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Abstract

Equipping machines with the ability to understand and use natural language is a difficult
task. One aspect underlying this task is the acquisition of language semantics or – to
narrow the problem even more – the learning of individual word meanings. A machine,
which copes with this problem, has to learn the meaning of a word based on observations
of the word in different contexts. Children perform marvelously well in this task. Even
though it still remains an open question how children acquire word meanings so efficiently,
research in the fields of developmental psychology and neurobiology start to shed light onto
some aspects of the underlying learning principles. Designing an artificial system based
on such findings may consequently lead a way to overcome the restrictions of existing
approaches, thereby striving towards child-like learning abilities.

In this thesis, a computational framework for the acquisition of word meanings is presented.
The framework is largely inspired by findings on child development and learning. It
hence establishes a link between the individual disciplines of developmental psychology,
neurobiology, and computer science. Therefore, the thesis is structured around three
central issues: Firstly, based on the abundant literature on word learning by children the
different ways how children acquire word meanings are discussed. Secondly, the thesis
not only discusses the respective learning processes from a phenomenological point of
view, but also aims at identifying commonalities with more detailed theories on neuronal
learning. More precisely, I will argue that specific neurobiological learning principles can
explain the developmental patterns observed in children and, hence, may constitute the
biological underpinnings of the learning processes. Lastly, based on this unified viewpoint,
biologically inspired computational models for the acquisition of word meanings are
presented and applied in selected word learning scenarios.

In summary, this thesis investigates a multitude of aspects that contribute to the word
learning capabilities of children. It thereby promotes the view that different learning
processes and biases have to be taken into account when trying to construct artificial
systems with child-like learning skills. For the individual aspects, it is shown that the
development of biologically inspired computational models indeed constitutes a viable
approach as compared to other methods. The tight integration of the different models
into a coherent overall system for word meaning acquisition, however, is necessary to
finally build robots that exhibit the desired capabilities. This integration may constitute
the biggest challenge future research has to overcome.
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1
Introduction

Language is the means of getting an
idea from my brain into yours without
surgery.

Mark Amidon

In the recent years, robots became more and more important in our everyday life. Today,
they guide us through museums, assist us while shopping, help us in the household, and
in future may even be faithful companions for elderly people. These artificial agents
in part exhibit capabilities that we consider to be intelligent or human-like. The more
such machines enter our life, however, the more important an interaction with them will
become. The most natural way of interaction between humans is communication via
language. It is thus desirable that language can be used for human-robot interaction, too.
This would ease the use and increase the acceptance of robots by humans. Unfortunately,
the language capabilities of today’s robots are far from being human-like.

Abstractly speaking, language communication can be thought of as the transmission of
symbol strings as it is depicted in Fig. 1.1. To encode a message, the sender first has to
choose those symbols, that refer to what he wants to communicate. The chosen symbols
are subsequently assembled to a string by the use of syntax. The receiver has to decode
the transmitted message. This involves the segmentation of the incoming symbol string
as well as the recognition of the individual symbols, but also an retrieval of the symbols’
meanings based on which the message content can be reconstructed. Importantly, the
individual symbols as well as the syntax have to be shared among the sender and the
receiver. Only in this way, message decoding by the receiver reveals what has been
previously encoded by the sender.

1



Chapter 1 Introduction

shared
symbols

&
shared
syntax

“My dog is black” “My dog is black”

message
encoding

message
decoding

message
transmission

sender receiver

Figure 1.1.: Language communication refers to the transfer of symbolic messages. A sender
encodes his thoughts in symbol strings, whereas the receiver decodes the transmitted
strings to reconstruct the original message content.

In human language, symbols are words, whereas symbol strings refer to the sentences a
dialog is composed of. A shared symbol lexicon therefore denotes the set of words that
are known to both communication partners. The focus of the present work lies on the
development of such a shared vocabulary. Other aspects involved in message encoding and
decoding are out of the scope of this thesis. In other words, we assume an artificial agent
to possess sufficient capabilities with respect to speech synthesis, speech segmentation,
speech recognition, or syntax. This is for sure a hard restriction, since unsolved questions
exist in each of these research areas. However, it is also a viable assumption as we would
like to study vocabulary acquisition in isolation, i.e. without considering the problems
that may arise from the other domains.

As already noted, a shared vocabulary is necessary for successful communication. To
understand each other, both dialog partners need to know the communicated words and
further have to associate similar meanings with them. On the contrary, a discrepancy in
the vocabularies hinders conversation. The Oxford English Dictionary lists more than
600 000 words1. Even though the working vocabulary of an average English speaking
person covers just a small subset of these words, it still comprises several thousand entries
(Nation, 1993). For human-robot interaction this constitutes a serious problem, since it
is impossible to equip robots with hand-crafted meanings for all words. This makes it
difficult for humans to naturally interact with them. In fact, humans need to adapt their
communication style to the language capabilities of robots.

Current robotic systems try to minimize this limitation by operating in constrained
domains, e.g. as a museum guide. In such defined environments, it is often sufficient to
rely on a restricted word lexicon. These systems try to spot keywords in the utterances of
humans (e.g. show and van Gogh), infer what has been said by comparing the keywords
1Information taken from the Oxford English Dictionary’s website http://www.oed.com/ (20.09.2011)
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1.1. The Problem of Word Meaning Acquisition

to templates (e.g. Show me the drawings of van Gogh, please.), and finally react according
to a defined scheme (Kopp et al., 2005). The applicability of such artificial agents is of
course still limiting both with respect to the environment they may operate in as well as
the way humans can interact with them.

One way that may ultimately overcome these problems is to build learning systems. In
other words, systems that can extend their word repertoire during online operation and
therefore are able to adapt to human interaction partners as well as changing environments.
This is where word learning comes into play. Given an initially restricted or even empty
lexicon, a robot may gradually increase its vocabulary size based on experience from
its interactions with humans. Thereby, word learning covers two aspects: Firstly, the
extraction of previously unknown symbols (words) and, secondly, the acquisition of the
meanings that are associated with them. The latter aspect constitutes the focus of this
thesis.

1.1. The Problem of Word Meaning Acquisition

The acquisition of word meanings is a challenging task. This is best illustrated by
recapitulating a famous example stated by Quine (1960): Consider a scientist that studies
a to him unknown language of a tribe. Since the scientist cannot communicate with the
natives, his study is solely based on observations of what the natives are saying in which
situations. At one time, he observes a native uttering the word gavagai while a rabbit
passes by. Quine finally asked how the scientist could ever be able to infer the meaning
of gavagai. In fact, an indefinite number of potential word meanings exist. Gavagai
may refer to the rabbit as a whole, to any undetached part of it, to any property of the
rabbit, or even to the fact that rabbits are tasty. Quine (1960) termed this problem the
indeterminacy of translation whereas others call it referential uncertainty (Smith and Yu,
2008) – the uncertainty about the things a word may refer to. A word meaning obviously
cannot be determined based on just a single observation of the word. Rather, a learner

Figure 1.2.: Illustration to the gavagai example (drawing inspired by prehistoric rock paintings).
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Chapter 1 Introduction

needs further information by which wrong meaning hypotheses can be ruled out. For
example, this additional information may be provided by the interaction partner, e.g. via
answers to clarifying questions of the learner, or by multiple observations of the word in
different contexts. In the latter case, any additional word observation would render those
meaning hypotheses invalid that do not apply in the new context.

A learning robot faces a similar problem as the scientist in Quine’s example. It has to
determine the meaning of novel words based on its interaction with a communication
partner. More precisely, symbolic descriptions (e.g. the word gavagai) need to be
associated with representations of the environment that are internal to the robot (e.g.
the concept of a rabbit that is activated by observing a rabbit). What renders the robot’s
word learning task even more challenging than that of the scientist is the fact that the
robot not necessarily owns appropriate internal representations to which novel words can
be associated. For example, if the robot initially has not been equipped with knowledge on
how a rabbit looks like, the observed rabbit constitutes an unknown object for the robot.
In such a case, the word gavagai cannot be linked to an already existing internal rabbit
concept. The word rather has to be grounded in sensory input, insofar as a representation
for its potential meaning, i.e. a rabbit concept, needs to be formed. Hence, word meaning
acquisition additionally copes with the symbol grounding problem (Harnad, 1990).

In summary, for suitable human-robot interaction it is important to bridge the gap between
the vocabularies of humans and robots. Building agents that are able to learn words may
be the only way to achieve this, since it is impossible to predefine an appropriate word
knowledge for robots. Thereby, the process of word meaning acquisition should exhibit
the following characteristics:

• The vocabulary should be unrestricted insofar as no limits concerning lexicon size,
language, task domain, or word type are placed on what can be learned.

• A life-long and continuous learning should be carried out, since any change in
the environment, task domain, or interaction partner may necessitate a further
extension of the vocabulary.

• Learning has to be carried out during online operation. At design time, it is
unknown which words need to be learned by the robot (otherwise they already can
be predefined). The training exemplars rather sequentially arise from the interaction
with a communication partner and have to be incorporated on the fly.

• Word meanings should be acquired fast. This is due to the fact that the amount
of training data available to an online system is limited. Humans further expect
robots to show human-like capabilities which includes learning from few examples.

• Learning should converge towards context-independent word meanings, insofar as
they finally should reflect the essential aspects of what constitutes a word referent.
For example, the word rabbit could initially be bound to a specific instance of a
white rabbit, but should finally be applicable to rabbits of any color.

In the following, it is outlined how we tried to find a solution to the aforementioned
problems and requirements.

4



C
ha

pt
er

1

1.2. An Interdisciplinary Approach

1.2. An Interdisciplinary Approach

Throughout this thesis, the development of language skills in children is taken as a role
model for word learning by artificial agents. The reason for this is twofold: Firstly,
the intelligent functions that today’s robots offer lead to the expectation that robots
behave human-like. This not only holds for the offered functions themselves, but also
extends to the way robots communicate or how robots learn. Behaving like a child,
rather than like an adult, obviously is an easier task and hence a more feasible research
goal in a first step. Most importantly, however, children are astonishing word learners.
Starting with an empty vocabulary at birth they successively increase their language
skills towards adult-like performance. Thereby, children’s word learning further fulfills
the requirements we stated above, i.e. it is unrestricted, continuous, fast, convergent, and
based on interactions with human caregivers.

This thesis hence presents an interdisciplinary approach to word meaning acquisition.
More precisely, we not only describe a computational framework that can be applied
in robotic agents, but also motivate the framework by findings on how children learn
(see Fig. 1.3). Research in developmental psychology plays a major role in this respect.
Based on experiments with children, developmental psychology is able to provide a
phenomenological description of how word learning is organized in children. For example,
it tells us which learning patterns are typically observed, whether there are developmental
stages, or which learning processes may be involved. However, it does not give hints
on how these capabilities are exactly implemented in the child’s brain. For this reason,
it is important to additionally consider findings from neurobiology. Establishing a link
between these two disciplines finally allows us to unveil the neuronal circuits underlying
children’s word learning . This in turn gives important insights in how word learning could
be implemented in artificial agents. The thus obtained computational models finally can

Developmental
Psychology

Developmental
Psychology

Computer
Science

Computer
Science

NeurobiologyNeurobiologyestablish a link
between findings

take inspiration for
computational model

validate
the model

validate
the model

Figure 1.3.: Workflow of the interdisciplinary approach pursued in this thesis.
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Chapter 1 Introduction

be validated by emulating experiments from developmental psychology and neurobiology.
If the computational framework exhibits a learning behavior that is similar to that of
children, the viability of the computer model would be proven.

1.3. Research Goals and Contribution of this Thesis

Even though an interdisciplinary approach to word learning seems promising, it has
seldomly been pursued before. The different disciplines rather independently investigated
word learning for many years. This resulted in a wealth of theories on how children learn,
hypotheses on which brain areas may be involved, as well as computational models artificial
agents have been equipped with. Therefore, the first goal of this thesis is to unveil
the links between findings from developmental psychology and neurobiology.
More precisely, we aim at providing a thorough literature survey based on which we first
can identify the different kinds of word learning processes that may exist in children and,
second, propose which neural circuitry may underlie these processes.

Once children’s word learning mechanisms have been identified, they can be used to
guide the development of computational models, of course. Therefore, the second goal
of this thesis is to provide biologically inspired computational models for word
learning. In detail, this comprises two aspects. Firstly, we would like to take the
identified neuronal circuitry as a role model for the architecture of the computational
system. This is reasonable as the circuitry suggests which kind of system components
have to interact in which way to achieve an efficient word learning. Secondly, the precise
implementation of the individual system components should be inspired from what is
known about the computations carried out in the respective brain areas.

By building computational models that resemble their biological homologues as close as
possible, we of course hope to achieve learning capabilities that are similar to that of
children and hence superior to those of existing approaches. To validate this idea, the third
goal of the thesis is to thoroughly evaluate the computational models. Firstly, this
involves emulations of neurobiological experiments, insofar as it allows to check whether a
particular implementation behaves alike its biological role model. Secondly, applications
of the model in word learning scenarios are used to reveal whether child-like learning
patterns are obtained. Finally, a comparison to existing approaches is carried out using
benchmark data.

The abovementioned goals focus on the mechanisms and techniques that an artificial
agent may employ to acquire word meanings efficiently. A human-robot interaction
thus has not been taken into account so far. The language skills of children, however,
strongly depend on the environment in which they grow up (Hart and Risley, 2003).
Particularly the interaction with caregivers seems to play a key role in this respect. The
fourth goal of the thesis consequently is to estimate the influence of human-robot
interaction on word learning by robots. More precisely, we aim at investigating
how different patterns of conversation between a learning agent and a tutor facilitate or
hinder word meaning acquisition. This is important as it suggests how new words can be
most efficiently taught to robots.

6
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1.4. Thesis Outline

1.4. Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2 we first provide a
thorough literature review. This includes an identification of language related brain areas
as well as theories on how word meanings are represented in the brain. Furthermore,
word learning theories stemming from the field of developmental psychology are in the
scope of this chapter. They are reviewed and linked to the aforementioned neurobiological
aspects, which finally allows an identification of three fundamental principles underlying
children’s word learning. The first two principles refer to dissociated learning systems,
whereas the third principle emphasizes the role of learning constraints.

The dissociated learning systems – namely one for unsupervised and one for supervised
word meaning acquisition – are in the focus of Chapter 3 and Chapter 4, respectively. For
each of them, we review relevant findings from word learning experiments, suggest which
neurobiological circuits may be important in this respect, and discuss the pros and cons
of related computational models. We next present our biologically inspired computational
models. This includes detailed algorithmic and mathematical descriptions as well as
thorough evaluations of them. The latter are either done by simulating word learning
scenarios or based on benchmark data. On the one hand, this allows us to emulate
child experiments. On the other hand, we can assess the models’ specific computational
characteristics and compare their performance to those of existing approaches.

The influence of learning constraints and biases is discussed in Chapter 5. Due to the
variety of constraints that have been suggested before, only one bias will be in the focus
of the chapter – namely the mutual exclusivity principle. More precisely, we discuss
the bias’ computational relevance for word learning and propose a computational model
for its development. An incorporation of the constraint into the previously proposed
word learning framework constitutes the basis for a subsequent evaluation. We thereby
investigate the influence of human-robot interaction, insofar as various conversation
patterns between a tutor and a robot are evaluated with respect to their suitability for
teaching new words. The chapter thus provides important insights into how a tutor should
behave such that the robot can learn novel words most efficiently.

Chapter 6 finally summarizes the work and provides suggestions for future research.

7
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2
Roots of Language Semantics

It’s a strange world of language in
which skating on thin ice can get you
into hot water.

Franklin P. Jones (1908-1980)

Words are the fundamental building blocks of human language. They serve as symbols
for aspects of the outside world as well as the inside world of a human. The use of such
linguistic symbols to communicate our intents is what distinguishes humans from other
species (Tomasello, 2003). But what are the origins of this seemingly human-specific
language capacity? Does the human brain own a special language processing circuitry
that is missing in non-human animals? Or do we (at least in part) recruit structures
primary assigned to other cognitive functions? Furthermore, how much of our word
learning capabilities are imprinted, i.e. relying on innate or built-in principles, and how
much develop via learning from environmental input? And, finally, does one particular
mechanism implement the acquisition of word meanings or do we make use of multiple
strategies to ground linguistic symbols?

Cognitive scientists and biologists conducted long-lasting discussions on these questions.
Some issues were answered over the last decades whereas others are still a matter of
controversial debates. This chapter summarizes the current state of knowledge regarding
the following aspects. It first gives an overview of the brain areas involved in language
processing with a special emphasis on the dual-stream model and the representation of
language semantics. It next provides a review of the most prominent theories on word
learning and further discusses an important dissociation of symbol grounding processes,
namely concept formation and concept identification. Finally, existing computational
models for word meaning acquisition are reviewed and related to the aforementioned
theories.

9



Chapter 2 Roots of Language Semantics

2.1. Neurobiology of Language

Knowledge about the neurobiological basis of spoken language primarily stems from
behavioral studies of patients with brain lesions. Focal damage to certain brain areas
results in impaired language capabilities that can be of phonological, articulatory, syntactic,
or semantic nature. The first regions that have been identified this way were Broca’s and
Wernicke’s area (Broca, 1861; Wernicke, 1874). Whereas damage to Broca’s area results
in impaired language articulation, damage to Wernicke’s area leads to impaired language
comprehension. These regions consequently have been attributed to circuits involved in
speech production and speech understanding, respectively.

Later on, particularly with the advance in imaging techniques, further language-related
regions have been identified (Binder et al., 1997; Price, 2000; Bookheimer, 2002). However,
due to the difficulty of controlling language tasks during imaging experiments, the
association of cortical areas with specific functions remains vague. Most evidence is in
favor of a dual-stream model as proposed by Hickok and Poeppel (2004). According to
the model speech is processed along two streams, a dorsal and a ventral one. As shown
in Fig. 2.1, both routes initially share cortical processing in the superior temporal gyrus
(STG) and the superior temporal sulcus (STS). These regions are thought to perform a
spectro-temporal analysis and provide a phonological representation of speech. Afterwards,
however, cortical processing diverges: A dorsal stream projects to area Spt and further to
frontal regions including posterior inferior frontal gyrus (pIFG) and dorsal premotor cortex
(dPM). This route hence performs a sound-to-motor mapping with area Spt providing a
sensorimotor interface to a frontal articulatory network. It is noteworthy that area Spt
is next to Wernicke’s area, whereas the pIFG approximately resembles Broca’s area. In
contrast to the dorsal route, the ventral stream performs a sound-to-meaning mapping
with posterior middle and posterior inferior temporal areas (pMTG & pITS) providing
an interface to conceptual representations. The model further suggests that the dorsal
stream is largely left-lateralized whereas processing is carried out bilaterally in the ventral
stream. This is supported by the fact that more symmetric connectivity patterns seem to
be beneficial for remembering semantic associations (Catani et al., 2007).

STSSTG

dPM

pIFG Spt

pITL

pMTG

Figure 2.1.: The dual-stream model suggests that a dorsal pathway (blue) links sounds to an
articulatory network whereas a ventral pathway (yellow) implements a sound-to-
meaning mapping. Figure adapted from Hickok and Poeppel (2004).
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arm word

leg word

face word

color word

shape word

word form representation

Figure 2.2.: The semantic topography model (Pulvermüller et al., 2010): Cell assemblies in the
perisylvian cortex represent how words sound and how they can be articulated
(center image). Word meanings are established by linking these word form repre-
sentations with conceptual categories in other brain areas. Thereby, different word
categories recruit different areas (satellite images).

The ventral stream is of particular importance here, since it associates word forms with
their meanings. The dual-stream model though leaves open the question to what kind
of conceptual representation word forms are linked. Behavioral and imaging studies
suggest that the conceptual network is widely distributed. More precisely, understanding
words seems to recruit different brain areas depending on the word under investigation.
For example, it has been shown that the comprehension of verbs constantly activates
premotor and motor regions. It could even be shown that verbs corresponding to actions
of specific parts of the body (e.g. to speak or to kick ) activate those motor regions that
control the movements of the body parts (e.g. the mouth or the legs) (Pulvermüller
et al., 2000). In the same way, color-related words evoke activity in a region of the
temporal cortex that can be dissociated from the region recruited by shape-related words
(Pulvermüller and Hauk, 2006). Based on these and similar findings the neural theory of
language (Feldman and Narayanan, 2004) states that words are grounded in sensorimotor
systems. The comprehension of words involves simulations of the circuits that underly
the conceptual representations the words refer to. In other words, understanding a verb
evokes similar activity patterns as an observation or execution of the corresponding
action does (Kemmerer et al., 2008). The semantic topography model (see Fig. 2.2)
consequently suggests that acoustic word representations in STG, STS, and pIFG are
linked to category-specific conceptual representations in different brain areas (Pulvermüller
et al., 2010). According to Hickok and Poeppel (2007) this coupling may be mediated by
the sound-to-meaning interface of the ventral processing stream.
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Chapter 2 Roots of Language Semantics

However, it is important to note that a concept not necessarily has to be described by only
one property. For example an object concept can comprise the object’s name as well as
non-linguistic properties like how it looks, how it tastes, or what one can do with it. There
is consequently a need to integrate information from the different conceptual categories.
Compelling evidence, particularly from patients with semantic dementia, suggests that
the anterior temporal lobe (ATL) including the more medially located parahippocampal
and perirhinal cortices serve this purpose (Damasio et al., 2004; Patterson et al., 2007;
Martin, 2007; Pulvermüller et al., 2010). As illustrated in Fig. 2.3, it has been proposed
that the ATL acts as an amodal semantic hub by which distributed category-specific
representations are bound into unique concepts. Thereby, the ATL may also be involved
in grammatical constructions (Holland and Ralph, 2010) or syntactic structure building
(Brennan et al., in press) – an aspect largely ignored in the present work.

ATL

color

shape

motion

taskaction

value

word labels

Figure 2.3.: Different words, and the conceptual categories they refer to, form a network that
is distributed over large portions of the cortex. The ATL constitutes an amodal
semantic hub that additionally integrates knowledge from these different areas into
unique conceptual representations (e.g. object concepts). Figure adapted from
Patterson et al. (2007).

Overall, the reviewed studies argue against purely language-specific brain areas in humans.
It is rather proposed that language recruits sensorimotor circuits whose primary aims are
other cognitive functions. From a simulation theory point of view, language enables us to
communicate our intents by inducing shared cognitive states: listening to a story evokes
similar activity patterns as experiencing the described situation in reality.

2.2. Word Learning Theories

The distributed network of language-related brain areas reflects the variety of concepts
for which words can provide a description. It thereby also illustrates the problem that
any word learner has to tackle, i.e. referential uncertainty – the uncertainty about the
things a word may refer to. What Quine (1960) exemplarily pointed out with his gavagei
story holds for any word learning situation. A heard word can refer to a large (or even
infinite) number of aspects of the scene in which the word occurred. The learner has
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Emergentist Coalition ModelEmergentist Coalition Model

Constraint-Based
Account

Constraint-Based
Account

Attentional
Learning
Account

Attentional
Learning
Account

Social-Pragmatic
Account

Social-Pragmatic
Account

Figure 2.4.: An overview of the different word learning theories. Whereas traditional theories
consider word learning in favor of one account, the Emergentist Coalition Model
constitutes a hybrid theory that combines aspects of all accounts.

to pick the correct word meaning out of many possibilities. The question why children
master this task so marvelously well engaged psychologists for many years. The most
prominent (and often controversial) theories on word learning by children are as follows:

Constraint-Based Account (Markman, 1990): Proponents of this view emphasize the
need for language-specific learning constraints that have to be innate to a child. The
underlying argumentation is simple. A child cannot effectively explore the space of word
meaning hypotheses, at least not at the pace typically observed in infants. Learning biases,
however, can constrain the hypotheses space by pruning wrong hypotheses or facilitating
attention to relevant aspects of the scene. Hence constraints can guide children’s word
learning. Examples for possible learning constraints are the shape bias (Imai et al., 1994)
or the mutual exclusivity principle (Markman and Wachtel, 1988).

Attentional Learning Account (Smith, 1995): In strong contrast to the constraint-
based account, proponents of the attentional learning account state that children do
not make use of special-purpose innate structures or processes to guide their learning.
They rather propose that the general principle of associative learning allows children
to extract statistical regularities from the input (Plunkett, 1997). In conjunction with
attentional mechanisms this general principle can develop biases which may underly
children’s rapid word learning (Smith et al., 1996). The theory consequently suggests
that the first words are learned slowly by exploiting the statistics. However, once the
first words have been learned, the acquired knowledge can be used to learn the next
words more rapidly. For example, the solid object property can predict the relevance of
the shape property. Selective attention on the shape property will finally facilitate the
learning of shape-related nouns.

Social-Pragmatic Account (Bloom, 2000): Proponents of this view state that neither
innate learning constraints nor general associative learning principles can fully explain the
acquisition of linguistic symbols. They rather highlight the role of the social environment
into which word learning is typically embedded. Thereby, particular emphasis is given
to the fact that children learn words in highly structured social interactions (Tomasello,
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2003). According to the theory, children do not have to tackle the problem of referential
uncertainty, at least not to the extent stated by Quine (1960). Rather, caregivers restrict
the hypotheses space by teaching their children in constrained and structured environments.
The theory thereby assigns a pivotal role to mind reading abilities of children as aspects
like joint attention may effectively guide the selection of the correct word referent (Bloom
and Markson, 1998).

Emergentist Coalition Model (Hollich et al., 2000): As illustrated in Fig. 2.4 the
aforementioned theories consider word learning in favor of one (and only one) or the other
account. The emergentist coalition model breaks this barrier by combining different aspects
of the previous theories into a hybrid model. Thereby, it builds on the developmental
lexical principles framework of Golinkoff et al. (1994). At its core the model suggests
that children make use of a combination of cues that guide word learning. Those cues
can be social, attentional, cognitive, or linguistic in nature. It further suggests that
children weight these cues differently and that cue weighting changes over the course of
development. For example, perceptual saliency may be a more proficient cue than gaze
following during early word learning, whereas the reverse is true at a later time. Finally,
the model states that learning constraints are not innate to the child, but rather emerge
and step into word learning as development progresses.

2.3. Concept Formation & Identification

As illustrated in Fig. 2.5 (a), classical theories on word learning promote a model of
lexical development that differentiates between two stages. They state that concepts
are first acquired via non-linguistic processes (e.g. by acting in the environment) before
words become attached in order to communicate about them (Nelson, 1974). In the
following the former process will be termed concept formation as it forms or creates new
conceptual representations. In contrast, the latter process – called concept identification –
uses already existing concepts and aims at identifying the one to which a word refers to.
It consequently enriches the knowledge base by new word-concept associations but does
not extent it in the form of new concepts.

When speaking about concepts the term category is often interchangeably used. This is
reasonable as both terms refer to groupings of entities based on some similarity between
them. As Mandler (2004) pointed out, it is however important to distinguish between
conceptual categories and perceptual categories:

"Perceptual categorization computes perceptual similarity. At least in early infancy,
it does so independent of knowledge about function or kind; indeed it can occur
even in the complete absence of meaningfulness. [. . . ] Conceptual categorization
computes conceptual similarity, which in the realm of objects has to do with class
membership or kinds." (Mandler, 2004, p. 197)

Accordingly, key to a concept is its meaningfulness. This typically arises from its relevance
to the behavior of a child, i.e. concepts provide the necessary information that allow a
child to behave in a goal-directed way. Action concepts are good examples in this respect:
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a child learns which actions it has to perform in order to satisfy specific needs. This
suggests that concept formation via non-linguistic processes is primarily triggered by
behavioral relevance. In fact, it could be shown that children categorize objects on the
basis of their functions (Nelson et al., 2000; Booth and Waxman, 2002a; Horst et al.,
2005). Once object function has been identified, children investigate object shape to unveil
indicators for object function (Perone et al., 2008; Ware and Booth, 2010). Conceptual
knowledge may consequently also be the precursor of attentional biases like the shape
bias (Booth, 2006).

In addition to non-linguistic processes, it is well known that children also use labels to
form conceptual categories. As illustrated in Fig. 2.5 (b), a child creates a new concept
whenever it recognizes a novel word and subsequently grounds it in non-linguistic domains
(e.g. color, shape, or action). Interestingly, this kind of learning supersedes a concept
identification stage as the word is inherently associated with its conceptual category. The
finding that children only accept words (but not tones) as category labels (Fulkerson et al.,
2006; Ferry et al., 2010), suggests that words have a special importance due to the social
relevance of language. In other words, children may think that "if there exists a word for
something, then this something has to be relevant". Language can consequently serve as a
primary force for concept formation. The reverse, however, is also true (see Fig. 2.5 (c)).
Once concepts have been acquired, they can guide word formation. This includes the
discovery of word labels from a continous speech stream (Yeung and Werker, 2009) as well
as the invention of completely new words (Gleitman and Newport, 1995). The latter may
arise from the need to communicate about concepts (without having appropriate words
at hand) and constitutes an important component in the evolution of new languages.

In summary, the dissociation between the possible mechanisms underlying word meaning
acquisition is as follows:

1. Independent word & concept formation and subsequent concept identification

2. Concept formation driven by word labels

3. Word formation driven by concepts

The first learning mechanism can be considered to be unsupervised, insofar as word and
concept formation do not have an influence on each other. In contrast, the other two
mechanisms resemble supervised learning, since one modality provides supervision signals
for learning in the other modality. The latter process, i.e. word formation driven by
concepts, is of minor interest with regard to concept formation. Hence, it will not be
considered in the rest of the thesis.

It is noteworthy that unsupervised and supervised learning mechanisms typically cannot
be completely segregated. For example, it has been shown that a familiarity with objects
enables children to categorize them at an earlier age (Kovack-Lesh et al., 2008). This
suggests that words for objects, that have been pre-conceptualized via non-linguistic
processes, are easier and faster to learn (Booth, 2009). It is known that words can
alter concepts that have been previously created on the basis of non-linguistic processes
(McDonough et al., 2003; Plunkett et al., 2008). A good example are spatial relations.
Children acquire concepts like above or below in their first months of life via non-linguistic
processes (Quinn, 2002). As it has been shown by Bowerman and Choi (2003), however,
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Figure 2.5.: The difference between the word learning mechanisms is illustrated. Whereas
(a) depicts the process where words and concepts are independently formed and
subsequently associated, (b) and (c) show that the acquisition of new words can
drive the formation of corresponding concepts and vice versa.

language significantly alters these concepts afterwards, such that speakers of different
languages may even have different understandings of spatiality (e.g. containment in
English versus Korean speakers). The same is true for the color domain; people with
different color vocabularies perceive colors differently (Roberson et al., 2000; Davidoff,
2001; Kay and Regier, 2006).

The findings first show that concept formation seems to attribute a higher priority to
word labels than to non-linguistic processes. Secondly, the reviewed experiments provide
evidence in favor of Whorfianism, i.e. language not only allows us to communicate our
thoughts, but language also shapes the way we are thinking by guiding concept formation.
And, finally, the strict separation between the different word learning mechanisms is
questionable. The findings demonstrate that the acquisition of a particular word meaning
(e.g. a color term) cannot be exclusively assigned to one or the other process. Unsupervised
and supervised learning mechanisms rather seem to be heavily intertwined in many
domains.
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2.4. Related Computational Models

It is largely unknown how concept formation via non-linguistic processes and concept
formation via word labels can be integrated into a unified model on word meaning
acquisition. For this reason, existing computational approaches can be classified along
these two lines. Nevertheless, the approaches differ in the level of detail they model as
well as the word learning theories they adopt.

Unsupervised Concept Formation & Concept Identification

Fontanari et al. (2009) used Neural Modeling Fields (NMFs) to model the process of
concept identification. Key to their work is the cross-situational learning approach – one
of the hallmarks of associative learning theory. Thereby, cross-situational learning refers
to the fact that a learner may not be able to identify the correct referent of a word from
just one observation of the word. It rather suggests that hearing the word in multiple
(individually ambiguous) situations enables the learner to identify its meaning. In the
work of Fontanari et al. (2009) cross-situational learning appeared as follows: The learner
observed scenes in which two objects were present. He additionally heard the name of one
of these objects. The learner consequently had to judge to which of the two objects the
word referred to. The authors showed that a batch processing of many different learning
situations allows NMFs to unveil the correct word-object associations.

Xu and Tenenbaum (2007) proposed a Bayesian framework for concept identification.
More precisely, the framework tries to estimate the posteriors p(h|X), where X denotes a
set of observed examples of a word and h a potential word meaning. Following Bayes’ rule
the posteriors are calculated as a product of priors p(h) and likelihoods p(X|h). Thereby,
the priors are chosen such that different words are likely to refer to distinctive scenes.
The prior thus constitutes a soft version of the mutual exclusivity principle. Furthermore,
the likelihoods are evaluated in a way that favors basic-level concepts over superordinate
or subordinate concepts. The model thus incorporates the taxonomic and the basic-level
constraint, too. Xu and Tenenbaum consequently adopt the constraint-based theory on
word learning insofar as the Bayesian framework is used to integrate evidence from the
different biases. However, the model also adopts the statistical learning account, as words
have to be observed in many situations to reliably estimate the required probabilities.

Yu and Ballard (2007) also proposed a probabilistic model which relates word forms
to pre-established potential meanings, thereby emphasizing the role of social-pragmatic
cues. More precisely, Yu and Ballard investigated the role of joint attention as a cue for
referent selection as well as prosody as a cue for highlighting relevant words. To do so,
the authors first transcribed a subset of the CHILDES corpus – a database containing
audio and video data of mother-infant interactions. The transcription included a manual
identification of objects that are simultaneously attended by the infant and the mother
as well as an automatic extraction of intonation. The model was finally trained using the
transcribed data, where attended objects and highlighted words were biased by assigning
larger weights to them. An evaluation on two video clips showed that the incorporation
of these pragmatic cues facilitated the acquisition of word-meaning associations compared
to using statistical learning alone.
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Figure 2.6.: A comparison between (a) the model of Mayor and Plunkett (2010) and (b) the
LEX model of Regier (2005). Illustrations adapted from Mayor and Plunkett
(2010); Regier (2005).

The aforementioned models rely on the assumption that a learner has access to a set
of potential word meanings. They consequently do not tackle the problem of concept
formation. In contrast, the model of Mayor and Plunkett (2010) includes both concept
formation and concept identification. As illustrated in Fig. 2.6 (a), it comprises an
initial batch processing of audio-visual data in which Self-Organizing Maps (SOMs)
learn pre-lexical categories in both domains. The established categories consequently
cluster entities with high acoustic or visual similarity, respectively. Concept identification
is subsequently achieved via Hebbian learning of connections between both maps. In
the similar vein of a bidirectional associative memory, the Lexicon of Exemplars (LEX)
model (Regier, 2005) acquires word-meaning associations (see Fig. 2.6 (b)). However,
a key difference is that LEX relies on an exemplar-based representation of pre-lexical
categories instead of using SOMs to cluster them. To associate word forms and potential
meanings the LEX model uses error-driven leaning of connections between the exemplars.
Thereby, it further makes use of an attentional learning mechanism previously proposed
by Kruschke (1992) which weights individual feature dimensions differently according to
their importance (e.g. color and shape).

The model of Mayor and Plunkett (2010) as well as the model of Regier (2005) rely on a
batch-processing of the data, i.e. the learner can evaluate all training data in parallel.
Since word learning is obviously a continuous process in which training samples arise
sequentially over time, both models only provide limited insights into how words may
be acquired by children. The CELL model of Roy and Pentland (2002) constitutes an
important advancement in this respect. As illustrated in Fig. 2.7, the CELL model uses
two types of memories, a short-term memory (STM) and a long-term memory (LTM).
This memory dissociation is what supersedes the batch-processing of data, insofar as
it enables a continuous processing in which observations can incrementally enter the
knowledge base. More precisely, the limited-size STM acts as a first-in-first-out buffer of
observations, each of them comprising a heard utterance paired with a simultaneously
present object. Thereby, the object is described in terms of a shape histogram whereas
the heard utterance is represented by an array of phoneme probabilities as obtained by a
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Figure 2.7.: The CELL Model. Figure adapted from Roy and Pentland (2002).

recurrent neural network. A recurrence filter subsequently processes the content of the
STM by searching for sequences of phonemes which are repeatedly paired with visually
similar objects. The result of this filtering are audio-visual prototypes that enter the LTM.
Furthermore, the prototypes in the LTM become consolidated via a mutual information
based criterion. This consolidation rejects erroneously created entries and merges similar
ones which finally yields lexical items. The CELL model consequently describes one
possible mechanism by which word meanings can be incrementally acquired. Thereby,
it is based on recurrent coincidences of auditory and visual input. In the experiments
presented by Roy and Pentland, however, multiple utterances were typically paired with
the same object. Even though the visual description of the objects may slightly vary
due to different views of the objects, the visual domain obviously provided the invariant
information that allowed the CELL model to discover word-like units, i.e. reoccurring
sequences of phonemes. The CELL model hence primarily showed how visual concepts
can be used to develop word forms (cf. Fig. 2.5 (c)). Whether a similar mechanism is
suitable to describe concept formation driven by word labels remains to be shown.

Supervised Concept Formation Driven by Word Labels

As already discussed, children seem to be tuned to language input, insofar as hearing
words invites children to unveil their meanings (Waxman and Markow, 1995). Here, the
acquisition of the word forms themselves, i.e. the segmentation of the continous speech
stream into word-like units and their subsequent recognition, is not considered. If we
assume a child to possess these capabilities then word meaning acquisition finally boils
down to discovering commonalities among the situations in which a word occurs, since
these commonalities are most likely the referent of the word. From a computational
point of view this kind of learning corresponds to category formation driven by explicitly
provided word labels. It is thus a supervised (or semi-supervised) process for which
many computational models have been previously proposed. Nevertheless, child-like
word learning possesses two important characteristics that distinguishes it from most
computational approaches: Firstly, child-like learning is sequential in nature, since children
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Figure 2.8.: An illustration of the three levels of (computational) referential uncertainty.

gain experience over the course of development. This rules out computational models
that rely on a batch-processing of training data, i.e. those that assume that all data
is known from the very beginning and can be used for learning. A valid model rather
has to feature a truly incremental learning that incorporates training samples as they
appear, i.e. one by one. Secondly, computational models often rely on some kind of
whole-object assumption. They consider the whole scene as important and try to cluster
the observations in which the same word occurred. In contrast, children’s word learning
is characterized by referential uncertainty. For example, children initially cannot know
whether a new word refers to an object or just some property of it. They consequently
have to mine those aspects of a scene that are relevant for the representation of a word’s
meaning.

The computational models, that will be reviewed in the following, all implement mecha-
nisms for incremental learning. However, they differ in the level of referential uncertainty
they consider. Here, it is proposed that the three levels depicted in Fig. 2.8 can be
distinguished:

• Level 1: The learner already has knowledge about which aspects of a scene (in terms
of sensory input dimensions) carry the relevant information for the representation
of a word. This knowledge may either be innate to the system or explicitly provided
during training. The computational models consequently rely on a predefined
constrained input space on which category representations are built. For example,
consider a system which observes objects and has to learn the meaning of color
terms. A level 1 system would know, that it has to use the color of the objects
instead of other dimensions (e.g. shape features) to ground the words.

• Level 2: The learner has no knowledge about the relevance of individual input
dimensions. Approaches tackling this level consequently have to select the relevant
feature dimensions and build categories on them. Importantly, feature selection
thereby constrains the input space and supersedes the need for innate knowledge as
compared to approaches of level 1. In the example scenario this would mean that the
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system initially uses the color as well as the shape of the objects to ground the color
terms. Over time, however, the system discovers that only the color dimensions are
relevant for the task.

• Level 3: The relevant dimensions are hidden to the system and hence cannot be
accessed directly. Models that cope with this complexity consequently have to
extract the relevant information contained in the input data. This can be done
by generating new feature dimensions in terms of a transformation from a set of
basic input dimensions. Finally, categories can be built using the new feature space.
The difference to level 2 systems consequently is that a feature extraction instead
of a feature selection has to be performed. Importantly, feature extraction thereby
constitutes the more general case, since it can implement any feature selection by
a binary gating of input dimensions. For example, consider a system that has to
learn the meaning of dark, but only has access to the RGB color as well as some
shape features of the objects. The system cannot only select the color dimensions,
since RGB color information are not sufficient to describe the darkness of objects.
The system rather has to transform the color information into a suitable feature
space (e.g. the HSV color space) and ground the word in it.

One of the representatives for level 1 approaches is the work of Steels and Kaplan
(2002), who presented a system that allowed the AIBO robot to acquire object labels.
Thereby, the robot has been placed in a scene in which three different objects were present.
Language games (in form of questions and answers about environmental objects) served
as social interaction and allowed the system to associate words with objects based on
reinforcement learning (Kaplan, 1998). More precisely, the weights of an associative
memory were increased or decreased based on feedback (Yes/No) on the robot’s object
labelling behavior. The classification as a level 1 system stems from the fact that the
objects only have been represented in terms of their color – the feature that distinguished
them. By doing so, knowledge about the relevant input dimension (color) has been
innately given to the system which significantly reduced the difficulty of the categorization
task. In a very similar way Goerick et al. (2009) taught the ASIMO robot to learn the
meaning of words. In this system, however, learning was not limited to object labels, but
also included words refering to object properties or actions. Observations by the robot
were consequently represented using a larger number of features. However, a predefined
mechanism has been used to constrain categorization, insofar as hand-crafted relevant
feature spaces have been switched according to the type of word (object label, property
label, or action label) that was learned.

Level 2 systems distinguish themselves from the previous approaches by including a
reasoning process on the relevance of input dimensions. The Transportable Word Intension
Generator (TWIG) of Gold et al. (2009) is one example of this class. TWIG uses decision
trees to represent word meanings. Thereby, the decision nodes successively split the input
space, such that the leafs of a tree represent constrained input regions which constitute
the word meaning categories. More precisely, each decision node splits an input region
along a hyperplane which best discriminates the referents of one word from the referents
of other words. The splitting mechanism hence implements a selection of relevant feature
dimensions. Even though TWIG has been demonstrated on a robotic platform, its design
limits its applicability. One problem is the necessity of using predicate calculus for the
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description of the environment. This puts a high burden on the system designer, since it
is difficult to define sensory predicates that are suitable to describe the observations (Gold
et al., 2009). A more severe problem, however, is the decision tree itself as it constructs
mutually exclusive input regions. This means that an observation cannot be the referent
of multiple words as it belongs to just one category (e.g. a color word, a shape word, and
a label cannot refer to the same object).

Wellens et al. (2008) constructed a system in order to study the evolution of language in
a population of agents (25 QRIO robots in the concrete scenario). Language games were
used for social interaction between the agents. More precisely, the robots sensed their
environment, described the observations they made, and finally tried to understand the
descriptions given by other robots. The authors could show that this kind of interaction
allowed the agents to develop a shared lexicon. In the system, the meanings of words are
represented in a way akin fuzzy sets, i.e. the presence (or absence) of an object feature
signals fuzzy memberships of the object with respect to the different word categories.
The strengths of these feature weights represent the relevance of the different input
dimensions and were learned online. By pruning features of small weights, the system
hence concentrates on the most important dimensions. A drawback of the method is
that it requires binary input dimensions. This means that a feature can either be present
or absent. Continuous measures consequently have to be discretized via binning, which
results in a rapid increase in the input dimensionality.

An additional approach for level 2 is the one of Kirstein et al. (2009). The large-scale
system makes use of Learning Vector Quantization (LVQ) to acquire visual categories
and further selects relevant input dimensions. To do so, it adopts a strategy similar to
the CELL model of Roy and Pentland (2002). In detail, a short-term memory (STM)
serves as an internal buffer for newly observed word-object pairs. A filtering mechanism
subsequently processes the content of the STM and transfers the knowledge into an
exemplar-based long-term memory (LTM). Thereby, category-specific feature sets are
created via a forward feature selection based on statistical scoring.

Surprisingly, the literature lacks level 3 approaches. To my best knowledge no computa-
tional model exists that copes with simultaneous concept formation and feature extraction.
Level 3 approaches, however, are most important with respect to models of child-like
learning. This is due to the fact that any life-long learning system has to cope with
minimal predefined knowledge. This means that there is a need for the system to extend
its internal knowledge over the course of development. This includes an extension of the
conceptual network, but also an on-demand creation of new feature dimensions. A study
by Schyns and Rodet (1997) provides important evidence in this respect. The authors
showed that children flexibly learn new features as a consequence of categorizing objects.
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3
Unsupervised Concept Formation
and Word Label Mapping

Language fits over experience like a
straight-jacket.

William G. Golding (1911-1993)

The acquisition of word meanings refers to a mechanism which establishes a mapping
between acoustic-phonetic representations of word labels and conceptual representations
that bear some kind of relevance to a child. As previously mentioned, word meaning
acquisition typically cannot be attributed to one particular learning process, but rather
results from a tight interaction of multiple ones. Specifically, it has been suggested in
the previous chapter that the continuum of observed learning patterns may arise from a
mixture of three extreme cases: (1) Words and concepts are independently formed and
subsequently linked, (2) words drive the formation of concepts, or (3) concepts drive the
formation of words. The latter two cases involve supervised learning, insofar as words
serve as supervision signals for the formation of concepts and vice versa. This kind
of learning will be addressed in the next chapter. The present chapter’s focus is the
independent acquisition of concepts as well as their subsequent mapping to words.

The fact that concepts can emerge without an involvement of word labels does not rule
out supervised learning, of course. Other modalities such as taste or odor as well as
global criteria like system performance (cf. reinforcement learning) still have an influence
on how information processing is structured and therefore can ’teach’ the formation of
concepts. These factors, however, will not be considered here. This chapter’s aim is
to exploit unsupervised learning mechanisms by which conceptual representations can
self-organize in a data-driven manner, i.e. solely based on the input statistic.
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3.1. Self-Organization of Knowledge Representations

Unsupervised learning seems odd at first glance. Given a set of observations, a system
should learn something. But in contrast to supervised learning or reinforcement learning
the system is not told what to learn or how good it performs with the data. This means
that the system’s internal representations have to self-organize without any supervision
by externally supplied criteria. Thus, the question naturally arises which objectives
a system may use to guide learning. In this section, several computational goals of
self-organization will be outlined and related to putative processing principles of the
human brain. Finally, existing computational models are reviewed and discussed with
respect to the aforementioned aspects.

3.1.1. Goals of Self-Organization

Multiple objectives of unsupervised learning can be defined (Haykin, 1998). Thereby,
their individual relevance may differ depending on the concrete learning task (e.g. feature
extraction versus classification). Here, the following objectives are of key interest:

• Pattern discovery: Unsupervised learning serves the extraction of regularities
from the input data. The formation of such regular patterns (or concepts) is guided
by their redundancy in the observations. This is what distinguishes them from
pure unstructured noise (Ghahramani, 2004). Beside others, such patterns include
predictive concepts, that give hints on possible future events, or associative concepts,
that link multiple modalities. Here, the latter type is of particular interest as the
acquisition of word meanings falls into this category.

• Vector quantization: The different units of a self-organized system should repre-
sent different patterns. Ideally, they should cover the whole input space such that
each input pattern is appropriately represented. Moreover, this vector quantization
of the input space should reflect the statistical structure of the inputs (Dayan,
1999), insofar as a fine-grained quantization is preferable for inputs that are often
observed, whereas a coarse quantization is sufficient for less frequent patterns. The
number of units spent to represent different inputs thus reflects their frequency of
occurrence. Input space quantization and density estimation consequently is an
additional objective of unsupervised learning (Duda et al., 2000).

• Adaptivity: Natural as well as artificial systems usually operate in instationary
environments, i.e. signals that carry the information to be represented vary with time
(Haykin, 1998). Thereby, signal changes may arise from the external environment
(e.g. changes in lighting conditions) or from the internals of the system itself (e.g.
changes in network connectivity induced by learning). An additional objective
consequently is to keep track of such variations, to adapt the system to them, and
thereby to stabilize the internal representations of the learned patterns.

Current computational methods for unsupervised learning already address these goals
in part, but have problems in satisfying all of them simultaneously (cf. Section 3.1.3).
Our approach to bridge this burden is to build bio-inspired models which take inspiration
from cortical processing principles.
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3.1.2. Related Principles of Cortical Processing

Self-organization of knowledge representations via unsupervised learning is one of the
hallmarks of cortical development. Specifically, unsupervised learning constitutes a kind
of standard paradigm employed in the brain. It is much more common than supervised
learning or reinforcement learning (Dayan, 1999). Exploiting the principles of cortical
processing hence is a viable approach for building computational models. The following
principles may lead a way to achieve the abovementioned goals of self-organization:

• Hebbian learning: Connections between cortical neurons are mainly altered via
Hebbian learning, i.e. based on correlated activity between individual neurons.
More precisely, Hebbian learning represents the extent to which different patterns
co-occur by strengthening or weakening the connections between the corresponding
neurons (O’Reilly, 1998). It hence provides the possibility to extract statistical
structure from the input. In the present work, Hebbian learning is of key interest
as it allows to develop associative concepts, e.g. concepts that link word labels and
their referents.

• Topographic maps: The cortex not only can be roughly divided into regions of
modality-specific processing (cf. Section 2.1); the individual cortical areas further
comprise maps into which the different nerve cells can be grouped (Ballard, 1997).
Thereby, the term map refers to a layered two-dimensional plane (the cortical sheet)
in which cells with similar function cluster. The visual system, for example, is
organized as a hierarchy of such maps (Zeki et al., 1991). Whereas the lowest level
map (V1) represents edges, the edge features are successively combined into more
complex structures like curves (V2), shapes (V4), or objects (IT) at later stages
of the hierarchy. A similar map-like organization can be found in other sensory
modalities (Kaas et al., 1979; Schreiner, 1992; Wang et al., 1998) as well as in areas
corresponding to action (Lemon, 1988) or higher cognitive function (Andersen and
Buneo, 2002).

These maps perform a vector quantization of the corresponding input spaces.
Thereby, the respective input distributions are reflected, since the frequency of a
particular input determines the amount of cells recruited for its representation, i.e.
more frequent patterns cover larger portions of the map than less frequent patterns
do (Baseler et al., 1999). Moreover, the individual cells of a map are topographically
organized, insofar as nearby neurons represent similar inputs. For example, the
orientation of edges smoothly varies across the V1 surface (Bonhoeffer and Grinvald,
1991). By relying on such a topographic organization, the representation of input
patterns is enhanced by an additional information. This is because the (physical)
positions of cell assemblies directly provide a qualitative measure on the similarity
of the corresponding input patterns.

The key principle underlying the formation of maps is competitive learning. This is
achieved via extensive lateral interactions between cortical cells (Blakemore and
Tobin, 1972). Whereas excitatory interactions are typically limited to cells within a
local neighborhood, many inhibitory interactions spread over larger portions of a
map (McDonald and Burkhalter, 1993). The resulting lateral inhibition between
cells promotes a diversification of the cell responses. More precisely, individual cells
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compete for becoming responsive to specific input patterns by hindering others to
do so (by inhibiting them). Due to the fact that this is a self-enforcing process, only
the ’strongest’ cells will win this ’competition’, whereas other cells will continue to
compete for the representation of different inputs.

• Homeostasis: Homeostasis refers to the property of a system to regulate its
internal environment to compensate for fluctuations in the external environment. It
thus ensures system stability via self-maintenance of a proper operation mode. Self-
regulation in the central nervous system is achieved by numerous mechanisms which
act at different network scales (Marder and Goaillard, 2006). At a macroscopic level
the large diversity in neuron types – particularly the heterogeneity of interneurons –
plays a vital role in activity control (Santhakumar and Soltesz, 2004). Similarly,
activity can be controlled at a microscopic level, e.g. by altering the strengths
of synapses via homeostatic synaptic plasticity (Turrigiano and Nelson, 2004) or
by varying internal neuron parameters which have an influence on the excitability
of the neuron (Zhang and Linden, 2003). In the present work, we focus on these
locally operating processes. A more detailed description of them will be given
in Section 3.2.3 when a computational model for unsupervised map formation is
introduced.

3.1.3. Existing Computational Models

Computational models for self-organizing maps already exist for a long time. Among the
most popular ones are the Kohonen maps (Kohonen, 1982) and Dynamic Neural Fields
(Amari, 1977). In the following, these two models as well as extensions of them will be
shortly reviewed and discussed.

Kohonen Maps

Kohonen maps – as compared to Dynamic Neural Fields – model cortical map development
in an abstract way. This means that Kohonen maps do not rely on detailed neurobiological
mechanisms, but rather focus on the essential properties of cortical computation and
implement them in a simplified fashion (Haykin, 1998). The maps are composed of units
(model neurons) that are distributed on the nodes of a multi-dimensional lattice. Even
though the model itself does not impose any constraint on the dimensionality of the
lattice, practical applications usually rely on a 2-dimensional grid. The placement of
units on the grid thereby defines the (physical) neighborhood relations between the units.
Each unit i of the map possesses a set of input weights wi. This weight set serves as a
codebook vector and defines the input pattern to which the unit is most responsive. The
codebook vectors of all map units consequently vector quantize the input space. The goal
of Kohonen learning therefore is to determine the units’ codebook vectors such that the
input space is appropriately quantized while taking the topological constraints (in terms
of the spatial relations between units) into account.

To do so, learning follows a competitive-cooperative regime. For each input pattern x, the
map units first compete for responsibility in representing the input. Thereby, the units’
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codebook vectors are compared with the input pattern. The result of this comparison is
the basis for a winner-take-all decision that selects the best-matching unit i(x). After
that, the weights wj of all units j are adapted towards the input pattern using a learning
rate η and a modulation factor aj .

i(x) = argminj ‖ x−wj ‖ (3.1)
wj = wj + η · aj · (x−wj) (3.2)

The factor aj thereby controls the cooperative part of the learning. For each unit j it is
chosen as a function of the (physical) distance dij between the unit and the best-matching
unit i. Kohonen maps usually apply a Gaussian function aj = exp(−d2ij/2σ

2) where σ
determines the size of the active neighborhood. Overall, this means that the learning
algorithm not only adapts the best matching unit towards the input pattern, but also
those units that lay within the vicinity of the best-matching unit. In contrast, the input
pattern does not affect the codebook vectors of those units that are distant from the
best-matching unit.

In practice, the width σ of the active neighborhood is subject to an annealing process, i.e.
starting with a large Gaussian the neighborhood successively shrinks until σ reaches a
predefined minimum. As a consequence, a two-stage learning process can be observed. At
the beginning, learning adapts all units towards an input pattern. This results in an initial
ordering of the map during which all units roughly adapt to the input pattern distribution.
Over time, however, learning becomes more specific and concentrates on units in the
vicinity of the best-matching unit. This convergence phase leads to a diversification of
the codebook vectors and yields the final vector quantization of the input space.

Once training converged, the quantization of the input space remains fixed. This is due
to the fact that learning finally focuses only on a small local neighborhood and hence
cannot significantly alter the map layout anymore. As a consequence, the adaptivity
of a Kohonen map is very restricted. Some authors tried to overcome this problem by
increasing or decreasing the active neighborhood on demand (Herrmann, 1995; Phaf et al.,
2001). A more suitable homeostatic principle has been proposed by DeSieno (1988). In
its seminal work, DeSieno introduced a conscience term to the learning algorithm. The
term keeps track of how often a particular unit is selected to be the best-matching unit
and finally uses this knowledge to bias the competition for subsequent input patterns.
Thereby, the aim of the method is to let all units win the competition equally often. If
this is the case, each unit would represent a relevant input pattern whereas the whole
map would approximate the input pattern distribution. A similar idea has been pursued
in the work of Sullivan and de Sa (2006). Instead of explicitly biasing the competition
between map units, the authors introduced an activity-dependent scaling of the codebook
vectors. By doing so, competition is implicitly biased which finally yields similar results
as the method of DeSieno (1988).

Dynamic Neural Fields (DNFs)

DNF theory provides a mathematical framework by which cortical processing can be
modeled at a mesoscopic level. Thereby, DNFs constitute maps in which activity is
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propagated between neuron populations (Amari, 1977). Due to the variety in exhibited
dynamic behavior (Coombes, 2005), neural fields have become a popular technique for
modeling spatio-temporal activity flow in the brain. In detail, DNFs consider the neural
tissue to be a two-dimensional plane on which neurons are distributed. The neurons
are stimulated by externally applied inputs which evoke an activity within the field.
Spatio-temporal response patterns are obtained by propagating activity through extensive
lateral interactions between the model neurons. This dynamic spread of activity can be
formally described by Amari’s field equation (Amari, 1977):

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
w(x, x′) · f(u(x′, t)) dx′ + S(x, t) + h. (3.3)

Here t denotes time, u(x, t) the local membrane potential of a population of neurons
at position x of the cortical plane, and S(x, t) the stimulus applied to this neuron
population. Furthermore, neurons feature a rest potential h which is approached in
absence of any other input. The monotonically increasing non-linear function relating
the potential of neurons to their activities is termed f . Finally, the lateral connectivity
of neurons located at position x′ to neurons located at position x of the neural tissue is
defined by w(x, x′). This interaction kernel is typically fixed and distance-dependent, i.e.
w(x, x′) = w(|x− x′|). In most previous models a Mexican Hat connectivity is chosen. It
implements an excitation between nearby neurons and an inhibition between distal ones.
Hence, activity propagation within the field is competitive and can result in spatially
focused regions of activity – also known as activity bubbles.

Even though DNF theory describes a general network model, a lack in understanding
how neural fields can self-organize limits their applicability. Specifically, learning and
adaptation have only rarely been investigated in the context of DNFs. Learning most
often focuses on the synaptic weights of input projections to the neural field, thereby
adapting the input-driven dynamics, but leaving the self-driven dynamics unchanged.
This is due to the fact that even small learning-induced changes in the connectivity of
the field can result in a significantly altered dynamic behavior of the network (Taylor,
1999; Mikhailova and Goerick, 2005). Hence, the incorporation of synaptic plasticity (e.g.
via Hebbian learning) is challenging with regard to maintaining the network in stable
operation modes.

The LISSOM model of Sirosh and Miikkulainen (1994) constitutes a significant advance-
ment in this respect. In contrast to conventional models it additionally features lateral
connections that undergo Hebbian plasticity. More precisely, the LISSOM model uses an
interaction kernel that is initially wide and roughly Mexican Hat shaped. Subsequently,
however, activity-driven learning results in a die off of synapses which sharpens and
fine-tunes the kernel. The development of the interaction kernel hence can be compared
to the gradually decreasing Gaussian neighborhood that is applied when training the
popular Kohonen maps (Kohonen, 1982). Due to a change in the within-field connectivity,
the LISSOM model is sensitive to the used parameter settings. This is why it additionally
comprises an adaptation of the neuron transfer functions f that follows a predefined
regime. The Adaptive LISSOM (ALISSOM) model (Law, 2009) constitutes an extension
of LISSOM by means of two homeostatic mechanisms. Firstly, it uses Triesch’s intrinsic
plasticity model (Triesch, 2007) to adapt neuronal transfer functions and thus replaces the
previously predefined regime. Secondly, ALISSOM applies activity-dependent synaptic
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scaling on the afferent input connections. However, since ALISSOM does not use home-
ostatic principles to alter the within-field connections, it exhibits a similar parameter
sensitivity as the LISSOM model. This is due to the fact that activity propagation within
a neural field is largely affected by the balance between excitation and inhibition within
the field. The question how a balanced lateral interaction can emerge from self-regulation
is consequently an open issue.

3.2. Our Homeostatic Dynamic Neural Field Model

Even though Kohonen maps excel in simplicity and computational efficiency, we consider
DNFs advantageous over them. The reasons are manifold, but mainly boil down to
the dynamic nature of activity propagation within DNFs. For example, the dynamic
integration of inputs enables DNFs to cope with noisy sensor data. Whereas computation in
Kohonen maps relies on instantaneous sensor measurements and hence is error-prone, DNFs
temporally integrate data from successive time steps. This allows DNFs to accumulate
evidence which results in a dynamic competition between multiple (individually ambiguous)
input pattern hypotheses. Despite the known difficulty in developing a self-organizing
DNF model, we hence chose to use DNFs for unsupervised concept formation.

Our network model (Gläser and Joublin, in press), that will be presented in the follow-
ing sections, differs from conventional approaches in multiple respects: (1) Similar to
LISSOM the model does not make any assumption on the connectivity of the field. In
other words, all synaptic weights – afferent projections to the field as well as lateral
connections within the field – are plastic and change via experience-driven learning. (2)
To circumvent unfavorable network behavior our model additionally employs homeostatic
mechanisms. These processes operate purely locally and are based on recent findings on
homeostatic principles applied in the central nervous system. This includes an intrinsic
plasticity mechanism as well as homeostatic synaptic scaling. (3) In contrast to ALISSOM,
however, we not only scale afferent projections to the field, but also the lateral within-field
connections. By doing so, the excitation-inhibition ratio is altered. The network hence
dynamically balances cooperation and competition between the model neurons in an
activity-dependent manner. The following sections provide detailed information on how
the individual aspects were realized in the network model.

3.2.1. Network Structure

Fig. 3.1 shows the structure of our recurrent neural network model. Similar to the Wilson-
Cowan model (Wilson and Cowan, 1973) it is composed of interconnected excitatory
units E and inhibitory units I. The different types of units are distributed on a layered
two-dimensional grid mimicking the cortical plane. The difference to the Wilson-Cowan
model lies in the connectivity between the units. Whereas Wilson and Cowan applied an
all-to-all connectivity, our model consists of the following connection patterns: External
input to the network – from which regular patterns should be extracted – is provided
by afferent projections (wEXT ) to the excitatory units. Activity within the field is
propagated via connections between the units. Thereby, the lateral connectivity consist
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Figure 3.1.: The structure of our recurrent neural network.

of excitatory connections from E-cells to other E-cells (wEE) as well as I-cells (wIE).
Additionally, E-cells receive inhibitory projections (wEI) originating from I-cells. The
direct connections between E-cells thereby implement the cooperative part of learning,
whereas the coupling via I-cells serves the purpose of competitive learning.

By discretization of Amari’s field equation (see Eq. (3.3)) the spatio-temporal evolution
of activity within the network can be described by two differential equations. We use the
variables u and v to describe the membrane potentials of the excitatory and inhibitory
units, respectively. We further subset an index i to refer to the unit located at position
xi of the cortical plane:

τE
dui

dt
= −ui +

∑
j

g(dij) · wEE
ij · f(uj)−

∑
j

wEI
ij · f(vj) +

∑
j

wEXT
ij · sj + hE (3.4)

τI
dvi
dt

= −vi +
∑
j

g(dij) · wIE
ij · f(uj) + hI . (3.5)

Here, the membrane potentials are updated according to the time constants τE and τI .
In absence of any input the potentials ui and vi approach the rest potentials hE and
hI , respectively. Furthermore, the synaptic weight of a connection from unit j to unit
i is denoted w∗

ij where ∗ ∈ {EE,EI, IE,EXT} describes the type of connection. The
relation between the membrane potentials and the activities of units is described by the
sigmoidal transfer function f which is of the form

f(z) =
1

1 + exp (−γ(z − θ))
. (3.6)

Thereby, θ is the threshold value at which a neuron exhibits an activity of 0.5, whereas γ
is a gain factor that specifies the dynamic range of membrane potentials a neuron is most
sensitive to.

In the update equations for the membrane potentials we additionally incorporated a
modulation factor g. This factor affects the efficiency of excitatory lateral connections
as a function of the distance dij =‖ xi − xj ‖2 between the pre- and postsynaptic units.
More precisely, we use the following function to implement an exponential decrease in
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connection efficiency when distance increases:

g(d) = exp

(
− d2

2σ2

)
. (3.7)

We consequently define that excitatory lateral connections between nearby units are
more efficient than those between distant units. The term is mainly used to bootstrap
the development of local representations. Its impact on network development hence
is maximum at the beginning of training whereas it decreases later on. One possible
interpretation of g is that of a connection probability between neurons that becomes
smaller as their distance increases. Since inhibitory cells are supposed to have a broader
connectivity range, they are not modulated by g in this model.

It is, however, worth noticing that the incorporation of a distance-dependent modulation
factor fundamentally differs from using distance-dependent interaction kernels (as con-
ventional approaches do). The latter implies that the synaptic weight values of lateral
connections are chosen as a function of the distance between the pre- and postsynaptic
units. This is not the case for our model, since we do not make any assumption on
the synaptic weight values themselves. Large synaptic weight values can consequently
compensate for a decrease in connection efficiency. Interestingly this also means that
we withdraw the topological constraints that drive other models to develop topology
preserving mappings. Hence, we hypothesize that our model produces mappings which
show more topological defects than mappings developed by other approaches. For this
reason, our computational model incorporates an additional and independently running
process which explicitly addresses the issue of how the development of topology preserving
mappings can be facilitated. We will later introduce this process in Section 3.2.4. A
recent study of Hooser et al. (2005) provides evidence in favor of our model. They
found orientation-sensitive cells in the primary visual cortex (V1) of a highly visual
rodent, the gray squirrel. These cells are similar to those found in V1 of primates, but
in contrast to primate V1 the orientation-selectivity did not smoothly vary across the
cortical surface. This and other findings (Ohki and Reid, 2007) suggest that a topology
preserving self-organization depends on a separate mechanism missing in rodents.

3.2.2. Hebbian Plasticity

As previously mentioned, all connections within the network model undergo experience-
driven changes in synaptic strength. Thereby, the used learning regime is twofold: Firstly,
it incorporates a learning rule that adapts connection weights according to the input
patterns presented to the network. Secondly, it also comprises self-regulatory processes
that keep the neural field in a stable state. The latter will be the focus of the following
section. Here, we describe how model neurons develop appropriate representations of
the input patterns via Hebbian plasticity. The learning principle stated by Hebb’s rule
can be shortly summarized as cells that fire together, wire together. In other words, if
the postsynaptic cell repeatedly fires following a stimulation by the presynaptic cell, the
synapse linking both cells is strengthened. To circumvent unconstrained weight growth
we apply Oja’s rule (Oja, 1982) which incorporates an activity-dependent leakage term:

Δw∗
ij ∝ ηi · ξj − w∗

ij · η2i . (3.8)
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Here, w∗
ij is the synaptic weight, whereas ηi and ξj are the pre- and postsynaptic activities,

respectively. Since it can be shown that Oja’s rule extracts the principal component from
its inputs (Oja, 1982), it constitutes a suitable learning technique for pattern discovery
based on statistical regularities.

3.2.3. Homeostatic Plasticity

For neural fields, a stable operation strongly depends on balanced levels of excitation
and inhibition in the network. Too much inhibition will obviously lead to vanishing
activity, whereas a high level of excitation may result in runaway activity. This problem
is even more severe for developing systems, since learning continuously changes network
connectivity (Turrigiano and Nelson, 2000; Desai, 2003). Computational models of network
development consequently have to incorporate homeostatic mechanisms to cope with
these changes. In the following, we highlight recent advances in the understanding of the
processes regulating neuronal activity and show how similar principles can be used within
our network model.

A stable network operation constitutes itself in proper levels of network activity. Stability
hence could be a consequence of activity control. In fact, studies in neuroscience provide
compelling evidence for activity regulation at the level of individual neurons. For example
it has been shown that neurons compensate for ongoing changes in input strength (Marder
and Prinz, 2002). In these experiments, neuron cultures are placed in pharmacological
substances like tetrodotoxin (TTX) which deprives the activity of the respective neurons.
When this blockade is released, neurons exhibit significantly increased firing rates compared
to control values. Even if the input blockade persists, cell activity gradually returns to the
control level again. It could be shown that this activity regulation depends on synaptic
scaling (Turrigiano et al., 1998) as well as on altering the function relating current to
firing rate (Desai et al., 1999b).

Beside others (Wilhelm et al., 2009), one opinion is that synaptic scaling, i.e. the scaling
of afferent projections to a neuron, is mediated by the activity-dependent release of
the neurotrophin BDNF (brain-derived neurotrophic factor) (Rutherford et al., 1997).
This has two important implications: Firstly, the activity of (postsynaptic) inhibitory
interneurons is regulated based on the activity of the (presynaptic) excitatory cells
which release the BDNF (Kokaia et al., 1993). Secondly, synaptic scaling changes the
ratio between excitation and inhibition within the network. This is due to the opposite
effects that BDNF has on the scaling of excitatory synapses on pyramidal neurons and
interneurons, respectively (Rutherford et al., 1998). In other words, a high BDNF level
weakens synapses on excitatory neurons, but strengthens those on inhibitory neurons and
vice versa.

The transfer function of a neuron describes a dynamic range of input strengths to which
a neuron is sensitive to. Connectivity changes induced by Hebbian learning or synaptic
scaling can easily result in inputs that do not match this dynamic range. For example
inputs that are too weak, such that a neuron will not fire, or inputs that are too strong,
such that firing saturates. That is why an adjustment of the transfer function – so called
intrinsic plasticity – is reasonable as it shifts the sensitive region such that it matches the
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average input level (Desai, 2003). It is further known that this kind of self-regulation is
also effected by the release of BDNF (Desai et al., 1999a).

Synaptic Scaling

In the following, we describe how we implemented a biologically inspired dynamic self-
regulation in detail. Due to the activity-dependent nature of homeostasis, we first estimate
the average activity level Āi of a neuron i via an integration of instantaneous activities:

Āi(k) = (1− 1

τH
) · Āi(k − 1) +

1

τH
·Ai(k) (3.9)

Here, k is a discrete time index, Ai(k) = f(ui(k)) the instantaneous activity, and τH
defines the time scale on which integration takes place. Āi consequently can be related
to intracellular calcium concentrations as they provide a correlate of a neuron’s firing
statistic (Berridge, 1998).

Next, we model the BDNF release of an excitatory unit i (E–cell) given its mean activity
ĀE

i and a target rate Â as

BDNFE
i (k) = 1 + βH

(
ĀE

i (k)− Â

Â

)
, (3.10)

where βH is a homeostatic learning rate. If an E-cell’s mean activity exceeds its target
level, the cell’s release of BDNF will be greater than 1. Conversely, the BDNF value is
smaller than 1, when the cell is less active than the target level.

For the case of synaptic scaling in Kohonen-type SOMs, DeSieno (1988) previously
suggested an additive scaling factor that is based on a neuron’s mean firing rate. It is,
however, known that multiplicative synaptic scaling is performed in the central nervous
system (Turrigiano et al., 1998). This has the computationally attractive feature of
leaving the relative difference in synaptic weights unchanged. A multiplicative scaling
factor for SOMs, which is similar to our modeled BDNF level, has been suggested by
Sullivan and de Sa (2006). However, even though our model uses the same factor for
the scaling of connection weights, the way in which synaptic weights are adjusted differs
fundamentally. Firstly, our learning regime combines Hebbian plasticity in form of Oja’s
rule with a BDNF-mediated scaling. Secondly, we further take the opposite effects of
BDNF on the connections to excitatory and inhibitory cells into account. In summary,
our model uses the following weight update equations:

wEXT
ij (k) =

wEXT
ij (k − 1) + α ·ΔwEXT

ij (k)

BDNFE
i (k) · BDNFEXT

j (k)
(3.11)

wEE
ij (k) =

wEE
ij (k − 1) + α ·ΔwEE

ij (k)

BDNFE
i (k) · BDNFE

j (k)
(3.12)

wEI
ij (k) =

[
wEI

ij (k − 1) + α ·ΔwEI
ij (k)

] · BDNFE
i (k) (3.13)

wIE
ij (k) =

[
wIE

ij (k − 1) + α ·ΔwIE
ij (k)

] · BDNFE
j (k). (3.14)

Here, α denotes a learning rate and Δw∗
ij(k) the weight change according to Eq. (3.8).
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Intrinsic Plasticity

In addition to synaptic scaling we model homeostatic intrinsic plasticity by altering the
transfer functions of individual excitatory units. Given a sigmoidal transfer function f
according to Eq. (3.6), a neuron’s intrinsic excitability can be changed by dynamically
adjusting the gain and threshold parameter γ and θ, respectively. In a recent work,
Triesch (2007) derived an update formula for both parameters based on information
theory. The difference to the mechanism applied by our model is twofold: Firstly, we
restrict adaptation to the threshold parameter θ and, secondly, we express the rate of
adaptation in terms of the released BDNF level:

θEi (k) = θEi (k − 1) +
(
BDNFE

i (k)− 1
)

= θEi (k − 1) + βH ·
(
ĀE

i (k)− Â

Â

)
. (3.15)

Homeostatic plasticity, as it is incorporated within our network model, consequently can
be summarized as follows. If an excitatory neuron’s average activity level exceeds its
control level, the neuron releases a lot of BDNF. In turn, BDNF mediates a downscaling
of synaptic weights of excitatory connections to the neuron, whereas those of inhibitory
ones are upscaled. The high level of BDNF additionally triggers a decrease in the intrinsic
excitability of the neuron by increasing the threshold value of its transfer function. The
reverse is true when a neuron’s activity level lies below its target level.

3.2.4. Topology Preservation

Even though we consider dynamic neural fields advantageous over Kohonen maps, we
will discuss the issue of topology preservation also with respect to Kohonen maps. This
is because our method for topology preservation is not limited to our network model;
it rather can be applied to any type of SOM. When training SOMs two goals are
pursued simultaneously. Firstly, SOMs perform vector quantization of the input space.
They consequently strive for a minimization of the quantization error. Secondly, they
incorporate topological constraints into the vector quantization process in order to develop
topology preserving mappings (see Fig. 3.2 (a)). These constraints are defined in terms
of fixed neighborhood relations between the map units. Unfortunately, when mapping
higher-dimensional data onto the two-dimensional output space the two objectives most
often cannot be simultaneously satisfied. In such cases, SOMs privilege the minimization
of the quantization error at the cost of an increase in the number of topological defects
within the developed mappings.

Over the past, various techniques for enhancing topology preservation during map forma-
tion have been proposed. These methods most often rely on fixed neighborhood relations
between map units, but adjust the width of an active neighborhood over the course of
training. This dynamic adjustment is often based on global heuristics such as a gradual
decrease in the size of the active neighborhood. Alternatively, more sophisticated local
measurements like input novelty (Phaf et al., 2001), topology defects (Herrmann, 1995),
or the degree of local folding (Kiviluoto, 1996) can be used. Only a few approaches
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Figure 3.2.: An illustrative comparison between (a) the conventional SOM learning algorithm
and (b) the proposed system for enhancing topology preservation in SOMs.

do not rely on fixed neighborhood relation. These methods rather apply a two-stage
process in which vector quantization is performed first. The result of vector quantization
is subsequently used to construct neighborhood relations. One example is the building of
tree-like neighborhoods via a hierarchical clustering of the codebook vectors (Kirk and
Zurada, 2000).

The technique we propose (Gläser et al., 2008b, 2009a) is related to this two-stage method
in different respects. The first one is the release (or at least a relaxation) of the topological
constraints from the process of vector quantization. As already discussed in Section 3.2.1
this is due to the fact that our network does not rely on a fixed lateral connectivity,
but rather features plastic within-field connections. Similarly to the two-stage model we
thus propose to incorporate an additional process which is specifically concerned with
enhancing topology preservation. As it is illustrated in Fig. 3.2 (b), this means that the
objective function of minimizing topological defects is no longer implicitly defined via
topological constraints, but rather explicitly by a process running in parallel to the vector
quantization. The key difference to the two-stage model is how this process enhances
topology preservation. Here, we suggest that it changes the positions of the units in the
output space. We consequently consider model neurons not to be distributed on a fixed
two-dimensional grid, but rather allow them to move on the cortical plane such that they
get close to other neurons with similar receptive fields.

In the following we assume neurons to be fully laterally connected, i.e. each neuron features
connections to all other neurons of the SOM. Furthermore, we define the connection
weight wij between two units i and j to be proportional to the similarity between the
receptive fields (codebook vectors) RF i and RF j of the units, e.g. by

wij ∝ 1

‖ RF i − RF j ‖2 . (3.16)

Let dij =‖ xi − xj ‖2 denote the distance between two units i and j. Then we suggest
to adjust the position of a unit i based on the local objective of minimizing the unit’s
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weighted wiring length WLi to other units of the SOM.

WLi =
∑
j

wij · d2ij − λ ·
∑
j

ln(dij) −→ min (3.17)

Here, we include an additional penalization term (weighted by a factor λ) which prevents
units to coincide at similar locations. Since the minimization of the distance between units
with large connection weights produces a map layout where nearby units have similar
receptive fields, wiring length minimization enhances topology preservation.

The movement of neurons on the cortical plane does not seem to be biologically plausible
at a first glance. Even though neurogenesis (Lledo et al., 2006) – the process of continuous
neuron creation from brain stem cells and their subsequent migration to target areas –
describes neuron movements in the cortex, it is questionable whether neurogenesis can
alter the layout of whole maps. Wiring length minimization, however, seems to be a
biological principle. More precisely, it has been shown that functional brain areas as well as
neuron populations within functional areas are positioned in an optimal way with respect
to the achieved wiring length (Cherniak et al., 2004; Chen et al., 2006). Furthermore, a
link between neuronal morphology and wiring length has been established (Chklovskii,
2004). Whether neurogenesis or structural plasticity arising from the outgrowth of axons
and dendrites constitute the biological underpinning of an optimal wiring length remains
an open question. Therefore, we consider our framework as a reasonable abstraction of
the real biological mechanisms.

To minimize Eq. (3.17) the unit positions can be adapted using multiple optimization
techniques, e.g. gradient descent or evolutionary algorithms (Fogel, 1994). Here we apply
the gradient descent method insofar as the position of unit i is updated according to
Δxi = −γ · ∂WLi/∂xi with

− ∂WLi

∂xi
=
∑
j

2wijdij · xj − xi

dij
−
∑
j

2λ

dij
· xj − xi

dij
. (3.18)

This formula illustrates that the map can be interpreted as an elastic network in which
units exert forces on each other (see Fig. 3.3). Firstly, the lateral connections act like
springs with spring constants chosen proportional to the connection weights wij . A
connection between two units consequently exerts an attraction force F+ on the units.
Thereby, F+ gets stronger when the connection weight wij or the distance dij between
the units increases. Secondly, repulsion forces F− act between the units. These forces are
independent of the connection strengths. They rather solely depend on the distance dij
between the units, i.e. F− gets stronger when the distance decreases.

When wiring length minimization is applied to our network model described in Section
3.2.1, the weight values of the learned lateral connections can directly be used as connection
weights wij . This is possible, because lateral connections learned via Hebbian plasticity
constitute a measure for the similarity between the receptive fields of different neurons.
We consequently obtain the following local objectives, where (3.19) and (3.20) hold for an
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Figure 3.3.: The attraction and repulsion forces exerted on model units depend on the strengths
of the connections as well as the distances between the units.

excitatory unit i and an inhibitory unit i, respectively.

WLE
i =

∑
j∈E

wEE
ij d2ij +

∑
j∈I

(wEI
ij + wIE

ji )d2ij − λ ·
∑
j∈E

ln(dij) (3.19)

WLI
i =

∑
j∈E

(wIE
ij + wEI

ji )d2ij − λ ·
∑
j∈I

ln(dij) (3.20)

Here, it is important to note that our model does not incorporate repulsion forces between
excitatory and inhibitory neurons. This is because both neuron types are considered to
be placed on separate layers of the neural map (cf. Fig. 3.1).

3.3. Evaluation in Benchmarks

The homeostatic dynamic neural field is a general network model for unsupervised concept
formation. This means that the model is not limited to linking word labels with potential
referents, but rather can be applied in any domain where associative concepts have to
be built. This is in accordance with what happens during child development: In many
cases concepts are first built in an unsupervised fashion and subsequently linked with
word labels. In Section 3.4 a particular example for such a two-stage process will be
given, namely the acquisition of color categories. In this section, we first focus on the
initial acquisition of concepts, i.e. without an involvement of word labels. The primary
aim of this section therefore is to thoroughly evaluate the network and to unveil its
computational characteristics.

We performed a series of experiments to evaluate our recurrent neural network model.
In the following we first present results for a simulation where we applied the network
to learn an associative mapping between artificially created multi-modal inputs. We
further used the same kind of experiment to investigate how changes in stimuli strength
or stimuli distribution affect neural field formation. Next, we estimated the influence of
different parameter settings, i.e. different target firing rates, with respect to the developed
mappings and, finally, we assessed the use of wiring length minimization for developing
topology preserving mappings. The latter will be done both in the context of multi-modal
association learning as well as for developing phoneme representations from continuous
speech. In the following, we provide details on the obtained results.
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3.3.1. Multi-Modal Association Learning

Due to their competitive processing regime, dynamic neural fields are particularly suited
to learn multi-modal associations. Here we applied the model in the domain of reference
frame transformation, which is a particularly important issue for robotic applications
involving eye-hand coordination. Artificial agents as well as animals have to be able
to flexibly transform between different frames of reference, such as body-, head-, or
eye-centered coordinates (Cohen and Andersen, 2002). Agents consequently have to
be equipped with an intermodal body calibration scheme which can either be innately
given to the system or, more importantly, be autonomously acquired in the early stages
of development (Morgan and Rochat, 1997). For the latter, the key aspect is that
simultaneously present stimuli are associated in unified representations which can later be
used for the transformation from one modality into another (Bahrick and Watson, 1985).

For modeling the body calibration process we restricted ourselves to a one-dimensional
eye-hand coordination task. Thereby, a simulated agent performs random hand and eye
movements, i.e. target gaze and hand positions are randomly chosen whereas a linear
dynamic model produces smooth transitions between successive target positions. This
kind of behavior emulates the self-exploratory actions that can be observed in early
infancy. The agent further perceives its resulting gaze and hand positions in different
reference frames. In the experiment we use three stimuli s1,s2,s3 with s1, s2 ∈ [−1, 1]
and s3= s1– s2, where s1 and s2 mimic the gaze and hand position in a body-centered
reference frame, respectively, as well as s3 representing the hand position in eye-centered
coordinates. A specific body state consequently yields stimuli that produce individually
ambiguous activities in each input modality. Their combination, however, provides a
unique description of the body state. In our setup each of the stimuli is represented by a
population of 21 neurons with partly overlapping Gaussian-shaped receptive fields (see
Fig. 3.4). For s1 and s2 the receptive fields have a standard deviation of 0.1 and their
centers were uniformly placed in the interval [−1, 1]. The centers of the receptive fields
for s3 have been uniformly sampled from the inverse of the cumulative density function
of the normal distribution with standard deviation 0.4. Thereby, the receptive fields have
a standard deviation that is half the distance to their nearest neighbor.

To learn associations between the different reference frames we use the following system
setup: The network is composed of 100 excitatory units and 100 inhibitory units, both
arranged on a 10x10 grid. The lateral connections within the field are initialized with
uniform weight values, whereas the weights of afferent projections to the field are initialized
with small random values. The time constants of the model are set to τE = τI = 5 and
τH = 104. The large homeostatic time constant τH ensures that average firing rates are
based on a long time interval and not affected by moment-to-moment fluctuations in
activity. We further use learning rates of α = 10−3 as well as βH = 10−4, i.e. Hebbian
plasticity is faster than homeostatic plasticity. Finally, we apply a target activity level of
Â = 0.05. In the present experiment, we do not perform wiring length minimization and
learning is carried out at each time step, i.e. we do not make any assumption on when
learning takes place. This is in contrast to the LISSOM models (Sirosh and Miikkulainen,
1994; Law, 2009). There the synaptic weights were changed only after the network settled
into a stable state following stimuli presentation.
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Figure 3.4.: The receptive fields of the neurons used for coding the gaze position in body-
centered coordinates (s1), the hand position in body-centered coordinates (s2),
and the hand-position in an eye-centered reference frame (s3).

When applying the network to the sequentially arising stimuli, different phases can be
observed over the course of development. Initially the model units cooperate via lateral
excitation such that the whole field grossly adapts to the input pattern distribution.
However, afterwards an increased lateral inhibition implements a competition between
the model units. More precisely, the excitatory units compete for the representation of
different input patterns. This competitive learning facilitates a diversification of the units
and results in a specialization of the units to distinct input patterns. After several input
patterns have been presented, we fixed the network weights and calculated the receptive
fields of the excitatory units. Therefore, we applied different stimuli combinations and
recorded the units’ activities after the field activity settled into a stable state. The
resulting receptive fields are depicted in Fig. 3.5 (a) where we plot the response pattern of
each excitatory unit to different combinations of s1 and s2. As can be seen, each neuron
specializes to a particular combination of the stimuli. We further calculated the center of
masses of the receptive fields. By doing so, we obtain the positions of the neurons in the
input space (the codebook vectors). Fig. 3.5 (b) illustrates that the neurons cover the
whole input space (the s1-s2-s3-plane), i.e. each input pattern is adequately represented
by the neural field.

Lastly, we investigated whether the incorporated homeostatic mechanisms drive the
individual neurons towards some target firing rate. Therefore, we recorded how the
average activity levels of all excitatory neurons develop over time. This has been done for
two simulations using target firing rates of Â = 0.05 and Â = 0.1, respectively. Fig. 3.6
plots the medians of the resulting activity levels. The regions around the medians depict
the upper and lower quartiles of the activity level distributions. The plot illustrates
that the neurons’ average activities quickly raise towards the specified target firing rates.
Additionally, we could previously show that the overall activity within the field approaches
a level which is proportional to the target firing rate (Gläser et al., 2008c). In summary
this shows that the applied locally operating mechanisms are suited not only to regulate
an individual neurons activity, but also to regulate the activity within a population of
neurons.
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Figure 3.5.: (a) The receptive fields of all excitatory units are shown. Here, each subimage
corresponds to the response pattern of a particular neuron to different combinations
of s1 (x-coordinate) and s2 (y-coordinate). Dark colors represent strong neuron
activities whereas light colors correspond to weak responses. (b) The positions of
the excitatory neurons in the input space as obtained by calculating the center of
masses of their receptive fields.
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Figure 3.6.: The median of the average activity levels of all excitatory neurons is plotted for
two simulations using a target firing rate of ̂A = 0.05 and ̂A = 0.1, respectively.
Regions around the medians depict the upper and lower quartiles of the respective
activity level distributions.

Effect of Changes in Stimuli Strength

Once neurons are equipped with the ability to regulate their activity, the question arises
whether the same homeostatic processes are suited to adapt the dynamic neural field to
long-lasting changes in the input stimuli. This includes changes in stimuli strength as
well as changes in the input pattern distribution. Here, we first concentrate on the former
aspect. The latter will be investigated afterwards.

To test the ability of our network to adapt to changing input strengths we simulated a
biological experiment in which the input to a neuron is blocked (Marder and Prinz, 2002)
(see Section 3.2.3 for a description of the experiment). More precisely, we modeled the
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blockade of excitatory inputs by an attenuation of the input amplitude to 20% compared
to normal operation. After a while this blockade is released again. We recorded the
evolution of the BDNF level BDNFE

1 as well as the transfer function threshold θE1 of
the respective neuron. The corresponding plots are shown in Fig. 3.7. Here, time t = 0
denotes the onset of stimulus depression, whereas at time t = 100 the blockade is released.
At both times, we further recorded the responses of the neuron to a specific input pattern,
once using normal inputs strength and once using an input strength depressed to 20% of
normal operation. The inset plots at time t = 0 show that the presentation of the input
pattern without blockade produces a stable and large response of the neuron. In contrast,
the depressed input pattern is too weak to produce a significant increase in the neuron’s
potential such that the neuron remains inactive. Due to this behavior, the neuron’s mean
activity level will decrease after the onset of blockade at t = 0 (not shown). As a result,
the neuron compensates for this change in a similar way as biological neurons do: It
decreases its BDNF level, which results in an upscaling of excitatory, but a downscaling
of inhibitory synapses. It further decreases its threshold and thus changes its transfer
function towards higher excitability. The result of this regulation is depicted by the inset
plots at time t = 100. The depressed input pattern now induces the same response of the
neuron as the normal pattern did at time t = 0. However, if we release the blockade, i.e.
present the undepressed input pattern, then the neuron shows a much larger sensitivity
to the pattern. This reflects itself in the significantly increased potential evoked by the
input and consequently a faster and prolonged response of the neuron.

In summary these results show that the homeostatic mechanisms enable individual neurons
to compensate for changes in the strengths of their inputs. From a computational point
of view this is advantageous as it allows the network to cope with inputs which may
continuously change their amplitude over a long time scale.

Effect of Changes in the Input Distribution

Next, we investigated whether our network model is able to adapt an already developed
mapping to a changed input pattern distribution. Biological neurons can cope with such
changes (Joublin et al., 1996). They are even able to adapt to sudden and significant
changes such as those following the amputation of a limb (Halligan et al., 1993). For
example it has been shown that digit amputation in raccoon forces affected neurons in
primary somato-sensory cortex to reorganize their receptive fields (Foeller and Feldman,
2004). More precisely, neurons that become silent after amputation (due to missing
input) subsequently expand their receptive field to large regions of adjacent digits or the
palm and finally shrink them again such that the neuron becomes selectively responsive
to inputs stemming from the new receptive field. To test our computational model we
perform an experiment of a similar kind. Therefore, we first let the network develop
a mapping, but subsequently we significantly change the input pattern distribution at
regular time intervals.

The results of this simulation are depicted in Fig. 3.8. Here, the network initially has
been trained with uniformly sampled input stimuli, i.e. s1 ∼ U(−1,+1), s2 ∼ U(−1,+1),
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Figure 3.7.: The evolution of a neuron’s BDNF level and transfer function threshold following
an input blockade at t = 0 as well as a release of the blockade at t = 100. The
blockade has been modeled by an attenuation of input strengths to 20% of normal
operation. The insets shows the response of the neuron to the normal as well as
the depressed input pattern when they are presented at times t = 0 and t = 100,
respectively.

and s3 = s1 − s2. As shown in the inset at time t = 0, the network developed a mapping
where the receptive fields of the excitatory neurons are nicely distributed in the input
space. At time t = 0 we applied the first change in the input pattern distribution. At
subsequent time steps, stimuli with s3 ∼ N (0, 0.09) have been sampled and presented to
the network. Neurons, which previously developed a receptive field corresponding to large
absolute values of s3, consequently do not receive inputs anymore. In contrast, those
neurons, with receptive fields already lying close to s3 = 0, now become activated by
more input patterns than before the change. This is reflected in the neurons’ average
activity level distribution which is plotted at the bottom panel of Fig. 3.8. Since most
neurons do not become activated anymore, the median as well as the lower quartile of the
distribution decrease during the time steps following t = 0. However, the change in the
input pattern distribution also increases the average activity level of some neurons, such
that the upper quartile of the distribution rises. The homeostatic processes consequently

42



C
ha

pt
er

3

3.3. Evaluation in Benchmarks

m
ea

n 
ac

tiv
ity

time (h)
0 5 10 15

0.025

0.05

0.075

s3

s1
s2

s3

s1
s2

s3

s1
s2

s3

s1
s2

Figure 3.8.: The initial uniform distribution from which stimuli are sampled is repeatedly
changed at time steps t = 0, t = 5, and t = 10. The insets depict the distribution
of the developed receptive fields overlaid to the previously applied sampling
distribution. The bottom panel shows how the average activity levels of the
neurons develop over time. Therefore, the median as well as the upper and lower
quartiles of the activity level distribution are plotted.

try to compensate for these changes in order to maintain stable activity patterns. More
precisely, the less active neurons increase their sensitivity such that they become active
for other stimuli as well. In other words, they expand their receptive fields and step
in competition for responsibility in representing those other stimuli. The subsequent
competition between neurons lets the receptive fields shrink again such that the neurons
become selectively responsive to the new stimuli. As a result of this adaptation process,
the average activity level of all neurons approaches the target level again. The inset at
time t = 5 shows the distribution of the new receptive fields which nicely resembles the
applied input pattern distribution.

In the following, we apply two more changes to the input pattern distribution: The
first change occurs at time t = 5, where we start to sample input patterns according
to s1 ∼ N (0, 0.04) and s2 ∼ N (0, 0.04). The second change is applied at time t = 10,
from where on input patterns are sampled according to (s2 − s1) ∼ N (0, 0.09). Both
disturbances are visible as changed activity levels of the neurons. The homeostatic
processes consequently force the neurons to reorganize their receptive fields. The insets
at time t = 10 and t = 15 show that these reorganizations develop receptive fields whose
distributions resemble the applied input pattern distributions.

These results illustrate the ability of the network not only to cope with changes in stimuli
strength, but also to adapt to changes in the stimuli distribution. The latter is particularly
interesting for modelling developmental systems, since learning-induced changes in the
connectivity of the network can significantly alter the input pattern distribution.
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Influence of the Target Activity Level Parameter

In the following, we evaluate the influence of different parameter settings. Due to the
incorporation of homeostatic processes, the number of free parameters that have to be
controlled reduces to the time constants as well as the target activity of individual neurons.
We already discussed the time scale at which homeostatic processes have to operate. More
precisely, these processes have to be fast enough to compensate for long-lasting activity
changes induced by Hebbian learning. However, they additionally have to be slow enough
in order not to destroy the moment to moment fluctuations which carry the input signal
information. What remains is an investigation of the target activity parameter.

As already shown, the target firing rate determines the average activity levels of individual
neurons. We consequently hypothesized that the target firing rate influences the size
of the developed receptive fields. In this case, the parameter would further affect the
overlap between the receptive fields of individual neurons and therewith the sparsity of the
developed representation. To validate this hypothesis we performed multiple simulations
using different target activity levels. The developed receptive fields for two of these
simulations are exemplarily shown in Fig. 3.9. In (a) we see that at a target activity
level of Â = 0.075 neurons specialize to specific combinations of the three stimuli. In (b)
we see that an increase in the target firing rate to Â = 0.15 yields significantly larger
receptive fields. To reach the target activity level individual neurons specialize to single
input modalities. This is shown by the horizontal (s1), vertical (s2), or diagonal (s3)
response patterns of the neurons. We further calculated the overlap between the receptive
fields for each parameter setting. The corresponding result is plotted in Fig. 3.10. Here,
we observe a steady increase in the overlap when the target activity is increased.
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Figure 3.9.: The receptive fields of all excitatory units are shown for two simulation runs:
using a target activity of (a) ̂A = 0.075 and (b) ̂A = 0.15. Here, each subimage
corresponds to the response pattern of a particular neuron to different combinations
of s1 (x-coordinate) and s2 (y-coordinate).
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Figure 3.10.: The influence of the target firing rate parameter on the overlap between the
developed receptive fields is depicted.

Topology Preservation

We next discuss the additional incorporation of the wiring length minimization (WLM)
process. As described in section 3.2.4 the process adapts the neuron positions such that
neurons with strong lateral connections become adjacent to each other. Since a lateral
connection between model units only features a large synaptic weight when the neurons’
receptive fields are similar to each other, WLM should facilitate the development of
topology preserving mappings. When using WLM in the multi-modal association learning
experiment, we finally obtain the spatial neuron layout depicted in Fig. 3.11 (a).

To estimate the effect of WLM on the topology preserving properties of the developed
mapping, we compared the results of two simulation runs: one using WLM and one not
using WLM. Here, we first investigate whether our interpretation of a neural field to be
an elastic net (with lateral connections exerting attraction forces on units) is a suitable
choice for minimizing wiring length. To do so, we calculated the total weighted wiring
length (Eq. (3.17)) for both simulation runs. To compensate for different spatial scales
we further normalized the distances between units by their mean. The evolution of the
resulting measure is depicted in Fig. 3.11 (b), where the locarithmic scaling of the y-axis
should be noted. The total wiring length of the simulation without WLM increases at the
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Figure 3.11.: (a) shows the final layout of the model units as obtained when using the wiring
length minimization process during neural field formation. (b) depicts the
evolution of the normalized total weighted wiring length for a simulation using
WLM as well as a simulation not using WLM.
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Figure 3.12.: The center positions of the developed receptive fields are plotted. Connections
are drawn between those receptive fields, whose neurons are adjacently positioned
in the output plane. (a) shows the result of a simulation where WLM has not
been used, whereas the result depicted in (b) has been obtained using WLM.

beginning. This can be attributed to an initial rough adjustment of the lateral connection
weights. A competition between the model units subsequently induces a "die off" of
many synapses, which let the total weighted wiring length decrease over time. When
incorporating WLM we observe a similar trend, except that the initial increase in total
wiring length vanishes. Most importantly, however, our implementation of WLM results
in a smaller total weighted wiring length.

Given the ability of our model to reduce the weighted wiring length between units, we
now demonstrate that WLM is suitable for improving topology preservation. Therefore,
we compare the mappings which have been developed by the two simulation runs. To
do so, we first calculate the neighborhood relations between the excitatory units using
Delaunay triangulation of their positions after training. We additionally calculate the
positions of the centers of the developed receptive fields. The resulting receptive field
positions are plotted in Fig. 3.12, where we overlaid connections between them according
to the calculated neighborhood relations. For a topology preserving mapping this would
result in a plot where neighboring receptive fields are connected (due to the adjacent
positions of their corresponding neurons). As shown in Fig. 3.12 (b), this is the case for
the neural field which has been trained using WLM. In contrast, not using WLM results
in significant topological defects (see Fig. 3.12 (a)).

These qualitative results can be confirmed by a quantitative analysis using the topographic
function (Villmann et al., 1997). This widely used measure characterizes the topology
preservation of mappings by analyzing the degree of topological defects on varying scales:
from local to global ones. The results are plotted in Fig. 3.13. There, the normalized
rank k determines the effective neighborhood range, i.e. small |k| correspond to a local
neighborhood, whereas large |k| correspond to a global one. The results show that WLM
decreases the number of topological defects on both a local scale and particularly on a
global scale.
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Figure 3.13.: The topographic function is plotted for neural fields which have been trained
with WLM or without WLM.

3.3.2. Development of Phoneme Concepts

We finally apply our network model in the domain of speech processing. Therefore, we
present results of simulations where the neural field has been trained using continuous
speech input. The model consequently should develop a mapping where individual neurons
specialize to specific sounds, i.e. phonemes. By incorporating the WLM process, the
mapping should further maintain topology, i.e. similarly sounding phonemes should be
mapped onto neighboring neurons.

Since human speech perception relies to a large extent on vocal tract resonance frequencies
and their variation in time (Furui, 1986), we decided to use formant frequencies as input to
our model. Thereby, formants refer to the energy concentrations in the spectro-temporal
domain (which are correlates of the underlying vocal tract resonance frequencies). It has
been shown that formant trajectories can be robustly extracted from continuous speech
(Gläser et al., 2010a; Heckmann et al., 2008). In the present experiment, however, we
use the hand-labeled trajectories provided by the VTRFormant database (Deng et al.,
2006). As a subset of the widely used TIMIT corpus, this database comprises a total of
516 utterances from which we used all 322 utterances spoken by male speakers.

We use a population code of 128 neurons to represent the formant frequencies at each time
frame. Thereby, the response patterns of the input neurons correspond to the transfer
functions of a 128-channel Patterson-Holdsworth auditory filter bank (Patterson et al.,
1992). This filter bank is based on neurophysiological findings on the human auditory
system and models the peripheral processing as carried out by the cochlea, where sound
is transformed into spatio-temporal response patterns on the auditory nerve. In our setup
the filter bank is composed of Gammatone filters whose logarithmically arranged center
frequencies cover the range from 80 Hz to 8 kHz. An exemplarily selected speech utterance
is shown in Fig. 3.14. There, (a) depicts the time-domain signal, (b) the corresponding
formant trajectories coded by the population of input neurons, and (c) an example input
pattern at the specific time frame marked in (b). We constructed the input samples using
a sampling rate of 1 kHz. The remaining setup of our network model equals the one
described in Section 3.3.1.

To illustrate the benefit of using WLM we once again trained two neural fields on the speech
data. The positions of neurons in the first field have been fixed to a 10x10 grid, whereas
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"Be careful not to plow over the flower beds."
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Figure 3.14.: In (a) the time-domain signal for a speech utterance is shown. The corresponding
formant trajectories are depicted in (b), whereas (c) shows the population code
of the formant frequencies at a specific time frame.

neurons of the second field could change their positions using WLM. After training we
analyzed the response of the fields to different input stimuli. More precisely, we calculated
the mean formant frequencies for each phoneme transcribed in the VTRFormant database
and recorded the neuron responses to the corresponding input patterns. Finally, this
allowed us to label a neuron with the symbol of the phoneme which evokes the largest
response of the neuron. In Fig. 3.15 we plot the final layout of the excitatory neurons
as well as their labels. For ease of interpretation we restricted the labels in the plot to
vowels and semivowels. The results depicted in (b) illustrate that the incorporation of
WLM produces a topology preserving mapping where neurons with similar labels cluster
together. Furthermore, the labels are distributed over the map such that similar sounding
phonemes are close to each other. In contrast, (a) shows that a training of the field
without using WLM produces a map, where symbols of similar sounding phonemes are
widely distributed. This difference also becomes evident in the response patterns to
single phonemes, e.g. illustrated in Fig. 3.15 (c) and (d) where we plot the field activity
following the presentation of an "i". More precisely, the field constructed without using
WLM produces multiple loci of activity, whereas the use of WLM forces the formation of
a map exhibiting single activity bubbles.
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Figure 3.15.: The positions of the excitatory units, when the field has been trained (a) without
WLM and (b) with WLM. Phonemes (vowels and semivowels), to which the
neurons exhibit the largest response, have been used as labels for the neurons.
Phoneme labels are from the IPA phonetic alphabet. Plots (c) and (d) depict the
field activities as evoked by the phoneme "i".

The development of topology preserving mappings is particularly advantageous for the
processing of speech, since a continuously changing stimulus (e.g. formant trajectories)
evokes a continuous activity trace in the field. This is illustrated in Fig. 3.16, where
we plot the trace of neurons which exhibit the largest response to the word "money"
[m-2-n-i]. In (a) we see that a mapping with many topological defects does not produce
a continuous activity trace, whereas the topology preserving mapping in (b) does. We
further added jitter to the plot. This allows us to estimate the time course at which the
activity bubble moves from one position to another. From the plot it becomes evident
that the activity bubble remains at positions, which correspond to the phoneme cores, for

49



Chapter 3 Unsupervised Concept Formation & Word Label Mapping
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Figure 3.16.: The trace of neurons which exhibit the largest response to the word "money"
[m-2-n-i]. (a) shows a non-continuous trace for the map developed without WLM,
whereas (b) depicts a continuous activity trace for the map developed with WLM.

a relatively long period of time. In contrast, a fast movement of the activity bubble is
observed for transitions between phonemes. A higher-level processing of speech, e.g. a
phonetic transcription (Kohonen, 1988) or a speech synthesis (Vaz et al., 2009), could be
based on such traces of activity.

3.4. Application to Word Learning

The evaluation in the previous section assessed the computational characteristics of
the homeostatic DNF. This means it allowed us to investigate whether and how the
model accomplishes the goals of unsupervised learning, e.g. pattern discovery, topology
preservation, and adaptivity. What remains is to demonstrate the model’s application
to word learning. In this section, this is done in the color domain. More precisely, it is
shown how the model can be used to develop color concepts in a data-driven way and to
subsequently link corresponding word labels to them.

This word learning scenario has been chosen for two reasons. Firstly, color obviously
is one of the domains, where concepts are acquired in an unsupervised way. Children
observe colors from the very beginning of their life and are able to distinguish between
them far earlier than the onset of speech. They hence develop color representations
solely based on visual observations without the need of a supervision by words. Secondly,
however, words can significantly alter these color representations afterwards. Whereas the
initially developed color categories seem to be universal for different cultures (Berlin and
Kay, 1991), language subsequently affects the ability to discriminate between them, i.e.
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Figure 3.17.: The architecture of the system used for color concept development.

people with different color vocabularies perceive colors differently (Roberson et al., 2000;
Davidoff, 2001; Kay and Regier, 2006). In the following, we show that the homeostatic
DNF model can resemble these results.

Fig. 3.17 depicts the system architecture that is used within the scenario. The system
is composed of two successive DNF layers. Thereby, the first DNF is meant to provide
a color map. Its development is solely driven by visual observations, i.e. color values,
based on which the DNF should develop an appropriate color representation. Input to
the second DNF is provided by the first DNF as well as by corresponding word labels.
The second layer hence constitutes a color-word map which integrates purely visual input
and purely auditory input, thereby establishing color categories. Both DNF layers only
learn bottom-up, i.e. they are not recurrently coupled.

Color input to the first layer is represented in the CIE L*a*b* color space. This is a
3-dimensional space, where L* denotes the lightness channel, a* the red-green channel, and
b* the yellow-blue channel. We choose this color space, since it reasonably approximates
human perception. More precisely, the Euclidean distance between two colors in CIE
L*a*b* correlates with the perceived difference between them (Tkalcic and Tasic, 2003).
Each of the three color channels is coded by a population of 21 input neurons with
equidistant Gaussian-shaped receptive fields yielding a 63-dimensional input in total.

The words, that are supplied to the second DNF, provide the labels for the different color
inputs, i.e. they constitute color names. To construct appropriate word labels we relied
on the data of a color naming study conducted by Berlin and Kay (1991)1. In the study,
20 participants – each of them speaking a different language – were asked to label the
Munsell chips depicted in Fig. 3.18 (a). The English speaking subject labeled a subset of
1The database can be downloaded from the World Color Survey Data Archives at http://www.icsi.
berkeley.edu/wcs/data.html (29.08.2011)
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Figure 3.18.: The data of the color naming study of Berlin and Kay (1991): (a) shows the 330
Munsell chips that have been presented to the participants. (b) depicts how the
English speaking person labeled 211 of them using 11 different color terms.

the chips as depicted in (b), thereby making use of 11 basic English color terms. The
terms as well as their frequency of occurrence are summarized in Table 3.1. We used the
labeled Munsell chips as prototypical color-word mappings. This means, for an arbitrary
color input to the first DNF, we calculated the most similar Munsell chip that has been
labeled by the subject. Finally, the corresponding word label is used as input to the
second DNF. Therefore, the word input to the second layer is composed of 11 neurons,
only one of them being active for each color input, respectively.

The two DNFs are composed of 100 excitatory and 100 inhibitory neurons each. We
used a target firing rate Â of 0.1 and further applied wiring length minimization during
training. The remaining network parameters were chosen as described in Section 3.3. In
the simulation, we randomly sampled color input values and calculated the corresponding
word labels. The resulting color-word pairs were sequentially presented to the system.
For each input we allowed the networks to propagate activity for 50 iterations before
the next pair has been applied. Total training time included the presentation of 20000

blue green purple pink orange brown red gray yellow black white

64 50 35 21 11 8 8 6 5 2 1

Table 3.1.: The 11 English color terms used in the study of Berlin and Kay (1991) as well as
their frequency of occurrence.
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Figure 3.19.: The spatial layout of the two DNFs after training. Neuron colors depict the input
colors the individual neurons are most responsive to. Whereas (a) shows that
the color map develops a continuous color representations, (b) shows that the
color-word map forms color categories.

input pairs (even though similar results could be obtained using approx. 3000 samples).
After training, the network parameters were fixed and the developed representation were
investigated.

The evaluation is based on a test set that has been constructed using a fine-grained
equidistant sampling of the input color space. While presenting each test input to the
network, the responses of all neurons were recorded. This yields the receptive fields of
the different map neurons. We further calculated the centers of the individual receptive
fields by which we obtained the codebook vectors of the units, i.e. the colors the neurons
are most responsive to. In Fig. 3.19 we plot the spatial layout as well as the individual
codebook vectors (color-coded) for the color map and the color-word map, respectively.
From the plot in (a) it can be seen that the color inputs drive the first layer DNF to
develop a map in which colors are represented as a continuum. More precisely, any input
color is covered by the neurons and, moreover, a topographic mapping is achieved. As
a result, the system is able to recognize all colors and can further distinguish between
them. The more distant the respective color representations are, the more different the
colors are perceived. The contrary is true for the color-word map in (b). The inclusion
of word labels seems to drive the neurons to cluster functionally. Interestingly, this
clustering cannot only be observed in terms of the neurons’ response characteristic but
also with respect to their spatial arrangement. In summary, the color-word map forms
categories in which one and the same codebook vector is shared among the category
neurons, respectively. This means that focal (within-category) colors can be more stably
judged than out-of-category colors (Mervis et al., 1975). The transition from an initially
continuous towards a categorical perception of color is known to be present in infant
development (Roberson et al., 2004). The model thus produces reasonable results.
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An investigation of the input weight values of the second layer DNF revealed that the
color-word map formed categories for blue, green, purple, pink, yellow, and gray. Other
word labels were not represented by the map. The frequency of label occurrence obviously
seems to be one important aspect in this respect. The 4 most frequent labels formed
categories within the map (cf. Table 3.1). However, this argumentation does not hold
for the cases of yellow and gray, since other words, e.g. orange, are more frequent than
them. Our explanation for the observed behavior is that the map tries to balance between
representing frequent words and appropriately covering the color space. In other words,
the color orange is very similar to the already represented color pink. The contrary is
true for yellow, which is largely different from any of the other colors. Therefore, the map
prioritizes an appropriate vector quantization of the color space over the frequency of
word occurrence in this case. The same is true for gray.

Finally, an analysis of the neuron responses showed a significant correlation for the neurons
that belong to the same category. More precisely, all neurons of a category are most active
if the focal (codebook) color is input to the system. In contrast, the responses of the
neurons decline when the stimulus deviates from the focal color. Neuron activity hence
codes how well an observed color matches the category prototype. However, this also
means that the ability to discriminate between colors of the same category is impaired.
This is because two colors can be different (e.g. light blue and dark blue), but have the
same distance to the prototype (e.g. blue) and hence result in similar activities. The
contrary is true for colors at category boundaries. There, discrimination is enhanced,
since different neuron populations represent the different colors. This behavior – also
known as perceptual magnet effect – is one of the hallmarks of categorical color perception
in humans (Davies et al., 2003).

In summary, the results showed that the homeostatic DNF appropriately models color
concept development. Firstly, the network achieves a self-organization of color represen-
tations solely based on visual stimuli. Secondly, the network resembles the effect that
word labels have on these previously developed representations. If one considers word
labels to emerge later than visual stimuli, the system hence results in a transition from
an initially continuous to a finally categorical perception of color. Thereby, the properties
of the developed color categories are in-line with findings about human color perception.
Additional experiments could strengthen this statement, but are left for future research.

3.5. Discussion

Unsupervised concept formation strives for a data-driven self-organization of categorical
representation. This includes an extraction of reoccurring input patterns and their
embedding into topographic maps, but also the maintenance of stable representations in
face of changing external environments. The human brain achieves these goals marvelously
well. Therefore, it is no wonder that multiple computational models exist, which take
inspiration from brain-like processing principles. Kohonen Maps and Dynamic Neural
Fields (DNFs) are such popular techniques. They already have been applied in a variety
of tasks and were of primary interest in the present work, too. Whereas Kohonen Maps
captivate by their algorithmic simplicity, easy use, and yet powerful results, DNFs are of
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interest due to their computationally attractive feature of dynamic activity propagation.
The dynamical aspect, however, is also a drawback of DNFs, insofar as the networks are
sensitive to parameter settings and hence difficult to use. This problem is even more
severe when network parameters are altered via learning.

In this chapter we presented a computational model that aims at bridging the gap between
the two techniques. More precisely, the recurrent network is able to integrate successive
inputs in a dynamical fashion, propagates activity via extensive lateral connection and
hence maintains the attractiveness of DNFs. The network is further able to learn and
adapt a topographic representation which are aspects that can hardly be achieved using
conventional DNFs. The incorporation of homeostatic principles is particularly important
in this respect. These mechanisms self-regulate the network activity, maintain a stable
operation mode, and thus circumvent the parameter sensitivity that hinders standard
DNFs. As a result, the network is as easy to use as Kohonen Maps are, while relying on
dynamical processing as DNFs do.

We thoroughly evaluated the model in a series of experiments. Firstly, artificially gener-
ated data has been used to address multi-modal association learning in the domain of
reference frame transformation. Secondly, we investigated the development of phoneme
representations following continuous speech input. The results demonstrated that the
network self-organizes without any external supervision, develops appropriate representa-
tions of the input, and even adapts to sudden changes in the strength or distributions
of input patterns. We could further show that wiring length minimization significantly
enhances the quality of the developed mappings with respect to topology preservation.

We finally showed how the network is able to acquire the meaning of words. Color names
served as an example in this respect. In detail, the model was used to first develop a
color representation that is independent of word labels. Subsequently, this representation
has been linked to the words via an additional processing layer. We could show that the
formation of color categories by the network resembles aspects that are known from the
development of color categories in children.
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4
Supervised Word Meaning Acquisition

Language shapes the way we think,
and determines what we can think
about.

Benjamin Lee Whorf (1897-1941)

Children are astonishing word learners. Particularly the formation of concepts for newly
heard words does not seem to constitute a problem for them. Children rather seem to
possess dedicated learning mechanisms that allow them to efficiently master this task.
This becomes evident by a number of observations. Firstly, children rapidly get a glimpse
on the meaning of a novel word. Secondly, just a few occurrences of a word enable
children to generalize its meaning. And, finally, children quickly integrate new words
into their lexicons and successfully use them in their own discourses. Artificial learning
systems strive for similar child-like abilities but ultimately fail to achieve them. Hence,
the question what kind of learning principles children apply and whether computational
systems can benefit from similar mechanisms naturally arises.

This chapter aims at providing answers to these questions. It first reviews supervised
concept formation from the perspective of developmental psychology and further estab-
lishes a link with neurobiological learning theories. The discovered principles are used to
infer the computational requirements for child-like word learning in artificial systems. In
the following, a novel computational model that internalizes these principles is presented
in detail. The benefit of a bio-inspired system over conventional approaches is assessed
via thorough evaluations of the model in a wide range of problems. An application of
the model in a simulated word learning scenario finally examines whether the artificial
system exhibits learning dynamics similar to those observed in children.
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4.1. Word Learning Processes in Infants

An efficient learning of word meanings entails that contradictory needs are satisfied
simultaneously. On the one hand, a system should acquire the meaning of new words
from few training exemplars. This is necessary, since an exhaustive teaching by a tutor is
long-lasting, undesirable, and often even not possible. On the other hand, the gathered
word knowledge should concentrate on the ’core’ meaning, i.e. it should be independent
of the specific context in which a word has been learned. This presupposes a process of
abstraction that exploits the statistical evidence of multiple training exemplars. Child-like
word learning can serve as a model for both aspects. The identification of the learning
principles applied by children is of particular importance in this respect.

4.1.1. Fast & Slow Mapping

Psychologists assess children’s word learning capabilities by confronting them with new
words during natural social interactions. Careful designs of such experiments allow the
identification of factors that may have an influence on children’s word learning success.
In a seminal study, Carey and Bartlett (1978) conducted an experiment to investigate the
learning of a novel color term in 3- to 4-year-old children. More precisely, the children
have been asked to "Bring me the chromium tray, not the blue one, the chromium one"
while they walked toward a blue and an olive tray. Each tested child correctly inferred
that "chromium" referred to the olive color. Surprisingly, even in a test performed six
weeks after training many children still remembered the meaning of the word. Carey and
Bartlett (1978) took this result as evidence for a rapid word learning mechanism and
called this process fast mapping. Following the chromium study, fast mapping was in
the focus of many experiments. The results often confirmed the findings of Carey (1978)
such that nowadays fast mapping constitutes one of the hallmarks of word learning by
children. At its core, it refers to the fact that just a few observations of a word (or even a
single exposure to it) allow children to establish a word-meaning link; even though this
link initially may not cover the complete word meaning. Fast mapping seems to rely on
a general learning principle rather than a word-specific processing. It is not limited to
labels, but also applies to the learning of facts. Markson and Bloom (1997) either used an
object name ("koba") or a fact ("the thing my uncle gave me") to refer to an object. The
results demonstrated that children fast mapped the object to the label as well as the fact.
Moreover, fast mapping even seems to rely on processing circuits that are not specific to
humans, since bonobos (Lyn and Savage-Rumbaugh, 2000) as well as dogs (Kaminski
et al., 2004) have been reported to show similar fast mapping capabilities.

Because most early word learning studies concentrated on fast mapping, it has long
been neglected that word learning does not only involve the acquisition of an initial
word meaning. Questions on how such initially partial meanings are completed and
finally retained over longer periods of time just recently entered the focus of infancy
research. Horst and Samuelson (2008) reported that 2-year-olds robustly fast mapped
labels to objects but showed deteriorated performance when retention was tested after
a five minute delay. The authors suggested that a competition between multiple novel
object-label associations may underlie this observation. In other words, in order to retain
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an initial word-meaning mapping, it either has to gain support via explicit biasing (e.g.
by highlighting the correct referent of a word by the caregiver) or by repeatedly observing
the association in subsequent interactions. As this is an enduring process that gradually
extends and strengthens an association, the mechanism has been termed extended mapping
or slow mapping. According to Carey (2010) two factors primary influence this extended
mapping process. Firstly, the need for the creation of new semantic primitives and,
secondly, the size of the hypothesis space. The former aspect already has been mentioned
in Section 2.4, where the importance of creating new representations (both in terms of
conceptual categories as well as features associated with them) has been emphasized. The
latter aspect refers to the fact that the learning of words with a concrete meaning requires
less cognitive abilities than that of more abstract words. A good example in this respect
is that nouns are typically learned earlier (or faster) than verbs. Here, the proposal is
that nouns refer to specific entities in the environment, whereas verbs refer to actions that
usually possess a high variability (e.g. in terms of how they are executed, who is doing
something, or which objects are involved). Finding commonalities among the different
situations, in which a word has been observed, consequently is more difficult to achieve
for verbs than for nouns (Gentner, 2006; McDonough et al., 2011).

In summary, children’s word meaning acquisition is characterized by two stages. Firstly,
fast mapping creates an initial link between a word label and aspects of a scene in which
the word occurred. This association is rapidly memorized in one-shot, but typically
constitutes just a partial word meaning that is incomplete and fragile. Fast mapping
results in a word meaning that is context-dependent, i.e. very much bound to the
situation in which the word occurred. Multiple fast mapped association, however, serve as
a basis for abstraction during a subsequent slow mapping process. A child can compare
the different associations and search for commonalities among the referents of a word.
This is an enduring process by which a word’s meaning is gradually decontextualized.
Hence, the acquired concept finally describes the essential meaning of a word with all
context-dependent semantic primitives being removed.

4.1.2. Complementary Learning Systems Theory

Unveiling the biological circuits underlying fast and slow mapping may enable us to
construct artificial systems that use learning principles similar to those employed by
children. Unfortunately, establishing such an interdisciplinary link has rarely been
tried. In the following, it is argued that Complementary Learning Systems (CLS) theory
(McClelland et al., 1995) provides one plausible explanation on the neurobiological basis
of fast and slow mapping. Therefore, we first review CLS theory before a number of
findings from both developmental psychology and neurobiology are presented to underpin
this proposal.

The CLS account constitutes a general theory on learning in the brain. Thereby, a
key role is given to the notion of complementary learning and memory systems. More
precisely, these systems are the hippocampus on the one hand and neocortical areas on the
other. According to McClelland et al. (1995) both systems possess unique computational
characteristics that individually serve complementary purposes:
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Figure 4.1.: The medial temporal lobe (MTL): (a) shows the locations of the different MTL
structures, whereas (b) depicts their connectivity.

• The hippocampus is part of the allocortex. In conjunction with the entorhinal
cortex (EC), the parahippocampal cortex (PHC), and the perirhinal cortex (PRC) it
forms the medial temporal lobe (MTL). As illustrated in Fig. 4.1, many neocortical
regions project to the hippocampus via the other MTL structures. The hippocampus
consequently constitutes a region in which associations between arbitrary modalities
can be formed (Squire, 1992). Not only its prominent location is what distinguishes
the hippocampus from other brain areas, but also its capability of rapid learning.
Declarative memory like facts, autobiographical events, or semantic associations can
be acquired in one-shot (Bliss and Collingridge, 1993). According to McClelland
et al. (1995) the basis for this unique ability are localized representations. They allow
the hippocampus to memorize different items with minimal interference between
them. This means that the problem of catastrophic forgetting – the overwriting of
existing memories by the encoding of new ones – is circumvented.

• The neocortex comprises many different areas. Some of them are unimodal (e.g.
the primary sensory cortices) whereas others process multimodal information (e.g.
the prefrontal cortex). What they have in common are the distributed knowledge
representations they employ, i.e. any information processed by neocortical areas
reflects itself as an activity pattern that is distributed among a cell assembly.
According to McClelland et al. (1995) these overlapping representations enable
neocortical areas to efficiently represent knowledge. However, the increased memory
efficiency comes at the cost of decreased learning speed, since a slow learning from
an interleaved presentation of overlapping activity patterns is required to avoid
catastrophic forgetting.

The CLS theory suggests that the human brain combines the two learning systems to
achieve a rapid encoding as well as an efficient storage of memories. Thereby, learning
comprises the three steps that are illustrated in Fig. 4.2. In (a) it is shown that new
observations in form of distributed activity patterns in neocortical areas are first encoded
in the hippocampus. Therefore, the hippocampus ’allocates’ new memory items which act
akin to ’pointers’ towards these patterns. Secondly, (b) depicts the reactivation of such
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Figure 4.2.: Illustration of the biological mechanism underlying the acquisition of new memories
and their consolidation over time. CLS theory comprises (a) the rapid encoding
of activity patterns in the hippocampus, (b) their subsequent reactivation during
sleep, and (c) the knowledge transfer to neocortical sites for long-term storage.
This results in a gradual memory consolidation as illustrated in (d).

patterns. Due to the recurrent connectivity between the hippocampus and neocortical
areas, the hippocampus can replay the different stored associations. This process occurs
during sleep or rest (Ji and Wilson, 2007; Carr et al., 2011) and reactivates previously
stored activity patterns in a quasi-parallel manner. As illustrated in (c), this finally allows
neocortical areas to adapt their representations and to incorporate new knowledge via slow
interleaved learning. Accordingly, the hippocampus’ primary role is that of a short-term
memory which can rapidly store new items. In contrast, neocortical areas store long-term
memories whose acquisition is driven by the reactivation of patterns from short-term
memory. This coupling between both systems results in a memory consolidation process
that gradually transfers knowledge from the hippocampal system to neocortical sites
(Frankland and Bontempi, 2005). As illustrated in Fig. 4.2 (d), hippocampal engagement
during memory tasks is thus large for recently acquired knowledge, but it steadily decreases
as knowledge transfer progresses and neocortical areas take over responsibility (Takashima
et al., 2006).

CLS theory previously has been suggested to underlie the learning of word forms, i.e.
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acoustic-phonetic representations of words (Davis and Gaskell, 2009; Lindsay, 2010).
Here, it is proposed that CLS theory also provides the neurobiological basis for word
meaning acquisition (Gläser, 2011). More precisely, the initial fast mapping process likely
corresponds to the rapid encoding of new word-scene associations in MTL structures,
particularly the hippocampus. The localized representations employed by the hippocampus
result in context-dependent word meanings similar to those observed in children. It is
further proposed that the gradual memory transfer from hippocampal to neocortical sites
implements the slow mapping process. During slow mapping, a word’s meaning gets
decontextualized by abstracting common features among the specific situations in which
the word occurred. The reactivation of such situations via the hippocampus enable the
neocortex to extract these commonalities via interleaved learning. Since memory transfer
and consolidation requires days, weeks, or even months, it explains the prolonged time
needed to slow map a word’s meaning.

To underpin this proposal multiple hypotheses can be tested. Firstly, CLS theory suggests
that an initial encoding of a word meaning primary recruits the hippocampus, whereas the
retrieval of this association should successively become independent of the hippocampus
later on. A seminal fMRI study on word learning in adults provides evidence in favor of
this hypothesis (Breitenstein et al., 2005). The authors showed that the subjects learned
consistent, but not inconsistent, picture-pseudoword pairings. More importantly, the
initial learning coincided with an increased activity in the MTL structures, particularly
the left hippocampus. Subjects who showed larger hippocampal engagement were able to
learn the novel vocabulary more efficiently. It could further be shown that hippocampal
activity in memory tasks decreased linearly with increasing word proficiency. These
results later could be confirmed in experiments that required the subjects to identify word
meanings from sentence contexts (Mestres-Missé et al., 2008, 2010).

In addition, CLS theory assigns a pivotal role to sleep, insofar as the generalization and
consolidation of word meanings should rely on a sleep-dependent reactivation of memories.
Clay et al. (2007) used a variant of the Stroop task to assess the consolidation of word
meanings in adults. He could show that picture naming is delayed if a semantically related
word is simultaneously presented as compared to a non-related word. This interference
effect, however, could only be observed one week after the initial training and hence
points to a period of consolidation during word learning. The influence of sleep on infant
learning just recently became a research focus (Tarullo et al., 2011). Wilhelm et al.
(2008) showed that sleep improves declarative memory performance (e.g. the retrieval of
word-pair associations) in 6 to 8-year-old children. More importantly, in another study
it could be shown that 15-month-old infants remembered abstract relations between
word-pairs, if they slept during a 4 hour interval after training. In contrast, infants
that did not sleep only remembered specific word-pair associations (Gómez et al., 2006).
This demonstrates that sleep not only facilitates memory consolidation but also memory
abstraction. Evidence in favor of the proposal that memory consolidation relies on the
reactivation of stored associations comes from two ERP imaging studies (Friedrich and
Friederici, 2008, ress). The authors showed that 6- and 14-month-old infants demonstrated
the ability to fast map word-object pairs. Importantly, the 6-month-olds showed impaired
retention when tested one day after training, whereas the 14-month-olds did not. The
reason for this dissociation most probably are the different paces at which MTL structures
develop. Whereas a rapid encoding via the hippocampus already might be functional at

62



C
ha

pt
er

4

4.1. Word Learning Processes in Infants

birth, it is known that the reactivation of memory items only becomes fully functional
approximately at the age of one year. For example, it has been suggested that memory
reactivation crucially depends on the dentate gyrus that is immature before this time
(Richmond and Nelson, 2007).

In summary, there is ample evidence pointing towards a CLS account for word meaning
acquisition. Further hypotheses can be formulated according to this theory. For example,
a hippocampal lesion should impair the rapid acquisition of new word meanings, whereas
it should not affect retention of previously learned word knowledge. This and other
hypotheses remain to be validated by future experiments.

4.1.3. Inferred Computational Principles

Rapid learning and statistical learning do not pose a problem to artificial neural networks
(ANNs) if they are considered in isolation. But due to their contradictory computational
requirements, a simultaneous application of them constitutes a learning dilemma. Ac-
cording to CLS theory, the problem should not be tackled at the level of a single network
but rather at the level of a system (McClelland et al., 1995; O’Reilly and Rudy, 2000;
O’Reilly and Norman, 2002). Different components, that are specifically tailored to the
contradictory needs of rapid and statistical learning, can serve the purposes of the different
tasks. A system-level integration of the components can ultimately produce the desired
efficient word learning capability. The CLS account finally boils down to the following
three computational principles:

• Short-term memory (STM) for rapid one-shot learning:
New word-scene associations have to be rapidly memorized, i.e. a network has
to apply large learning rates. To circumvent catastrophic forgetting the network
should comprise localized representations which minimize the interference between
the different memory items. This comes at the cost of a decreased generalization
ability which qualifies the network as an initial, but temporal, storage site.

• Long-term memory (LTM) for slow statistical learning:
The efficiency of statistically learned representations is what justifies their use for
long-term storage. A network that employs statistical learning for the purpose of
generalization thereby presupposes overlapping memory representations. This is
due to the fact that the representations of different memories require a common
basis in order to unveil their commonalities. Since overlapping representations can
result in an interference between memory items, small learning rates are essential
to prevent catastrophic forgetting.

• Memory consolidation through tight coupling of STM and LTM:
For the purpose of rapid learning novel observations first have to enter the STM
network. Here, it is important to note that it is not sufficient for the STM to simply
act as a buffer containing the most recent observations. Similar to the LTM, it
rather constitutes a fully functional network that allows acquired word knowledge
to be used from the very beginning of training. The primary aim of a memory
transfer from STM to LTM consequently is to construct a LTM network that is able
to memorize the same data as the STM network, but thereby uses more efficient
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and more robust representations. A convenient way to realize such a transfer is
to reactivate memorized word-scene associations from the STM network and to
extract commonalities among them in the LTM network. This means that the STM
network internally produces training exemplars and therewith drives the learning in
the LTM network.

4.2. Our Computational Model

From a computational point of view, learning a word’s meaning corresponds to building a
category that encompasses the different referents of the word. A word’s category hence
separates the situations for which the word provides an appropriate description (the
members of the category) from those for which the word does not provide a description
(the non-members of the category). Answering the question whether a word can serve
as a label for a scene consequently constitutes a binary classification task, insofar as the
membership of the scene with respect to the word’s category has to be determined. Here,
the learning of such categories is considered to be a supervised process, insofar as the
words used by a tutor serve as a teaching signal for scene categorization.

As already discussed in Section 2.4, concept formation not only comprises category learn-
ing. To efficiently represent a word meaning, a learner additionally has to determine
word-relevant feature dimensions on which the category can be built. The relevance of a
feature dimension thereby arises from its suitability to discriminate between the members
and the non-members of the word category. In the following, a computational model for
word meaning acquisition is presented (Gläser and Joublin, 2010b,c). The ability to simul-
taneously build word meaning categories and extract word-relevant feature dimensions
during online operation is what distinguishes the model from previous approaches.

4.2.1. System Architecture

The computational model is largely inspired by CLS theory. It is composed of two
complementary but tightly coupled components, which are specifically tailored to achieve
a rapid memorization of word-referent pairs and a statistical extraction of commonalities
among them. Nevertheless, the model is not meant to provide a 1:1 mapping to certain
brain areas; it rather resembles CLS theory from a functional perspective. For this reason,
functional correspondences between the model and different brain areas are highlighted
in the following. In addition, the description of the framework considers the learning of
one category. The meaning of multiple words can be acquired straight-forwardly by using
multiple instances of the system.

According to Fig. 4.3 (a), a feature extraction layer first transforms an observation x into
a feature pattern y. A categorization layer subsequently classifies the feature pattern to
either belonging to the category underlying the word’s meaning or not. In other words,
the membership decision c ∈ {−1,+1} signals whether the word is an appropriate label
for the observation x. The learning mechanism employed by the framework is illustrated
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Figure 4.3.: The architecture of the computational model: (a) Input samples x are transformed
into feature patterns y which are subsequently categorized. (b) For the learning of
word meanings the system components are recurrently coupled.

in Fig. 4.3 (b). It is based on scene-word pairs, formally described by tuples (x, c). For
each training sample, learning comprises the execution of the following steps:

1. The categorization layer updates its internal representation according to the training
sample. If the sample is not adequately explained by the model, the new association
between y and c is memorized. The categorization layer thereby achieves a rapid
knowledge acquisition similarly to the hippocampus and further builds a category
representation alike multimodal association cortices.

2. The categorization layer generates samples (y′, c′) according to the internally mem-
orized associations. This process mimics the hippocampal reactivation of patterns
during sleep.

3. The generated samples are used to train the feature extraction layer. Statistical
learning is applied to extract those feature dimensions that best discriminate the
samples y′ according to their memberships c′. This type of learning gradually
incorporates knowledge on the word category into the extracted features and is
related to the interleaved learning process carried out in neocortical areas.

4. The internal representation of the category is adapted to the changed feature
dimensions. Due to the fact that the feature space’ discriminability is enhanced,
it facilitates abstraction in the categorization layer. More precisely, the different
referents of a word should be more closely located in the new feature space, whereas
they should be largely separated from the non-members of the category. This
finally allows the categorization layer to construct a more efficient and more robust
representation of the word category.
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These steps can be iteratively applied whenever a new training sample arrives. By doing
so, the knowledge about the learned category gradually shifts from the categorization
layer into the extracted features. As a consequence, the features more and more facilitate
the classification task as training progresses and hence drive the generalization in the
categorization layer. This gradual memory transfer and generalization is akin to the
consolidation dynamics suggested by CLS theory (cf. Fig. 4.2). However, the framework
does not draw an explicit distinction between short- and long-term memory as CLS theory
does; it rather uses the same network (the categorization layer) for both purposes. This is
possible, since the applied network possesses dedicated learning mechanisms that satisfy
the needs of rapid learning using localized representations and statistical learning using
overlapping representations at the same time. In the following, detailed descriptions of
the system components are provided.

4.2.2. Categorization Layer

The aim of the classification layer is to provide a classification function c̃ = Ω(y) such that
Ω is an approximation of the mapping SY 	→ [−1,+1], where SY denotes the feature space
encompassing all observations and [−1,+1] the word category membership. As Ω has to
be invertible, i.e. Ω−1 : [−1,+1] 	→ SY , to enable a reactivation of memorized associations
between feature patterns y and category memberships c, modelling the classification
function with a generative model is best suited to our task. Here, a Normalized Gaussian
Network (NGnet) is used for this purpose.

Normalized Gaussian Network

An NGnet (Moody and Darken, 1989) can serve as a universal function approximator.
For the sake of generality, in the following we consider the approximation of mappings
Ω : RDy 	→ R

Dc from an Dy-dimensional input space to a Dc-dimensional output space
(even though Dc = 1 in our application, since memberships to only one word category are
considered). Given an input y an NGnet’s output c̃(y) is calculated according to

c̃(y) =
1∑M

j=1 φj(y)
·

M∑
i=1

αi · φi(y). (4.1)

Thereby, φi(y) denotes the response of the i-th hidden unit to input y, M is the number
of hidden units, and αi the weight vector from unit i to the output neurons (see Fig. 4.4).
For the purpose of calculating category memberships, the continuously valued output c̃(y)
can be converted to a binary decision ([−1,+1]) via thresholding with the sign function,
i.e. ĉ(y) = sign(c̃(y)).

The NGnet uses localized representations, insofar as the response of a hidden unit i is
described by a multivariate Gaussian of form

φi(y) = exp

(
−1

2
· (y − μi)

TΣ−1
i (y − μi)

)
, (4.2)
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Figure 4.4.: The architecture of an NGnet.

where μi and Σi denote the center and covariance matrix of the Gaussian. Therefore, an
NGnet is similar to a standard RBF network except for the normalization of the output
by the total hidden unit activity (cf. Eq. (4.1)). The effect of this normalization is a
competition between the hidden units. More precisely, it is a competition for responsibility
in representing the inputs y. The hidden units softly partition the input space SY , such
that each unit is responsible for inputs stemming from its associated input region. As
exemplarily depicted in Fig. 4.5, the hidden units consequently constitute local models
(or local experts (Jacobs et al., 1991)) of the mapping to be approximated. Each local
expert provides a constant approximation of the target function which is valid for the
restricted input region the expert is responsible for. The overall approximation is finally
obtained by overlaying (or weighting) the local approximations. A further advantage
of the normalization term is an improved inter- and extrapolation compared to RBF
networks. This is also illustrated in Fig. 4.5. The weighting extends local approximations
also to such regions, that are not covered by hidden units. An NGnet hence constitutes
an exemplar-based network suitable for similarity-based generalization.
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Figure 4.5.: The application of an NGnet to a one-dimensional function approximation problem:
The hidden units locally approximate the target function by constant values. A
global approximation is obtained by weighting the local approximations according
to the input regions the hidden units are responsible for.
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Probabilistic Interpretation & Online Training

Xu (1998) presented a stochastic interpretation of NGnets. He showed how this probabilis-
tic view can be used to train the parameters of the network during online operation. The
approach of Xu is one of the learning mechanisms applied in our computational model. It
further provides the basis for additional learning processes that will be presented later in
this section. For this reason, the main aspects of the work of Xu will be reviewed in the
following.

Consider an NGnet to be a generative model. A sample (y, c) thereby is a stochastic
event that has been generated from one of the network’s local experts. Therefore, let each
local expert be fully described by two Gaussian probability density functions (pdfs), one
over the input space and one over output space:

p(y|i,Θ) = G(y,μi,Σi) (4.3)
p(c|i,Θ) = G(c,αi,Γi) (4.4)

Here, Θ = {{μi,Σi,αi,Γi}Mi=1} denotes the parameters of the NGnet and G(x,m,S)
the multivariate normal distribution with mean m and covariance matrix S evaluated at
x ∈ R

K :

G(x,m,S) =
1

(2π)K/2|S|1/2 · exp
(
−1

2
(x−m)TS−1(x−m)

)
. (4.5)

Both pdfs are illustrated in Fig. 4.6. The Gaussian over the input space corresponds to the
receptive field of an expert i, where μi and Σi refer to its location and size, respectively.
Hence, p(y|i,Θ) denotes the probability that an expert i generates an input y. The
Gaussian over the output space is described by its mean αi, which corresponds to the
constant value that is used to locally approximate the target function. Furthermore, it
is described by its covariance matrix Γi, which provides a measure for the quality of
this approximation. This means that a wide Gaussian refers to a bad (or uncertain)
approximation and vice versa. The value p(c|i,Θ) consequently measures the probability
that an output c is drawn from this pdf.

Due to the fact that the receptive fields of the local experts partly overlap, an input y can
be generated from multiple experts. The experts consequently compete for responsibility
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Figure 4.6.: An illustration of the Gaussian pdfs used for the description of a local model i (see
text for details).
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in representing an input. According to Xu (1998) this competition can be modeled
via weights ai = |Σi|1/2/

∑M
j=1 |Σj |1/2. Then the probability that the hidden unit i is

responsible for the input y turns out to be the ratio of the i-th unit’s response to the
input and the total hidden layer activity:

p(i|y,Θ) =
ai · p(y|i,Θ)∑M

j=1 aj · p(y|j,Θ)

=

|Σi|1/2∑M
j=1 |Σj |1/2 · 1

(2π)Dy/2|Σi|1/2 · exp (− 1
2 · (y − μi)

TΣ−1
i (y − μi)

)
∑M

j=1
|Σj |1/2∑M

m=1 |Σm|1/2 · 1
(2π)Dy/2|Σj |1/2 · exp (− 1

2 · (y − μj)TΣ
−1
j (y − μj)

)
=

exp
(− 1

2 · (y − μi)
TΣ−1

i (y − μi)
)∑M

j=1 exp
(− 1

2 · (y − μj)TΣ
−1
j (y − μj)

)
=

φi(y)∑M
j=1 φj(y)

. (4.6)

The posterior probability p(c|y,Θ) that an output c is generated given an input y
consequently can be calculated according to

p(c|y,Θ) =

M∑
i=1

p(i|y,Θ) · p(c|i,Θ)

=

M∑
i=1

φi(y)∑M
j=1 φj(y)

·G(c,αi,Γi). (4.7)

Then, the expected output of the generative model is

E(c|y,Θ) =
1∑M

j=1 φj(y)
·

M∑
i=1

αi · φi(y). (4.8)

As can be seen, the conditional expectation E(c|y,Θ) matches the definition of an NGnet
(cf. (Eq. 4.1)). Hence, the parameters Θ of the NGnet can be estimated by maximum
likelihood learning on the log-likelihood of the observed data ({y}, {c}). Thereby, online
learning necessitates an algorithm that adapts the network parameters Θ sequentially
whenever a new training sample is obtained. This can be achieved by an iterative
application of Expectation-Maximization (EM). Using stochastic approximation of the
form

Θ(t) = Θ(t− 1) + η · ∂et
∂Θ(t− 1)

, (4.9)

where η is a learning rate and et the error for the t-th sample, the sequential EM algorithm
proposed by Xu (1998) can be summarized as follows:

69



Chapter 4 Supervised Word Meaning Acquisition

• E-step: Given the current estimator value Θ(t − 1), the posterior probability
p(i|yt, ct,Θ(t − 1)) of assigning the t-th training sample (yt, ct) to the i-th local
model can be calculated according to Bayes rule:

p(i|yt, ct,Θ(t− 1)) =
p(i|yt,Θ(t− 1)) · p(ct|i,Θ(t− 1))

p(ct|yt,Θ(t− 1))

=
φi(yt) ·G(ct,αi,Γi)∑M

j=1 φj(yt) ·G(ct,αj ,Γj)
(4.10)

• M-step: The log-likelihood becomes maximized by calculating Θ(t) with

μi(t) = μi(t− 1) + ηi(t) · (yt − μi(t− 1))

Σi(t) = (1− ηi(t)) ·Σi(t− 1) + ηi(t) · [yt − μi(t− 1)][yt − μi(t− 1)]T

αi(t) = αi(t− 1) + ηi(t) · (ct −αi(t− 1))

Γi(t) = (1− ηi(t)) · Γi(t− 1) + ηi(t) · [ct −αi(t− 1)][ct −αi(t− 1)]T .

(4.11)

Thereby, the posteriors p(i|yt, ct,Θ(t− 1)) enter the M-Step via adaptive learning
rates ηi that are individually calculated for each local model i:

ηi(t) = η · p(i|yt, ct,Θ(t− 1))

γi(t− 1)

ni(t) = (1− ηi(t)) · ni(t− 1) + ηi(t)

γi(t) =
ni(t)∑M
j=1 nj(t)

. (4.12)

Here, η is a baseline learning rate.

The calculation of the individual learning rates is interesting as it implements a kind
of homeostasis. As can be seen from Eq. (4.12), ni(t) calculates a running average of
the instantaneous learning rates ηi(t). By normalizing this average learning rate, γi(t)
represents the i-th model’s proportion on the overall learning in the network. That means
that γi(t) will decrease if no training samples are assigned to the i-th model, since this
would results in near-zero instantaneous learning rates (due to very small posteriors
p(i|yt, ct,Θ(t− 1))). By scaling the instantaneous learning rates ηi(t) with the inverse
of γi(t) this effect is circumvented. As a result, a local model, that is responsible for
many training samples, will incorporate these samples with relatively small instantaneous
learning rates. In contrast, a local model, that is responsible for just a few training
samples, will learn on these samples with relatively high instantaneous learning rates. As
training progresses, the local models thus will approach an approximately similar average
plasticity.

The reviewed algorithm shows how network parameters can be trained during online
operation. However, two further issues remain to be solved. Firstly, training a network
via EM is a statistical learning approach that requires much training data. Additional
mechanisms are consequently needed to achieve a rapid learning from few training
exemplars. Secondly, it is unclear how many hidden units the network should contain. In
the following, a solution to both aspects is presented, insofar as the NGnet is extended
by local model manipulation mechanisms (Gläser and Joublin, 2010a).
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Local Model Manipulation Mechanisms

One of the main problems when using an NGnet is the specification of the network’s
complexity, i.e. the selection of the number of hidden units (local experts). Solving this
problem is usually done by incorporating domain knowledge. Difficult approximation
problems will obviously necessitate more hidden units than simple tasks. However, it is
desirable to build general purpose network models which are able to autonomously adapt
their complexity based on the problem at hand. For an NGnet, this involves mechanisms for
assigning new local experts and removing, splitting, or merging existing ones. Furthermore,
criteria for deciding when to execute the model manipulation mechanisms have to be
defined.

In previous work several methods for an incremental build-up of an NGnet have been
proposed (Samejima and Omori, 1999; Lu et al., 1997; Huang et al., 2005; Sekino et al.,
2005; Sato and Ishii, 2000). Some of them implement algorithms which are in part similar
to the ones that are outlined next. However, these methods usually assume the complexity
of the task to be constant over time. Consequently, they increase an NGnet’s complexity
until a sufficient approximation quality is achieved. In contrast, we explicitly take into
account a varying task complexity and, thus, present mechanisms which continuously
adapt an NGnet’s complexity according to task demands. As one example, we introduce
the merging of experts which turns out to be beneficial for obtaining small-sized networks
and improving generalization (see results in Section 4.3).

Model Removal

Local experts with little or no contribution to an NGnet’s approximation are redundant
and should be removed. The posterior p(i|yt, ct,Θ) refers to the probability of assigning
the t-th sample (yt, ct) to the i-th local expert (see Eq. 4.10). Let ρi denote the running
average over this posterior, where η is a time constant:

ρi(t) = (1− η) · ρi(t− 1) + η · p(i|yt, ct,Θ). (4.13)

Since the posteriors p(i|yt, ct,Θ) are typically either close to 1 or close to 0, ρi is
proportional to the average number of samples for which the local model i best describes
the mapping task. Consequently, ρi measures the contribution of the i-th expert to the
overall network output. It hence serves as an importance weight such that ρi < θremove/M
with 0 < θremove 
 1 constitutes a criterion for removing the i-th local expert. Thereby,
M denotes the number of models.

Let Mi denote the i-th expert and M = {Mi}Mi=1 the set of all local experts. When
removing the i-th model, we also adapt the ρj such that

∑
j ρj before and after the

removal remains unchanged, i.e.

M∗ = M\{Mi}
ρ∗j =

|M|
|M∗| · ρj , ∀j with Mj ∈ M∗. (4.14)

Here, |S| denotes the cardinality of the set S.

71



Chapter 4 Supervised Word Meaning Acquisition

Model Assignment

A new local expert should be assigned, if a training sample (yt, ct) is novel or surprising
to the network. Thereby, novelty refers to the fact that the sample (or a similar one) has
not been observed before and hence is not sufficiently well covered by any of the existing
local experts. In contrast, surprise relates to a large deviation of the supplied output
ct from the expected one (the network’s approximation c̃(yt)). These criteria can be
expressed as follows

max
i

p(yt, ct|i,Θ) < θcoverage (4.15)

et > θsurprise, (4.16)

where θcoverage and θsurprise are thresholds and

p(yt, ct|i,Θ) = p(ct|i,Θ) · p(yt|i,Θ)

= G(ct,αi,Γi) ·G(yt,μi,Σi) (4.17)
et = [ct − c̃(yt)]

T [ct − c̃(yt)]. (4.18)

As can be seen, the coverage is measured according to how good the sample fits the experts’
Gaussian pdfs over the input and output space. In contrast, the squared approximation
error serves as a measure for the surprise. If any of these conditions is fulfilled, a new
local model is added to the NGnet and the importance weights ρj are adapted, such that∑

j ρj before and after the assignment remain unchanged:

M∗ = M ∪ {Mnew}
ρ∗j =

|M|
|M∗| · ρj , ∀j with Mj ∈ M. (4.19)

The new model Mnew can be initialized as proposed by Sato and Ishii (2000). As
illustrated in Fig. 4.7 (a), its receptive field is centered at the input yt, whereas the
size of the receptive field is determined by the distance to the closest existing model.
The new model produces a local approximation αnew of the target function that equals
the observed output ct. Thereby, the uncertainty about this approximation, i.e. the
covariance of the Gaussian pdf over the output space, is initialized to the maximum
uncertainty of the existing models.

μnew = yt

Σnew = min
i

(
[μi − μnew]

T [μi − μnew]

Dy

)
· I

αnew = ct

Γnew = max
i

Γi

ρnew =
1

|M|+ 1
(4.20)

Here, I denotes the identity matrix and Dy the input dimensionality. In the special case
of assigning the first local model, Σnew and Γnew are initialized to some predefined Σinit

and Γinit, respectively, as well as ρnew = 1.
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(a) (b)

Figure 4.7.: An illustration of model assignment and model splitting: In (a) a new model is
allocated and initialized according to its minimum distance to already existing
models. In (b) a model is split along its principal dimension.

Model Splitting

If the i-th local model’s quality of approximating the mapping task is insufficient, the
input space region corresponding to its receptive field should be refined and covered
by multiple experts. An insufficient approximation quality is characterized by a diffuse
probability distribution p(c|i,Θ) = G(c,αi,Γi) over the output space. Consequently,
the size of the Gaussian (for which |Γi| is an indicator) is an appropriate criterion for
splitting a model. In summary, the i-th model is split if

|Γi| > θsplit, (4.21)

where θsplit is a threshold. If this criterion is met, Mi is adjusted to M∗
i , a new model

Mnew is created, and finally added to the model pool.

M∗ = (M\Mi) ∪ {M∗
i ,Mnew} (4.22)

The splitting is performed along the prominent dimension of the receptive field, which
is similar to the method proposed by Samejima and Omori (1999). Therefore, let ζn
and κn denote the eigenvectors and eigenvalues of Σi sorted in descending order of the
eigenvalues, i.e. κ1 ≥ κ2 ≥ . . . ≥ κDy

. The spin-off models M∗
i and Mnew are initialized

as

μ∗
i , μnew = μi ± ξ1 · √κ1 · ζ1 (4.23)

α∗
i , αnew = αi (4.24)

Σ∗
i , Σnew =

ξ2
κ1

· ζ1ζT
1 +

Dy∑
n=2

1

κn
· ζnζT

n (4.25)

Γ∗
i , Γnew = 0.5 · Γi (4.26)
ρ∗i , ρnew = 0.5 · ρi, (4.27)

where ξ1 and ξ2 are constants controlling the overlap of their receptive fields. The splitting
mechanism is illustrated in Fig. 4.7 (b).
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Model Merging

If multiple local models are sufficiently similar, they can be merged to one local expert.
The similarity depends on the overlap between the experts’ pdfs over the input and output
space, respectively. Let U(Mi,Mj) be a function measuring the similarity between two
local models Mi and Mj with 0 ≤ U(Mi,Mj) ≤ 1. Thereby, a value of 1 corresponds to
model identity and a value of 0 to total model dissimilarity. Furthermore, let V(p(a), q(a))
be a function measuring the overlap between two multivariate pdfs p(a) and q(a) with
0 ≤ V(p(a), q(a)) ≤ 1. Then we define

U(Mi,Mj) = V( p(y|i,Θ) , p(y|j,Θ) ) · V( p(c|i,Θ) , p(c|j,Θ) )

= V(G(y,μi,Σi) , G(y,μj ,Σj) ) · V(G(c,αi,Γi) , G(c,αj ,Γj) ). (4.28)

Consequently, measuring the pair-wise similarity between local experts reduces to calcu-
lating the overlap between multivariate Gaussian pdfs. The Bhattacharyya Coefficient
(BC) provides an approximation for this. It is defined as

BC(p, q) =

∫
a

√
p(a) · q(a) da, (4.29)

for which a closed form solution exists for multivariate Gaussians p(a) = G(a,μp,Σp)
and q(a) = G(a,μq,Σq):

DB(p, q) =
1

8
· (μp − μq)

T ∗Σ−1 ∗ (μp − μq) +
1

2
· log |Σ|√|Σp| · |Σq|

(4.30)

BC(p, q) = exp(−DB(p, q)). (4.31)

Here, DB is called the Bhattacharyya distance with Σ = (Σp +Σq)/2. In summary, the
similarity U(Mi,Mj) between two local models is calculated according to Eq. (4.28),
where we set V(p, q) = BC(p, q). If the similarity exceeds a threshold θmerge, i.e.

U(Mi,Mj) > θmerge, (4.32)

the models Mi and Mj are merged. The NGnet is finally adapted such that

M∗ = (M\{Mi,Mj}) ∪ {Mnew}. (4.33)

The creation of the new model Mnew involves two steps. Firstly, the importance weight
of the new model ρnew is set to ρnew = ρi + ρj . Secondly, the multivariate Gaussian pdfs
of the models Mi and Mj are merged. More precisely, the pdfs over the input space
(G(y,μi,Σi) and G(y,μj ,Σj)) are merged to G(y,μnew,Σnew). Similarly, the pdfs
over the output space (G(c,αi,Γi) and G(c,αj ,Γj)) are merged to G(c,αnew,Γnew).
Thereby, those local models, that possess large importance weights ρ, dominate the
merging over less important ones. Merging the pdfs over the input space consequently
aims at minimizing the functional F with

F =
∑

r∈{i,j}
ωr ·D(G(a,μr,Σr) ||G(a,μnew,Σnew) ), (4.34)

where D is a divergence measure and ωr = ρr/(ρi + ρj) are the normalized importance
weights with r ∈ {i, j}. The creation of G(c,αnew,Γnew) follows a similar minimization
problem.
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(a) (b)
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Figure 4.8.: The merging of two 2-dimensional Gaussian distributions (dashed lines) with
importance weights ωi = 0.75 and ωj = 0.25 is illustrated: (a) shows the result
when the Kullback-Leibler divergence is used for clustering, whereas (b) depicts
the result when using the Jenson-Shannon divergence.

Existing approaches for minimizing F mainly differ in the used divergence measure
D. Two of them are of particular interest: Firstly, Kullback-Leibler divergence based
clustering (Davis and Dhillon, 2006) and, secondly, Jenson-Shannon divergence based
clustering (Myrvoll and Soong, 2003). Both approaches are reviewed in Appendix A,
where a detailed derivation of formulas for the calculation of the resulting Gaussians is
presented. Here, the results of both methods are just exemplarily depicted in Fig. 4.8.
As can be seen, the divergence measures result in different clusters. More precisely, the
Gaussian obtained via Kullback-Leiber divergence based clustering is larger than the
one obtained by Jenson-Shannon divergence based clustering. The former is nearly the
union of the individual Gaussians. Thus, Kullback-Leibler divergence based clustering
seems to be the appropriate technique when the receptive fields of Gaussians should be
joined. However, it is inappropriate for joining (normalized) probability distributions,
for which Jenson-Shannon divergence-based clustering yields better results. Since the
competition between the local experts of an NGnet overwrites the normalization of
p(y|i,Θ) (cf. Eq. (4.10)), Kullback-Leibler divergence-based clustering is used to construct
G(y,μnew,Σnew). In contrast, Jenson-Shannon divergence-based clustering is used for
calculating G(c,αnew,Γnew). In summary, the merging of local models can be done
using the greedy strategy depicted in Algorithm 4.1.

Algorithm 4.1 Merge Local Models

Calculate the similarity U(Mi,Mj), ∀{Mi,Mj}
{a, b} ← argmax

{i,j}
U(Mi,Mj)

while U(Ma,Mb) > θmerge do
Merge Ma and Mb to Mnew

M ← (M\{Ma,Mb}) ∪ {Mnew}
Update the similarity U(Mi,Mj), ∀{Mi,Mj}
{a, b} ← argmax

{i,j}
U(Mi,Mj)

end while
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Incremental Learning Algorithm

The local model manipulation mechanisms can be combined with online EM training
as shown in Algorithm 4.2. This results in an adaptive version of an NGnet, insofar as
the network can grow and shrink according to the demands of a task. It increases its
complexity by allocating or splitting hidden units until a sufficient approximation quality
is reached. On the contrary, the network strives for a compact size by removing or merging
redundant units. The adaptive NGnet further enables rapid learning. This is achieved by
assigning a new hidden unit whenever a novel or surprising training sample is encountered.
The new unit memorizes the observed pattern in one-shot. Since the adaptive NGnet
also applies EM training, the network resembles rapid hippocampal learning as well as
a slower statistical learning. The latter might be carried out in multimodal association
areas surrounding the hippocampus (e.g. PHC or PRC; cf. Fig 4.1).

Algorithm 4.2 Adaptive NGnet

Initialize M ← ∅

for all samples (yt, ct) do

if M = ∅ then

assign a new model

else

{Sample Coverage & Surprise}
coverage ← max

i
p(yt, ct|i,Θ(t− 1))

surprise ← [ct − c̃(yt)]
T
[ct − c̃(yt)]

{Network Training}
if (coverage < θcoverage) or (surprise > θsurprise) then

assign a new model
else

train the NGnet via sequential EM learning
end if

{Local Model Manipulation}
remove all models Mi with ρi < θremove

split all models Mi with |Γi| > θsplit
merge models using Algorithm 4.1

end if

end for
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4.2.3. Feature Extraction Layer

The aim of the feature extraction layer is to provide a transformation Φ that maps
inputs x ∈ Sx onto feature patterns y ∈ Sy. Thereby, the function Φ should support
the subsequent layer (the adaptive NGnet) in performing the classification task. We
consequently strive for an extraction of class-discriminative features that are suited to
distinguish between the members and the non-members of a word meaning category.
As illustrated in Fig. 4.9, the feature extraction layer comprises two stages. The first
stage generates a discriminative feature space, whereas the second stage diagonalizes its
dimensions and performs a dimensionality reduction.

Maximizing Renyi’s Mutual Information (MRMI)

To generate a class-discriminative feature space, an approach called Maximizing Renyi’s
Mutual Information (MRMI) (Hild et al., 2006) is used. This technique relies on the
information-theoretic criterion of the mutual information

I(Y ;C) = H(Y )−H(Y |C) (4.35)

between the feature patterns and their category memberships. Here, H(Y ) and H(Y |C)
denote the entropy and the conditional entropy according to Shannon. The mutual
information I(Y ;C) describes the amount of information that the feature patterns carry
about the category memberships. It is hence an appropriate measure for the quality of the
feature extraction layer. Since an increase in the mutual information signals an improved
discriminability between category members and non-members, the transformation Φ
should result in feature patterns that maximize I(Y ;C).

Hild et al. (2006) proposed an efficient implementation of the mutual information criterion.
It relies on the use of Renyi’s quadratic entropy H2(Y ) (instead of Shannon’s) and
its estimation using Parzen windows. By doing so, the mutual information can be
approximated on the basis of individual samples. Therefore, let X = {x1, . . . ,xN} be
a set of input samples and Y = Φ(X) = {y1, . . . ,yN} the corresponding set of feature
patterns. Furthermore, let C = {c1, . . . , cN} denote the associated class memberships
with ck ∈ {−1,+1}. Then the mutual information is calculated as

I2(Y ;C) = H2(Y )−H2(Y |C)

= − log

(
1

N

N∑
k=1

G(yk − yk+1, 2σI)

)

+
∑

j∈{−1,+1}

Nj

N
· log

⎛⎝ 1

Nj

Nj∑
k=1

G(y
(j)
k − y

(j)
k+1, 2σI)

⎞⎠ . (4.36)

Thereby, G(y,Σ) = exp(− 1
2y

TΣ−1y)) is a Gaussian kernel, y(+1)
k and y

(−1)
k are feature

patterns corresponding to category members and non-members, respectively, N+1 and
N−1 are the numbers of such patterns, and N = N+1 + N−1 is the overall size of the
training set.
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Figure 4.9.: The architecture of the feature extraction layer.

The mutual information criterion can be used to learn a feature extraction function. Here,
we restrict learning to a linear feature extraction of form y = R · x. We consequently
aim at the identification of a transformation matrix R, such that the mutual information
between the feature patterns and the class memberships is maximized. This can be
achieved via stochastic gradient ascent on I2(Y ;C). More precisely, R is iteratively
updated according to

Rt = Rt−1 + ηMRMI · ∂I2(Y ;C)

∂Rt−1
, (4.37)

where η is a learning rate. A detailed description of the method of Hild et al. (2006) as
well as a derivation of the important formulas is given in Appendix B.

Principal Feature Component Space

The MRMI method produces a discriminative feature space. However, it does not indicate
which feature dimensions are most important for the representation of a word meaning
or how many feature dimensions are needed at all. To answer these questions Principal
Component Analysis (PCA) is subsequently applied on the extracted features. This serves
a de-correlation of the feature dimensions as well as a dimensionality reduction. PCA
boils down to solving the eigenproblem for the covariance matrix of the feature patterns.
Thereby, the covariance is given by

cov(Y ,Y ) = E
[
(Y − E[Y ]) · (Y − E[Y ])T

]
= E

[
(R ·X − E[R ·X]) · (R ·X − E[R ·X])T

]
= E

[
R · (X − E[X]) · (X − E[X])T ·RT

]
= R · E [

(X − E[X]) · (X − E[X])T
] ·RT

= R · cov(X,X) ·RT , (4.38)

where E denotes the expectation operator.
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W.l.o.g. the input patterns X are assumed to be white with zero mean and unit variance,
i.e. cov(X,X) = I. The principal components consequently can be obtained via
eigendecomposition of R ·RT . Let Ψ = [ψ1,ψ2, . . . ,ψK ] be the resulting eigenvectors
and Λ = [λ1, λ2, . . . , λK ] the associated eigenvalues. Then the principal component
feature space is calculated by

Y = (ΨT ·R) ·X. (4.39)

The eigenvalues Λ represent the distribution of the features’ energy among each of
the principal components. Consequently, one can restrict feature extraction to those
dimensions whose cumulative energy content exceeds a pre-defined threshold θPCA with
0 ≤ θPCA ≤ 1 (e.g. θPCA = 95 %). Therefore, let the columns of Ψ be arranged such that
their associated eigenvalues are sorted in descending order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λK , and
let E(l) be the cumulative energy content among the first l principle feature components,
i.e. E(l) =∑l

i=1 λi/
∑K

j=1 λj . Then we choose Ψ̂ according to

Ψ̂ = [ψ1,ψ2, . . . ,ψDy
] with E(Dy − 1) < θPCA ≤ E(Dy). (4.40)

Taking into account that Ψ̂ forms an orthonormal basis with Ψ̂−1 = Ψ̂T , the feature
extraction stage can be summarized by its feature extraction function

Y = Φ(X) = (Ψ̂T ·R) ·X (4.41)

as well as its inverse transformation

X = Φ−1(Y ) = (R−1 · Ψ̂) · Y . (4.42)

4.2.4. Putting the Pieces together

The simultaneous extraction of word-specific features and learning of word meaning
categories poses several problems to a computational model. Firstly, mutual information
based feature extraction is a statistical learning method. It presupposes a large training
corpus in order to reliably estimate the necessary probabilities on a per sample basis.
During online learning, however, samples sequentially arise. In the present framework
this problem is circumvented as suggested by CLS theory. The adaptive NGnet serves as
a training sample generator, insofar as it reactivates memorized associations based on
its internal category representations. These samples finally serve as a training set for
the feature extraction layer. Secondly, the feature extraction layer produces the feature
space that the categorization layer is operating on. This means that the NGnet has to
cope with a continuously changing feature space, since learning alters the space during
online operation. This includes a change in the number of feature dimensions as well as a
change in the individual dimensions. How to adapt an NGnet to an altered feature space
without the need for re-training hence constitutes a fundamental question that has to be
answered. A detailed description of the solutions employed by our computational model
is given in the following.
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Reactivation of Memorized Associations

An NGnet is a generative model for universal function approximation. In other words,
in addition to calculating the output c̃(y) of supplied feature patterns y, it provides
means to generate samples y given an network output c̃. With respect to word meaning
acquisition, the adaptive NGnet hence allows to generate a set of samples (y′, c′) that
comprises feature patterns y′ corresponding to category members (c′ = +1) as well as
non-members (c′ = −1). Such a generative process can be formally done by drawing K
samples y′

1, . . . ,y
′
K from the distribution p(y′|c′ = c̃,Θ) with c̃ either being +1 or −1.

To do so, we first determine the posterior probability that the i-th expert produces an
output c̃. Using Bayes’ rule this probability can be calculated as follows

p(i|c = c̃,Θ) =
p(c = c̃|i,Θ) · p(i)∑M

j=1 p(c = c̃|j,Θ) · p(j)

=
G(c̃,αi,Γi) · ρi∑M

j=1 G(c̃,αj ,Γj) · ρj
. (4.43)

Thereby, ρi denotes the importance of the i-th expert. We consequently determine
the number of samples that each expert should generate by drawing K samples from
p(i|c = c̃,Θ). Let K1, . . . ,KM be the result of this process.

What remains is to draw Ki samples from the distribution p(y|i,Θ) = G(y,μi,Σi) for
each expert i. Therefore, let Zi = [zi,1, . . . , zi,Ki ] with zi,j ∼ N (0, I). Then the samples
Y ′
i = [y′

i,1, . . . ,y
′
i,Ki

] can be calculated by

Y ′
i = μi +A ·Zi, (4.44)

where A is obtained from the Cholesky decomposition A ·AT = Σi. An illustration of
this process is given in Fig. 4.10. There, (a) shows an example of a binary classification
task as well as the hidden units, that the adaptive NGnet uses to solve this task. In (b)
the reactivated associations are shown. As can be seen, the model does not reactivate the
exact memorized associations (given by the centers of the Gaussian receptive fields), but
slight variations of it. This allows the network to generate as many samples as necessary
even though just a restricted set of observations may have been memorized.

The transformation of the generated feature patterns y′ via the inverse of the feature
extraction matrix Φ, i.e.

x′ = Φ−1(y′) = (R−1 · Ψ̂) · y′, (4.45)

finally results in a set of samples (x′, c′). This set can be used to train the feature
extraction layer, i.e. for discovering those dimensions that best discriminate the members
from the non-members of the word category.

Adaptation to Changed Feature Space

Since the training of the feature extraction layer continuously changes the produced
feature space, the internal representation of a category has to be adapted to it. An
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Figure 4.10.: Illustration of the reactivation of memorized associations in the 2-dimensional
binary classification task c = sign(cos(max(y1 − y2, y1 + y2))): (a) shows the
receptive fields of the NGnet’s hidden units and (b) depicts the samples y′ that
are reactivated based on them. Blue circles and red crosses correspond to samples
with c′ = −1 and c′ = +1, respectively.

obvious way to do so is to re-train the NGnet every time the feature space changes. This
is of course a time consuming process and further necessitates a memorization of all
training samples. Another way is to project the receptive fields of the NGnet’s hidden
units into the new feature space. For a linear feature extraction like the one proposed
in Section 4.2.3 this projection fortunately can be described by a linear transformation
matrix B with

B =
(
Ψ̂T

t ·Rt

)
·
(
Ψ̂T

t−1 ·Rt−1

)−1

= Ψ̂T
t ·Rt ·R−1

t−1 · Ψ̂t−1. (4.46)

Here, Ψ̂t−1 and Rt−1 as well as Ψ̂t and Rt denote the feature extraction matrices before
and after a learning step at time t. Consequently, the i-th expert’s Gaussian receptive
field is adapted to

p(y|i,Θ) = G(y,B · μi,B ·Σi ·BT ). (4.47)

Improving Generalization

The generalization capabilities of the overall system can be improved in several ways. One
has been already mentioned in Section 4.2.3, that is the pruning of feature dimensions
based on their relevance for the classification task. Moreover, it is possible to incorporate
the relevance of feature dimensions into the process of merging local experts. The
underlying idea is as follows: Local experts which are separated along important feature
dimensions should stay separated since this difference covers important aspects of the
classification task at hand. In contrary, the merging should be preferably done along
unimportant feature dimensions. This can be achieved by incorporating the relevance of
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(a) (b) (c) (d)

x1 y1y1y1

x2
y2y2y2

Figure 4.11.: The improved generalization procedure is illustrated on the example of the binary
classification task c = sign(x2 − x1). Training the NGnet in this task may result
in local experts which partition the input space as shown in (a). Based on these
prototypical associations, the feature extraction layer can extract the principal
feature dimensions (green bars) in conjunction with their relevance (bar lengths).
The NGnet is adapted by projecting the hidden units into the new feature space as
shown in (b). The feature importances are used during the merging of the hidden
units. Thereby, the receptive fields are artificially scaled along unimportant
dimensions as shown in (c), which results in an increased overlap between them.
Based on the hidden unit similarity, the experts finally become merged which
results in the hidden unit layout depicted in (d).

feature dimensions into the calculation of the similarity between local models. Therefore,
let λ1, λ2, . . . , λk be the eigenvalues of the principle feature dimensions (see Section 4.2.3).
Then we construct a transformation matrix W as follows

W =

⎛⎜⎜⎝
√

λmax/λ1 0 · · · 0

0
√
λmax/λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · √

λmax/λk

⎞⎟⎟⎠ , (4.48)

where λmax is the maximum eigenvalue, and calculate the similarity between two local
models Mi and Mj according to

U(Mi,Mj) = V(G(y,μi,WΣiW
T ) , G(y,μj ,WΣjW

T ) )

·V(G(c,αi,Γi) , G(c,αj ,Γj) ). (4.49)

As can be seen, the Gaussians representing the receptive fields of the local experts become
scaled, such that they cover larger portions of the input space along unimportant feature
dimensions, whereas the coverage along the most important dimension remains unchanged.
By doing so, the overlap between the local experts is artificially increased. This finally
results in an enhanced merging of hidden units along unimportant feature dimensions
and, thereby, yields an improved generalization. Fig. 4.11 illustrates this process on the
example of the 2-dimensional binary classification task c = sign(x2 − x1).
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4.2. Our Computational Model

Overall Algorithm

Algorithm 4.3 summarizes the proposed method for the acquisition of grounded word
meanings. At the beginning of training, the learning system does not have any knowledge
on the meaning of a word. More precisely, the feature extraction layer is initialized such
that it implements the identity mapping, i.e. feature patterns equal the input patterns.
Similarly, the NGnet is empty, i.e. it does not comprise any memorized association
between a word and an observation. The subsequent sequential learning scheme allows
the network to gain word knowledge based on individual training samples.

The observed word-scene pairs are first memorized by the NGnet. This should lead to
an initial increase in the complexity of the network as different hidden units have to
be allocated. At the same time, however, a slow feature extraction process searches for
commonalities among the memorized associations. Since the feature extraction layer
is trained sequentially whenever a new training sample has been observed, knowledge
on a word category should gradually shift into the extracted feature dimensions. More
precisely, the feature dimensions should become more discriminative with respect to the
members and the non-members of a word category. As a result, the system more and
more concentrates on the most important aspects of a scene as training progresses (e.g.
by pruning less important dimensions). The extracted features should finally represent
the "rules" that underly the decision whether an input belongs to a word category or
not. This eases the classification task and allows the NGnet to generalize the memorized
associations. This is done by merging similar hidden units or removing redundant ones.
By doing so, the network’s size should decrease over time.

The framework consequently implements a gradual transition from an exemplar-based to a
rule-based classification system: Initially, the prototypical associations, that are memorized
by the NGnet’s hidden units, are used to classify new observations in a similarity-based
manner. As training progresses, however, the features take over responsibility insofar as
they start to represent the rules underlying category membership. The classification of
the NGnet therefore becomes context-free as compared to the context-dependent decisions
of an exemplar-based classification.

Algorithm 4.3 Algorithm for word meaning acquisition
Initialize the feature extraction matrix to be the identity matrix
Initialize an empty NGnet

for all training samples (xt, ct) do
Project the input xt to the feature space
Train the NGnet on the new sample (yt, ct) using Algorithm 4.2
Reactivate a set of samples (y′, c′) comprising category members and non-members
Project the reactivated feature patterns y′ to the input space
Train the feature extraction layer on the sample set (x′, c′) using Algorithm B.1
Adapt the NGnet to the changed feature space

end for
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4.2.5. Functional Mapping to Brain Areas

As already mentioned, the computational model is not meant to provide a 1:1 mapping of
the system components to specific brain areas. The functional properties of the individual
components, however, are largely inspired by neurobiological learning theories. For this
reason, a gross mapping with respect to function is reasonable. Here, it is proposed
that the computational framework approximately maps onto neurobiological circuits as
illustrated in Fig. 4.12.

Firstly, the feature extraction layer is thought to be implemented in neocortical areas. It
is known that sensory cortices are organized in form of hierarchies (e.g. the ventral visual
pathway V 1 → V 2 → V 4 → IT ). This hierarchically organized processing transforms
low-level input descriptions into higher-level representation. Since such higher-level
descriptions are always created for some purpose, they constitute features for tasks. The
sensory hierarchies consequently implement a feature extraction and it is reasonable to
assume that inputs x, features y, and words c are represented in neocortical areas.

Finding a homologue to the classification layer is less obvious. On the one hand, the
adaptive NGnet can rapidly encode multimodal associations and further is able to
reactivate them. These are functions that are typically attributed to the hippocampus.
On the other hand, however, the network also employs a statistical learning method that
slowly incorporates knowledge. According to Rodríguez-Fornells et al. (2009) a similar
dissociation can be found in the MTL structures. More precisely, the authors suggested
that the rapid encoding of facts and events primarily relies on the hippocampus and the
posterior EC. In contrast, the anterior EC, the PHC, and the PRC may be recruited
for a generalization of knowledge via slower learning mechanisms. Evidence in favor of
this theory comes from studies with amnesic patients. For example it has been shown
that subjects with a brain lesion, that is restricted to the hippocampus, are still able to
acquire semantic knowledge – even though a rapid encoding does not seem to be possible
anymore. In contrast, patients suffering from a damage of the entire MTL do not show
this learning capability (Verfaellie et al., 2000; Bayley and Squire, 2005).
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Figure 4.12.: A potential mapping of system components (left) to brain areas (right).
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4.3. Evaluation in Benchmarks

The computational model that has been presented in the previous section is not restricted
to the domain of word meaning acquisition. It rather comprises learning methods that
can be applied in a variety of tasks. For this reason, the framework is first evaluated on
standard benchmark problems, which eases a comparison to existing approaches. The
benchmarks are taken from the domains of function approximation, binary classification,
and categorization. Thereby, the following testing procedure is chosen in order to identify
the contributions of the individual system components to the performance of the overall
framework: Firstly, the adaptive NGnet is evaluated in isolation, i.e. without the use of
the feature extraction layer. Therefore, a function approximation task is used. Secondly,
a binary classification problem is used to compare the performance of the NGnet to that
of the overall framework, i.e. including the feature extraction layer. Finally, different
system configurations in terms of various possible couplings between multiple feature
extraction and categorization layers are discussed using a categorization problem.

The performance of the system components is further compared to that of state-of-art
approaches. This includes a comparison to the Resource Allocating Network (RAN)
of Platt (1991) as well as its extensions RAN-EKF (Kadirkamanathan and Niranjan,
1993) and MRAN (Lu et al., 1997). These methods implement adaptive RBF networks,
insofar as new hidden units are allocated based on the novelty of data, and are hence
related to the adaptive NGnet presented in Section 4.2.2. The difference between RAN
and RAN-EKF is that RAN-EKF updates the network parameters based on extended
Kalman filtering instead of the least mean squared algorithm used in RAN. The Minimum
Resource Allocating Network (MRAN) is similar to the RAN-EKF approach, but further
applies a pruning strategy for removing hidden units. Moreover, a comparison to the
Locally Weighted Projection Regression (LWPR) network by Vijayakumar et al. (2005)
is carried out. The LWPR network essentially constitutes an NGnet, but additionally
incorporates a local linear feature extraction inside each hidden unit. This allows the
network to approximate a target function by locally valid linear models as shown in
Fig. 4.13. Besides the concrete learning algorithms employed, the key difference between
LWPR and our framework consequently is that LWPR uses multiple local feature spaces
as compared to the global feature space of our framework.

target function

local approx.

global approx.

hidden unit
receptive fields

input space

ou
tp

ut
 s

pa
ce

Figure 4.13.: LWPR approximates a target function by overlaying local linear models as
compared to the constant approximations employed by an NGnet (cf. Fig. 4.5).
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4.3.1. Function Approximation

To evaluate the classification layer, the performance of the adaptive NGnet is assessed in
the domain of function approximation. More precisely, the task is the approximation of
the two-dimensional cross function which is depicted in Fig. 4.14 and defined as

c(y) = max
{
exp(−10y21), exp(−50y22), 1.25 · exp(−5(y21 + y22))

}
. (4.50)

As can be seen, the cross function is highly non-linear. This makes it difficult to find an
appropriate approximation from only a few training samples. The problem is particularly
challenging for incremental learning methods. For this reason, the approximation of the
cross function often serves as a benchmark for the comparison of different approaches.

y
1

y
2

c(
y)

−1

1

−1

1
0

1

Figure 4.14.: The two-dimensional cross function.

Here, the cross function benchmark is used for the following purposes: Firstly, the adaptive
NGnet’s learning dynamics are illustrated which includes an investigation of the effect of
different parameter settings. Secondly, the NGnet’s performance is compared to that of
state-of-art networks and, finally, a comprehensive evaluation assesses the noise robustness
of the different methods.

Influence of Parameter Settings

During the simulations, training samples (y, c(y)) were randomly generated and sequen-
tially presented to the NGnet. The baseline learning rate of the NGnet was always
set to η = 0.01. However, the thresholds for the different model manipulation criteria
varied such that their effect on the performance of the NGnet could be estimated. More
precisely, we applied the three parameter settings given in Table 4.1. The results for the
different simulation runs are depicted in Fig. 4.15. Thereby, (a) shows the evolution of
the root mean squared error (RMSE) as well as the number of hidden units as a function
of the number of presented training samples. Additionally, for each parameter setting (b)
depicts the final approximation of the cross function, the final layout of the hidden units’
receptive fields, and the instances in time at which hidden units were assigned, removed,
split, or merged.
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Figure 4.15.: Results for the approximation of the cross function using three different parameter
settings: In (a) the evolution of the RMSE and that of the number of hidden
units is shown. In (b) more detailed results are depicted, which includes the final
approximation, the final layout of the receptive fields, as well as the instances in
time when hidden units have been assigned, removed, split, or merged.
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setting #1 setting #2 setting #3

θsurprise 1.0 −→ 0.3 0.3
θcoverage 1.0 −→ 0.1 0.1
θremove 0.01 0.01 0.01
θsplit 0.01 0.01 0.01
θmerge 0.8 0.8 −→ 0.6

Table 4.1.: Different parameter settings.

As can be seen from the results, the adaptive NGnet always approximates the cross
function well. Different parameter settings, however, result in varying levels of network
complexity and further effect the achieved approximation quality. What all simulation
runs have in common is that the RMSE quickly decreases at the beginning. This is shown
in Fig. 4.15 (a), where the logarithmic arrangement of the error axis should be noted. In
contrast, the number of hidden units quickly increases at the beginning and afterwards
converges. This is due to the fact that the network initially allocates many hidden units
and thereby grossly approximates the cross function. Subsequently, learning fine tunes
the network parameters, which leads to a small increase in the network size and a further
decrease in the RMSE. In the following, the ways the different parameters influence the
learning are discussed.

Therefore, we first concentrate on the simulation in which parameter set #1 has been
applied. From the bottom panels of Fig. 4.15 (b) it can be seen that the network allocates
new hidden units almost exclusively at the beginning of training. This is because the
thresholds of the criteria for model assignment (θsurprise and θcoverage) have been chosen
very high. More precisely, setting θsurprise = 1 effectively disables unit allocation following
large errors at the network output (since the squared approximation error has to be larger
than θsurprise). This means that input coverage is the key criterion for unit allocation,
which explains the observed unit allocation dynamics: At the beginning of training, units
are allocated because many inputs are novel to the network. Later on, however, all inputs
are sufficiently covered by already existing units such that no new units are created
anymore. As a consequence, the fine tuning of network parameters is mainly carried
out via online EM training which does not change the number of hidden units. A small
increase in network size is only induced by a splitting of those units that have turned
out to provide unreliable approximations. Due to the low number of hidden units, the
removal or merging of experts does not play a role in this simulation.

To achieve a finer approximation, the thresholds for unit allocation can be decreased
as done in parameter setting #2. By doing so, hidden units are not only assigned at
the beginning, but over the whole course of training whenever the network does not
approximate the mapping sufficiently well. We consequently obtain a larger network size,
but also decrease the RMSE significantly. Due to the fact that the network comprises
more hidden units, the number of unreliable experts also increases such that more split
events can be observed. The same is true for the removal of units. Since many units
are allocated, some of them turn out to be redundant over the course of training. The
algorithm subsequently removes such units.
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Constructing a small sized network while keeping the approximation quality high, is
difficult to achieve. Increasing θsurprise and θcoverage and decreasing θmerge as in parameter
setting #3 is one way to do this. The latter parameter determines the maximum
overlap between hidden units. Decreasing θmerge therefore facilitates small network
sizes by generalizing mappings via model merging. However, the parameter have to be
chosen with care as too small values can result in overgeneralization. For the current
setting, generalization significantly decreases network size and even slightly improves the
approximation quality. In summary, the results show that the allocation and merging
of hidden units have to be appropriately counterbalanced to achieve the contradictory
goals of high approximation qualities and small sized networks. Further simulations (not
shown here) revealed just a minor effect of the parameters that control the removal and
splitting of units. In fact, largely similar results could be obtained for the cross function
approximation task when the parameters were differently chosen.

Comparison to State-of-Art

To judge the performance of the adaptive NGnet, a comparison to existing approaches has
been carried out. These methods include Resource Allocating Networks (RAN, RAN-EKF,
MRAN)1 and Locally Weighted Projection Regression (LWPR)2. Furthermore, the cross
function has been approximated by Support Vector Regression (ε–SVR)3. Support vector
machines constitute powerful nonlinear methods for regression and classification. They
are offline trained using a batch of data samples and consequently cannot be directly
compared to the aforementioned incremental approaches. SVR should rather be seen as a
method against which the performane of incremental methods can be benchmarked.

The results of this comparison are depicted in Fig. 4.16, where the RMSE and the number
of hidden units for each network are shown. For ε–SVR the number of support vectors
is plotted as a homologue of the number of hidden units. As can be seen, RAN and
RAN-EKF result in an unconstrained network growth. This is due to the fact that these
methods do not include mechanisms for the pruning of hidden units. In contrast, MRAN
yields a network size that is approximately the same as that of the adaptive NGnet, but
its approximation quality is worse. LWPR finally produces a similar performance as the
NGnet and even uses less hidden units. This is because the local linear models of LWPR
are more powerful than the constant approximations employed by the NGnet. However, a
lot of training data is needed to reliably estimate the linear models which limits LWPR’s
suitability for rapid learning. LWPR’s performance consequently is significantly worse
than that of the NGnet at the beginning of training.

1The respective networks were implemented according to (Platt, 1991; Kadirkamanathan and Niranjan,
1993; Lu et al., 1997). A number of trials were carried out to determine the parameter setting that
yields the best result (learning rate ν = 0.01; growing criteria thresholds dmax = 1.0, dmin = 0.01,
ddecay = 0.95, emin = 0.05, e′min = 0.1; pruning criterion thresholds M = 25, δ = 0.1; EKF parameters
P0 = 1.0, Rn = 1.0, Q = 0.02; basis function overlap κ = 0.3).

2The implementation provided at http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/ (14.06.2011)
was used. The LWPR parameters have been chosen as in (Vijayakumar et al., 2005).

3The LIB-SVM implementation of ε–SVR with Gaussian kernels was used (Chang and Lin, 2001). A
number of trials were carried out to determine the parameter setting that yields the best result (C = 1000,
ε = 0.05, σ = 10).
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Figure 4.16.: Results for the different methods: (a) the RMSE and (b) the number of hidden
units as a function of the number of training samples. The results are averaged
over 10 simulation runs.

Noise Robustness

To evaluate the noise robustness of the different methods we added Gaussian noise to
the training data. This means that the training samples were generated according to
(y, c(y) + γ · n) with n ∼ N (0, 1). The parameter γ was chosen such that signal-to-noise
ratios (SNRs) of +12 . . .− 6 dB were obtained. Thereby, an SNR of 0 dB corresponds
to equally strong energy levels of the signal and the noise, respectively. A doubling of
the signal energy level reflects itself in an increase of the SNR by 3 dB and vice versa.
When training the NGnet on the noisy data, we expected a decreased performance and
an increased network size when SNR decreases. As shown in Fig. 4.17, this effect can be
observed. The network size particularly increases for an SNR of 0 dB or worse. This is
due to the fact that the network tries to maintain its approximation quality by recruiting

# samples

R
M

SE

(a)

c l e a n 1 2 dB 9 dB 6 dB 3 dB 0 dB - 3 dB - 6 dB

# samples

# 
m

od
ul

es

(b)

0 50 100 150 200 250
10

−0.8

10
−0.1

0 50 100 150 200 250

50

100

150

Figure 4.17.: Results of the adaptive NGnet when the training data is contaminated with noise
at SNRs of +12 . . .− 6 dB. The plots are averaged over 10 simulation runs.
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Figure 4.18.: Performance in noise relative to the performance of the adaptive NGnet when
a clean training signal is used. Differences within a group of bars can be used
to estimate the effect of noise on the performance of the individual methods.
Bars marked with "∗" indicate a setting which yields results that are significantly
different to those obtained using clean signals (p < 0.01). Significance analysis
was based on Welsh’s t-test using 10 simulation runs per method and SNR level,
where the respective values were averaged over all numbers of training samples.

more hidden units. As a result, just minor performance degradations can be observed
for large SNRs. However, the increase in the number of hidden units is not sufficient to
counteract performance degradations in case of very small SNRs, e.g. -6 dB.

Similar evaluations were carried out for the state-of-art methods. Fig. 4.18 shows the
respective results. There, the RMSE and the number of hidden units for each method
and SNR are plotted relative to those of the NGnet using clean training data. By doing
so, the plot can be used to investigate whether the adaptive NGnet performs better in
noise compared to the other methods. The plot further allows to judge the effect of noise
on the individual algorithms. As shown in (a), the RMSE of all methods deteriorates for
very small SNR. Thereby, noise particularly affects the SVR results. The NGnet, however,
outperforms the other incremental approaches in all cases tested. What distinguishes the
NGnet from the other networks is that it tries to compensate the influence of noise by
increasing its size. As shown in (b), this is not the case for the other methods. More
precisely, no significant influence on network size can be found for RAN, RAN-EKF,
MRAN, or LWPR. Only SVR increases the number of support vectors as SNR decreases.

In summary, the evaluations using the cross function benchmark show that the adaptive
NGnet achieves a function approximation performance that is comparable to that of
existing approaches. It performs slightly better than the resource allocating networks
and achieves an approximately similar performance as LWPR. This is true for clean and
noisy training data. The evaluations further showed that SVR is strongly affected by
noise such that SVR performance gets worse than that of the incremental approaches.
Additionally, it is important to note that the RAN and RAN-EKF approaches typically
cannot be used due to their unconstrained network growths.
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4.3.2. Binary Classification

Next, the computational framework is evaluated in a binary classification benchmark.
More precisely, the decision criterion

c(x) = sign(x1 · x2 − x3 · x4 ) with xi ∈ R
+ (4.51)

is used to assign inputs x to one of two classes, i.e. c ∈ {−1,+1}. The reason for using
this artificial task is twofold: On the one hand, the classification problem is challenging
for incremental learning approaches insofar as it relies on a nonlinear class boundary.
On the other hand, however, the task is of limited complexity such that the learning
dynamics can be understood and evaluated in detail.

Here, this benchmark is first used to estimate the influence of the different system
components on the performance of the overall framework. This is done by comparing
the results of the overall framework (classification & simultaneous feature extraction)
with those of the NGnet (only classification). Thereby, an investigation of the different
learning dynamics reveals the effect that an incorporation of a class-discriminative feature
extraction has on the classification layer. As before, the results are compared to those of
state-of-art approaches and finally extended by an analysis concerning the noise robustness
of the different methods.

Adaptive vs. Static Feature Spaces

To evaluate the model, samples (x, c(x)) were randomly generated and finally used to
train either the overall framework or only the NGnet. This means that the NGnet was
trained on samples (y, c(x)) with y = Φ(x). In the first case, the function Φ is obtained
by training the feature extraction layer such that Φ continuously changes over time. This
means that classification via the NGnet is carried out on an adaptive feature space. In
the second case, the function Φ implements the identity mapping, i.e. y = Φ(x) = x,
such that classification is carried out on a static feature space. In the simulations, the
parameter setup given in Table 4.2 was used. The resulting performances (in terms of the
classification error on a test set as well as the number of the NGnet’s hidden units) are
depicted in Fig. 4.19.

NGnet Feature Extraction

η 0.01 ηMRMI 0.01
θsurprise 0.4 σ 2
θcoverage 0.1 N 1000
θremove 0.01 # iter 10
θsplit 0.01 θPCA 0.95
θmerge 0.7

Table 4.2.: Parameter setting used in the binary classification task.
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Figure 4.19.: Performance of the model in the binary classification task: (a) depicts the
evolution of the classification error, whereas (b) shows the number of hidden units
the NGnet is composed of. Thereby, different plots correspond to varying system
configurations. This includes a setup comprising an NGnet and a simultaneous
feature extraction (NGnet + FE), an independent NGnet (NGnet), and an
independent NGnet that solely relies on online EM training (NGnet (EM)).

Here, we first analyze the results obtained by the overall framework (NGnet + FE). As
can be seen from the plots, the system is able to acquire class knowledge from few training
samples. This reflects itself in the rapid decrease of the classification error at the beginning
of training. It can further be observed that the classification layer initially increases its
complexity, i.e. the number of hidden units, but starts to decrease it after approximately
100 training samples. The network size subsequently converges to a minimum that is
maintained afterwards. One mechanism underlying the observed learning dynamics is
the feature extraction, which is analyzed in Fig. 4.20. There, the normalized eigenvalues
of the principal feature dimensions are plotted as a function of the number of training
samples. The normalized eigenvalues provide a measure for the relative importance of
the extracted dimensions. As can be seen, the importance of the different dimensions
diverge over time. Whereas one dimension rapidly gains relevance, the other dimensions
loose importance or even get pruned. An analysis of the feature extraction matrix Φ
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Figure 4.20.: The evolution of the normalized eigenvalues of the principal feature dimensions.
The dotted line marks the time when the forth dimension has been pruned.
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Figure 4.21.: Detailed analysis of the learning dynamics. In (a) the instances in time are
depicted where the NGnet assigns, removes, splits, or merges hidden units. In (b)
the former plot is corrected, insofar as instances in time where a unit has been
assigned and instantaneously merged are not shown.

reveals that the most relevant feature is given by y1 ≈ (x1 + x2) − (x3 + x4). This
feature constitutes an appropriate linear approximation of the real decision criterion (cf.
Eq. (4.51)), which demonstrates that the feature extraction layer is able to unveil the
relevant class-discriminative information.

To investigate the effect of the feature extraction on the NGnet, Fig. 4.21 (a) depicts
details on the NGnet’s use of the local model manipulation mechanisms during training.
The first aspects that can be observed from the plot is that a splitting of hidden units
never occurs. This is because in a classification task, hidden units exclusively represent
either members or non-members of a class. Their individual pdfs over the output space
p(c|i,Θ), i.e. over the class labels, consequently degenerates to only one value by which
the splitting criterion is never met. This is in contrast to the behavior observed in a
function approximation task (cf. Section 4.3.1). The second aspect that becomes evident
from the plots is that models are often assigned and merged. Moreover, assignment and
merging even seem to coincide. A detailed analysis reveals that this is indeed the case.
Hidden units are often assigned following an insufficient prediction of class memberships.
Due to the fact that just one feature dimension is of importance, the overlap of newly
introduced units with already existing ones is artificially increased along unimportant
dimensions by the mechanism described in Section 4.2.4. If this results in a sufficient
overlap, the new unit is merged directly after assignment. Existing units consequently
incorporate the new observation by merging a model of this observation. Besides the rapid
one-shot learning and the slow EM training, this combination of unit assignment and unit
merging can be seen as a third type of learning that adapts the network parameters with
an intermediate rate.

Fig. 4.21 (b) depicts the plot of (a), where instances of unit assignment and instantaneous
merging are excluded. As can be seen, the network mainly allocates units at the beginning
of training. Similarly, model merging is particularly observed shortly after the beginning.
This coincides with the time, where the feature extraction layer is able to distinguish
between relevant and irrelevant feature dimensions. This knowledge facilitates the

94



C
ha

pt
er

4

4.3. Evaluation in Benchmarks

m
er

ge

# samples
(a)

sp
lit

re
m

ov
e

as
si

gn

m
er

ge

# samples
(b)

sp
lit

re
m

ov
e

as
si

gn

0 1000 2000 3000 0 1000 2000 3000

Figure 4.22.: Instances in time when local model manipulation mechanisms have been applied:
(a) depicts the results for the normal NGnet, whereas (b) depicts the results for
the NGnet that has been forced to rely on EM training.

generalization of the NGnet, insofar as the network can merge hidden units preferably
along irrelevant dimensions. This also explains the previously described evolution of the
network complexity: At the beginning of training, many observation are novel to the
NGnet such that many hidden units are allocated and network size increases. However,
as soon as knowledge on the relevance of feature dimensions is acquired, the network uses
this knowledge and starts to generalize. This finally yields a minimal network size.

To underpin the importance of a feature extraction, we next analyze the performance
of the system that only comprises an NGnet, i.e. no feature extraction layer. As can
be seen from the plots of Fig. 4.19, this system results in a much larger network and
achieves an inferior performance. Even though a similar kind of pattern concerning the
network size can be observed, the generalization phase (where the number of hidden
units decreases) seems to negatively effect network performance as the classification error
increases. The detailed analysis depicted in Fig. 4.22 (a) reveals that models are assigned
over the whole course of training. This is due to the fact that most observations are
surprising to the network, because the nonlinear class boundaries prevent the NGnet from
a correct generalization to novel situations. As many of the hidden units reflect specific
observations, they are of less importance with respect to the performance of the overall
network. For this reason, a massive removal of units can be observed later in training.
This illustrates that the detection of class-relevant information (in terms of discriminative
feature dimensions) is of significant importance for the NGnet.

One could imagine that the NGnet should also be able to extract class-relevant information,
since it employs a statistical learning method (EM training). However, it is possible
that the network misses to do so by privileging one-shot learning over EM training. To
test this hypothesis, a third simulation has been carried out in which the NGnet was
forced to apply statistical learning. This was done by increasing the threshold θsurprise
to 1.1 which effectively disabled one-shot learning. As shown in Fig. 4.22 (b), hidden
units consequently only become assigned at the very beginning of training, which means
that the network parameters are subsequently updated solely based on EM training. As
depicted in Fig. 4.19, this indeed enables the network to achieve a network performance
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Figure 4.23.: Performance comparison of the different approaches in the binary classification
task: (a) depicts the evolution of the classification error, whereas (b) shows the
number of hidden units. For SVC, the number of support vectors instead of the
number of hidden units is plotted.

that is similar to that of the framework including a feature extraction. However, the
NGnet needs much more time to do so, since sufficient amounts of data are needed to
reliably exploit the statistics. Overall, this shows that the incorporation of a feature
extraction layer enables the framework to rapidly acquire class knowledge while keeping
the network size small.

Comparison to State-of-Art

The performance of the computational model has been compared to that of the different
RAN1 networks, LWPR2, as well as Support Vector Classification (SVC)3. As before,
SVC only served as a benchmark, since it relies on a batch processing of training samples.
10 simulation runs have been carried out for each of the approaches. The averaged
results are depicted in Fig. 4.23. It can be seen that RAN and RAN-EKF again yield
an unconstrained network growth. For this reason, the respective simulations have
been stopped shortly after the beginning of training. MRAN’s network sizes converges.
However, the approach performs significantly worse than our framework both with respect
to classification performance and network complexity. Only LWPR is able to achieve
a classification error that is in the range of the one our framework yields. However,
learning speed is approximately the same as that of the EM-trained NGnet, i.e. very
1The respective networks were implemented according to (Platt, 1991; Kadirkamanathan and Niranjan,
1993; Lu et al., 1997). A number of trials were carried out to determine the parameter setting that
yields the best result (learning rate ν = 0.01; growing criteria thresholds dmax = 1.0, dmin = 0.01,
ddecay = 0.99, emin = 0.05, e′min = 0.1; pruning criterion thresholds M = 25, δ = 0.1; EKF parameters
P0 = 1.0, Rn = 1.0, Q = 0.02; basis function overlap κ = 0.85).

2The implementation provided at http://www.ipab.inf.ed.ac.uk/slmc/software/lwpr/ (14.06.2011)
was used. The LWPR parameters have been chosen as in (Vijayakumar et al., 2005).

3The LIB-SVM implementation of one-class SVM with Gaussian kernels was used (Chang and Lin, 2001).
A number of trials were carried out to determine the parameter setting that yields the best result
(C = 10000, σ = 0.25).
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slow. Moreover, LWPR also leads to an unconstrained network growth. This restricts
the application of the approach in more complex scenarios. In summary, our framework
comprising an NGnet and a simultaneous feature extraction significantly outperforms the
other approaches. This holds with respect to both the rate of knowledge acquisition and
particularly the complexity of the employed network.

Noise Robustness

Finally, the noise robustness of the different methods is assessed. Thereby, one can
distinguish between noise applied to the inputs and outputs, respectively. In the former
case, training samples (x+ γ · n, c(x)) are presented to the system. Thereby, n denotes
the noise with n ∼ N (0, I) and factor γ controls the SNR. This means that inputs,
which slightly deviate from the true observations, are supplied to the framework. This
simulates measurement noise, e.g. noise that is inherent to sensor data or that emerges
from inaccurate preprocessing stages. In contrast to this, noise over the output space
refers to altering the class memberships of the inputs. This is achieved by using training
samples (x, c̃(x)) where c̃(x) �= c(x) for a certain percentage of samples. Output noise
consequently refers to wrongly given class labels.

The effects of input noise as well as output noise on the performance of the different
approaches are depicted in Fig. 4.24. As can be seen from the plots in (a) and (b),
input noise negatively affects the performance of all methods. Thereby, the influence is
much more severe than in the function approximation benchmark (cf. Fig. 4.18 where
the different scalings of the y-axes should be noted). This is due to the fact that in a
classification task, input noise can result in significantly altered outputs – particularly
for inputs that are close to class boundaries. We can further observe that the NGnet
trained via EM performs slightly better than the framework incorporating a feature
extraction in medium to high noise conditions. The reason for this is twofold: Firstly, the
feature extraction generates a feature space that is lower-dimensional than the original
one. Wrongly assigned hidden units consequently cover larger portions of the input space
by which more observations become wrongly classified. Secondly, the excessive use of
EM training by the independent NGnet may be beneficial, since statistical learning can
average out the noise influence. As shown in Fig. 4.24 (c) and (d), output noise constitutes
a much larger problem for the different methods. Even small amounts of wrongly given
class labels significantly decrease the performance of all approaches. This is because input
noise only sometimes alters the class memberships of observations, whereas output noise
always does.

Overall, the evaluation in the binary classification benchmark revealed that both process-
ing modules, the NGnet and the feature extraction, are important for efficient learning.
Whereas, an independent application of the NGnet already outperforms existing ap-
proaches, the integration of an additional feature extraction further facilitates a rapid
learning and generalization. The results demonstrated, that the overall framework con-
structs small-sized networks that show an excellent classification performance. However,
problems with respect to the robustness against wrongly given class labels could be
identified (as it is also the case for the other approaches). In Section 4.5 we will discuss
possible future improvements that tackle this issue.
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Figure 4.24.: Performance of the different approaches in noise relative to the performance
of our framework when a clean training signal is used: (a) and (b) depict the
influence of input noise, whereas (c) and (d) show the effect of noise applied to
the output. Differences within a group of bars can be used to estimate the effect
of noise on the performance of the individual methods. Bars marked with "∗"
thereby indicate a setting which yields results that are significantly different to
those obtained using clean signals (p < 0.01). Significance analysis was based on
Welsh’s t-test using 10 simulation runs per method and noise level, where the
respective values were averaged over all numbers of training samples.
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4.3.3. Categorization

The framework is finally evaluated in the domain of categorization. Thereby, categorization
constitutes a multi-class classification task, insofar as it targets the prediction of an
observation’s membership to multiple classes or categories. Word meanings are a good
example in this respect. Each observation typically can be described by multiple words,
e.g. the words Honda, car, and vehicle can refer to the same object. In this section, it is
discussed how the framework can be used to solve such tasks. A particular emphasis is
given on different system configurations. More precisely, we show how multiple NGnets
and feature extraction layers can be combined and further investigate the suitability of
the resulting configurations.

Global vs. Category-Specific NGnets

As it will be shown in the following, any categorization problem can be transformed into
a set of binary classification tasks. Therefore, consider the problem where an observation
has to be categorized according to M categories. It is important to note that any
observation can belong to multiple categories. This means that we would like to predict
the category memberships c(x) of an input x with c(x) = [c1(x), c2(x), . . . , cM (x)]T ,
where ci(x) ∈ {−1,+1} denotes the input’s membership with respect to the i-th category.
An M -class categorization problem consequently can be described in terms of M binary
classification problems.

Fig. 4.25 shows two different system configuration that can be used to solve such a
task. In (a) a feature extraction layer transforms an input x into a feature pattern y
which is subsequently categorized using a globally operating NGnet. This means that
the NGnet comprises multiple output nodes which each signal the input’s membership
with respect to one of the categories. The NGnet’s hidden units consequently memorize
associations between inputs and all categories the inputs belong to. In contrast, the
framework depicted in (b) is composed of multiple locally operating NGnets. Thereby,
each network is responsible for the representation of a single category, i.e. it comprises a
single output node and memorizes associations between inputs and the category of interest.

NGnet

NGnet
Feature

Extraction

NGnet

NGnetFeature
Extraction

(a) (b)

… … …

x xy y

c1 c1

c2 c2

cM cM

Figure 4.25.: Different system configurations for categorization: In (a) a global NGnet predicts
the memberships of an input with respect to all categories, whereas in (b) multiple
category-specific NGnets are used to do so.
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(a)(a)(a) (b)

Figure 4.26.: The decision boundaries of three binary classification problems are depicted
in (a). Representing the three categories in single network aims at solving the
categorization problem depicted in (b). Any combination of category memberships
(any closed area in the feature space) has to be represented by an NGnet.

Of course, further schemes can be implemented as combinations of these two extremes.
For example, a single NGnet could be used for the representation of K categories, whereas
the remaining M −K categories are in the scope of other NGnets.

In the following, the suitability of the different configurations is discussed using the
example depicted in Fig. 4.26. In (a) three different categories are shown in terms of their
membership decision boundaries in the two-dimensional feature space. By interpreting
each category as a binary classification task, each category could be easily represented
by a category-specific NGnet. Thereby, the hidden units of the different NGnets need
to represent feature patterns as members or non-members of the respective categories,
respectively. Since the decision boundaries are simple in this example, this can be done
with networks that comprise just a few hidden units. If the same categories should be
represented by one global NGnet, the classification problem depicted in (b) has to be
solved. More precisely, the NGnet has to cope with any possible combination of individual
category memberships (any depicted closed area in the feature space). For example, the
network has to comprise hidden units which refer to feature patterns that do not belong
to any of the three categories. Similarly, it has to comprise hidden units which cover
feature patterns that only belong to the first category, to the second category, to the
first and the second category, and so forth. It is obvious that the problem becomes even
worse, if more complex decision boundaries or more categories have to be represented.
More precisely, the complexity of the NGnet increases exponentially with the number of
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Figure 4.27.: Different system configurations for categorization: The NGnets can either (a)
share a global feature space or (b) use individual local feature spaces.

categories. For this reason, the system configuration depicted in Fig. 4.25 (b), i.e. the
use of category-specific NGnets, is generally preferable over the application of a global
NGnet as depicted in Fig. 4.25 (a). Exceptions to this rule can be found, of course. For
example, a single NGnet may be suitable in case of mutually exclusive categories. For such
categories the decision boundaries do not overlap, such that the combinatorial explosion
does not occur. In the following, however, we will consider the use of category-specific
networks.

Global vs. Category-Specific Feature Spaces

Similar to the aforementioned discussion on the use of multiple NGnets, the framework can
make use of multiple feature extraction layers. As shown in Fig. 4.27, two configurations
are of particular interest: Multiple classification layers (NGnets) can either share a
common feature space as depicted in (a) or rely on individual feature spaces as illustrated
in (b). In the former case, the aim of the feature extraction layer is to provide a feature
space that discriminates the members of the different categories from each other. In
other words, feature patterns that belong to one category should become separated from
those of other categories. Of course, this often cannot be achieved as a particular feature
pattern may belong to multiple categories. This problem is circumvented by the second
system configuration. There, a feature extraction layer should produce a feature space in
which the members of a particular category should be separable from the non-members of
the same category. This means each category is considered independently from the other
ones. For this reason, the use of category-specific feature spaces is generally preferable
over the use of a global feature space.

For mutually exclusive categories, however, the aforementioned argument does not hold.
Nevertheless, it is proposed that category-specific feature spaces are beneficial over a global
feature space even in case of non-overlapping categories. The reason for this is as follows.
A global feature extraction considers all categories simultaneously. This means, it tries
to discriminate each category from all other categories. In contrast, a category-specific
feature extraction only tries to discriminate one category from the other categories. This
means that the other categories do not have to be distinguishable from each other. A
category-specific feature extraction thus constitutes a sub-problem of a global feature
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Figure 4.28.: The performance of the systems that either rely on a global feature space or use
category-specific feature spaces: (a) shows the categorization errors and (b) the
average number of hidden units per NGnet.

extraction and hence should be easier to achieve. Next, this hypothesis is computationally
validated in the domain of hand-written letter recognition. The reason for using this
task is twofold: Firstly, letters constitute mutually exclusive categories, i.e. each written
character can be a member of only one letter category. Secondly, letter recognition is a
challenging problem, such that qualitative as well as quantitative differences between the
use of both system configurations should become visible.

The evaluation is based on the Letter Recognition Data Set1 of Frey and Slate (1991).
It comprises 20000 pixel images of the 26 English capital letters, each of them being
represented by 16 integer-valued attributes like their statistical moments or edge counts.
For the sake of clarity, in the following we restrict evaluation to every fourth letter, i.e. A,
E, I, M, Q, U, and Y. The training samples were sequentially presented to two systems, one
of them relying on a global feature extraction and the other one using category-specific
feature extraction layers. Thereby, we applied the same parameter setting as in the
previous experiments (cf. Table 4.2). The categorization performance was calculated on
a separate test set which contained 25% of the data samples.

The results of the simulations are depicted in Fig. 4.28, where the evolution of the
categorization error as well as the average number of hidden units per NGnet is plotted
for both system configurations. As can be seen from the plots, just a minor difference
between the two systems can be observed with respect to the achieved categorization
errors. In both simulations, the error quickly decreases at the beginning of training
and maintains a low level of approximately 3% afterwards. However, the plots show
a significant difference in the network complexities. Whereas the global feature space
enables the NGnets to generalize after approximately 2500 training samples, generalization
occurs much earlier (after ∼100 samples) when using category-specific feature spaces. We
further observe that individual feature spaces finally result in less complex NGnets than
1Available at the UCI Machine Learning Repository: University of California, School of Information and
Computer Science, Irvine, CA, USA, http://archive.ics.uci.edu/ml/ (14.06.2011).
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Figure 4.29.: The evolution of the feature dimensions’ relevance, i.e. their normalized eigen-
values, for the system using a global feature space (top) and the system using
category-specific feature spaces (bottom). The insets at the right show the feature
spaces spanned by the first two principal dimensions, respectively. Colored dots
correspond to samples of the different categories. For the category-specific feature
spaces, black dots refer to non-members of the category (other letters).
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a global feature space does. The reason for this behavior is depicted in Fig. 4.29, where
the evolution of the normalized eigenvalues of the different principal feature dimensions
is plotted. As can be seen, the individual feature extraction layers are able to rapidly
extract the relevant feature dimensions. For each letter, processing concentrates on one
or two dimensions that are sufficient to discriminate the particular letter from all other
categories (see insets at the right). In contrast, the global feature extraction produces a
feature space in which more dimensions are relevant. This first becomes evident from the
fact that the normalized eigenvalues are less diverse as compared to the category-specific
ones. Secondly, the inset at the right shows that the first two principal dimensions are
not sufficient to discriminate between the samples of the different letter categories. The
global feature space consequently needs more dimensions to distinguish between the
letters. These differences in the feature extraction dynamics finally result in the observed
differences in the complexities of the two systems. In summary, the experiments suggest
that the best results can be obtained by using individual feature extraction layers and
NGnets for each category, respectively.

4.4. Application to Word Learning

To demonstrate the model’s suitability to acquire word meanings, the framework has been
applied in a simulated word learning scenario. The visual scene description task depicted
in Fig. 4.30 was used for this purpose. In the scenario a learner and a tutor observe scenes
composed of randomly created geometric objects. The task was to learn the meaning
of words which describe the relations between the objects. For training the system, the
tutor iteratively selects two of the objects, points to them, and simultaneously provides a
word label for their relation, e.g. by saying

"This object is larger than that object."

In the present experiment it is assumed that the learner has knowledge about the grammar
of the respective utterances. In other words, the learner knows that the first object is
the object of interest, the second object is the reference object, and the middle term (e.g.
is larger than) denotes the word or phrase to learn. We further assume the learner to
possess image processing capabilities that allow him to extract visual properties from the
objects. Since the development of such capabilities is out of the scope of this thesis, in
the experiment the object properties have been extracted from an internal simulation
state. In detail, each object is represented by its absolute center position, its width and
height, as well as its RGB color values. A 14-dimensional input vector x (7 dimensions
per object) consequently served as a description of a scene. The experiment included
word labels for relations concerning the positions of the objects (is to the left of, is to
the right of, is above, is below), their sizes (is larger than, is smaller than), and their
colors (is brighter than, is darker than). The model obviously did not have direct access
to category-relevant feature dimensions (e.g. the relative object positions); it rather had
to extract them autonomously.
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“This object is larger than … “

Figure 4.30.: An illustration of the simulated visual scene description task.

To carry out the learning task, 8 instances of the framework have been used, i.e. one
categorization and feature extraction layer for each word to learn. These instances have
been trained by tuples (x, c), where x is the input vector and c = [c1, . . . , c8]

T the vector
of category memberships. Here, it is important to note that most ci are undefined, since
just one word label is provided with each sample. This means that ci = +1 only for the
category corresponding to the supplied word label. To circumvent the problem of missing
negative training data, a mutual exclusivity bias has been implemented. In other words,
a positive training exemplar for is larger than (ci = +1) has been additionally used as
negative sample for is smaller than (cj = −1). The bias only has been applied between
words related to object positions, sizes, and colors, respectively. The learner consequently
has been equipped with innate knowledge on the exclusivity of specific words. Even
though children seem to make use of similar learning constraints (Markman and Wachtel,
1988), their innate availability is unrealistic and hence constitutes a restriction of the
current experiment. In Chapter 5, however, it will be shown how such a bias can develop
over the course of training without any significant change in system performance.

For the evaluation of the model, the correct categorization rate has been calculated on
a set of scenes which have not been used for training. The corresponding result curves
are depicted in Fig. 4.31, where we additionally plot the number of local experts which
comprise the individual NGnets. Fig. 4.31, thus, depicts how (a) system performance
and (b) system complexity evolve as a function of the number of training samples. To
keep the plots readable, curves for the learning of is to the left of, is larger than, and is
brighter than are shown. Similar results have been obtained for the other words. The
plots illustrate that the model is able to rapidly acquire the meaning of words. The
initially poorer performance for is to the left of stems from the fact that more negative
than positive training exemplars are used as compared to the learning of the other words.
Nevertheless, just a few training samples are needed to achieve a high system performance
of ∼80%. This is due to the on-demand allocation of local experts which reflects itself in
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Figure 4.31.: Performance of the system in the word learning scenario: (a) depicts the evolution
of the correct categorization rate and (b) that of the NGnet’s complexity. For the
sake of clarity, the plot only shows results for the learning of three exemplarily
selected words.

the initial increase in the system complexity. Since the hidden units serve as prototypes of
word-scene associations, most novel observations are correctly categorized in a similarity-
based manner. In other words, for any observation the NGnet selects the memorized
prototype that best matches the observed scene and finally outputs the corresponding
word label. After a while, the hidden units adequately cover upcoming training samples
such that those associations do not have to be additionally memorized. The complexity
of the NGnet consequently does not further increase; it rather starts to decrease. The
reason for this is that enough knowledge has been accumulated such that the feature
dimensions, which are most relevant for the word meanings, can be extracted. Thereby,
knowledge about the word meaning categories gradually shifts into the extracted features.
The complexity of the NGnet consequently decreases and finally remains at a minimal
level. Since the extracted features represent the essential aspects of what constitutes a
category, a transition from a similarity-based to a rule-based categorization is achieved.
This is why the categorization task is also solved more robustly, which reflects itself in a
further performance increase towards a near-optimal level.

To provide evidence in favor of a rule-based categorization, the extracted features can be
analyzed. More precisely, a rule-based categorization is achieved, if the weight values of
the feature extraction matrices Φ reflect the real decision criteria. For representing the
meaning of terms describing spatial object relations (e.g. is to the left of or is above)
this is the case. The developed word meanings solely relied on the horizontal and vertical
relative object positions. For representing relations concerning object sizes (e.g. is larger
than), the difference in the size of the individual objects has been used. Due to the fact
that the feature extraction is linear, an object’s size thereby has been approximated
by an addition of its width and height (instead of a multiplication). Words related to
the brightness of objects (e.g. is darker than) are more difficult to represent, since the
available RGB color values do not provide the necessary information. Highly non-linear
transformations (e.g. to other color spaces) would have to be implemented in this case.
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Figure 4.32.: Application of the acquired word knowledge to the test scene depicted in (a).
The model’s corresponding categorization of an object being larger than another
object is shown in (b). Black circles correspond to category members, white
circles to non-members, and dotted circles denote errors made by the system.

Nevertheless, the model approximates this relation sufficiently well by a linear combination
of the RGB dimensions, whereas a non-linearity is introduced by an appropriate placement
of the NGnet’s hidden units. These results show that the built categories solely rely on
the core meaning of the corresponding words and therefore demonstrate that the model
is able to ground words in the perception of agents.

Finally, the performance of the framework in categorizing an object to be larger than
another object is illustrated in Fig. 4.32. Therefore, (a) shows a test scene and (b) the
corresponding output of the model when the objects are processed in a pairwise manner.
The example demonstrates that the model correctly categorizes most of the observations.
Occasional errors only occur for objects with very similar sizes.

4.5. Discussion

In this chapter, a computational model for the grounding of words has been presented.
Therefore, word meaning acquisition has been treated as incremental category learning.
This is reasonable, since most words refer to scenes of a similar kind or category. The
model consequently acquires category representations which correspond to the meaning of
words. Thereby, a supervised learning scheme is applied in which words provide labels for
the categories to learn. What distinguishes the model from previous approaches is that
the proposed framework not only builds categories, but also extracts category-relevant
feature dimensions. This feature extraction runs in parallel to category learning and
facilitates the categorization task.

The model is developmentally inspired and biologically plausible. Its motivation stems
from the fast and slow mapping processes that can be observed in children. Here, it was
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argued that CLS theory provides a plausible explanation of these learning patterns and
therefore may constitute the biological underpinning of word learning. We consequently
endowed the computational model with mechanisms that functionally resemble CLS theory.
More precisely, the system comprises a feature extraction layer and a categorization layer
which are recurrently coupled. Within the categorization layer an adaptive NGnet serves
the incremental category building. Since the NGnet uses localized representations and
further possesses mechanisms for an on-demand network growth and pruning, a rapid
learning from just few training exemplars is achieved. The NGnet is additionally used to
reactivate memorized associations. Samples, which are generated in this way, are used to
extract category-relevant features by means of statistical learning techniques.

The framework has been evaluated in various benchmark problems. Thereby, the con-
tributions of the individual processing layers to the overall system performance have
been investigated. The results demonstrated that the adaptive NGnet is able to effi-
ciently learn category representations. Its capability of rapid learning is particularly
noteworthy. The experiments additionally demonstrated that the incorporation of an
information-theoretic feature extraction is beneficial with respect to the generalization
capability of the framework. The extracted features cover category-specific information
that is used to focus processing on the relevant aspects of inputs. As a consequence, rapid
learning is further facilitated, the system complexity is significantly decreased, whereas
the system performance stayed approximately the same. A comprehensive comparison to
state-of-art approaches showed that the presented model outperforms the other methods
in a wide variety of tasks. The application of the model in a word learning scenario
finally showed that the framework’s learning dynamics are related to those observed in
children. Namely, new word-scene associations are rapidly memorized (fast mapping) and
acquired knowledge is gradually consolidated (slow mapping). The latter process serves a
generalization of initially context-dependent word meanings. This improves the memory
representation with respect to both, robustness as well as efficiency.

Finally, problems and restrictions of the framework will be mentioned. These issues partly
became evident from the experimental evaluation of the system. The following description
includes potential solutions of the problems and hence provides suggestions for future
research.

• Non-Linear Feature Extraction:
The feature extraction layer is currently restricted to implement linear transforma-
tions, i.e. the feature dimensions are linear combinations of the input dimensions.
This limits the kind of information that can be extracted from the inputs. For this
reason, a non-linear feature extraction would be desirable. The feature extraction
itself does not pose a problem in this respect, since any differentiable function can
be learned via stochastic gradient ascent on the mutual information criterion. For
example, a Multi-Layer Perceptron (MLP) could be trained via backpropagation to
extract non-linear discriminative features. The problem, however, arises during the
adaption of the NGnet to the changed feature space. Currently, such an adaptation
can be done analytically, since any change in the feature space can be described by
a linear transformation. For a non-linear feature extraction this would not be the
case anymore. For this reason, other adaptation mechanisms need to be found.
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• Memory Reconsolidation:
The evaluation of the framework further revealed a significant influence of wrongly
given labels on the performance of the system (see Section 4.3.2). This is due
to the fact that wrong labels yield an erroneous creation of hidden units which
finally disrupt performance. In the current system, such hidden units are only
removed if they have turned out to be unnecessary over a long time period. A
potential solution to this problem is motivated from the neurobiological process
of reconsolidation: It is known that any new memory enters a labile state upon
reactivation. Reconsolidation describes the process of stabilizing such memories
again (Wang and Morris, 2010). The benefit of a labile state is that an erroneously
created memory can be rapidly deleted. In detail, a memory item enters a labile state
via activation by an input. If the current observation mismatches the memorized
association, the item is unreliable. As a consequence, the memory is weakened or
even deleted. It has been shown, that the degree of vulnerability depends on the
age of a memory, its strength, and the intensity of its reactivation (Alberini, 2011).
A similar mechanism could be included in the adaptive NGnet in future. Whenever
a hidden unit is activated by an input, the reliability of the memorized association
could be checked. Upon mismatch, hidden units could be deleted. Such a process
should particularly operate on new memories, whereas old (already consolidated)
hidden units should not be affected.

• Autonomous System Configuration:
In Section 4.3.3, the benefits and drawbacks of different system configurations
have been discussed. This included the application of global or local NGnets for
classification as well as their operation on shared or individual feature spaces. From
the discussion it turned out that it is beneficial to consider the learning of one
word independent from that of other words, i.e. to use individual classification and
feature extraction layers for each word, respectively. As already noted, however,
exceptions to this general rule can be found. For example, mutually exclusive words
can be represented by the same NGnet, since their category representations do not
overlap. Similarly, a shared feature space can be beneficial, e.g. for words that have
opposite meanings like left and right. An automatic construction of suitable system
configurations (and possibly a dynamic adaptation of them) is not considered in
this thesis. This remains an open issue for future research.
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5
Developing Learning Constraints

If names are not correct, language
will not be in accordance with the
truth of things.

Confucius (551-479 BC)

Learning the meaning of a novel word is a challenging task as the learner initially
cannot know to what the word refers to. When hearing a word for the first time, a
child is confronted with an indefinite number of potential meanings from which it has
to pick the right one. In the previous chapters, different computational models that
tackle this problem have been proposed. The model presented in Chapter 3 relies on
associative learning theory, insofar as it applies Hebbian learning to map word labels to
pre-established potential meanings. Key to the model is the exploitation of the statistical
evidence that arises from the observations of multiple distinct word-object pairs. In other
words, the model tries to unveil the meaning of a word by discovering what the different
word occurrences have in common. The slow learning speed achieved by this model is
circumvented by the model proposed in Chapter 4. There, a higher priority is given to
word labels insofar as they drive the construction of potential word meanings. This means
that in contrast to the associative learning scheme, which used pre-established concepts,
this model uses words as supervision signals to construct new concepts (that correspond
to the meanings of the words). Inspired by children’s fast and slow mapping skills, the
model combines different learning techniques and therewith acquires words more rapidly.

The incorporation of learning constraints has not been considered in this thesis so far –
or the previous chapters partially took them as granted as we will see later. Literature
on word learning, however, assigns a pivotal role to them (cf. Section 2.2). Given the
compelling learning speed with which children learn words, it has been argued that
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children apply constraints or biases that efficiently restrict the set of potential word
meanings and thereby guide language acquisition (Markman, 1990). Examples for such
biases are the whole object assumption or the shape bias. Whereas the whole object
assumption states that children interpret words as labels for whole objects rather than
just parts of them (Mervis, 1987; Hollich et al., 2007), the shape bias refers to the fact
that the shape of objects, rather than other properties like color, is the primary referent
of a word (Imai et al., 1994). If applied in conjunction, both constraints constitute an
efficient way of pruning potentially wrong word meaning hypotheses.

It could be shown that even 9-month-old infants exhibit these biases during word learning
(Dewar and Xu, 2007). This and other observations let some researchers propose that
children are innately equipped with learning constraints (Markman, 1990). As already
discussed in Chapter 2, however, there is a lot of controversy about this topic. For example,
proponents of the Attentional Learning Account (Smith, 1995) argue that there is no need
for innate competencies. Constraints can rather emerge as a byproduct of associative
learning and principles of attention (Smith et al., 1996). Furthermore, constraints cannot
be fixed over the course of development as they would hinder the acquisition of some
words, e.g. those not related to shape. Children consequently have to learn when to trust
a bias and when not. At a later age, children are indeed able to consider features other
than object shape to be relevant for certain words (Wu et al., 2011). Thereby, caregivers
may help to overcome the different learning constraints. For example, Dickinson (1988)
showed that the phrase ’made of’ guides children to concentrate on the material of an
object rather than its shape.

In this chapter, one of the most studied learning constraints will be discussed – the
mutual exclusivity principle. The following section will first give a detailed description
of the mutual exclusivity principle, highlight its computational importance, and present
existing work on this issue. Next, a framework for the development of the learning
constraint is presented. Similar to the Emergentist Coalition Model (Hollich et al., 2000)
we thereby argue for a combination of innately given capabilities, experience-driven
adaption, and the incorporation of social-pragmatic cues. We will show how the constraint
can efficiently guide word learning by incorporating it into the computational model
presented in Chapter 4.

5.1. The Mutual Exclusivity Bias

Mutually exclusive events cannot occur at the same time. With respect to language
acquisition the mutual exclusivity principle refers to the fact that children seem to accept
only one label per object. This principle becomes evident in studies with children where
they are confronted with two objects, a familiar and a novel object. When the children
are instructed to ’Give me the x.’, where x is a nonsense syllable, they will pick the novel
object (Markman and Wachtel, 1988). This is reasonable, as they already know a label
for the familiar object which differs from x. They consequently think that the novel word
has to refer to the unknown object. In this way, the mutual exclusivity principle actively
reduces the space of potential word meanings. Together with other learning constraints
(e.g. the whole object assumption and the shape bias) this may allow a child to perform a
fast mapping between a word label and its semantic features.
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5.1.1. Computational Relevance

Another problem children have to cope with is that caregivers usually only provide positive
examples for word meanings. When seeing a cat a mother often says ’Hey, look, there is
a cat!’, whereas she typically does not say ’This is not a dog!’. Such explicit negative
evidence is only provided when parents correct their children (Bohannon and Stanowicz,
1988). A child consequently has to learn the meaning of a word solely based on examples
to which the word refers to. For the acquisition of language grammar this issue is also
known as no-negative-evidence problem (Bowerman, 1988). Learning without negative
exemplars obviously is a difficult task as the child has to decide how far a word meaning
can be extended. However, the learning constraints children apply are useful in this
respect as well. They constitute a source of additional information insofar as negative
evidence can be implicitly generated by them. In the following, this is illustrated on the
example of the mutual exclusivity principle.

Let us recall the abovementioned scenario where a child is asked to ’Give me the x’,
thereby being confronted with a familiar and a novel object. Since the child selects the
novel object to be x, the object certainly constitutes a positive exemplar for the meaning
of x. Under the assumption of mutually exclusive labels, however, the familiar object is
also of interest. The label x does not refer to the familiar object, such that it can be seen
as a negative exemplar for the meaning of x. This implicit generation of negative evidence
can be extended to multiple words of course. Any object constitutes a positive exemplar
for exactly one word label, but further can be used as a negative exemplar for all other
known words. According to Marcus (1993), "implicit negative evidence thus depends on
a reanalysis of positive evidence based on mechanisms internal to the child, rather than
input external to the child".

However, the mutual exclusivity principle sometimes is misleading and not reliable. An
object can obviously have multiple labels, e.g. from different levels of a categorization
hierarchy (animal and dog) or from different languages (dog and hund in German). A
language learner consequently has to decide when to trust the principle and when to
break up the assumption. Studies with children (and even adults) revealed that they
have problems in accepting multiple labels per object. Only at about the age of 4 years,
children’s categorization systems seem to be mature enough such that they accept two
names for an object, but only if the names refer to different levels of the categorization
hierarchy (Au and Glusman, 1990). These findings suggest that the mutual exclusivity
principle sometimes hinders early language acquisition. It is therefore unclear whether
such constraints are fixed and timely defined or more adaptive and data-driven.

5.1.2. Existing Work

Word learning without explicit negative evidence has been extensively addressed in
the work of Regier (Regier, 1990, 1996; Regier and Gahl, 2004). He discussed the no-
negative-evidence problem in the context of spatial terms. More precisely, he proposed a
computational model which is able to learn spatial relations between a point of interest
and a reference square. Thereby, the spatial terms are above, below, to the left of, to the
right of, inside, outside, on, and off.
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In contrast to the system presented in Chapter 4, Regier’s model comprises a predefined
extraction of relevant features as well as a feed-forward neural network to categorize
the feature patterns according to the spatial terms. The neural network is trained via
backpropagation solely based on positive training exemplars. However, the model includes
a mechanism where each training exemplar not only serves as a positive sample for the
corresponding category, but also as a negative sample for all other categories to learn.
Regier showed that this principle improves performance if reasonable learning rates are
chosen. More precisely, the learning rate for negative samples has to be much smaller than
that for positive samples. This has two reasons. Firstly, since every training exemplar is
a negative sample for all classes except one, negative samples have a much higher impact
on learning that needs to be compensated for by the learning rate. Secondly, not all
implicitly generated negative training samples are correct. For example, the point of
interest can be outside the reference square, but at the same time to the left of it. In
other words, the spatial terms are not all mutually exclusive to each other. The labels
rather form word clusters, each of them being composed of mutually exclusive terms (e.g.
to the left of, to the right of, above, and below as well as inside and outside).

Using a very small learning rate for the negative samples circumvents the problem of
incorrect exemplars, since they only have a small influence on the overall training of the
network. However, this only holds as long as the positive exemplars are larger weighted
than the negative ones and the number of correct negative samples exceeds the number
of incorrect ones. This is a very hard restriction which limits the applicability of Regier’s
approach. To illustrate this, consider a scenario in which 100 words (partly stemming
from different domains) have to be trained. Each positive training sample would implicitly
generate 99 negative training samples, many of them being incorrect. For example, a
positive example for large would be a correct negative sample for small, but most probably
an incorrect one for heavy, blue, or round. To circumvent this problem, the learning
system has to determine which of the words form clusters of mutually exclusive terms
and implicitly generate negative evidence only within these clusters (e.g. that an example
for blue generates negative evidence for red, green, or white but not for heavy).

5.2. Our Computational Model

In the visual scene description task, in which we applied our computational model for
supervised concept formation (cf. Section 4.4), we considered knowledge on the mutual
exclusivity between word labels to be innately given to the system. This means that we
designed word classes in which the individual terms either referred to the positions, sizes,
or colors of objects. In the simulations, a positive training exemplar for one word finally
has been used as negative sample for the other words of the respective class. Children
do not possess such an innate knowledge of course. Hence, it is reasonable to model the
development of a mutual exclusivity bias during word learning.

It is noteworthy that the approach pursued by Regier (1990), i.e. considering all words
to be mutually exclusive, would fail in case of our model. Whereas the arising incorrect
training samples are neglectable in the work of Regier, even a few wrongly given labels
significantly affect the performance of our model (cf. Section 4.3.2). This is due to the
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Figure 5.1.: Knowledge on the mutual exclusivity between words may be part of a higher-level
conceptual network. Upon hearing the word is above the represented word clusters
can be used to generate implicit negative evidence for the words of the same cluster,
i.e. is to the left of, is to the right of, and is below.

fact, that our model strongly relies on one-shot learning to achieve a rapid word meaning
acquisition as compared to Regier’s slow learning using large amounts of training data.
To make use of implicitly generated negative evidence, the primary task consequently is
to determine the words which are mutually exclusive to each other. This is illustrated
in Fig. 5.1. If the system is able to identify such word clusters, the problem of wrongly
generated negative training samples would vanish.

Here, a computational model for clustering words with respect to mutual exclusivity is
proposed. Therefore, it is first discussed which different sources of information a child
may use to detect the mutual exclusivity between words. Next, it is proposed how these
different cues can be individually estimated and subsequently integrated. Finally, it is
shown how word clusters can be built based on the resulting exclusivity measure.

5.2.1. Cues to Exclusive Word Use

In the following it is assumed that a child innately does not have knowledge on which
words exclude each other. It consequently has to gain this knowledge over the course
of development in order to efficiently use implicit negative evidence. Learning thereby
may rely on multiple cues. For example, a child can use parental replies to judge the
exclusivity of words (see Marcus (1993) for a review on this topic). Here, we define three
cues that in part develop based on the child’s increasing word knowledge, in part arise
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from the caregiver’s attunement to child’s utterances, or presuppose cognitive abilities
that may be innate to the child. In detail, we define the cues as follows:

• Overlapping internal word representations: Word meanings are internally
represented in form of categories. These categories entail objects or scenes of a
similar kind, each of them being a potential referent of the respective words. If
the categories of two words overlap, then there exist objects for which both words
constitute an appropriate label. Since such words share referents, they cannot
be mutually exclusive. The overlap between the internal word representations
consequently provides an intrinsic measure for the exclusivity between words. It
is important to note that the reliability of this measure strongly depends on the
quality of the built categories. Early in learning the cue will provide uncertain
exclusivity estimations, whereas reliability will successively improve over time.

• Corrections by the caregiver: The main source of explicitly provided negative
evidence are parental corrections of child utterances (Chouinard and Clark, 2003).
If a child is corrected, it knows that the previously uttered word was incorrect and,
hence, the child can use the observation as a negative training exemplar for the word.
What is proposed here is that parental corrections further provide information on
word exclusivity. The key idea underlying this proposal is that caregivers typically
correct their children by using labels that stem from the same domain. For example,
if a child wrongly names a person, a mother provides the correct name of the person.
If the child wrongly labels an object color, the mother says the correct color. But
she typically does not correct the child by using a word related to object shape.
The two words that have been uttered by the child and the mother consequently
are mutually exclusive.

• Semantically rich scene descriptions by the caregiver: A caregiver often
not only uses one word to refer to an object (e.g. ball), but embeds the label into
phrases (e.g. the big blue ball) that allow the child to determine the referent more
easily. In these semantically rich utterances multiple words are used to describe an
object. Since these words share the referent, they cannot be mutually exclusive.
Multi-word descriptions hence provide evidence against an exclusive word use.

5.2.2. Cue Estimation

Each of the abovementioned cues provides information on the pair-wise exclusivity of
words. This means that the cues do not yield clusters of exclusive words (e.g. color
terms), such clusters rather can be subsequently constructed on the basis of the pair-wise
estimates (e.g. red-blue, red-green, blue-yellow etc.) Here, we first show how pair-wise
exclusivity measurements can be obtained.

The latter two cues, i.e. evidence arising from corrections or multi-word phrases, can be
easily evaluated. Both cues yield word-pairs that are either exclusive or non-exclusive.
These observations can be memorized in a look-up table, e.g. a matrix, whose cells
correspond to all possible pair-wise combinations of words. If the caregiver corrects
the word blue with the word red, for example, the system knows that blue and red are
mutually exclusive and can memorize this measurement by assigning 1 to the corresponding
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Figure 5.2.: A 2x2 contingency table.

matrix cell. In contrary, a cell is filled with 0 in case of a non-exclusive word-pair. Of
course, evidence could be accumulated over multiple training exemplars, thereby yielding
continuously valued matrix entries. However, here we stick to the binary values.

The estimation of the first cue is less obvious. This is because the internally built word
categories can possess complex shapes such that an overlap between them cannot be
calculated analytically. For this reason, we pursue a sample-based strategy to estimate
the category overlaps. Given a large amount of randomly sampled input patterns, the
built categories are used to estimate whether the patterns are members or non-members
of the categories. More precisely, for each input pattern x the internal representation
of a word wi returns a binary decision ci(x) ∈ {−1,+1} indicating whether the word wi

is appropriate for the description of x. The overlap between two word categories finally
can be estimated by comparing the respective binary responses. Largely overlapping
(and therewith non-exclusive) categories should result in multiple co-occurrences of +1,
since the words share similar referents. In contrast, word exclusivity is characterized by a
response pattern, where the respective categories do not return +1 simultaneously.

The most common techniques for measuring binary response pattern similarity rely on
a 2x2 contingency table. Thereby, a contingency table is a matrix whose entries refer
to the frequency of different response combinations of two categorical variables. In the
example depicted in Fig. 5.2, a denotes the proportion of patterns for which both word
categories output +1, b and c refer to the proportion of patterns for which just one
category outputs +1, and d is related to those patterns that evoke a response of -1 for
both words. Accordingly, we fill the table as follows.

a =
∑
x

p(ci = +1|x) · p(cj = +1|x)

b =
∑
x

p(ci = +1|x) · p(cj = −1|x)

c =
∑
x

p(ci = −1|x) · p(cj = +1|x)

d =
∑
x

p(ci = −1|x) · p(cj = −1|x) (5.1)

Thereby, the individual probabilities stem from the outputs of the NGnets which represent
the respective word meaning categories.

The entries of the contingency table can be used to estimate response similarity. Thereby,
existing similarity indices can be grouped into those measures that incorporate the value d
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and those that do not consider d (see the work of Warrens (2008) for a review of different
indices). For estimating the mutual exclusivity between two words, it is important not to
incorporate d. This is due to the fact that d refers to situations in which an object is
observed, but both words do not provide an appropriate label for the object, e.g. ’cat’
and ’dog’ do not serves as a label for a tree. Such situations do not provide evidence with
respect to word exclusivity and hence should not be considered. Here, we estimated the
exclusivity excl ij between two words wi and wj according to

excl i,j =

[
b · c

(a+ b) · (a+ c)

] 1
2

, (5.2)

which is related to the similarity index proposed by Ochiai (1957). As can be seen from
the formula, excl ij is close to 1 if a is small in comparison to b and c. In contrast, if two
words share many referents, i.e. a is large, excl ij will be close to 0. We further set the
diagonal elements of matrix Excl = {excl ij}, i.e. the exclusivity between a word and
itself, to 1. Even though a word is not exclusive to itself, this is reasonable as we will
show later.

5.2.3. Cue Integration

As it is illustrated in Fig. 5.3, the three different cues yield exclusivity estimates for
word pairs. We memorize these estimates in matrices whose entries refer to all different
combinations of words. Our aim is to construct word clusters in a way that words within
a cluster are mutually exclusive whereas words of different clusters are not. To do so, the
measurements arising from the different cues are first integrated. In the resulting matrix,
the sought word clusters should pop out insofar as exclusive words exhibit correlated
pair-wise exclusivities to other words. A pair-wise exclusivity matrix of this kind can
consequently serve as the basis for word clustering. The clustering of words will be in the
focus of the next section. Here, we first present a model for cue integration.

The integration of the different cues constitutes a difficult task for two reasons. Firstly, the
individual measurements are noisy. In particular, estimates arising from the overlap of word
categories can be noisy, since this cue presupposes that the categories already have been
correctly built. This is obviously not the case at the beginning of the training. Secondly,
cue integration suffers from missing values. Especially the matrices estimated based on
tutor corrections or multi-word phrases are affected in this respect. This is because the
matrix entries are filled according to the words that have been uttered. If certain word
pairs did not appear in the conversation, the corresponding matrix cells remain empty. To
cope with these constraints, we chose to use a Markov Random Field (MRF) (Kindermann
and Snell, 1980). Until now, MRFs have been mainly applied in computer vision tasks
(Li, 1995), e.g. for image segmentation. Due to their computationally attractive features,
however, here we adopt MRFs for the purpose of cue integration. In detail, MRFs possess
a probabilistic computation and hence are suited for handling noisy data. Furthermore,
MRFs can be used to estimate hidden variables via Bayesian inference and consequently
can cope with missing values.
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Figure 5.3.: Pair-wise word exclusivities are first estimated individually based on multiple cues.
The results are subsequently integrated and finally used for word clustering. Each
element of a matrix refers to the exclusivity of a particular word pair. Dark colors
indicate high exclusivity, whereas light colors denote non-exclusivity.

A MRF can be described by an undirected graph G = (V,E) composed of vertices V
and edges E. Thereby, the vertices denote the variables to be estimated, whereas the
edges express dependencies between them. During computation, a potential is assigned
to each vertex. These potentials can spread within the field via the edges. In our model,
the node set is given by V = {vij} with i, j = 1, . . . , N where N is the number of words.
The vertex vij consequently refers to the word pair composed of the words wi and wj .
The potential pot(vij) is the integrated word exclusivity êxcl ij we finally would like to
calculate. We initialize the node potentials according to

pot(vij) =
1

Mij
·

3∑
k=1

excl
(k)
ij , (5.3)

where excl
(k)
ij denotes the exclusivity estimate from the k-th cue, M = 3 is the number of

cues, and Mij is the number of valid cues. This means that cues with missing entries for
element ij where excluded in Eq. (5.3). In case of all cues being invalid, i.e. Mij = 0, we
set pot(vij) = 0.5.

If we consider the vertices V to be arranged in a way that they resemble the elements of
the target matrix Êxcl , then we include edges that allow the node potentials to spread
horizontally and vertically (see Fig. 5.4). Thereby, an undirected edge between two nodes
vij and vkl is denoted by eij−kl. It is important to note that self connections are excluded,
i.e. vij �= vkl. Each edge features a weight that has been chosen based on the initial
potentials of the two vertices that are connected by the edge. In detail, we set

eij−kl = [pot(vij), 1− pot(vij)]
T ∗ [pot(vkl), 1− pot(vkl)] . (5.4)

As a result, an edge features a large weight, if it connects two mutually exclusive word
pairs or two non-exclusive word pairs. In contrast, small weights are assigned to edges
between an exclusive and a non-exclusive word pair.
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Figure 5.4.: The connectivity of the Markov Random Field.

We finally applied Loopy Belief Propagation to spread the potentials within the network.
Thereby, mutually exclusive word pairs will reinforce each other due to their large
connection weights. The same is true for non-exclusive word pairs. However, the primary
aim of Loopy Belief Propagation is to infer the exclusivity of word pairs for which
the different cues resulted in missing or uncertain values. To do so, the chosen node
connectivity implements a transitive rule of the form: if the words wi and wj are mutually
exclusive and the words wj and wk are mutually exclusive, then wi and wk are mutually
exclusive, too. This is due to the fact that both vertices vij and vjk propagate their large
potentials to node vik. Fig. 5.3 depicts a concrete example in which the evidences arising
from the three different cues have been integrated using the aforementioned technique.
As can be seen, the noisy pattern resulting from the first cue gets much more prominent
by incorporating the partial biases provided by the second and third cue.

5.2.4. Word Clustering

Clusters of mutually exclusive words distinguish themselves as relatively homogeneous
subgroups in the inferred exclusivity matrix Êxcl (as it is the case in Fig. 5.3). However,
it is important to note that these subgroups are not always characterized by homogeneous
regions within the matrix, since this requires an appropriate ordering of the matrix rows
and columns. Additionally, the estimated exclusivities still can be very noisy, particularly
at the beginning of training. These aspects render the clustering of words a rather
challenging task.

We solve this task by introducing a mutual exclusivity space in which the N different words
can be placed. The space comprises N dimensions, each of them denoting the pair-wise
exclusivity to one particular word. This means that we can interpret the columns of the
matrix Êxcl as the position vectors of the N words with respect to the mutual exclusivity
space. As a consequence, words that show correlated exclusivities are positioned close-by,
while they feature large distances to the other words. This finally allows us to use standard
distance-based techniques for clustering the words. It is noteworthy that by relying on this
interpretation of data, we further bridge the gap between pair-wise exclusivity estimates
(as obtained by integrating the different cues) and a measure for the exclusivity between
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Figure 5.5.: The hierarchical clustering of the input data shown in (a) yields the word clusters
depicted by the dendrogram in (b).

multiple words. This is because two words have to possess similar pair-wise exclusivity
values with respect to all other words in order to be positioned close-by.

We use agglomerative hierarchical clustering (Duda et al., 2000) to group the different
words. This technique initially assigns each point in space to a separate cluster, i.e. N
words result in N clusters. Subsequently the number of clusters is reduced by merging
the two most similar clusters. This step is finally repeated until all words belong to the
same cluster. For merging the clusters different distance metrics and linkage methods
are available (Duda et al., 2000; Quackenbush, 2001). Here, merging is carried out based
on the Euclidean distance and average linkage. In detail, this means that the distance
between two clusters is calculated as the average of the Euclidean distances between
each point in the first cluster with all other points in the second cluster. In Fig. 5.5 the
clustering solution for a particular example is shown. Thereby, (a) depicts an exclusivity
matrix used as input, whereas (b) displays the formed clusters in a dendrogram.

What remains is to choose the number of clusters. As illustrated in Fig. 5.5 (b), this
corresponds to finding a cluster-distance level at which the dendrogram should be hori-
zontally cut. A word cluster then comprises all words that are part of the same branch
below the cut. Many methods exist for calculating an optimum number of clusters k (see
Milligan and Cooper (1985) for a review). They all rely on error criteria that express how
good the clustering solutions for different values of k are. Thereby, the within-cluster sum
of squared distances is most commonly used. It is defined as

W (k) =

k∑
l=1

⎡⎣ 1

2nl
·
∑

i,j∈Cl

d2i,j

⎤⎦ , (5.5)

where C1, . . . , Ck denote the k calculated clusters that each comprise the indices of the
respective word samples, nl is the number of words in cluster Cl, and di,j refers to the
Euclidean distance between the words with indices i and j. We hence obtain di,j by
comparing the i-th and j-th column of the exclusivity matrix Êxcl .
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Figure 5.6.: In (a) the within-cluster sum of squares is plotted as a function of the number of
clusters k. The circle marks the optimum ̂k = 3. The gap statistic is calculated
by comparing the function in (a) with one obtained from clustering uniformly
distributed reference data. The resulting criterion is depicted in (b).

In Fig. 5.6 (a) the within-cluster sum of squares is plotted for the example depicted in
Fig. 5.5. As can be seen, the measure monotonically decreases as the number of clusters
increases. This is due to the fact that a more fine-grained clustering can be achieved
when a larger k is used. However, the criterion rapidly decreases only up to a certain
value k̂ (marked by the circle). For values k > k̂ the measure W (k) just slightly decreases.
Existing methods aim at detecting such an "elbow" in the function W as it marks the
number of clusters that partition the dataset optimally. In reality, however, the "elbow"
most often is less prominent than depicted in the example. It consequently is difficult to
detect by the different methods.

The gap statistic proposed by Tibshirani et al. (2001) tries to overcome this issue by
comparing the obtained W (k) to the within-cluster sum of squares Wref (k) resulting
from the clustering of a reference distribution. More precisely, reference data points
are uniformly sampled from a rectangular region that constitutes the bounding box of
the original word samples. Thereby, the bounding box is oriented along the principle
dimensions of the data. The underlying idea is that the grouping of clustered data (the
original words) should result in smaller within-cluster sum of squares as compared to
partitioning uniformly distributed data. The gap statistic consequently calculates the
gap between the two criteria according to

gap(k) = W (k)−Wref (k) (5.6)

and determines the optimal number of clusters k̂ as the minimum k that satisfies

gap(k) ≥ [gap(k + 1)− sk+1] . (5.7)

Here, sk+1 is a value that is proportional to the standard deviation of gap(k + 1) as
obtained from clustering multiple reference sample sets (see Tibshirani et al. (2001) for a
detailed description). Fig. 5.6 (b) illustrates that by using the gap statistic the optimum
number of clusters (k̂ = 3) can be reliably estimated for the example data.
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5.3. Evaluation in a Word Learning Scenario

To assess the performance of the proposed computational model, it has been incorporated
into the word learning framework presented in Chapter 4. For the evaluation we further
use the same visual scene description task (see Section 4.4) in order to obtain comparable
results. More precisely, the system has to learn the meaning of words for the relations
between geometric objects. This includes words for relations concerning object positions
(is to the left of, is to the right of, is above, is below), object sizes (is larger than, is
smaller than), or object colors (is brighter than, is darker than). But in contrast to the
previous simulations, knowledge on word exclusivity is not innately given to the system. It
rather has to learn that the words stem from different domains (position, size, and color),
insofar as some words can simultaneously be used for the description of a scene whereas
others cannot. The proposed model should learn clusters which comprise words that are
mutually exclusive to each other. Words of different clusters should be non-exclusive and
hence can serve as labels for the same observation. Consequently, in the simulations we
implicitly generate negative training exemplars for a word meaning only from samples
that constitute positive training exemplars for words of the same cluster. In summary, the
experiment differs from the one presented in Section 4.4, insofar as clusters of exclusive
words are learned rather than being predefined.

During learning the tutor selects two objects and describes the relation between them, e.g.
by saying ’This object is above that object’. He hence presents a positive training exemplar
for the word meaning. In Chapter 4, the simulations were solely based on this kind of
interaction. The presentation of correct word labels constitutes the standard interaction
paradigm here as well. However, we further increase the diversity of conversation patterns
by including other interaction modes. These modes allow the system to base learning
on each of the previously mentioned cues for word exclusivity. In detail, the following
interaction modes are additionally applied:

(1) Wrong word label: The tutor uses a wrong label to highlight that a word cannot
be used for the description of a certain scene, e.g. by saying ’This object is not to the
left of that object’. The corresponding observation hence can be used as a negative
training exemplar for the word meaning. Even though this type of conversation
seldomly appears in mother-child interaction, we included it in the present evaluation.

(2) Correction: The system is asked to describe a scene but erroneously uses an incorrect
label. The tutor subsequently corrects the system, e.g. by saying ’No, this object is
not to the left of that object. It is above the object’. The learner hence is provided
with a negative training exemplar for the meaning of the wrongly uttered word as
well as a positive training exemplar for the meaning of the correct word. Moreover,
the system can use this conversation to gain knowledge concerning the exclusivity of
the two words.

(3) Multi-word description: The tutor describes the relation between objects by using
multiple words, e.g. by saying ’This object is above and larger than that object’.
The observation hence serves as a positive training exemplar for the meaning of
multiple words. In addition, the learner subsequently knows that the words can occur
simultaneously and hence are non-exclusive.
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It is noteworthy that, as in Chapter 4, here we consider the learner to possess sufficient
knowledge for segmenting the utterances. This means that the learner is able to determine
the words of interest, such that the respective network parts can be trained. In the
following, the computational model is thoroughly evaluated. Thereby, a special emphasis
is first given on how well the model is able to acquire the clusters of mutually exclusive
words and, second, what the individual contributions of the different interaction modes
are. We finally compare the obtained results to those of the previous chapter.

5.3.1. Word Clustering Performance

To evaluate the clustering of mutually exclusive words, we run a simulation in which
different conversation patterns have been sequentially presented to the system. These
samples were randomly chosen from a training data set. Thereby, it has been taken care
that each interaction mode is used equally often on average. This means that the system
is provided with a single positive training exemplar, a single negative training exemplar,
a correction pattern, or a multi-word description in 25% of the samples, respectively.

At each instance in time, the developed word clusters were recorded. The quality of
a clustering solution has been calculated on the basis of exclusivity estimates for all
possible word pairs. In detail, we checked whether two mutually exclusive words have
been assigned to the same cluster or, alternatively, whether two non-exclusive words have
been assigned to different clusters. The ratio between the number of correctly assigned
word pairs and the total number of word pairs finally yields a quality index ranging from
0 to 1. Thereby, a value of 1 denotes a totally correct cluster solution. Fig. 5.7 depicts
the resulting cluster qualities. As can be seen, the system is able to correctly cluster all
words after the presentation of approximately 100 training samples. However, mutual
exclusivity has been correctly estimated for a large proportion of word pairs (≈ 80%)
already after just 20 training samples. This demonstrates that the system is able to
rapidly develop clusters of exclusive words. A rapid learning is particularly important,
since the word clusters are used to implicitely generate negative training samples for word
learning. Incorrect cluster solutions can result in wrongly generated training samples
which may degrade system performance.
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Figure 5.7.: The quality of the developed word clusters as a function of the number of training
samples that have been presented to the system.

124



C
ha

pt
er

5

5.3. Evaluation in a Word Learning Scenario

5.3.2. Individual Contributions of the Interaction Modes

Given the compelling speed with which correct word clusters are acquired, the question
arises whether certain interaction modes are particularly important for learning. More
precisely, we would like to answer the following questions: What kind of tutor-system
interaction is necessary to efficiently learn? Are some interaction modes more important
than others? Or are the different conversation patterns equally relevant? Answering these
questions is of interest for two reasons. Firstly, it suggests how a user should teach the
system in order to aid learning. Secondly, it not only unveils relevant interaction modes,
but also the cues that most efficiently guide word clustering. This is due to the fact that
the different cues rely on different interaction patterns (cf. Section 5.2.1).

We run multiple simulations to estimate the individual contributions of the different
interaction modes. Thereby, the simulations differed in the amount of training samples
that have been generated using the different modes. In detail, let p1, p2, and p3 denote
the proportion of samples stemming from the different modes, respectively. We further
assume that we want to estimate the contribution of interaction mode #1. Then we first
set p2 = p3 = 25% and vary p1 = 0 . . . 25%. By doing so, the relevance of mode #1,
given the presence of the other modes #2 and #3, can be estimated. Similarly, we can
estimate the relevance of mode #1, given the absence of modes #2 and #3, by setting
p2 = p3 = 0% and varying p1. For each parameter setting, the remaining amount of
training samples (100% − (p1 + p2 + p3)) is generated using the standard interaction
paradigm, i.e. by presenting a single positive training exemplar.

In the following, we first focus on the contribution of interaction mode #1, i.e. the explicit
presentation of negative training exemplars. Fig. 5.8 therefor depicts the evolution of
cluster qualities for simulation runs in which different values of p1 have been chosen. In (a)
we set p2 = p3 = 25%, whereas (b) shows simulation results using p2 = p3 = 0%. As can
be seen, the plots in (a) do not differ much. This suggests that the first interaction mode
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Figure 5.8.: The evolution of cluster qualities in simulations with varying amounts p1 of
explicitly presented negative training exemplars. In (a) results are depicted for
simulations in which the other interaction modes were present (p2 = p3 = 25%),
whereas they were absent (p2 = p3 = 0%) in the simulations depicted in (b).
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does not have a significant influence on word clustering, if training samples are generated
by the other interaction modes, too. The minor influence of mode #1 is supported by the
results depicted in (b). There it can be seen that explicitly generated negative training
samples alone (i.e. in the absence of the other interaction modes) are not sufficient for
developing appropriate word clusters.

The contrary is true concerning interaction mode #2, i.e. conversations in which the
tutor corrects a wrong labeling by the system. The corresponding results are depicted in
Fig. 5.9. From the plots in (a) it becomes evident that correction patterns are important
for developing appropriate word clusters even in the presence of the other interaction
modes. The system’s capability to detect word exclusivity decreases if the amount of
corrections by the tutor decreases. Furthermore, (b) illustrates that learning solely based
on interaction mode #2, i.e. in the absence of the other modes, is successful if a sufficient
amount of corrections is provided by the tutor.
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Figure 5.9.: The evolution of cluster qualities in simulations with varying amounts p2 of
corrections by the tutor. In (a) results are depicted for simulations in which the
other interaction modes were present (p1 = p3 = 25%), whereas they were absent
(p1 = p3 = 0%) in the simulations depicted in (b).

The relevance of multi-word descriptions can only be evaluated in the presence of the
other two modes. This is due to the fact that multi-word descriptions only yield positive
training exemplars and further do not provide evidence on which words are exclusive to
each other. As a consequence, the word learning framework would not obtain negative
training exemplars – neither explicitly provided by a tutor nor implicitly generated based
on mutual word exclusivity. The cluster qualities obtained when the other two modes are
present (p1 = p2 = 25%) are shown in Fig. 5.10. The plots demonstrate that the third
interaction mode is not necessary for the development of correct word clusters. However,
it seems to be advantageous, insofar as a faster learning is achieved when more multi-word
description are supplied to the system.

Overall, the evaluation revealed different individual contributions of the interaction modes:
Firstly, the explicit presentation of negative training exemplars (e.g. This object is not
to the left of that object.) is not necessary for word learning. This is in accordance
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Figure 5.10.: The evolution of cluster qualities in simulations with varying amounts p3 of
multi-word descriptions. Results are depicted for simulations in which the other
interaction modes were present (p1 = p2 = 25%).

with the fact that caregivers seldomly supply this kind of information to their children.
Secondly, corrections of erroneously uttered words are of particular importance for word
learning. Evidence in favor of this is provided by studies on mother-child interaction.
Chouinard and Clark (2003) showed that mothers most often correct wrong utterances of
their children. The children in turn seem to strongly use this kind of information during
word learning. Finally, multi-word description are not necessary, but beneficial, for word
learning. This is supported by a study of Weizman and Snow (2001) who showed that
the embedding of words into semantically rich descriptions facilitate the acquisition of
the words by children.

5.3.3. Overall System Performance

The previous simulations assessed the system’s capability to learn clusters of mutually
exclusive words. What remains is to evaluate the performance with respect to word
meaning acquisition. Both aspects are certainly intertwined. This is due to the fact
that the word clusters are used to implicitly generate negative training exemplars which
are subsequently used for word learning. Incorrect word clusters can consequently yield
wrong training samples which finally may disrupt system performance. However, it is
important to note that incorrect word clusters not always yield incorrect training samples.
For example, assume an incorrectly built cluster that is composed of just one word, i.e.
the word has been estimated to be non-exclusive to all other words. No negative evidence
will be generated in this case, since mutual word exclusivity is a prerequisite to do so.

To investigate the effect of word clustering, we compared the results of simulations in
which either learned or predefined word clusters were used to implicitly generate negative
training exemplars. Similar to Section 4.4, the evolution of the categorization error and
the evolution of the network size were recorded for each simulation. By comparison of
the different result curves, the effect of word clustering on system performance, system
complexity, and learning speed can be estimated. Overall, the results showed qualitatively
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Figure 5.11.: The plots illustrate how network size evolved during the learning of is below. In
one simulation, clusters of mutually exclusive words have been learned, whereas
the other simulation relied on predefined word clusters. Green diamonds mark
instances in time at which network training reached convergence.

similar learning patterns. This is exemplarily depicted in Fig. 5.11 where the evolution of
the system complexity is shown for the learning of is below. As can bee seen, the plots
exhibit similar characteristics insofar as network size initially increases, subsequently
decreases, and finally converges to a minimum level. Even though the curves are qualita-
tively similar, it is difficult to assess this similarity quantitatively. This is due to the fact
that a temporal offset between the curves exist. For this reason, an alignment has been
carried out, insofar as the time instances at which the results reached convergence were
extracted for all curves, respectively. In Fig. 5.11 these time instances are marked by a
green diamond. Finally, we calculated the following quantitative measures:

• Difference in learning speed: The temporal offset between two convergence
points is taken as an indicator on how much word clustering affects learning speed
as compared to using predefined word clusters.

• Difference in system performance: The average difference between the achieved
categorization rates is considered an indicator for the effect of word clustering on
system performance. Thereby, we only consider the categorization rates that have
been achieved after the training of the system converged, i.e. data points after the
extracted convergence points. This is reasonable as we are interested in the final
performance of the system.

• Difference in system complexity: The average difference between the network
sizes is used as a measure on how much word clustering affects system complexity
as compared to relying on predefined knowledge on word exclusivity. For the same
reason as above, only data points after convergence are taken into account.

The abovementioned measures have been calculated for multiple simulations in which
different interaction modes were applied for constructing training samples. The results
obtained from a comparison of the individual simulations with a run, in which word
clusters were predefined, are summarized in Table 5.11. There, the results are averaged
over the different words that have been learned.
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applied difference in difference in difference in
interaction learning speed system performance system complexity

modes [# samples] [%] [# units]

1 22.0 -0.62 -0.37
2 7.6 0.44 -0.55
3 — — —

1 + 2 1.8 0.15 -0.35
1 + 3 41.4 -0.38 -0.06
2 + 3 13.6 0.27 -0.01

1 + 2 + 3 8.4 0.33 -0.08

Table 5.1.: The differences in the results obtained when clusters of exclusive words are learned
versus predefined. Word clustering has been assessed in multiple simulations using
different interaction modes.

As can be seen from the results, the learning of word clusters neither affects system
performance nor system complexity. Irrespective of the applied interaction modes, the sizes
of the trained networks differed in less than one hidden unit. Similarly, each simulation
achieved categorization rates which differed less than 1% from the results obtained when
using predefined word clusters. Both, the effect on system performance as well as the
effect on system complexity, hence can be neglected. However, the development of word
clusters affected learning speed, insofar as more training samples were needed to reach
convergence. In this respect, the results further suggest that learning speed is influenced
by the applied interaction modes. Particularly the incorporation of the first and the third
mode seem to slow down learning. In contrast, corrections supplied by a tutor (mode
#2), did not affect learning speed so much. The results hence provide further evidence
for a special importance of corrections during word learning. Tutor corrections not only
efficiently guide word clustering (cf. Section 5.3.2), but also yield learning speeds that
are close to those achieved when using predefined word clusters.

5.4. Discussion

After having presented computational models for word meaning acquisition using both
unsupervised and supervised learning techniques, the aim of this chapter was to in-
vestigate constraints that may guide word learning. In previous work, many different
learning constraints have been suggested (Markman, 1990). Whereas there is no doubt
that children’s word learning relies on such biases, there is controversy on whether the
constraints are innate or develop through learning (Markman, 1994; Smith et al., 1996).
Our investigation focused on the mutual exclusivity bias, which constitutes one of the
constrains that have been most extensively studied so far. We illustrated that this bias is
of particular computational importance, as it leads a way to overcome the no-negative-
evidence problem. More precisely, mutual word exclusivity can be used to implicitly
generate negative training exemplars during word learning. Such negative evidence on
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the contrary is seldomly supplied by caregivers. We also pointed out the problems that
an innate existence of the bias would come with.

To overcome these issues, we suggested that the bias can develop on the basis of minimum
innate knowledge as well as social-pragmatic cues available during mother-child interaction.
More precisely, a computational model has been presented that is able to form clusters
of mutually exclusive words. These clusters can be used to implicitly generate negative
training exemplars, thereby guiding word learning. In detail, the model first estimates
pair-wise word exclusivities on the basis of three cues. These cues rely on knowledge
that either is internal to the system (e.g. overlapping word representations) or explicitly
provided by caregivers during interaction (e.g. corrections or multi-word description).
The evidences arising from the individual cues are subsequently integrated and finally
used to hierarchically cluster the words.

Our experimental evaluation showed that a mutual exclusivity bias indeed does not have
to be innate to a system, but rather can develop over the course of learning. The effect of
learning as compared to using predefined knowledge is neglectable, insofar as the system
acquired word meanings equally well. However, it could be shown that an appropriate
development of the bias strongly depends on the kind of tutor-system-interaction that is
used during word learning. More precisely, utterances in which a tutor corrects system
mistakes seem to be of particular importance. On the contrary, the explicit presentation
of negative training exemplars as well as the embedding of words into semantically rich
descriptions does not seem to contribute much in this experimental setup.

Nevertheless, our evaluation leaves open the question whether the relevance of different
interaction modes may change over the course of development. For example, wrong
utterances of a child are also frequently corrected by the mother. Children further
strongly rely on these corrections during word learning. However, Chouinard and Clark
(2003) showed that the frequency of parental corrections changes over time. Whereas
they are often supplied at an early age, they become less frequent later on. At a later
stage, other modes of interaction hence may become more important, e.g. the embedding
of words into semantically rich object description (Weizman and Snow, 2001). It could be
that a similar adaption in interaction patterns is advantageous for word learning by our
computational model, too. This, however, remains to be validated in future experiments.

Another aspect that has not been investigate in this chapter is active learning, i.e. the
active generation of word meaning hypotheses by the child. In our simulations, word
meaning hypotheses were randomly sampled and subsequently corrected by the tutor.
Other sampling strategies, however, may be more efficient. For example, a learner
could choose such situations that lead to uncertain hypotheses (e.g. near word category
boundaries) and request feedback for them. Active learning consequently would allow
the learner to select those training samples for which he expects the highest gain in word
knowledge. The incorporation of active learning strategies can consequently lead to an
even more efficient word learning. Future research could validate this idea.
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Summary

Language is a part of our organism
and no less complicated than it.

Ludwig Wittgenstein (1889-1951)

In this thesis, I presented a computational framework for the acquisition of word meanings.
Thereby, I pursued an interdisciplinary approach insofar as child development was taken as
a role model for learning in artificial systems. The reason for this is that children exhibit
excellent word learning capabilities which we ultimately would like to achieve in artificial
systems, too. I therefore developed computational models that are inspired from findings
in developmental psychology and neurobiology. In Chapter 2, I therefore presented a survey
on current word learning theories as well as the neurobiological circuits that may underlie
them. Based on the abundant literature I concluded that word learning is characterized
by two distinct, but non-exclusive, paradigms: Firstly, it can be considered to be a
mapping task, insofar as cross-situational learning can be used to find a mapping between
word labels and word meanings. This paradigm inherently relies on the assumption that
a learner has access to a number of potential word meanings that have been acquired
prior to word learning. Even though cross-situational learning is known to be applied by
children, it does not explain all observed learning patterns. For example, children do not
possess a fully developed conceptual system onto which all novel words can be simply
mapped. Potential word meanings in form of pre-established conceptual representations
consequently do not always exist. For this reason, a second paradigm considers word
learning to be equivalent to concept formation. There, the assumption is that concepts,
i.e. potential word meanings, are not pre-established, but rather are constructed and
gradually shaped through the use of language. Both paradigms are supported by findings
from developmental psychology. In this thesis, I proposed computational models for each
of them.
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After having reviewed and categorized existing approaches according to the two paradigms,
I first presented a model for unsupervised concept formation and word label mapping
in Chapter 3. There, unsupervised learning was considered as one possible means for
constructing potential word meanings prior to word learning. Of course, other mechanisms
can serve the same purpose, but they were out of the scope of this thesis. In detail, the
proposed system models two aspects: Firstly, how prior experience allows children to
pre-conceptualize their environment in a data-driven way and, secondly, how word labels
can be subsequently associated with the developed representations. A dynamic neural
field model, that incorporates the principles of Hebbian learning and homeostasis, was
implemented for these purposes. I thoroughly evaluated the model in various experiments,
e.g. in a color naming scenario. There I showed that visual input alone drives the model to
develop a topographic map in which colors are represented as a continuum. A subsequent
incorporation of word labels, however, yields categories that link color names and their
respective visual prototypes into unique representations.

Having introduced the model for unsupervised concept formation, I next discussed super-
vised word meaning acquisition, i.e. the process in which words guide the formation of
corresponding conceptual representations, in Chapter 4. There, I argued that Comple-
mentary Learning Systems (CLS) theory provides one plausible explanation of the fast
mapping and slow mapping processes that are typically observed in child development.
The proposed computational model consequently is inspired by CLS theory. It comprises
two complementary components which are specifically tailored to, first, rapidly memorize
individual word-referent associations and, second, to decontextualize word meanings
by abstracting common features among the referents of a word. Both components are
recurrently coupled such that a gradual consolidation of the word knowledge is achieved.
Following a systematic performance evaluation, the model was exemplarily applied in a
visual scene description task in which words for the description of object relations were
taught. Thereby, it was shown that the model results in learning patterns similar to those
observed in child development.

Since the computational framework is inspired by findings on child development, it can be
used to replicate findings, to test theories, or even to create new hypotheses regarding word
learning by children. For example, it is known that children’s word learning is strongly
guided by learning constraints. The question, whether similar principles can be used to
facilitate word meaning acquisition in the computational framework, thus, naturally arised.
To provide an answer to this question, Chapter 5 showed on the example of the mutual
exclusivity principle that learning constraints indeed help to acquire word meanings
efficiently. In this scope, I additionally investigated the relevance of different interaction
patterns that a tutor may use to teach the system. Thereby, it was experimentally shown
that it is particularly important to correct wrong utterances of the learner. The evaluation
hence provided important insights into how a tutor can facilitate the system’s acquisition
of word knowledge.

In summary, I presented a biologically inspired framework for word meaning acquisition.
The framework comprises models for multiple aspects that seem to play a decisive role in
children’s word learning. Each part of the system was thoroughly evaluated. Thereby,
the pursued interdisciplinary approach turned out to be promising with respect to both,
understanding word learning by children more deeply as well as overcoming the difficulties
of existing methods.
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6.1. Conclusions

Regarding the four initial research goals, that were stated in Section 1.3, the following
conclusions can be drawn.

Unveil the links between developmental psychology and neurobiology: Word
learning theories often suggest that humans possess a dedicated system for the learning and
representation of language. As I have reviewed in Chapter 2, however, neurobiology does
not provide evidence in this respect. Findings rather demonstrate that the representations
of words and their respective meanings are distributed all over the cortex, thereby
recruiting areas whose primary functions are not language. Similarly, it is often assumed
that the acquisition of word meanings exclusively relies on one learning principle. Here, I
rather suggested that two principles may underlie the developmental patterns observed
in children. The first one has been in the focus of Chapter 3, where I showed that a
general associative model of cortical map formation is suitable to slowly acquire word
representations via Hebbian plasticity and homeostatic adaptation. On the contrary,
Chapter 4 investigated a principle for rapid word meaning acquisition. There, I argued
that the fast mapping and slow mapping processes, which both constitute hallmarks
of children’s word learning, are based on complementary learning mechanisms in the
hippocampus and neocortical sites. I reviewed a number of findings that support the
suggested two-fold dissociation into a slow and a rapid learning process.

Provide biologically inspired computational models for word learning: For
both identified learning processes, i.e. slow cortical and rapid hippocampal learning,
I presented novel computational models. Thereby, the neurobiological circuits and
principles which were hypothesized to underlie both learning processes strongly influenced
the architectures and functions of the respective models. More precisely, I presented a
dynamic neural field (DNF) for slow cortical map formation in Chapter 3. DNFs already
had been successfully used in this domain, however, their ability to self-organize via
learning had been very limited due to stability issues. In contrast to previous approaches,
my model not only incorporates Hebbian plasticity to adapt network connectivity, but also
relies on homeostatic principles being used in the central nervous system, namely synaptic
scaling and intrinsic plasticity. These self-regulating principles counteract degradations
in dynamic stability and therefore circumvent the problems existing methods are suffering
from. As a model for hippocampal learning, I presented an adaptive normalized Gaussian
network (NGnet) in Chapter 4. Similar to medial temporal lobe structures, my network
possesses two different learning modes, i.e. a statistical learning based on Expectation-
Maximization and a one-shot learning via hidden unit allocation. In accordance with
biological memory consolidation based on the reactivation of hippocampal memories,
I further recurrently coupled the network with an incremental discriminative feature
extraction. This allows the model to gradually transfer acquired knowledge into the
extracted features. In contrast to previous approaches, the model thus develops word
meaning representations using adaptive feature spaces. This turned out to be of particular
importance with respect to online learning. In Chapter 5, I additionally presented a
model for the development of a mutual exclusivity bias. In contrast to the abovementioned
networks, this model did not take inspiration from biology, but rather was solely based on
a phenomenological description of the desired functionality. This is because it is currently
unknown which circuits may underlie a similar kind of computation in the brain.
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Evaluate the computational models thoroughly: In each chapter, the evaluation
of the developed models pursued multiple objectives. Firstly, I applied them in simulations
that emulated real biological experiments. This served the purpose of assessing whether the
developed models exhibit computational characteristics similar to that of their neuronal
role models. Thereby, I obtained results that are in accordance with findings from
neurobiology and hence could prove the viability of the chosen implementations. Secondly,
the models were applied in selected word learning scenarios. This not only allowed an
investigation of the networks’ computational characteristics, but also revealed whether
the systems achieve a word learning performance as expected, i.e. qualitatively similar
to that of children. Each model succeeded in this test, insofar as the results were as
desired regarding both the dynamics of the learning process as well as the quality of
the developed word representations. Where possible, I further applied the models in
benchmark problems by which a performance comparison to state-of-art methods could
be carried out. Overall, the networks performed very well, insofar as results superior to
that of existing approaches were obtained.

Estimate the influence of human-robot interaction on word learning: In Chap-
ter 2, I argued that – besides the two word learning processes – learning constraints play
a pivotal role during children’s acquisition of word meanings. One of these biases, namely
the mutual exclusivity principle, was investigated in Chapter 5. It has previously been
suggested that children are innately equipped with this principle. As I discussed, however,
this seems problematic as the bias would hinder word learning in many cases where words
are non-exclusively used. I therefore suggested that children develop a mutual exclusivity
principle over the course of learning. To underpin this proposal, a computational model
was presented that allows a learner to detect a mutually exclusive word use and hence
circumvents the problems of an innate bias. The evaluation in Chapter 5, however, not
only included learning biases that are internal to a child (e.g. the mutual exclusivity
principle), but also those constraints that are externally applied by caregivers during
social interaction with the learner. In fact, such social-pragmatic biases may even be
more important, as caregivers can effectively constrain the learning environment (e.g.
via single word use) and therefore influence which training samples a learner can use for
word meaning acquisition. In detail, I investigated the effect of different conversation
patterns on the system’s word learning performance. A thorough evaluation revealed that
different interaction modes are of varying importance in this respect. Thereby, corrections
of wrong utterances of the learner were particularly relevant. The results thus highlighted
that an active learning by the system is advantageous, as it allows the system to utter
hypotheses on word meanings, request tutor’s feedback to them, and finally may result in
corrections of wrong hypotheses. Even though more experiments have to be carried out
in future, the results of Chapter 5 thus gave important insights into how novel words can
be most efficiently taught.

6.2. Suggestions for Future Research

In Chapters 3, 4, and 5 I already suggested future research directions regarding the
individual computational models. This not only included possible algorithmic extensions
of the models, but also experimental evaluations that could be carried out to validate
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hypotheses regarding the functions of the networks. Here, I finally present ideas on an
integrated computational framework for word meaning acquisition which combines the
individual aspects that were investigated in this thesis. Such an integration was out of
the scope of this thesis, but is necessary to finally equip robots with the desired word
learning capabilities. Assembling a coherent overall framework hence may constitute the
biggest challenge future research is facing.

Integrated Learning Architecture

An integration of the two proposed learning processes constitutes a first step towards such
an overall framework. Even though both learning processes, i.e. rapid hippocampal and
slow neocortical learning, exist in the brain and further seem to underlie word learning
by children, it is unlikely that they run independently from each other. In fact, both
mechanisms seem to be heavily intertwined, e.g. as suggested by CLS theory (McClelland
et al., 1995). It is thus reasonable to combine the two computational models that were
presented in Chapter 3 and Chapter 4. My proposal in this respect is illustrated in Fig. 6.1.
In detail, I suggest to consider topographic map formation using our homeostatic DNF to
be the standard learning paradigm. This means that slow associative learning underlies
the formation of topographic map hierarchies which are learned based on the statistic of
the sensory inputs presented to the system. This is in accordance with what has been
shown in Chapter 3. In addition, I consider the rapid learning mechanism of the NGnet
to be placed on top of such map hierarchies. In other words, activations within the maps
may serve as input to the NGnet, where the different activity patterns can be rapidly
memorized. The NGnet further can reactivate these memories, i.e. evoke activity patterns

rapid learning
in the MTL incl. 
the hippocampus

slow learning in 
neocortical hierarchies

composed of topographic mapsDNF

DNF

DNF

NGnet

slow encoding

rapid encoding

memory reactivation

sensory input

Figure 6.1.: Illustration of the proposed integrated learning architecture in which the rapid
learning mechanism of the NGnet modulates the slow learning mechanism of the
DNFs by altering the activity pattern statistic via reactivation.
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in the topographic maps. It consequently is able to modulate the slow learning mechanism
by altering the statistic of the activity patterns in the map. More precisely, the overall
pattern statistic comprises those patterns that are evoked via externally supplied inputs
plus those patterns that are internally reactivated by the NGnet. Depending on the ratio
between reactivated and externally evoked patterns, map formation consequently can be
dominated either by slow associative learning or the rapid learning mechanism of the
NGnet. How to appropriately balance the two learning paradigms – or in other words,
when to reactivate activity patterns and thereby drive map formation via the NGnet –
hence constitutes an additional question future research has to answer.

Towards Incremental Vocabulary Growth

In each experiment presented in this thesis, word learning was limited to a small set of
words. The meanings of these words further were acquired simultaneously and mainly
independent from each other. An interaction between the learning of the different words
only took place via the mutual exclusivity principle. In contrast, word learning by children
is characterized by an incremental growth of the vocabulary. This means that children
acquire their first words similar as it has been suggested in this thesis, i.e. starting with
an empty lexicon. Afterwards, however, they already possess a certain amount of word
knowledge which they can use during the learning of new words. In fact, it could be shown
that already learned words help children to learn new words faster (Gershkoff-Stowe and
Hahn, 2007). The exploitation of existing word knowledge hence may be one reason for
what is called the vocabulary spurt – an exponential increase in the amount of acquired
words which peaks around the age of 2 years (Ganger and Brent, 2004).

To model realistic word learning, an artificial system consequently should acquire words
incrementally, thereby making use of already gained word knowledge. Future research
hence should pursue the following two goals: Firstly, unveiling the mechanisms by which
existing vocabulary may aid learning of novel words and, secondly, implementing those
mechanisms in the computational framework. In the following, I just state three reasons
why existing word knowledge can be beneficial.

• Benefit from feature consolidation:
As it has been shown in Section 4.2.3, learning extracts word meaning relevant
features for each word. For example, the relative distance between two objects is a
relevant feature for words describing spatial object relations (e.g. is above). During
incremental vocabulary acquisition, it may be beneficial to re-use such features,
i.e. to gradually extend the pool of feature dimensions in which the meaning of
a novel word can be grounded. For example, a relative object distance could also
be relevant to the meaning of overlapping. This idea is supported by a study of
Hoffman et al. (2008) who showed that already acquired feature knowledge helps
children to learn new words. Overall, incorporating a feature consolidation may be
beneficial as individual feature dimensions can be relevant for multiple words and
hence should be re-used rather than being extracted multiple times.

• Benefit from attentional pruning of word meaning hypotheses:
Consider a mother who presents a red ball to its child and says ’Look! This one is
not blue, it’s red.’ Furthermore, assume that the child already knows the meaning
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of blue, whereas red constitutes a novel word. The child could infer multiple aspects
from the mother’s utterance. This includes that the uses of blue and red seem to be
mutually exclusive (see Section 5.2.1), but also that both words stem from the same
domain (color). In detail, given the child’s knowledge that blue refers to a color, it
can infer that red also refers to a color. The child consequently can focus attention
on the color dimensions, thereby pruning many wrong word meaning hypotheses.

• Benefit from explicit contrast:
In the previous example, the mother explicitly contrasted the meanings of blue
and red. The child thus knows that both words refer to distinct things. Since the
child already learned a category representation for the meaning of blue, it knows
which region of the input space cannot be covered by a red category. Explicit
contrasting hence not only focuses attention to relevant feature dimensions, but
also constrains the potential word meanings within the relevant feature space. This
principle not only holds for the learning of novel words, of course. Already existing
word knowledge could be consolidated via a similar mechanism, i.e. given knowledge
on an exclusive word use, the respective internal word categories could be adapted
such that they do not overlap anymore.

Provide Insights on Child-like Learning Processes to Developmental Psychology and
Neurobiology

The interdisciplinary approach, that was pursued in this thesis, established a link between
the individual disciplines developmental psychology, neurobiology, and computer science.
More precisely, I stated commonalities between findings from developmental psychology
and neurobiology based on which I developed biologically inspired computational models
for word learning. As it was illustrated in Fig. 1.3, however, it is desirable not only to
consider an unidirectional influence, insofar as computational modeling takes inspiration
from the other two disciplines. Future research rather should aim at closing the loop,
such that developmental psychology and neurobiology can gain insights from our compu-
tational models, too. The ultimate goal of our future research therefore is to develop a
computational framework based on which novel hypotheses regarding word learning in
children can be stated and finally validated in real experiments with the help of the other
two disciplines.
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Clustering Multivariate Normal
Distributions

The clustering of multivariate normal distributions is of interest in many domains. Its
main technical application is speech recognition using Hidden Markov Models (HMMs).
Thereby, the aim is to tie acoustically similar states which each use Gaussian mixtures to
represent the observed speech data (Young and Woodland, 1993). In the present work,
the clustering of Gaussians plays a key role in the merging of the hidden units of an
NGnet (cf. Section 4.2.2). This appendix gives a detailed derivation of the formulas that
are used during this process.

In the following, the general case of clustering K multivariate Gaussian distributions
G(a,μi,Σi) with i = 1, . . . ,K is considered. Thereby, a Gaussian distribution

G(a,μi,Σi) =
1

(2π)D/2|Σi|1/2 · exp
(
−1

2
(a− μi)

TΣ−1
i (a− μi)

)
(A.1)

is parametrized by its mean μi and its covariance matrix Σi. Furthermore, D denotes
the dimensionality of the space, i.e. a ∈ R

D. The quality of a clustering solution can be
measured by the functional F

F =

K∑
i=1

ωi ·D(G(a,μi,Σi) ||G(a,m,S) ), (A.2)

where G(a,m,S) denotes the resulting Gaussian, D is a divergence measure, and ωi

are weights that control the influence of the individual distributions on the clustering
process. W.l.o.g. it is assumed that

∑
i ωi = 1. We consequently aim at finding an

optimal Gaussian G(a,m∗,S∗) that minimizes F .
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Existing approaches for solving this task differ in the divergence measures they use. In
the following, two of them – namely Kullback-Leibler divergence based clustering (Davis
and Dhillon, 2006) and Jenson-Shannon divergence based clustering (Myrvoll and Soong,
2003) – are reviewed.

Kullback-Leibler Divergence Based Clustering

The Kullback-Leibler divergence is defined as

DKL( p(a) || q(a) ) =
∫
a

p(a) · log p(a)

q(a)
da, (A.3)

which for Gaussian pdfs simplifies to

DKL(G(a,μi,Σi) ||G(a,m,S) ) =
1

2
· (trace(ΣiS

−1)− log |ΣiS
−1| − d

)
+
1

2
· (μi −m)TS−1(μi −m)

=
1

2
· [DBurg(Σi,S) +DMahal(μi,m,S)] . (A.4)

Thereby, DBurg denotes the Burg matrix divergence and DMahal the Mahalanobis distance.
When using this divergence measure the optimization function in Eq. (A.2) becomes

FKL =
1

2
·

K∑
i=1

ωi · [DBurg(Σi,S) +DMahal(μi,m,S)] . (A.5)

The mean m∗ and the covariance matrix S∗ of the optimal Gaussian G(a,m∗,S∗) can
be obtained by setting the derivative of FKL with respect to the parameters to 0.

0
!
=

∂FKL

∂m

=
1

2
·

K∑
i=1

ωi ·
[
∂DBurg(Σi,S)

∂m
+

∂DMahal(μi,m,S)

∂m

]

=
1

2
·

K∑
i=1

ωi ·
[
0 + 2 · S−1(μi −m)

]
= S−1 ·

K∑
i=1

ωi · (μi −m)

= −m+
K∑
i=1

ωi · μi. (A.6)

Consequently, the mean of the optimal Gaussian is given by

m∗ =

K∑
i=1

ωi · μi. (A.7)
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In a similar way, the covariance matrix can be calculated by setting

0
!
=

∂FKL

∂S−1

=
1

2
·

K∑
i=1

ωi ·
[
∂DBurg(Σi,S)

∂S−1
+

∂DMahal(μi,m,S)

∂S−1

]

=
1

2
·

K∑
i=1

ωi ·
[
ΣT

i − 1

|ΣiS| · |ΣiS| · ST + (μi −m)(μi −m)T
]

=
1

2
·

K∑
i=1

ωi ·
[
Σi − S + (μi −m)(μi −m)T

]
= −S +

K∑
i=1

ωi ·
[
Σi + (μi −m)(μi −m)T

]
, (A.8)

which leads to

S∗ =
K∑
i=1

ωi ·
(
Σi + (μi −m∗)(μi −m∗)T

)
. (A.9)

Jenson-Shannon Divergence Based Clustering

The Jenson-Shannon divergence is a symmetrical version of the Kullback-Leibler divergence
and is defined as

DJS( p(a) || q(a) ) = 1

2
(DKL( p(a) || q(a) ) +DKL( q(a) || p(a) )) . (A.10)

For Gaussian pdfs it simplifies to

DJS(G(a,μi,Σi) ||G(a,m,S) ) =
1

4
· trace

{
(Σ−1

i + S−1)(μi −m)(μi −m)T

+ΣiS
−1 + SΣ−1

i − 2I
}
. (A.11)

Using DJS in Eq. (A.2) the function to be optimized becomes

FJS =
1

4
·

K∑
i=1

ωi · trace
{
(Σ−1

i + S−1)(μi −m)(μi −m)T +ΣiS
−1 + SΣ−1

i − 2I
}
.

(A.12)
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As before, the parameters m∗ and S∗ of the optimal Gaussian can be obtained by setting
the derivative of FJS with respect to the parameters to 0.

0
!
=

∂F
∂m

=
1

4
·

K∑
i=1

ωi ·
∂trace

{
(Σ−1

i + S−1)(μi −m)(μi −m)T
}

∂(μi −m)(μi −m)T
· ∂(μi −m)(μi −m)T

∂m

=
1

4
·

K∑
i=1

ωi · (Σ−1
i + S−1)T · 2 · (μi −m)

=
1

2
·

K∑
i=1

ωi · (Σ−1
i + S−1)(μi −m)

= −
K∑
i=1

ωi · (Σ−1
i + S−1)m+

K∑
i=1

ωi · (Σ−1
i + S−1)μi. (A.13)

Consequently, the mean of the optimal Gaussian can be calculated by

m∗ =

[
K∑
i=1

ωi · (Σ−1
i + S∗−1

)

]−1

∗
[

K∑
i=1

ωi · (Σ−1
i + S∗−1

)μi

]
. (A.14)

Similarly, it is

0
!
=

∂FJS

∂S−1

=
1

4
·

K∑
i=1

ωi ·
∂trace

{
(Σ−1

i + S−1)(μi −m)(μi −m)T +ΣiS
−1 + SΣ−1

i − 2I
}

∂S−1

=
1

4
·

K∑
i=1

ωi ·
[
(μi −m)(μi −m)T +Σi − SΣ−1

i S
]

=

{
K∑
i=1

ωi ·
[
(μi −m)(μi −m)T +Σi

]}− S

{
K∑
i=1

ωi ·Σ−1
i

}
S, (A.15)

which fits the matrix Ricatti equation

0 = A+BS + SB∗ − SCS (A.16)

with

A =
K∑
i=1

ωi ·
[
(μi −m∗)(μi −m∗)T +Σi

]
(A.17)

B = 0 (A.18)

C =
K∑
i=1

ωi ·Σ−1
i . (A.19)
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A solution to this equation is given by

S∗ = [u1, . . . ,ud] ∗ [w1, . . . ,wd]
−1 (A.20)

with ui and wi being the upper and lower parts of vector vi

vi =

[
ui

wi

]
, (A.21)

where v1, . . . ,vd are the eigenvectors corresponding to the d positive eigenvalues (sorted
in descending order) of matrix [

B A
C −B∗

]
. (A.22)

Since the formulas for the optimal mean m∗ and covariance matrix S∗ depend on each
other, their calculation involves the iterative application of Eq. (A.14) and Eq. (A.20).
Thereby, the optimal mean of the Kullback-Leibler divergence based clustering, i.e.

m∗ =
K∑
i=1

ωi · μi, (A.23)

constitutes a good starting point of this iterative process.
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Information-Theoretic Feature
Extraction

The aim of a feature extraction is to find a function f that transforms an input pattern x
into a feature pattern y, i.e. y = f(x), such that the feature patterns are better suited
for a subsequent task than the corresponding input patterns are. With respect to a
classification task, the primary goal of a feature extraction consequently is to find feature
dimensions that facilitate an association of the patterns y with their respective class
labels c. Multiple approaches for a class-discriminative feature extraction exist. Here, an
information-theoretic approach recently proposed by Hild et al. (2006) is of particular
interest as it constitutes one of the components of the computational model presented
in Section 4.2. This appendix entails a detailed review of the method of Hild et al. and
further provides a derivation of the important formulas.

Mutual Information Criterion

To learn a feature extraction function f , a criterion for the quality of the mapping
f : Sx 	→ Sy has to be defined. Here, Sx denotes the input space, whereas Sy refers to
the feature space. An information-theoretic criterion suited for a classification task is the
mutual information between the feature patterns and the class labels. It is defined as

I(Y ;C) = H(Y )−H(Y |C), (B.1)

where H(Y ) and H(Y |C) denote Shannon’s marginal entropy and conditional entropy,
respectively. The mutual information describes the amount of information that the
feature patterns y carry about the class labels c. For the extraction of class-discriminative
features, we consequently strive for a function f that maximizes I(Y ;C).

145



Appendix B Information-Theoretic Feature Extraction

The mutual information can be calculated according to

I(Y ;C) = −
∫
y

p(y) · log [p(y)] dy +
∑
c

p(c) ·
∫
y

p(y|c) · log [p(y|c)] dy

= −
∫
y

∑
c

p(y, c) · log [p(y)] dy +
∑
c

p(y, c)

p(y|c) ·
∫
y

p(y|c) · log
[
p(y, c)

p(c)

]
dy

=
∑
c

∫
y

p(y, c) · log
[

p(y, c)

p(y) · p(c)
]

dy. (B.2)

Here, p(y) and p(c) are the marginal probabilities, p(y|c) is the conditional probability,
and p(y, c) is the joint probability between the feature patterns and the class labels.
The problem in using this criterion is that the aforementioned probabilities are typically
unknown. They rather have to be estimated via computationally expensive approaches.
Hild et al. (2006) suggested to reduce this burden by using Renyi’s quadratic entropy
(Renyi, 1970) instead of Shannon’s entropy. Renyi’s quadratic entropy is defined as

H2(Y ) = − log

∫
y

p(y)2dy

H2(Y |C) = −
∑
c

p(c) · log
∫
y

p(y|c)2dy, (B.3)

which leads to

I2(Y ;C) = H2(Y )−H2(Y |C)

= − log

∫
y

p(y)2dy +
∑
c

p(c) · log
∫
y

p(y|c)2dy. (B.4)

Hild et al. further proposed to use Parzen window density estimation to approximate the
required probabilities on a per sample basis. Parzen windowing (Parzen, 1962) therefore
places a kernel at each sample. The sum of these kernels finally yields the sample density.
We use Gaussian kernels of the form

G(y,Σ) =
1

(2π)Dy/2|Σ|1/2 · exp
(
−1

2
yTΣ−1y

)
, (B.5)

by which the probability p(y) can be approximated as

p(y) =
1

N
·

N∑
i=1

G(y − yi, σI). (B.6)

Thereby, yi with i = 1 . . . N are the individual samples at which the kernels have been
placed and σ is the standard deviation of the kernels. The strength of combining Parzen
windowing with Renyi’s quadratic entropy measure arises from the fact that∫

y

[G(y − yi,Σi) ·G(y − yj ,Σj)] dy = G(yi − yj ,Σi +Σj). (B.7)
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This means that the convolution of two Gaussians centered at individual samples yi and
yj can be calculated by evaluating one Gaussian centered at yj at the point yi. Thereby,
the covariance matrix of that Gaussian equals the sum of the covariance matrices of the
individual Gaussians. By using Eq. (B.7) the mutual information criterion of Eq. (B.4)
can be calculated as

I2(Y ;C) = − log

∫
y

⎛⎝ 1

N2

N∑
i=1

N∑
j=1

G(y − yi, σI) ·G(y − yj , σI)

⎞⎠ dy

+
K∑
c=1

Nc

N
· log

∫
y

⎛⎝ 1

N2
c

Nc∑
i=1

Nc∑
j=1

G(y − y
(c)
i , σI) ·G(y − y

(c)
j , σI)

⎞⎠ dy

= − log
1

N2

N∑
i=1

N∑
j=1

G(yi − yj , 2σI)

+
K∑
c=1

Nc

N
· log 1

N2
c

Nc∑
i=1

Nc∑
j=1

G(y
(c)
i − y

(c)
j , 2σI). (B.8)

Here, p(c) is set according to p(c) = Nc/N , where Nc denotes the number of samples in
class c, K is the number of classes, and N =

∑K
c=1 Nc is the total number of samples.

Furthermore, y(c)
i refers to the i-th sample of class c, whereas yi refers to the i-th sample

of the overall training set.

Derivatives for Learning

Finding a function y = f(x) that maximizes Eq. (B.8) hence corresponds to learning
discriminative features. Given that the derivative ∂y/∂f exists, this can be achieved
via stochastic gradient ascent on the mutual information criterion. More precisely, for a
linear feature extraction of form y = R · x (like the one applied in Section 4.2.3), the
feature extraction matrix R can be iteratively learned according to

Rt+1 = Rt + η · ∂I2(Y ;C)

∂Rt

= Rt + η ·
(
∂H2(Y )

∂Rt
− ∂H2(Y |C)

∂Rt

)
. (B.9)

Here, η is a learning rate. Due to the fact that

∂yk

∂R
= xT

k , (B.10)

the derivative of the mutual information criterion with respect to the feature extraction
matrix R (see Eq. (B.9)) can be calculated on the basis of individual training samples
(xt, ct), where xt refers to the t-th input pattern and ct is the associated class label.
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Thereby, the following formulas are used:

∂H2(Y )

∂R
=

N∑
k=1

∂H2(Y )

∂yk
· ∂yk

∂R

=
N∑

k=1

{
− 1

1
N2

∑N
i=1

∑N
j=1 G(yi − yj , 2σI)

· 1

N2

·
(

N∑
l=1

[
G(yl − yk, 2σI) · (−1

2
) · 1

4σ2
· (yl − yk) · (−1)

]

+
N∑
l=1

[
G(yk − yl, 2σI) · (−1

2
) · 1

4σ2
· (yk − yl)

])

·∂yk

∂R

}
=

N∑
k=1

N∑
l=1

G(yl − yk, 2σI) · (yk − yl)

4σ ·∑N
i=1

∑N
j=1 G(yi − yj , 2σI)

· ∂yk

∂R
(B.11)

− ∂H2(Y |C)

∂R
= −

K∑
c=1

Nc∑
k=1

∂H2(Y |C)

∂y
(c)
k

· ∂y
(c)
k

∂R

=

K∑
c=1

Nc∑
k=1

⎧⎨⎩Nc

N
· 1

1
N2

c

∑Nc

i=1

∑Nc

j=1 G(y
(c)
i − y

(c)
j , 2σI)

· 1

N2
c

·
(

Nc∑
l=1

[
G(y

(c)
l − y

(c)
k , 2σI) · (−1

2
) · 1

4σ2
· (y(c)

l − y
(c)
k ) · (−1)

]

+

Nc∑
l=1

[
G(y

(c)
k − y

(c)
l , 2σI) · (−1

2
) · 1

4σ2
· (y(c)

k − y
(c)
l )

])

·∂y
(c)
k

∂R

}

=
K∑
c=1

Nc∑
k=1

Nc∑
l=1

Nc ·G(y
(c)
l − y

(c)
k , 2σI) · (y(c)

l − y
(c)
k )

4σN ·∑Nc

i=1

∑Nc

j=1 G(y
(c)
i − y

(c)
j , 2σI)

· ∂y
(c)
k

∂R
(B.12)

As can be seen, the maximization of the mutual information criterion results in pair-wise
interactions between the feature patterns. These interactions can be interpreted in terms
of information forces (Torkkola, 2003) that the different samples exert on each other.
According to

∂H2(Y )

∂yk
∝

N∑
l=1

γkl · (yk − yl) (B.13)

the first derivative results in repulsion forces that push the feature pattern yk away from
all other patterns of the training set. Thereby, γkl is a factor that influences the strength
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of the force between yk and yl. The factors γ depend on the pair-wise distances between
the feature patterns. In contrast to the repulsion forces caused by ∂H2(Y )/∂yk, the
derivative

− ∂H2(Y |C)

∂y
(c)
k

∝
Nc∑
l=1

γ
(c)
kl · (y(c)

l − y
(c)
k ) (B.14)

induces attraction forces between samples of the same class. The mutual information
criterion is consequently maximized when the feature extraction matrix R transforms
inputs of the same class into feature patterns that are close to each other. At the same
time, however, the distance to the feature patterns of other classes is maximized. This
finally results in a feature space in which the different patterns cluster according to the
classes they belong to. It is worth noting that other methods for discriminative feature
extraction apply in part similar techniques. Linear Discriminant Analysis (LDA), for
example, serves the maximization of the ratio of the inter-class variance and the intra-class
variance.

Sequential Learning Scheme

The pair-wise interactions result in an algorithmic complexity of O(N2), i.e. the compu-
tational cost quickly increases as the number of training samples increases. Since mutual
information based feature extraction is a statistical learning method, a large training set is
needed. For this reason, it is important to reduce the algorithmic complexity. According
to Hild et al. (2006), the present learning method can be approximated by an algorithm of
complexity O(N). Key to this approach is that each sample yk does not have to interact
with all other samples yl with l = 1 . . . N , but only with a randomly chosen sample yl

with l ∈ {1, . . . , N}. W.l.o.g. we assume that a sample yk only interacts with sample
yk+1. It can be shown, that this simplified interaction converges in the limit to the result
of the original algorithm, if the training samples are presented multiple times and the
sample order is randomized for each presentation (Erdogmus et al., 2003).

Accordingly, the mutual information criterion of Eq. (B.8) simplifies to

I2(Y ;C) = − log
1

N

N∑
i=1

G(yi − yi+1, 2σI)

+
K∑
c=1

Nc

N
· log 1

Nc

Nc∑
i=1

G(y
(c)
i − y

(c)
i+1, 2σI). (B.15)

If we set �yk = yk − yk+1 and �xk = xk − xk+1, then the respective derivatives for
learning the feature extraction matrix R are:

∂�yk

∂R
= �xT

k (B.16)

∂H2(Y )

∂R
=

N∑
k=1

∂H2(Y )

∂�yk
· ∂�yk

∂R

=
N∑

k=1

G(�yk, 2σI)

8σ ·∑N
i=1 G(�yi, 2σI)

· �yk · �xT
k (B.17)
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− ∂H2(Y |C)

∂R
= −

K∑
c=1

Nc∑
k=1

∂H2(Y |C)

∂�y
(c)
k

· ∂�y
(c)
k

∂R

= −
K∑
c=1

Nc∑
k=1

Nc ·G(�y
(c)
k , 2σI)

8σN ·∑Nc

i=1 G(�y
(c)
i , 2σI)

· �y
(c)
k · �x

(c)T

k . (B.18)

In summary, the feature extraction matrix R can be learned as shown in Algorithm B.1.
Given a training set composed of samples (xt, ct), the method iteratively updates R
according to the information forces the samples exert on each other. R finally produces
a class-discriminative feature space in which the patterns of the different classes are
separated, whereas those of the same class are close-by.

Algorithm B.1 Sequential Feature Extraction

{Inputs}
X = {x1, . . . ,xN}
C = {c1, . . . , cN}
R = RINIT

{Create Class-Specific Input Sets}
X(c) ← {x(c)

1 , . . . ,x
(c)
Nc

} with c = 1, . . . ,M

loop

{Change Presentation Order}
Randomize the elements of X and X(c), ∀c

{Calculate the Respective Feature Sets}
Y ← R ·X
Y (c) ← R ·X(c), ∀c

{Learning}
Calculate the derivative ∂I2(Y ;C)/∂R using Eq. (B.17) and Eq. (B.18)
Update R using Eq. (B.9)

end loop
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