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Chapter 1

Introduction

Motivation

Since formulating the millennium goals, reducing of globalpoverty and harmoniza-

tion of worldwide standards of living is one of the main aims and the most compli-

cated challenge for the United Nations. There are many questions which are relevant

in this context. For transmitting the right impulses, politicians need to know how

those convergence processes can be achieved and understandwhich determinants

are crucial in this context. Thus, in addition to analyzing the theoretical context

scientists are consulted dealing with the question of empirical measurability of con-

vergence processes for developing meaningful forecastingmodels. Convergence

processes are conditioned by the existence of economic growth in poor countries.

Thus, analyzing the determinants of economic growth is a main aim in convergence

analysis. Modeling and analyzing convergence processes isnot only important on

cross-country but also on regional level. For example, still 20 years after the reuni-

fication the convergence process between eastern and western districts in Germany

dominates local and nationwide affairs illustrated in the discussion of abolishing the

solidarity tax or equalization of eastern and western wage levels.
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Purpose and aims

On the one hand this thesis deals with the questions: Which concepts are reliable

for measuring economic growth and growth convergence, how do they work and

which assumptions are made? Comparing classical and modern convergence and

growth concepts on the basis of well-established cross-country datasets the ques-

tions above should be answered. Using the results and recentliterature the concepts

are analyzed w.r.t. their limitations and potential errors. Applying modern sta-

tistical and econometric methods the convergence conceptsare combined thus the

advantages of individual concepts are emphasized while theinfluences of potential

problems are reduced or even eliminated.

On the other hand the question whether growth and convergence concepts offer

similar results for different levels of aggregation is studied. Thus, in addition to

cross-country data an analysis of German regional data is done.

Structure of this thesis

The thesis is organized as follows. Chapter 2 deals with the first strang of ques-

tions: which convergence concepts exist, how do they work and which restrictions

exist? In detail, Section 2.1 describes economic growth models. The first one is

the neoclassical growth model of Solow (1956) explaining standards of living by

growth of population and saving rate and is outlined in Subsection 2.1.1. In 2.1.2 an

extension of the neoclassical model proposed by Mankiw et al. (1992) is presented

where human capital is considered as an additional determinant. Finally, in Subsec-

tion 2.1.3 the spatial augmented Solow model of Ertur & Koch (2007) is discussed.

Section 2.2 describes classical convergence concepts. Themost popular concept in

this context isβ-convergence, which is discussed in Subsection 2.2.1. The idea ofβ-

convergence is that poor economies grow faster than rich ones and the concept can

be put to test in a linear regression model where the growth rate of per capita income

is explained by initial income (compare e.g. Barro et al., 1991). In Subsection 2.2.2

2



σ-convergence is outlined (see Sala-i Martin, 1996b).σ-convergence is assumed if a

reduction of the standard deviation of per capita income over time is achieved. The

concept of convergence in relative per capita income (e.g.,Quah, 1993a,b, 1997)

is presented in Subsection 2.2.3. The idea of this concept isthat convergence is

assumed if all economies share the same fraction of mean per capita income. Sub-

section 2.2.4 outlines the relationship between these three concepts. Subsection

2.2.5 describes alternative nonparametric convergence concepts of Maasoumi et al.

(2007). Applying these concepts the conditional cumulateddensity functions (CDF)

of estimated growth rates for a priori defined groups of economies are compared.

Convergence is assumed if the conditional CDFs of the poorer group stochastically

dominates the one of the richer group. Subsection 2.2.6 deals with the question

how much of available information is used by the different convergence concepts.

Although most datasets consist of yearly data, some of the presented concepts use

only parts of this information, e.g. only values from start and final period or data

of subperiods. This lack of used information may cause misinterpretation and mis-

specification. Thus, this Subsection outlines which concepts uses which degree of

available information. Subsection 2.2.7 generally discusses the problem of global

convergence (all countries convergence) and alternatively presents the idea of club

convergence. Club convergence means that if there is no global convergence there

may be at least clubs of economies with common convergence behavior. This is a

very important point because empirical studies show that inmany applications there

is no evidence for global convergence.

Chapter 3 deals with problems and limitations of classical convergence analysis and

provides methods for avoiding this problems. The first central problem discussed in

Section 3.1 is the definition and selection of growth determinants. This Section sum-

marizes different definitions for several growth determinants found in the literature

and focuses on the problem, which determinants influence growth and convergence.

A second problem is that many convergence concepts assume linear convergence re-

lationships. This assumption is very restrictive and thus controversial. For example,

Haupt & Petring (2011) find nonlinear convergence processes. Section 3.2 offers a

3



review of current literature concerning the problem of nonlinearity. Subsection 3.2.1

presents a nonparametric alternative of Racine & Li (2004) allowing for nonlinear-

ities, while Subsection 3.2.2 describes a test of Hsiao et al. (2007) which checks

for parametric misspecification and may detect nonlinearities. Another widespread

problem of convergence analysis is omitted heterogeneity while heterogeneity may

occur in different ways. Phillips & Sul (2003, 2007a,b, 2009) find heterogeneous

convergence behavior when explaining average per capita income caused by indi-

vidual country-specific and time-dependent effects such asindividual technology

levels. Mello & Perrelli (2003) detect heterogeneous convergence behavior for dif-

ferent parts of cross-country income distributions. Recentliterature dealing with the

problem of omitted heterogeneity is summarized in Section 3.3. Allowing for het-

erogeneous convergence behavior over different quantilesof the income distribution

quantile regression is described in Subsection 3.3.1. Subsection 3.3.2 outlines a dy-

namic factor model of Phillips & Sul (2003, 2007a,b, 2009) considering individual

effects.

Haupt & Petring (2011) and Haupt & Meier (2011) find that nonlinearities and het-

erogeneity arise simultaneously in convergence analysis.The argumentation is out-

lined in Section 3.4. Subsection 3.4.1 describes nonparametric quantile regression

as a solution for considering both problems. An alternativemethod in this context

is the two-step procedure of Haupt & Meier (2011) outlined inSubsection 3.4.2.

The method includes heterogeneity considered by convergence clubs in a flexible

nonparametric convergence model. Finally, Section 3.5 deals with the problem of

spatial associations. Several papers find that neighboringregions influence eco-

nomic growth and convergence of an economy. Subsection 3.5.1 summarizes mod-

els capturing different kinds of spatial associations which may occur in three forms,

dependence in the dependent variable, the explanatory variables or correlated other

effects. Subsection 3.5.2 deals with the problem which neighbors should be con-

sidered in modeling spatial associations and which weightsindividual neighbors

should get. Testing procedures for spatial dependence are described in Subsection

3.5.3.

4



In Chapter 4 the second aim of this thesis is discussed, the question whether there

are differences in the analysis of different aggregation levels. The section starts with

a summary of current literature. The following subsectionsdescribe the datasets on

different levels of aggregation which are analyzed in the empirical part of this thesis.

Chapter 5 outlines applications of the methods described in Chapter 3 applied on the

data presented in Chapter 4. The application chapter consists of three working pa-

pers, which are joint works with Harry Haupt and Joachim Schnurbus. The follow-

ing descriptions are the summaries taken from the articles.Section 5.1 is a part of

Haupt & Petring (2011). “A fully nonparametric analysis is applied to address the

problems of nonlinearity and heterogeneity in classical growth regression models

using original data from seminal contributions in this field. Nonparametric spec-

ification tests and in-sample goodness-of-fit measures, as well as cross-validation

based out-of-sample measures provide considerable evidence for parametric mis-

specification and a superior performance of a nonparametricmodel, despite the

small sample size. In contrast to recent contributions identifying heterogeneity

as the primal source of misspecification, a formal and graphical analysis does not

reveal evidence for heterogeneity in a parametric and nonparametric quantile re-

gression framework.”1 Section 5.2 refers the application section of Haupt & Meier

(2011). The methodical part of the paper is already presented in Subsections 3.3.2

and 3.4.2. “While classical growth convergence regressionsfail to account for var-

ious sources of heterogeneity and nonlinearity and recent contributions are able to

address either the one or the other, this paper presents a simple two-step method to

address both issues. Based on a slightly augmented version ofa recently proposed

clubbing algorithm to identify convergence clubs, we formulate a flexible nonlinear

modeling framework which allows for analyzing convergenceeffects on both indi-

vidual and club level while alleviating potential misclassification in the club forma-

tion process using simultaneous smoothing over the club structure. The proposed

method is illustrated with applications to different data.”2 The third application

1This abstract is cited from the summary of Haupt & Petring (2011).
2This abstract is cited from the summary of Haupt & Meier (2011), version: October 19, 2011.

5



displayed in Section 5.3 is Haupt et al. (2011). “Classical Solow-type convergence

regressions have been found to suffer from at least three sources of misspecifica-

tion. First, due to latent heterogeneity of convergence processes, second, due to

latent spatial associations, and third, due to a too restrictive parametric functional

form of the regression function. The recent literature proposes several methods to

address one or two of these caveats. As all three sources of misspecification may

be tightly related the present paper proposes a comprehensive modeling approach.

As a first step — to allow for heterogeneities induced by non-global convergence

processes — we identify convergence (and divergence) clubsfrom a dynamic fac-

tor model using panel data. In the second step further potential heterogeneities in

the extended model are assumed to be generated by spatial associations between

regions in a cross-section model. As an encompassing step wetest for parametric

misspecification of the extended model and check the validity of the club struc-

ture generated from panel data to capture heterogeneity of convergence processes

in a cross-section model. The employed nonparametric estimation method allows

to investigate potential club-specific nonlinearities. Inour empirical application we

study growth and convergence of the high-skilled employeesusing panel data for

German regions. Model selection results suggest that including convergence (and

divergence) club-specific effects dominate spatially augmented Solow models: The

residual heterogeneity in classic models seems to be captured by the club structure

identified in the first step of our analysis. If, however, the club information is ne-

glected, spatial econometric tests suggest the existence of spatial association in the

model. We check the robustness of our findings with a second application, where we

analyze data from the literature used to illustrate the merits of spatial Solow models.

Again the evidence is clearly in favor of our findings that spatial associations can

be captured by the allowing convergence paths on the club-level.”3

3This abstract is cited from the summary of Haupt et al. (2011), version: November 29, 2011.
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Chapter 2

Classical Solow-type growth and

convergence modeling

Analyzing economic growth and convergence is one of the mainaims of economics.

Hence, it is not surprising that there are many growth and convergence models

whose structures differ from simple to complex. A famous andsimple model is

the growth model of Solow (1956). This approach explains standards of living with

only two or in the extended version three variables. Since Mankiw et al. (1992),

hereafter MRW, published their seminal paper, growth models also get into the focus

of econometrics. The authors provide empirical evidence onthe classical growth

model of Solow (1956). Additionally, MRW analyze a by human capital extended

version of the model and investigate the question of convergence. In this chapter

classical growth and convergence concepts are presented which are of importance

for the following sections in this thesis, while Section 2.1deals with growth and

Section 2.2 with convergence models.
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2.1. GROWTH MODELS

2.1 Growth models

Solow (1956) propose one of the most popular economic growthmodels explaining

standards of living by only two covariates. Although this simple model is about

55 years old it is still a topic in current literature. Several others provide economic

extensions of the model and simultaneously its empirical validity is analyzed in

econometrics (e.g. Mankiw et al., 1992; Barro, 1991; Barro & Sala-i Martin, 2004).

Thus, the following section deals with the Solow model, its extensions and its em-

pirical content. In Section 2.1.1 the Solow model and its derivation is described.

Section 2.1.2 outlines the extension of the Solow model by human capital proposed

by Mankiw et al. (1992). Finally, in Section 2.1.3 the spatially augmented Solow

model of Ertur & Koch (2007) is presented which captures spatial dependence and

spillovers.

2.1.1 Neoclassical growth model

The classical growth model of Solow (1956) can be derived by assuming a Cobb-

Douglas production function

Y = F(Kp,L) = AKα
pL1−α, 0< α < 1.

The total OutputY depends on the factors of production capital (the community’s

accumulated stock of capital)Kp and labor (the population of working age)L, where

α gives the partial elasticity of production for capital andA is a constant scale factor

measuring the level of technology. For assessing the growthof labor, the population

growth is assumed to be exogenous at a constant raten so thatL can be expressed

as

L(t) = L0ent. (2.1)

Further, it is assumed that the total OutputY can be divided into gross investment

and consumption. Gross investment is interpreted as the saving rateskp in the sense,

that this is the share of total output saved for increasing future output. The net

8



2.1. GROWTH MODELS

investment results from the difference between gross investment and depreciation

as

K̇p = skpY−δKp, (2.2)

whereδ is the depreciation rate measuring the share of the total output which needs

to be invested to hold the actual level of output. The aim of the Solow model is to

explain the standard of living approximated by the per capita output

y=
Y
L
=

AKα
pL1−α

LαL1−α = A
Kα

p

Lα
def
= Akα

p. (2.3)

Hence, the output per capitay depends on the capital-labor ratiokp measuring the

relation between the costs for production factors capital and labor. From Equation

(2.1) and (2.2) followsK̇p/Kp = skp(Y/Kp)− δ andL̇/L = n, respectively. Hence,

the growth rate of the capital-labor ratio is given by

k̇p

k p
= skp

Y
K p

−δ−n

and leads to

k̇p = skpy−kp(δ+n). (2.4)

In its steady-state the capital-labor ratio needs to be constant. Inserting (2.3) in (2.4)

and simple calculus yields the steady-state value ofkp

k∗p =

(

skpA

δ+n

)
1

1−α
. (2.5)

Following from equation (2.5) the equilibrium of the capital-labor ratio is positively

related to the saving rate and negatively to the growth rate of the working-age pop-

ulation. The steady-state output per capita can be derived by substituting (2.5) into

(2.3),

y∗ = A

(

skpA

δ+n

)
α

1−α
= A

1
1−α s

α
1−α
kp

(δ+n)
−α
1−α ,

or, taking logs,

log(y∗) =
log(A)
1−α

+
α

1−α
log(skp)−

α
1−α

log(δ+n). (2.6)
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2.1. GROWTH MODELS

Analyzing this model empirically MRW derive a corresponding regression formu-

lation log(y)≃ X′β (X is the matrix of explanatory variables) assuming

E(log(yi)|X) = β1+β2 log(skp,i)+β3 log(δ+ni), (2.7)

where log(yi) is the observed output in economyi, β1 =
log(A)
1−α , β2 =

α
1−α andβ3 =

− α
1−α .

Assessing the empirical performance of the model, t-tests are used to check the

correct signs of parameters for empirical data. Hence, the first check is whetherβ2

is significantly positive and ifβ3 is negative. Furthermore, both parameters should

have roughly the same magnitude equal to| α
1−α |. Using several sets of cross-section

data and existing empirical evidence (e.g, Jorgenson et al., 1987) MRW suggest that

the capital’s share of outputα is roughly constant over time and economies at a level

of approximately one third. Thus,β2 andβ3 are expected to be approximately equal

to one half in absolute value.

2.1.2 Extended neoclassical growth model

As an extension MRW add human capital to the classical to the Solow model. The

use of human capital as a determinant of economic growth is quite common in

earlier literature (e.g. Lucas, 1988). Again, a Cobb-Douglas production function is

used and generalized to

Y = AKα
pKν

hL1−α−ν,

whereKh denotes the accumulated human capital. In analogy to (2.3) the output per

capita is given by

y=
Y
L
=

AKα
pKν

hL1−α−ν

LαLνL1−α−ν
def
= Akα

pkν
h, (2.8)

wherekh denotes the human capital per worker andν is the share of human capital

in production.
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2.1. GROWTH MODELS

In analogy to (2.2), the net investment in human capital results from the difference

between gross investment and depreciation

k̇h = skhY−δKh.

In the adjusted model two different saving rates, sayskp andskh, represent gross

investment forKp andKh. Then, in analogy to (2.4), the growth of human capital

can be written as

k̇h = skhy− (δ+n)kh. (2.9)

The equilibrium condition in this model is that both,kp andkh, are constant, i.e.

k̇p = 0 andk̇h = 0. The solution of this system of differential equations forkp and

kh is given by

k∗p =

(

As1−ν
kp

sν
kh

δ+n

)

1
1−α−ν

(2.10)

k∗h =

(

Asα
kp

s1−α
kh

δ+n

)

1
1−α−ν

. (2.11)

Thus, the steady-state output per capita is equal to

y∗ = A
1

1−α−ν +s
α

1−α−ν
kp

+(δ+n)
α+ν

1−α−ν +s
ν

1−α−ν
kh

, (2.12)

or, taking logs,

log(y∗) =
log(A)

1−α−ν
+

α
1−α−ν

log(skp)

− α+ν
1−α−ν

log(δ+n)+
ν

1−α−ν
log(skh). (2.13)

A regression representation of model (2.13) is given by log(yi)≃ X′β assuming

E(log(yi)|X) = β1+β2 log(skp,i)+β3 log(δ+ni)+β4 log(skh,i). (2.14)

According to (2.13),β2 andβ4 are expected to be positive whileβ3 should be neg-

ative. Obviously, the magnitude of the parameters depends on the empirical equiv-

alent of the share of human capitalν. MRW assumeν = α = 1/3. Thus,β2 and

β4 should be approximately equal to one andβ3 should be approximately equal to

minus two.
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2.1. GROWTH MODELS

2.1.3 Spatial neoclassical growth model

Again, based on the Cobb-Douglas production function (2.3) Ertur & Koch (2007)

propose a spatially augmented model of Solow (1956). The authors assume that

the global technology levelA is not constant over time and countries and that there

are interpedendencies between countries or regions. Due toknowledge spillovers

these interdependencies are affected by the spatial factor. Neighboring economies

influence each other more than spatially distant economies.

Ertur & Koch (2007) model the interdependencies using so-called Arrow-Romer

externalities (see Arrow, 1962; Romer, 1986). The log technology level A is as-

sumed as

log(A) = log(Ω)+φ log(kp)+ γW log(A). (2.15)

A depends on a common technology levelΩ with constant exogenous growth which

is available for all economies. Furthermore, the technology level rises with the

capital per worker (knowledge spillover), whileφ measures the size of the effect.

There is also a spatial effect:A is assumed to depend on a geometrically weighted

mean of the neighbors stocks of technology. The weights are given in a nonsingular

weighting matrixW andγ indicates the rate of dependence from worldwide level of

technology.

Solving Equation (2.15) yields

log(A) = (I − γW)−1 log(Ω)+φ(I − γW)−1 log(kp). (2.16)

For developing the steady state per capita income we build logs of (2.3)

log(y) = log(A)+α log(kp) (2.17)

and replace log(A) by Equation (2.16) such that

log(y) = (I − γW)−1 log(Ω)+φ(I − γW)−1 log(kp)+α log(kp) (2.18)

log(y) = log(Ω)+(α+φ)kp− γαW log(kp)+ γW log(y). (2.19)

12



2.2. CONVERGENCE CONCEPTS

Analogously to the neoclassical growth model it can be shownthat the steady-state

per capita income is given by

log(y∗) =
1

1−α−φ
log(Ω)+

α+φ
1−α−φ

log(skp)−
α+φ

1−α−φ
log(δ+n)

− αγ
1−α−φ

∑

j 6=i

wi, j log(skp, j)+
αγ

1−α−φ

∑

j 6=i

wi, j log(δ+n j)+

γ(1−α)
1−α−φ

∑

j 6=i

wi, j log(y j)), (2.20)

wherewi, j is the element of the weighting matrixW giving the influence of neighbor

j on economyi.

Empirically this steady-state is estimated with a regression model assuming

E(log(yi)|X) = β0+β1 log(skp,i)−β2 log(δ+ni)−θ1

∑

j 6=i

wi, j log(skp, j)+

θ2

∑

j 6=i

wi, j log(δ+n j)+ρ
∑

j 6=i

wi, j log(y j)). (2.21)

The result is a spatial version of the neoclassical growth model with spatial lags of

endogenous and exogenous variables. Attention should be paid to the fact that in

this caseX includes an endogenous variable.

2.2 Convergence concepts

Current literature focuses on the analysis of convergence models instead of growth

models (e.g. Barro & Sala-i Martin, 1992; Barro et al., 1991; Sala-i Martin, 1996a,b).

In this context convergence is assumed if differences in standards of living between

economies become smaller or even disappear over time.

Classical literature offers different concepts of convergence. The most popular one

is β-convergence meaning that poor economies growth faster than rich ones (see

Sala-i Martin, 1996a,b). This concept is outlined in Subsection 2.2.1. Sala-i Martin

(1996a) proposes another related concept,σ-convergence, which is described in
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2.2. CONVERGENCE CONCEPTS

Subsection 2.2.2. The idea ofσ-convergence is a decreasing dispersion of cross-

sectional per capita income over time. Furthermore, Subsection 2.2.3 describes the

concept of convergence in relative per capita income (e.g.,Quah, 1993a,b, 1997) as-

suming an equally fraction of mean per capita income for all economies over time.

Subsection 2.2.4 shows the relationship between these three concepts. The nonpara-

metric convergence concepts proposed by Maasoumi et al. (2007) are described in

Subsection 2.2.5. Applying these concepts the sample of countries is divided into

different groups whose complete distribution of growth rates is estimated nonpara-

metrically while convergence is assumed if the growth rate distribution of one group

stochastically dominates the one of another group.

Subsection 2.2.6 compares the different grades of information utilization of the dif-

ferent concepts. Finally, 2.2.7 deals with the question, whether there is always

“global convergence” or whether convergence clubs occur.

2.2.1 β-convergence

β-convergence is the most popular concept for analyzing convergence (e.g.

Barro & Sala-i Martin, 1992). A main advantage of the concept is that it is founded

in the theory of the Solow model and thus a theory-based interpretation of the re-

sults is possible.β-convergence means that poor economies grow faster than rich

ones implying that the corresponding income gap diminishes. Therefore the linear

regression model

υi = β0−β1 log(yi,0)+ εi (2.22)

is used, whereυi = log(yi,T)− log(yi,0) is the growth rate of per capita income

in country i, T is the final period, and log(yi,0) is the initial income of economy

i. Equation (2.22) measures so-called “absolute convergence” if β1 is significantly

greater than 0. It is called absolute convergence because only the initial incomes are

used to explain growth rates. Hence, the meaning ofβ1 is that a marginal reduction

of initial income yields a higher growth rate. In the case of absoluteβ-convergence

all economies converge to the same steady-state.
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2.2. CONVERGENCE CONCEPTS

Analyzing the shape ofβ-convergence for different values ofβ1 we rewrite Equation

(2.22) to

log(yi,T) = β0+(1−β1) log(yi,0)+ εi . (2.23)

log(y0)

lo
g(

y t
)

β1=0.5

log(y0)

lo
g(

y t
)

β1=1

log(y0)

lo
g(

y t
)

β1=1.5

Figure 2.1: Different shapes ofβ-convergence depending on value ofβ1. Dashed

lines display the extreme case ofβ1 = 0.

We differentiate between the three cases 0< β1 < 1, β1 = 1 andβ1 > 1. For all

of them β-convergence is assumed becauseβ1 > 0. The first case (β1 = 0.5) is

displayed in the upper left panel in Figure 2.1. In this case the incomes of poor

economies are catching up to rich ones, but inT the steady-state income has not

been reached. Forβ1 = 1 convergence is reached. Independently from the income

in period 0, the income in periodT is close to the steady-state income on cross-

economy average. Forβ1 > 1 the economies which are poor in 0 are rich inT
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2.2. CONVERGENCE CONCEPTS

and vice versa. Sala-i Martin (1996b) rules the cases two andthree out calling

them “leapfrogging” and “overshooting” because poor economies systematically

get ahead of rich ones which is not feasible. The author assumes 0< β1 < 1 and

excludes the other cases.

The assumption of a common steady-state implies that the economies differ only

in their initial income is often implausible. The Solow model predicts different

steady-states for economies depending on the values of the covariates population

growth, physical capital and human capital. Thus, we can focus on another con-

cept of convergence, namely conditionalβ-convergence. This concept means that

poor economies return faster to their individual steady-states than rich economies.

The individual steady-states depend on country specific endowments measured by

different covariates, basically physical capital and human capital.

The corresponding model can be derived from the growth ratesof physical (2.4)

and human capital (2.9). From the production function follows that the growth rate

of the output per capitay is the weighted average of the growth rates of the inputs

ẏ/y = α(k̇p/kp)+ ν(k̇h/kh). We can rewrite (2.4) and (2.9) depending on log(kp)

and log(kh) respectively such that

k̇p/kp = skpAe−(1−α) log(kp)eν log(kh)− (δ+n) (2.24)

k̇h/kh = skhAeα log(kp)e−(1−ν) log(kh)− (δ+n). (2.25)

Taking a two-dimensional first-order Taylor approximationfrom these equations

leads to

ẏ/y= [αskpA(−(1−α))e−(1−α) log(k∗p)eν log(k∗h)+νskhAαelog(k∗p)e−(1−ν) log(k∗h)]

· [log(kp)− log(k∗p)]+ [αskpAe−(1−α) log(k∗p)νeν log(k∗h)

+νskhAeα log(k∗p)(−(1−ν))e−(1−ν) log(k∗h)][log(kh)− log(k∗h)]. (2.26)

By using the steady-state conditions forkp andkh (2.10) and (2.11) we can simplify
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2.2. CONVERGENCE CONCEPTS

(2.26) to

ẏ/y=−b[log(y)− log(y∗)], (2.27)

whereb = (1−α− ν)(δ+ n) is the convergence coefficient, which measures the

speed of convergence (see Barro & Sala-i Martin, 2004).

A useful interpretation ofb can be derived from the solution of the differential

equation (2.27) which is given by

log(y(T)) = (1−e−bT) log(y∗)+e−bT log(y(0)), (2.28)

wherey(0) is the initial output per capita. The half-life (the time where log(y(T))

is halfway between the initial level and the steady-state) is given by the condition

e−bT = 1/2, which is equivalent tot = log(2)/b. For example, ifb = 0.02 the

economy requires about 35 years to move halfway to its steady-state.

In the next step we derive the new model for analyzing convergence based on the

previous approach. For that we subtract log(y(0)) from both sides of (2.28) and

replace log(y∗) by (2.13). Thus we obtain the model

log(y(T))− log(y(0)) = − (1−e−bT) log(y(0))

+ (1−e−bT)
α
b

log(skp)

+ (1−e−bT)
ν
b

log(skh)

− (1−e−bT)
α+ν

b
log(δ+n). (2.29)

Equation (2.29) can be transformed into the general regression model assuming

E(υi |X) = β0−β1 log(yi,0)+β2 log(skp,i)+β3 log(skh,i)

+β4 log(δ+ni), (2.30)

where

β1 = 1−e−bT. (2.31)

Conditionalβ-convergence can be assumed ifb is greater than 0. For assessing

b Equation (2.31) is solved for the parameter. A detailed discussion of situations

where the different concepts should be used is given in Chapter 4.
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2.2. CONVERGENCE CONCEPTS

The spatial augmented convergence model can be derived in the same way while

the single steps are more complicated due to the large numberof covariates and the

problem of an endogenous explanatory variable. The detailsare left out here and

can be found in Ertur & Koch (2007). The resulting model is

log(y(T))− log(y(0)) = −(1−e−diT) log(y(0))

+(1−e−diT)
α+φ

1−α−φ
log(skp)

−(1−e−diT)
α+φ

1−α−φ
log(δ+n)

+(1−e−diT)
γ(1−α)
1−α−φ

∑

j 6=i

wi, j log(y j(0))

−(1−e−diT)
αγ

1−α−φ

∑

j 6=i

wi, j log(skp, j)

+(1−e−diT)
αγ

1−α−φ

∑

j 6=i

wi, j log(δ+n j)

+(1−e−diT)
γ(1−α)
1−α−φ

·
∑

j 6=i

1
(1−e−diT)

wi, j [log(y(T))− log(y(0))],

wheredi is an individual convergence parameter depending on the individual level

of technology.

2.2.2 σ-convergence

Another important convergence concept isσ-convergence. The idea of this concept

is that convergence is assumed if the dispersion measured bythe standard deviation

σ of cross-economy per capita income declines over time so that

σt+τ < σt , (2.32)

wheret = 1, ...,T. The concept ofσ-convergence does not deal with the question to

which steady-state the incomes convergence and thus, whether the average income

rise or fall over time. For analyzingσ-convergence the only important question is
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whether the cross-economy variance of log(yi,t) decreases over time and thus if the

incomes at large come closer.

The concepts ofσ- andβ-convergence are related (see Sala-i Martin, 1996b). Based

on Equation (2.23) the error termsui,t are assumed to have a zero mean and a con-

stant varianceσ2
u for all time periods and economies. Furthermore, the sample

variance of log(yi,t) is given by

σ2
t = N−1

N
∑

i=1

[log(yi,t)− log(yi,t)]
2, (2.33)

where thelog(yi,t) is the mean of log(yi,t) in t. Calculating the variance for Equation

(2.23)4 using the assumptions above yields

Var(log(yi,t)) = Var(β0)+Var((1−β1) log(yi,t−1))+Var(εi,t) (2.34)

σ2
t = (1−β1)

2σ2
t−1+σ2

ε . (2.35)

Resulting from assuming thatσ2
u is constant,σ2

t decreases ifβ1 > 0 and thus,

σ-convergence cannot occur withoutβ-convergence.β-convergence is a neces-

sary condition forσ-convergence. The dispersion of cross-sectional per capita in-

come may only reduce if poor economies grow faster than rich ones. However,

β-convergence is not a sufficient condition for the existenceof σ-convergence. The

steady-state of the linear difference equation given in Equation (2.35) is given by its

inhomogeneous solution

σ2
∗ =

σ2
u

1− (1−β1)
. (2.36)

Developing the first-order Taylor approximation gives the solution of the equation

depending on the steady-state variance

σ2
t = σ2

∗+(1−β1)
2[σ2

t−1−σ2
∗]. (2.37)

Equation (2.37) suggests thatβ-convergence is only a necessary but not a suffi-

cient condition forσ-convergence. Ifβ-convergence is present,σ2
t can increase or

decrease. The direction of change depends on whetherσ2
t is below or above the

steady-state.

4Here the initial period 0 is set tot −1.
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2.2.3 Convergence in relative per capita income

Current literature deals with many more convergence concepts where only the most

popular ones are presented in this thesis. In this chapter the concept of conver-

gence in relative per capita income is described (see Quah, 1993a,b, 1997) which

is used below. Quah (1993a,b, 1997) initiates the criticismon only investigatingβ-

convergence on average. The author argues that time-average growth rates are not

appropriate for deriving time dynamical implications. Theproblem in this context

is the comparison of realizations of the same random variable at different points

in time. A linear regression of those variables is clouded byGalton’s Fallacy of re-

gression towards the mean which means that economies lying above cross-economy

average generally lie below the average in the second periodand vice versa because

the realizations above the average are only randomly higherthan the average. The

mean of those higher individuals will be considerably smaller in the later period,

because the high values in the first period are only caused by random effects. This

is the reason why a coefficient of a regression ofy2,i ony1,i always tends to be nega-

tive and hence cannot imply anything useful about an assimilation of incomes over

time.

Alternatively, Quah (1993a,b, 1997) presents a new convergence concept. He nor-

malizes the income by dividing the output per worker of everyeconomy by a

weighted cross-economy average for every yeart (high weights are used for coun-

tries with large populations or simply the mean)

hi,t =
log(yi,t)

∑N
i=1wi log(yi,t)

, (2.38)

where
∑n

i=1wi = 1. The interpretation of the ratio is that the output per worker of

economyi is hi,t-times as big as the weighted cross-economy average. Convergence

over time is assumed if thehi,t → 1 for t → ∞.

Figure 2.2 offers a graphical example for convergence in relative per capita income.
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Figure 2.2: Example for convergence in relative per capita income
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The relative transition coefficientshi,t for several years and economies are plotted

while the coefficients from the individual economies are connected to the relative

transition paths of the economies. The black line is equal toone. This group of

economies converges because all transition paths are closer to one in final periodT

than in initial period 0.

2.2.4 The relationship betweenβ-convergence,σ-convergence and

convergence in relative per capita income

For comparing the different convergence concepts only the initial and final period

are taken into account becauseβ-convergence does not consider intermediate peri-

21



2.2. CONVERGENCE CONCEPTS

ods. Convergence in relative per capita income investigatesthe behavior of the rel-

ative transition coefficientshi,t = log(yi,t)/(N−1∑N
i=1 log(yi,t)) (Note that for sim-

plification the unweighted average is used). Convergence is assumed ifhi,t → 1 for

all i if t → ∞.

If convergence in the latter sense is fulfilled over the period from[0,T] all economies

have approximately the same per capita income inT, which is on the level of the

mean income inT independently from their initial income in 0. Figure 2.3 shows

the relationship between initial and final per capita incomeunder the assumption of

convergence in relative per capita income. Independently from the initial income,

the income in the final period is approximately equal to the mean income for all

economies (in this case all points lie on the regression line).
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Figure 2.3: Initial and final per capita income under the assumption of convergence

in relative per capita income

In empirical samples the points do not lie exactly on a line but they spread sparsely

around the mean. Specifying the relationship in a linear regression model yields

log(yi,T) = β0+blog(yi,0)+ εi , (2.39)
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2.2. CONVERGENCE CONCEPTS

whereb= 0 under convergence in per capita hypothesis.

At this point the relationship betweenβ-convergence and the convergence in relative

per capita income becomes clear. Equation (2.39) can be easily transformed into the

β-convergence model.

log(yi,T) = β0+(1−β1) log(yi,0)+ εi , (2.40)

Thus, convergence in the sense of Quah (1993a,b, 1997) is a special case ofβ-

convergence whereβ1 = 1. For the existence of convergence in this sense another

assumption must also be fulfilled. It is not sufficient thatb= 0 in Equation (2.39).

Additionally the dispersion has to be small and unsystematic in t or at least the

dispersion inT must be smaller than in 0. This is fulfilled ifσ-convergence is

present. Thus,β- andσ-convergence are necessary but not sufficient conditions for

convergence in relative per capita income.

2.2.5 Nonparametric convergence concepts

Maasoumi et al. (2007) present two new convergence conceptsusing nonparametric

approaches. The main idea of both concepts is to analyze convergence between

a priori defined groups of economies instead of generally between poor and rich

economies. On the one hand this is a very strong and restrictive assumption, because

the a priori classification of the convergence direction canhide “real” directions of

convergence. On the other hand the concept allows to follow specific questions

about several groups. For example, German regional data aredivided into east and

west to check if eastern districts close the gap on the western districts.

Applying the first concept, a nonparametric regression of growth rates of per capita

income on the most popular conditioning variables (population growth, human cap-

ital and investment rate) is conducted. Second, the conditional probability density

function (PDF) and the conditional cumulative distribution function (CDF) of the

nonparametric growth rates depending on groups and time periods are estimated.
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Final stage is a check for stochastic dominance of CDFs for different groups and

for different periods. The distribution of the random variableX1 first order stochas-

tically dominates the distribution ofX2 if the conditional cumulative distribution

function ofX1 lies under the conditional CDF ofX2 at every pointx (F1(x)≤ F2(x))

(see Hadar & Russell, 1969).

Two questions can be analyzed with this concept. Mainly, it can checked if per

capita income from eastern and western districts converge by comparing the condi-

tional growth rate CDFs of both groups at the same time. In thiscontext per capita

income convergence between groups is assumed if the growth rate distribution of

the initially poorer group stochastically dominates the one of the other group. For

the present example this means, that all parts and hence all quantiles of the distri-

bution of east districts grow faster than districts in the west. Thus, the poorest 10%

of the eastern districts grow faster than the poorest 10% of the western districts and

so on. If the growth rates of the districts in the east are higher than the ones of the

districts in the west at all quantiles of the growth rate distribution, the per capita

income in all districts of the former German Democratic Republic (GDR) growths

faster and thus the gap between income in both former parts ofGermany dissolves.

Furthermore, the difference between absolute and conditional convergence can be

considered. For analyzing absolute convergence, the fittedvalues of the nonpara-

metric regression are used as growth rates of per capita income. Conditional con-

vergence can be analyzed if the residuals of the nonparametric regression are used

for growth rates. The residuals stand for conditional convergence because they are

the growth rates after controlling for the influences of the conditioning variables.

In addition to analyzing convergence between groups, it is also possible to analyze

convergence within groups by regarding the conditional CDFsof one group for dif-

ferent periods. How the nonparametric regression works canbe seen in Subsection

3.2.1.

Stochastic dominance can be analyzed graphically, though the results of a formal

test are presented by Linton et al. (2005). Using an extendedKolmogorov-Smirnov

test for stochastic dominance of McFadden (1989) the authors propose a consistent
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procedure for estimating critical values. The test idea is to build pairwise differ-

ences between the conditional CDF ofX1 andX2 for everyx and to observe the

corresponding maximum. Then, differences between the conditional CDFs ofX2

andX1 are calculated too. From both maxima the minimum is taken

d∗ = min
k6=l

sup
x∈X

[Fk(x)−Fl (x)].

The hypotheses of the test are

H0 : d∗ ≤ 0 vs.H1 : d∗ > 0.

The null hypothesis means a negative minimal difference between the CDFs which

is equivalent to the fact thatFk lies underFl and thusFl first order dominatesFk. So,

if the null is not rejected, stochastic dominance between the two distributions can

be assumed. The test statistic is the empirical analogue ofd∗

DN = min
k6=l

sup
x∈X

√
N[FkN(x)−FlN(x)],

whereFkN denotes the number of observations ofXk, which are smaller thanx,

divided byN. The distribution ofDN is obtained by a subsample bootstrap. There-

fore,N−b+1 subsamples of sizeb and the test statistic are computed. The null is

rejected ifDN is greater than the(1−α)-quantile of the resampled distribution.

Taking a step forward the second convergence concept of Maasoumi et al. (2007)

uses entropy measures to capture the exact distances between distributions of sev-

eral groups for different timest. Thus, for every period the difference between the

conditional CDFs of the growth rates of eastern and western districts are calculated.

Convergence is assumed if the distance became smaller or evendissolves over time.

For measuring the distance the authors use an entropy which is additionally a metric

proposed by Granger et al. (2004)

Sρ =
1
2

∫ ∞

−∞

∫ ∞

−∞

(

f
1
2

1 − f
1
2

2

)2

dxdy,

where f1 and f2 are the marginal densities of the growth rates for east and west.

Sρ lies between 0 and 1, while 0 means, that there is no distance between both

distributions. Thus, it can be tested if the distributions are equal by testing the null

hypothesisSρ = 0.
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2.2.6 Utilization of available information

As described in the previous sections the different convergence concepts make dif-

fering uses of levels of available data. Illustrating this fact this Subsection contrasts

the different concepts with respect to this issue. For all concepts there are avail-

able information fort = 0, ...,T, but not all concepts use all information. In Figure

2.4 the considered information of the different concepts isdisplayed. There are

Figure 2.4: Utilization of information of different convergence concepts

three utilization-levels of available information. The concept convergence in rel-

ative per capita income andσ-convergence are arranged on the first level. Both

concepts use the information for all available periodst = 1, ...,T. The concepts of
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Maasoumi et al. (2007) are arranged on the second level. Theypool the data and

divide the time horizon into several subperiods and use onlyinformation for initial

and final period and the borders of the subperiods (t ∈ {0,T1,T2, ...,T}). Thus,

these concepts ignore the information for intermediate periods.β-convergence con-

siders only small parts of information. For estimating the concept only informa-

tion of initial and final period are usedt ∈ {0,T}. This is a clear handicap ofβ-

convergence, because ignoring of available information may cause incorrect results

and wrong conclusions. Generally, available information should be fully considered

for achieving the best model performance.

2.2.7 Convergence clubs

There are many works suggesting that especially for cross-country data there is no

global convergence for all countries independently from the underlying convergence

concept. Thus, several authors try to identify groups of economies with common

convergence behavior, the so-called convergence clubs.

The seminal paper dealing with the question whether convergence is really global

is Baumol (1986). The author asks: “Does convergence [...] extend beyond the [...]

countries? Or is the convergence club a very exclusive organization?” (Baumol,

1986, p. 1079). Analyzing the relationship between the Gross Domestic Product per

capita in 1950 and its growth rate between 1950 and 1980, the author finds visually

two convergence clubs. The first club consists of the sixteenindustrialized countries

in the sample and the second one contains of the centrally planned economies. As a

formal validation of his assumption he finds falling Gini coefficients for the decades

1950 to 1980 inside the two clubs. A falling Gini coefficient indicates that the

income distribution inside a club becomes more equal.

The work of Baumol (1986) gives rise to a circumstantial discussion about conver-

gence clubs. The main papers in this context which are used below are summarized

in this subsection.

Using panel data for 118 countries and from 1962 to 1985 Quah (1993a) finds a
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trend to extremes as the upper part of the income distribution converges to the rich-

est countries, while the poor countries become poorer. The resulting bi-modality

gives rise to the concept of “convergence clubs”.

Durlauf & Johnson (1995) find misspecification of the linear model on the MRW

data. However, using regression tree analysis the authors identify clubs for which

the linear model and thusβ-convergence is fulfilled on a club-level.

Seitz (1995) analyzesβ-convergence in West German regions for data of the dis-

tricts and district-free cities from 1980 till 1990. The author does not find “global”

convergence, but he discovers convergence clubs based on the grade of urbanization.

For that the districts are divided into three categories: district free cities, districts in

direct neighborhood to such cities and the other districts far away from a city.

Hobijn & Franses (2000) use a consistent clustering algorithm allowing for endoge-

nous cluster selection. For several datasets (e.g. Penn World Table) they find many

clusters, but their sizes are frequently very small.

Phillips & Sul (2003, 2007a,b, 2009) develop a data-based clubbing algorithm and

find convergence clubs for several sets of data.

Based on the predictive density (related with Quah, 1993a,b,1997) Canova (2004)

presents an algorithm determining the number of clubs, their location and break

points between clubs. Using data on 144 European NUTS25 units, the authors

apply the algorithm and estimate a single convergence coefficient for every club.

Juárez & Steel (2010) use an autoregressive and model-basedalgorithm for panel

data. The advantage of the method is that it offers membership probabilities for

every economy and cluster. They analyze data on 258 EuropeanNUTS2 regions

from 1995 to 2004 and 738 manufacturing firms from Spain and find clusters for

both data sets.

5NUTS (Nomenclature des unités territoriales statistiques) is a hierarchical geographical classi-

fication of European official statistics. Level 2 are units ofintermediate size.
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Chapter 3

Remedies for problems of classical

convergence concepts

The work of MRW gives rise to an intensive and on-going discussion on the quality

and validation of classical convergence models. The aim of this chapter is to offer

a survey of current literature for detecting problems of classical growth and con-

vergence modeling and potential remedies. Therefore, the problems are structured

in five strands presented in the next sections. Every sectionstarts with a survey

of current literature dealing with the appropriate problemof classical modeling.

The corresponding subsections describe selected economictheories and economet-

ric methods offering improvements in details. The presented methods are the basis

for the empirical analysis in Chapter 5.

Section 3.1 covers papers dealing with the question of variable definition and selec-

tion, more precisely the papers analyze which determinantsreally influence growth

and convergence. Furthermore, in this section different definitions of the growth

determinants are presented. Section 3.2 summarizes papersidentifying neglected

nonlinearities as a source forβ-convergence being invalid for several data sets. A

nonparametric alternative is discussed and a test of Hsiao et al. (2007) for paramet-

ric misspecification is described in this section. Section 3.3 deals with the problem

of omitted heterogeneity and two different methods for capturing heterogeneity are
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presented, on the one hand quantile regression (see Koenker& Bassett, 1978) for

considering location scale effects of the conditional growth distribution and on the

other hand the logt regression of Phillips & Sul (2003, 2007a,b, 2009). Section

3.4 describes two methods combining the problems of neglected heterogeneity and

nonlinearities. First, nonparametric quantile regression (see Li & Racine, 2008) is

described which captures nonlinear location scale effectsand second, a two step

procedure of Haupt & Meier (2011) combining the logt regression Phillips & Sul

(2003, 2007a,b, 2009) with nonparametric methods is presented. Finally, Section

3.5 summarizes papers dealing with the problem of spatial association. In this sec-

tion spatial convergence models, the influence of neighboring economies, and tests

for spatial dependence are presented.

3.1 Growth determinants

A first big wave of literature discusses the definition of variables in empirical anal-

ysis and the influence of potential additional covariates toaugment classical growth

models and conditionalβ-convergence.

The Solow model extended by human capital predicts a linear model where the

standard of living is explained by the saving rate, the growth of working age pop-

ulation and human capital. All these variables can be definedin several ways and

their definitions may have a noticeable influence on the estimation results.

As a measure for standards of living MRW use per capita incomemeasured by the

real GDP divided by the working-age population (15-64 yearsold). This is common

in literature.

The first explanatory variable is the saving ratesk. MRW proxy this variable by

the GDP share of investment (including government investment) divided by 100.

Taking investment rates as a measure for savings rates is notobvious at the first

sight. Investment rates are the share of output which is usedto replace or enlarge

the stock of physical capital. Analyzing regional data several authors use other
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definitions of this variable. E.g. Seitz (1995) uses the absolute investment in the

manufacturing industry. Kosfeld et al. (2006) use the number of newly established

enterprises relative to the working population as an indicator for the investment rate.

MRW proxy the growth rate of the working-age populationn by the growth rate

of total population because there is no reliable data for several developing coun-

tries. The depreciation rateδ is assumed to be constant over time and countries at

a value ofδ = 0.05. Taking population growth as a proxy is common in literature

independently from the level of aggregation. The size of thedepreciation rate is

disputable. Especially for regional data other depreciation rates might be assumed

than for cross-country data (e.g. Kosfeld et al., 2006).

The last and most complicated variable is human capitalsh. MRW use the share

of working-age population, which attends the secondary school. This variable is

compounded by the fraction of eligible population (12-17) visiting secondary school

multiplied with the fraction of people from the working-agepopulation in school

age (15-17). Other authors (e.g. Kalaitzidakis et al., 2001) take the mean years of

schooling. Analyzing German regional data these conceptions of human capital are

not useful because these variables are similar for all regions in disaggregated data.

Alternatively, many authors use the share of workers with academic degree (e.g.

Kosfeld et al., 2006; Seitz, 1995) or the proportion of persons with “Abitur” (e.g.

Herz & Röger, 1995). Funke & Niebuhr (2005) consider the density of employment

in Research and Development for this covariate.

Some authors focus on the influence of human capital on outputgrowth. For exam-

ple Benhabib & Spiegel (1994) find an insignificant or even negative relationship

between human capital and growth rates of per capita income by using the mean

years of schooling as a proxy for human capital, while MRW finda significant pos-

itive correlation when human capital is represented by enrollment rates. Thus, the

way how human capital is approximated empirically seems to play an important

role.

A huge part of early convergence analysis is devoted to significance tests as there
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are many co-existing strands of reasoning using different but not necessarily mutu-

ally disjunct sets of explanatory variables and different data sets on different levels

of aggregation (see Evans, 1998; Seitz, 1995; Herz & Röger, 1995; Islam, 1995;

Lee et al., 1997 for recent contributions).

Barro (1991) is the essential reference which tries to find empirical evidence for

the influence of other variables, for example geographical position, government ex-

penditure, political stability, economic system and market distortions. Afterwards,

a lot of articles introduce more and more new explanatory variables which may be

related with output growth. The problem in this context seems to be that every

researcher considers a certain set of variables which are only significant in the cor-

responding constellation. Sala-i Martin (1997) and Durlauf & Quah (1999) finally

try to identify the variables which “really” influence economic growth. They do so

by conducting regressions with numerous combinations of potential variables and

noting which of them are significant frequently.

3.2 Nonlinearities

Current literature leaves the platform of simple replications of MRW with new data

sets and variables and instead criticizes the classical convergence model for sev-

eral reasons by proposing basic extensions in an economic and econometric sense.

First, one main strand of this literature criticizes the lack of flexibility of MRW’s

(least squares) estimation of a linear regression model andstarts a discussion about

alternative functional forms. Second, the concept ofβ-convergence is criticized as

it only covers one aspect - the mean effect - of initial incomeon the distribution of

income growth rates.

Addressing the former issue “Kalaitzidakis et al. (2001) use semi-parametric esti-

mation techniques [to the extended specification] and find a nonlinear effect of hu-

man capital measured by the mean years of schooling on economic growth. When

using the enrollment rates to describe human capital, its effect is linear. Earlier
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results by Liu & Stengos (1999), based on ideas of Durlauf & Johnson (1995), con-

firm these findings, [though the authors do not back up their results with formal

tests]”6.

The problem of potential nonlinearities in growth (and convergence) regressions

has also been recently addressed by applying fully nonparametric methods for re-

gression and specification testing (see Haupt & Petring, 2011). The authors use a

local linear kernel estimator with a generalized product kernel function proposed by

Racine & Li (2004) and Li & Racine (2004). Using data from Penn World Tables

also used by Mankiw et al. (1992) they find considerable evidence for parametric

misspecification and a superior performance of a nonparametric model.

Quah (1993a,b, 1997) initiates the criticism of the conceptof only investigatingβ-

convergence on average (see Subsection 2.2.3). He exploresdistribution dynamics

and heterogeneity by comparing the per capita income distributions over time and

by estimating transition matrices. Comparing those matrices for several subperiods

provides an informal basis to detect convergence or divergence in different parts of

the income distribution. Using panel data for 118 countriesfrom 1962 to 1985 he

finds a trend to extremes as the upper part of the distributionconverges to the most

rich countries, while poor countries become poorer. The resulting bi-modality gives

rise to the concept of “convergence clubs” (see Subsection 2.2.7).

Bringing both lines together Maasoumi et al. (2007) introduce a novel nonparamet-

ric concept for convergence estimation and testing (see Subsection 2.2.5). In their

application to cross-country panel data over five periods they compare the distribu-

tion of growth rates for OECD and Non-OECD countries. Using stochastic domi-

nance (SD) rankings, the idea is to assume convergence if onegrowth distribution

dominates the other stochastically. The authors find clear evidence for both non-

linearities and convergence clubs. Furthermore, they use entropy measures to as-

sess the numerical value of distance between the distributions for several periods.

The idea of convergence in this context is that the distance between the distributions

6cited from Haupt & Petring (2011).
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might shrink over time. In this vein Henderson (2010) applies nonparametric kernel

estimation to the data of Maasoumi et al. and also finds convergence clubs by ana-

lyzing the estimated distribution of the partial effects ofinitial income and applying

a test for multi-modality.

Funke & Niebuhr (2005) use nonparametric kernel estimates to analyze the income

distribution over time in West German planning units between 1976 and 1996. They

find a bimodal distribution and following this awareness they test for multiple equi-

libria using threshold estimation. The result are three similar groups of regions

being a hint for convergence clubs. Juessen (2009) analyzesthe so-called “distribu-

tion dynamics” for 271 labor market regions between 1992 and2004 in the manner

of Quah (1993a,b, 1997). Investigating the distributions of relative GDP per worker

for different years with nonparametric methods shows proceeding convergence be-

tween East and West. Using a test for multimodality yields a bimodal distribution

for 1992 and therefore significant differences between Eastand West. Analyzing the

distribution of 2004 offers no longer substantial differences between both German

parts.

In the following Subsections the focus is on the first issue, namely nonlinearities

in growth regressions. In Subsection 3.2.1 the already mentioned concept of non-

parametric kernel density estimation is described and Subsection 3.2.2 deals with

testing for parametric misspecification.

3.2.1 Nonparametric kernel density estimation

A nonparametric alternative to classical linear modeling is a local linear kernel es-

timation with regression function

E[y|X] = g(X)+E[u|X],

where it is assumed that E[u|X]=0. In analogy to parametric modeling, the regres-

sion function estimates the conditional mean of the response variable depending on

covariates. However, the specific form of the function is notrestricted but it is a
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general functiong() allowing for all forms of interactions between covariates.

The idea of a local linear kernel estimation is that a model for every observation

in its direct neighborhood with respect to the covariatesx is estimated. The size

of the neighborhood is given by the bandwidthλ. In addition, the points in the

neighborhood are weighted differently, vary the kernel functionK().

Racine & Li (2004) consider the specific situation where both continuous and cat-

egorical data are used. They use a generalized product kernel for K. A mixed

covariate vector with continuous and categorical variables is assumed while the

categorical variables are divided in ordered and unorderedvariables. The idea of

Racine & Li (2004) is that all types of variables with respect to their scale level

require a specific weighting function and bandwidth.

For continuous variables a second order Gaussian kernel is used

l(Xi ,x,λ) =
1

λ
√

2π
exp{−1

2

(

Xi −x
λ

)2

}.

Following from the Gaussian distribution points close tox get higher weights than

boundary points. For continuous variables the bandwidthλ can get all values greater

than 0. A small bandwidth close to 0 means that the neighborhood is very small.

Thus, only a few points are used to estimate the local parameters and therefore the

estimated parameters may vary considerably for differentx. This case allows for a

high degree of nonlinearity concerning the relationship between the variables. In

contrast, a high bandwidth means that most points are considered for estimating

the parameters which are similar for differentx. The influence of the continuous

variable is almost linear in this case.

For unordered categorical variables Racine & Li (2004) propose the kernel function

l(Xi ,x,λ) =







1, if Xi = x

λ, otherwise
,

where the bandwidthλ lies in [0,1]. For a bandwidth equal to zerol(Xi ,x,0) is an

indicator function for categoryx. For example, if a binary variable with categories

west and east is analyzed, a the bandwidth for this variable close to 0 means that

35



3.2. NONLINEARITIES

only observations lying in the west are used for this category. Vice versa for estimat-

ing the regression function for eastern Germany only observations from the east are

taken into account. This implies that the influence of the variable or in other words

the differences between these categories are such huge thatthe sample is divided

into west and east both subsamples are estimated separately.

A bandwidth of 1 means thatl(Xi ,x,1) is a constant function. For example, for

smoothing category west all observations are used, those from the west and the

east. Thus, there is no difference between both categories.In this case there is no

influence of the underlying covariate and it is “smoothed out”.

For ordered categorical variables Racine & Li (2004) proposea kernel function

l(Xi ,x,λ) = λ|Xi−x|.

Again, the bandwidthλ lies in [0,1]. Forλ = 0, l(Xi ,x,0) is also an indicator func-

tion for categoryx and forλ = 1, the kernel function is constant. The interpretation

is equal to unordered case. If the bandwidth lies between 0 and 1, observations from

the same category get the weight 1. Direct neighbor categories are weighted with

λ and observations with one intermediate category withλ2. Categories close to the

category of interest get higher weights than distant ones.

The product kernelK is the product of the weighting functions forP regressors

K =
P
∏

p=1

l(Xip,xp,λp). (3.1)

The estimation is done by local polynomial estimation. Here, the focus is on the

two simplest cases of local constant and local linear estimation. In the case of

local constant for everyx only an intercept is estimated. In the case of local linear

estimation an intercept and a slope parameter are calculated by solving the resulting

minimization problem which is a weighted local least squares problem

n
∑

i=1

[Yi −a(xc)− (Xc
i −xc)⊤b(xc)]2K(·),
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while the “local” part is considered by the dependence of theparametersa andb

on continuous regressorsxc. Thus, the parameter estimation on the space of the

continuous regressors is weighted by all smoothed covariates.

The remaining problem is finding optimal values of the bandwidth vector

λ = (λ1, ...,λp)

which can be obtained in two ways. One possibility is minimizing the improved

Akaike Information Criterion for nonparametric methods of Hurvich et al. (1998)

which is given by

AICC = ln(σ̂2)+
1+ tr(B)/n

1−{tr(B)+2}/n

where

σ̂2 =
1
n

n
∑

i=1

{Yi − ĝ(Xi)}2 =Y′(I −B)′(I −B)Y/n.

ĝ(Xi) is the estimated nonparametric regression function andB is then×n hat ma-

trix including the kernel weights.

Alternatively, Li & Racine (2004) propose obtainingλ using a data-driven least

squares cross-validation approach, where the objective function

CV(λ) = n−1
n
∑

i=1

(Yi − ĝ−i(Xi))
2M(Xi)

is minimized while ˆg−i(zi) is the leave-one-out kernel estimator of regression func-

tion g, andM is a weighting function bounded between 0 and 1, usually set to M = 1

(see Li & Racine, 2004).

The inclusion and smoothing of discrete covariates is a milestone in the area of

nonparametric kernel density estimation. Basically offered for continuous variables

many problems could not be answered because in empirical samples there are usu-

ally also discrete covariates. Before Racine & Li (2004) propose their new method

there was only the so-called frequency approach for considering discrete data. Ap-

plying the frequency approach the sample is divided in cellseach with observations

offering the same combination of categories of the discretevariables. For every cell
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a single nonparametric kernel regression is estimated on the continuous covariates.

Obviously, even a small number of discrete regressors may produce so many cells,

that there are only a few or even no observations in several cells. The advantage

of a generalized product kernel is that due to smoothing of continuous and discrete

data always all observations are used for the estimation andso reliable information

even about observations from sparsely populated cells is obtained.

Furthermore, the use of a nonparametric approach involves an important advantage

in comparison to MRW’s parametric regression. The nonparametric model allows

all kinds of interactions between variables, both linear and higher order.

3.2.2 Testing for parametric misspecification

Thus there are arguments from an economic perspective for choosing nonparametric

models, but in which cases should nonparametric models be taken into account from

an econometric perspective?

When is the adaption of the more complicated nonparametric model beneficial?

First hints come from the estimated bandwidths. If they propose nonlinear influ-

ences of several variables, this is a hint for a parametric misspecification. This can

be tested with a formal test for parametric misspecificationproposed by Hsiao et al.

(2007) (hereafter Hsiao-Li-Racine-test).

The main idea of the test is that if the parametric specification is right, the con-

ditional mean of the response variable is equal to the linearspecification. This is

equivalent to the null hypothesis that the conditional meanof the residuals is zero

H0 : E(ui |Xi) = 0.

The population test statistic for the null is given by

I = E[uiE(ui |Xi) f (Xi)]≥ 0

and it is zero if the null is true. Deriving the sample test statistic E(ui) is replaced by

the sample mean of the residuals and the conditional mean of the residuals weighted
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by the density of the regressors,E(ui |Xi) f (Xi), is estimated by a leave-one-out ker-

nel estimator. Thus, the sample test statistic is given by

In =
1
n

n
∑

i=1

ûi





1
n−1

n
∑

j=1, j 6=i

û jK(·)





The distribution ofIn is obtained by resampling. Therefore, a bootstrap sample, the

related residuals and the test statistic is computed a largenumber of times. The

test decision is as follows: Reject the null if the test statistic is larger than theα-

percentile of the resampled distribution.

There are a lot of set-up-parameters which can be changed, e.g. the types of kernel

functions for different kinds of variables, the method for computing the bootstrap

sample and bandwidth selection and so on. Haupt et al. (2010)point out that the

test may be sensitive w.r.t. the test setup. Thus, differentsettings should be used to

check potential sensitivity of a decision.

What does it mean if the parametric specification of classicalβ-convergence is re-

jected? The classical analysis is derived from economic theory and thus, the implicit

linear model which is assumed to be adaptive for all convergence data. If the lin-

earity assumption is rejected also the convergence conceptis invalid. In this case

other convergence concepts should be used which are adaptive for nonparametric

methods.

3.3 Heterogeneity

Another main point of criticism of the classical convergence regression is that there

are several forms of neglected heterogeneity causing invalid estimation results. First,

heterogeneity arises from the conditional distribution ofthe regressand. Second,

heterogeneity may occur in the cross-sectional dimension meaning countries behave

heterogeneously. Third, the problem can also be caused by changes over times.

Addressing the first issue “Canarella & Pollard (2004) apply linear quantile regres-

sion [using the by human capital extended growth model (and not MRW’s original
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data)] and find parameter heterogeneity between lower and higher quantiles of the

income distribution for all explanatory variables but homogeneity inside the lower

and higher quantiles. Ram (2008), focusing on conditionalβ- convergence, finds

heterogeneity in convergence rates (and other explanatoryvariables) for bottom and

top quartiles, but does not back up his results with a formal test”7. Mello & Perrelli

(2003) test for location shift in different growth models. In contrast to recent con-

tributions identifying heterogeneity as the primal sourceof misspecification, the

formal and graphical analysis of Haupt & Petring (2011) doesnot reveal evidence

for heterogeneity in a parametric and nonparametric quantile regression framework.

Several works cover the latter two issues. Using panel data for 102 non-oil-producing

countries Lee et al. (1997) allow for individual convergence coefficients and find

considerably different coefficients. “Masanjala & Papageorgiou (2004) use nonlin-

earities in the production function to verify and explain potential parameter hetero-

geneity. The nonlinearity is introduced by using a Constant-Elasticity-of-Substitution

specification instead of Cobb-Douglas as the latter is essential for the linearity of

the model. Alfo et al. (2008) test for cross-country heterogeneity by using bivariate

mixture models”8. Furthermore, Phillips & Sul (2003, 2007a,b, 2009) developa log

t regression for analyzing convergence of countries or regions under heterogeneity.

For the case of divergence they also propose a clustering algorithm for searching

convergence clubs instead of assuming “global” convergence.

In the following subsections two methods for capturing different kinds of hetero-

geneity are described. In Subsection 3.3.1 quantile regression is presented. The

method is proposed by Koenker & Bassett (1978) and allows for detecting location

scale effects of the conditional distribution of per capitaincome growth rates. Sub-

section 3.3.2 describes the logt regression and a clubbing algorithm of Phillips & Sul

(2003, 2007a,b, 2009) considering heterogeneity by allowing for individual effects

and individual technology levels.

7Cited from Haupt & Petring (2011).
8Cited from Haupt & Petring (2011).
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3.3.1 Location scale effects of growth rate distribution: quantile

regression

For analyzing heterogeneity over the conditional distribution of the growth rates

quantile regression of Koenker & Bassett (1978) is useful. Aswell as OLS, with

quantile regression the relationship between the growth rate of per capita income

and explanatory variables can be analyzed. The difference between both methods

is the aspect of the conditional distribution of the growth rates which is estimated.

OLS estimates the conditional mean of the dependent variable while quantile re-

gression estimates one conditional quantile or a set of conditional quantiles. Thus,

instead of only one characteristic the whole conditional growth rate distribution can

be estimated. The estimated coefficients for individual quantiles can be compared

and checked for heterogeneity. A location scale effect meaning that the slope param-

eters of the individual conditional quantiles differ, indicates this kind heterogene-

ity across the growth distribution. In this case the conditional quantiles should be

analyzed separately because different regression models are assumed for different

quantiles. After describing quantile regression generally a procedure for detecting

location scale effects is discussed at the end of this subsection.

Quantile regression uses another loss function than OLS. The idea of regression

analysis is that the regression line should be estimated such that the expected “loss”,

the weighted differenceu between the observed and estimated values (u = y−
E[y|X]), is minimal. The loss function gives the weights for different errors. OLS

is based on a symmetric and quadratic function of the formL(u) = u2 proposed by

Legendre and Gauss about 1800. Using the quadratic loss, theoptimal predictor for

y is its expectationE(y). E(y) also minimizes the mean squared error.

However, quantile regression is based on an asymmetric absolute loss function

L(u) =







(1− τ)|u|, if u< 0

τ|u|, if u≥ 0
.

The optimal predictor in this case is theτ-th quantile ofy.
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In which situations does quantile regression provide additional benefit? From the

discussion about loss functions it can be seen that it is the sample mean which

minimizes the quadratic loss function. For computing the mean the values of the

observations are used.. Thus, the instrument is highly sensitive to outliers iny. On

the other hand quantile regression estimates the median or other quantiles, which

are not sensitive to outliers iny because for computing quantiles the ranks of the

observations are used instead their values. The main advantage of this method is

that it allows estimating the whole distribution instead ofa single characteristic of

the dependent variable.

The minimization calculus of quantile regression is

min
β∈Rk

n
∑

i=1

τ|yi −x′iβ|++(1− τ)|yi −x′iβ|−, (3.2)

where |yi − x′iβ|+ is a notation for positive residuals and|yi − x′iβ|− denotes the

negative residuals. Because of the absolute values there is no closed-form solution,

but it can be transformed into linear programming.

This yields the minimization problem

min
(β,u,v)∈Rk×R

2n
+

{τu+(1− τ)v|Xβ+u−v= y}, (3.3)

whereu is a (n×1)-vector with the positive parts of the residuals,v is a (n×1)-

vector with the negative parts of the residuals andX is the(n×k) regression design

matrix. Thus the sum of the absolute residuals is minimized,whereas the positive

parts are weighted withτ and the negative with(1− τ) under the constraint of the

validation of the regression function. The solution of the minimization problem can

be found by using a simplex or interior-point algorithm (seeKoenker, 2005). The

optimal vector of parameters is denoted withβ̂(τ;y,X).

In addition to already described advantages, quantile regression comes with another

characteristic, namely the equivariance properties ofβ̂(τ;y,X). Equivariance means

that shift or scale transformations on one or more variableshave no fundamental

influence on the interpretation of the estimates. The basic properties are:
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(i) β̂(τ;ay,X) = aβ̂(τ;y,X)

(ii) β̂(τ;−ay,X) =−aβ̂(1− τ;y,X)

(iii) β̂(τ;y+Xγ,X) = β̂(τ;y,X)+ γ

(iv) β̂(τ;y,AX) = A−1β̂(τ;y,X)

The properties (i) and (ii) constitute some kind of scale equivariance. However,

property (iii) indicates a shift equivariance and (iv) is called equivariance to repa-

rameterization of design.

There is another, much more fundamental property which is elementary to under-

stand the real possibilities of quantile regression. This is the equivariance to mono-

tone transformations,Qh(Y)(τ) = h(QY(τ)), whereh(Y) is a nondecreasing function

on R. Hence, the quantiles of a transformed random variable are the transformed

quantiles of the untransformated variable. This is a very important property which

the mean does not have in general.

Under homoscedasticity conditional quantiles lie parallel to each other and thus

have the same slope parameter. In this case differences in covariates shift the quan-

tile curves but they do not change their shape or scale. Thus,there is parameter

homogeneity over quantiles and analyzing the median effectis sufficient.

Testing the equality of slope parameters Koenker & Bassett (1982) propose a Wald-

test. The test allows for linear restrictions of the vector of slope parametersβ =

(βτ1, ...,βτm) which are summarized in the matrixRwith rankq. The null hypothesis

has the form

H0 : Rβ = r,

wherer is a vector of constants. The test statistic is given by

T = (Rβ̂− r)′(AVar(Rβ̂− r)−1)(Rβ̂− r)∼ χ2
q.

If the null hypothesis is rejected, heterogeneity over the growth rate distribution is

assumed.
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3.3.2 Individual effects and technology levels

This subsection is retained from Haupt & Meier (2011).

Phillips and Sul (2003, 2007a,b, 2009), hereafter PS, arguethat classical conver-

gence analysis based on (2.23) is prone to deliver inconsistent results and invalid

convergence tests due to potential heterogeneity in the convergence parameterβ

over time, countries, and individual technology levels. PSshow that due to omitted

heterogeneity the error term in (2.23) includes endogenousvariables and variables

which are correlated with dependent and independent variables. As a remedy PS

suggest to enable a variation of the transition parameter and growth rate over dis-

tricts and time9. They propose a nonlinear dynamic factor model

log(yi,t) = ai,t +xi,tt =

(

ai,t +xi,tt
µt

)

µt
def
= bi,tµt , (3.4)

wherexi,t is an individual technology process parameter,bi,t is the idiosyncratic

time-varying element andµt a common trend factor measuring global technological

progress.

Thenbi,t can be interpreted as the transition path of economyi to the global growth

pathµt and is calculated as the log per capita income of districti in periodt. By

eliminating the global growth component, the relative transition path

hi,t = log(yi,t)/N−1
N
∑

i=1

log(yi,t) = bi,t/N−1
N
∑

i=1

bi,t

measures the transition element for economyi in period t in relation to a cross-

section average. Then global convergence — all countries have the same fraction

of global per capita income — is assumed to be present if

hi,t → 1, for all i, ast → ∞. (3.5)

9Note that heterogeneity of parameters in (2.22) may also occur across the conditional distri-

bution of the growth ratesgit . Haupt and Petring (2011) apply quantile regression estimation and

test but do not find empirical evidence in favor of such types of heterogeneity using the data from

Mankiw et al. (1992). Hence this issue will not be pursued here.
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The logt regression of Phillips and Sul (2007a,b, 2009)

log(H0/Ht)−2log(log(t)) = a+ γ log(t)+ut (3.6)

now tests (3.5) using the mean square transition differential Ht =
1
N

∑N
i=1(hi,t −1)2.

In case of global convergenceHt → 0 as t → ∞. The authors show thatHt ∼
A/log(t)2t2α ast → ∞, whereA ≥ 0 is a constant andα equals the rate of cross-

section transition variation dissolving over time. Under the null hypothesis the re-

gressor diverges to∞ and under the alternative the regressor diverges to−∞. A

negative value, however, does not necessarily imply that there is divergence but that

there may exist some convergence clubs instead of global convergence. Using a

one-sided t-test we test the null hypothesis ofγ ≥ 0.

Instead of global convergence there could be some convergence clubs. To identify

convergence clubs PS use a clubbing algorithm consisting offive steps

<1.> (Cross-section ordering): Order countries according to the log(yi,t) in final period.

<2.> (Form a core group of k∗, 2≤ k∗ < N, countries):

<2.1> Find the first two highest successive countries for which the log t test statistic

tk ≥ −1.65. If the condition does not hold for any k = 2, drop the country with

highest log(yi,t) and restart the procedure with the remaining countries.

<2.2> Start with the k = 2 countries identified in 2.1, increase k proceeding with the

subsequent country from order, run the log t regression, and calculate tk. Stop

increasing k if convergence hypothesis fails to hold (i.e. tk < −1.65). Take

the k∗ countries with the highest test statistic from all k countries satisfying the

convergence hypothesis for core group.

<3.> (Sieve the data for new club members):

<3.1> Form a complementary core group with all remaining countries.

<3.2> Add one country at a time from the complementary core group to the core group,

run the log t regression, add the country to a club candidate group if the conver-

gence test statistic is greater than a critical value c∗ = 0. Form a convergence

club of the candidate group and the core group.
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<4.> (Recursion and stopping rule): Form a second group from all countries which fail the

sieve condition in step 3 and run log t regression. If the convergence hypothesis

cannot be rejected, all remaining countries form a new convergence club. Otherwise,

for the remaining countries start again with step 2 for finding a new k∗.

<5.> (Club merging): Run log t regression for all groups of subsequent clubs. Merge those

clubs fulfilling the convergence hypothesis commonly.

Composing the clubs in accordance to this algorithm does not ensure that the con-

vergence hypothesis holds for each respective club. PS (2007) are aware of this

problem and propose to increase the critical valuec∗ for raising the power of the

corresponding test. Such a remedy, however, does not work ingeneral, for instance

for the German district-level data discussed in Subsection5.2.2 or when we replace

the initial cross-section ordering rule by an (equally plausible) alternative. Thus,

we may want to augment step <3.> of the algorithm in a way such that convergence

is assured using a data-based criterion. A straightforwardmethod is to search for

the largest group size for whose respective members convergence holds. In a first

step we leave one country out at a time and run a logt regression. We form a con-

vergence group from the countries with highest test statistic greater than -1.65. If

there is no group of countries with test statistic higher than -1.65 we leave out two

countries at a time in a second step and so on. If there is more than one conver-

gent combination of countries at one step, we choose the combination with highest

test statistic. The advantage is that we get the largest group of countries satisfying

convergence without the existence of path dependence. The disadvantage is that

for inappropriate constellations of countries caused by high sample sizes or spe-

cial sorting methods the computing time increases exorbitantly. Thus, we propose

another method which we include in the clubbing algorithm as3.3.

<3.3> If the countries from core and candidate group hold convergence hypothesis com-

monly, go to step 4. If not, form a convergence club with the candidate country with

highest test statistic and the core group. Add one candidate country at a time to con-

vergence club, run log t regression and add the country with highest test statistic to
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the convergence club. Continue adding new countries to the convergence club until

no further candidate country fulfills convergence hypothesis.

In all empirical applications discussed in Section 5.2 we find that the shape of ob-

served points in the logt regression (3.6) to be parabolic and convex for convergence

clubs. This is due to the construction of the regressor. Under the null hypothesis

Ht converges to zero ast → ∞ as a monotonically decreasing convex function. Cal-

culatingH0/Ht inverts this shape into a monotonically increasing convex function.

Taking the logarithm damps the curvature or even linearizesthe curve. The sec-

ond part of the regressor 2 log(log(t)) is a monotonically increasing concave curve.

Subtracting this second concave part from the first convex/linear curve leads to a

parabolic and convex trajectory. Thus, under the null we expect a nonlinear regres-

sion relationship. Those results suggest that the interpretation of the logt regression

should be handled with care.

3.4 Interaction of nonlinearity and heterogeneity

Currently there are only two papers directly linking the problems of heterogeneity

and nonlinearity in classical growth regressions.

Using parametric quantile regression Haupt & Petring (2011) analyze if there is het-

erogeneity over the conditional distribution of the regressand in the classical growth

model applied to MRW data. In a second step they check for nonlinearities of re-

gression quantiles using nonparametric quantile regression. In contrast to recent

contributions identifying heterogeneity as the primal source of misspecification, a

formal and graphical analysis does not reveal evidence for heterogeneity.

Haupt & Meier (2011) address another form of heterogeneity,namely heteroge-

neous behavior over time and countries. Using the algorithmof Phillips & Sul

(2007a,b, 2009) they first group countries or regions in clusters with homogeneous

members. In a second step they estimate a classical growth regression nonpara-

metrically while considering the heterogeneity by capturing a variable with club
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information.

In the following subsections both methods, nonparametric quantile regression and

the two-step procedure of Haupt & Meier (2011), are described.

3.4.1 Nonlinear location scale effects: nonparametric

quantile regression

As mentioned in Subsection 3.3.1, quantile regression may be preferred to classical

mean regression in several situations because the method isrobust to outliers and

it offers a broad overview of the whole conditional distribution of the regressand

instead of a single point, the conditional mean. Thus, quantile regression allows for

a detection of heterogeneity over the conditional distribution.

However, linear quantile regression is not valid in the caseof a nonlinear rela-

tionship between regressand and covariates. Thus, Li & Racine (2008) propose

a method for estimating conditional quantiles nonparametrically. In contrast to

Koenker & Bassett (1978) the authors avoid to determine conditional quantiles by

a check function given in Equation (3.2). They obtain the conditional quantile by

inverting the conditional CDF ofy givenx at the selected portion. Thus, the condi-

tional quantile is given by the empirical distribution function (EDF)

qτ(x) = F−1(τ|x),

whereF is the conditional CDF ofy givenx which can generally be estimated by

F̂ =
1
n

n
∑

i=1

I(Yi ≤ y), (3.7)

whereI is an indicator function which is equal to 1 ifYi ≤ y and otherwise 0. Al-

ternatively, the distribution functionF may be estimated by a weighted version of

Equation (3.7). Li & Racine (2008) propose a weighting function which is equal to

their generalized product kernel. The weighted version ofF̂ is given by

F̂ =
n−1∑n

i=1 I(Yi ≤ y)K(Xi ,x)
n−1

∑n
i=1K(Xi ,x)

,
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whereK is a generalized product kernel.

In the case of a continuous dependent variable it can also be smoothed. Therefore

another estimator of the conditional CDF ofy is used

F̂ =
n−1∑n

i=1G((y−Yi)/h0)K(Xi ,x)
n−1

∑n
i=1K(Xi ,x)

,

whereG is the CDF of the underlying kernel function for continuous variables and

h0 is the bandwidth for smoothingy.

For bandwidth selection Li & Racine (2008) propose a data-driven procedure. The

optimal bandwidth vector is obtained by minimizing the cross-validation objective

function

CV =
1
n

n
∑

i=1

Ĝ−i(Xi)s(Yi,Xi)

n−1
∑

i = 1nK̂−i(Xi)2
− 2

n

n
∑

i=1

ĝ−i(Yi,Xi)s(Yi ,Xi)

n−1
∑

i = 1nK̂−i(Xi)
,

whereĜ−i, ĝ−i andK̂−i are leave-one-out estimators ofG, g andK ands is non-

negative weighting function.

3.4.2 Nonlinear modeling with convergence clubs: a two-step

procedure

This subsection is taken from Haupt & Meier (2011).

We want to apply a classical convergence analysis in the sense of Mankiw et al.

(1992) while allowing for data-driven heterogeneity and nonlinearity. Thus, in a first

step, we assign the regions to clubs using the algorithm discussed above. In a second

step we include a categorical club variableclubi in (2.22) via thej dummy variables

clubi, j which are equal to 1 if countryi is in club j. The resulting baseline model

allows to estimate a regression lineδ j +π j log(yi,0) for every clubj, 1≤ j ≤ m, i.e.

υi =
m
∑

j=1

δ jclubi, j +
m
∑

j=1

π j log(yi,0) ·clubi, j +ui,t . (3.8)

In contrast to the classical convergence model (2.22), the baseline model (3.8) al-

lows for a considerable degree of heterogeneity. However, there are very small
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clubs for several applications and thus the interpretationof the parameters for those

clubs should be handled with care. The main point of criticism, however, is that

this model may suffer from potential misclassification of the club composition (see

Subsection 3.2.2). Furthermore, the model does not allow for further nonlinearities.

In order to address the problem of potential nonlinearitieswe can employ a fully

nonparametric alternative (see Subsection 3.2.1)

υi = g(log(yi,0),clubi)+ui,t . (3.9)

This approach allows to estimate not only club-level effects — which Durlauf and

Johnson (1995) interpret to represent averages of the underlying individual effects

for each country — but further nonlinearities.

In contrast to model based clubbing algorithms (e.g. Juárezand Steel, 2010), the

method of Phillips and Sul (2007a,b, 2009) discussed in Section 3.3.2 does not pro-

vide estimates of the misclassification probabilities for each club member. A first

step towards exploring potential classification error is tocheck for hints on the ex-

istence of positive error probabilities by inspecting whether the “selection of core

groups is robust to initial data orderings” (see Phillips and Sul, 2009, footnote 11,

p. 1170). Considering the problem of an unknown true orderingrule (see Canova,

2004) we try different concepts in step<1.> and check whether considerable dif-

ferences in club composition are obtained. This indicates large uncertainties which

should be addressed in empirical convergence analysis.

As alternatives to the amount of final period income (final ordering), hereafter de-

noted as ordering rule (I), as used by Phillips and Sul (2009)we employ the follow-

ing. (II) Order corresponding to the average income of all years (average ordering)

for capturing potential time series volatility. Phillips and Sul (2007) propose to

average over the last fraction of the sample to ensure a higher influence of recent

periods. (III) Another alternative is ordering according to the difference between

final period income and income in first period, capturing the income change over

time (difference ordering). (IV) Finally, combining the ideas on the final period and

capturing volatility, a decreasing weights ordering is employed.
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We note that in all of our applications discussed below the use of different ordering

rules leads to considerable differences in club sizes and composition, respectively.

For evaluating the empirical performance we compare the out-of-sample perfor-

mance of the convergence regression models for ordering rules (I)-(IV). As an a

posteriori selection criteria for ordering rules we run a cross-validation (e.g., Haupt

and Petring, 2011) and choose the model with the smallest average squared error of

prediction.

While there is no obvious remedy for the misclassification problem in the paramet-

ric model (3.8), the nonparametric model (3.9) may offer one. Data-driven band-

width selection for the club variable deals with the question of uncertainty of club

composition. Using the kernels proposed by Racine and Li (2004), the optimal es-

timated bandwidth is bounded between 0 and 1. A bandwidth of approximately

0 means that the influence of this variable is such that for estimating the function

(3.9) for a club only observations from this club are used. This occurs when the

functional form is sufficiently different with respect to the different clubs or if the

observations show sufficiently different convergence behavior. We can interpret this

in the sense that there is a rather low probability of misspecification, thus the clubs

are well chosen. With increasing values of the bandwidth theerror probability for

club membership rises. If the bandwidth is considerably greater than 0, observa-

tions from all clubs are used to estimated regression functions for each club and

thus, there is no influence of the variable. This suggests that there is evidence in fa-

vor of an only weak or even non-existent club structure. Thus, the bandwidth of the

categorical club variable serves for an a posteriori quantification of the classification

(and underlying error probabilities) as a whole.

By using the nonparametric approach including the club variable we obtain individ-

ual influences of each observation while considering the uncertainty with respect

to club membership, instead of a single fixed convergence regression line for each

club in the parametric approach. The club-structure on the other hand has the ad-

vantage of being backed up by economic theory. Although it may produce a faulty

number and/or composition of clubs, the simultaneous smoothing of the continuous
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and the categorical variable is capable of alleviating thisproblem. In summary we

include heterogeneity in the sense of Phillips and Sul, reduce uncertainty of club

composition, and capture potential nonlinearities, and hence are able to address the

main points of criticism of convergence regressions in recent literature.

Given a set of data the initial problem a researcher faces is choosing either a para-

metric models such as (3.8) or a nonparametric model such as (3.9). In the context of

mixed continuous and categorical covariates as in the present example this problem

can be addressed by applying the test of Hsiao et al. (2007) (hereafter HLR test),

which is based on the generalized product kernel estimator proposed by Racine and

Li (2004) discussed in Subsection 3.2.1.

Using the same nonparametric configurations used for the nonparametric regression

the HLR test checks if the parametric null model (3.8) is correctly specified. When-

ever the HLR test rejects the null we apply the fully nonparametric model, enjoying

the benefits discussed in the previous sections.

As the HLR test employs the bandwidths of the nonparametric regression, we are

able to assess the error probabilities already after applying the test. Thus, if the

test does not reject the parametric null hypothesis, we inspect the bandwidthλk

of the cluster variable: Ifλk is close to zero, the parametric and nonparametric

model work analogously and we may use the parametric model because there are

no hints for club misclassification. If the bandwidthλk is greater than zero positive

classification errors have a higher probability. In this case, however, we can still

estimate a nonparametric model for the theoretical price ofefficiency loss compared

to the parametric model.

3.5 Spatial association

Another important point of criticism for analyzing convergence data can be seen in

the assumption of spatial independence of economies.

Considering technological interdependencies between economies and knowledge
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spillover effects Ertur & Koch (2007) present a spatially augmented Solow model

(see Subsection 2.1.3). For the Non-Oil countries of MRW theauthors find a sig-

nificant influence of spatial externalities for a period from1960 to 1995. Further-

more, Moreno & Trehan (1997) test for different kinds of spillovers between neigh-

boring economies. Using cross-country data they find spillovers in absolute and

conditionalβ-convergence regressions. Applying three tests for spatial autocorrela-

tion Niebuhr (2001) identifies spatial autocorrelation for71 of the 75 West German

planning units between 1976 and 1996 and proposes a spatial regression model to

address this problem for absolute as well as conditional convergence. Kosfeld et al.

(2006) find spatial correlation up to order three in 180 labormarket regions in Ger-

many, defined by Eckey (2001) for the period from 1992 to 2000.Using a spatial

ARMA model they identify unconditional and conditionalβ- andσ-convergence for

east German regions after 1990 but onlyβ-convergence for west German regions.

Hence, east German regions seem to catch up. Eckey et al. (2007) use geograph-

ically weighted regression to proveβ-convergence for German labor productivity.

For the same regions as Kosfeld et al. (2006) they find different convergence rates

for several regions. In contrast to most of the other publications the authors find an

emerging gap between the south and the north instead of east and west. Varying

convergence coefficients leave considerable doubt on the prevalent global conver-

gence model.

The analysis in this thesis follow the ideas of Ertur & Koch (2007). In Subsection

3.5.1 different spatial models are described. Subsection 3.5.2 discusses different

kinds of weighting matrices and Subsection 3.5.3 presents testing procedures for

spatial dependence.

3.5.1 Spatial patterns in convergence models

Basically, there are three forms of spatial dependence whichshould be taken into ac-

count (see Elhorst, 2010). First, there may exist endogenous spatial effects meaning

that the dependent variable of an economy depends on the value of the dependent
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variable of the other economies. Second, exogenous effectsof the explanatory vari-

ables of the other economies are of significance. Third, there are correlated effects

of unobserved lagged covariates yielding spatial correlation.

Capturing the case of endogenous effects, the so-called spatial autoregressive pro-

cess (e.g.Whittle, 1954) is used. The name follows its time series pendant where the

response variable depends on its own past values. In the caseof geographical data it

depends on neighboring geographical units. This fact is considered in the first order

spatial autoregressive process given by

yi = ρ
n
∑

j 6=i

wi, jy j +β1xi,1+ ...+βkxi,k+ εi ,1≤ i ≤ n, (3.10)

with εi ∼ N(0,σ2). The unknown parameterρ is assumed to measure the strength

of the spatial dependence. The spatial parameter is estimated via Maximum Like-

lihood estimation. The term
∑n

i=1wi, jy j is denoted as spatial lag, which is a linear

combination of neighboringy-values. The weightswi, j (can) vary for every neigh-

boring region and can be summarized to an×n matrix of spatial weights,W, see

Subsection 3.5.2 for a thorough discussion. Thus, we can rewrite Equation (3.10)

for all i in vector notation as

y= ρWy+Xβ+ ε, (3.11)

with ε ∼ N(0,σ2I).

A second spatial model is the spatial error model which used if correlated effects in

the error term occur. This model is given by a linear model with a spatial autore-

gressive process in the error term

y = Xβ+u (3.12)

u = ζWu+ ε. (3.13)

The formulation in Equation (3.13) for the spatial error model is analogous to the

spatial lag model in Equation (3.10). For notational simplicity all spatial weight

matrices are denoted asW. The spatial error model is the cross-section counterpart
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of a moving average process in a time series context. Here, the dependent variable

is not explicitly affected by spatially lagged dependent orexplanatory variables, but

there are other spatial effects which are correlated with the dependent and explana-

tory variables. These effects should be considered, otherwise OLS-estimators are

biased due to omitted variable bias.

Modeling spatial error and spatial lag models as well as spatial effects of the ex-

planatory variables of other economies, the spatial Durbinmodel is used (see

Lesage & Pace, 2009)

y= ρWy+Xβ+WXθ+ ε. (3.14)

Spatial lag and spatial error are nested in the spatial Durbin model and obtained

wheneverθ = 0 (spatial lag) orθ =−ρβ (spatial error). Thus, the estimators of the

spatial Durbin model are unbiased even if the true GDP is spatial lag or spatial error

(see Elhorst, 2010). The spatial Durbin model is used for estimating the spatial

augmented Solow model from Subsection 2.1.3 because it includes spatial lags of

dependent and explanatory variables.

3.5.2 Influence of neighboring economies

An important issue in the context of spatial modeling is the definition of the weight-

ing matrixW as it determines direction and concrete forms of the spatialeffects and

all the results of the analysis depend onW.

For defining the weighting matrixW mainly neighbor or distance matrices are used

(e.g Lesage & Pace, 2009; Ord, 1975). The elementswi, j of a neighbor matrix are

defined as

wi, j =











1, if i and j are neighbors andi 6= j

0, otherwise
. (3.15)

while two regions are called neighbors if they share a commonborder. This classifi-

cation is not without difficulties as for example, islands need special rules. Usually

the main diagonal of the weighting matrix is set to zero, because an economy is not
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its own neighbor per convention (see Lesage & Pace, 2009).

An alternative definitionW is a distance matrix, where the weights may depend on

the distancedi, j between economyi and j as

wi, j = f (di j ),

where usuallyf (di, j) = 1/
√

di, j (see Bivand et al., 2010). Thus, economies that

are far apart impact smaller than neighbors. There are several points to consider

for measuring the distance between two economies. First, the reference point for

measuring the distance has to be defined. This reference point could be chosen on

the basis of geographical aspects (e.g. middle of the region), economical aspects

(e.g. point with highest GDP), or political aspects (e.g. coordinates of the capi-

tol). Second, the unit of distance measurement has to be chosen (e.g. geographical

coordinates, kilometers). Furthermore, the fact that the economies are arranged

on the earth has to be considered, thus on a curved surface andnot in a plane.

Ertur & Koch (2007) propose using the great-circle distancewhich is the shortest

distance between two points on the earth surface quantified walking over the earth’s

surface instead of going through the earth’s interior.

The difference between neighbor and distance matrices is that in neighbor matrices

most entries are zero as usually a region only has few neighbors, while in distance

matrices all entries are strict positive. For an easier interpretation the weighting ma-

trix often is standardized. Therefore all entries are divided by the corresponding row

sum, yielding rows that sum to one for the standardized weighting matrix. Hence,

average spatial weights are obtained w.r.t. each economy, that can be interpreted

straightforward. Most testing procedures for spatial dependence (discussed in the

subsequent subsection) assume those row-standardized matrices.

3.5.3 Testing for spatial association

There are several tests for different kinds of spatial association. A general check

for spatial association is Moran’sI proposed by Moran (1950). The test does not
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assume a certain alternative model, it checks for general spatial correlation given a

fixed spatial structure of the row-standardized weighting matrix W. Thus, Moran’s

I may be interpreted as the spatial pendant to the classical correlation coefficient

Pearson’sr and is usually calculated for OLS residuals. The test statistic

I =
N

∑

i

∑

j wi, j

∑

i

∑

j wi, j(εi − ε̄)(ε j − ε̄)
∑

i(εi − ε̄)2

measures the correlation between the residuals and the spatially lagged residuals by

dividing their covariance by the residuals variance multiplied with a variance cor-

rection factor given in the first fraction. The idea of Moran’s I can be visualized

by the so-called Moran scatter plot (see Anselin, 1995) which is displayed in Fig-

ure 3.1. The variable of interest,x, is plotted against its spatial lags. The dashed

lines display the means of the variables such that four quadrants (I, II, III, IV) are

obtained. Assuming no correlation the points should be equally dispersed over all

quadrants. If there is a positive correlation there are morepoints in II and III than

in the other quadrants meaning that an observation which is higher (lower) than the

mean inx is also higher (lower) than the mean of the spatially laggedx on average.

In this case a positive slope is obtained, when a regression line (the solid line) is

estimated. Vice versa, a negative correlation means that there are more points in I

and IV. The plot also allows for a visual outliers detection.

The remaining question is, whether the correlation is significant. Thus, the expec-

tation of Moran’sI under the null of no spatial correlation is needed which is given

by E(I) =−1/(N−1) (see Elhorst, 2010). The corresponding test hypotheses are

H0 : I =
−1

N−1
vs. H1 : I >

−1
N−1

.

Transforming the test statistic to standard normal distribution the test is easily done.
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Figure 3.1: A Moran Scatter plot example
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There are other tests, where a specific spatial model is underthe alternative. Using

the Lagrange Multiplier (LM) tests proposed by Anselin (1988a,b) different spatial

models can be compared in classical OLS framework. Generally, a spatial model

with a spatial lag and spatial errors is assumed

y= ρWy+Xβ+u

u= ζWu+ ε, (3.16)

where it is assumed thatε ∼ N(0,σ2). There are four models nested in this general

spatial model.

i) ρ = 0 andζ = 0, y= Xβ+ ε (simple linear regression model)

ii) ρ 6= 0 andζ = 0, y= ρWy+Xβ+ ε (spatial autoregressive model)

iii) ρ = 0 andζ 6= 0, y= Xβ+(I −ζW)−1ε (spatial error model)

iv) ρ 6= 0 andζ 6= 0, y= ρWy+Xβ+(I − ζW)−1ε (spatial autoregressive

and spatial error model)
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Starting with the most restrictive model (classical OLS) inH0, it can be tested

whether the simple linear regression model (i) is preferredto one or more of the

models (ii), (iii), and (iv). Therefore, model (i) and the alternative of interest (ii),

(iii), or (iv) are estimated and the LM test statistic evaluated under the null is com-

puted

LM =
d2

I0
∼ χ2(q),

whereq is the number of restrictions.d = ∂ log(L) is the slope of the log likelihood

under the null andI0 is the Fisher Information. For the three tests Anselin et al.

(1996) develop robust alternatives where the details are skipped here. Analogously,

it can be tested whether the spatial Durbin model (3.14) is preferred to the spatial

lag or spatial error model. Therefore, the spatial Durbin model is estimated as alter-

native and compared by the LM test with the restricted modelsH0 : θ = 0 (spatial

lag) orH0 : θ =−ρβ (spatial error) (see Elhorst, 2010).
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Chapter 4

Level of aggregation

Primarily, growth and convergence modeling was developed for analyzing cross-

country data. The question of convergence is also interesting for lower aggregated

units within a country or a group of countries, e.g. between Federal states or dis-

tricts. There are a lot of publications in current literature about regional convergence

analysis (e.g. Sala-i Martin, 1996b) using the same concepts for different aggrega-

tion levels. Is this reasonable or differ the results for different levels of aggregation?

Barro & Sala-i Martin (2004) deal with this question.

β-convergence is divided into two approaches, absolute and conditionalβ-convergence

(see Subsection 2.2.1). Absolute convergence means that all countries tend to a

common steady state while applying conditional convergence assumes different

steady states for all or even most countries. That is to say conditional convergence

should be used if there are different steady states and absolute convergence is a

common steady state is assumed.

What is about different aggregation levels? The basic parameters for example tech-

nology, preferences and institutions are similar for highly disaggregated regional

units. Probably, there are differences but they are small. This implies that similar

or even equal steady states are assumed for disaggregated units. Thus, for highly

disaggregated data absolute convergence may be applied. Onthe contrary, different
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countries which are highly aggregated units (especially ifthey are not grouped, e.g.

in OECD members) offer big differences in the factors technology, preferences and

institutions. Thus, different steady states are assumed for highly aggregated units

and in this case conditionalβ-convergence may be applied.

Within this thesis units of different levels of aggregationare regarded and empiri-

cally analyzed. In the following sections the data with different levels of aggregation

used in Chapter 5 are described.

4.1 Cross-country data

On cross-country level the data sets which are analyzed in Chapter 5 are taken

from Penn World Tables. From this bases MRW and PS select different groups of

countries which are presented in the following subsections. The original data are

used in several of our applications in Chapter 5.

4.1.1 Data of MRW

The database of MRW includes countries, which are selected using the following

criteria. First, all considered variables must be available for the countries. Second,

oil production may not be the dominant industry in the countries. Furthermore

the authors divide the resulting countries into three overlapping groups. The first

group consists of the so-called “Non-Oil countries”. The members of this group

are 98 countries achieving the criteria mentioned above. The second sub-sample is

called “Intermediate countries”. Included in this group are the Non-Oil countries

with more than one million citizens. The name intermediate can be seen in the

sense of “representative” and that is the reason why very small countries (which

are not representative) are excluded. The subsample contains 75 countries. The

third subsample is called “OECD-countries”. This sample includes the 22 OECD

member states with more than one million citizens.
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The countries are listed in Table A.1 in the appendix.

The authors analyze both absolute and conditionalβ-convergence. Therefore, data

on standard of living, the saving rate, the growth rate of working-age population,

and human capital are needed.

For per capita income the real GDP per capita is taken. Using data from the Penn

World Table, Mankiw et al. (1992) take the real GDP in 1985 anddivide it by the

working-age population (15-64 years old) of the same year. The initial income is

developed in the same manner but the data come from 1960.

The saving rate is represented by the GDP share of investment(including govern-

ment investment) divided by 100. Taking investment rates asa measure for savings

rates is not obvious at first sight, but the idea is comprehensible. Investment rates

are the share of output which is used to replace or enlarge thestock of physical

capital. This investment can be interpreted as the part of output which is not spend

for the presence but which is invested or saved for future production. The data of

investment rate is derived from the Real National Accounts.

The growth rate of the working-age population is assessed bythe growth rate of

total population. The reason for that constraint is that no reliable data is available

for several developing countries. The average growth ratesover the period of 1965

to 1985, divided by 100, are used10. The depreciation rateδ is assumed to be

constant over time and countries, so thatδ = 0.05.

The last and most complicated variable is human capital. Mankiw et al. (1992) uses

the share of working-age population, which attends the secondary school. This vari-

able is compounded by two factors. First, there is the fraction of eligible population

(12-17) visiting a secondary school, which is taken from UNESCO (1988). Sec-

ond, this variable will be multiplied by the fraction of people from the working-age

population in school age (15-17). The authors discuss several issues which may be

critical applying such a construction of this variable.

10The data stem from the International Bank for Reconstruction and Development (1988).
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4.1.2 Data of Phillips and Sul

For estimating their dynamic factor model considering heterogeneity in form of in-

dividual effects and technology levels Phillips & Sul (2007a,b, 2009) only consider

one covariate, the per capita income over several years.

In Phillips & Sul (2009) the authors use data from Penn World Table Version 6.2.

The data set includes 152 countries from 1970 to 2003. The data are summarized in

Table A.2.

.

4.2 Intermediate aggregation level

The data of Japanese prefectures are used by Barro & Sala-i Martin (2004) for an-

alyzing absolute convergence. The data set includes the income in billion yen for

the 47 Japanese Prefectures from 1950 to 199011. The prefectures are displayed in

Table A.3 in the appendix.

4.3 Regional data

The data are taken from the regional data base of the statistics agencies of German

states and the federation http://www.regionalstatistik.de. For the initial per capita

income the GDP of the 439 districts and district-free citiesis divided by the number

of their citizens. This variable is available for the periodof 1995 to 2006. For

analyzing periods longer than one year, the initial income from the beginning of the

period is used. For analyzing convergence, the growth of percapita income is given

by the natural logarithm of the per capita income at the end ofthe period minus the

natural logarithm of the per capita income at the beginning of the period.

The population growth is calculated by the difference between the number of cit-

11The data are taken from http://www.columbia.edu/∼xs23/data.htm.
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izens in the final and the previous period divided by the number of citizens in the

previous period. Population data can be found for 1995 until2007. The constant de-

preciation rate of 5% is added to the growth rate and for longer periods the average

growth rates over all years in the period are used.

It is difficult to find data for the share of investment, as there is no data available for

every economic sector at regional level. Hence, the absolute investment in the man-

ufacturing industry is used as this is common in literature,compare Seitz (1995).

Here, the problem is that the share of investment is underestimated because only the

investment in the manufacturing industry is considered. Although this is one of the

largest sectors in most districts, it should be noted that the share of manufacturing

industry on the whole economy influences the value of investment.

Another problem in this context is that the investment data contain several missing

values because the statistics agencies are sworn to secrecyfor some districts and

times. Thus, the missing values have to be estimated. Therefore, the data are ana-

lyzed by year and federal state (Bundesland). The aggregatedvalues for the federal

states are available for every year. So, for every year and federal state, the available

values are added and the difference to the aggregate is built. Next, the resulting

difference is splitted on the missing districts in accordance to their proportions on

investment, which is estimated by proportions from available periods. In the fol-

lowing the estimation of several missing observations is described.

Table A.4 lists the missing values with regard to the associated federal state and

year. The last column additionally names the years in which all observations for

the missing values are available. These years are used to calculate the mean pro-

portion on investment for the missing districts. For example, in 1995 in Nordrhein-

Westfalen there are no observations for the district-free cities Köln and Leverkusen.

Thus, the differences between disaggregate and aggregate sums are splitted for these

two cities based on shares calculated for the years, in whichvalues of both cities are

available (here 1996, 2002, 2004, 2005). Using the mean share the rest investment

in 1995 is splitted on Köln and Leverkusen.
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In contrast to MRW and other studies about cross-country data using shares of stu-

dents visiting secondary school or years of schooling as measures for human cap-

ital recent contributions for regional data is followed. Founded in the compulsory

schooling in Germany both variables can not differ significantly over the districts.

Thus, human capital is measured by the number of employees liable for social insur-

ance, who finished professional school, university of applied science, or university.

Further this variable is divided by the number of all employees liable for social

insurance. This is common in literature (e.g. Seitz, 1995, Niebuhr, 2001).
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Chapter 5

Empirical applications

5.1 Assessing parametric misspecification in classical

growth regression

This section is taken from Haupt & Petring (2011). In this section we pursue the

criticisms of nonlinearity and heterogeneity, by analyzing MRW’s basic growth

model and using the original data set with onlyn= 75 observations. This contrasts

most of the empirical contributions, who use both extended models and extended

data sets or several waves of panel data. Our point is that theproposed robust and

nonparametric methods work very well even in this problematic data situation with a

small number of observations, where some of these observation have high leverage.

Our proposal is based on the tight connection of the issues ofnonlinearity and het-

erogeneity with the problem of potential non-robustness. The latter has been widely

neglected in the growth regression literature as argued by Zaman et al. (2001). The

use of full nonparametric regression is found to be the most adequate approach to

MRW’s classic growth model.

The remainder of the section is structured as follows. First, we briefly introduce

MRW’s basic growth model and carefully investigate the question whether there

is evidence for parametric misspecification by applying a recently proposed non-
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parametric test. In addition we calculate (the distribution of) goodness-of-fit mea-

sures and perform a robustness check via repeated sample splitting for both para-

metric and nonparametric models of conditional mean (Section 5.2.1). Second, we

investigate the heterogeneity across the growth distribution by applying both para-

metric and nonparametric quantile regressions (Section 5.2.2). Finally, we briefly

summarize our results (Section 5.2.3).

5.1.1 Original data analysis and parametric misspecification

For the following analysis we use MRW’s original data (displayed in their paper)

and first consider the classical growth model (see MRW, section I.)

l85i = β1+β2ligdpi +β3lpopi + εi , (5.1)

wherel85 is the logarithm of total output measured by the real GDP in 1985 divided

by the working-age population aged 15-64 years in the same year, ligdp denotes

the natural logarithm of the saving rate represented by the GDP share of investment

divided by 100,lpop is population growth measured as the natural logarithm of the

average growth rates over the period from 1965 until 1985 divided by 100, plus the

depreciation rate assumed to be constant at 0.05,i is an index of a cross-section of

countries, andε is an error term.

Ordinary least squares regression of this model —which still is the workhorse in

any growth econometrics text and works reasonably well withan R2 of 59.9%—

will serve as our parametric benchmark model. A thorough survey and discussion

of the literature following MRW on growth (and convergence)regressions can be

found in Durlauf & Quah (1999).

As a first check of potential misspecification we test this null hypothesis of a linear

parametric model (5.1) against an alternative of parametric misspecification, using

the test proposed by Hsiao et al. (2007), hereafter denoted as Hsiao-Li-Racine-test.

Employing the wild bootstrap variant of the test the p-valueis found to be equal

to 0.09. Thus, there is some but no decisive evidence againstthe null (see also
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Maasoumi et al., 2007 and earlier work in this vein of Durlauf& Johnson, 1995).

The p-values for alternative bootstrap methods are slightly lower.

A further criterion can be found by comparing the in- and out-of-sample perfor-

mance of the parametric model (5.1) and a nonparametric alternative. For the latter,

the linear parametric conditional mean assumption

E[l85i |ligdpi ,lpopi ] = β1+β2ligdpi +β3lpopi (5.2)

in (5.1) is replaced by a nonparametric conditional mean assumption

E[l85i |ligdpi ,lpopi ] = g(ligdpi ,lpopi), (5.3)

i.e. a general nonparametric specification of the systematic part with unknown re-

gression functiong(.). The first application of a fully nonparametric approach to

growth convergence regression is Maasoumi et al. (2007). Clearly, approach (5.3)

allows for a very general production technology without theneed to assume the

validity of a local linearisation (compare e.g., Masanjala& Papageorgiou, 2004).

The (pseudo) goodness-of-fitR̃2, measured by the squared correlation between ac-

tual and fitted response, shows the higher in-sample accuracy of the nonparametric

model12 compared to the parametric model with anR̃2 of 0.599 for the former com-

pared to 0.663 for the latter. This may be expected a priori due to the higher flexi-

bility and thus potential overfitting of the nonparametric model. To avoid the latter

problem we check the accuracy of both models with respect to their out-of-sample

performance employing a hold-out-sample strategy.

Thus, as a cross-validation, we randomly split the sample into a 90% sub-sample for

estimation, which is then used to predict the remaining 10% of the observations (see

Haupt et al., 2010, 2009 for a detailed description of cross-validation with nonpara-

metric regressions and R code). From the latter we can calculate the mean squared

12More specific, we estimate a local-linear model using the expected Kullback-Leibler cross-

validation proposed by Hurvich et al. (1998) and a second-Order Gaussian kernel. The bandwidths

for the covariateslpop and ligdp are 0.0934 (scale factor: 1.3497) and 1.1431 (scale factor:

5.2912), respectively. For all nonparametric computations in this paper we use version 0.30-1 of

thenp-package forR from Hayfield & Racine (2008).

68



5.1. ASSESSING PARAMETRIC MISSPECIFICATION IN CLASSICAL
GROWTH REGRESSION

error of prediction (MSEP) for both models (denoted as, sayM0 andM1), and the

relative MSEP as MSEPM0/MSEPM1. If this ratio is larger than one, then the non-

parametric model has a superior out-of-sample performance. This calculation step

is iterated 10,000 times and figure B.1 displays the empiricaldensity of the obtained

relative MSEP.

We observe that in approximately 73% of the cases the nonparametric model has a

smaller MSEP compared to the parametric model. In order to test13 for the statistical

significance of this result we employ the following hypotheses:

H0 : E[MSEPM0]−E[MSEPM1]≤ 0,

H1 : E[MSEPM0]−E[MSEPM1]> 0.

The resulting p-values support our former result and deliver clear evidence against

the null (see table A.7 below). Additionally, using the 10,000 observations of the

sub-sampling distribution we calculate the median (and lower/upper quartiles) of̃R2

for the nonparametric mean model with 0.663 (0.650; 0.676) and for the parametric

model 0.597 (0.582; 0.612), respectively.

All in all, these results cast considerable doubt on the correct parametric specifica-

tion of model (5.1). The estimated manifold of the nonparametric mean regression

displayed in figure B.2, nicely reveals the different forms oflocal nonlinear impacts

that the two covariateslpop andligdp exert on the response variablel85. These

findings are supported by the detailed results on cross-validations for all models

presented in this and the following section (see tables 3 to 5).

5.1.2 Robustness, heterogeneity, and conditional quantiles

A RESET specification test of Ramsey (1969) based on OLS estimation of (5.1)

cannot reject the null at any reasonable significance level,whereas specification

tests based on subsets of the data such as Harvey & Collier (1977) and Utts (1982)

clearly reject the null. The latter two, applied to the data ordered byl85, sug-

13We thank Jeff Racine for suggesting a formal test here.
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gest that functional form may vary across the distribution of the response variable.

Standard outlier diagnostics based on OLS residuals revealthat there are three ob-

servations (Venezuela, Tanzania, Zambia) with rather large residuals, which may

cast some doubt on the validity of MRW’s OLS results (see tableA.5). Zaman et al.

(2001) propose the use of Rousseeuw (1984) least trimmed squares (LTS) as a ro-

bust alternative. The robust estimator reported in table A.5 is calculated by apply-

ing the procedure outlined in Zaman et al. (2001). It discards only two observations

(Venezuela and Zambia), and leads to a considerable increase inR2 to 67.5%.

An alternative robust method — quantile regression (Koenker & Bassett, 1978) —

allows a direct investigation of the assumption of parameter homogeneity, without

the need to sacrifice certain outlier observations, which may be awkward without

further subject matter knowledge or respective a priori information. For linear quan-

tile regressions we replace assumption (5.2) by the linear parametric conditional

quantile assumption

Qϑ[l85i |ligdpi ,lpopi ] = β1+β2ligdpi +β3lpopi , (5.4)

for a quantileϑ, whereϑ ∈ (0,1) andQϑ=0.5[.|.] is the conditional median. Hence,

in table A.5 we compare the results of OLS estimation (MRW, Table I) of (5.1)

and the robust LTS-based regression, with linear median, upper and lower quartile

regressions.

At first view, there is some difference in numerical values between the slope co-

efficient estimates for the lower, upper, and median quartile regression, respec-

tively. In contrast to Ram (2008), however, we wish to apply a formal test for

the statistical significance of this difference. Applying the joint robust Wald test

of Koenker & Bassett (1982) for the null hypothesis of identical slope parameters

across quartiles gives a p-value of 0.09 and thus no clear evidence for heterogeneity

using approach (5.4).

As a further generalization, we compare the results from estimation of the nonpara-

metric conditional mean (5.3) with the results from a fully nonparametric quantile

regression following as recently proposed by Li & Racine (2008). By employing
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the nonparametric conditional quantile assumption

Qϑ[l85i |ligdpi ,lpopi ] = g(ligdpi ,lpopi), (5.5)

the latter approach combines the functional flexibility of the fully nonparametric

approach with the capability to capture potential heterogeneity across the condi-

tional growth distribution from quantile regression, and the additional benefit of

robustness. Figure B.3 shows the conditional partial effects from the nonparamet-

ric quartile regression model and the nonparametric mean regression, where we

observe the impact of varying one covariate while the other covariate is held con-

stant at its mean or median value, respectively. In analogy to the linear models

displayed in table A.5, we again observe differences between mean and median es-

timates. Although the results from quartile regression reveal some differences to

the nonparametric mean approach, again there are no visibledifferences in (local)

curvature across the conditional growth distribution.

Finally, we summarise the performance of approaches (5.2)-(5.5) with respect to

goodness-of-fit and cross-validation. The cross-validation median (and interquartile

ranges) ofR̃2 are displayed in table A.6. Table A.7 displays the p-values from

pairwise t-tests on cross-validated MSEP as outlined in Section 2, where we observe

that approach (5.3) dominates all other approaches with respect to both MSEP and

MAEP.

Following MRW we extend our analysis to a larger dataset, including the Non-

Oil countries. The different variants of the Hsiao-Li-Racine-test produces p-values

smaller or equal to 0.02. The cross-validation reveals thatthe nonparametric model

dominates the parametric model in 76% of the cases and supports the result of

the Hsiao-Li-Racine-test. Using quantile regression we again find no evidence for

heterogeneity, as the Wald test for the null hypothesis of identical slope parameters

across quartiles has a p-value of 0.78.
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5.1.3 Conclusion

The findings of our empirical analysis can be summarised in the following points.

First, in accordance to some contributions in the literature (using alternative data

and models), our results generate additional empirical evidence on parametric mis-

specification of classical growth regression models proposed by MRW. Second,

in sharp contrast to recent contributions, we cannot find evidence for heterogene-

ity even for the extremely parsimonious model under study here. Employing the

method of quantile regression we find that this holds true forboth parametric and

nonparametric approaches. Third, even for very small sample sizes, nonparametric

approaches dominate parametric approaches with respect toin- and out-of-sample

measures of fit and predictive ability, respectively. Fourth, all results also hold for

an extended sample of countries.

5.2 Dealing with heterogeneity, nonlinearity and club

misclassification in growth convergence: A non-

parametric two-step approach

This section is retained from Haupt & Meier (2011).

In the following subsections the method proposed in Chapter 3.4.2 is illustrated

with applications to three data sets based on different levels of aggregation — the

countries from the Penn World Tables, the prefectures of Japan, and the districts

from reunified Germany. These applications allow replication of our method and

previous results in a wide sense. We use different levels of aggregation because

we expect different levels of heterogeneity. Regions on district level come with

similar technology and thus regions on this level converge to a similar or even the

same steady state. This is the reason why the concept of absolute convergence is

generally used for disaggregated data. However, differentcountries behave much

more heterogeneously, because there are highly differing levels of technology. This

72



5.2. DEALING WITH HETEROGENEITY, NONLINEARITY AND CLUB
MISCLASSIFICATION IN GROWTH CONVERGENCE: A
NONPARAMETRIC TWO-STEP APPROACH

is the reason why countries typically converge to differentsteady states. Classical

convergence analysis captures this problem by extending (2.23) with additional co-

variates (e.g. investment rate, human capital) determining different steady states

(see Sala-i Martin, 1996b). In our approach we use the concept of absolute conver-

gence for all levels of aggregation because we allow for different steady states on

club level by capturing the club variable. Independently from the aggregation level

members of one club are assumed to offer homogenous convergence behavior and

thus, we can assume similar steady states in a club. With respect to the aggrega-

tion level our empirical results reveal considerable differences in nonlinearity and

heterogeneity, while we do not find clear evidence on the sensitivity of results with

respect to the ordering rules discussed above14.

5.2.1 Penn World Table country-level data

Using our two-step procedure we analyze convergence for Penn World Table (PWT)

data of 152 countries over the years from 1970 to 2003. As global convergence is

clearly rejected (p-value≈ 0), the clubbing algorithm is applied. Table 1 displays

parameter estimates and standard deviations before and after club merging for or-

dering rules (I)-(IV).

Final ordering (I) offers seven convergence clubs and no diverging countries15 while

one third of the countries are members of the first club. Aftermerging six clubs re-

main. Using the other ordering rules we get different results. Average ordering

(II) produces basically nine convergence clubs, but using club merging the num-

ber of clubs can be reduced to six clubs and the divergence group and similarly to

final ordering, the first club is the biggest one and consists of 67 countries, while

the other clubs are much smaller. The divergence group has six members. Differ-

14All computations in this paper are done using the softwareR, version 2.11.0, and version 0.40-4

of the np-package of Hayfield & Racine (2008). Of course, data and codeare available from the

authors.
15Using the same data, Phillips & Sul (2009) only identify five convergence clubs. For those

clubs, however, we find the same parameter estimates and standard deviations.
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ence ordering (III) produces only five non-mergeable convergence clubs (and one

diverging country), while also 67 of the countries are members of the first conver-

gence club. Decreasing weights ordering (IV) generates seven clubs which persist

after merging. About half of the countries belong to the firstclub. In summary, the

composition and number of convergence clubs seems to be highly sensitive with

respect to the choice of the ordering rule.

The convergence behavior of the six clubs using final ordering (I) is displayed in

Figure B.4, where the relative transition coefficients are plotted against time. A

closer look at the respective club members listed in Table A.25) may raise some sus-

picion. For example Club 1 contains the USA and Botswana (e.g.,Phillips & Sul,

2009). In absolute values the per capita income of the USA in 1970 is about 17429

US Dollars, compared to 1184 US Dollars in Botswana. Though inabsolute values

this gap rises considerably until 2003 (see Figure B.5), in relative numbers it de-

creases over time. While in 1970 the per capita income in Botswana is about 7% of

the per capita income in the USA, in 2003 it is about 23%. Botswana also catches

up in international comparison with respect to the relativetransition coefficientshit .

In 1970 the per capita income in Botswana lies at about 80% (USA: 110%) of the

cross-country average, while it rises to 91% in 2003 (USA: 105%). Thus, although

the absolute incomes between these two countries differ extremely, the countries

converge in the sense of Phillips and Sul as the respectivehit converge to 1.

In Figure B.6 the box-plots of income in final period are displayed for the six clubs

found by final ordering (I). While the incomes inside the clubsare close to each

other, the income distribution between the clusters is veryheterogeneous. For the

same clubs in Figure B.7 we display scatter plots of the logt regressions (B.8). The

shape suggested by the trajectories in clubs 1 to 4 is parabolic and convex and thus

may be interpreted in a way that in initial periods there are hints for divergence,

while over the years we observe convergence because of a positive slope. For club

5 we detect more complex nonlinearities and convergence is assumed becauseγ

is not significantly negative but the regressand decreases at the end of the period,
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indicating that there is no convergence16. Thus, to avoid a misinterpretation of the

estimation and test results, the inspection of the logt regression scatter plots seems

to be highly recommended.

The clustering algorithm may also be sensitive with respectto the respective time

horizon. Thus, for the Penn World Table data we exemplarily analyze for final

ordering whether number, size, and composition of clustersis constant for different

time periods. We compare the results for the whole time horizon from 1970 to 2003

with consecutively shorter partial time spans, one from 1978 to 2003 and the other

from 1986 to 2003. The reason why we choose both periods such that they also end

in 2003 is that the income in the final period is the ordering criteria. Using the same

final period enables to analyze how the length of the time horizon affects the cluster

composition and the number of clusters.

Table A.9 displays numbers, sizes, and compositions of clusters for the complete

time horizon 1970 to 2003 and the period from 1978-2003, respectively. The clus-

ter sizes for the complete time horizon is given in the last column containing the

row sums, the clusters of the partial period 1978 to 2003 are given in the last row

containing the column sums. For the partial horizon we find anadditional con-

vergence club and a divergence group. Although the number ofclusters changed,

their composition is quite stable as countries belonging tothe first clubs over the

complete horizon predominantly also are members of the firstclubs in the partial

horizon (and vice versa). As can bee seen from Table A.10, thenumber of clusters

rises to eight and one divergence group when comparing the shorter partial period

from 1986 to 2003 to the complete time horizon. Again, thoughthe number of clus-

ters varies over time, the club composition seems to be quitestable over time. This

results support the assumption that the club structure can be included as an ordered

categorical variable when analyzingβ-convergence.

Step one reveals hints for non-robust club sizes and club compositions with respect

to ordering rules and time horzion as well as neglected nonlinearities in logt regres-

16Note that for other ordering rules and data sets, more clubs exhibit such a behavior.
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sions. Both findings raise the question if potential misclassification of convergence

clubs will affect estimation and inference within this framework. Thus, in the sec-

ond step, we analyze the robustness of the club compositionsresulting from the

differing ordering rules (I)-(IV). For each ordering rule we estimate the parametric

model (3.8) and the nonparametric model (3.9) and apply the HLR test. Finally, by

running an out-of-sample cross validation analysis we select an optimal ordering

rule according to lowest average squared error of prediction (ASEP).

The output for a classicalβ-convergence regression (2.23) is given in Table A.11.

The estimated convergence coefficient is negative, but there is no statistical signifi-

cance. Advancing to the baseline model (3.8) including the club variable17 suggests

strong evidence for the existence of heterogeneity. The estimated coefficients are

displayed in Table A.12 and the resulting club-level regression lines can be seen

in Figure B.818. The convergence coefficients are significant for convergence club

one to five, but not for the sixth club (which consists of only two countries). The

p-values of HLR tests (see column 3 of Table A.13) are approximately equal to zero

in all four cases suggesting the application of the nonparametric model (3.9). Table

A.13 displays the resulting bandwidth for nonparametric models. For ordering rules

(I)-(IV) the estimated bandwidth for continuous regressoris smaller or equal to its

standard deviation (1.09), respectively, also indicatinga nonlinear influence of the

regressor log(yi,0).

Overall, the clubs seem to be well chosen because the bandwidth of the club vari-

able is very small independently from the respective choiceof ordering rule. An

out-of-sample cross-validation, however, offers a clear ranking for ordering rules

with respect to ASEP. The pairwise comparison of the models given in Table A.14

reveals that ordering rule (I) suggested by Phillips and Sul(2009) dominates all

other ordering rules for the present data.

17We only present results for ordering rule (I) because later on we find that this rule performs best.

The results for other ordering rules are similar.
18The estimated coefficients for quartile regression are similar to mean regression. Thus, there is

no more heterogeneity over the conditional distribution ofthe regressand.
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5.2.2 District-level data from reunified Germany

For this application data on the 439 German administrative districts are taken from

the regional data base of the statistical agencies of Germany for per capita income

measured as the GDP divided by the corresponding number of citizens for the years

1996 to 2005. The logt regression for German regional data suggests clear evidence

against global convergence (p-value≈ 0), but we are able to find the clubs summa-

rized in Table A.15 for the four ordering rules and classification before merging

and after merging. Again, difference ordering produces fewest number of clubs,

only eight before and five after merging. Average and decreasing weights ordering

reveal highest number of clubs, 24 before and ten respectively eight after merging.

Notably, the first two clubs and the divergence group for almost all orderings ex-

cept difference ordering are very small while for difference ordering the first club

includes about 25% of data and the divergence group even one third. Figure B.9

plots the relative transition coefficients over time for theconvergence clubs and the

diverging group of final ordering. The plots support the convergence hypothesis

for the clubs and show diverging behavior of the diverging group. The boxplots in

Figure B.10 reveal the heterogeneity (homogeneity) between(within) the clubs.

Analyzing log t regression scatter-plots for regional data offers similarresults to

the PWT data. Figure B.11 exemplifies the results for final ordering. Most of the

convergence clubs offer a parabolic and convex shape which means a nonlinear

relationship but no harm for convergence interpretation. But, for the second club

the regressand becomes smaller in the last period which rises doubt on the club

convergence

Investigatingβ-convergence yields to the regression output displayed in Table A.16.

The estimated coefficient is significantly negative. The estimated coefficients of the

baseline model (3.8) briefed in Table A.17 offerβ-convergence for all clubs, but

divergence for the divergence group. The estimated regression lines for the ten

convergence clubs after merging are displayed in Figure B.12. As the p-values in

Table A.18) reveal, for ordering rules (I) and (II) the hypothesis of correct paramet-
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ric specification of the baseline model (3.8) cannot be rejected at any reasonable

significance level, while there are hints for misspecification in (III) and (IV). For

assessing the quality of clubbing we estimate nonparametric models for all cases.

The estimated bandwidths are displayed in Table A.18. With the exception of (II)

the bandwidths for log(yi,0) point to nonlinear influences of the regressor. The

bandwidths for the club variable are all close to zero. Thus,club compositions are

well chosen for all ordering rules. The out-of-sample crossvalidation analysis of-

fers a strict ranking of ordering rules (I)≻(IV)≻(II)≻(III), where≻ means that the

ordering rule on the left has a lower ASEP than the rule on the right.

5.2.3 Prefecture-level data from Japan

In addition to PWT data on country-level and german regional data on district-level

we analyze an in-between — data on 47 Japanese prefectures between 1956 and

199019. The results on merged clubs are displayed in Table A.20. Using final order-

ing and difference ordering we find three convergence clubs which can be merged

to two clubs. Average ordering and decreasing weights ordering propose exactly the

same results. There are four convergence clubs and one divergence group consist-

ing of three countries. After merging there are only two clubs and one divergence

group. The relative transition coefficients over time for the convergence clubs af-

ter merging are exemplarily shown for final ordering in Figure B.13, where club

convergence is indicated as the transition coefficients converge to one. Again, het-

erogeneity between clubs can be observed from Figure B.14. The scatter-plots of

log t regression for final ordering displayed in Figure B.15 show quite different

results than for the other examples. For all three clubs the first half of the time

horizon show parabolic and convex points. In the second half, the points of clubs

one and three stagnate in contrast to convergence assumption. The results of logt

regressions should be handled with care. Analyzing classical β-convergence (2.23)

19The data of Barro and Sala-i-Martin (2004) are downloaded from

http://www.columbia.edu/∼xs23/data.htm at June 15, 2011.
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proposes a positive coefficient which is significant on 10%-level (see Table A.21)20.

Thus, there are no hints forβ-convergence over all prefectures. The estimated con-

vergence coefficients for the baseline model reveal negative signs for both clubs,

which are, however, not significantly different from zero (see Table A.22). The

estimated regression lines are plotted in Figure B.16.

Investigating parametric misspecification the HLR test hassmall p-values (with

maximum of around 11%) for all ordering rules. For all ordering rules the band-

width of clubi is approximately 0.01 or even smaller. Thus, the clusters seems to

be well chosen for all methods. The bandwidth for log(yi,0) proposes a linear influ-

ence of this variable for ordering rule (I) and (III) and a nonlinear influence for (II)

and (IV). The p-values and bandwidths for nonparametric regression can be found

in Table A.23. The out-of-sample cross-validation offers the following sequence of

ordering rules (I)≻(III)≻(II)=(IV).

5.2.4 Conclusion

As classical convergence regressions often fail to accountfor heterogeneity and

nonlinearity and recent contributions are able to address either the one or the other,

a simple two-step method is proposed to address both issues.Employing a slightly

augmented version of the clubbing algorithm of Phillips andSul (2007a,b, 2009) in

step one, we find (i) considerable sensitivity of results on convergence club struc-

tures with respect to different initial data orderings. Further, (ii) visual inspections

of log t regression scatter plots reveal that the “convergence interpretation” of the

results of such a linear regression should be handled with care. As a second step

we propose the use of a nonparametric test and regression which allows to analyze

convergence effects on both individual and club level whilealleviating potential

misclassification in the club formation process using simultaneous smoothing over

the club structure.

Three empirical exercises using data on different levels ofaggregation, countries

20Again, we only present results for initial ordering.
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from the Penn World Tables, Japanese prefectures, and districts from reunified Ger-

many, respectively, illustrate the proposed two-step approach. For all applications,

we find considerable evidence for club-based heterogeneityin convergence analy-

sis by adding the clubs identified in step one as a categoricalcovariate. Our non-

parametric estimation results suggest that the club composition is well chosen. An

out-of-sample analysis reveals that initial ordering rulefor starting the club identi-

fication algorithm (in step one) proposed by Phillips and Sulperforms best.

5.3 Convergence of the high-skilled in German re-

gions: Using panel and cross-section information

to identify clubs, spatial patterns, and nonlinear-

ities

This section is a joint work with Harry Haupt and Joachim Schnurbus, see Haupt et al.

(2011).

5.3.1 Classical convergence regression analysis of the high-skilled

employees in German regions

High-skilled employees are the basis for developing new technologies and eco-

nomic growth. Lumpy provision of high-skilled labor acrossGerman regions may

slow-down growth and increase already existing gaps in innovation and productiv-

ity. It is thus of obvious interest to study the spatial distribution and spatio-temporal

diffusion of high-skilled labor and develop statistical methods to study existence and

patterns of eventually occurring convergence and divergence processes. In our study

region-specific shares of highly educated employees are used as a proxy for high-

skilled labor. More precisely, the dependent variable in our model is the growth rate

grschooli
def
= log(schooli,2005)− log(schooli,1996), whereschooli,t represents the
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share of employees liable for social security insurance in region i (i = 1, . . . ,439)

(as a place-of-work) and yeart (t = 1996, . . . ,2005), who have at least eleven years

of schooling and a degree. Hereafter we will denote this share as the share of high-

skilled employees.

Adapting the approach of Barro & Sala-i Martin (1992) our analysis is based on the

unconditionalβ-convergence, where the key explanatory variable isschool0i
def
=

schooli,1996, the share of high-skilled employees in regioni in the year 1996. Fig-

ure B.17 provides a first impression of the spatial distribution of the key variables

grschool andschool0. Both maps reveal obvious patterns due to the former sepa-

ration of Germany in Federal Republic of Germany (FRG) and German Democratic

Republic (GDR), hereafter denoted as west and east. To reflect this structural in-

formation the binary variablewest — which is equal to one for west regions and

zero for east regions — is included in all subsequent analyses. Note that we primar-

ily considerwest as a political variable, although it is of obvious economic and as

a consequence spatial — due to spill-over effects — relevance, too. Interestingly,

the share of high-skilled employees in east regions in 1996 seems to be somewhat

higher on average compared to the majority of west regions. In sharp contrast the

growth-rate (between 1996 and 2005) is higher on average formost of the west

regions compared to the east regions, where some of the latter even experienced

negative growth-rates. This phenomenon, often denoted as the post-reunion brain-

drain, is obviously still in progress many years after the official reunion in 1990.

Our baseline model21 is the classical convergence regression model proposed by

Mankiw et al. (1992), hereafter MRW, where in the light of ourconsiderations

above we allow for specific convergence parameters of west and east regions, re-

21Note that the estimation of equation (5.6) is based on cross-section data, where only information

in the initial and final time period is employed. The a priori selection oft = 0 andt = T, respectively,

may have a crucial impact on the outcome. We will not discuss such sources of non-robustness in

this study.
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spectively, that is

grschooli = α1westi +α2(1−westi)+β1 log(school0i)westi

+ β2 log(school0i)(1−westi)+ εi , (5.6)

andβ-convergence of west regions is assumed to be present ifβ1 < 0 (an analogous

interpretation for east regions applies toβ2). Then skill concentration differences

across the regions decrease as regions with a lower concentration of high-skilled

employees increase their concentration faster than regions with a higher concentra-

tion.

The OLS (ordinary least squares) estimation results for thebaseline convergence

regression (5.6) are displayed in Table A.29. We will not stress these preliminary

results, as the baseline model obviously suffers from lack of economic content and

consequently various sources of misspecification are indicated by a battery of tests.

For this reason we also do not report adjusted standard errors here. Given this dis-

claimer, the convergence coefficient is significantly negative for both parts of Ger-

many and the fit, measured as squared correlation of observedand fitted response

values (PR2), is moderate at about 50%. Thus, the results may be interpreted as

slightly suggestive in favor of converging shares of high-skilled employees over all

administrative regions.

Following the main contributions of among others Barro & Sala-i Martin (1992),

Barro et al. (1991), and Mankiw et al. (1992), a plethora of works appear address-

ing several strands of criticism confronting the baseline Solow model (see e.g.,

Haupt & Petring, 2011 for a recent survey). In the following exposition we pick

up three main points of criticism.

Equation (5.6) can be written compactly asyi = x′iβ + εi. However, let us as-

sume that the true conditional expectation ofyi given all relevant explanatory vari-

ables is equal tog(xi ,zi), whereg is an unknown function andz are unobserv-

able explanatory variables. Then the correctly specified model is given byyi =

g(xi ,zi)+ ξi. When estimating the misspecified model (5.6), the error is equal to

εi = g(xi ,zi)− x′iβ+ ξi where{ξi} is an error process. The three points of criti-
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cism we will consider here reflect three potential sources ofthe specification er-

ror ∆i = g(xi ,zi)− x′iβ. First, neglected heterogeneity due to incorrectly assuming

global convergence, while there may coexist clubs with homogeneous convergence

behavior and a group of divergent regions (Section 5.3.2). Second, neglected het-

erogeneity induced by spatial association due to spill-over and repercussion effects

between German regions (Section 5.3.3) . Third, misspecification due to neglected

nonlinearities in the regression function (Section 5.3.4). Empirical evidence on all

three issues is analyzed for the high-skilled employees in German regions. In or-

der to provide a hint for the robustness of our findings we reanalyze the data of

the recent exposition of Ertur & Koch (2007) in Section 5.3.5, while Section 5.3.6

concludes.

5.3.2 Heterogeneity due to convergence (and divergence) clubs

One of the main points of criticism confronting the classical convergence regression

(5.6) is that there are several forms of neglected heterogeneity causing invalid esti-

mation results (compare e.g., Masanjala & Papageorgiou, 2004; Canarella & Pollard,

2004; Ertur & Koch, 2007; Alfo et al., 2008 and

Haupt & Meier, 2011).

In a series of seminal contributions Phillips & Sul (2003, 2007a,b, 2009) (hereafter

PS) build on the ideas of Durlauf & Quah (1999) and suggest that heterogeneity

may occur due to individual effects and different technology levels. Consider-

ing these effects they propose a dynamic factor model based the time trajectory

{schooli,t}t=0,...,T of each regioni. Their convergence concept — which we label

as “club convergence” hereafter — is based on the idea that convergence is assumed

if all regions have the (approximately) same share of high-skilled employees in the

final periodT. Hence club convergence is based on panel data in contrast toβ-

convergence, the latter only relying on cross-sections forthe initial and final period

0 andT.

If there is no evidence (from a so-called logt regression test) in favor of global con-
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vergence22, PS introduce a clustering algorithm for identifying convergence clubs

empirically. The idea of convergence clubs is that there aregroups of countries

with common convergence (or divergence) behavior. The algorithm proposes a

classification of convergence clubs, while it is not possible to analyze convergence

behavior on a club-level in the sense of Mankiw et al. (1992);Barro et al. (1991);

Barro & Sala-i Martin (1992). Thus we adopt the proposal of Haupt & Meier (2011)

to introduce a club variable in the baseline model (5.6). Applying an augmented

form (see Haupt & Meier, 2011) of the clubbing algorithm of PSto German re-

gions yields a discrete covariateclubi with 11 categories, i.e. 10 convergence clubs

and a divergence group.

In a first step we include the convergence clubs in the classical β-convergence anal-

ysis usingmdummy variablesclubi, j representing the categories of the underlying

discrete variable,

grschooli = α0westi +α1 log(school0i) ·westi

+
m
∑

j=1

β jclubi, j +
m
∑

j=1

γ j log(school0i) ·clubi, j + εi . (5.7)

Table A.30 contains the occupation frequencies of allclub-categories for both Ger-

man regions. The clubs 1 and 10 as well as the divergence groupare poorly oc-

cupied each having a total of less than five observations. Forclubs 8, 9, and 10,

as well as for divergence group 11 there are no observations for the east regions

of Germany. In Section 5.3.4 we will address potential issues of sparsely popu-

lated cells. The results for OLS estimation of Equation (5.7) are displayed in Table

A.31. The estimated convergence coefficients are significantly negative for club 1

to 9. Thus, for these clubsβ-convergence can be assumed. For club 10 and the

divergence group 11 there is no significant convergence. Note that we only have

three observations (all in west regions) in these categories. We do not find differ-

ences in the convergence behavior between west and east regions, as the coefficient

of the interaction betweenwesti, j andschool0i is not significantly different from

22In the present case of high-skilled employees in German regions the corresponding logt regres-

sion reveals no evidence in favor of global convergence on any reasonable significance level.
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0. ThePR2 is approximately 90% and also Akaike-Information-Criterion (AIC)

and Schwarz-Information-Criterion (SIC) suggest a clear superiority in comparison

with the baseline model (5.6). The next natural question to ask is whether the latter

model is also capable of capturing potential spatial patterns in the data.

5.3.3 Spatial association

Another source of misspecification of classical convergence regressions may be ne-

glected spatial association (e.g., Pfaffermayr, 2009; Moreno & Trehan, 1997; Südekum,

2008). We want to analyze whether our estimation results also suffer from neglected

spatial association. In a regression context, spatial association can occur w.r.t. the

response variable, w.r.t. the covariates, and w.r.t. the error term. We follow the ap-

proach of Ertur & Koch (2007) who propose a spatially augmented version of the

classicalβ-convergence model. The basic idea is that interdependencies of tech-

nology and knowledge spillovers are a source of spatial association. Founded in

economic theory the model includes the spatially lagged dependent variable and

spatially lagged explanatory variables as

y = ρWy +Xβ+WXθ+ ε, (5.8)

with regressor matrixX, response vectory, error vectorε, a row-standardizedn×n-

matrix of spatial weightsW with corresponding parameterρ, as well as the parame-

ter vectorsβ, andθ. We switch to matrix notation, as this simplifies the subsequent

derivations. Model (5.8) is denoted as spatial Durbin modeland can be consistently

estimated by Maximum Likelihood. The Durbin model nests thespatial lag model,

which is obtained forθ = 0 as

y = ρWy +Xβ+ ε, (5.9)

and the spatial error model (forθ =−ρβ) as

y = Xβ+u, (5.10)

u = λWu + ε.
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A comprehensive summary of recent contributions concerning these models can be

found in Elhorst (2010). We check for spatial association using model selection cri-

teria and tests. For the latter we estimate the baseline regression (5.6) and the club

convergence regression (5.7) without spatial effects and check the respective resid-

uals for spatial influences using the Lagrange Multiplier tests discussed in Anselin

(1988b) and Anselin et al. (1996). The tests compare the non-spatial models against

a spatial lag alternative, a spatial error alternative or a combination of both, respec-

tively. The results of the LM-tests in the upper panel of Table A.33 reveal clear

evidence for neglected spatial effects in the baseline model (5.6). The test results

for the club convergence regression (5.7) displayed in the lower panel suggest oth-

erwise, however. There only seems to be some weak evidence infavor of the spatial

lag alternative with a p-value of 0.07. Further we compare all models by means

of the AIC and the SIC, displayed in Table A.32. Due to considerable differences

in the number of parameters of the compared spatial models wefollow the SIC

in our argumentation because it more heavy penalized the inclusion of additional

covariates.

With respect to AIC and for models based on club convergence the best model is

the spatial lag model which, however, is only slightly superior to model (5.7). If

the club structure is neglected there is clear evidence in favor of the spatial models,

especially the spatial Durbin model. With respect to SIC model (5.7) is clearly pre-

ferred to all other models. For models without club structure the spatial error model

performs best, while the model without spatial effects and the spatial lag model

perform equally. Obviously there is a relation between club-based heterogeneity

and spatial association. However, models including the club structure seem to be

capable of capturing spatial associations.

5.3.4 Misspecification of parametric functional form

Several authors identify neglected nonlinearities as a source of invalidity of clas-

sical convergence analysis ( e.g. Kalaitzidakis et al., 2001; Liu & Stengos, 1999;
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Maasoumi et al., 2007; Quah, 1993a, 1997; Henderson, 2010 and

Haupt & Petring, 2011). Following the proposal of Haupt & Meier (2011) we ad-

dress this issue by employing a fully nonparametric approach.

The nonparametric convergence regression model

grschooli = f (log(school0i),clubi ,westi)+ εi , (5.11)

allows for nonlinearities and interactions among all covariates within the regression

function f (·). In the previous section the club membership is shown to sufficiently

reflect the spatial association. Hence we include this information also as ordered

discrete covariateclub in the nonparametric regression. For the present problem

we have a mix of continuous and discrete covariates. We applythe nonparametric

mixed kernel regression approach of Li and Racine (compare Li& Racine, 2004,

2007; Racine & Li, 2004). Recently, Haupt & Petring (2011) found the superior

performance of this approach (compared to parametric regression function speci-

fications) in the context of growth regressions for the original data of MRW. The

corresponding minimization calculus for a local linear mixed kernel regression is

min
α̃(x0),β̃(x0)

n
∑

i=1

( grschooli − α̃(x0)− β̃(x0) · (log(school0i)−

log(school00)))
2 ·K(x0,xi,b). (5.12)

The vectorxi = (log(school0i),clubi ,westi)
′ contains the covariate values of the

ith administrative region. Analogously,x0 refers to the covariate position

(log(school00),club0,west0) where the regression function is estimated locally.

The estimated mean regression effect at this covariate position is denoted bŷα(x0)

while the corresponding estimated first partial derivativew.r.t. log(school0) is de-

noted byβ̂(x0). Observations are weighted by the generalized product kernel func-

tion K(x0,xi,b), the product of the kernels of the three covariates.

First, the continuous covariate log(school0i) is weighted by a second order Gaus-

sian kernel

kschool0(school00,school0i ,bschool0) =
1

bschool0
φ
(

school0i −school00

bschool0

)

,

(5.13)
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whereφ(.) is the standard normal density and the smoothing parameterhk ∈]0,∞[.

The smoothing parameters are denoted bandwidths in a kernelestimation con-

text. Small bandwidths lead to reasonable weights only for observationsi where

|school0i−school00| is small, i.e. the number of high-skilled employees (school0i)

is close toschool00. Contrary, large bandwidths yield almost equal weights for

all observations, thus indicating a linear relationship between log(school0) and

grschool. Second, unordered categorical covariates such aswest are weighted by

kwest(west0,westi ,bwest) =







1 for westi = west0,

bwest for westi 6= west0,
(5.14)

as suggested by Li & Racine (2004). Third, the ordered variableclub — where our

reasoning in favor of a natural ordering is based on Figure B.18 — is weighted by

kclub(club0,clubi ,bclub) = b|clubi−club0|
club . (5.15)

The bandwidths for both discrete kernels take values in[0,1], where a value of

0 means that the regression function is separately estimated for the observations of

different covariate categories, i.e. the so-called frequency approach (see Li & Racine,

2007, chapter 3). For a bandwidth of 1 we obtain equal weightsfor the observations

of all categories of the underlying covariate, which is thusirrelevant.

The bandwidths have to be determined prior to the kernel regression estimation. In

a mixed covariate context, data-driven bandwidth estimation is required. We esti-

mate the bandwidths by least-squares cross-validation, compare Li & Racine (2007,

chapter 4).

Table A.34 displays the estimated bandwidth values for the covariates. The esti-

mated bandwidth of the continuous covariate is about half aslarge as the standard

deviation of log(school0) (which is 0.4816), thus the model allows for consider-

able nonlinearity with respect to this covariate indicating that neglected nonlinearity

may indeed be a problem of the proposed approach. The estimated bandwidths of

the discrete covariates are low. Forwest the total weight of about 6 (≈ 1/0.1711)

observations of the other category corresponds to the weight of one observation of
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the corresponding category for an estimation. According toHaupt & Meier (2011),

a bandwidth value of close to 0 for theclub variable indicates that the convergence

clubs are well chosen. Thus, as the bandwidth of 0.0027 is close to 0, there might

only be small probability of club-misspecification. ThePR2 of the correspond-

ing estimation is 0.901 and thus slightly higher than that ofthe OLS estimation of

equation (5.7). Applying the corresponding test of Hsiao etal. (2007) for paramet-

ric misspecification as suggested by Haupt & Meier (2011) we obtain ap-value of

0.048. Hence we can reject the null hypothesis of a correct parametric specification

at a 5%-level, indicating that the nonparametric approach seems preferable.

The estimated partial effects w.r.t. log(school0) for the nonparametric mixed ker-

nel approach are obtained asβ̂(x0), compare Equation (5.12). In principle these

partial effects could be evaluated for a grid covering the range of log(school0)-

values for each of the 22 category combinations of the discrete covariates (or more

generally for anyx0). But, as the region-structure of Germany is rather fixed, we

only focus on the evaluation of the partial effects for the given 439 observed covari-

ate value combinations. The vertical lines indicate the estimation uncertainty and

correspond to (asymptotic) confidence intervals. We also added the estimated par-

tial effects from the OLS estimation of Equation (5.7), compare Table A.31. Here

we can see a clear difference between parametric and nonparametric estimation only

for the clubs 2-6, the partial effects for the other clubs (and divergence group) seem

to be reasonably estimated by the parametric specification of Table A.31. For the

clubs 2-6, the nonparametrically estimated partial effects are not constant.

The nonparametric mixed kernel approach of Li & Racine (2004)can also partially

deal with the issue of poorly occupied category combinations. For demonstrat-

ing this we propose a new measure, the “virtual number of observations”,nv. We

have previously seen that a certain estimated bandwidth fora discrete covariate

determines the extent of smoothing for this covariate (certainly, up to here this

also holds true for continuous covariates), i.e. to what degree are observations

of other categories used to estimate the regression function for a certain covari-

ate category. We have seen that roughly 6 observations of East-Germany have
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the same weight than one observation of West-Germany for theestimation of the

West-German regression function and vice versa.nv of a certain category com-

bination is simply the sum of all observations in all category combinations multi-

plied by the corresponding discrete kernel weights w.r.t. the similarity of the cat-

egory combinations to that of interest. Consider e.g. the category combination

west = 1,club = 4, according to Table A.30 this category combination is occu-

pied by 41 observations.nv(west = 1,club = 4) is thus equal to 41 plus the ob-

servations inwest = 1,club = 3 or 5 weighted by 0.0027 plus the observations

west = 1,club = 2 or 6 weighted by 0.00272 plus . . . plus the observations in all

the east categories weighted by 0.1711 times the corresponding similarity to the

club= 4.

Table A.35 shows that because of the very low bandwidth (thatindicates a low prob-

ability of club-misspecification) we have only a rather low amount of smoothing

over the categories of the discrete covariates, such that categories that were poorly

occupied before also are so while estimating the nonparametric regression.

5.3.5 Re-analyzing Penn World Tables data

In a seminal paper Ertur & Koch (2007) develop the theoretical basis to allow for

technological interactions between cross-sectional units (i.e. regions, countries

,...) in growth modeling. Their spatially augmented convergence model will be

denoted as spatial Solow model hereafter. In order to check the robustness of

our empirical findings we re-analyze data from the Penn WorldTables (PWT),

used by Ertur & Koch (2007) to illustrate the merits of the spatial Solow model.

Ertur & Koch (2007) estimate a conditionalβ-convergence regression model for

explaininggy, the average growth rate of per capita income over the period1960

to 1995 for 91 countries. In addition tolny60, the log initial income in 1960, the

authors employ the log saving ratelns and the log growth rate of working-age pop-

ulationlnngd as further explanatory variables. Based on estimation and (Moran’s

I) test results (see the rightmost column in Table III, p. 1051, in Ertur & Koch,
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2007, and the middle column in Table A.36) the authors find clear hints for spa-

tial structures and estimate a spatial Durbin model with lagged dependent and ex-

planatory variables. Our results displayed in Table A.37 confirm their results to

employ a spatial model with spatial lags and spatial errors.The model selection

criteria displayed in the upper part of Table A.38 suggest that the spatial Durbin

model (AIC) or the spatial error model (SIC) perform best, while the classical base-

line model performs worst. After estimating (unconditional and conditional) spatial

Solow models under a homogeneity assumption (i.e. coefficients do not vary across

countries), Ertur & Koch (2007) also estimate a local spatial Durbin model to allow

for country-specific parameters. They find (visual) evidence for heterogeneities in

the model coefficients. In summary Ertur & Koch (2007) identify two sources of

heterogeneity: First, due to spatial structures and second, due to individual effects.

Following our argumentation above we start by constructinga club variable for the

PWT data. The OLS estimation (and Moran’s I test) results for conditional conver-

gence with clubs are outlined in the rightmost column of Table A.36. The LM tests

displayed in Table A.37 and the model selection criteria comparisons in Table A.38

indicate a quite good performance of the baseline model including a club variable.

The estimated bandwidths of a nonparametric resgression are displayed in Table

A.39. Again a bandwidth close to 0 for the club variable indicates a well-chosen

club classification. Applying the test of Hsiao et al. (2007)for parametric misspec-

ification we obtain ap-value of 0.391. Hence we can not reject the null hypothesis

of correct parametric specification. In analogy to the analysis of the German district

data, we find the following: First, we find clear evidence for clubs being an im-

portant source of heterogeneity also in the PWT data. Second,after controlling for

club effects there is only very weak empirical evidence in favor of spatial structures.

Third, the club-level heterogeneity on the one hand is clearly more restrictive than

the individual-level heterogeneity employed by Ertur & Koch (2007). Fourth, on

the other hand the latter is based on the assumption of globalconvergence, whereas

the former also allows for diverging countries. Fifth, nonparametric mixed kernel

regression of the club-level model also allows to estimate flexible club-level effects
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but for PWT data the parametric specification can not be rejected.

In summary our findings are in line with Ertur & Koch (2007) that the textbook

Solow model is misspecified due to neglected heterogeneity,though our modeling

approaches slightly differfor the present data. This conclusion does not imply that

the different approaches address different sources of misspecification. Of course the

method proposed by us can be readily employed in the context of the spatial Solow

model of Ertur & Koch (2007), whenever economic interest lies in estimation of

direct, indirect, and spatial spill-over effects (e.g., Section 6 in Elhorst, 2010).

5.3.6 Conclusion

Applying classical convergence analysis of German high-skilled employees we in-

vestigate three potential sources of misspecification: Omitted heterogeneity due to

convergence clubs, due to spatial associations between neighboring regions, and

due to potential nonlinearities in convergenge behavior. As a first step - to allow for

heterogeneities induced by non-global convergence processes - we identify conver-

gence (and divergence) clubs from a dynamic factor model using panel data. In the

second step further potential heterogeneities in the extended model are assumed to

be generated by spatial associations between regions in a cross-section model. As

an encompassing step we test for parametric misspecification of the extended model

and check the validity of the club structure generated from panel data to capture

heterogeneity of convergence processes in a cross-sectionmodel. The employed

nonparametric estimation method allows to investigate potential club-specific non-

linearities.

The proposed modeling framework is applied to two data problems on different lev-

els of spatial aggregation: Analyzing the unconditional growth convergence of high-

skilled employees in German regions and analyzing a conditional growth model for

countries from the Penn World Tables. Model selection results suggest that for

both data examples there is no clear empirical evidence in favor of including further

spatial model components. The residual heterogeneity in classical models can be
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captured quite good by controlling for the club structure identified in the first step

of our analysis. If, however, the club information is neglected, model selection cri-

teria and tests suggest the existence of spatial association in the model. Tests for

parametric misspecification and visual inspection of estimated partial effects reveal

some but not clear evidence for nonlinearities.

We stress that our findings do not suggest that there are no spatial externalities, spill-

overs, or repercussion effects. We just find that the convergence (and divergence)

club-level parameters seem to be capable to control for these effectsfor the present

data sets.
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A Tables

Table A.1: Samples of Countries used by Mankiw et al. (1992)

Non-Oil Countries: Algeria, Angola, Argentinia, Australia, Austria, Bangladesh, Belgium,

Benin, Bolivia, Botswana, Brazil, Burkina Faso, Burma, Burundi, Cameroon, Canada, Cen-

tral African Republic, Chad, Chile, Colombia, Democratic Republic of Congo, Costa Rica,

Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, Finland, France,

Germany, Ghana, Greece, Guatemala, Haiti, Honduras, Hong Kong, India, Indonesia,

Ireland, Israel, Italy, Ivory Coast, Jamaica, Japan, Jordan, Kenya, Liberia, Madagascar,

Malawi, Malaysia, Mali, Mauritania, Mauritius, Mexico, Morocco, Mozambique, Nepal,

Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, Panama, Papua

New Guinea, Paraguay, Peru, Philippines, Portugal, Republic of Korea, Rwanda, South

Africa, Senegal, Sierra Leone, Singapore, Somalia, Spain, Sri Lanka, Sudan, Sweden,

Switzerland, Syrian Arabian Republic, Tanzania, Thailand, Togo, Trinidad and Tobago,

Tunisia, Turkey, Uganda, United Kingdom, United States, Uruguay, Venezuela, Zaire, Zam-

bia, Zimbabwe

Intermediate Countries: Algeria, Argentinia, Australia, Austria, Bangladesh, Belgium,

Bolivia, Botswana, Brazil, Burma, Cameroon, Canada, Chile, Colombia, Costa Rica, Den-

mark, Dominican Republic, Ecuador, El Salvador, Ethiopia, Finland, France, Germany,

Greece, Guatemala, Haiti, Honduras, Hong Kong, India, Indonesia, Ireland, Israel, Italy,

Ivory Coast, Jamaica, Japan, Jordan, Kenya, Madagascar, Malawi,Malaysia, Mali, Mex-

ico, Morocco, Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Pakistan, Panama,

Paraguay, Peru, Philippines, Portugal, Rebublic of Korea, South Africa, Senegal, Singa-

pore, Spain, Sri Lanka, Sweden, Switzerland, Syrian Arabian Republic, Tanzania, Thai-

land, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, United States, Uruguay,

Venezuela, Zambia, Zimbabwe

OECD Countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Ger-

many, Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain,

Sweden, Switzerland, Turkey, United Kingdom, United States,
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Table A.2: Penn World Table data of 152 Countries
Afghanistan, Algeria, Antigua, Argentina, Australia, Austria, Bahamas, Bahrain,

Barbados, Belgium, Belize, Benin, Bermuda, Bhutan, Bolivia, Botswana, Brazil,

Brunei, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cape Verde, Cen-

tral African Republic, Chad, Chile, China, Colombia, Comoros, Costa Rica, Cote

d’Ivoire, Cuba, Cyprus, Democratic Republic of Korea, Democratic Republic of

Congo, Denmark, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador,

Equatorial Guinea, Ethiopia, Federated States of Micronesia, Fiji, Finland, France,

Gabon, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea Bissau,

Honduras, Hong Kong, Hungary, Iceland, India, Indonesia Iran, Iraq, Ireland, Is-

rael, Italy, Jamaica, Japan, Jordan, Kenya, Kiribati, Kuwait, Laos, Lesotho, Liberia,

Luxembourg, Macao, Madagascar Malawi, Malaysia, Maldives, Mali, Malta, Mau-

ritania, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Namibia, Nepal,

Netherlands, Netherlands Antilles, New Zealand, Nicaragua, Niger, Nigeria, Nor-

way, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines,

Poland, Portugal, Puerto Rico, Qatar, Republic of Congo, Republic of Korea, Ro-

mania, Rwanda, Samoa, Sao Tome and Principe, Saudi Arabia, Senegal, Sierra

Leone, Singapore, Solomon Islands, Somalia, South Africa,Spain, Sri Lanka, St.

Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, Sudan, Suriname,

Swaziland, Sweden, Switzerland, Syria, Taiwan, Tanzania,Thailand, The Gambia,

Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Uganda,United Arab Emirates,

United Kingdom, United States, Uruguay, Vanuatu, Venezuela, Zambia, Zimbabwe

Table A.3: Intermediate aggregation level data: 47 Japanese Prefectures

Aichi, Akita, Aomori, Chiba, Ehime, Fukui, Fukuoka, Fukushima, Gifu, Gumma,

Hiroshima, Hokkaido, Hyogo, Ibaraki, Ishikawa, Iwate, Kagawa, Kagoshima,

Kanagawa, Kochi Kumamoto, Kyoto, Mie, Miyagi, Miyazaki, Nagano, Nagasaki,

Nara, Niigata, Oita, Okayama, Okinawa, Osaka, Saga, Saitama, Shiga, Shimane,

Shizuoka, Tochigi, Tokushima, Tokyo, Tottori, Toyama, Wakayama, Yamagata, Ya-

maguchi, Yamanashi

103



A
.

TA
B

LE
S

Table A.4: Missing observations and years used for estimating missing values.
Federal State year Missing Observation years used to estimate proportions

Niedersachsen 1995 Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005

1996 Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005

1997 Wolfsburg, Gifhorn, Emden, Aurich 1998,1999,2000,2001,2002,2003,2004,2005

Nordrhein-Westfalen 1995 Köln, Leverkusen 1996,2002,2004,2005

1997 Mühlheim, Oberhausen, Aachen, Leverkusen, Bottrop, Münster 1996,2002,2004,2005

1998 Bonn, Leverkusen, Bottrop, Münster 1996,2002,2004,2005

1999 Köln, Leverkusen 1996,2002,2004,2005

2000 Köln, Leverkusen 1996,2002,2004,2005

2001 Köln, Leverkusen 1996,2002,2004,2005

2003 Köln, Leverkusen 1996,2002,2004,2005

Rheinland-Pfalz 2002 Neustadt a.d W., Rhein-Pfalz-Kreis 1995,1996,1997,1998,1999,2000,2001,2003,2004,2005

Bayern 2001 Ingolstadt, Freising, Neuburg, Starnberg, Regen, Rottal, Straubing, 1995,1996,1997,1998,1999,2000

Dingolfing

2002 Ingolstadt, Bad Tölz, Garmisch-Patenkirchen, Neuburg, Regen, 1995,1996,1997,1998,1999,2000

Rottal, Straubing, Dingolfing

2003 Ingolstadt, Neuburg, Regen, Rottal, Straubing, Dingolfing, Ansbach, 1995,1996,1997,1998,1999,2000

Neustadt

2004 Ingolstadt, Rosenheim, Berchtesgarden, Neuburg, Regen, Rottal, 1995,1996,1997,1998,1999,2000

Straubing, Dingolfing, Ansbach, Neustadt

2005 Ingolstadt, Rosenheim, Berchtesgarden, Neuburg, Landshut,Regen, 1995,1996,1997,1998,1999,2000

Straubing, Dingolfing

Brandenburg 2004 Frankfurt, Uckermark 1995,1996,1997,1998,1999,2000,2001,2002,2003

2005 Frankfurt, Spree-Neiße-Kreis 1995,1996,1997,1998,1999,2000,2001,2002,2003

Mecklenburg-Vorpommern 1995 Wismar, Mecklenburg 1997,1998,1999,2000,2001,2002,2003,2004,2005

1996 Stralsund, Wismar 1997,1998,1999,2000,2001,2002,2003,2004,2005

2003 Rügen, Uecker-Randow 1995,1996,1997,1998,1999,2000,2001,2002,2004,2005

Sachsen 1996 Plauen, Zwickauer Land 1995,1997,1998,1999,2000,2001,2002,2003,2004,2005

Thüringen 2001 Weimar, Eisenach 1995,1996,1997,1998,1999,2000

2002 Suhl, Eisenach 1995,1996,1997,1998,1999,2000

2003 Gera, Eisenach 1995,1996,1997,1998,1999,2000

2004 Weimar, Eisenach 1995,1996,1997,1998,1999,2000

2005 Kyffhäuserkreis, Eisenach 1995,1996,1997,1998,1999,2000
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Table A.5: OLS (MRW, Table I), LTS based, and quartile regression coefficients.

OLS ROBUST Q0.25 Q0.50 Q0.75

(Intercept) 5.3459 5.6938 5.2145 5.7021 7.9470

ligdp 1.3176 1.4445 1.3584 1.6318 1.3543

lpop -2.0172 -1.9716 -1.9795 -2.0903 -1.2347

Table A.6: Median and quartiles of pseudoR̃2 based onB= 10,000 replications.

Median (lower; upper)

linear mean approach (5.2) 0.597 (0.582; 0.612)

nonparametric mean approach(5.3) 0.663 (0.650; 0.676)

linear median approach (5.4) 0.595 (0.580; 0.610)

nonparametric median approach (5.5) 0.667 (0.654; 0.681)
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Table A.7: P-values for test of hypothesesH0 : E[g(y, ŷ)row]−E[g(y, ŷ)column] ≤
0 vs. H1 : E[g(y, ŷ)row]−E[g(y, ŷ)column] > 0 based onB = 10,000 replications,

g(y, ŷ) =MSEP (upper display), MAEP (central display) andR2 (lower display).

approach (5.2) approach (5.3) approach (5.4) approach (5.5)

approach (5.2) - 0 1 0

approach (5.3) 1 - 1 0.509

approach (5.4) 0 0 - 0

approach (5.5) 1 0.491 1 -

approach (5.2) - 0 1 0

approach (5.3) 1 - 1 1

approach (5.4) 0 0 - 0

approach (5.5) 1 0 1 -

approach (5.2) - 1 0 1

approach (5.3) 0 - 0 1

approach (5.4) 1 1 - 1

approach (5.5) 0 0 0 -
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Table A.8: Results of clubbing algorithm for PWT data. Club sizes (in brackets),

estimates forγ and standard errors of the logt regression (3.6) are displayed for

different ordering rules. a) of each ordering rule gives theinitial classification before

club merging, b) gives the final classification after merging.
(I) Final ordering (II) Average ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [50] 0.38 (0.04) Club 1 [50] 0.38 (0.04) Club 1 [67] 0.09 (0.03) Club 1 [67] 0.09 (0.03)

Club 2 [30] 0.24 (0.03) Club 2 [30] 0.24 (0.03) Club 2 [8] 0.36 (0.04) Club 2 [18] 0.03 (0.03)

Club 3 [21] 0.11 (0.03) Club 3 [21] 0.11 (0.03) Club 3 [10] -0.001 (0.02)

Club 4 [24] 0.13 (0.06) Club 4 [38] -0.44 (0.07) Club 4 [12] -0.01 (0.06) Club 3 [12] -0.01 (0.06)

Club 5 [14] 0.19 (0.11) Club 5 [21] 0.03 (0.05) Club 4 [23] 0.04 (0.05)

Club 6 [11] 1.00 (0.17) Club 5 [11] 1.00 (0.17) Club 6 [2] 0.10 (0.31)

Club 7 [2] -0.47 (0.84) Club 6 [2] -0.47 (0.84) Club 7 [9] 0.07 (0.05) Club 5 [16] 0.06 (0.10)

Club 8 [7] 0.15 (0.12)

Club 9 [10] 1.39 (0.15) Club 6 [10] 1.39 (0.15)

Group 10 [6] -2.04∗ (0.02) Group 7 [6] -2.04∗ (0.02)

(III) Difference ordering (IV) Decreasing weights ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [67] -0.003 (0.007) Club 1 [67] -0.003 (0.007) Club 1 [73] 0.01 (0.03) Club 1 [73] 0.01 (0.03)

Club 2 [32] 0.71 (0.06) Club 2 [32] 0.71 (0.06) Club 2 [24] 0.09 (0.02) Club 2 [24] 0.09 (0.02)

Club 3 [42] -0.05 (0.05) Club 3 [42] -0.05 (0.05) Club 3 [22] 0.05 (0.05) Club 3 [31] -0.05 (0.05)

Club 4 [4] 1.48 (0.09) Club 4 [4] 1.48 (0.09) Club 4 [9] 0.08 (0.06)

Club 5 [6] 0.43 (0.12) Club 5 [6] 0.43 (0.12) Club 5 [2] 0.08 (0.19) Club 4 [2] 0.08 (0.19)

Group 6 [1] Group 6 [1] Club 6 [7] 0.15 (0.11) Club 5 [15] -0.07 (0.12)

Club 7 [8] 1.411 (0.18)

Group 8 [7] -1.80∗ (0.02) Group 6 [7] -1.80∗ (0.02)

Table A.9: Comparison of club number, size, and composition for PWT data and

final ordering (I) for different time horizons. The club structure for complete

time horizon 1970 to 2003 (partial horizon from 1978 to 2003)is given in rows

(columns).

C1 C2 C3 C4 C5 C6 G7 nc

C1 49 0 0 0 0 0 1 50

C2 13 16 1 0 0 0 0 30

C3 0 10 8 3 0 0 0 21

C4 0 0 1 23 14 0 0 38

C5 0 0 0 0 4 7 0 11

C6 0 0 0 0 0 0 2 2

nc 62 26 10 26 18 7 3 152
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Table A.10: Comparison of club number, size, and compositionfor PWT data

and final ordering (I) for different time horizons. The club structure for complete

time horizon 1970 to 2003 (partial horizon from 1986 to 2003)is given in rows

(columns).

C1 C2 C3 C4 C5 C6 C7 C8 G9 nc

C1 43 4 2 0 0 0 0 1 0 50

C2 5 10 13 2 0 0 0 0 0 30

C3 0 0 9 9 2 1 0 0 0 21

C4 0 0 0 4 8 22 4 0 0 38

C5 0 0 0 0 0 1 10 0 0 11

C6 0 0 0 0 0 0 0 1 1 2

nc 48 14 24 15 10 24 14 2 1152

Table A.11: OLS estimates of classical convergence model (2.23) for PWT data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5997 0.4037 1.49 0.1395

log(yi,0) -0.0126 0.0495 -0.25 0.7995

ad j.R2=-0.006,AIC=-752.24,n=152

Table A.13: Estimated bandwidths for nonparametric baseline model estimation

using a mixed kernel estimation for PWT data and ordering rules (I)-(IV) and p-

values for Hsiao-Li-Racine tests.
bandwidth of log(yi,0) bandwidth ofclub p-value of HLR test

(I) 1.054 0.006 0.0125

(II) 0.839 0.01 ≈0

(III) 0.812 ≈0 ≈0

(IV) 1.1205 0.028 ≈0
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Table A.12: OLS estimates of baseline model (3.9) for PWT data.
Estimate Std. Error t value Pr(>|t|)

Club 1 5.9291 0.3352 17.69 0.0000

Club 2 4.1480 0.5241 7.91 0.0000

Club 3 4.0241 0.6178 6.51 0.0000

Club 4 2.9553 0.5387 5.49 0.0000

Club 5 7.1889 2.3127 3.11 0.0023

Group 6 11.3003 8.4093 1.34 0.1812

Club 1:log(yi,0) -0.5566 0.0373 -14.92 0.0000

Club 2:log(yi,0) -0.4191 0.0620 -6.75 0.0000

Club 3:log(yi,0) -0.4499 0.0780 -5.77 0.0000

Club 4:log(yi,0) -0.3899 0.0750 -5.20 0.0000

Club 5:log(yi,0) -1.0743 0.3279 -3.28 0.0013

Club 6:log(yi,0) -1.7197 1.1323 -1.52 0.1311

ad j.R2=0.8486,AIC=-1014.564,N=152

Table A.14: Pairwise comparisons of cross-validation performance. Number equals

share ofB= 10,000 replications in which model in column has smaller ASEP (av-

erage squared error of prediction) than model in row for PWT data.

(I) (II) (III) (IV)

(I) – 0.17 0.21 0.07

(II) 0.83 – 0.49 0.25

(III) 0.79 0.51 – 0.34

(IV) 0.93 0.75 0.66 –
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Table A.15: Results of clubbing algorithm for German district data. Club sizes

(in brackets), estimates forγ and standard errors of the logt regression (3.6) are

displayed for different ordering rules. a) of each orderingrule gives the initial clas-

sification before club merging, b) gives the final classification after merging.
(I) Final ordering (II) Average ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26) Club 1 [3] 0.84 (0.26)

Club 2 [5] 0.01 (0.05) Club 2 [5] 0.01 (0.05) Club 2 [3] 0.99 (0.30) Club 2 [3] 0.99 (0.30)

Club 3 [4] 0.19 (0.16) Club 3 [10] 0.03 (0.14) Club 3 [4] 0.34 (0.16) Club 3 [12] -0.08 (0.12)

Club 4 [6] 0.15 (0.16) Club 4 [8] 0.11 (0.15)

Club 5 [30] 0.09 (0.14) Club 4 [30] 0.09 (0.14) Club 5 [20] 0.08 (0.14) Club 4 [33] 0.02 (0.13)

Club 6 [24] 0.15 (0.16) Club 5 [72] -0.14 (0.11) Club 6 [13] 0.13 (0.16)

Club 7 [14] 0.12 (0.16) Club 7 [26] 0.08 (0.15) Club 5 [48] 0.01 (0.13)

Club 8 [14] 0.11 (0.15) Club 8 [8] 0.05 (0.15)

Club 9 [7] 0.03 (0.14) Club 9 [14] 0.11 (0.15)

Club 10 [13] 0.30 (0.15) Club 10 [33] 0.21 (0.15) Club 6 [86] -0.07 (0.12)

Club 11 [16] 0.20 (0.16) Club 6 [76] -0.07 (0.12) Club 11 [6] 1.42 (0.19)

Club 12 [33] 0.11 (0.15) Club 12 [17] 0.39 (0.17)

Club 13 [27] 0.16 (0.16) Club 13 [12] 0.07 (0.15)

Club 14 [90] 0.10 (0.15) Club 7 [90] 0.01 (0.15) Club 14 [18] 0.11 (0.16)

Club 15 [80] 0.15 (0.14) Club 8 [80] 0.15 (0.14) Club 15 [85] -0.05 (0.13) Club 7 [134] -0.13 (0.11)

Club 16 [56] 0.04 (0.11) Club 9 [56] 0.04 (0.11) Club 16 [2] 0.66 (1.97)

Club 17 [13] 0.09 (0.12) Club 10 [13] 0.09 (0.12) Club 17 [30] 0.06 (0.15)

Group 18 [4] -1.33∗ (0.03) Group 11 [4] -1.33∗ (0.03) Club 18 [17] 0.05 (0.15)

Club 19 [18] 0.04 (0.15) Club 8 [85] -0.18 (0.11)

Club 20 [26] 0.04 (0.14)

Club 21 [25] 0.03 (0.14)

Club 22 [16] 0.11 (0.15)

Club 23 [16] 0.56 (0.17) Club 9 [16] 0.56 (0.17)

Club 24 [8] -0.03 (0.12) Club 10 [8] -0.03 (0.12)

Group 25 [11] -1.39∗ (0.02) Group 11 [11] -1.39∗ (0.02)

(III) Difference ordering (IV) Decreasing Weights ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [67] -0.01 (0.01) Club 1 [114] -0.11 (0.09) Club 1 [5] 0.31 (0.09) Club 1 [5] 0.31 (0.09)

Club 2 [32] 0.66 (0.07) Club 2 [8] 0.11 (0.15) Club 2 [8] 0.11 (0.15)

Club 3 [41] 0.67 (0.15) Club 2 [83] -0.10 (0.07) Club 3 [24] 0.03 (0.14) Club 3 [32] 0.14 (0.37)

Club 4 [11] 0.36 (0.18) Club 4 [8] 0.18 (0.16)

Club 5 [27] 0.50 (0.09) Club 5 [26] 0.08 (0.15) Club 4 [48] 0.01 (0.13)

Club 6 [34] -0.07 (0.05) Club 3 [34] -0.07 (0.05) Club 6 [8] 0.05 (0.15)

Club 7 [24] 0.35 (0.67) Club 4 [24] 0.35 (0.67) Club 7 [14] 0.11 (0.15)

Club 8 [36] -0.09 (0.12) Club 5 [36] -0.09 (0.12) Club 8 [32] 0.21 (0.15) Club 5 [94] -0.14 (0.11)

Group 9 [148] -1.08∗ (0.04) Group 6 [148] -1.08∗ (0.04) Club 9 [14] 0.21 (0.16)

Club 10 [4] 1.21 (0.32)

Club 11 [4] 0.48 (0.12)

Club 12 [6] 0.34 (0.17)

Club 13 [12] 0.07 (0.15)

Club 14 [22] -0.01 (0.14)

Club 15 [46] 0.38 (0.14) Club 6 [141] -0.17 (0.11)

Club 16 [3] 0.52 (0.83)

Club 17 [81] -0.63 (0.13)

Club 18 [3] 3.16 (0.96)

Club 19 [5] 2.52 (0.58)

Club 20 [3] 0.82 (0.17)

Club 21 [53] -0.03 (0.11) Club 7 [72] -0.13 (0.11)

Club 22 [15] 0.94 (0.25)

Club 23 [4] 0.42 (0.24)

Club 24 [22] -0.10 (0.08) Club 8 [22] -0.10 (0.08)

Group 25 [17] -1.28∗ (0.03) Group 9 [17] -1.28∗ (0.03)

110



A. TABLES

Table A.16: OLS estimates of classical convergence model (2.23) for German dis-

trict data.
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9115 0.1337 6.82 0.0000

log(yi,0) -0.0734 0.0135 -5.43 0.0000

ad j.R2=0.0632,AIC=-790.441,N = 439
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Table A.17: OLS estimates of baseline model (3.9) for Germandistrict data.

Estimate Std. Error t value Pr(>|t|)
Club 1 10.0508 1.3900 7.23 0.0000

Club 2 8.6208 1.2689 6.79 0.0000

Club 3 5.4437 0.9146 5.95 0.0000

Club 4 5.2388 0.3163 16.57 0.0000

Club 5 4.8481 0.2306 21.02 0.0000

Club 6 5.2649 0.3290 16.00 0.0000

Club 7 5.4732 0.2214 24.72 0.0000

Club 8 5.5146 0.2706 20.38 0.0000

Club 9 5.4455 0.3927 13.87 0.0000

Club 10 5.2947 0.9082 5.83 0.0000

Group 11 -1.5484 0.2915 -5.31 0.0000

Club 1:log(yi,0) -0.8943 0.1284 -6.96 0.0000

Club 2:log(yi,0) -0.7807 0.1180 -6.62 0.0000

Club 3:log(yi,0) -0.4938 0.0862 -5.73 0.0000

Club 4:log(yi,0) -0.4851 0.0303 -16.00 0.0000

Club 5:log(yi,0) -0.4589 0.0228 -20.11 0.0000

Club 6:log(yi,0) -0.5093 0.0330 -15.41 0.0000

Club 7:log(yi,0) -0.5397 0.0226 -23.88 0.0000

Club 8:log(yi,0) -0.5519 0.0280 -19.74 0.0000

Club 9:log(yi,0) -0.5546 0.0412 -13.46 0.0000

Club 10:log(yi,0) -0.5499 0.0960 -5.73 0.0000

Group 11:log(yi,0) 0.1780 0.0293 6.07 0.0000

ad j.R2=0.852,AIC=-1567.249,N = 439
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Table A.18: Estimated bandwidths for nonparametric baseline model estimation

using a mixed kernel estimation for German district data andordering rules (I)-(IV)

and p-values for Hsiao-Li-Racine tests.

bandwidth of log(yi,0) bandwidth ofclub p-value of HLR test

(I) 0.133 0.0002 0.61

(II) 16092882 0.007 0.99

(III) 0.121 0.0013 0.01

(IV) 0.176 0.0053 ≈0

Table A.19: Pairwise comparisons of cross-validation performance. Number equals

share ofB= 10,000 replications in which model in column has smaller ASEP (av-

erage squared error of prediction) than model in row for regional data.

(I) (II) (III) (IV)

(I) – 0.24 0.18 0.25

(II) 0.76 – 0.16 0.56

(III) 0.82 0.84 – 0.89

(IV) 0.75 0.44 0.11 –
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Table A.20: Results of clubbing algorithm for Japanese prefecture-level data. Club

sizes (in brackets), estimates forγ and standard errors of the logt regression (3.6)

are displayed for different ordering rules. a) of each ordering rule gives the initial

classification before club merging, b) gives the final classification after merging.
(I) Final ordering (II) Average ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [28] 0.09 (0.01) Club 1 [28] 0.09 (0.01) Club 1 [17] 0.12 (0.01) Club 1 [35] 0.01 (0.01)

Club 2 [17] 0.09 (0.01) Club 2 [19] 0.00 (0.01) Club 2 [10] 0.10 (0.01)

Club 3 [2] 0.10 (0.02) Club 3 [8] 0.05 (0.01)

Club 4 [9] 0.18 (0.00) Club 2 [9] 0.18 (0.00)

Group 5 [3] -0.47 (0.01) Group 3 [3] -0.47 (0.01)

(III) Difference ordering (IV) Decreasing Weights ordering

a) initial classification b) final classification a) initial classification b) final classification

γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂) γ̂ (SE of γ̂)

Club 1 [12] 0.23 (0.01) Club 1 [29] 0.08 (0.01) Club 1 [17] 0.12 (0.01) Club 1 [35] 0.01 (0.01)

Club 2 [17] 0.22 (0.01) Club 2 [10] 0.10 (0.01)

Club 3 [18] 0.02 (0.01) Club 2 [18] 0.02 (0.01) Club 3 [8] 0.05 (0.01)

Club 4 [9] 0.18 (0.00) Club 2 [9] 0.18 (0.00)

Group 5 [3] -0.47 (0.01) Group 3 [3] -0.47 (0.01)

Table A.21: OLS estimates of classical convergence model (2.23) for Japanese

prefecture-level data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1863 0.2885 11.05 0.0000

log(yi,0) 0.1037 0.0597 1.74 0.0891

ad j.R2=0.042,AIC=21.17,N = 47

Table A.22: OLS estimates of baseline model (3.9) for Japanese prefecture-level

data.
Estimate Std. Error t value Pr(>|t|)

Club 1 3.9644 0.3179 12.47 0.0000

Club 2 3.6674 0.8260 4.44 0.0001

Club 1:log(yi,0) -0.0273 0.0619 -0.44 0.6615

Club 2:log(yi,0) -0.0453 0.1898 -0.24 0.8124

ad j.R2=0.2615,AIC=7.5555,N = 47
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Table A.23: Estimated bandwidths for nonparametric baseline model estimation

using a mixed kernel estimation for Japanese prefecture-level data and ordering

rules (I)-(IV) and p-values for Hsiao-Li-Racine tests.

bandwidth of log(yi,0) bandwidth ofclub p-value of HLR test

(I) 2721352 0.01 0.04

(II)/(IV) 23 2.366 0.01 0.11

(III) 1776859 0.003 0.05

Table A.24: Pairwise comparisons of cross-validation performance. Number equals

share ofB= 10,000 replications in which model in column has smaller ASEP (av-

erage squared error of prediction) than model in row for Japanese prefecture-level

data.
(I) (II)/(IV) (III)

(I) – 0.43 0.48

(II)/(IV) 0.57 – 0.57

(III) 0.52 0.43 –
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Table A.25: Resulting clubs for PWT country level data
Club 1: Antigua, Australia, Austria, Belgium, Bermuda, Botswana,Brunei, Canada, Cape Verde,

Chile, China, Cyprus, Denmark, Dominica, Equatorial Guinea, Finland, France, Germany, Hong

Kong, Iceland, Ireland, Israel, Italy, Japan, Republic of Korea, Kuwait, Luxembourg, Macao,

Malaysia, Maldives, Malta, Mauritius, Netherlands, New Zealand, Norway, Oman, Portugal, Puerto

Rico, Qatar, Singapore, Spain, St. Kitts and Nevis, St. Vincent and the Grenadines, Sweden, Switzer-

land, Taiwan, Thailand United Arab Emirates, United Kingdom, United States

Club 2: Argentina, Bahamas, Bahrain, Barbados, Belize, Brazil, Colombia, Costa Rica, Dominican

Republic, Egypt, Gabon, Greece, Grenada, Hungary, India, Indonesia, Mexico, Netherlands Antilles,

Panama, Poland, Saudi Arabia, South Africa, Sri Lanka, St. Lucia, Swaziland, Tonga, Trinidad and

Tobago, Tunisia, Turkey, Uruguay

Club 3: Algeria, Bhutan, Cuba, Ecuador, El Salvador, Fiji, Guatemala, Iran, Jamaica, Lesotho,

Federated States of Micronesia, Morocco, Namibia, Pakistan, Papua New Guinea, Paraguay, Peru,

Philippines, Romania, Suriname, Venezuela

Club 4: Benin, Bolivia, Burkina Faso, Cameroon, Cote d’Ivoire, Ethiopia, Ghana, Guinea,

Honduras, Jordan, Democratic Republic of Korea, Laos, Mali, Mauritania, Mozambique, Nepal,

Nicaragua, Samoa, Solomon Islands, Syria, Tanzania, Uganda, Vanuatu, Zimbabwe, Cambodia,

Chad, Comoros, Republic of Congo, The Gambia, Iraq, Kenya, Kiribati, Malawi, Mongolia, Nige-

ria, Sao Tome and Principe, Senegal, Sudan

Club 5: Afghanistan, Burundi, Central African Republic, Guinea Bissau, Madagascar, Niger,

Rwanda, Sierra Leone, Somalia, Togo, Zambia

Club 6: Democratic Republic of Congo, Liberia
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Table A.26: Resulting clubs for German district level data

Club 1: Wolfsburg(DFC)24, Frankfurt am Main(DFC), Schweinfurt(DFC)

Club 2: Düsseldorf(DFC), Ludwigshafen am Rhein(DFC),Stuttgart(DFC), Ingolstadt(DFC), Re-

gensburg(DFC)

Club 3: Mannheim(DFC), München(DFC), Erlangen(DFC), Aschaffenburg(DFC), Darm-

stadt(DFC), Koblenz(DFC), Ulm(DFC),Passau(DFC), Dingolfing-Landau, Bamberg(DFC)

Club 4: Hamburg(DFC), Bremen(DFC), Köln(DFC), Leverkusen(DFC),Münster(DFC),

Offenbach am Main(DFC), Wiesbaden(DFC), Kassel(DFC), Mainz(DFC), Heilbronn(DFC),

Baden.Baden(DFC), Karlsruhe(DFC), Heidelberg(DFC), Altötting, Freising, Landshut(DFC),

Straubing(DFC), Amberg(DFC), Weiden in der Oberpfalz(DFC), Bayreuth(DFC), Coburg(DFC),

Ansbach(DFC), Fürth(DFC), Nürnberg(DFC), Würzburg(DFC),Augsburg(DFC), Kempten im All-

gäu(DFC), Memmingen(DFC), Teltow-Fläming, Merseburg-Querfurt

Club 5: Braunschweig(DFC), Salzgitter(DFC), Emden(DFC), Oldenburg(DFC), Osnabrück(DFC),

Essen(DFC), Krefeld(DFC), Rhein-Kreis Neuss, Bonn(DFC),Hochtaunuskreis, Main-Taunus-

Kreis, Trier(DFC), Main-Taunus-Kreis, Kaiserslautern(DFC), Landau in der Pfalz(DFC), Freiburg

im Breisgau(DFC), Biberach, Rosenheim(DFC), Hof(DFC), Schwabach(DFC), Donau-Ries, Wis-

mar(DFC), Dresden(DFC), Jena(DFC), Sömmerda, Kiel(DFC),Vechta, Aachen(DFC), Dort-

mund(DFC), Offenbach, Böblingen, Rastatt, Bodenseekreis, Ravensburg, Günzburg, Saar-

brücken(DFC), Saarpfalz-Kreis, Zwickau(DFC), Eisenach(DFC), Flensburg(DFC), Bremer-

haven(DFC), Fulda, Speyer(DFC), Heilbronn, Pforzheim(DFC), Ortenaukreis, Rottweil, Tuttlin-

gen, Pfaffenhofen an der Ilm, Starnberg, Weilheim-Schongau, Cottbus(DFC), Schwerin(DFC),

Region Hannover, Wesermarsch, Hersfeld-Rotenburg, Pirmasens(DFC), Hohenlohekreis, Ostal-

bkreis, Frankfurt Oder(DFC), Wilhelmshaven(DFC), Bielefeld(DFC), Olpe, Zweibrücken, Ludwigs-

burg, Schwäbisch Hall, Reutlingen, Mühldorf am Inn, Lichtenfels, Main-Spessart, Neu-Ulm, Pots-

dam(DFC), Ohrekreis

24DFC=District-free city
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Club 6: Duisburg(DFC), Gütersloh, Bochum(DFC), Lahn-Dill-Kreis, Waldeck-Frankenberg,

Esslingen, Bad-Tölz-Wolfratshausen, Rosenheim, Deggendorf, Cham, Neumarkt in der Oberpfalz,

Kaufbeuren(DFC), Augsburg, Neubrandenburg(DFC), Dessau(DFC), Erfurt(DFC), Lübeck(DFC),

Neumünster(DFC), Pinneberg, Stormarn, Osterode am Harz, Stade, Emsland, Mülheim an der

Ruhr(DFC), Remscheid.(DFC), Wuppertal(DFC), Herford, Hagen(DFC), Siegen-Wittgenstein,

Bergstraße, Main-Kinzig-Kreis, Gießen, Marburg-Biedenkopf, Main-Tauber-Kreis, Karlsruhe,

Schwarzwald-Baar-Kreis, Konstanz, Dachau, Neuburg-Schrobenhausen, Traunstein, Schwan-

dorf, Kronach, Ansbach, Erlangen-Höchstadt, Rhön-Grabfeld, Miltenberg, Ostallgäu, Chem-

nitz(DFC), Magdeburg(DFC), Nordfriesland, Mönchengladbach(DFC), Mettmann, Minden-

Lübbecke, Märkischer Kreis, Wetteraukreis, Frankenthal (Pfalz, DFC), Worms(DFC), Germer-

sheim, Rems-Murr-Kreis, Heidenheim, Freudenstadt, Lörrach, Zollernalbkreis, Miesbach, Land-

shut, Weißenburg-Gunzenhausen, Aschaffenburg, Kitzingen, Lindau(Bodensee), Oberallgäu, Saar-

louis, Greifswald(DFC), Rostock(DFC), Leipzig(DFC), Bitterfeld, Suhl(DFC)

Club 7: Dithmarschen, Segeberg, Steinburg, Göttingen, Diepholz,Hameln-Pyrmont, Hildesheim,

Soltau-Fallingbostel, Verden, Cloppenburg, Oberhausen(DFC), Solingen(DFC), Kleve, Rhein-Erft-

Kreis, Euskirchen, Oberbergischer-Kreis, Gelsenkirchen(DFC), Borken, Warendorf, Lippe, Pader-

born, Ennepe-Ruhr-Kreis, Hochsauerlandkreis, Soest, Odenwaldkreis, Limburg-Weilburg, Kas-

sel, Schwalm-Eder-Kreis, Werra-Meißner-Kreis, Mayen-Koblenz, Neuwied, Rhein-Hunsrück-Kreis,

Westerwaldkreis, Bernkastel-Wittlich, Eifelkreis-Bitburg-Prüm, Neustadt an der Weinstraße, Mainz-

Bingen, Göppingen, Neckar-Odenwald-Kreis, Rhein-Neckar-Kreis, Enzkreis, Waldshut, Tübingen,

Alb-Donau-Kreis, Sigmaringen, Berchtesgadener-Land, Ebersberg, Eichstätt, Erding, Garmisch-

Partenkirchen, Landsberg am Lech, Kelheim, Passau, Regen,Rottal-Inn, Tirschenreuth, Hof, Kulm-

bach, Wunsiedel im Fichtelgebirge, Nürnberger-Land, Roth, Bad-Kissingen, Haßberge, Würzburg,

Aichach-Friedberg, Dillingen an der Donau, Unterallgäu, St. Wendel, Berlin(DFC), Brandenburg

an der Havel, Oder-Spree, Uckermark, Stralsund(DFC), Annaberg, Chemnitzer Land, Freiberg,

Riesa-Großenhain, Döbeln, Bernburg, Halle (Saale, DFC), Aschersleben-Staßfurt, Jerichower

Land, Wernigerode, Altmarkkreis Salzwedel, Gera(DFC), Wartburgkreis, Schmalkalden-Meiningen,

Gotha, Sonneberg, Saale-Orla
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Club 8: Ostholstein, Rendsburg-Eckernförde, Goslar, Northeim, Holzminden, Nienburg Weser,

Celle, Lüchow-Dannenberg, Lüneburg, Rotenburg Wümme, Uelzen, Delmenhorst(DFC, )Ammer-

land, Friesland, Grafschaft Bentheim, Leer, Osnabrück, Viersen, Wesel, Aachen, Düren, Rheinisch-

Bergischer Kreis, Rhein-Sieg-Kreis, Coesfeld, Recklinghausen, Steinfurt, Höxter, Hamm(DFC),

Unna, Darmstadt-Dieburg, Rheingau-Taunus-Kreis, Vogelsbergkreis, Altenkirchen (Westerwald),

Bad Kreuznach, Birkenfeld, Cochem Zell, Rhein-Lahn-Kreis, Vulkaneifel, Alzey-Worms, Don-

nersbergkreis, Südliche Weinstraße, Calw, Breisgau Hochschwarzwald, Emmendingen, Fürstenfeld-

bruck, Freyung-Grafenau, Straubing-Bogen, Amberg-Sulzbach, Neustadt an der Waldnaab, Regens-

burg, Bamberg, Coburg, Forchheim, Fürth, Neustadt an der Aisch-Bad Windsheim, Merzig-Wadern,

Neunkirchen, Dahme (Spreewald), Oberhavel, Oberspreewald-Lausitz, Ostprignitz-Ruppin, Prig-

nitz, Demmin, Müritz, Rügen, Plauen(DFC), Mittweida, Stollberg, Bautzen, Meißen, Kamenz,

Torgau-Oschatz, Wittenberg, Weißenfels, Bördekreis, Weimar, Eichsfeld, Hildburghausen, Ilm-

Kreis, Saalfeld-Rudolstadt

Club 9: Herzogtum Lauenburg, Plön, Schleswig-Flensburg, Helmstedt, Peine, Schaumburg, Cux-

haven, Harburg, Osterholz, Aurich, Oldenburg, Wittmund, Heinsberg, Bottrop(DFC), Herne(DFC),

Ahrweiler, Trier-Saarburg, Bad Dürkheim, Kaiserslautern, Kusel, Bayreuth, Schweinfurt, Elbe-

Elster, Potsdam-Mittelmark, Spree-Neiße, Bad Doberan, Güstrow, Ludwigslust, Parchim, Vogtland-

kreis, Mittlerer Erzgebirgskreis, Aue-Schwarzenberg, Görlitz, Hoyerswerda, Niederschlesischer-

Oberlausitzkreis, Löbau-Zittau, Sächsische Schweiz, Weißeritzkreis, Delitzsch, Muldentalkreis,

Anhalt-Zerbst, Köthen, Burgenlandkreis, Mansfelder Land, Saalkreis, Sangerhausen, Halberstadt,

Stendal, Quedlinburg, Schönebeck, Nordhausen, Unstrut-Hainich-Kreis, Weimarer Land, Saale-

Holzland-Kreis, Greiz, Altenburger Land

Club 10: Gifhorn, Wolfenbüttel, Barnim, Havelland, Märkisch Oderland, Mecklenburg-Strelitz,

Nordvorpommern, Nordwestmecklenburg, Ostvorpommern, Uecker-Randow, Zwickauer Land,

Leipziger Land, Kyffhäuserkreis

Group 11: Groß Gerau, Rhein-Pfalz-Kreis, Südwestpfalz, München

Table A.27: Resulting clubs for Japanese prefecture level data
Club 1: Hokkaido, Miyagi, Fukushima, Niigata, Ibaraki, Tochigi, Gumma, Saitama, Chiba, Tokyo,

Kanagawa, Yamanashi, Nagano, Shizuoka, Gifu, Aichi, Mie, Shiga, Kyoto, Osaka, Hyogo, Nara,

Hiroshima, Fukuoka, Kumamoto, Oita, Kagoshima, Okinawa

Club 2: Aomori, Iwate, Akita, Yamagata, Toyama, Ishikawa, Fukui, Tottori, Shimane, Okayama,

Yamaguchi, Tokushima, Kagawa, Ehime, Saga, Nagasaki, Miyazaki, Wakayama, Kochi
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Table A.28: German regional data. Summary statistics of thecontinuous variables.
Variable Min. 1.Quart. 2.Quart. 3.Quart. Max.Mean Std.-Dev.

grschool -0.208 0.136 0.219 0.289 0.8010.205 0.149

school0 0.019 0.038 0.054 0.080 0.2220.063 0.033

Table A.29: German regional data. Regression output for Equation (5.6).
Estimate Std. Error t value Pr(>|t|)

west 0.08816 0.04038 2.183 0.0296

1-west -0.19617 0.08016 -2.447 0.0148

west:log(school0) -0.05825 0.01318 -4.421 0.0000

(1-west)east:log(school0) -0.09214 0.03233 -2.850 0.0046

PR2 = 0.504,AIC=−725.31,SIC=−704.89

Table A.30: German regional data. Occupation frequency forthe category combi-

nations of the discrete covariates.
club 1 2 3 4 5 6 7 8 9 10 11 total

east 1 5 6 18 52 24 6 0 0 0 0 112

west 3 14 18 41 87 86 48 13 11 3 3 327

total 4 19 24 59 139 110 54 13 11 3 3 439
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Table A.31: German regional data. Regression output for Equation (5.7).
Estimate Std. Error t value Pr(>|t|)

Club 1 -0.6634 0.2349 -2.82 0.0050

Club 2 -0.8543 0.0867 -9.86 0.0000

Club 3 -1.0384 0.0876 -11.86 0.0000

Club 4 -0.9782 0.0685 -14.28 0.0000

Club 5 -1.2090 0.0593 -20.39 0.0000

Club 6 -1.2928 0.0760 -17.01 0.0000

Club 7 -1.3670 0.1082 -12.63 0.0000

Club 8 -1.6421 0.3127 -5.25 0.0000

Club 9 -1.7918 0.4597 -3.90 0.0001

Club 10 -0.9817 1.5052 -0.65 0.5146

Group 11 -0.9182 1.3978 -0.66 0.5116

West 0.0525 0.0483 1.09 0.2772

Club 1:log(school0) -0.4763 0.1379 -3.46 0.0006

Club 2:log(school0) -0.5105 0.0417 -12.23 0.0000

Club 3:log(school0) -0.5439 0.0377 -14.43 0.0000

Club 4:log(school0) -0.4658 0.0279 -16.71 0.0000

Club 5:log(school0) -0.4973 0.0231 -21.53 0.0000

Club 6:log(school0) -0.4730 0.0273 -17.32 0.0000

Club 7:log(school0) -0.4629 0.0354 -13.08 0.0000

Club 8:log(school0) -0.5194 0.0890 -5.84 0.0000

Club 9:log(school0) -0.5462 0.1274 -4.29 0.0000

Club 10:log(school0) -0.2972 0.3975 -0.75 0.4551

Group11:log(school0) -0.2923 0.3647 -0.80 0.4234

West:log(school0) 0.0071 0.0188 0.38 0.7063

PR2 = 0.896,AIC=−1372.89,SIC=−1270.78
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Table A.32: German regional data. AIC and SIC for baseline, spatial error, spatial

lag, and spatial Durbin model with and without convergence club variable

Models withoutclub variable

baseline spatial error spatial lag spatial Durbin

AIC -725.31 -734.54 -729.10 -735.36

SIC -704.90 -710.04 -704.55 -698.60

Models includingclub variable

baseline spatial error spatial lag spatial Durbin

AIC -1373.89 -1372.01 -1374.70 -1370.73

SIC -1270.78 -1265.81 -1268.51 -1170.59

Table A.33: German regional data. Results of LM-tests for spatial dependencies in

the residuals of Equation (5.6) and (5.7)

Test results for Equation (5.6)

Statistic df p.value

LM-test for spatial error 10.87 1.00 0.00

LM-test for spatial lag 4.30 1.00 0.04

LM-test for spatial error and spatial lag 17.50 2.00 0.00

Test results for Equation (5.7)

Statistic df p.value

LM-test for spatial error 0.00 1.00 0.98

LM-test for spatial lag 3.20 1.00 0.07

LM-test for spatial error and spatial lag 4.26 2.00 0.12
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Table A.34: German regional data. Estimated bandwidths using least-squares cross-

validation for nonparametric mixed-kernel regression.
covariate kernel function hk ∈ ĥk

log(school0) of Equation (5.13) ]0,∞[ 0.2820

club of Equation (5.15) [0,1] 0.0027

west of Equation (5.14) [0,1] 0.1711

Table A.35: German regional data. Virtual number of observations for the category

combinations of the discrete covariates according to the estimated bandwidths of

the discrete covariates for nonparametric mixed-kernel regression.

club 1 2 3 4 5 6 7 8 9 10 11 total

east 1.5 7.4 9.2 25.2 67.1 38.9 14.3 2.3 1.9 0.5 0.5168.8

west 3.2 14.9 19.2 44.4 96.3 90.5 49.3 13.2 11.0 3.0 3.0348.0

total 4.7 22.3 28.4 69.6 163.4 129.4 63.6 15.5 12.9 3.5 3.5516.8
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Table A.36: Penn World Tables data. Regression results for conditional conver-

gence analysis without (second column) and including (third column) club variable

(p-values in parentheses).

Dep.Var. model withoutclub variable model withclub variable

Intercept 0.030 (0.359) 0.131 (0.000)

lny60 -0.007 (0.000) -0.015 (0.000)

lns 0.021 (0.000) 0.009 (0.000)

lnngd -0.032 (0.008) -0.018 (0.011)

factor(club)2 -0.056 (0.020)

factor(club)3 -0.110 (0.001)

factor(club)4 -0.064 (0.009)

factor(club)5 -0.078 (0.023)

factor(club)6 -0.333 (0.000)

factor(club)2:lny60 0.005 (0.074)

factor(club)3:lny60 0.010 (0.009)

factor(club)4:lny60 0.004 (0.221)

factor(club)5:lny60 0.004 (0.351)

factor(club)6:lny60 0.034 (0.000)

Moran′s I(W1) 0.230 (0.000) 0.058 (0.151)

Moran′s I (W2) 0.264 (0.000) 0.087 (0.094)

AIC -522.15 -635.28

SIC -509.60 -597.62
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Table A.37: Penn World Tables data. Results of LM-tests for spatial dependen-

cies in the residuals of conditional convergence analysis (Equation (21), p. 1041 in

Ertur & Koch, 2007).

model withoutclub-variable

Statistic df p.value

LM-test for spatial error 2.725 1.00 0.099

LM-test for spatial lag 0.20 1.00 0.652

LM-test for spatial error and spatial lag 11.441 2.00 0.003

model withclub-variable

Statistic df p.value

LM-test for spatial error 0.011 1.00 0.915

LM-test for spatial lag 2.012 1.00 0.156

LM-test for spatial error and spatial lag 2.717 2.00 0.257

Table A.38: Penn World Tables data. AIC and SIC for differentmodels estimating

conditional convergence.

model withoutclub variable

baseline spatial error spatial lag spatial Durbin

AIC -522.15 -532.62 -526.86 -537.56

SIC -509.60 -517.56 -511.80 -514.96

model includingclub variable

baseline spatial error spatial lag spatial Durbin

AIC -635.28 -634.52 -635.83 -625.17

SIC -597.62 -594.34 -595.66 -552.36
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Table A.39: Penn World Tables data. Estimated bandwidths using least-squares

cross-validation for nonparametric mixed-kernel regression.
covariate kernel function hk ∈ ĥk

lny60 of Equation (5.13) ]0,∞[ 1.0427

club of Equation (5.15) [0,1] 0.0231

lns of Equation (5.13) ]0,∞[ 422,205.1

lnngd of Equation (5.13) ]0,∞[ 0.0878
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B Figures

Figure B.1: Cross-validation of linear parametric versus nonparametric approaches

for conditional mean. Graph displays density estimate of relative MSEP based on

B= 10,000 sub-sample replications.
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Figure B.2: Estimated manifold of nonparametric mean regression.
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Figure B.3: Estimated conditional partial effects oflpop (left panel) and ofligdp

(right panel). Solid red curve shows nonparametric mean regression, dashed blue

curve shows nonparametric quartile regressions.
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Figure B.4: Relative transition coefficients over time for convergence clubs result-

ing from final ordering after merging, corresponding to (I) b) in Table A.8.
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Figure B.5: Relative transition coefficients over time and absolute per capita income

over time of USA and Botswana.
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Figure B.6: Boxplots of income in final period divided by the convergence clubs

resulting from final ordering after merging, correspondingto (I) b) in Table A.8.
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Figure B.7: Scatterplots of the logt regressions (3.6) for clubs found by final order-

ing after merging, corresponding to (I) b) in Table A.8. Solid line is ordinary least

squares estimate.
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Figure B.8: Estimated regression lines from the estimation displayed in Table par-

resultsps for the five convergence clubs for PWT data.
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Figure B.9: Relative transition coefficients over time for convergence clubs result-

ing from final ordering after merging, corresponding to (I) b) in Table A.15.
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Figure B.10: Boxplots of income in final period divided by the convergence clubs

resulting from final ordering after merging, correspondingto (I) b) in Table A.15.
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Figure B.12: Estimated regression lines from the estimationdisplayed in Table A.17

for the ten convergence clubs for German district data.
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Figure B.13: Relative transition coefficients over time for convergence clubs result-

ing from final ordering after merging, corresponding to (I) b) in Table A.20.
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Figure B.14: Boxplots of income in final period divided by the convergence clubs

resulting from final ordering after merging, correspondingto (I) b) in Table A.20.
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Figure B.15: Scatterplots of logt regressions for clubs found by final ordering after

merging, corresponding to (I) b) in Table A.20. Solid line isordinary least squares

estimate.
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Figure B.16: Estimated regression lines from the estimationdisplayed in Table

A.22 for the two convergence clubs for Japanese prefecture-level data.
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Figure B.19: German regional data. Relative transition pathsfrom time period 0 to

T for the convergence clubs and the divergence group.
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Figure B.20: German regional data. Plots of log(school0) (abscissa) and the es-

timated partial effects (w.r.t. log(school0), ordinate axis) for the nonparametric

regression model (points) of Equation (5.11) and the parametric model (horizontal

dashed lines) of Equation (5.7).
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Figure B.21: Penn World Tables data: Relative transition paths from time period 0

to T for the convergence clubs and the divergence group.
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