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The classic middle-thirds Cantor set leads to a singular continuous measure via a
distribution function that is known as the Devil’s staircase. The support of the Cantor
measure is a set of zero Lebesgue measure. Here, we discuss a class of singular contin-
uous measures that emerge in mathematical diffraction theory and lead to somewhat
similar distribution functions, yet with significant differences. Various properties
of these measures are derived. In particular, these measures have supports of full
Lebesgue measure and possess strictly increasing distribution functions. In this sense,
they mark the opposite end of what is possible for singular continuous measures. For
each member of the family, the underlying dynamical system possesses a topological
factor with maximal pure point spectrum, and a close relation to a solenoid, which
is the Kronecker factor of the system. The inflation action on the continuous hull
is sufficiently explicit to permit the calculation of the corresponding dynamical zeta
functions. This is achieved as a corollary of analysing the Anderson-Putnam com-
plex for the determination of the cohomological invariants of the corresponding tiling
spaces. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688337]

Dedicated to Robert V. Moody on the occasion of his 70th birthday.

I. INTRODUCTION

The probably most widely known singular continuous measure emerges as the unique invariant
probability measure for the iterated function system31 of the classic middle-thirds Cantor set. The
construction and the distribution function F of the resulting measure are illustrated in Figure 1.
Due to its shape, F is known as the Devil’s staircase. It is a non-decreasing continuous function
that is constant almost everywhere, which corresponds to the fact that the underlying measure gives
no weight to single points, but is concentrated on an uncountable set of zero Lebesgue measure
(the Cantor set). The Cantor measure is thus both continuous and singular, hence purely singular
continuous.

Singular continuous measures occur in a wide range of physical problems, most notably in
the theory of non-periodic Schrödinger operators; see Refs. 20 and 23 and references therein for
examples. In particular, it is an amazing result that singular continuous spectra are in a certain sense
even generic here; compare Refs. 51 and 39. One would also expect the appearance of singular
continuous measures in mathematical diffraction theory,22, 30,8 where the Thue-Morse sequence
provides one of the few really explicit examples. Recent experimental evidence54 indicates that this
spectral type might indeed be more relevant to diffraction than presumed so far. This case has not yet
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FIG. 1. The distribution function F of the classic middle-thirds Cantor measure. The construction of the Cantor set is sketched
in the inset.

received the theoretical attention it deserves, though partial results exist in the dynamical systems
literature; compare Refs. 45 and 32.

The Thue-Morse system is an example of a bijective substitution of constant length.45 This class
has a natural generalisation to higher dimensions, and is studied in some detail in Refs. 26 and 27;
see also Ref. 55 and references therein for related numerical studies. Bijective substitutions form an
important case within the larger class of lattice substitution systems. For the latter, from the point
of view of diffraction theory, a big step forward was achieved in Refs. 36–38, where known criteria
for pure pointedness in one dimension24 were generalised to the case of Zd -action. Moreover, a
systematic connection with model sets was established (see Refs. 41 and 42 for detailed expositions
and Ref. 35 for a rather complete picture), and there are also explicit algorithms to handle such cases;
compare Refs. 28 and 1 and references therein. Nevertheless, relatively little has been done for the
case without any coincidence in the sense of Dekking24 or its generalisation to lattice substitution
systems.36, 37 Although it is believed that one should typically expect singular continuous measures
for bijective substitutions without coincidence, explicit examples are rare.

As a first step to improve this situation, we investigate a class of generalised Thue-Morse
sequences in the spirit of Ref. 34. They are defined by primitive substitution rules and provide a
two-parameter family of systems with purely singular continuous diffraction. Below, we formulate
a rigorous approach that is constructive and follows the line of ideas that was originally used by
Wiener,53 Mahler,40 and Kakutani32 for the treatment of the classic Thue-Morse case. Some of the
measures were studied before (mainly by scaling arguments and numerical methods) in the context
of dimension theory for correlation measures; compare Refs. 34 and 55 and references therein.

The paper is organised as follows. We begin with a brief summary of the Thue-Morse sequence
with its spectral and topological properties, where we also introduce our notation. Sec. III treats the
family of generalised Thue-Morse sequences from Ref. 6, where the singular continuous nature of
the diffraction spectra is proved and the corresponding distribution functions are derived. Here, we
also briefly discuss the connection with a generalisation of the period doubling sequence. The latter
has pure point spectrum, and is a topological factor of the generalised Thue-Morse sequence. This
factor has maximal pure point spectrum. The diffraction measure of the generalised Thue-Morse
system is analysed in detail in Sec. IV, and its Riesz product structure is derived. In Sec. V, we
construct the continuous hulls of the generalised Thue-Morse and period doubling sequences as
inverse limits of the substitution acting on the Anderson-Putnam cell complex,3 and employ this
construction to compute and relate their Čech cohomologies. The substitution action on the Čech
cohomology is then used in Sec. VI to derive the dynamical zeta functions of the corresponding
substitution dynamical systems. Finally, we conclude with some further observations and open
problems.
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II. A SUMMARY OF THE CLASSIC THUE-MORSE SEQUENCE

The classic Thue-Morse (or Prouhet-Thue-Morse, abbreviated as TM below) sequence2 can be
defined via a fixed point of the primitive substitution,

� = �TM : 1 �→ 11̄ , 1̄ �→ 1̄1 (1)

on the binary alphabet {1, 1̄}. The one-sided fixed point starting with 1 reads as

v = v0v1v2 . . . = 11̄1̄11̄111̄ . . . , (2)

while v̄ is the fixed point starting with 1̄. One can now define a two-sided sequence w by

wi =
{

vi , i ≥ 0,

v−i−1, i < 0.
(3)

It is easy to check that w = . . . w−2w−1|w0w−1 . . . = . . . v1v0|v0v1 . . . defines a 2-cycle under �,
and hence a fixed point for �2, with the central seed 1|1 being legal. Recall that a finite word is called
legal when it occurs in the n-fold substitution of a single letter for some n ∈ N. An iteration of �2

applied to this seed converges to w in the product topology, which is thus a two-sided fixed point of
�2 in the proper sense.

The sequence w defines a dynamical system (under the action of the group Z) as follows. Its
compact space is the (discrete) hull, obtained as the closure of the Z-orbit of w,

XTM = {Siw | i ∈ Z},
where S denotes the shift operator (with (Sw)i = wi + 1) and where the closure is taken in the local
(or product) topology. Here, two sequences are close when they agree on a large segment around the
origin (marked by |). Now, (XTM,Z) is a strictly ergodic dynamical system (hence uniquely ergodic
and minimal.45, 52) Its unique invariant probability measure is given via the (absolute) frequencies
of finite words (or patches) as the measures of the corresponding cylinder sets, where the latter then
generate the (Borel) σ -algebra. Its minimality follows from the repetitivity of the fixed point word
w, which also implies that XTM = LI(w), where LI stands for the local indistinguishability class.
The latter consists of all elements of {1, 1̄}Z that are locally indistinguishable from w.

Here, we are interested, for a given w ∈ XTM, in the diffraction of the (signed) Dirac comb,

ω = w δZ :=
∑
n∈Z

wn δn , (4)

where the symbols 1 and 1̄ are interpreted as weights 1 and − 1. This defines a mapping from XTM

into the signed translation bounded measures onZ (or onR). Since this mapping is a homeomorphism
between XTM and its image, we use both points of view in parallel without further mentioning.

Given any w ∈ XTM, the autocorrelation measure of the corresponding ω exists as a consequence
of unique ergodicity. It is defined as the volume-averaged (or Eberlein) convolution,

γ = ω � ω̃ = lim
N→∞

ωN ∗ ω̃N

2N + 1
,

where ωN is the restriction of ω to [ − N, N] and μ̃ is the “flipped-over” version of the measure μ

defined by μ̃(g) := μ(̃g) for continuous functions g of compact support, with g̃(x) = g(−x). We
use this general formulation to allow for complex weights later on. A short calculation shows that
the autocorrelation is of the form

γ =
∑
m∈Z

η(m) δm

with the autocorrelation coefficients,

η(m) = lim
N→∞

1

2N + 1

N∑
n=−N

wn wn−m . (5)
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Note that γ applies to all sequences of XTM, by an application of the ergodic theorem, as η(m) is
the orbit average of the continuous function w �→ w0w−m and our dynamical system is uniquely
ergodic.

Remark 1 (alternative approach): Without the diffraction context, it is possible to directly define
the function η : Z −→ C by (5). It is then a positive definite function on Z, with a representation as
the (inverse) Fourier transform of a positive measure μ on the unit circle, by the Herglotz-Bochner
theorem.47 Which formulation one uses is largely a matter of taste. We follow the route via the
embedding as a measure on R, so that we get γ̂ = μ ∗ δZ together with its interpretation as the
diffraction measure of the Dirac comb ω. �

We can now employ the special structure of our fixed point w to analyse γ . One then finds that
η(0) = 1, η(− m) = η(m) for all m ∈ Z, and

η(m) = lim
N→∞

1

N

N−1∑
n=0

vnvn+m (6)

for all m ≥ 0. Here, the structure of w and its relation to v was used to derive (6) from (5). Observing
that v satisfies v2n = vn and v2n+1 = v̄n for all n ≥ 0, one can employ (6) to infer the linear recursion
relations,

η(2m) = η(m) and η(2m+1) = −1

2

(
η(m) + η(m+1)

)
, (7)

which actually hold for all m ∈ Z. These well-known relations32 will also follow from our more
general results in Sec. III as a special case. One finds η(±1) = − 1/3 from solving the recursion for
m = 0 and m = − 1 with η(0) = 1, while all other values are then recursively determined.

To analyse the diffraction measure γ̂ of the TM sequence (following Refs. 40 and 32), one
can start with its pure point part. Defining �(N ) =∑N

n=−N

(
η(n)

)2
, one derives �(4N ) ≤ 3

2�(2N )
from the recursion (7); see Ref. 5 for the detailed estimate needed. This implies 1

N �(N ) N→∞−−−→ 0.
By Wiener’s criterion,53 this means

(
γ̂
)

pp = 0, so that γ̂ is a continuous measure (see Wiener’s
Corollary in Sec. I.7.13 of Ref. 33 or Wiener’s Lemma in Sec. 4.16 of Ref. 43 for details).

Defining the (continuous and non-decreasing) distribution function F via F(x) = γ̂
(
[0, x]

)
,

another consequence of (7) is the pair of functional relations,

dF
(

x
2

)± dF
(

x+1
2

) =
{

1
− cos(πx)

}
dF(x).

Splitting F into its sc and ac parts (which are unique and must both satisfy these relations) now
implies backwards that the recursion (7) holds separately for the two sets of autocorrelation coeffi-
cients, ηsc and ηac, with yet unknown initial conditions at 0. Since this means ηac(1) = − 1

3 ηac(0)
together with ηac(2m) = ηac(m) for all m ∈ N, an application of the Riemann-Lebesgue lemma
forces ηac(0) = 0, and hence ηac(m) = 0 for all m ∈ Z, so that also

(
γ̂
)

ac = 0; compare Ref. 32.
This shows that γ̂ is a singular measure. With the previous argument, since γ̂ 	= 0, we see that it is
a purely singular continuous measure. Figure 2 shows an image, where we have used the uniformly
converging Volterra-type iteration,

Fn+1(x) = 1

2

∫ 2x

0

(
1 − cos(πy)

)
F ′

n(y) dy with F0(x) = x

to calculate F with sufficient precision (note that F(x + 1) = F(x) + 1, so that displaying F on the
interval [0, 1] suffices). In contrast to the Devil’s staircase, the TM function is strictly increasing,
which means that there is no plateau (which would indicate a gap in the support of γ̂ ); see Ref. 5
and references therein for details.

Despite the above result, the TM sequence is closely related to the period doubling sequence,
via the (continuous) block map,

φ : 11̄, 1̄1 �→ a , 11, 1̄1̄ �→ b , (8)

Downloaded 29 Jun 2012 to 129.70.11.92. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



032701-5 Generalised Thue-Morse sequences J. Math. Phys. 53, 032701 (2012)
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FIG. 2. The strictly increasing distribution function of the classic, singular continuous TM measure on [0, 1].

which defines an exact 2-to-1 surjection from the hull XTM to Xpd, where the latter is the hull of the
period doubling substitution defined by

�′ = �pd : a �→ ab , b �→ aa . (9)

Viewed as topological dynamical systems, this means that (Xpd,Z) is a factor of (XTM,Z). Since
both are strictly ergodic, this extends to the corresponding measure theoretic dynamical systems, as
well as to the suspensions into continuous dynamical systems under the action of R. The dynamical
spectrum of the TM system then contains Z[ 1

2 ] as its pure point part,45 which is the entire dynamical
spectrum of the period doubling system. We thus are in the nice situation that a topological factor
with maximal pure point spectrum exists which is itself a substitution system.

The period doubling sequence can be described as a regular model set with a 2-adic internal
space16,15 and is thus pure point diffractive. As another consequence, there is an almost everywhere
1-to-1 mapping50,16 of the continuous hull (see below) onto a (dyadic) solenoid S = S2. Here,
a solenoid Sm (with 2 ≤ m ∈ N say) is the inverse limit of the unit circle under the iterated
multiplication by m. The dyadic solenoid is obtained for m = 2.

The discrete hull XTM of the TM sequence has a continuous counterpart (its suspension), which
we call YTM. Instead of symbolic TM sequences, one considers the corresponding tilings of the real
line, with labelled tiles of unit length. Such tilings are not bound to have their vertices at integer
positions, and the full translation group R acts continuously on them. The continuous hull of a TM
tiling is then the closure of its R-orbit with respect to the local topology. Here, two tilings are close
if, possibly after a small translation, they agree on a large interval around the origin. For the same
reasons as in the case of the discrete hull, the corresponding topological dynamical system (YTM,R)
is minimal and uniquely ergodic, so that every TM tiling defines the same continuous hull. Similarly,
a continuous hull is defined for the period doubling sequence.

According to Ref. 3, the continuous hull of a primitive substitution tiling can be constructed
as the inverse limit of an iterated map on a finite CW-complex �, called the Anderson-Putnam
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032701-6 Baake, Gähler, and Grimm J. Math. Phys. 53, 032701 (2012)

(AP) complex. The cells of � are the tiles in the tiling, possibly labelled to distinguish different
neighbourhoods of a tile within the tiling. Each point in � actually represents a cylinder set of tilings,
with a specific neighbourhood at the origin. The substitution map on the tiling induces a continuous
cellular map of � onto itself, whose inverse limit is homeomorphic to the continuous hull of the
tiling.

Let �n be the CW-complex of the nth approximation step. It is a nice feature of the corresponding
inverse limit space Y = lim←−�n that its Čech cohomology H k(Y ) can be computed as the direct

(inductive) limit of the cohomologies of the corresponding approximant spaces Hk(�n). In our case,
we have a single approximant space �, and a single map (the substitution map �) acting on it.
Consequently, H k(Y ) is the inductive limit of the induced map �* on Hk(�). Analogous inverse
limit constructions also exist for the hull of the period doubling tiling, Y pd, and for the dyadic
solenoid, S.

As a consequence of the above, there is a 2-to-1 cover φ : YTM → Y pd, and a surjection
ψ : Y pd → S which is 1-to-1 almost everywhere. These maps induce well-defined cellular maps
on the associated AP complexes; see also Ref. 49 for a general exposition. We represent these
maps by the same symbols, φ and ψ . They induce homomorphisms on the cohomologies of the AP
complexes, so that we have the following commutative diagram:

H k(�sol)
ψ∗

−→ H k(�pd)
φ∗

−→ H k(�TM)
×2 ↓ � ′∗ ↓ ↓ �∗

H k(�sol)
ψ∗

−→ H k(�pd)
φ∗

−→ H k(�TM)

. (10)

All these maps are explicitly known. The inductive limits along the columns not only give the
cohomologies of the continuous hulls, but also determine the embeddings under the maps φ* and
ψ*. Although H 1(Y pd) and H 1(YTM) are isomorphic, the former embeds (under φ*) in the latter
as a subgroup of index 2, which reflects YTM being a two-fold cover of Y pd. Furthermore, we get
H 1(Y pd)/ψ∗(H 1(S)) = Z. By an application of Proposition 4 of Ref. 18, compare also Example 7
of Ref. 18, this corresponds to the fact that there are exactly two orbits on which the map ψ fails to
be 1-to-1. These two orbits are merged into a single orbit under ψ .

The action of the substitution on the cohomology of the AP complex Hk(�), more precisely the
eigenvalues of this action, can be used3 to calculate the dynamical zeta function of the substitution
dynamical system, thus establishing a connection between the action of the substitution on Hk(�)
and the number of periodic orbits of the substitution in the continuous hull. We skip further details
at this point because they will appear later as a special case of our two-parameter family, which we
discuss next.

III. A FAMILY OF GENERALISED THUE-MORSE SEQUENCES

The TM sequence is sometimes considered as a rather special and possibly rare example, which
is misleading. In fact, there are many systems with similar properties. Let us demonstrate this point
by following Refs. 34 and 6, where certain generalisations were introduced. In particular, we consider
the generalised Thue-Morse (gTM) sequences defined by the primitive substitutions,

� = �k, : 1 �→ 1k 1̄ , 1̄ �→ 1̄k1 (11)

for arbitrary k,  ∈ N. Here, the one-sided fixed point starting with v0 = 1 satisfies

vm(k+)+r =
{

vm, if 0 ≤ r < k ,

v̄m, if k ≤ r < k+,
(12)

for m ≥ 0, as can easily be verified from the fixed point property. A two-sided gTM sequence w can
be constructed as above in Eq. (3). Also analogous is the construction of the discrete hull Xk, as the
orbit closure of w under the Z-action of the shift, where X1,1 = XTM. We will drop the index when
it is clear from the context.
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Proposition 1: Consider the substitution rule � = �k, of Eq. (11) for arbitrary, but fixed
k,  ∈ N. The bi-infinite sequence w that is constructed from the one-sided sequence v of (12) via
reflection as in Eq. (3) is a fixed point of �2, as is w′ = �(w). Both sequences are repetitive and
locally indistinguishable.

Moreover, w is an infinite palindrome and defines the discrete hull X = {Siw | i ∈ Z} under
the action of the shift S. This hull is reflection symmetric and minimal, and defines a strictly ergodic
dynamical system. Similarly, when turning w into a tiling of R by two intervals of length 1 that are
distinguished by colour, the closure Y of the R-orbit of this tiling in the local topology defines a
dynamical system (Y ,R) that is strictly ergodic for the R-action.

Proof: Most claims are standard consequences of the theory of substitution dynamical systems,45

as applied to �. The fixed point property includes the relation �2(w) = w together with the legality of
the central seed w−1|w0 around the marker. Note that each fixed point of �n, with arbitrary n ∈ N, is
repetitive and defines the same hull X. The latter is minimal due to repetitivity, and consists precisely
of the LI class of w. Since w and w′ coincide on the right of the marker, but differ on the left in every
position, neither can have a non-trivial period (this would contradict their local indistinguishability).
This is an easy instance of the existence of distinct proximal elements.17 Consequently, X = LI(w)
cannot contain any element with a non-trivial period, so that w and hence � is aperiodic.

The action of the shift is clearly continuous in the product topology. Unique ergodicity follows
from the uniform existence of all pattern frequencies (or from linear repetitivity). This means that
(X,Z) defines a topological dynamical system that leads to a strictly ergodic dynamical system
(X,Z, ν), where the unique measure ν is defined via the frequencies of patches as the measures of
the corresponding cylinder sets. The claim about the extension to the R-action on Y follows from the
suspension of the discrete system, which is easy here because the constant length of the substitution
� implies that the canonically attached tiling is the one described. �

Let us mention in passing that the discrete hull X is a Cantor set, while the local structure of
the continuous hull Y is a product of an interval with a Cantor set; compare Ref. 20 and references
therein.

Since each choice of k,  leads to a strictly ergodic dynamical system, we know that all
autocorrelation coefficients (as defined by Eq. (5), with 1̄ =̂ − 1) exist. Clearly, we have η(0) = 1,
while several possibilities exist to calculate η(±1) = k+−3

k++1 .
As before, we turn a gTM sequence w = (wn)n∈Z into the Dirac comb,

ω =
∑
n∈Z

wn δn , (13)

which is a translation bounded measure. Its autocorrelation is of the form

γ =
∑
m∈Z

η(m) δm (14)

with the coefficients η(m), which can alternatively be calculated via the one-sided fixed point v as
in Eq. (6). Let us now derive a recursion for η(m). Since this will be the “golden key” for almost all
spectral properties, we provide a detailed proof.

Lemma 1: Consider the gTM sequence defined by the primitive substitution � of (11), for fixed
k,  ∈ N. When realised as the Dirac comb of Eq. (13), each element of the corresponding hull
X = Xk, possesses the unique autocorrelation γ of (14), where the autocorrelation coefficients
satisfy η(0) = 1 and the linear recursion,

η
(
(k+)m + r

) = 1

k + 

(
αk,,r η(m) + αk,,k+−r η(m+1)

)
,

with αk,,r = k +  − r − 2 min(k, , r, k+−r ), valid for all m ∈ Z and 0 ≤ r < k + . In
particular, one has η

(
(k+)m

) = η(m) for m ∈ Z.
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TABLE I. Conditions on r and t for the splitting of the sum in Eq. (15),
and the resulting term for the sum from the recursion relation (12).

Conditions Term

0 ≤ t < k − r vn vn+m

k − r ≤ t < min (k, k +  − r) vn v̄n+m

0 ≤ r < k min (k, k +  − r) ≤ t < k vn vn+m+1

k ≤ t < max (k, k +  − r) v̄n v̄n+m

max (k, k +  − r) ≤ t < k +  v̄n vn+m+1

0 ≤ t < min (k, k +  − r) vn v̄n+m

min (k, k +  − r) ≤ t < k vn vn+m+1

k ≤ r < k +  k ≤ t < max (k, k +  − r) v̄n v̄n+m

max (k, k +  − r) ≤ t < 2k +  − r v̄n vn+m+1

2k +  − r ≤ t < k +  v̄n v̄n+m+1

Proof: Existence and uniqueness of γ are a consequence of Proposition 1, via an application of
the ergodic theorem. The support of the positive definite measure γ is obviously contained in Z, so
that γ = ηδZ.

Since η(0) = 1 is immediate from Eq. (5), it remains to derive the recursion. We now begin with
m ≥ 0 and use formula (6). When r = 0, one finds

η
(
(k+)m

) = lim
N→∞

1

N

N−1∑
n=0

vn vn+(k+)m = lim
N ′→∞

1

(k + )N ′

k+−1∑
t=0

N ′−1∑
n=0

v(k+)n+t v(k+)(n+m)+t

(12)= lim
N ′→∞

1

(k + )N ′

k+−1∑
t=0

N ′−1∑
n=0

{
vn vn+m , if 0 ≤ t < k
v̄n v̄n+m , if k ≤ t < k+

}

= lim
N ′→∞

1

(k + )N ′

k+−1∑
t=0

N ′−1∑
n=0

vn vn+m = η(m),

where the penultimate step follows because v̄n v̄n+m = vn vn+m due to vi ∈ {±1}.
For general r, one proceeds analogously and finds

η
(
(k+)m + r

) = lim
N ′→∞

1

(k + )N ′

k+−1∑
t=0

N ′−1∑
n=0

v(k+)n+t v(k+)(n+m)+r+t . (15)

One now has to split the sum over t according to the ten cases of Table I. In each row, the condition
for t is formulated in such a way that the difference of the bounds gives the proper multiplicity of
the resulting term to the sum, which may be zero in some cases.

Observing v̄n = −vn , one simply has to add the terms of the form vn vn+m with their signed
multiplicities, which contribute to η(m), and those of the form vn vn+m+1, which contribute to
η(m + 1). For instance, when 0 ≤ r < k, one finds the multiplicity of vn vn+m as

(k−r ) − (min(k, k+−r ) − (k−r )
)+ (max(k, k+−r ) − k

)
= k +  − r − 2

(
min(k, k+−r ) − k + r

) = k +  − r − 2 min(r, )

= k +  − r − 2 min(k, , r, k+−r ) = αk,,r ,

where we used min (a, b) + max (a, b) = a + b and, in the last line, the inequality 0 ≤ r < k. The
required denominator (k + ) in the claimed recursion emerges from the splitting as shown above
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in Eq. (15). Likewise, the multiplicity for vn vn+m+1 calculates as(
k − min(k, k+−r )

)− ((k+) − max(k, k+−r )
)

= − + max(k, k+−r ) − min(k, k+−r )

= 2k − r − 2 min(k, k+−r ) = r − 2 min(r, ) = αk,,k+−r ,

where we used that min (r, ) = min (k, , r, k +  − r) holds in this case. The remaining cases
(for k ≤ r < k + ) follow from similar calculations; see Table I. This completes the argument for
η(m) with m ≥ 0.

Finally, we know that η(− n) = η(n) holds for all n ∈ Z. Let m < 0 be fixed, so that m = − |m|
with |m| > 0. If r = 0, one simply has

η
(
(k+)m

) = η
(
(k+)|m|) = η(|m|) = η(m).

When 1 ≤ r < k + , set m′ = |m| − 1 and s = k +  − r, so that m′ ≥ 0 and 1 ≤ s < k + .
Then, one finds

η
(
(k+)m + r

) = η
(
(k+)|m| − r

) = η
(
(k+)m ′ + s

)
= 1

k + 

(
αk,,s η(m ′) + αk,,k+−s η(m ′+1)

) = 1

k + 

(
αk,,r η(m) + αk,,k+−r η(m+1)

)
,

due to the reflection symmetry of η together with the recursion for positive arguments. �
Note that the recursion in Lemma 1 uniquely determines all coefficients η(m) once η(0) is given.

Moreover, the recursion is linear, which will have strong consequences later.
Since, for any given k,  ∈ N, every member of the corresponding hull of weighted Dirac combs

has the same autocorrelation measure, we speak, from now on, of the autocorrelation measure of the
gTM system (for parameters k,  ∈ N). Let us define �(N ) =∑N

n=−N

(
η(n)

)2
, where we suppress

the parameters k and . For k =  = 1, we know a bound on the growth rate of �(N ), namely,
�(4N ) ≤ 3

2�(2N ), from Refs. 32 and 5. For k +  > 2, we formulate a similar result (with a
technically more involved but structurally slightly simpler proof) as follows.

Lemma 2: Let k,  ∈ N with k +  > 2 be fixed, and let η(n) with n ∈ Z be the corresponding
autocorrelation coefficients from Lemma 1. Then, there is some positive number q < k +  such
that �

(
(k+)N

) ≤ q�(N ) for all N ∈ N.

Proof: Using the recursions of Lemma 1, one finds

�
(
(k+)N

) =
(k+)N∑

n=−(k+)N

(
η(n)

)2 = (
η
(
(k+)N

))2 +
k+−1∑

r=0

N−1∑
m=−N

(
η
(
(k+)m + r

))2
= �(N ) + 1

(k + )2

k+−1∑
r=1

N−1∑
m=−N

(
αk,,r η(m) + αk,,k+−r η(m+1)

)2
≤ �(N )

(k + )2

(
(k + )2 +

k+−1∑
r=1

(
α2

k,,r + α2
k,,k+−r

)) + A

(k + )2

with A = (∑N−1
m=−N 2 |η(m)η(m+1)|)(∑k+−1

r=1 |αk,,r αk,,k+−r |
)

being a sum of non-negative terms
only. Noting that

N−1∑
m=−N

2 |η(m)η(m+1)| ≤
N−1∑

m=−N

(
η(m)

)2 + (η(m+1)
)2 ≤ 2 �(N ) ,
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one obtains A ≤ �(N )
∑k+−1

r=1 2 |αk,,r αk,,k+−r |. Employing the binomial formula results in

�
(
(k+)N

) ≤ �(N )

(k + )2

(
(k + )2 +

k+−1∑
r=1

(|αk,,r | + |αk,,k+−r |
)2)

.

Our claim follows if we show that the term in the large brackets is smaller than (k + )3. For
1 ≤ r ≤ k +  − 1, we know that 1 ≤ min (k, , r, k +  − r) ≤ min (r, k +  − r), which
implies |αk,,r | ≤ k +  − r and hence

|αk,,r | + |αk,,k+−r | ≤ k +  . (16)

Since k +  > 2 by assumption, the stronger inequality |αk,,1| + |αk,,k+−1| ≤ k +  − 2 holds for
r = 1, so that at least one term in the sum is smaller than k + . This means that a q < k +  exists
such that �

(
(k+)N

) ≤ q�(N ) holds for all N ≥ 1. �
The recursion derived in Lemma 1 can now be used to show the absence of pure point components

(by Wiener’s criterion, which will rely on Lemma 2) as well as that of absolutely continuous
components (by the Riemann-Lebesgue lemma, which will rely on the special relation η

(
(k + )m

)
= η(m) from Lemma 1), thus establishing that each sequence in this family leads to a signed Dirac
comb with purely singular continuous diffraction.

Theorem 1: Let k,  ∈ N. The diffraction measure of the gTM substitution � = �k, is the
Fourier transform γ̂ of the autocorrelation measure γ of Lemma 1. It is the diffraction measure of
every element of the hull of weighted Dirac combs for �. Moreover, γ̂ is purely singular continuous.

Proof: Since the statement is clear for k =  = 1 from Sec. II together with Refs. 32 and 5, let
k +  > 2 be fixed. The corresponding autocorrelation is unique by Lemma 1. Since it is positive
definite by construction, its Fourier transform exists,21 and then applies to each element of the hull
again. Since the underlying Dirac comb is supported on Z, we know from Theorem 1 of Ref. 4 that
γ̂ is Z-periodic, hence it can be written as

γ̂ = μ ∗ δZ with μ = γ̂ |[0,1) . (17)

Here, μ is a positive measure on the unit interval (which is a representation of the unit circle
here), so that the inverse Fourier transform μ̌, by the Herglotz-Bochner theorem, is a (continuous)
positive definite function on Z (viewed as the dual group of the unit circle). Since γ = μ̌ δZ by
the convolution theorem together with the Poisson summation formula δ̂Z = δZ, we see that this
function is

η(m) =
∫ 1

0
e2π imx dμ(x) = μ̌(m). (18)

Let us now use the recursion for η to infer the spectral nature of μ and thus of γ̂ .

Lemma 2 implies 1
N �(N )

N→∞−−−→ 0, which means
(
γ̂
)

pp = 0 by Wiener’s criterion; 53 see also

Refs. 33 and 43. We thus know that γ̂ = (γ̂ )sc + (γ̂ )ac is a continuous measure, where the right-
hand side is the sum of two positive measures that are mutually orthogonal (in the sense that they
are concentrated on disjoint sets). Each is the Fourier transform of a positive definite measure
with support Z, hence specified by autocorrelation coefficients ηsc and ηac which clearly satisfy
ηsc(m) + ηac(m) = η(m) for all m ∈ Z. The recursion relations for η imply a corresponding set
of functional relations for the non-decreasing and continuous distribution function F defined by
F(x) = γ̂

(
[0, x]

)
for 0 ≤ x ≤ 1. Due to the orthogonality mentioned above, the same relations have

to be satisfied by the ac and sc parts separately. This in turn implies that ηsc and ηac must both
satisfy the recursion relations of Lemma 1, however, with a yet undetermined value of ηac(0), and
ηsc(0) = 1 − ηac(0).

The recursion of Lemma 1 with m = 0 and r = 1 gives

ηac(1) = k +  − 3

k +  + 1
ηac(0),
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while r = 0 leads to ηac

(
(k+)m

) = ηac(m) for all m ∈ Z. Since we have limn→∞ ηac(n) = 0 from
the Riemann-Lebesgue lemma, compare Ref. 33, we must have ηac(m) = 0 for all m > 0. When
k +  > 3, ηac(1) = 0 forces ηac(0) = 0, and then ηac(m) = 0 for all m ∈ Z by the recursion, which
means

(
γ̂
)

ac = 0. When k +  = 3, we have ηac(1) = 0, but the recursion relation for m = 0 and
r = 2 leads to ηac(2) = − 1

3 ηac(0), hence again to ηac(0) = 0 with the same conclusion.
As a consequence, ηsc(0) = 1 and η = ηsc. We thus have γ̂ = (γ̂ )sc as claimed. �
Remark 2 (diffraction with general weights): If an arbitrary gTM sequence is given, the diffrac-

tion of the associated Dirac comb with general (complex) weights h± can be calculated as follows.
If h is the function defined by h(1) = h+ and h(1̄) = h−, one has

ωh :=
∑
n∈Z

h(wn)δn = h++ h−
2

δZ + h+− h−
2

ω

with the ω from Eq. (13). The autocorrelation of ωh clearly exists and calculates as

γh = |h++ h−|2
4

δZ + |h+− h−|2
4

γ

with γ from (14). This follows from δ̃Z = δZ together with δZ � ω = δZ � ω̃ = 0, which is a
consequence of the fact that 1 and 1̄ are equally frequent in all gTM sequences. The diffraction is
now obtained as

γ̂h = |h++ h−|2
4

δZ + |h+− h−|2
4

γ̂ ,

by an application of the Poisson summation formula δ̂Z = δZ. Since γ̂ is purely singular continuous,
this is a diffraction measure with singular spectrum of mixed type. �

This diffraction does not display the full dynamical spectrum of the gTM system, which is a
well-known phenomenon from the classic TM system.25 In the latter case, this is “rectified” by the
period doubling system as a topological factor. We will return to this question for the gTM systems
in Remark 4.

IV. THE DIFFRACTION MEASURE OF THE GTM SYSTEM

Let us consider the diffraction measure in more detail, which we do via a suitable distri-
bution function F for the (continuous) measure γ̂ . This is done as follows. First, we define
F(x) = γ̂ ([0, 1]) = μ([0, x]) for x ∈ [0, 1]. The Z-periodicity of γ̂ together with μ([0, 1])
= η(0) = 1 means that F extends to the entire real line via F(x + 1) = 1 + F(x). Moreover,
since γ̃ = γ , we know that γ̂ is reflection symmetric. With F(0) = 0, this implies F( − x) = − F(x)
on R, which is our specification of F in this case.

Proposition 2: Let k,  ∈ N be fixed. The distribution function F of the corresponding diffraction
measure is non-decreasing, continuous, and skew-symmetric. Moreover, it satisfies the relation
F(x + 1) = 1 + F(x) on the real line. Moreover, it possesses the series expansion,

F(x) = x +
∑
m≥1

η(m)

mπ
sin(2πmx),

which converges uniformly on R.

Proof: By construction, F is non-decreasing, and is continuous by Theorem 1. So, F(x) − x
defines a 1-periodic continuous function that is skew-symmetric and the difference of two continuous,
non-decreasing functions, hence it is of bounded variation. By standard results, see Corollary. 1.4.43
of Ref. 44, it has thus a uniformly converging Fourier series expansion,

F(x) − x =
∞∑

m=1

bm sin(2πmx).
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The Fourier coefficient bm (for m ∈ N) is

bm = 2
∫ 1

0
sin(2πmx)

(
F(x) − x

)
dx = 1

mπ
+ 2

∫ 1

0
sin(2πmx) F(x) dx

= 1

mπ

∫ 1

0
cos(2πmx) dF(x) = 1

mπ

∫ 1

0
e2π imx dF(x) = η(m)

mπ
.

The first step in the second line follows from integration by parts, while the next is a consequence
of the symmetry of dF together with its periodicity (wherefore the imaginary part of the integral
vanishes). Recalling that F (restricted to [0, 1]) is the distribution function of the probability measure
μ completes the argument. �

It is interesting that the autocorrelation coefficients occur as Fourier coefficients this way. In
preparation of a later result, let us look at this connection more closely. A key observation is that
the recursion relations for η from Lemma 1 (which have a unique solution once the initial condition
η(0) = 1 is given, with |η(n)| ≤ 1 for all n ∈ Z) can also be read as a recursion as follows. Let
β ∈ [−1, 1]N be a sequence and define a mapping � via

(
�β
)

(k+)n+r := 1

k + 

⎧⎪⎪⎨⎪⎪⎩
αk,,r + αk,,k+−r βn+1 , if n = 0 and 1 ≤ r < k + ,

(k + ) βn , if n ∈ N and r = 0,

αk,,r βn + αk,,k+−r βn+1 , if n ∈ N and 1 ≤ r < k + ,

(19)

which completely defines the sequence �β. This mapping derives from the recursion for η with
positive arguments when η(0) = 1.

Lemma 3: The mapping � maps [−1, 1]N into itself, with ‖�β‖∞ ≤ ‖β‖∞. Moreover, for
any β(0) ∈ [−1, 1]N , the iteration sequence β(N) defined by β(N + 1) = �β(N) for N ≥ 0 converges
pointwise towards

(
η(n)

)
n∈N .

Proof: The first claim follows from |αk,,r | + |αk,,k+−r | ≤ k + , which was used earlier in the
proof of Lemma 2, via the triangle inequality. When r = 0 or when k =  = r, one has equality here,
so that � is not a contraction on [−1, 1]N for the supremum norm.

Observe that the iteration for β1 is closed and reads as

β ′
1 = k +  − 3

k + 
− 1

k + 
β1 ,

which is an affine mapping with Lipschitz constant 1
k+

and hence a contraction. The iteration for
β1 thus converges exponentially fast (to k+−3

k++1 ) by Banach’s contraction principle.
What happens with the iteration for β1 determines everything else, because the components βn

with (k + )m ≤ n < (k + )m + 1 and m ≥ 0 emerge from β1 in m steps of the iteration. In particular,
the iteration also closes on any finite block with 1 ≤ n < (k + )m and fixed m ∈ N, and shows
exponentially fast convergence. Note though that the iteration is only non-expanding as soon as m
> 1, while � induces an affine mapping with Lipschitz constant,

L = max
{|αk,,k+−r |

∣∣ 1 ≤ r < k + 
}

k + 
≤ k +  − 1

k + 
< 1 ,

on the components βn with 1 ≤ n < k + .
Pointwise convergence is now clear, and the limit is the one specified by the original recursion,

which proves the claim. �
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The recursion relations for η can also be used to derive a functional equation for the distribution
function F. Observe first that

η
(
(k+)m + r

) =
∫ 1

0
e2π i((k+)m+r )x dF(x) =

∫ k+

0
e2π imx e2π i r x

k+ dF
(

x
k+

)
=
∫ 1

0
e2π imx e2π i r x

k+

k+−1∑
s=0

e2π i rs
k+ dF

(
x+s
k+

)
.

(20)

On the other hand, we know from Lemma 1 that

η
(
(k+)m + r

) = 1

k + 

(
αk,,r η(m) + αk,,k+−r η(m+1)

)
=
∫ 1

0
e2π imx αk,,r + αk,,k+−r e2π i x

k + 
dF(x) .

(21)

A comparison of (20) and (21) leads to the following result.

Proposition 3: The distribution function F for k,  ∈ N satisfies the functional equation,

F(x) = 1

k + 

∫ (k+)x

0
ϑ
( y

k+

)
dF(y) with ϑ(x) = 1 + 2

k+

∑k+−1
r=1 αk,,r cos(2πr x) .

This relation holds for all x ∈ R, and ϑ is continuous and non-negative.

Proof: Eqs. (20) and (21), which hold for all m ∈ Z, state the equality of the Fourier coefficients
of two 1-periodic Riemann-Stieltjes measures, which must thus be equal (as measures). For all
0 ≤ r < k + , we thus have

k+−1∑
s=0

e2π i rs
k+ dF

(
x+s
k+

) = e−2π i r x
k+

αk,,r + αk,,k+−r e2π i x

k + 
dF(x) .

Fix an integer t with 0 ≤ t < k +  and multiply the equation for r on both sides by exp
(−2π i rt

k+

)
.

Since
∑k+−1

r=0 exp
(
2π i r (s−t)

k+

) = (k+) δs,t , a summation over r followed by a division by (k + )
leads to

dF
(

x+t
k+

) = 1

k + 

(
1 +

k+−1∑
r=1

(
αk,,r

k + 
e−2π i r (x+t)

k+ + αk,,k+−r

k + 
e2π i (k+−r )x−r t

k+

))
dF(x)

= 1

k + 

(
1 + 2

k + 

k+−1∑
r=1

αk,,r cos
(

2π r (x+t)
k+

))
dF(x) = ϑ

(
x+t
k+

)
k + 

dF(x),

which is valid for all x ∈ [0, 1).
To derive the functional equation, we need to calculate F(x) and hence to integrate the previous

relations with an appropriate splitting of the integration region. When [y] and {y} denote the integer
and the fractional part of y, one finds

F(x) =
∫ x

0
dF(y) =

∫ {(k+)x}

0
dF
( y+[(k+)x]

k+

) +
[(k+)x]−1∑

t=0

∫ 1

0
dF
( y+t

k+

)
, (22)

which holds for all x ∈ [0, 1). Observe next that∫ 1

0
dF
( y+t

k+

) = 1

k + 

∫ 1

0
ϑ
( y+t

k+

)
dF(y) = 1

k + 

∫ t+1

t
ϑ
(

z
k+

)
dF(z) ,
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holds for any 0 ≤ t ≤ k + , where we used that dF(z − n) = dF(z) for all n ∈ Z as a consequence
of the relation F(z + 1) = 1 + F(z) for z ∈ R. Similarly, one obtains∫ {(k+)x}

0
dF
( y+[(k+)x]

k+

) = 1

k + 

∫ (k+)x

[(k+)x]
ϑ
(

z
k+

)
dF(z) .

We can now put the pieces in (22) together to obtain the functional equation as claimed, which
clearly holds for all x ∈ R.

The continuity of ϑ is clear. Its non-negativity follows from the functional equation, because
we know that F is non-decreasing on [0, 1] (as it is the distribution function of the positive measure
μ). If we had ϑ(a) < 0 for some a ∈ [0, 1], there would be some ε > 0 such that ϑ(y) < − ε

in a neighbourhood of a, which would produce a contradiction to the monotonicity of F via the
functional equation.

Remark 3 (properties of the integration kernel): The non-negative function ϑ of Proposition 3
has various interesting and useful properties. Among them are the normalisation relations,∫ 1

0
ϑ(x) dx = 1 and

∫ 1
2

0
ϑ(x) dx = 1

2
,

which follow from
∫ 1

0 cos(2πr x) dx = 0 for r 	= 0 together with the 1-periodicity of ϑ and its
symmetry (whence we also have ϑ(1 − x) = ϑ(x)). Another is the bound,

‖ϑ‖∞ ≤ q ,

where q is the number from Lemma 2 (when k +  > 2) or q = 2 (when k =  = 1). This bound is
proved by another use of Eq. (16) and the lines following it. �

The functional equation of Proposition 3 provides the basis for the calculation of F by a Volterra-
type iteration. To this end, one defines F0(x) = x (so that dF0(x) = dx) together with the recursion

Fn+1(x) = 1

k + 

∫ (k+)x

0
ϑ
( y

k+

)
dFn(y) (23)

for n ≥ 0. It is clear that each Fn defines an absolutely continuous Riemann-Stieltjes measure, so
that one can define densities fn via dFn(x) = fn(x) dx. This gives∫ x

0
fn+1(z) dz = Fn+1(x) =

∫ x

0
ϑ(z) fn

(
(k + )z

)
dz ,

which results in fn+1(z) = ϑ(z) fn
(
(k + )z

)
, and hence in the continuous function,

fn(z) =
n−1∏
j=0

ϑ
(
(k + ) j z

)
. (24)

To put this iteration into perspective, let us introduce the space D of non-decreasing and continuous
real-valued functions G on R that satisfy G( − x) = − G(x) and G(x + 1) = 1 + G(x) for all
x ∈ R. In particular, this implies G(q) = q for all q ∈ 1

2Z. We equip this space with the ‖.‖∞-
norm, and thus with the topology induced by uniform convergence, in which the space is closed
and complete. Each G ∈ D defines a positive Riemann-Stieltjes measure on R that is reflection
symmetric and 1-periodic. Also, G(x) − x always defines a continuous, skew-symmetric and
1-periodic function of bounded variation. Our distribution functions F from above are elements
of D.

Let k,  ∈ N be fixed. Define a mapping � by G�→�G, where

�G(x) = 1

k + 

∫ (k+)x

0
ϑ
( y

k+

)
dG(y) . (25)
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Clearly, our previous iteration (23) can now be written as Fn + 1 = �Fn with the initial condition
F0(x) = x , where F0 ∈ D.

Lemma 4: The operator � maps D into itself. Moreover, for arbitrary F(0) ∈ D, the iteration
sequence defined by F(N + 1) := �F(N) for N ≥ 0 converges uniformly to the continuous distribution
function F of Proposition 2.

Proof: Let G ∈ D. It is clear that �G is again continuous (since ϑ and G are continuous)
and non-decreasing (since ϑ is non-negative by Proposition 3). The skew-symmetry follows from
dG( − y) = − dG(y) by a simple calculation. Finally, one has

�G(x + 1) = 1

k + 

∫ (k+)(x+1)

0
ϑ
( y

k+

)
dG(y) = �G(x) + I ,

where the remaining integral I, using ϑ from Proposition 3 and the periodicity of dG, is

I = 1

k + 

∫ (k+)x+(k+)

(k+)x
ϑ
( y

k+

)
dG(y) = 1

k + 

∫ k+

0
ϑ
( y

k+

)
dG(y)

= 1

k + 

k+−1∑
t=0

∫ t+1

t
ϑ
( y

k+

)
dG(y) = 1

k + 

k+−1∑
t=0

∫ 1

0
ϑ
( y+t

k+

)
dG(y)

= 1 + 2

(k + )2

k+−1∑
r=1

αk,,r

∫ 1

0

k+−r∑
t=0

cos
(
2π

ry+r t
k+

)
dG(y) = 1 .

The last step follows because the sum under the integral vanishes as a consequence of the relation∑m−1
t=0 exp

(
2π i rt

m

) = 0 for 1 ≤ r < m.

To establish the convergence, let us first show pointwise convergence F (N )(x)
N→∞−−−→ F(x) for

all x ∈ R. Observe that F(N)(x) − x defines a 1-periodic, continuous function on R for each N ∈ N0,
and so does F(x) − x. Their restrictions to [0, 1] define regular (signed) measures on the unit circle,
ν(N) and ν say, with Fourier-Stieltjes coefficients a(N )

n and an , where n ∈ Z. The latter coefficients
follow from Proposition 2, and the former from the observation that every G ∈ D has a uniformly
converging Fourier series of the form

G(x) = x +
∞∑

n=1

βn

nπ
sin(2πnx),

where |βn| ≤ 1 by an application of Theorem II.4.12 of Ref. 56. Here, we have β(N + 1) = �β(N)

with the mapping � of Lemma 3, with initial condition β(0) and convergence β(N )
n

N→∞−−−→ η(n) for

each n ∈ N. Consequently, a(N )
n

N→∞−−−→ an for all n ∈ Z, which means that ν(N )(p)
N→∞−−−→ ν(p) for

any trigonometric polynomial p with period 1, and hence (by an application of the Stone-Weierstrass

theorem46) for all continuous functions on [0, 1]. This proves weak convergence ν(N ) N→∞−−−→ ν on the
unit circle. Since all measures are absolutely continuous, with continuous Radon-Nikodym densities,

this implies pointwise convergence F (N )(x) − x
N→∞−−−→ F(x) − x for all x ∈ [0, 1], and hence (by

periodicity) the pointwise convergence on R claimed above.
Uniform convergence on R now follows from that on [0, 1], which can be shown via the

“stepping-stone” argument from the proof of Theorem. 30.13 of Ref. 19. For completeness, we spell
out the details. Given ε > 0, there are numbers m ∈ N and 0 = x0 < x1 < · · · < xm = 1 with

|F(xi ) − F(xi−1)| = F(xi ) − F(xi−1) < ε

for 1 ≤ i ≤ m. Also, for all sufficiently large N ∈ N, one has

|F (N )(xi ) − F(xi )| < ε
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0 0.5 1
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0.5

1

0 0.5 1
0

0.5

1

FIG. 3. The continuous and strictly increasing distribution functions of the generalised Thue-Morse measures on [0, 1] for
parameters (k, ) = (2, 1) (left) and (5, 1) (right).

for all 0 ≤ i ≤ m. Since F(N)(1) = F(1) = 1, consider an arbitrary x ∈ [0, 1), so that xi − 1 ≤ x < xi

for precisely one i ∈ {1, 2, . . . , m}. Using monotonicity, this implies the inequalities

F(xi−1) ≤ F(x) ≤ F(xi ) < F(xi−1) + ε

and

F(xi−1) − ε < F (N )(xi−1) ≤ F (N )(x) ≤ F (N )(xi ) < F(xi ) + ε < F(xi−1) + 2ε.

Together, they give |F(N)(x) − F(x)| < 2ε, which holds for all x ∈ [0, 1], and then uniformly for all
x ∈ R, as F(N) − F is 1-periodic for all N ∈ N0.

Due to our convergence results, Eq. (24) means that the measure γ̂ has a (vaguely convergent)
representation as the infinite Riesz product

∏
n≥0 ϑ

(
(k + )n x

)
. The entire analysis is thus completely

analogous to that of the original TM sequence and shows that the latter is a typical example in an
infinite family. Two further cases are illustrated in Figure 3.

Remark 4 ( pure point factors): The block map (8) applies to any member of the gTM family, and
always gives a 2-to-1 cover of the hull Xpd

k, of the generalised period doubling (gpd) substitution,

� ′ = � ′
k, : a �→ bk−1ab−1b, b �→ bk−1ab−1a . (26)

Since we always have a coincidence (at the k-th position) in the sense of Dekking,24 they all define
systems with pure point spectrum (which can be described as model sets in the spirit of Refs. 16 and
15) – another analogy to the classic case k =  = 1. Also, for given k,  ∈ N, the dynamical system
(Xpd

k,,Z) is a topological factor of (XTM
k, ,Z).

Moreover, the dynamical spectrum of the gTM system contains Z[ 1
k+

] as its pure point part,
which happens to be the entire spectrum of the gpd system. The latter fact can be derived from
the support of the gpd diffraction measure, via the general correspondence between the dynamical
and the diffraction spectrum for pure point systems.37,12 The detailed calculations can be done in
analogy to the treatment of the period doubling system in Refs. 15 and 7, after an explicit formulation
of the one-sided fixed point of the gpd substitution, which results in the Fourier module Z[ 1

k+
].

Consequently, the gpd system is a topological factor of the gTM system with maximal pure point
spectrum.

The gpd system can be described as a model set (with suitable p-adic type internal space).
From Ref. 13, we know that there exists an almost everywhere 1-to-1 “torus” parameterisation via a
solenoid Sk+. Here, the inflation acts as multiplication by k + . In fact, the solenoid provides the
maximum equicontinuous (or Kronecker) factor of the gTM system. �
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V. TOPOLOGICAL INVARIANTS

The formulation via Dirac combs embeds the symbolic sequences into the class of translation
bounded measures on R, as described in a general setting in Ref. 12. It is thus natural to (also)
consider the continuous counterpart of the discrete hull X in the form

Y = {δt ∗ ω | t ∈ R},
where ω is an arbitrary element of X (which is always minimal in our situation) and the closure is
now taken in the vague topology. Here, Y is compact, and (Y ,R) is a topological dynamical system.
Note that the continuous tiling hull mentioned earlier is topologically conjugate, wherefore we use
the same symbol for both versions. The discrete hull X, in this formulation, is homeomorphic with
the compact set

Y0 = {ν ∈ Y | ν({0}) 	= 0} ⊂ Y ,

while (Y ,R) is the suspension of the system (Y0,Z).
We are now going to construct the continuous hulls of the generalised Thue-Morse and period

doubling sequences as inverse limits of the inflation map acting on an AP-complex,3 and use this
construction to compute their Čech cohomology. At first sight, there are infinitely many cases to be
considered. We note, however, that the AP complex � depends only on the atlas of all r-patterns
occurring in the tiling, for some bounded r. In the original AP construction,3 � consists of 3-patterns;
tiles with one collar tile on the left and one on the right. How these collared tiles are glued together in
the complex is then completely determined by the set of 4-patterns occurring in the tiling. Therefore,
there are only finitely many different AP complexes � to be considered.

For obvious reasons, we want to extend the factor map φ : YTM
k, → Y pd

k, between the continuous
hulls to the cell complexes approximating them, compare (10). We therefore choose the cell complex
�TM

k, to consist of tiles with one extra layer of collar on the right, compared to the cell complex �
pd
k,,

so that we obtain, for each pair (k, ), a well-defined factor map φ : �TM
k, → �

pd
k,, which we denote

by the same symbol.
While the extra collar seems to complicate things, we can compensate this by a simplification

compared to the original AP construction. In Ref. 29, it was shown that a computation using a
complex with one-sided collars already yields the correct cohomology groups, even though the
inverse limit is not necessarily homeomorphic to the continuous hull of the tiling. The minimal setup
therefore consists of AP complexes �TM

k, with tiles having two-sided collars, and complexes �
pd
k,

having tiles with left collars only. All collars have thickness one. A straightforward analysis shows
that only three cases have to be distinguished: k =  = 1 (the classical case), either k = 1 or  = 1 (but
not both), and k,  ≥ 2. The complexes �TM

k, are all sub-complexes of the complex shown in Figure
4. If k =  = 1, the two loops on the left and right have to be omitted, because the corresponding
patterns 111 and 1̄1̄1̄ do not occur in the classic TM sequence. Likewise, in the case k,  ≥ 2, the
lens in the centre has to be omitted, whereas the full complex has to be used in all remaining cases.

For the gpd sequences, an approximant complex that includes all different cases as sub-
complexes can be constructed in a similar way. This complex is shown in Figure 5. As we have
labelled the edges in Figure 4 with both the 3-patterns in the gTM sequence and the corresponding

111 1̄1̄1̄

11̄1
11̄1̄

1̄11 1̄̄11

11̄11̄11̄bb bb

ba
ab

ab ba

aa aa

FIG. 4. The universal complex for the gTM system. Edges are labelled both with the corresponding collared tile of the gTM
tiling and its image in the gpd tiling.
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aa

ab

ba

bb

FIG. 5. The universal complex for the gpd system. Its edges correspond to tiles with one-sided (left) collar.

image under φ in the gpd sequence, it is easy to see how the factor map φ maps the complex of
Figure 4 to that of Figure 5: the loops on the left and right of Figure 4 are both mapped onto the
right loop of Figure 5, the central lens in Figure 4 is wrapped twice around the left loop in Figure 5,
and the rhombus in Figure 4 is wrapped twice around the central loop in Figure 5. Therefore, �

pd
k,

consists of the left and the central loop of Figure 5 in the case k =  = 1 (the classical case), the
central and the right loop of Figure 5 in the case k,  ≥ 2, and of all three loops in the remaining
cases. It is obvious that the map φ is uniformly 2-to-1 also at the level of the approximant complexes.

The cohomology of the continuous hulls YTM
k, and Y pd

k, is now given by the direct limit of

the induced maps ρ∗
k, and ρ ′∗

k, on the cohomology of the AP complexes, H∗(�TM
k, ) and H∗(�pd

k,).
Although there are only three different cell complexes in each case, there is an infinite family of
maps ρ∗

k,, respectively ρ ′∗
k,, but these can be parameterised by k and .

We first define a basis of the homology of the full complexes of Figures 4 and 5, subsets of
which will be used for all k and , and pass later to the corresponding dual basis for the cohomology.
The homology of the full complex �TM

k, is generated by the basis

cTM
1 = 11̄1, cTM

2 = 1̄11̄, cTM
3 = 11̄1̄1, cTM

4 = 1, cTM
5 = 1̄,

where the words on the right have to be thought of as being repeated indefinitely. Likewise, the
homology of �

pd
k, is generated by the cycles,

cpd
1 = a, cpd

2 = ab, cpd
3 = b.

Clearly, we have

φ∗(cTM
1 ) = cpd

1 + cpd
2 , φ∗(cTM

2 ) = cpd
1 + cpd

2 , φ∗(cTM
3 ) = 2cpd

2 ,

φ∗(cTM
4 ) = cpd

3 , φ∗(cTM
5 ) = cpd

3 .

Here, the lower asterisk in φ∗ denotes the induced action on homology, whereas φ∗ denotes the
action on cohomology.

In order to go into more detail, we have to distinguish the three different cases. We begin with
the classical case, k =  = 1. Here, the relevant basis elements are cTM

1 , cTM
2 , and cTM

3 for TM, and
cpd

1 and cpd
2 for pd. On these, the substitution acts as

ρ∗(cTM
1 ) = cTM

1 + cTM
2 , ρ∗(cTM

2 ) = cTM
1 + cTM

2 , ρ∗(cTM
3 ) = 2(cTM

1 + cTM
2 ) − cTM

3 ,

ρ ′
∗(cpd

1 ) = cpd
2 , ρ ′

∗(cpd
2 ) = 2cpd

1 + cpd
2 ,

where ρ∗ and ρ ′
∗ again denote the induced action on homology. If we express these maps as matrices

ATM and Apd acting from the left on column vectors, with respect to the basis above, and likewise
define a matrix P for the action of φ∗, we obtain

Apd =
(

0 2
1 1

)
, ATM =

⎛⎝1 1 2
1 1 2
0 0 −1

⎞⎠ , P =
(

1 1 0
1 1 2

)
. (27)

The corresponding action on the dual basis of cohomology is simply given by the transposed
matrices, or by the same matrices considered as acting from the right on row vectors. We adopt the
latter viewpoint here. It is easy to verify that the matrices (27) satisfy ApdP = PATM. In other words,
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the substitution action commutes with that of φ. Apd and ATM have left eigenvectors and eigenvalues

(
1 2 | 2
1 −1 | −1

)
and

⎛⎝ 1 1 0 | 2
0 0 1 | −1
1 −1 0 | 0

⎞⎠ . (28)

Next, we look at the case k,  ≥ 2, which is still relatively simple. Here, we have to work with the
basis elements cTM

3 , cTM
4 , and cTM

5 for gTM, and cpd
2 and cpd

3 for gpd. The action of the substitution
is then given by

ρ∗(cTM
3 ) = 3cTM

3 + (2(k + ) − 6)(cTM
4 + cTM

5 ),

ρ∗(cTM
4 ) = cTM

3 + (k − 2)cTM
4 + ( − 2)cTM

5 ,

ρ∗(cTM
5 ) = cTM

3 + ( − 2)cTM
4 + (k − 2)cTM

5 ,

ρ ′
∗(cpd

2 ) = 3cpd
2 + 2(k +  − 3)cpd

3 ,

ρ ′
∗(cpd

3 ) = 2cpd
2 + (k +  − 4)cpd

3 .

The corresponding matrices Apd
k,, ATM

k, , and Pk, read as

Apd
k, =

(
3 2

2(k+−3) k+−4

)
, ATM

k, =

⎛⎜⎝ 3 1 1

2(k+)−6 k−2 −2

2(k+)−6 −2 k−2

⎞⎟⎠ , Pk, =
(

2 0 0
0 1 1

)
,

and satisfy Apd
k, Pk, = Pk, ATM

k, . The matrices Apd
k, and ATM

k, have left eigenvectors and eigenvalues,

(
2 1 | k+

k +  − 3 −2 | −1

)
and

⎛⎝ 4 1 1 | k+

k +  − 3 −1 −1 | −1
0 1 −1 | k−

⎞⎠ . (29)

Finally, the case where min (k, ) = 1, but k +  > 2, requires the full AP complex. For notational
ease, we consider the case k = 1,  ≥ 2. The case  = 1, k ≥ 2 is completely analogous. The
substitution then acts as follows on our basis:

ρ∗(cTM
1 ) = cTM

2 + cTM
3 + ( − 1)cTM

4 + (2 − 3)cTM
5 ,

ρ∗(cTM
2 ) = cTM

1 + cTM
3 + ( − 1)cTM

5 + (2 − 3)cTM
4 ,

ρ∗(cTM
3 ) = cTM

1 + cTM
2 + cTM

3 + (2 − 3)(cTM
4 + cTM

5 ),

ρ∗(cTM
4 ) = cTM

2 + ( − 2)cTM
5 ,

ρ∗(cTM
5 ) = cTM

1 + ( − 2)cTM
4 ,

ρ ′
∗(cpd

1 ) = cpd
2 + ( − 1)cpd

3 ,

ρ ′
∗(cpd

2 ) = cpd
1 + 2cpd

2 + (2 − 3)cpd
3 ,

ρ ′
∗(cpd

3 ) = cpd
1 + cpd

2 + ( − 2)cpd
3 .
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The corresponding matrices are

Apd
k, =

⎛⎜⎝ 0 1 1

1 2 1

 − 1 2 − 3  − 2

⎞⎟⎠ , ATM
k, =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1

1 0 1 1 0

1 1 1 0 0

−1 2−3 2−3 0 −2

2−3 −1 2−3 −2 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Pk, =

⎛⎜⎝ 1 1 0 0 0

1 1 2 0 0

0 0 0 1 1

⎞⎟⎠ .

In this case, ATM
k, and Apg

k, have left eigenvectors and eigenvalues

⎛⎝1 2 1 | +1
 −2 −2 | −1
1 1− 1 | 0

⎞⎠ and

⎛⎜⎜⎜⎜⎝
3 3 4 1 1 |  + 1

1− 1− 2− 1 1 | −1
1 −1 0 1 −1 | 1 − 

2− 2− 2−2 1 1 | 0
2− −2 0 1 −1 | 0

⎞⎟⎟⎟⎟⎠ . (30)

As the cohomology of the continuous hull is given by the direct limit of the action of the substitution
on the cohomology of the AP approximant complexes, it is determined by the non-zero eigenvalues
of the matrices ATM

k, and Apd
k,. For all k and , these eigenvalues are k +  and − 1 for the gpd case,

and k + , − 1, and k −  in the gTM case, where the last eigenvalue is relevant only if k 	= .
Since H 0(�) = Z if � is connected, and the substitution action on H0(�) is trivial, with eigenvalue
1, we can summarise our cohomology results as follows.

Theorem 2: The Čech cohomology of the continuous hull of the gTM sequences is given by
H 0(YTM

k, ) = Z, and

H 1(YTM
k, ) =

⎧⎪⎨⎪⎩
Z[ 1

k+
] ⊕ Z ⊕ Z[ 1

|k−| ], if |k − | ≥ 2,

Z[ 1
k+

] ⊕ Z2, if |k − | = 1,

Z[ 1
k+

] ⊕ Z, if k = .

The Čech cohomology of the continuous hull of the generalised period doubling sequences is given
by

H 0(Y pd
k,) = Z, H 1(Y pd

k,) = Z[ 1
k+

] ⊕ Z,

valid for any pair k,  ∈ N. �
Since the cohomology of the hulls is given by the direct limit of the columns of the diagram

H k(�sol
k,)

ψ∗
−→ H k(�pd

k,)
φ∗

−→ H k(�TM
k, )

×(k+) ↓ � ′∗ ↓ ↓ �∗

H k(�sol
k,)

ψ∗
−→ H k(�pd

k,)
φ∗

−→ H k(�TM
k, )

(31)

(compare (10)), we now have access also to the homomorphisms in the sequence

H∗(Sk+)
ψ∗

−→ H∗(Y pd
k,)

φ∗
−→ H∗(YTM

k, ). (32)

For all three spaces, H 0 = Z, and the maps φ* and ψ* acting on them are isomorphisms. Further,
it is easy to see that ψ* embeds H 1(Sk+) = Z[ 1

k+
] non-divisibly in H 1(Y pd

k,); it is simply mapped

isomorphically onto the summand Z[ 1
k+

] in H 1(Y pd
k,). The same cannot be said of the second

map, however. For all pairs k, , the matrix P maps the eigenvector of Apd
k, with eigenvalue − 1 to
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twice the corresponding eigenvector of ATM
k, . As a result, the quotient H 1(YTM

k, )/ρ∗(H 1(Y pd
k,)) has

a torsion component Z2; the summand Z of H 1(Y pd
k,) coming from the eigenvalue − 1 is mapped

to 2Z in H 1(YTM
k, ). This result was already known for the classic period doubling and Thue-Morse

sequences,18 and extends to the generalised sequences. Therefore, in the case k = , where the
cohomologies of gTM and gpd are isomorphic as groups, one should rather consider H 1(Y pd

k,) as
subgroup of index 2 of H 1(YTM

k, ).

VI. DYNAMICAL ZETA FUNCTIONS

The continuous hull permits to employ the Anderson-Putnam method3 for the calculation of the
dynamical zeta function of the inflation action on Y . The dynamical zeta function48 of a substitution
can be viewed as a generating function for the number of fixed points a(n) under n-fold substitution
via

ζ (z) = exp
( ∞∑

n=1

a(n)

n
zn
)
. (33)

Knowing the fixed point counts a(n), one can calculate the number c(n) of cycles of length n from
the formula

c(n) = 1

n

∑
d|n

μ( n
d ) a(d),

where μ is the Möbius function from elementary number theory (and should not be confused with
the measure μ that appeared above).

Anderson and Putnam3 showed how the dynamical zeta function of a substitution tiling can
be expressed by the action of the substitution on the cohomology of the AP complex �. In the
one-dimensional case, the zeta function is given by

ζ (z) = det(1 − z A0)

det(1 − z A1)
,

where Ak is the matrix of the substitution action on Hk(�). In our case, A0 is a 1×1 unit matrix, and
A1 is diagonalisable, so that we can rewrite the zeta function as

ζ (z) = 1 − z∏
i (1 − zλi )

,

where λi are the eigenvalues of A1. For the gTM and gpd tilings, these eigenvalues have been derived
above, so that we arrive (after a simple calculation) at the following theorem.

Theorem 3: Let k,  ∈ N. The generalised Thue-Morse sequence defined by the inflation �k,

of (11) possesses the dynamical zeta function,

ζ TM
k, (z) = 1 − z

(1 + z)(1 − (k + )z)(1 − (k − )z)
,

while the induced generalised period doubling sequence, as defined by � ′
k, of (26), leads to

ζ
pd
k,(z) = 1 − z

(1 + z)(1 − (k + )z)
.

In particular, when k = , one has ζ TM = ζ
pd. �

For our two systems, the corresponding fixed point counts, for n ∈ N, can now be calculated
from Eq. (33) to be

apd
k,(n) = (k + )n − (1 − (−1)n

)
and aTM

k, (n) = apd
k,(n) + (k − )n. (34)
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It is an interesting exercise to relate the orbits of the two systems according to the action of the
mapping φ in agreement with these counts.

There is an interesting connection between the inflation on YTM
k, or Y pd

k, and the multiplication
by (k + ) on the (matching) solenoid Sk+, which emerges from the torus parameterisation.10, 50,13

This solenoid is a set on which the multiplication is invertible. It is constructed via a suitable inverse
limit structure (under iterated multiplication by (k + )), starting from the 1-torus (or unit circle),
represented by the unit interval [0, 1) with arithmetic taken mod 1. Together with the above, we
obtain the following commutative diagram:

YTM
k,

φ−→ Y pd
k,

ψ−→ Sk+

� ↓ � ′↓ ↓ ×(k+)

YTM
k,

φ−→ Y pd
k,

ψ−→ Sk+

(35)

where ψ denotes the torus parameterisation for the generalised period doubling sequence, in the
spirit of Refs. 50, 13, and 16. The mapping ψ is 1-to-1 almost everywhere. Like for the classic
period doubling sequence, it fails to be 1-to-1 on exactly two translation orbits, which are mapped
to a single orbit.

Counting finite periodic orbits under the multiplication action on the solenoid, however, means
that the inverse limit is not needed, so that the corresponding dynamical (or Artin-Mazur) zeta
function coincides with that of the toral endomorphism that is represented by multiplication by
m = k +  ≥ 2. This, in turn, is given by

ζ sol
m (z) = 1 − z

1 − mz

by an application of Theorem 1 of Ref. 11. The number of fixed points is given by asol
m (n) = mn − 1,

where m = k +  as before for a comparison with (34).

VII. FURTHER DIRECTIONS

A natural question concerns the robustness of the singular continuous spectrum under simulta-
neous permutations of positions in �(1) and �(1̄), as considered in Ref. 55. For k =  = 1, the two
possible rules are the Thue-Morse rule (11̄, 1̄1) and its partner (1̄1, 11̄), written in obvious shorthand
notation. Since the squares of these two rules are equal, they define the same hull, and hence the
same autocorrelation.

There are three possible rules for k = 2 and  = 1, namely, (111̄, 1̄1̄1), (11̄1, 1̄11̄), and (1̄11, 11̄1̄).
The first is our �2,1 from above, while the third result in a fixed point that is the mirror image, and
hence possesses the same autocorrelation. The middle rule, however, has the periodic fixed point
. . . 11̄11̄11̄ . . . and hence autocorrelation γ = (δ0 − δ1) ∗ δ2Z. Its Fourier transform reads as

γ̂ = δZ+ 1
2
,

which is a periodic pure point measure. By general arguments, one can see that the diffraction
measure of the balanced situation (with 1 and 1̄ being equally frequent) must be of pure type,
and cannot be a mixture. On the basis of the results from Refs. 26 and 27, it is then clear that,
given a permutation, the diffraction is either pure point or purely singular continuous. It remains an
interesting question to decide this explicitly for general k and , and a general permutation.

Moreover, it is clear that similar structures exist in higher dimensions. Indeed, starting from the
treatment of bijective lattice substitution systems in Refs. 26 and 27, it is possible to demonstrate the
singular continuous nature for bijective substitutions with trivial height lattice and a binary alphabet,
and to calculate it explicitly in terms of Riesz products. Details will be explained in a forthcoming
paper.9
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