 -595.66

-625.17
-552.36
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Table A.39: Penn World Tables data. Estimated bandwidtirgyusast-squares
cross-validation for nonparametric mixed-kernel regoass

covariate

kernel function hyg e Py

[ ny60
club
I ns

I nngd

of Equation[[5IB) ]0,0[  1.0427
of Equation[[5.Ib) [0,1]  0.0231
of Equation[[5.IB) |0, 422,205.1
of Equation[[5.IB) ]0,[  0.0878
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B Figures

Figure B.1: Cross-validation of linear parametric versuspasametric approaches
for conditional mean. Graph displays density estimate laftivee MSEP based on
B = 10,000 sub-sample replications.
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B. FIGURES

Figure B.3: Estimated conditional partial effectd pbp (left panel) and of i gdp
(right panel). Solid red curve shows nonparametric mearessgpn, dashed blue

curve shows nonparametric quartile regressions.
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Figure B.4: Relative transition coefficients over time forweigence clubs result-

ing from final ordering after merging, corresponding to (JjrbTable[A.8.
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Figure B.6: Boxplots of income in final period divided by the eergence clubs

resulting from final ordering after merging, correspondingl) b) in TabldA.8.
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Figure B.7: Scatterplots of the lagegressiong (316) for clubs found by final order-
ing after merging, corresponding to (1) b) in TableJA.8. 8dine is ordinary least

squares estimate.
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Figure B.8: Estimated regression lines from the estimatisplayed in Table par-

resultsps for the five convergence clubs for PWT data.
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Figure B.10: Boxplots of income in final period divided by theneergence clubs

resulting from final ordering after merging, correspondingl) b) in TableA.T5.
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Figure B.12: Estimated regression lines from the estimatisplayed in Table’A.17

for the ten convergence clubs for German district data.
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Figure B.13: Relative transition coefficients over time foneergence clubs result-

ing from final ordering after merging, corresponding to (JjibTable[A.20.
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Figure B.14: Boxplots of income in final period divided by theneergence clubs
resulting from final ordering after merging, correspondiogl) b) in TableLA.20.
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merging, corresponding to (1) b) in Tallle’Al20. Solid lineislinary least squares

estimate.
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Figure B.16: Estimated regression lines from the estimatiisplayed in Table
for the two convergence clubs for Japanese prefettust-data.
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Figure B.19: German regional data. Relative transition pttm time period 0 to

T for the convergence clubs and the divergence group.
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Figure B.20: German regional data. Plots of(exchool o) (abscissa) and the es-
timated partial effects (w.r.t. Idgchool o), ordinate axis) for the nonparametric
regression model (points) of Equatidn (3.11) and the pat@emaodel (horizontal
dashed lines) of Equation (5.7).
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Figure B.21: Penn World Tables data: Relative transitiong&ttm time period 0
to T for the convergence clubs and the divergence group.
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