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Abstract

Loop integrals are essential for the computation of predictions in quantum field theories
like the Standard Model of elementary particle physics. For instance, in the case of
anomalous dimensions of QCD or the pressure in thermal QCD we face so-called tadpole
loop integrals. In this thesis we study an important subset of these integrals, the fully
massive vacuum (bubble) integrals. For the first time, we consider fully massive tadpoles
at the 5-loop level pioneering the way for future high-precision calculations. We have
implemented a Laporta algorithm in the algebraic manipulator FORM using generalized
recurrence relations, a combination of integration-by-parts and space-time dimensional
identities. This enabled us to perform the reduction of fully massive tadpoles up to
the 5-loop level to a basis of master integrals. We modified the implementation in such
a way that difference equations are obtained for a large number of the yet unknown
master integrals. We started to solve the system of difference equations by means of
factorial series expansions.
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Preface

In recent years high-precision calculations of observables became more and more important because
of the increasing precision provided by experiments. This holds true for many areas in physics. The
physics of elementary particles are described by quantum field theories (QFT) with the Standard
Model of particle physics given by quantum chromodynamics (QCD) and the electroweak interac-
tions, with quantum electrodynamics (QED) a part of the electroweak interactions. A powerful
tool to study and calculate measurable observables of quantum field theories is the perturbative
expansion in a small parameter.

High-order perturbative computations with an increasing number of loops and/or external legs
necessitate the use of computer algebra in order to deal with the growing complexity of these com-
putations. As a consequence, a new field in theoretical physics evolved working on how the different
steps in a perturbative calculation via Feynman diagrams [1] can be done as efficient as possible
or developing alternative approaches as the very important scattering amplitude techniques, see
e. g. the reviews [2, 3].

In the traditional approach based on the evaluation of Feynman diagrams, any perturbative
computation can be basically divided into four different steps. The first one, the combinatorial part,
consists of the complete generation of all relevant Feynman diagrams including its symmetry factors.
After specifying appropriate Feynman rules, the second step is translating the diagrammatic objects
(Feynman graphs) to actual mathematical expressions. At this point, one is usually confronted with
a large number of Feynman integrals. The integrals are, in general, unknown and the calculation
very difficult. Therefore, in a third step, the Feynman integrals are algebraically reduced to a small
set of so-called master integrals by employing linear relations between different Feynman integrals.
The last step, evaluating the remaining master integrals, is done either fully analytically, or if
not possible, numerically in an expansion [4] for instance in dimensional regularization around the
desired space-time dimension d.

In this thesis we focus on the last two steps for a particular class of integrals, the so-called fully
massive vacuum (bubble) integrals also called tadpoles. This integrals occur in many perturbative
calculations such as asymptotic expansions [5] with applications like the QCD β-function and
anomalous dimensions [6, 7, 8] or the ρ-parameter [9, 10]. They also appear in lower space-time
dimensions in the dimensionally reduced effective theory framework of QCD at high temperature
T [11, 12]. Up to now, the fully massive mi = m and QED-type ones mi ∈ {0,m} are known up to
the four-loop level [13, 14, 15]. We will, for the first time, study fully massive vacuum integrals at
the five-loop level pioneering the way for future high-precision calculations.

The thesis is organized as follows. In Chapter 1 we give a brief introduction to QCD and describe
the applications of fully massive tadpoles in zero- and finite-temperature QCD. In Chapter 2 we
review reduction methods for Feynman integrals such as the integration-by-parts identities [16, 17]
and the Laporta algorithm [18]. In Chapter 3 the methods are applied to fully massive tadpoles
up to the five-loop level. This means, we perform a reduction to master integrals and determine
for the first time the basis of master integrals at five-loop. Also, we adapt our implementation in
FORM [19, 20, 21] in such a way that difference equations [18, 22] are obtained and determined for a
large number of master integrals the corresponding difference equations. We start and solve these
difference equations numerically by means of factorial series expansions in Chapter 4. A summary
and concluding remarks are given in Chapter 5.
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1 Introduction and Motivation

The following discussion is intended to motivate the study of massive vacuum integrals (tadpoles)
rather than to give a detailed introduction to perturbative quantum field theory. For the latter we
refer to e. g. [23, 24, 25].

Although there are many applications of massive tadpoles, we review here two specific applica-
tions. The first is the beta-function of quantum chromodynamics (QCD) which is, up to now, known
at the 4-loop level. The knowledge of this function allows, in combination with the anomalous di-
mensions of fields, the reconstruction of all renormalization constants (RC) which are necessary
to renormalize the theory. The second application is the study of equilibrium thermodynamics
of hot QCD. We consider finite-temperature QCD at high temperature T and vanishing chemical
potential µ. In this regime, perturbation theory is applicable and the observable of interest will be
the free energy F or, equivalently, the thermodynamic pressure P . We will show that the specific
subset of Feynman integrals, the massive vacuum integrals or tadpoles, play a crucial role in the
computation of the corresponding perturbative corrections.

In this chapter we start and show what is exactly meant by saying “a massive tadpole integral”.
Then we proceed and give in Section 1.2 the basic facts of the theory of strong interactions described
by the non-Abelian SU(3) gauge theory by Yang-Mills [26]. This is followed in Section 1.2.1
by the renormalization group equation and the definition of the beta-function and anomalous
dimensions of fields. In Section 1.2.2 we outline a procedure [27] which simplifies the computation
of beta-functions and anomalous dimensions to massive tadpole integrals. Then we consider as
another application, the thermodynamic pressure of QCD at high temperature. In Section 1.3.1 we
introduce the basics of thermal field theory and outline the imaginary time formalism. In Section
1.3.2 we show, on the basis of scalar field theory, the complications of a weak-coupling expansion in
that approach. Finally, in Section 1.3.3 we review the concept of dimensional reduction [28, 29] as
a solution to the infrared problem of hot non-Abelian gauge theories [30]. The solution turns out
out to be a sequence of two 3-dimensional effective field theories [31, 32] and calculations therein
require the knowledge of massive tadpole integrals.

1.1 In a Nutshell: Massive Tadpoles, Recurrence Relations and

Difference Equations

A vacuum integral or tadpole is a Feynman integrals with no external legs or lines. For example,
let us consider the 1-loop massive tadpole in d-dimensional Euclidean space-time

J(n) =

∫
ddk

πd/2

1

(k2 +m2)n
, (1.1)

with massive propagator 1/(k2 + m2) to power n. From the diagrammatical point of view, the
vacuum integral in Eq. (1.1) is represented by the following diagrams

J(1) = , J(2) = , . . . , (1.2)

where a ’dot’ indicates that the corresponding propagator carries an additional power. In order to
avoid any misunderstandings, we point out that the diagrams in Eq. (1.2) represent single Feynman
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integrals not to be confused with a Feynman diagram which, in general, results in a large number
of Feynman integrals. The massive tadpole in Eq. (1.1) can be explicitly written in terms of
Γ-functions and reads

J(n) =
Γ(n− d/2)

Γ(n)
(m2)d/2−n , (1.3)

where we made use of the d-dimensional unit sphere

∫

dΩd =
2πd/2

Γ(d/2)
, (1.4)

and the definition of the beta function

∫ 1

0
dxxα−1(1− x)β−1 = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
. (1.5)

The massive vacuum integral in Eq. (1.1) and Feynman integrals in general are divergent and need
to be regularized. There is a large variety of regularization prescriptions, the most prominent
ones are cutoff (Pauli-Villars [33]) and dimensional regularization [4]. In this work we use, if not
otherwise indicated, dimensional regularization. However, let us inspect the massive tadpole J(2)
in both regularizations, with an integral momentum cutoff Λ and in dimensional regularization in
d = 4− 2ǫ space-time dimensions

cutoff Λ : J(2) −→
Λ→∞

log

(
Λ

m2

)

+O(Λ−1) ,

dimensional : J(2) −→
d→4

1

ǫ
− log

(

m2
)

− γ +O(ǫ) ,

(1.6)

where γ is the Euler-Mascheroni constant. In cutoff regularization we recognize that J(2) has a
logarithmic divergence which corresponds to the 1/ǫ pole in dimensional regularization.

In the following we try to find a relation between J(n + 1) and J(n), by shifting n → n + 1 in
Eq. (1.3) we get

J(n + 1) =
Γ(n− d/2 + 1)

Γ(n+ 1)
(m2)d/2−n−1 =

n− d/2
nm2

· Γ(n− d/2)

Γ(n)
(m2)d/2−n = −d− 2n

2nm2
J(n) , (1.7)

where we made use of the property Γ(x)x = Γ(x+ 1). The iterative use of the relation in Eq. (1.7)
allows us to relate J(n) with arbitrary power n to J(1). In Chapter 2 we will refer to J(1) as a master
integral and to the relation in Eq. (1.7) as a recurrence relation. Of course, the recurrence relation
has been derived from the explicit solution in Eq. (1.3) which is usually not known. However, as
we will see later, relations such as in Eq. (1.7) can be directly computed from the definition, here
Eq. (1.1), by employing e. g. the integration-by-parts method [16, 17].

Looking from a different point of view on Eq. (1.7), we realize that it is a so-called linear difference
equation [22],

p1(n)J(n+ 1) + p0(n)J(n) = 0 , (1.8)

with polynomial coefficients p0(n) = d− 2n, p1(n) = 2nm2. This can be solved in order to get an
expression for the unknown function J(n), e. g. in terms of an ǫ-expansion cf. Eq. (1.6). This issue
will be discussed in Chapter 4.

Beyond 1-loop, we encounter a large number of different massive vacuum integrals, see Chapter
3. Some examples are shown in Figure 1.1.
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Figure 1.1: Some of the massive tadpoles occuring at the 2-, 3-, 4- and 5-loop level.

1.2 Quantum Chromodynamics and Yang-Mills Theory

The development of a theory of strong interactions dates back to the mid 1950s where it was by far
not clear whether the non-Abelian SU(3) Yang-Mills gauge theory [26] really describes the strong
interactions. This changed after it was shown that Yang-Mills theories are, in fact, renormalizable
[34] and share the property of asymptotic freedom [35, 36]. The theory of strong interactions is
described by the non-Abelian gauge theory with gauge group SU(3) acting in color space with
quarks in the fundamental representation. The famous Yang-Mills Lagrangian reads

L = −1

4
F aµνF

aµν +

Nf∑

f=1

ψ̄fi [i6D −mf ]ij ψ
f
j , (1.9)

with field strenght tensor F aµν and covariant derivative Dµ ,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAaµA

b
ν , [Dµ]ij = δij∂µ − igAaµtaij . (1.10)

The fields Aaµ denote the gluon fields with adjoint index a = 1, . . . , 8 and ψfj the quark spinors with
flavor index f and color index j = 1, 2, 3. The generators of the symmetry group can be represented
by Hermitian matrices ta satisfying the commutation relations

[ta, tb] = ifabctc , (1.11)

where fabc are the so-called structure functions. The basis of the matrices ta is usually chosen in
such a way that the functions fabc are completely antisymmetric. From the Lagrangian in Eq. (1.9)
and the covariant derivative Dµ in Eq. (1.10) we see that the matrices ta connect the adjoint gluon
representation to the fundamental and anti-fundamental quark spinors.

1.2.1 Renormalization, Beta-function and Anomalous Dimensions

In the following discussion we use the modified minimal substraction scheme MS [34]. In covariant
gauge the QCD Lagrangian (1.9) becomes

L = −1

4
F aµνF

aµν +

Nf∑

f=1

ψ̄f [i6D −mf ]ψf − 1

2ξ

(

∂µAaµ

)2
+ ∂µc̄a

(

∂µc
a − gfabccbAcµ

)

, (1.12)

where the color indices of quark fields ψf are suppressed and ca denote the ghost fields. The
parameter ξ is the gauge parameter of the covariant gauge and ξ = 0 corresponds to Landau gauge.
From the Lagrangian (1.12), Greens functions can be computed and need to be renormalized. Let
us therefore write the bare Lagrangian of Eq. (1.12) in terms of renormalized fields

L = −1

4
Z3 (∂µAν − ∂νAµ)2 − 1

2
gZ3g

1 (∂µAν − ∂νAµ) fabcAbµA
c
ν −

1

4
g2Z4g

1 fabcfadeAbµA
c
νA

µdAνd

− Z2g
ξ

1

2ξ
(∂νAµ)2 + Zc3∂ν c̄ (∂νc) + gZccg1 ∂µc̄afabcAbµc

c + Z2ψ̄
f
(

i6∂ + gZψψg1 Z−1
2 6A− Zmmf

)

ψf ,

(1.13)

3



where we have omitted the sum over quark flavors f in the last term. The wave-function renor-
malization constants (RC) are

Aaµ0 =
√

Z3A
aµ , ψf0 =

√

Z2ψ
f , ca0 =

√

Zc3c
a , (1.14)

and mass, coupling and gauge parameter are renormalized by

g0 = Zgg , m0,f = Zmmf , ξ0 = Zξξ , Z2g
ξ =

Z3

Zξ
, (1.15)

where Z2g
ξ is expressed in terms of Zξ and Z3. The four vertex renormalization constants Z3g

1 , Z4g
1 ,

Zccg1 , Zψψg1 renormalize the 3-gluon, 4-gluon, ghost-ghost-gluon and quark-quark-gluon vertex, re-
spectively. The Slavnov-Taylor identities impose certain relations among the counterterms. As it
turns out, we can write all vertex renormalization constants in terms of Zg and the wave-function
RCs in Eq. (1.14),

Zg =
√

Z4g
1 (Z3)−1 = Z3g

1 (Z3)−3/2 = Zccg1 (Z3)−1/2(Zc3)−1 = Zψψg1 (Z3)−1/2(Z2)−1 , (1.16)

and Zξ = Z3. Since we are working in the modified minimal substraction scheme MS, all renor-
malization constants are independent of momenta and masses. This means we can, right from the
beginning, work with massless quarks. In this framework, the renormalization constants can be
written as

Z(h) = 1 +
∞∑

n=1

z(n)(h)

ǫn
, (1.17)

where h ≡ g2/(16π2). The corresponding anomalous dimensions are defined by

γ(h) ≡ −µ2d logZ(h)

dµ2
= h

∂z(1)(h)

∂h
= −

∞∑

n=0

(γ)nh
(n+1) , (1.18)

and, in particular, for Zh = Z2
g the associated anomalous dimension is called beta function

β(h) ≡ −µ2d logZh(h)

dµ2
= 2γg(h) = 2h

∂z
(1)
g (h)

∂h
= −

∞∑

n=0

βnh
(n+1) , (1.19)

where z(1)(h) is the coefficient of the first pole in ǫ, cf. Eq. (1.17). Let us briefly show where this
formula comes from and recall the gauge coupling renormalization in Eq. (1.15), keeping the mass
scale µ, we have

h0 = Zhµ
2ǫh . (1.20)

The mass scale is arbitrarily chosen and the bare quantity does not depend on µ, consequently

µ−2ǫµ2 ∂h0

∂µ2
= 0 =

∂Zh
∂µ2

hµ2 + Zh
∂h

∂µ2
µ2 + Zh h ǫ , (1.21)

dividing the equation by 1/Zh, using the chain rule and identifying the resulting terms with β(h)
we get

[−ǫ+ β(h)] h
∂ logZh
∂h

= −β(h) , (1.22)

with the formal solution

Zh(h) = exp

(
∫ h

0

dh′

h′
β(h′)

ǫ− β(h′)

)

. (1.23)
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Solving Eq. (1.23) for small h we obtain the desired expansion

Zh = 1 +
β0

ǫ
h+

β1

2ǫ
h2 +

[
β2

3ǫ
− β0β1

6ǫ2

]

h3 +

[

β3

4ǫ
− 3β2

1 + 4β0β2

24ǫ2
+
β2

0β1

12ǫ3

]

h4

+

[

β4

5ǫ
− 14β1β2 + 9β0β3

60ǫ2
+

17β0β
2
1 + 12β2

0β2

120ǫ3
− β3

0β1

20ǫ4

]

h5 +O(h6) . (1.24)

Let us again consider Eq. (1.18), with help of Eq. (1.16) we find the following relations between
anomalous dimensions and the beta function

β = γ4g
1 − 2γ3 = 2γ3g

1 − 3γ3 = 2γccg1 − 2γc3 − γ3 = 2γψψg1 − 2γ2 − γ3 . (1.25)

As we already mentioned, the renormalization constants can be reconstructed from anomalous
dimensions γ and beta function β, for an arbitrary Z we have the general form

[−ǫ+ β(h)] h
∂ logZ

∂h
+ γ3(h)ξ

∂ logZ

∂ξ
= −γ(h) , (1.26)

where the dependence on µ enters through the coupling h and gauge parameter ξ. In order to com-
pute all renormalization constants of the QCD Lagrangian (1.13) we need, according to Eq. (1.16),
at least the wave-function RCs Z3, Z2, Z

c
3 and mass RC Zm in addition to the gauge couling renor-

malization constant Zg. Alternatively one can choose one of the vertex RCs Z3g
1 , Z4g

1 , Zccg1 , Zψψg1

in exchange for Zg.
The QCD beta function has a long standing history starting with the discovery of asymptotic

freedom [35, 36] in the early 1970s. Within 10 years, the 2-loop [37, 38] and 3-loop [39, 40]
corrections have been computed. All the computations have in common that they determined
the beta function in the same way by computing either the quark- and gluon-propagator and
quark-quark-gluon vertex RCs Z2, Z3, Z

ψψg
1 or the ghost- and gluon-propagator and ghost-ghost-

gluon vertex RCs Zc3, Z3, Z
ccg
1 , cf. the last and second last equality sign in Eq. (1.25). Instead of

performing three independent calculations, two 2-point and a 3-point computation, one can also
calculate the three- or four-gluon vertex in addition to the gluon-propagator which is, however, by
far more demanding because of the complex vertex structure [41]. The 4-loop beta function has
been computed by Vermaseren et al. [6] via Zc3, Z3, Z

ccg
1 which was later independently checked in

references [7, 8] through Z2, Z3, Z
ψψg
1 .

It is apparent, practical computations at the 3-loop level and beyond1, necessitate the use of
computer algebra. For the 3-loop and 4-loop computations, algebra programs like SCHOONSHIP

[42] or FORM [19] were used. As we know from Eq. (1.24), the beta function is determined by the
1/ǫ-poles of the renormalization constant Zh. We can take advantage of this fact and simplify the
calculation considerably. This means, in practice, it is not necessary to compute the full vertex
functions or propagators at the corresponding order. It turns out to be sufficient to consider fully
massive tadpoles, exactly those we consider in this thesis.

1.2.2 Computation of Anomalous Dimensions: Infrared Rearrangement

In this section we demonstrate how the simplification to massive vacuum integrals works. There
are basically two different approaches based on the general method of infrared rearrangement [43].
Both rely on the fact that within a mass-independent renormalization scheme, such as MS or MS,
the ultraviolet (UV) counterterms are polynomial in masses and momenta after all subdivergences

1The computations involve about O(1000) and O(50000) Feynman diagrams at the 3-loop and 4-loop level, respec-
tively.
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have been removed [44]. This allows to perform a certain expansion in masses or external momenta
even before the loop momentum integrations are carried out. In case of a massless theory, an
expansion in external momenta causes spurious infrared (IR) divergences which are, in dimensional
regularization, indistinguishable from UV divergences if not regularized in an appropriate way.
This is usually done by introducing artificial masses or external momenta in certain propagators of
a given Feynman diagram such that no spurious IR divergences appear and the diagram remains
computable. A disadvantage of this is, however, the limited applicability of methods we would then
usually use for the reduction to simpler diagrams.

Basically two solutions are available, first the so-called R∗-operation [45], constructing the UV
divergence of every l-loop Feynman integral out of the divergent and finite part of a carefully chosen
l-loop massless propagator integral. The method is rather complicated and seems not to allow an
algorithmical implementation. We will follow a different approach [5, 27], where the same artificial
mass is introducted in all propagators of all Feynman integrals. As a consequence, no spurious IR
divergences are present. The proof in [44] remains true and the UV divergence is still a polynomial
in masses and momenta including the artificial mass after subdivergences are subtracted. In the
end, the corresponding UV divergence is recovered by setting the artificial mass to zero.

The subtraction of subdivergences needs to be done within the same framework. This means, at
2-loop the corresponding subdivergences are subtracted by replacing the vertices and propagators of
the 1-loop diagrams by effective vertices and propagators i. e. the counterterms are included, which
cancels the subdivergences of the 2-loop diagrams. The counterterms are calculated in the same
way, that is with massive propagators also for the gluon propagator. Of course, from the physical
point, the theory is meaningless but it has, in a mass-independent renormalization scheme, the same
counterterms as QCD except for the “gluon mass” renormalization [5]. It should be noted, that the
various vertex and propagator renormalization constants necessary for the effective vertices and
propagators are mass independent and therefore already known from massless calculations. Hence,
only the UV divergence for the massive gluon propagator needs to be calculated.

Let us start and discuss the expansion which is performed in the external momentum p after
the auxiliary (or artificial) mass m is introduced. All scalar propagators are replaced by the exact
decomposition

1

(k + p)2 +m2
=

1

k2 +m2
− 2k · p+ p2

k2 +m2

1

(k + p)2 +m2
, (1.27)

where k and p are linear combinations of loop- and external momenta, respectively. The decompo-
sition splits the original propagator into two parts, a part polynomial in the external momenta and
a piece contributing with a lower degree of divergence. We apply the decomposition in Eq. (1.27)
recursively as long as the last piece contributes only with a sufficiently low negative degree of di-
vergence. Then we are allowed to drop the last term in the decomposition because it does not
affect the UV-divergent part of the corresponding Greens function. The external momenta can be
factorized out by applying suitable tensor decompositions and, as a consequence, we are left with
integrals only depending on the loop momenta and the auxiliary mass m. In other words, fully
massive tadpoles!

In order to show how this procedure works, we compute the 1-loop beta function in QCD using
the decomposition from Eq. (1.27). For convenience, we choose background field gauge [46, 47],
then the renormalization constant of coupling h = g2/(16π2) is given by

Zh = (Zg)
2 = (ZB)−1 , (1.28)

where B denotes the background field. This means we only need to compute background field
propagator corrections instead of various vertex and propagator corrections as outlined in Section
1.2.1. However, in this approach, the corresponding Feynman rules are slightly more complicated,
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see e. g. [46]. At 1-loop only three diagrams contribute to the background field propagator, in
Feynman gauge and d-dimensional Euclidean space-time we have

= −g2
BNc δ

ab δ(p + q)

(p2)2

∫

k

1

k2(p − k)2

[

(2kµ − pµ)(2kν − pν)
]

,

= −g
2
B

2
Ncδ

ab δ(p + q)

(p2)2

∫

k

1

k2(p − k)2

[

− 8δµνp
2 + (8− d)pµpν + 2d(kνpµ − 2kµkν + kµpν)

]

,

= 2g2
BNf δ

ab δ(p + q)

(p2)2

∫

k

1

k2(p− k)2

[

− 8δµν(k2 − p · k) + kνpµ − 2kµkν + kµpν)

]

,

(1.29)

where gB is the bare coupling and measure
∫

k =
∫
ddk/(2π)d. The quarks are drawn as solid lines,

the ghost fields as dotted lines and gluons as wavy lines, respectively. External wavy lines are the
background fields. In Eq. (1.29) we should have already written the auxiliary mass m in each of
the propagators. We sum up all contributions and project out the transverse part

ΠB(p2) =
δab

N2
c − 1

1

d− 1

[

−gµν +
pµpν
p2

1

p2

]

× (ΠB)µνab (p) , (1.30)

which evaluates to

ΠB(p2) =
1

d− 1

∫

k

1

[k2 +m2] [(p+ k)2 +m2]

[

Nc

(

1 +
7d− 8

2

)

+Nf (2− d)

]

g2
B +O(g4

B) . (1.31)

Now, the propagator decomposition from Eq. (1.27) is performed, we replace the second propagator
and get

∫

k

1

[k2 +m2] [(p+ k)2 +m2]
=

∫

k

1

k2 +m2

[

1

k2 +m2
− 2k · p+ p2

k2 +m2

1

(k + p)2 +m2

]

, (1.32)

where the first integrand has an overall degree of divergence ∆D = −4 and the second ∆D = −5.
Let us assume we compute the beta function in d = 4− 2ǫ dimension, then we are allowed to drop
the last term and obtain

∫

k

1

[k2 +m2] [(p+ k)2 +m2]
≈
∫

k

1

(k2 +m2)2
, (1.33)

where the approximation sign (≈) indicates that only the divergence is properly reconstructed by
the right-hand side. We have already derived the explicit solution for the 1-loop massive tadpole
in Eq. (1.3), taking care of different normalizations we get
∫

ddk

(2π)d
1

(k2 +m2)2
=

1

(4π)d/2
J(2) =

1

(4π)d/2

Γ(2− d/2)

Γ(2)
(m2)d/2−2 =

1

(4π)2

1

ǫ
+O(ǫ0) . (1.34)

Combining all ingredients from Eqs. (1.32)-(1.34), plugging the result in Eq. (1.31) and expanding
around d = 4− 2ǫ, we get the bare 2-point function ΠB for the background field,

ΠB,bare(p
2) =

1

(4π)2

1

ǫ

[
11

3
Nc −

2

3
Nf

]

g2
B +O(ǫ0, g4

B) , (1.35)

which is renormalized by ZB = 1− 1
(4π)2

1
ǫ

[
11
3 Nc − 2

3Nf

]

g2 +O(g4). With help of Eqs. (1.28) and

(1.24) we recover the well-known result

β0 =
11

3
Nc −

2

3
Nf . (1.36)

The procedure outline above has been used to compute the beta function and anomalous dimensions
at the 4-loop level [6, 7, 8]. A correction at the 5-loop level requires the corresponding fully massive
tadpoles which we study in this thesis.

7



1.3 Thermal Field Theory: QCD at High Temperature

So far we only considered quantum field theories at zero temperature T = 0. Now we would like
to study finite-temperature QCD and show that massive tadpoles do play an important role in
equilibrium thermodynamics. We will focus on the bulk equilibrium properties of matter. They
are described by the thermodynamic pressure P or, equivalently, its free energy F as functions of
temperature T and chemical potential µ.

Hadronic matter undergoes a phase transition to a quark-gluon plasma if heated up to sufficient
high temperature. This fact is predicted by quantum chromodynamics (QCD) and investigated
in heavy-ion collisions at present collider experiments such as the Relativistic Heavy Ion Collider
(RHIC) or the Large Hadron Collider (LHC). In order to study the quark-gluon plasma exper-
imentally, it is, from the theoretical side, necessary to understand the properties as accurately
as possible. There are basically two ways to study this regime, either by lattice simulations or
in perturbative QCD. Both have its advantages and disadvantages. Lattice QCD can be, for in-
stance, applied to the quark-gluon phase as well as the hadronic phase whereas perturbative QCD
only works properly in the high temperature phase. On the other hand, lattice simulations have
difficulties with chemical potentials which are straightforwardly implemented in the perturbative
approach.

However, a perturbative approach is only applicable in the case of a small coupling g, see (1.10),
which is, due to asymptotic freedom, guaranteed in the limit of very high temperatures or baryon
densities. Such extreme conditions are usually not present in the above mentioned situations
and therefore, at realistic temperatures, the expansion is expected to converge only very slowly.
Consequently any further correction improves the expansion and might allow to get reliable insight
even at rather low temperatures T of a few hundred MeV.

1.3.1 The Partition Function and Imaginary Time Formalism

We start by introducing a fundamental quantity in statistical mechanics, the partition function Z.
In the canonical ensemble with convention kB = 1 we have

Z ≡ Tr[exp (−βH)] , (1.37)

where β = 1/T and H is the Hamiltonian of our quantum mechanical system. Having the partition
function at hand, observables like the free energy F , average energy E or entropy S can be obtained
by taking the logarithm of Z or derivatives of F with respect to the temperature:

F = −T lnZ ,

E =
1

ZTr[H exp (−βH)] ,

S =
∂F

∂T
.

(1.38)

Usually it is more convenient to consider the partition function in Eq. (1.37) in the path integral
formalism. In order to rewrite the partition function Z in terms of a path integral, we basically
employ the same techniques used in the derivation of the path integral at zero temperature [48].
For a better understanding, we consider scalar field theory with the Minkowskian Lagrangian

LM =
1

2
(∂µφ) (∂µφ)− V (φ) . (1.39)

In this case, the partition function from Eq. (1.37) becomes (~ = 1)

Z =

∫

φ(β,x)=φ(0,x)

∏

x

[CDφ(τ,x)] exp

{

−
∫ β

0
dτ

∫

ddxLE
}

, (1.40)
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where d = 3 and with Euclidean Lagrangian

LE = −LM (t = −iτ) =
1

2
(∂µφ) (∂µφ) + V (φ) , (1.41)

with periodic boundary conditions φ(x, τ = 0) = φ(x, τ = β) in imaginary time τ . For the
derivation we refer to references [49, 50]. In case of an interacting field theory, we split the Euclidean
action

SE =

∫ β

0
dτ

∫

ddxLE , (1.42)

in two parts SE = S0 + SI , S0 quadratically in the fields and the interaction part SI containing at
least terms cubic in the fields. A naive expansion of the exponential in Eq. (1.40) yields

Z = C ′
∫

[Dφ]e−S0

∞∑

l=0

(−SI)l
l!

, (1.43)

where we have used the short cut
∫

[Dφ] for the integration measure. Taking the logarithm leads
to

lnZ = ln

(

C ′
∫

[Dφ]e−S0

)

+ ln

(

1 +
∞∑

l=1

(−1)l

l!

∫
[Dφ]e−S0SlI
∫

[Dφ]e−S0

)

≡ lnZ0 + lnZI . (1.44)

The first term is simply the ideal gas contribution to the free energy and the second gives pertur-
bative corrections. By using the notation

〈 . . . 〉0 ≡
∫

[dφ]( . . . )e−S0

∫
[dφ]e−S0

, (1.45)

we are able to write the interacting part of Eq. (1.44) in the following short form

lnZI = ln

(

1 +
∞∑

l=1

(−1)l

l!
〈SlI〉0

)

. (1.46)

The relevant quantity is Eq. (1.46), expanding the logarithm in a power series we get

lnZI =
∞∑

k=0

(−1)k

k + 1

(
∞∑

l=1

(−1)l

l!
〈SlI〉0

)k+1

=
∞∑

k=0

(−1)k

k + 1

(

−〈S1
I 〉0 +

1

2
〈S2
I 〉0 −

1

6
〈S3
I 〉0 + . . .

)k+1

= −〈SI〉0 +
1

2

[

〈S2
I 〉0 − 〈SI〉20

]

− 1

6

[

〈S3
I 〉0 − 3〈SI〉0〈S2

I 〉0 + 2〈SI〉30
]

+ . . . ,

(1.47)

by assuming λ to be the coupling constant, the first term is of order λ, the second and third of order
O(λ2) and O(λ3), respectively. The corrections can be computed by evaluating the corresponding
connected diagrams in finite-temperature perturbation theory using the Matsubara formalism, see
e. g. [50]. However, a naive expansion as in Eq. (1.47) breaks down beyond leading order due to
infrared divergencies caused by the so-called Matsubara zero-modes [49],

I(T,m) = T
∞∑

n=−∞

∫
ddk

(2π)d
1

ω2
n + E2

k

= T
∑

n 6=0

∫
ddk

(2π)d
1

ω2
n + E2

k

+ T

∫
ddk

(2π)d
1

E2
k

, (1.48)

where Ek =
√
k2 +m2 and ωn = 2πnT the bosonic Matsubara frequencies. This can either be cured

by resumming an infinite number of so-called ring diagrams or, in a more systematic way, by using
an effective field theory approach [51, 52] which disentangles the different scales contributing to the
free energy or pressure. This effective field theory is, in fact, three dimensional and computations
therein require the calculation of massive tadpoles.
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1.3.2 Scalar Field Theory

Before focussing on full QCD, we would like to see on the basis of scalar field theory from where
these complications arise. We consider scalar field theory with λφ4 interaction, the Euclidean
Lagrangian reads

L =
1

2
(∂µφ) (∂µφ) +

1

2
m2
Bφ

2 +
1

4
λBφ

4 . (1.49)

According to Eqs. (1.44) and (1.47), the free energy density is given by

F (T, V )

V
= −T

V
lnZ =

F (0)

V
− T

V

{

− 〈SI〉0 +
1

2

[

〈S2
I 〉0 − 〈SI〉20

]

−

− 1

6

[

〈S3
I 〉0 − 3〈SI〉0〈S2

I 〉0 + 2〈SI〉30
]

+ . . .

}

. (1.50)

Defining f(T ) ≡ limV→∞ F (T, V )/V and performing the usual steps in finite temperature pertur-
bation theory (Wick contraction, Feynman calculus, solving sum-integrals) we obtain, in the limit
mphys → 0, the known expression

f(T ) = −π
2T 4

90

[

1− 15

32

λR
π2

+
15

16

(
λR
π2

)3/2

+O(λ2
R)

]

, (1.51)

where λB = λR+O(λ2
R), m2

B = m2
R +O(λR) relates the bare and renormalized coupling and mass,

respectively. For the detailed computation we refer to [49] or [50]. Let us inspect the weak coupling
expansion in Eq. (1.51) in more detail. The first term is the contribution of a noninteracting gas
of massless scalar particles followed by a correction of order λR which corresponds to 〈SI〉0 in
Eq. (1.50). Then we would naively expect a contribution of order λ2

R originating from the second
term in Eq. (1.50). This contribution, denoted by f(2)(T ), and expanded in small mB is given by

f(2)(T ) = −9

4
λ2
B

T 4

144

T

8πmB
+O(m0

B) . (1.52)

We can easily see, in the limit mB → 0 a infrared divergence appears and the naive loop expansion
from Eq. (1.50) breaks down. One can try and sum the divergent terms to all orders to get a
finite result in the limit of vanishing mB. The correction in Eq. (1.51) with an odd power in
λR originates from that resumming procedure. Let us, in short, illustrate how this odd power is
obtained by resumming an infinite number of so-called ring-diagrams. Similarly to Eq. (1.52) the
contributions f(0) and f(1) are given by

f(0)(T ) = −π
2T 4

90
+
m2
BT

2

24
− m3

BT

12π
+O(m4

B) ,

f(1)(T ) =
3

4
λB

[

T 4

144
− mBT

3

24π
+O(m2

BT
2)

]

,

(1.53)

again in small mB expansion. We note the odd powers in mB in Eqs. (1.52) and (1.53) are associated
with Matsubara zero-mode contributions, cf. the second term in Eq. (1.48). The problem becomes
increasingly severe as we go to higher orders f(3), f(4), . . . . At order N in λB , one can show that
these problematic terms are caused by diagrams with N non-zero mode contributions I ′(0, T ) and
one zero-mode contribution I(n=0),

I ′(0, T ) = T
∑

n 6=0

∫
ddk

(2π)d
1

ω2
n + E2

k

, I(n=0) = T

∫
ddk

(2π)d
1

E2
k

. (1.54)
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From the diagrammatical point of view, the diagrams are those with one zero-mode loop dressed
with N non-zero mode bubbles, also called daisy diagrams:

=
(−1)N+1

N !

(
λB
4

)N
〈 6

φφφφ

6

φφφφ

6

φφφφ . . .

6

φφφφ

2(N−1) 2(N−2)

〉

0,c

=
(−1)N+1

N !

(
λB
4

)N

6N2(N − 1)2(N − 2) . . . 2
[
I ′(0, T )

]N
T

∫
ddk

(2π)d

(

1

k2 +m2
B

)N

,

(1.55)

where the subscript 〈. . . 〉0,c indicates that only the connected contribution is considered. The
product of combinatorial factors becomes 6N2N−1(N − 1)!, I ′(0, T ) = T 2/12 and the zero-mode
ring can be written as

∫
d3−2ǫk

(2π)3−2ǫ

1

(k2 +m2
B)N

=
(−1)N

(N − 1)!

(

d

dm2
B

)N (
m3
B

6π

)

. (1.56)

Putting all the ingredients together, we observe that the odd terms in mB at λNB are given by

δoddf(N) = −T
2

1

N !

(

λBT
2

4

)N (
d

dm2
B

)N (
m3
B

6π

)

, (1.57)

which can be summed to all orders by recognizing that the structure in Eq. (1.57) equals a Taylor
expansion

∞∑

N=0

1

N !

(

λBT
2

4

)N (
d

dm2
B

)N (

−m
3
BT

12π

)

= − T

12π

(

m2
B +

λBT
2

4

)3/2

. (1.58)

Surprisingly, the limit m2
B → 0 can be taken and no divergencies arise. As it can be seen from

the resummation in Eq. (1.58), the contribution we get is of order λ
3/2
B rather than O(λ2

B) which
is exactly what is shown in Eq. (1.51). This means, infrared divergencies do substantially modify
the weak-coupling expansion at finite-temperature. We can complete the calculation at O(λ2

B) by
including the terms we have neglected in Eq. (1.52).

At higher orders in the weak-coupling expansion it gets more and more involved to perform the
resummations. However, as we have already mentioned, one can address this issue more system-
atically and efficient by constructing an effective field theory which takes care of the contributions
from bosonic zero-modes. Before we discuss this issue, we want to summarize the current status of
the weak-coupling expansion of the free energy density (or minus the pressure) in scalar field theory.

The calculation has been performed forO(λ2
R) [53], O(λ

5/2
R ) [54] ,O(λ

5/2
R lnλR) [32] ,O(λ3

R ln λR) [32]
and O(λ3

R) [55] either by using similar resummation techniques or completely within the effective
theory framework.

1.3.3 Dimensionally Reduced QCD Framework: Electro- and Magnetostatic QCD

Following we would like to discuss the framework on the basis of QCD rather than the scalar
field theory considered in the previous section. Let us start and point out that the path integral
formulation of the partition function Z in Eqs. (1.40) and (1.41) looks quite similar in case of gauge
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fields. Before gauge fixing, the Euclidean Lagrangian and action of QCD with Nf massless2 flavors
of quarks reads

SQCD =

∫ β

0
dτ

∫

ddxLQCD ,

LQCD =
1

4
F aµνF

a
µν + ψ̄γµDµψ ,

(1.59)

where β = 1/T, d = 3− 2ǫ, µ, ν = 0, . . . , 3 and

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , Dµ = ∂µ − igAµ , (1.60)

with Aµ = AaµT
a, Tr[T aT b] = δab/2, γ†µ = γµ, {γµ, γν} = 2δµν . The coupling g is the bare gauge

coupling and ψ carries Dirac, color and flavor indices. In analogy to Eq. (1.40), the partition
function ZQCD becomes

ZQCD = C

∫

DAaµ
∫

Dψ̄Dψ exp (−SQCD) , (1.61)

where the gluon fields Aaµ and quark fields ψ obey periodic and anti-periodic boundary conditions
in imaginary space-time τ , respectively. The thermodynamic pressure of QCD is than given by

PQCD(T ) ≡ lim
V→∞

T

V
lnZQCD(T ) = lim

V→∞

T

V
ln

∫

DAaµ
∫

DψDψ̄ exp (−SQCD) , (1.62)

where V denotes the d-dimensional volume. After we have chosen a convenient gauge, e. g. covariant
gauge, we can proceed in the same way as in Section 1.3.1 and compute perturbative corrections
in a weak-coupling expansion. The pressure of QCD up to next-to-leading order reads

PQCD(T ) =
π2T 4

90

[

2(N2
c − 1) +

7

2
NfNc −

5

8

g2

π2

(

N2
c − 1

)(

Nc +
5

4
Nf

)

+O(g3)

]

. (1.63)

The leading term can be seen as the QCD-version of the Stefan-Boltzmann law. The first correction
can be obtained by computing the corresponding 1-loop vacuum diagrams in thermal QCD. Beyond
that order, the weak-coupling expansion breaks down similar to the case of scalar field theory in
Eq. (1.52). This can either be cured by performing a resummation of so-called plasmon diagrams
or, as we will outline in the following, by using a sequence of two effective field theories known
as electrostatic and magnetostatic QCD [32, 31]. Before discussing the idea we would like to
summarize the perturbative corrections already known. It turns out the pressure in Eq. (1.62) has
the following expansion

P (T )

PSB
= 1 + c2g

2 + c3g
3 +

(
c′4 ln g + c4

)
g4 + c5g

5 +
(
c′6 ln g + c6

)
g6 +O(g7) , (1.64)

normalized to the Stefan-Boltzmann pressure PSB mentioned above. The weak-coupling expansion
has again a nontrivial structure with odd powers in the coupling g. All coefficients, except c6, can
be found in references [56, 57, 58, 59, 60, 61].

The key observation is that QCD exhibits three different momentum scales, the hard scale T ,
soft scale gT and the so-called ultrasoft scale g2T . At high temperatures T (g ≪ 1), all momentum
scales are clearly separated. The hard scale T , or 2πT , is the typical momentum of a particle in the
plasma whereas the soft and ultrasoft scales gT and g2T are associated with the exchange of static

2At very high temperatures, particle masses can be neglected and the functions we are interested in are solely
functions of temperature T.
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(zero-mode) gluons. This effect, the exchange of electrostatic and magnetostatic gluons, causes
the breakdown of the weak-coupling expansion. From the physical point of view, these effects are
screened by plasma effects and can be taken into account, in the case of scale gT , by a resumming
an infinite number of diagrams which eventually leads to the odd power correction starting at
O(g3). The contribution from the scale g2T , starting to contribute at O(g6), is of complete non-
perturbative nature [30] and can only be taken into account via lattice simulations. At this point,
we note that the scale k ∼ g2T is not present in scalar field theory and therefore it is possible to
compute all orders perturbatively [55].

Let us now move on and study the effective field theories. Because of the periodic and anti-
periodic boundary conditions of gauge and fermion fields in imaginary time τ ,

Aaµ(x, τ = β) = Aaµ(x, τ = 0) , ψfj (x, τ = β) = −ψfj (x, τ = 0) , (1.65)

we can expand them into Fourier modes with Matsubara frequencies

ωb,n = 2πnT , ωf,n = (2n+ 1)πT , (1.66)

where subscript b, f stands for bosonic and fermionic fields, respectively. The only modes which
do not fall off exponentially at large distances R > 1/T are the bosonic zero-modes ωb,n=0. They
are responsible for the infrared divergencies and lead to the breakdown of the weak-coupling ex-
pansion. Thus the idea is to construct an effective field theory only containing the zero-modes by
integrating out all non-static (n 6= 0) bosonic modes and fermionic modes. This resulting field
theory reproduces full QCD at high temperatures T for distances R≫ 1/T and reads

LE =
1

2
TrF 2

kl + Tr [Dk, A0]2 +m2
ETrA2

0 + λ
(1)
E

(

TrA2
0

)2
+ λ

(2)
E TrA4

0 + . . . ,

SE =

∫

ddxLE ,
(1.67)

where k, l = 1, . . . , 3 and

Fkl = i/gE [Dk,Dl] , Dk = ∂k − igEAk . (1.68)

The effective field theory in Eq. (1.67) is a 3-dimensional SU(Nc) gauge theory coupled to an
adjoint scalar Aa0. The electrostatic gauge field Aa0 and magnetostatic gauge field Aai can be related
(up to normalization) to the zero modes of Aaµ in thermal QCD, Eqs. (1.59). The effective field
theory shown above is known as electrostatic QCD (EQCD) and contains four effective parameters

m2
E, g

2
E, λ

(1)
E , λ

(2)
E , (1.69)

which can be determined by performing a matching computation, this is requiring the same result
on the QCD and EQCD side within the domain of validity, for a concise review see [62]. The
effective gauge coupling gE and mass mE are known up to 2-loop accuracy [63] and will be available
soon at 3-loop [64, 65]. This specific matching computation involves the computation of 3-loop
2-point functions in finite temperature QCD. A serious problem turned out to be the evaluation of
3-loop sum-integrals [66].

In the Lagrangian in Eq. (1.67), operators of dimension 3 and higher [67] are neglected and need
to be included as soon as they start to contribute at the order one is working at. The general
structure of higher order operators is obtained from those in Eq. (1.67) by adding at least two Dµ

or gA0. It can be shown that they start to contribute, in case of the thermodynamic pressure, at
order g7 [61]. Let us again consider Eq. (1.62), the pressure is decomposed in two pieces

PQCD = PE(T ) + lim
V→∞

T

V
ln

∫

DAkDA0 exp (−SE) . (1.70)
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Now, PE(T ) contains the contribution from scale T and can be obtained in full QCD in an unre-
summed expansion in coupling g2. The second term in Eq. (1.70) can either be calculated using
lattice simulations or in a perturbative expansion in the small coupling gE. Unfortunately, the
expansion is afflicted with infrared divergencies and breaks down. This is, because EQCD still
contains two dynamical scales gT and g2T . Integrating out the color electric field A0 separates
both scales and leads to a pure 3-dimensional SU(Nc) gauge theory called magnetostatic QCD
(MQCD) only containing the magnetostatic gauge field Ak ,

SM =

∫

ddxLM ,

LM =
1

2
TrF 2

kl + . . . ,

(1.71)

where again k, l = 1, . . . , 3 and

Fkl = i/gM [Dk,Dl] , Dk = ∂k − igMAk . (1.72)

The effective field theory in Eq. (1.71) describes the contribution of scale g2T and reproduces
thermal QCD at distances R ≫ 1/gT . Again, the parameter gM can be obtained by a matching
computation in EQCD and MQCD and differs from gE by perturbative corrections, see [62] and
references therein. The second term of Eq. (1.70) splits into two parts and reads

lim
V→∞

T

V
ln

∫

DAkDA0 exp (−SE) ≡ PM(T ) + lim
V→∞

T

V
ln

∫

DAk exp (−SM) , (1.73)

where PM(T ) contains the contribution of scale gT and is computed in EQCD. The second piece
denoted by

PG(T ) ≡ lim
V→∞

T

V
ln

∫

DAk exp (−SM) , (1.74)

is the contribution of scale g2T associated with the screening of magnetostatic gluons. The theory
in Eq. (1.71) is afflicted with infrared divergencies and only accessible via lattice simulations.
Surprisingly, the contribution PG(T ) can be expanded in gM with leading term proportional to g6

M.
The MQCD Lagrangian in Eq. (1.71) has only one dimensionful parameter and consequently the
leading contribution is of the following form

PG(T ) ∼ Tg6
M , (1.75)

with nonperturbative coefficient determined in references [68, 69]. Putting all the ingredients
together we obtain the decomposition

PQCD(T ) = PE(T ) + PM(T ) + PG(T ) . (1.76)

where PE(T ) starts to contribute at g2, PM(T ) at g3 and PG(T ) finally at g6 which is the first order
where all physical scales contribute. From this point of view, the order g6 can be seen as leading
order of the pressure of hot QCD.

We have already mentioned, the contribution PM(T ) from physical scale gT can be computed
in EQCD which involves massive tadpoles in d = 3− 2ǫ space-time dimensions. Five loop massive
tadpoles are necessary to compute the order g7 to PM(T ). Although the g6 correction is still
unknown, which is mainly due to the fact that a 4-loop calculation within thermal QCD is involved,
it would be, for example, interesting to see whether the odd g7 contribution turns out to be again
big in the same way as the g3 and g5 corrections. For more details we refer to [61], Section VII.
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2 Reduction Methods for Feynman Integrals

In this chapter we introduce the most important techniques for the algebraic reduction of a typically
large number of Feynman integrals to a small set of so-called master integrals. The methods are
playing a crucial role in the following work. Throughout the chapter most of the concepts are
illustrated on the basis of simple examples.

The plan of the chapter is as follows. We start in Section 2.1 with basic definitions and useful
notations. Then in Section 2.2 we proceed and review the well-known integration-by-parts and
Lorentz-invariance identities [16, 17, 70]. This is followed by an introduction of Feynman graph
polynomials [71] in Section 2.3. The Feynman graph polynomials are necessary for the discus-
sion of the so-called space-time dimensional relations [72, 73, 74] in Section 2.4. In Section 2.5
we combine the integration-by-parts and space-time dimensional relations and obtain generalized
recurrence relations. Section 2.6 is devoted to the question how these relations can be incorporated
in an algorithmic approach, the Laporta algorithm [18]. In order to discuss the reduction problem
of Feynman integrals systematically, we introduce the concept of an auxiliary topology, a sector
relation and sector symmetry in Sections 2.6.1 and 2.6.2, respectively. In Section 2.6.3 we discuss
the general structure of how integration-by-parts identities are relating Feynman integrals among
each other. This knowledge helps us to understand one of the key building blocks of the Laporta
algorithm, the unique ordering of Feynman integrals in Section 2.6.4. In Section 2.7 we discuss
the benefit of using generalized recurrence relations instead of the traditional integration-by-parts
relations.

2.1 Definitions and Notations

A generic Feynman integral with Nk loops, Ne external and Nd internal lines is defined by

F (p1, . . . , pNe) ≡
∫

k1,...,kNk

Vab , (2.1)

with the integrand

Vab =

∏Np
i=1

∏Nk
j=1(pi · kj)aij1

∏Nk
i=1

∏Nk
j=i(ki · kj)aij2

∏Nd
i=1 D

bi
i

, aijl ≥ 0, bi ≥ 0 , (2.2)

where the propagators are of the form Di = ±q2
i +m2

i and Np = Ne−1 the number of independent
external momenta. The upper (+) and lower (−) sign corresponds to Euclidean and Minkowski
space-time, respectively. In the latter case we have suppressed the usual prescription with iǫ. The
momenta qi are, in general, linear combinations of loop- and external momenta {ki}, {pi} and can
be written as

qi =
Nk∑

j=1

λijkj +
Ne∑

j=1

σijpj , (2.3)

where λij , σij ∈ {−1, 0, 1}. The numerator in Eq. (2.2) is composed out of all possible scalar
products of loop- and external momenta and the number of such scalar products is given by

Nsp = NpNk +Nk(Nk + 1)/2 . (2.4)
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The integrand given in Eq. (2.2) can be further simplified by rewriting scalar products involving
loop momentum in terms of inverse propagators using

(p · k)j
Dj

=
1

Cj

(

1− Dj − Cj(p · k)j
Dj

)

, j = 1, . . . , Nd , (2.5)

where the scalar product denoted by (p · k)j appears in the expression for Dj with coefficient Cj .
Applying subsequently the identity in Eq. (2.5) to Vab and terms generated in this procedure we
end up with a sum of terms with the general structure

V ′niαβ =

∏Nsp−n
j=1 (p · k irred.)

βj
j

∏n
j=1D

αi
ij

, n ≤ Nd , αj, βj ≥ 0 , (2.6)

where we have j = 1, . . . , Nsp − n irreducible scalar products and n denominators Di1 , . . . ,Din ,
{i1, . . . , in} ⊂ {1, . . . , Nd} with exponents α = {α1, . . . , αn} and β = {β1, . . . , βNsp−n}, respectively.
Irreducible means we are not able to reduce the number of scalar products further with one of the
denominators Di1 , . . . ,Din by using Eq. (2.5).

2.2 The Integration-by-Parts and Lorentz-invariance Identities

The so-called integration-by-parts (IBP) relations [16, 17] of Feynman integrals are generated by
the fact that ∫

k1,...,kNk

∂

∂kµj

[

pµl V
′
niαβ

]

= 0 ,

∫

k1,...,kNk

∂

∂kµj

[

kµl V
′
niαβ

]

= 0 , (2.7)

vanishes identically in dimensional regularization [34] with j = 1, . . . , Nk, l = 1, . . . , Ne − 1 and
j, l = 1, . . . , Nk, respectively. From Eqs. (2.7) we can construct a total number of Nk(Np + Nk)
identities for each V ′niαβ. The integration measure used above and throughout this work (if not
otherwise indicated) is given by

∫

k1,...,kNk

=

∫
ddk1 . . . d

dkNk
(
πd/2

)Nk
. (2.8)

Calculating of IBP relations in Eq. (2.7) requires two operations, performing the derivatives and
contracting the µ index. This can produce reducible scalar products and those can be reduced to
irreducible ones by applying the identity in Eq. (2.5) as before. The integration by parts relations
obtained from Eq. (2.7) are linear relations among integrals with polynomial coefficients in the
space-time dimension d. Depending on the specific problem additional invariants can be involved.
The linear relations are made out of two kinds of integrals, integrals containing all denominators
Di1 , . . . ,Din and those with one denominator cancelled.

The IBP identities obey very interesting properties, for instance, they form a closed Lie algebra.
Let us define, in complete analogy to Ref. [75], the following operators

(Aαf)(n1, . . . , nM ) = nαf(n1, . . . , nα + 1, . . . , nM) ,

(Bαf)(n1, . . . , nM ) = f(n1, . . . , nα − 1, . . . , nM ) .
(2.9)

The arguments n1, . . . , nM can be understood as the exponents α, β of irreducible scalar products
and denominators cf. Eq. (2.6), respectively. By means of these operators, we can write the IBP
identities as

− PJ = 0 , with P = aαβAαBβ + bαAα + c , (2.10)
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where aαβ, bα and c are coefficients. The function J is the original Feynman integral in Eq. (2.1)
as a function of its exponents

J(n) = J(n1, . . . , nM ) =

∫

k1,...,kNk

Vab , (2.11)

and

−(PikJ)(n) =

∫

k1,...,kNk

OikV (n) , Oik =
∂

∂ki
· qk . (2.12)

where q1,...,Nk = k1,...,Nk , qNk+1,...,Nk+Ne = p1, . . . , pNe The operators O and therefore also the P
operators follow the commutations relations

[Pik, Pjl] = δilPjk − δjkPil . (2.13)

As a consequence, it is sufficient to consider a smaller set of IBP identities

∂

∂ki
· ki+1, i = 1, . . . , Nk, kNk+1

≡ k1 ,

∂

∂k1
· pj, j = 1, . . . , Ne,

Nk∑

i=1

∂

∂ki
· ki ,

(2.14)

and in fact, these operators form a multiplicative basis of the Lie-algebra in Eq. (2.13). Counting
the number of identities in Eqs. (2.14) we find Nk + Ne + 1. This is not only interesting from
the theoretical point of view, as we will see, the system generated by IBP identities is highly
overdetermined and therefore any attempt to reduce the number of identities in each point n ∈ ZM

is important. We will discuss this issue, and others, such as the question how to combine the IBP
identities to reduce a given integral, later on in Section 2.6.

As an example we consider the 1-loop massive tadpole from Section 1.1 denoted by

J(n) =

∫

k

1

(k2 +m2)n
. (2.15)

Comparing the 1-loop tadpole above with Eq. (2.1) and applying Eq. (2.7) we get

0 =

∫

k
∂k

[

k
1

(k2 +m2)n

]

=

∫

k

[

d

(k2 +m2)n
− 2n

k2

(k2 +m2)n+1

]

= J(n)(d − 2n) + 2nm2J(n + 1) ,

(2.16)

and this leads immediately to the simple recursion relation we already encountered in Eq. (1.7),

J(n+ 1) = −d− 2n

2nm2
J(n) , n ≥ 1 . (2.17)

In other words we can express 1-loop massive tadpoles with arbitrary power n in terms of J(1)
times a rational function of space-time dimension d and mass squared m2. The 1-loop tadpole is a
very illustrative example how IBP relations can be used to relate all possible integrals to a single
one called master integral.

Moreover, there are additional relations, the so-called Lorentz-invariance identities (LI) [70].
These relations are based on the fact that the Feynman integral in Eq. (2.1) is invariant under
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a Lorentz transformation in the external momenta p1, . . . , pNe . Let us consider the infinitesimal
Lorentz transformation

pµ −→ pµ + δpµ = pµ + δǫµνp
ν , (2.18)

where δǫµν = −δǫνµ. The Feynman integral in Eq. (2.1) is invariant under this transformation

F (p1 + δp1, . . . , pNe + δpNe) = F (p1, . . . , pNe) , (2.19)

and an expansion of the left-hand side yields

F (p1 + δp1, . . . , pNe + δpNe) =

[

1 + δpµ1
∂

∂pµ1
+ · · ·+ δpµNe

∂

∂pµNe

]

F (p1, . . . , pNe) . (2.20)

From Eqs. (2.19) and (2.20) we immediately get the desired identities

piµpjν

(
∑

k

pνk
∂

∂pkµ

)

F (p1, . . . , pNe) = 0 , (2.21)

where we have contracted the equation with all possible antisymmetric combinations of pairs of
external momenta piµpjν. The differential operator

∑

k p
ν
k∂/∂pkµ acts directly on the integrand of

the corresponding Feynman integral F (p1, . . . , pNe). In some cases these identities can be quite
useful, but as it turns out, they are all expressible in terms of linear combinations of IBP identities
[75] and therefore we do not consider these relations in the following work.

2.3 Feynman Graph Polynomials

In the following sections we are using certain Feynman integral representations where the so-called
graph polynomials are going to show up. This section is devoted to summarize some of the most
important properties of these polynomials [71].

For loop calculations it is sometimes advantageous to rewrite the d-dimensional loop integrals
in Eq. (2.1) in terms of integrals over Feynman parameters. After Feynman parametrization the
integrand V ′niαβ in Eq. (2.6) is characterized by two polynomials called the first and second Symanzik
polynomial. These polynomials can be deduced from the specific combination of propagators and
irreducible scalar product of the integral under consideration. Let us, for convenience, assume
that all irreducible scalar products are expressed in terms of additional propagators with negative
powers, then Eq. (2.1) becomes

F (p1, . . . , pNe) =

∫

k1,...,kNk

Nd∏

i=1

1

(−q2
i +m2

i )
bi
, (2.22)

where the minus in front of the momentum flow qi indicates Minkowski space-time and the usual
prescription with iǫ is suppressed. The internal momenta qi are fixed by the matrices of incidences
λ and σ in Eq. (2.3). Using the Feynman parameter technique [25] we can rewrite the product of
propagators as a sum

Nd∏

i=1

1

Dbi
i

=
Γ(b)

∏Nd
i=1 Γ(bi)

∫

αi≥0
dα1 . . . dαNd δ

(

1−
Nd∑

i=1

αi

) ∏Nd
i=1 α

bi−1
i

(
∑Nd
i=1 αiDi

)b
, b =

Nd∑

i=1

bi , (2.23)

where Di = −q2
i +m2

i . Plugging this formula into Eq. (2.22) and using translational invariance of
the d-dimensional loop integrals leads to the nice simplification that the integrand becomes only
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a function of squares of ki. Consequently, all loop integrations can be performed and we finally
arrive at

F (p1, . . . , pNe) =
Γ(b−Nk d/2)
∏Nd
i=1 Γ(bi)

∫

αi≥0
dα1 . . . dαNd δ

(

1−
Nd∑

i=1

αi

)(
Nd∏

i=1

αbi−1
i

)

U b−(Nk+1)d/2

Fb−Nkd/2
, (2.24)

where U and F are functions of Feynman parameters αi. Having this formula at hand, we can
rewrite all d-dimensional loop integrals in Eq. (2.22) as integrals over Feynman parameters in
Eq. (2.24). Introducing the scalar Nk × Nk matrix M and Nk-vector Q, carrying four-vectors as
elements, and rewriting the denominator in Eq. (2.23) as

Nd∑

i=1

αi
(

−q2
i +m2

i

)

= −
Nk∑

r=1

Nk∑

s=1

krMrsks +
Nk∑

r=1

2kr ·Qr + J , (2.25)

we obtain the following expressions for U and F

U = det (M) , F = det (M)(J +QM−1Q) . (2.26)

The functions U and F are polynomials in Feynman parameters αi and can be, as previously
mentioned, deduced from the topology1 of the corresponding Feynman integral. They are therefore
also called graph polynomials. We would like to summarize briefly some important properties at
this point.

The graph polynomials U and F are homogeneous in αi with degree Nk and degree Nk + 1,
respectively. On top of this, the polynomial U is linear in each αi and in expanded form each
monomial has coefficient +1.

As an example, let us consider the 1-loop massive tadpole of Eq. (2.15) in Minkowski space-time
and determine the corresponding polynomials U and F . Starting from Eq. (2.25) we immediately
get M = M11 = α1, Q = 0 and J = α1m

2
1 and therefore

U = α1 , F = α2
1m

2
1 . (2.27)

In the literature U and F are often called the first and second Symanzik polynomials. There are
several ways to determined these polynomials from the underlying graph. For instance, it can
be shown that the polynomials U and F are closely related to the spanning tree and spanning
2-forest of the underlying graph [71, 24]. This method is quite illustrative but not well suited for
automatization. On the other hand, introducing the Laplacian of a graph and using the matrix-
tree theorem leads to a third method only involving the computation of a matrix determinant [71].
However, for our purposes it is enough to have Eqs. (2.25) and (2.26) at hand.

2.4 Space-time Dimensional Relations

In Section 2.2 we have reviewed the important IBP relations. But there are additional relations
[72, 73, 74] complementary to the former ones relating integrals with dimension d to integrals
with space-time dimension d − 2. Furthermore, it can be shown that integrals with irreducible
numerators such as the irreducible scalar products of Eq. (2.6) in Section 2.1 are expressible in
terms of integrals without these scalar products but with shifted space-time dimension d. In this

1So far we have not defined what exactly is meant by saying topology. This question is postponed to Section 2.6.1
where the concept of an auxiliary topology is introduced. By saying topology of a graph we refer to a specific
combination of propagators in Eq. (2.22).
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section, we are using a slightly different notation to keep in touch with the corresponding literature.
Defining an arbitrary scalar Nk-loop Feynman integral as

G(d)({si}), {m2
s}) =

Nk∏

i=1

∫

ddki

Nd∏

j=1

P
νj
qj ,mj , (2.28)

with

P νk,m =
1

(k2 −m2 + iǫ)ν
, qµj =

Nk∑

n=1

λjnk
µ
n +

Ne∑

m=1

σjmp
µ
m , (2.29)

where Nd and Ne are the numbers of internal and external lines, respectively. The pm are external
momenta, λ and σ the matrices of incidences from Eq. (2.3) and {si} represents a set of scalar
invariants formed out of external momenta.

Starting from the α-parametric representation (see e. g. [24]) for the propagator

1

(k2 −m2 + iǫ)ν
=

i−ν

Γ(ν)

∫ ∞

0
dα αν−1eiα[k2−m2+iǫ] , (2.30)

and using the Gaussian integration formula in d-dimensions

∫

ddk ei[Ak
2+2p·k] = i

(
π

iA

)d/2

e−ip
2/A , (2.31)

enables us to perform the loop integrations in Eq. (2.28). We obtain the representation

G(d)
(

{si}, {m2
s}
)

= iNk
(
π

i

) dNk
2

Nd∏

j=1

i−νj

Γ(νj)

∫ ∞

0
. . .

∫ ∞

0

dαjα
νj−1
j

[D(α)]d/2
e
i

[
Q({si},α)

D(α)
−
∑Nd
l=1

αl(m
2
l
−iǫ)

]

, (2.32)

where D(α) and Q({si}, α) are the graph polynomials U and F discussed in Section 2.3. Having
a closer look on Eq. (2.32) we observe that the integrand depends rather simple, only linearly in
the exponent of D(α), on the space-time dimension d. As mentioned before, we are looking for
relations connecting integrals with different space-time dimensions d. The first step is to assume
that all scalar propagators in Eq. (2.28) have different masses. Then we construct the polynomial
differential operator

D

(

∂

∂m2
j

)

, (2.33)

by replacing αj → ∂j ≡ ∂/∂m2
j in D(α). Applying this operator to Eq. (2.32) gives

D(∂)e−i
∑

αlm
2
l → D(α)(−i)Nke−i

∑
αlm

2
l , (2.34)

and consequently D(∂)G(d) is directly proportional to G(d−2). More explicitly, we have

D(∂)G(d)
(

{si}, {m2
s}
)

=

(
π

i

) dNk
2

Nd∏

j=1

i−νj

Γ(νj)

∫ ∞

0
. . .

∫ ∞

0

dαjα
νj−1
j

[D(α)](d−2)/2
e
i

[
Q({si},α)

D(α)
−...

]

= (−π)NkG(d−2)({sj}, {m2
s}) ,

(2.35)

and finally

G(d−2)({sj}, {m2
s}) =

(

− 1

π

)Nk

D(∂)G(d)({sj}, {m2
s}) . (2.36)
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The masses that we initially assigned all different can be identified right after performing the
differentiation with the physical ones.

We want to extend this to tensor integrals in the following and it turns out we can use similar
ideas to accomplish this issue. First we associate to each internal line an auxiliary vector aj and
then we take derivatives with respect to these vectors

n1∏

l=1

q1µl · · ·
nNd∏

s=1

qNdλs =
1

in1 . . . inNd

n1∏

r=1

∂

∂a1µr

· · ·
nNd∏

s=1

∂

∂aNdλs
ei[a1q1+···+aNdqNd ]

∣
∣
∣
∣
∣
aj=0

. (2.37)

In this manner we can reconstruct all possible tensors which might be present in the numerator of
a given tensor integral. Having this in mind, the parametric representation in Eq. (2.32) for the
scalar case can be easily generalized to the tensor case [72] and reads

Nk∏

i=1

∫

ddki

Nd∏

j=1

P
νj
qj ,mj

n1∏

l=1

q1µl · · ·
nNd∏

s=1

qNdλs = iNk
(
π

i

) dNk
2

Nd∏

j=1

i−νj−nj

Γ(νj)

×
n1∏

r=1

∂

∂a1µr

· · ·
nNd∏

s=1

∂

∂aNdλs

∫ ∞

0
. . .

∫ ∞

0

dαjα
νj−1
j

[D(α)]d/2
e
i

[
Q({si},α)

D(α)
−
∑N

l=1
αl(m

2
l
−iǫ)

]∣
∣
∣
∣
∣
aj=0

, (2.38)

with mass m2
l = m2

l + a2
l /(4α

2
l ) and new scalar invariants si made out of vectors pi = pi +

∑

j ǫijaj/(2αj) where pi represents the external momentum incoming at vertex i. The matrix ǫ is
the incidence matrix [25, 72] of the underlying topology defined as

ǫij =







+1 : if the vertex i is the starting point of line j

−1 : if the vertex i is the endpoint of line j

0 : if line j is not incident on vertex i .

(2.39)

Performing the derivatives in Eq. (2.38) results in a factor in front of the exponential containing
external momenta and metric tensors gµν multiplied by some polynomials Rs(α) over D(α) with
some exponent. As before, the polynomials are replaced by the operators Rs(∂) and the D(α) can
be absorbed by redefining the space-time dimension d.

We would like to write the right-hand side of Eq. (2.38) in terms of an operator acting on the
scalar Feynman integral G(d)

Nk∏

i=1

∫

ddki

Nd∏

j=1

P
νj
qj ,mj

n1∏

l=1

q1µl · · ·
nNd∏

s=1

qNdλs = Tµ1,...,λs(q, ∂,d
+)G(d)

(

{si}, {m2
s}
)

, (2.40)

where the tensor operator Tµ1,...,λs turns out to be of the following form [72],

Tµ1,...,λs(q, ∂,d
+) =

e−iQ({si,α})ρ

in1 . . . inNd

n1∏

r=1

∂

∂a1µr

· · ·
nNd∏

s=1

∂

∂aNλs
ei
[
Q({si,α})−

∑Nd
l=1

a2
l
/(4αl)D(α)

]
ρ

∣
∣
∣
∣
∣ aj=0
αj=i∂j
ρ=(−π)−Nkd

+

,

(2.41)
with the operator d+ shifting the space-time dimension by two d+G(d) = G(d+2). As in the case
of the D operator in Eq. (2.35) we assume that all propagators have different masses and finally,
after applying the T operator, we set all to physical values.

An alternative to the auxiliary vectors aj introduced in Eq. (2.37) for tensor integrals are scalar
parameters bj in case we are only interested in rewriting irreducible scalar products

(qi · qj)n1 . . . (qk · ql)nNi =
1

in1 . . . inNi

∂n1

∂bn1
1

. . .
∂nNi

∂b
nNi
Ni

ei[b1(qi·qj)+···+bNi (qk·ql)]

∣
∣
∣
∣
∣
bi=0

, (2.42)
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where Ni is the number of irreducible scalar products cf. Eq. (2.6). Similar to Eq. (2.40) we have
[74],

Nk∏

i=1

∫

ddki

Nd∏

j=1

P
νj
qj ,mj (qm · qn)n1 . . . (qo · qp)nNi = Tn1,...,nNi

(q, ∂,d+)G(d)
(

{si}, {m2
s}
)

. (2.43)

A few remarks should be made at this point. Employing Eq. (2.40) or Eq. (2.43) enables us
to express any Feynman integral with tensors or irreducible scalar products in the numerator in
terms of scalar integrals without numerators but shifted space-time dimension d. In the case of
irreducible scalar products we can either go through Eq. (2.40) by contracting the momenta to
construct appropriate scalar products or start right from the beginning with Eq. (2.43). The latter
approach is more favorable because each scalar product only induces a single d+ instead of two
(two derivatives) in Eq. (2.40).

For an actual reduction of Feynman integrals to a small set of master integrals one should
combine those with the IBP relations introduced in Section 2.2. As we have seen, irreducible scalar
products cannot be further reduced by using a strategy as in Eq. (2.5). Having the picture in mind
that every Feynman integral can be expressed as a list of powers of propagators cf. Eq. (2.15) we
could always introduce additional propagators to express such scalar products in terms of these
propagators raised to some negative power. However, this would enlarge the number of indices and
consequently we would have a more complicated class of integrals at hand.

The benefit of this method is that we are staying in the class of integrals we have started with.
Or in other words, we are effectively reducing the number of indices for a given problem. A more
detailed discussion will follow in Sections 2.5 and 2.7.

2.5 Generalized Recurrence Relations

In order to compute the generalized recurrence relations we are starting from the same point as for
the IBP relations in Section 2.2. From Eqs. (2.7) we have

Nk∏

i=1

∫

ddki
∂

∂krµ





(
∑

l

xlqlµ

)
Nd∏

j=1

P
νj
qj ,mj



 = 0 , (2.44)

where r = 1, . . . , Nk and constants xl which are arbitrary chosen. The differentiation will in general
produce scalar products involving loop- and external momenta. These scalar products are usually
expressed in terms of inverse propagators e. g.

k2
1 = P−1

k1,m1
+m2

1 , (2.45)

and if not possible count as an irreducible scalar product. However, from here on we are following
a different way and write all scalar products containing loop momenta in terms of integrals with
different space-time dimension according to Eq. (2.43). The result is a system of equations relating
integrals with changed space-time dimension d and different combinations of powers of propagators.

In other words, the well-known integration-by-parts (IBP) method is just a special case of rela-
tions obtained from Eq. (2.44) for a particular way of rewriting the emerging scalar products

k2
1 −→ P−1

k1,m1
+m2

1 : integration-by-parts,

k2
1 −→ T (q, ∂,d+) : T -Operator.

For completeness it should be pointed out that the minimal change of space-time dimension d is
±2. Changing the dimension only by ±1 would result in functions that are not part of the class
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of continuous functions. This can be easily seen in cases where the analytic result in terms of
hypergeometric functions is explicitly known.

As an example we would like to discuss the generalized recurrence relations for the 1-loop massive
tadpole

I(d)
ν1

(m2
1) ≡

∫
ddk1

iπd/2
P ν1
k1,m1

. (2.46)

According to Eq. (2.27) the first and second Symanzik polynomials are

D(α) = α1 , Q ({s}, α) = α2
1m

2
1 ,

and therefore the D-operator relation from Eq. (2.36) becomes

G(d−2)(m2
1) = − 1

π
D(∂)G(d)(m2

1) = − 1

π
∂m2

1

∫

ddk1P
ν1
k1,m1

= −ν1

π

∫

ddk1P
ν1+1
k1,m1

, (2.47)

rescaling d→ d+ 2 and rewriting of G(d−2) in terms of I
(d−2)
ν1 finally yields

I(d)
ν1

+ ν1I
(d+2)
ν1+1 = 0 . (2.48)

For the T -operator relation we are starting from Eq. (2.44) and have

0 =

∫

ddk1
∂

∂k1µ

[

k1µP
v1
k1,m1

]

=

∫

ddk1

[

dP v1
k1,m1

− 2ν1k
2
1P

v1+1
k1,m1

]

, (2.49)

where the very last term on the right-hand side is rewritten in terms of the tensor integral

− 2ν1g
µν
∫

ddk1k1µk1νP
v1+1
k1,m1

. (2.50)

Comparing the integral above with Eq. (2.40) and calculating the T -operator according to Eq. (2.41)
we obtain T (q, ∂,d+) = − gµν2π d+ and therefore

− 2ν1g
µν
∫

ddk1k1µk1νP
v1+1
k1,m1

=
ν1

π
gµνgµν d+G(d) =

ν1

π
dG(d+2) . (2.51)

Plugging this result into Eq. (2.49) and rewriting again G(d+2) in terms of I
(d+2)
ν1+1 we finally arrive

at
I(d)
ν1

+ ν1I
(d+2)
ν1+1 = 0 , (2.52)

which is in fact the same as for the D-operator in Eq. (2.48). This means we only have two
generalized recurrence relations instead of three (D or T -operator + IBP) at the one loop level.
The corresponding integration-by-parts relation can be deduced from Eq. (2.15) via Wick-rotation
[23] back to Minkowski space-time or directly from Eq. (2.49) by rewriting the scalar product k2

1

in terms of the inverse propagator. In the end we have

(d− 2ν1)I(d)
v1
− 2ν1m

2
1I

(d)
v1+1 = 0 . (2.53)

In general, the set of T ,D-operators and IBP relations for a given problem are not linearly inde-
pendent. It turns out there are as many independent identities as possible scalar products in the
numerator cf. Eq. (2.4). Instead of using Eq. (2.44) to generate generalized recurrence relations we
use the following prescription

Nk∏

i=1

∫

ddki

Nd∏

j=1

P
νj
qj ,mj [qm · qn − qm · qn] = 0 , (2.54)
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where one scalar product is replaced by an appropriate combination of inverse propagators and the
other by the T -operator according to Eq. (2.43)

(qm · qn) −→
∑

u

au
(

P−1
qu,mu +m2

u

)

,

(qm · qn) −→ T (q, ∂,d+) .

(2.55)

The recurrence relations of Eq. (2.54) combined with the D-operator relation from Eq. (2.36) are
forming the set of Nsp + 1 generalized recurrence relations. For the 1-loop massive tadpole of
Eq. (2.48) we get

∫

ddk1 [k1 · k1 − k1 · k1]P v1+1
k1,m1

= I(d)
ν1

+m2
1I

(d)
ν1+1 −

d

2
I

(d+2)
ν1+1 = 0 , (2.56)

where we made use of Eq. (2.51).

As we will see in Chapter 3, the usage of generalized recurrence relations is an essential building
block of the work described in this thesis.

2.6 Solving the System of Identities: The Laporta Algorithm

So far we only discussed the identities relating Feynman integrals among each other. However,
without knowing a definite prescription which of the identities should be used for a reduction of
a given Feynman integral, they are useless at this point. That is, in a sense, contrary to the
experience we have gained from the 1-loop massive tadpole in Eq. (2.15). In general, a simple
recurrence relations as in Eq. (2.17) is more exception than the rule. In order to discuss this issue
more in detail, we start introducing some useful notation first.

2.6.1 Propagators, Sectors and Integrals

Let us recall the Eqs. (2.1) and (2.11). Once the propagators are specified, any Feynman integral
can be expressed in terms of powers ni and masses mi of the corresponding propagators

J(n) = J(n1, . . . , nM ) =

∫

k1,...,kNk

1

Dn1
1 . . . DnM

M

, n ∈ ZM , (2.57)

where we assumed that all irreducible scalar products are expressed by introducing additional
inverse propagators. The integrals in Eq. (2.57) are classified in the following sense

• The topology (total number of propagators with positive powers): t ≡∑M
i=1 θ(ni − 1) ,

• The sum of powers of propagators with positive ni: r ≡
∑M
i=1 ni · θ(ni − 1) ,

• The absolute sum of powers of propagators with negative ni: s ≡
∑M
i=1 |ni| · θ(−ni) ,

where θ is the Heaviside-function. For practical reasons, we introduce the shortcut It,r,s to merge
a certain class of integrals together

It,r,s ≡
{

J(n1, . . . , nM ) | with (t, r, s) according to the definitions above
}

. (2.58)

We define, in analogy to Refs. [76, 77], an auxiliary topology (or integral family) AM to be an
ordered set of propagators AM = {D1, . . . ,DM} constructed to cover all possible scalar products
(cf. Eq. (2.4)) ki · kj and ki · pj as linear combinations of the propagators Di ∈ AM . We consider
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subsets of AM with exactly t propagators Dj1 , . . . ,Djt where {j1, . . . , jt} ⊂ {1, . . . ,M} resulting in
so-called sectors Tt each associated with an unique identification number

ID =
t∑

k=1

2jk−1 . (2.59)

The total number of t-propagator sectors Tt is given by the binomial coefficient
(M
t

)
and therefore

we can construct
M∑

t=0

(

M

t

)

= 2M , (2.60)

sectors out of the auxiliary topology AM . We can consider subsectors Tt−1 of the sector Tt by
removing one of the t propagators of Tt and, in general, there are t different subsectors of Tt.
The sectors Tt representing actual Feynman integrals are called topologies. A tree (or subsector
tree) of Tt is the set of all subsectors of Tt and subsectors thereof in a recursive manner. The
subsector tree of AM contains all sectors and is called main sector. The total number of integrals
in a given t propagator sector Tt of the auxiliary topology AM for fixed r, s can be derived from
simple combinatorics and reads

N (It,r,s) =

(

r − 1

t− 1

)

︸ ︷︷ ︸

# Positive Powers

·
(

s+M − t− 1

M − t− 1

)

︸ ︷︷ ︸

# Negative Powers

, (2.61)

with
(−1
−1

)
= 1. For a given sector Tt the integral with r = t and s = 0 is called corner integral

of that sector. Any topology has a certain number of necessary propagators in order to write
the corresponding integrals in the form of Eq. (2.57). If one starts from the most complicated
topology (let us say for the moment the one with the largest number of different propagators
t = tmax) and uses this set of propagators as the auxiliary topology, all topologies are consequently
expressible as subsectors of this auxiliary topology. On the other hand, in cases where more than one
most complicated topology exists, we need to introduce additional so-called auxiliary propagators
tmax ≤M to express those topologies and its physical subsectors within the auxiliary topology.

In addition, there is always some freedom in choosing the momenta flowing in the propagators.
This and the choice of introducing additional auxiliary propagators can be used to maximize the
number of symmetry relations (cf. Sec. 2.6.2) in a given auxiliary topology. That is important,
because, at first glance, different subsectors turn out to describe the same topology and one wants
to reduce these equivalences as much as possible right from the beginning. In the end it depends
on the actual problem whether it is more advantageous to use more than one auxiliary topology,
each more symmetric, or stick to a single auxiliary topology which is presumably less symmetric.
In this work we will always consider a single auxiliary topology.

As an example, let us consider the 2-loop massive tadpole. We define the following auxiliary
topology

A3 =
{

k2
1 +m2, k2

2 +m2, (k1 − k2)2 +m2
}

, (2.62)

where we have a maximal number of three different propagators. From the auxiliary topology in
Eq. (2.62) we immediately get the representation for any 2-loop massive tadpole in terms of powers
of its propagators

J(n1, n2, n3) =

∫

k1,k2

1

(k2
1 +m2)n1

1

(k2
2 +m2)n2

1

((k1 − k2)2 +m2)n3
. (2.63)
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Figure 2.1: The subsector tree of auxiliary topology A3 displaying all possible subsectors and its
identification numbers. Also unphysical subsectors with t = 1, 0 are shown. These
subsectors are consisting of integrals which are identically zero in dimensional regu-
larization. The subsectors indicated in red represents our choice of the two physical
subsectors or topologies diagramed in Eq. (2.64). The subsectors 3 and 5 can be shifted
to subsector 6 employing the linear shift relations discussed in Section 2.6.2.

At 2-loop we have only two different non-vanishing topologies2, namely

I(1, 1, 1) = 3,7 ,

I(1, 1, 0) = 2,6 ,
(2.64)

where the function arguments 1 or 0 on the left-hand side are indicating a positive or negative/zero
power of the corresponding propagator (ordering relative to auxiliary topology), respectively. This
binary representation turns out to be quite useful and will be encountered in the following work
intensively. Furthermore, the first subscript on the right-hand side in Eq. (2.64) stands for the
number of positive lines (number of different propagators with positive power: t) and the second
is, according to Eq. (2.59), the binary representation translated into the decimal number system

I(1, 1, 1) −→ ID = 1 · 22 + 1 · 21 + 1 · 20 = 7 ,

I(1, 1, 0) −→ ID = 1 · 22 + 1 · 21 + 0 · 20 = 6 .
(2.65)

In Figure 2.1 we have summarized all subsectors of auxiliary topology A3. Starting from a cer-
tain sector and going downwards corresponds to shrinking lines or removing propagators in the
associated Feynman diagrams or integrals as illustrated in Figure 2.2.

1

3

2
3,7

Shrinking Line #3−−−−−−−−−−−→ 1 2
2,6

Figure 2.2: Shrinking of lines corresponds to removing propagators from the subset T3 of the aux-
iliary topology A3.

On top of this, we classify the 2M sectors from Eq. (2.59) in the following categories. Let Tt be
a t-propagator sector with identification number ID. The sector Tt

1. is called physical sector (or topology) if one can draw a graph with the specified momenta.

2All graphs shown in this work are drawn using the Axodraw package [78].
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2. is called trivial zero if the number of propagators t is less then Nk. In dimensional regular-
ization that sector is identically zero.

3. is called nontrivial zero if the number of propagators t is larger or equal Nk but turns out to
vanish after a suitable momentum shift is performed (see Section 2.6.2).

4. is called trivial antisector if the number of positive propagators t is larger than tmax.

5. is called nontrivial antisector if the number of positive propagators t is smaller or equal tmax
but not possible to draw a graph with the specified momenta.

We have already encountered the first two cases in the 2-loop example given above. According to
Figure 2.1, sectors 7, 6, 5 and 3 are physical sectors whereas 4, 2 and 1 are trivial zeros. The cases
3, 4 and 5 are not present in the 1- and 2-loop example. Those categories are discussed in Chapter
3.

2.6.2 Linear Shifting of Internal Momenta: Sector Relations and Symmetries

In the previous section we have encountered the fact that, at first glance, different sectors turn
out to describe the same topology. One of the questions we would like to answer in this section
is how can we find out whether sectors are equivalent or not. For this purpose we consider linear
transformations of integration variables of the form

ki −→
Nk∑

j=1

Mijkj +
Ne∑

j=1

Nijpj , i = 1, . . . , Nk , (2.66)

where i = 1, . . . , Nk and |detM | = 1. Let Tt and T ′t be t-propagator sectors (Tt 6= T ′t) of auxiliary
topology AM . The transformation in Eq. (2.66) applied to the corner integral of sector Tt leads, in
general, to the following situations:

1. Each of the M independent propagators of auxiliary topology AM is mapped to a propagator
belonging to auxiliary AM .

2. The propagators of sector Tt are mapped to propagators of auxiliary topology AM , but the
remaining M − t propagators are not all or none part of auxiliary topology AM .

3. The propagators D1, . . . ,Djt of sector Tt are mapped to the same set of propagators whereas
the remaining M − t propagators are, as in 2. , not all or none part of auxiliary topology AM .

Having this in mind we can define a sector relation of sectors Tt and T ′t as the transformation (case
1. and 2.) that maps the set of propagators of Tt into the set of T ′t . If two sectors are related by
a sector relation they are considered to be equivalent and consequently one sector can be excluded
from reduction. In general, there are

(M
t

)
t-propagator sectors and the ones we are left with after

finding all sector relations among them are called representatives of the corresponding topologies,
see Figure 2.3. In case of auxiliary topology A3, we have chosen the sector with identification
number 6, cf. Figure 2.1, to be the representative of all sectors Tt with t = 2 as we can immediately
see from Eq. (2.64) by shifting the integration variable k1

I(0, 1, 1) −−−−−−−→
k1→k1+k2

I(1, 1, 0) ,

I(1, 0, 1) −−−−−−−→
k2→k1+k2

I(1, 1, 0) .
(2.67)
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In case we have a sector relation of type 1, any integral of sector Tt can be expressed in terms of
exactly one integral of sector T ′t . Let us further assume a sector relation, for two given sectors Tt
and T ′t , turns out to be only available as in case 2, we find that any integral of Tt can be written as
a linear combination of integrals of T ′t and its subsectors. Usually there is some freedom in choosing
sector relations between sectors and it is preferable, if possible, to chose sector relations of type
1. So far we have only considered transformations leading to the first two situations. However,

Tt,1

Tt,2

Tt,3

Figure 2.3: We consider the set of all t-propagator sectors of a given auxiliary topology AM . Let
us assume that there are three representatives Tt,1, Tt,2 and Tt,3. Each representative is
surrounded with equivalent sectors which are related to the representative by a sector
relation indicated with a solid arrow (subsectors are not considered). Sectors from
different sets are not related among each other which is indicated by a crossed dashed
arrow.

linear transformations as in Eq. (2.66) can be used to derive additional identities, the so-called
sectors symmetries. Sector symmetries are generated by particular linear transformations leaving
a given t-propagator sector Tt invariant (case 3.). Also transformations of type 1, restricted to
those where all t propagators of Tt are mapped to itself, lead to sector symmetries. In the latter
case a given integral is expressed in terms of itself only differing by permutations of its propagator
powers, whereas in case 3, integrals of Tt are written as linear combinations of integrals in Tt and
subsectors thereof. For example let us consider the 2-loop massive tadpole from Eq. (2.63) again

case 1 : J(n1, n2, n3) = J(n2, n1, n3) = J(n3, n2, n1) = J(n1, n3, n2) , ni arbitrary ,

case 3 : J(n1, n2, n3) = J(n1, n2, 0)×
[

2D1 + 2D2 −D3 − 2m2
]−n3

, n3 ≤ 0 ,
(2.68)

where the latter equation (k2 → −k2) is rewritten in terms of functions J(n1, n2, n3) after expanding
the right-hand side for a given n3. The methods to find appropriate sector relations and symmetries
range from straightforward (brute-force) approaches to more elegant ones using graph and matroid
theory. For more details and practical implementations on the latter approach we refer to [71, 77]
and references therein.

In conclusion, sector relations are used to reduce equivalences and to determine the number of
physical sectors to be reduced. Sector symmetries are usually combined with IBP relations to
reduce a given sector more efficiently as well as to minimize the number of master integrals one is
left with.

2.6.3 Different Point of View: Identities among Feynman Integrals in r-s Space

We resume the discussion postponed in Section 2.2. As already mentioned, in general, the system
of identities we obtain for a given problem is not easy to solve. The simple recurrence relation for
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the 1-loop massive tadpole in Eq. (2.17) was an exceptional case. Starting from the integral class
It,r,s, the integration-by-parts identities contain integrals3 of the following types:

1. It,r,s : The integral initially started with.

2. It,r+1,s, It,r+1,s+1 : Integrals with one propagator raised (r + 1) or propagator and inverse
propagator raised (r + 1, s + 1).

3. It,r,s−1, It,r−1,s−1 : Integrals with one inverse propagator lowered (s − 1) or propagator and
inverse propagator lowered (r − 1, s − 1).

4. It−1,r+1,s, It−1,r,s−1 : Integrals belonging to the class of integrals with t − 1 different propa-
gators and one raised propagator (r + 1) or lowered inverse propagator (s− 1), respectively.

The integrals in 2. can be considered to be more difficult, whereas the integrals in 3. and 4. are
simpler than the initial integral It,r,s. At this point, we are not introducing a prescription to
categorize different integrals according to their complexity. However, such an ordering will be
discussed in Section 2.6.4. Here we only want to illustrate which integral class is more complicated
than others and vice versa.

By considering only single IBP relations we are, in general, not able to deduce simple recursion
relations such as in Eq. (2.17). Integration-by-parts relations applied to the class of integrals It,r,s

s

4

3

2

1

0

0 1 2 3 4 r

(a) Integration-by-parts relates inte-
grals always in the same way.

s

4

3

2

1

0

0 1 2 3 4 r

(b) A sector symmetry relates integrals
to those with smaller values of (r, s).

Figure 2.4: The integration-by-parts identities (a) and sector symmetries (b) applied to the set of
integrals It,r,s with (r, s) = (3, 3) shown in the (r, s)-plane. The solid arrows in (a)
pointing away from the point (3, 3) are indicating all possible (r, s)-values for integrals
which might be present in the identities. On the other hand, the (r, s) values of integrals
related by sector symmetries do depend on the specific sector symmetry considered as
well as the value s the symmetry is applied to. This behavior is indicated by using
dashed arrows (b) and can be easily seen from Eq. (2.68).

can be used to reduce It,r+1,s or It,r+1,s+1 in terms of It,r,s and simpler ones but not to get suitable
information about It,r,s itself. There are in principle two different approaches. First, one can try
to derive explicit reduction formulae (not fixed to some integer) by studying carefully the IBP
relations for a given integral with arbitrary powers, or second, choosing some fixed integer values
for (n1, . . . , nM ) and generate all possible IBP relations and combine them with some deterministic

3By saying integrals we always referring to the integral class.
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procedure to reduce integrals with large (r, s) in terms of simpler ones with small (r, s). The former
approach is, at first glance, more desirable but demands a case-by-case analysis of every topology,
see e. g. [79, 80]. On the other hand, the latter approach can be carried out almost automatically
which is, in particular, interesting in cases with a large number of topologies. Since we are working
in that regime the latter one is our method of choice.

In Figure 2.4 it is shown how the IBP identities are relating different integrals in the (r, s)-
plane for some certain starting point. Each point in the (r, s)-plot generates NIBP · N (It,r,s) new
relations withNIBP denoting the number of IBP identities andN (It,r,s) the total number of integrals
belonging to the set It,r,s as defined in Eq. (2.61). For increasing values r and s the number
of new relations grows as the volume of ZM times the number of IBP relations NIBP in each
point (n1, . . . , nM ) ∈ ZM , while the number of unknowns (integrals) only grows as the volume of
ZM . At some point, we accumulate more relations than having unknowns and the system gets
overdetermined. In fact, the set of equations obtained by generating all possible IBP relations
with values r ∈ [rmin, rmax] and s ∈ [smin, smax] is not linearly independent and it is not known
how many integrals will be undetermined after reduction. The integrals we are left with are called
master integrals. They form a basis in such a way that all other integrals are expressible in terms
of these master integrals. A more detailed discussion on this issue will follow in Section 2.6.4.

In the limit of large values r and s only one identity out of NIBP identities produces a relation
which gives new information. We have already started to tackle this problem by reducing the
number of identities in each point using the Lie algebra structure of the IBP operator in Eq. (2.13).
However, further investigation of this problem is necessary to minimize the number of linearly
dependent relations right from the beginning. This will result in considerably less computing time
for checking whether relations are linearly dependent or not as we will see later on.

2.6.4 The Laporta Algorithm and an Unique Ordering of Feynman integrals

This Section is devoted to the question how to combine the relations above in a systematic way
to reduce a given Feynman integral in terms of simpler ones. To do so, we first introduce an
unique ordering [18] which, in our context, classifies integrals according to their complexity. This
is followed by an algorithm, known as as the Laporta algorithm [18], able to solve a given system
of equations build out of identities such as the IBP relations or generalized recurrence relations
discussed in Section 2.2 and 2.5, respectively.

Before Laporta’s algorithm with the idea of an unique ordering of Feynman integrals was known,
the finding of recurrence relations was merely guess work with respect to the constants in Eq. (2.44),
see e. g. [81]. The approach allows to tackle more complicated problems with a larger numbers of
loops and/or external legs which would otherwise not be possible. Moreover, the method does not
depend on the specific problem and allows almost automatic calculations for all inherent topologies.

Let us assume that all identities are generated according to Eqs. (2.7) or Eqs. (2.36),(2.54) up
to a certain level. We pick one identity which has, in general, the form

∑

j

cjJj = 0 , (2.69)

where Jj are integrals as functions of its powers4 of propagators (n1, . . . , nM ) ∈ ZM and cj are
polynomials in space-time dimensions d, masses mi and, depending on the specific problem, other
scales as coefficients. We choose one particular integral Jl out of the set {Jj} according to a unique
prescription classifying the integrals with respect to their complexity. The next step is to rewrite

4In case of generalized recurrence relations they also depend on the dimension shift caused by the d
+ operator in

Eq. (2.41).
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the identity in Eq. (2.69) as

Jl = −
∑

j 6=l

c′jJj , c′j =
cj
cl
. (2.70)

where the most complicated integral Jl is expressed in terms of simpler ones (according to the
ordering we have chosen). It should be pointed out that each rewriting of identities as in Eq. (2.70)
demands the computation of new coefficients c′j involving time consuming polynomial algebra.
From here we pick the next identity of the form of Eq. (2.69) and substitute Eq. (2.70) in that
identity which immediately becomes

∑

j

c′′jJ
′
j = 0 , (2.71)

and again after choosing the most complicated one, let us say J ′l out of the set {J ′j}, we have

J ′l = −
∑

j 6=l

c′′′j J
′
j , c′′′j =

c′′j
c′′l
. (2.72)

It is guaranteed that J ′l 6= Jl because Jl was not present in Eq. (2.71) either due to the substitution,
or due to absence right from the beginning. Then we substitute the identity of Eq. (2.72) in
Eq. (2.70). This procedure is now in turn applied to the next identity and can be summarized:

1. Let
∑

j cjJj = 0 be a new identity. Substitute already existing identities such as Eq.(2.72) in
that identity, it becomes

∑

j c
′
jJ
′
j = 0.

2. Choose one particular integral (according to the unique ordering) out of the identity from
step 1. an rewrite that identity as J ′l = −∑j 6=l c

′′
jJ
′
j .

3. Add the identity from step 2. to the system and substitute this identity in all existing identities
of the system.

After all identities have been processed, the system contains identities relating more difficult inte-
grals in terms of simpler ones. Most of these integrals are expressed through a few master integrals.
The set of master integral we are left with depends strongly on the choice of the ordering. More
details on the unique ordering will follow below after a few addition remarks.

So far we only discussed the basic concept of the algorithm. A simple implementation can be
deduced from Figure A.3 in Appendix A.1. However, some improvements should be mentioned at
this point. The order of processing the identities turns out to significantly affect the computing
time and needs to be optimized. This is because each new identity added to the system in step
3. can cause a large number of substitutions if the integral occurs in many of the already existing
identities.

A rather good choice to minimize those substitutions is to start with the simplest possible
integrals, i. e. those with the smallest (r, s) values, and increase successively the values of (r, s)
which is, in fact, inverse to the order we are extracting integrals in step 2.. The order of processing
the identities does not change the final solution of the system but can blow up the compution time
if badly chosen. We have sketched the inverse processing of identities in Figure 2.5.

On top of this, it is quite useful to divide the system of identities into subsystems of the different
physical sectors Tt (topologies). More precisely, the subsystems are built of identities originating
from integrals

It,r,s , r ∈ [rmin, rmax] and s ∈ [smin, smax] , (2.73)

with a certain combination of denominators Dj1 , . . . ,Djt specified by the unique identification
number in Eq. (2.59). As we have already seen in Section 2.6.3, those equations can not only
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(a) The first identities generated and processed are
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(b) Followed by identities with (r′, s) = (0, 1), (1, 0)
and (1, 1).

Figure 2.5: The inverse ordering of identities processed in the Laporta algorithm shown in the
(r′, s)-plane with r′, s ∈ [0, 1]. The r′-axis is associated with the original r shifted by −t
such that r′ = 0 corresponds to integrals with all propagators having powers equal to
one. In this context, a value r′ < 0 would correspond to at least one propagator power
being zero or negative and consequently represent a topology with a smaller number of
different propagators t. In addition, starting from an integral with (r′, s = 0), the IBP
identity does not contain integrals (not present) with negative powers of propagators.

contain t-propagator integrals but also those with t − 1 different ones. A reduction of sectors
Tt would result in equations depending on many unreduced integrals of its subsectors. These
integrals are again part of independent reductions in the corresponding subsystems. To this end,
the reduction of any given sector Tt always starts with reducing the relevant subsectors with the
smallest number of different propagators t′. The solutions are inserted in all physical sectors with
t′+ 1 propagators and are again reduced. This procedure will be continued until the reduction has
reached the initial sector Tt. It can happen that the most complicated integral in Eq. (2.70) turns
out to belong to a subsector of Tt′ . Relations of that kind are not added to the system of equations
of sector Tt′ because we do not want to blow up the system with relations that are already available
in the corresponding subsystems.

t=2

Reduction

7

6

t=3

Figure 2.6: The subsector tree of physical subsectors of auxiliary topology A3. The arrow pointing
vertically indicates the order of reduction.

For example, in the case of the 2-loop massive tadpole we have exactly two subsystems associated
to the two nontrivial topologies, cf. Figure 2.6, with identification numbers 7 and 6. If topology
7 needs to be reduced we first start reducing topology 6 and insert the solutions in subsystem 7
before the reduction is started.

All in all, starting a reduction from the bottom of a subsector tree one avoids lengthy expressions
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and speeds up the reduction considerably. This is because intermediate integrals of subsectors
with rather large powers of propagators do not occur since they are immediately replaced by an
appropriate reduction to master integrals.

Let us now focus on the unique ordering of Feynman integrals we have mentioned before. As
we already know, the ordering5 must be unique in order to identify exactly one integral and
designed to pick the most complicated (cf. Sec. 2.6.3) out of a set of integrals. For this pur-
pose we assume to have an ordered set of propagators defined in an appropriate auxiliary topol-
ogy AM = {D1, . . . ,DM} with powers n = (n1, . . . , nM ) ∈ ZM . Considering a set of integrals
{J1, . . . , Jn} we have chosen the following order of priority for extracting integrals. Take the inte-
gral with

1. largest number of different propagators t. If more than one integral has the same value t
proceed with 2..

2. largest r + s. If more than one integral has the same value r + s proceed with 3..

3. largest number of negative propagators. If more than one integral has the same number of
negative propagators proceed with 4..

4. greatest power nM . If more than one integral has the same power nM proceed with the
greatest power nM−1, . . . , the greatest n1.

The rules we have specified here can be basically divided into two categories. Rules 1, 2 and 3 are
classifying the integrals according to their complexity and rule 4 guarantees uniqueness by means
of an arbitrary choice. In Table 2.1 we have shown how the ordering is used to determine the most

Rule J(1, 1, 1) J(2, 1, 0) J(1, 1,−1) J(1, 2, 1) J(2, 1, 1)

1 3 2 2 3 3
2 3 3 3 4 4
3 0 0 1 0 0
4 - - - n2

√
n1

Table 2.1: Using our choice of an unique ordering to determine the most complicated integral out
of a set of five integrals. The integrals J(n1, n2, n3) are 2-loop massive tadpoles as
defined in Eq. (2.63). We have indicated which integral would be chosen to be the most
complicated one.

complicated integral out of a set of 2-loop massive tadpoles, see the example of Section 2.6.1.

The ordering introduced above tends to express integrals with powers of propagators randomly
distributed in terms of those where the powers of propagators are shifted towards some very few
propagators. Propagators with negative powers (irreducible scalar products) are usually disappear-
ing in exchange for higher powers on the initial t positive propagators.

For more details on integration-by-parts, reduction algorithms and related topics we refer to
e. g. [82].

5It should be noted that the term ‘lexicographic ordering’ is commonly used in the corresponding literature, see
e. g. [18]. This might be misleading because, strictly speaking, the prescription given there and referred to as
‘lexicographic ordering’ is nothing but an unique ordering.
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2.7 Generalized Recurrence Relations: The Advantages and

Consequences

The usage of generalized recurrence relations has a tremendous benefit in the reduction problem of
Feynman integrals. The first thing to tackle a reduction problem is to find an appropriate auxiliary
topology AM such that all topologies are covered. Usually AM contains more propagators than
the most complicated topology (largest number of different propagators) we are faced with. This is
because additional auxiliary propagators are introduced to cover all, if more than one, complicated
topology is present. In other words, the space of powers of propagators n ∈ ZM in which we are
considering the topologies is bigger than it should be.

On the other hand, a reduction only in terms of integration-by-parts identities works, but turns
out to be very slow without sector symmetries. Using sector symmetries leads, in general, to a
smaller set of master integrals and speeds up the reduction considerably due to the symmetrization
of lengthy intermediate expressions. However, the number of sector symmetries increases with M
and depends strongly on the symmetry properties of each topology. At higher loop order we observe
numbers of sector symmetries, typically a few thousand for some certain sectors, making it difficult
to perform a reduction simply by combining IBP identities and sector symmetries. For a given
sector only very few sector symmetries produce new relations and it is a priori not clear which one.
Since we are interested in a mechanical approach a carefully chosen set of sector symmetries for
each sector is not an option.

We have decided to address this issue in a different way by using the generalized recurrence
relations introduced in Section 2.5. By doing so, we effectively reduce the number of indices for
a given t-propagator sector Tt from M to t + 1 indices which is, in particular, advantageous for
sectors with rather small t.

For this purpose, let us recall some basic facts from Section 2.4. The T operator in Eq. (2.43)
can be used to get rid of the M − t inverse propagators (or irreducible scalar products) in exchange
for an additional index specifying the deviation from physical space-time dimensions d as well as
higher powers for the remaining t propagators. In analogy to Eq. (2.57) we define

J ′(n) = J ′(n0, n1, . . . , nM ) =

∫ (d′)

k1,...,kNk

1

Dn1
1 . . . DnM

M

, n ∈ ZM+1 , (2.74)

with integration measure
∫ (d′)

k1,...,kNk

=

∫
dd
′
k1 . . . d

d′kn
(πd

′/2)Nk
, (2.75)

where d′ = d − 2n0 and n0 ≤ 0. In the case of n0 = 0 we recover the integral J(n) in Eq. (2.57)
immediately

J(n1, . . . , nM ) = J ′(n0 = 0, n1, . . . , nM ) . (2.76)

Let us again consider the 1-loop massive tadpole and rewrite the generalized recurrence relations
in Eqs. (2.48) and (2.56) using the notation of Eq. (2.74)

0 = J ′(n0, n1 − 1) +m2
1J
′(n0, n1)−

[
d

2
− n0

]

J ′(n0 − 1, n1) ,

0 = J ′(n0, n1) + n1J
′(n0 − 1, n1 + 1) .

(2.77)

Starting from the definition of T in Eq. (2.43), one can estimate that for each scalar product the
values of r and d′ are increasing as

s→ s− 1 : r → r +Nk − 1 and d′ → d′ + 2 . (2.78)
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This behavior looks, at first glance, quite disappointing because for each scalar product less (s →
s − 1) we are forced to consider integrals with r → r′ = r + Nk − 1 and it becomes worse as
we go to higher loops. Nevertheless, the method turns out to be quite powerful for a reduction
and especially for the problem of finding difference equations for master integrals as we will see in
Section 3.4.1. In the same way as we merged certain integrals together in Eq. (2.58) we introduce
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2

1

0

0 1 2 3 4 r

loop

D

(a) Generalized recurrence relation ap-
plied to (1, 2).

4

3

2

1

0

0 1 2 3 4 r

D

(b) Sector symmetries for s = 0 permu-
tates powers of propagators.

Figure 2.7: The generalized recurrence relations (a) and sector symmetries (b) applied to the set of
integrals with (r,D) = (1, 2) shown in the (r,D)-plane. Solid lines show the values (r,D)
of integrals present in the relations. In addition, also integrals with up to r → r + Nk

will be part of the relation. The dependence on the number of loops Nk is indicated by
the dashed arrow pointing to the right. A Sector symmetry for s = 0 does not change
the values of r and D, it only permutates the powers of propagators.

a similar quantity here, namely

It,r,D ≡
{
J ′(n0, n1, . . . , nM ) | with (t, r, s = 0) as usual and n0 = −D} . (2.79)

Assuming a t-propagator sector Tt specifying a set {j1, . . . , jt} ⊂ {1, . . . ,M} of propagators Dj1 , . . . ,
Djt , the total number of integrals for fixed (r,D) is then given by

N (It,r,D) =

(

r − 1

t− 1

)

. (2.80)

This follows from Eq. (2.61) by omitting the binomial coefficient which takes into account permu-
tations of inverse propagators. Since we got rid of the M − t inverse propagators, also the number
of sector symmetries for a given sector Tt is smaller and consequently it is not longer a serious prob-
lem to combine them with the generalized recurrence relations. To get an impression on how the
numbers of sector symmetries reduces we have summarized the numbers for fully massive tadpoles
in Tables A.3 and A.4 in Appendix A.1. We point out, it is not primarily the reduced number of
sector symmetries which allows us to take them all into account rather the simplified structure of
the remaining sector symmetries.

Figure 2.7 shows the generalized recurrence relations and sector symmetries in the (r,D)-space.
The pattern shown in Figure 2.7a is directly related to the fact that only a single scalar product is
replaced in Eq. (2.54) to obtain generalized recurrence relations. In contrast to the IBP identities
in Figure 2.4, we can end up having relations containing integrals with nonvanishing s although
we initially started with integrals belonging to the integral class It,r,D. Relations of that kind are
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not added to the system of equations in the Laporta algorithm (see Section 2.6.4) and therefore,
by construction, integrals with s 6= 0 will never show up.

At this point, a few words regarding sector symmetries should be mentioned. Since all pow-
ers of inverse propagators are zero (s = 0), the sector symmetries from Section 2.6.2 simplify to
permutations of powers of the remaining t propagators. There are a lot of redundant sector sym-
metries because different linear transformations in Eq. (2.66) are leading to the same permutation
of propagator powers nj1, . . . , njt but different realizations of the remaining M − t propagators.

For instance, let us consider the 2-loop massive tadpole with shifts k2 → ±k2, where (+) is
nothing but the identity and for (−) we get

J ′(n0, n1, n2, n3) = J ′(n0, n1, n2, 0) ×
[

2D1 + 2D2 −D3 − 2m2
]−n3

, (2.81)

which is exactly the same in case n3 = 0. In other words, different transformations are leading
to different sector symmetries but coincide in the case of s = 0. We remove the redundant sector
symmetries and use the rest for the symmetrization of intermediate integrals. More details on this
issue will follow in the Chapter 3.

As mentioned above, an additional index is introduced to specify the dimension of the integral
under consideration. We need to extend the ordering discussed in Section 2.6.4 for integrals in
different dimensions. Since the physical dimension corresponds to n0 = 0 and integrals with values
of n0 differing from zero are primarily introduced to rewrite the scalar products, the rule should be
to extract integrals with smaller n0 first and then those with 0 ≥ n′0 > n0. We decided to give the
ordering in dimension highest priority and place it even before the number of positive propagators
t is compared:

0. Order the integrals with respect to their value n0, with smaller values corresponding to a
higher priority. In case of degenerate integrals with the same value n0 proceed with 1. ,

followed by the rules given in Section 2.6.4. This ordering leads, in general, to relations expressing
integrals in higher dimensions in terms of those with physical dimensions (n0 = 0).
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3 Massive Tadpoles up to the 5-loop Level:

Reduction, Master Integrals and Difference

Equations

The following chapter is devoted to a detailed description of fully massive tadpoles up to the 5-loop
level. We have already encountered the 1- and 2-loop case in the previous chapter. From time to
time the concepts were demonstrated on the basis of the 1- and 2-loop vacuum integrals (tadpoles).
All concepts introduced so far are necessary to understand the following discussion.

The plan of this chapter is as follows. In Section 3.1, we define the class of tadpoles by specifying
appropriate auxiliary topologies followed by introducing a convenient notation. In Section 3.2, we
prepare the reduction by specifying all physical subsectors (topologies) and their representatives
as well as necessary sector relations and symmetries. In Section 3.3.1 we give a review of the most
frequently used computer algebra systems in particle physics and already existing implementations
of reduction algorithms. In Section 3.3.2, we discuss the actual implementation of our approach
in the algebraic manipulator FORM [19, 20, 21] which is used to perform the reduction to master
integrals. On top of this, we adapt the algorithm to derive difference equations for the remaining
master integrals in Section 3.3.3. The reduction to master integrals is discussed in Section 3.4.
Finally, in Section 3.4.1 we present the difference equations we obtained. In addition to this, we
discuss a basis transformation in order to guarantee that all master integrals are covered by the
difference equations we derived.

3.1 Notations and Momenta Conventions

We consider the special class of fully massive tadpoles where all propagators have the same mass
m. Following the notation outlined in Eq. (2.74) we have

J ′(n) = J ′(n0, n1, . . . , nM ) =

∫ (d′)

k1,...,kNk

1

Dn1
1 . . . DnM

M

, n ∈ ZM+1 , (3.1)

with propagators Di = q2
i +m2 to the power ni. From now on, if not otherwise indicated, we use

Euclidean space-time metric throughout the whole chapter. Since all propagators have the same
mass m, we consider a more convenient representations of Eq. (3.1) by rescaling the integration
momenta ki → mki. We obtain

J ′(n) = J ′(n0, n1, . . . , nM ) =
(m2)d

′Nk/2

(m2)n1+···+nM

∫ (d′)

k1,...,kNk

1

Dn1
1 . . . DnM

M

, n ∈ ZM+1 , (3.2)

with propagators Di = q2
i + 1 having mass squared m2 = 1. The factor in front of the integral,

carrying the mass dependence, is neglected. In the end the prefactor can be reconstructed simply by
counting the dimension of each integral. This is advantageous because in a reduction such as in the
Laporta approach (see Section 2.6.4, Eq. (2.70)) we are forced to compute quotients of multivariate
polynomials which, in fact, turns out to consume most of the computing time. Therefore, from the
computational point of view, it is always a benefit to remove those unnecessary scales right from
the beginning.
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Let us now focus on the momenta convention to write the tadpoles in the notation of Eq. (3.2).
In Table 3.1 we have summarized the auxiliary topologies A1, A3, A6, A10 and A15 corresponding
to the one-, two-, three-, four- and five-loop massive tadpole. There are Nsp = Nk(Nk + 1)/2
scalar products, cf. Eq. (2.4) and Section 2.6.1, and consequently we have an equal number of
propagators M in the corresponding auxiliary topologies. The auxiliary topologies A1, A3, A6, A10

Propagator A1 A3 A6 A10 A15

1 k2
1 k2

1 k2
1 k2

1 k2
1

2 k2
2 k2

2 k2
2 k2

2

3 (k1 − k2)2 k2
3 k2

3 k2
3

4 (k1 − k2)2 k2
4 k2

4

5 (k1 − k3)2 (k1 − k4)2 k2
5

6 (k2 − k3)2 (k2 − k4)2 (k1 − k3)2

7 (k3 − k4)2 (k1 − k4)2

8 (k1 − k2)2 (k1 − k5)2

9 (k1 − k3)2 (k2 − k3)2

10 (k1 − k2 − k3)2 (k2 − k4)2

11 (k2 − k5)2

12 (k3 − k5)2

13 (k4 − k5)2

14 (k1 + k2 − k4)2

15 (k3 − k4)2

Table 3.1: The auxiliary topologies A1, A3, A6, A10 and A15 for fully massive tadpoles up to 5-loop.
We have suppressed the mass m2 = 1 in each propagator for legibility. As we already
know from Eqs. (2.15) and (2.62), the 1- and 2-loop case have M = 1 and M = 3,
respectively. Going beyond 2-loop we have M = 6,M = 10 and at 5-loop M = 15.

and A15 are ordered sets of M = 1, 3, 6, 10 and M = 15 propagators. As it turns out, the auxiliary
topologies A1, A3 and A6 corresponding to the 1-, 2- and 3-loop case have exactly the same number
of propagators as their most complicated topology. At 4- and 5-loop we have more than one most
complicated topology and additional auxiliary propagators are introduced to guarantee that all
topologies are covered. In general, the most complicated vacuum topology one can build has

tmax =

{

1 : Nk = 1

3 · (Nk − 1) : Nk > 1
(3.3)

positive propagators. Figure 3.1 shows some of those topologies at the different loop levels. What
kind of, and how many topologies we are exactly faced with will be discussed in Section 3.2. Having

t=1 , t=3 , t=6 , t=9 , t=12

Figure 3.1: Shown are most complicated vacuum topologies at the different loop levels from 1-
to 5-loop. By saying most complicated we refer to those topologies with the largest
number of propagators with positive powers: tmax. Note that not all most complicated
topologies (e. g. non-planar ones) are shown.

the auxiliary topologies at hand, we can write down any vacuum integral as a list of its powers of
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propagators. So, for instance at 3-loop with auxiliary topology A6 we have

J ′(n0, n1, n2, n3, n4, n5, n6) =

∫ (d′)

k1,k2,k3

1

(k2
1 + 1)n1

1

(k2
2 + 1)n2

1

(k3
2 + 1)n3

1

((k1 − k2)2 + 1)n4

× 1

((k1 − k3)2 + 1)n5

1

((k2 − k3)2 + 1)n6
,

(3.4)

where the arguments of J ′ on the left-hand side are, if necessary, written as subscript.

3.2 Topologies, Generalized Recurrence Relations, Sector Relations

and Symmetries

We have reviewed the general concept of sector relations and symmetries in Section 2.6.2. Now we
adapt the concepts to the vacuum case. In order to prepare the reduction it is necessary to identify
the different topologies and choose appropriate representatives. Trivial zeros and antisectors can
be, as the name implies, trivially identified and removed from the set of sectors. They are exactly
those sectors Tt with t < Nk and t > tmax. In total there are

Nk−1
∑

t=0

(

M

t

)

and
M∑

t=tmax+1

(

M

t

)

(3.5)

trivial zeros and antisectors, respectively. Non of those sectors is representing a physical sector.
The next step is to find all linear shift relations (sector relations) among the sectors Tt having the

same number of positive propagators t. We end up with sets of sectors sharing the property that
their elements are related by certain sector relations. For each set we choose one representative
which is, in fact, an arbitrary choice. We choose the one with the greatest identification number.
Those which are representing actual graphs are our representatives of the corresponding topology.
The remaining sectors, not related by sector relations to the representatives, are the nontrivial
antisectors.

Aux Topology Sectors triv Zeros nontriv Zeros triv Anti nontriv Anti Topologies

A1 2 1 0 0 0 1
A3 8 4 0 0 0 2
A6 64 22 4 0 0 5
A10 1024 176 105 1 62 16
A15 32768 1941 3625 121 5030 67

Table 3.2: Summarized are the numbers of sectors belonging to the categories we have introduced
in Section 2.6.1. Shown are trivial zeros, nontrivial zeros, trivial antisectors, nontrivial
antisectors and the number of topologies. To be more precise, by saying topology we
mean the representatives we have chosen.

In Table 3.2 we have summarized the number of trivial zeros, nontrivial zeros, trivial antisectors,
nontrivial antisectors and the number of topologies for the auxiliary topologies A1, A3, A6, A10 and
A15. At this point, we would like to comment on the structure of sector relations. In the vacuum
case Eq. (2.66) becomes

ki −→ k′i =
Nk∑

j=1

Mijkj . (3.6)

As is turns out, all relevant sector relations used to shift sectors to their physical representatives
are those with matrices M having integer matrix elements Mij ∈ Z. In general, also rational
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valued elements Mij ∈ Q are allowed as long as the corresponding matrix satisfies |detM | 6= 0.
For vacuum tadpoles such matrices start to enter at the 4-loop level.

Let us consider the 4-loop massive tadpole sector T4 with identification number 537 and binary
representation (100011001)

J ′(n0, n1, 0, 0, 0, 0, n6 , n7, 0, 0, n10) =

∫ (d′)

k1,...,k4

1

(k2
1 + 1)n1

1

((k2 − k4)2 + 1)n6

1

((k3 − k4)2 + 1)n7

× 1

((k1 − k2 − k3)2 + 1)n10
,

(3.7)

and sector relation

kµi −→Mijk
µ
j with M =

1

2








2 0 0 0
1 1 −1 −1
1 −1 1 −1
1 −1 −1 −1







, (3.8)

relating sector 537 in Eq. (3.7) to sector 960 (1111000000)

J ′(n0, n1, n6, n7, n10, 0, 0, 0, 0, 0, 0) = 2−d
′
∫ (d′)

k1,...,k4

1

(k2
1 + 1)n1

1

(k2
2 + 1)n6

1

(k2
3 + 1)n7

1

(k2
4 + 1)n10

. (3.9)

The factor in front of the integral in Eq. (3.7) comes from the fact that |detM | = 1
2 . It should be

worth mentioning that the restriction to matrices with Mij = 0,±1 and |detM | 6= 0 does not lead
to a sector relation of sectors 537 and 960. In other words, we would end up with, at least, two T4

sectors not related by an appropriate sector relation although there exists only one 4-propagator
topology, the factorized topology (1-loop)4. However, sector relations of that type do not occur in
the reduction because the corresponding sectors are all subsectors of antisectors which are absent
right from the beginning.

As we mentioned before, nontrivial zeros (see Table 3.2) are those sectors which turn out to be
zero after performing a suitable momentum shift. For instance, let us consider the 3-loop massive
tadpole sector T3 with identification number 7 (000111). From Eq. (3.4) we immediately have

J ′(n0, 0, 0, 0, n4, n5, n6) =

∫ (d′)

k1,k2,k3

1

((k1 − k2)2 + 1)n4

1

((k1 − k3)2 + 1)n5

1

((k2 − k3)2 + 1)n6
, (3.10)

which is, at first glance, non-vanishing, but with k1 → k1 + k2 + k3 and k2 → k2 + k3 we get

=

∫ (d′)

k1,k2,k3

1

(k2
1 + 1)n4

1

((k1 + k2)2 + 1)n5

1

(k2
2 + 1)n6

= 0 ,

having no dependence on k3 in the integrand anymore and therefore vanishes in dimensional regu-
larization. Nontrivial zero (along with trivial zero) sectors are immediately set to zero as soon as
they occur in a reduction.

With this in mind, we can easily infer the total number of sector relations necessary to shift
the relevant sectors to their representatives. The numbers for auxiliary topology A1, A3, A6, A10

and A15 are summarized in Table 3.3. In Tables 3.2 and 3.3 we have also listed the number of
representatives for each auxiliary topology. There are 1, 2, 5, 16 and 67 topologies at the different
loop levels. More explicitly, the different topologies are diagrammatically shown in Figures 3.3
and A.1. For each topology we have indicated the number of positive propagators and the unique
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Aux Topology Sectors Sector Relations Topologies

A1 2 0 1
A3 8 2 2
A6 64 33 5
A10 1024 680 16
A15 32768 22051 67

Table 3.3: The total number of sector relations for auxiliary topology A1, A3, A6, A10 and A15 nec-
essary to shift all relevant sectors to their representatives.

identification number of its representative as subscript. From the diagrammatic point of view, all
graphs with t < tmax can be constructed by successively removing propagators (shrinking lines)
from those in Figure 3.2. For instance, the 3-loop mercedes topology (identification number of
representative: 63) has 6 propagators. It does not matter which propagator is removed, we end up
with six T5 subsectors all representing the v-type topology.
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Figure 3.2: Momentum labeling for most complicated vacuum topologies of auxiliary topology
A1, A3, A6, A10 and A15. By saying most complicated we refer to those topologies with
the largest number of propagators with positive powers: tmax. The numbering indicates
which line in the graph corresponds to which propagator of the auxiliary topology. The
ordered sets of propagators for each auxiliary topology are shown in Table 3.1.

As mentioned before, beginning at the 4-loop level, we have more than one most complicated
topology. At 4-loop we have two 9-propagator topologies, the planar one with identification number
1022 as well as the non-planar topology 511. At 5-loop it gets even more complicated with exactly
four 12-propagator topologies 31740, 32745 and the non-planar ones 30527 and 30699, cf. Figure A.1.
One can easily see, each set of topologies consists of generic topologies and factorized topologies
build out of topologies from lower loops. There are 1 + 1 + 3 + 10 + 48 generic topologies and
0 + 1 + 2 + 6 + 19 factorized ones. Obviously, at 1-loop only a single topology exists and therefore
no factorized topologies are present. At 2-loop there are two topologies, the generic topology 7
(sunset topology) and the factorized topology 6, the (1-loop)2. The 3-loop massive tadpole auxiliary
topology A6 consists of three generic topologies (mercedes 63, v-type 62 and basketball topology 51)
and two factorized ones, namely topology 60 (3 + 1 lines) as well as topology 56, the (1-loop)3. At
4-loop we have ten generic topologies ranging from 9-propagator down to 5-propagator topologies
and six factorized ones starting with 7-propagators down to the 4-propagator topology 960, the
(1-loop)4. More precisely, we have 7-propagator (6 + 1 lines, topology 1012), 6-propagator (5 + 1
and 3 + 3 lines, topology 1008 and 978), 5-propagator (4 + 1 and 3 + 1 + 1 lines, topology 961 and
992) and a single 4-propagator topology (1+1+1+1 lines, topology 960). For generic topologies at
4-loop see Figure 3.3. The corresponding subsector trees of auxiliary topology A3, A6 and A10 are
shown in Figures 2.1 and 3.4, respectively. The rather complex subsector tree of auxiliary topology
A15 is available online [83].

At 5-loop we have 48 generic topologies ranging from 12-propagator down to 6-propagator topolo-
gies and 19 factorized ones involving topologies up to 10-propagators:

• t = 10: (9 + 1, 32652), (9 + 1, 30563).

• t = 9: (8 + 1, 32608), (8 + 1, 32648), (6 + 3, 32529).
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1-loop : 1,1 ,

2-loop : 3,7 2,6 ,

3-loop : 6,63 5,62 4,51 4,60 3,56 ,

4-loop : 9,511 9,1022 8,1011 8,1020 7,1009 7,1010 7,1016

: 7,1012 6,993 6,952 6,1008 6,978 5,841

: 5,961 5,992 4,960

Figure 3.3: The complete set of vacuum topologies up to the 4-loop level is shown. The identification
number ID and number of positive propagators t associated to each topology is given
as subscript. The set of topologies consists of generic topologies (not factorizing) and
those built out of products of topologies from lower loops. We have 1+1+3+10 generic
vacuum topologies and 0 + 1 + 2 + 6 factorized topologies. Thanks to York Schröder for
providing the vacuum topologies [84].
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(a) The subsector tree of auxiliary
topology A6.
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(b) The subsector tree of auxiliary topology A10.

Figure 3.4: Shown are the subsector trees of auxiliary topology A6 and A10. Only the represen-
tatives of physical subsectors (topologies) are displayed. Starting from the root of the
tree (t = tmax), the topologies connected by solid and dashed lines can be obtained by
removing exactly one propagator (shrinking the corresponding line in the graph). For
more details see Figure 3.3 and Table A.1.

42



• t = 8: (7 + 1, 32259), (7 + 1, 32576), (7 + 1, 32640), (6 + 2, 32513), (5 + 3, 32528).

• t = 7: (6 + 1, 30872), (6 + 1, 32258), (3 + 3 + 1, 32288), (5 + 1 + 1, 32512), (4 + 3, 31745).

• t = 6: (5 + 1, 29702), (4 + 1 + 1, 31746), (3 + 1 + 1 + 1, 32256).

• t = 5: (1 + 1 + 1 + 1 + 1, 31744).

Factorized topologies with more than t = 10 propagators are not possible because the most com-
plicated topology at 4-loop has tmax = 9. For completeness, the representatives including their
identification numbers and binary representations are summarized in Tables A.1 and A.2 in Ap-
pendix A.1.

After we have specified the representatives, we can move on and discuss the corresponding sec-
tor symmetries in more detail. As already mentioned in Section 2.7, a reduction without sector
symmetries will, in general, lead to a larger set of master integrals as well as a significantly slower
reduction. For example, let us consider the 3-loop massive tadpole sector T6 with identification
number 63 (111111) as shown in Figure 3.3. The underlying symmetry group is that of a regu-
lar tetrahedron isomorphic to S4 with 4! = 24 symmetries. Consequently, we have 24 symmetry
relations for that sector such as

J ′(n0, n1, n2, n3, n4, n5, n6) = J ′(n0, n1, n3, n2, n5, n4, n6), (3.11)

where propagators 2↔ 3 and 4↔ 5 are interchanged. In Eq. (3.11) we have used the representation
for auxiliary topology A6 from Eq. (3.4). As we will see in Section 3.3 the symmetry relations are
directly used to symmetrize the expressions obtained from generalized recurrence relations rather
than to produce additional identities. Suppose we have an expression like

J ′(0, 1, 2, 1, 2, 1, 1) + J ′(0, 1, 1, 2, 1, 2, 1) −→ 2J ′(0, 1, 2, 1, 2, 1, 1) , (3.12)

it is immediately simplified to the right-hand side of Eq. (3.12). In Tables A.3 and A.4 we give the
numbers of sector symmetries for all representatives.

Let us conclude this section by summarizing the different ingredients we have discussed. Starting
from auxiliary topologies A1, A3, A6, A10 and A15, all sectors have been divided into several cate-
gories. We identified trivial and nontrivial zero sectors, sectors which cannot be associated with
graphs (trivial and nontrivial antisectors) and those representing the different topologies (physical
subsectors). Sectors being part of the latter are connected by sector relations allowing to choose cer-
tain representatives among them. Only the representatives need to be considered in the reduction.
Sector symmetries for the representatives have been identified to symmetrize lengthy expressions
generated by Nk(Nk + 1)/2 + 1 generalized recurrence relations.

3.3 Implementation of the Laporta Algorithm in the Computer Algebra

System FORM

The following section describes the implementation of the algorithm in the computer algebra system
FORM. Although the implementation turns out the be quite general, we always refer to the case of
vacuum tadpoles.

3.3.1 Public Implementations and Software: An Overview

For a couple of reasons (as outlined below) we decided to implement our own version of a Laporta
algorithm in the algebraic manipulator FORM rather than relying on public implementations such
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as Reduze [76, 77] (written in C++ using GiNaC library [85]), AIR [86] (written in Maple [87]) or
FIRE [88] (written in Mathematica [89]). In addition, there is a large variety of special purpose
programs like Mincer [81, 90], Slicer [91] or MATAD [92, 93] for massless 3-loop self-energies and
massive 3-loop vacuum diagrams, respectively. They are implemented in the low-level computer
algebra systems SCHOONSHIP [42, 94], REDUCE [95] and FORM [20, 21]. In this context, low-level means
rather limited built-in mathematical knowledge but efficient and suitable for large computations.
The former ones were (SCHOONSHIP) and to some extend are (REDUCE) still being used in particle
physics. The development of these computer algebra systems started in early 1960s by particle
physicists considering the possibility to automatize Feynman diagram computations which become
more and more complicated. The first attempt was made by M. Veltman in 1967 with SCHOONSHIP,
which was initially designed for the evaluation of fermion traces. This was followed by A. C. Hearn’s
algebraic manipulator REDUCE [96] in 1968. Due to the limited computing resources available at
that time, they were designed to be compatible as much as possible to the existing computing
equipment. After 40 years, the algebraic manipulator REDUCE is still being under development and
evolved into a high-level programming language with a lot of build-in features and still, turns out
to be much more efficient than the currently available multi-purpose computer algebra systems
(CAS).

In the following we want to focus on the algebraic manipulator FORM started being developed in
the mid 1980s by J. Vermaseren. It can be seen as a direct descendant of M. Veltman’s SCHOONSHIP

but has also elements from the programming languages Fortran, C and REDUCE. The program lan-
guage is, in relation to other computer algebra systems, low level with only very few mathematical
functions available. As a consequence, the writing of programs is slightly more involved but the
result turns out to be much more efficient than with object oriented computer algebra systems. One
may ask, why do we introduce another algebraic manipulator with a complete new programming
language while the existing ones are well developed and demonstrated to be effective. For that
question we need to understand why people are using computerized algebraic manipulation in the
first place. Usually, calculations solely by hand are rather limited due to the increasing complex-
ity. The usage of computer algebra systems pushes the limits significantly beyond what would be
possible with paper and pencil.

Let us for example consider a problem which is easily solvable by hand for parameters l < 3.
Going beyond that level and using computer algebra methods one finds also l = 3, 4 are achievable.
Let us further assume we need l = 5 (which might correspond to a high precision correction from
perturbative quantum field theory) but turns turns out to be too big for the implementation.
Then one can either wait for more computing resources (i. e. more powerful computers) or try to
implement a specialized program for l = 5 with the disadvantage of losing generality which might
be less convenient. For very complicated problems a tailor made solution is usually the better
choice rather than relying on general algorithms [19].

The computer algebra system FORM is primarily designed to handle large computations. The
usual problem with computer algebra systems like REDUCE, Mathematica or Maple occurs when the
internal representation of some object (e. g. an expression) exceeds a certain limit which is typically
of the size of the physical memory. As a consequence, the program becomes either extremely slow,
got rejected or even crashes the computer. In FORM the internal representations are far more compact
and, which is unique for computer algebra systems, the upper limit for formulae is the available
disc space rather than the physical memory. The fact that it can be achieved without having big
losses in performance makes FORM the most suitable programming language for our purposes.

Nowadays, the majority of programs is either written in the low-level language FORM or in multi-
purpose systems like Mathematica. In the following, we would like to comment on the specific
needs for implementing reductions algorithms such as the Laporta algorithm from Section 2.6.4.
The performance of the Laporta algorithm depends basically on two important ingredients: an ef-
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ficient polynomial greatest common divisor (GCD) algorithm and the possibility to handle a large
amount of expressions. For example, the public implementation Reduze written in C++ uses the
sGiNaC library for symbolic computations. It contains, among other things, GCD and factoriza-
tion algorithms for multivariate polynomials to simplify algebraic expressions. Alternatively, also
specialized polynomial systems like FERMAT [97] are used. The management of expressions is done
with external key-valued databases (e. g. Kyoto Cabinet [98]).

3.3.2 Implementing the Algorithm in FORM

As we already mentioned before, we decided to implement the algorithm in FORM. For polynomial
algebra we use either the external polynomial system FERMAT via the #external statement [99] or
in the latest version FORM 4.0 [100] the built-in functionality polyratfun which turns out to be
fully operational. The management of expressions is done with the built-in Tablebase statement.

We have compared the performance of FERMAT and FORMs built-in polynomial procedures. It turns
out, not surprisingly, FERMAT is by far more efficient in simplifying the quotients of multivariate
polynomials. The larger the number of variables in the polynomials, the bigger is the advantage
of using FERMAT. However, in order to use external programs one needs to establish a connection
which leads to some overhead. This is mainly due to syntax translations and the extraction of the
coefficient out of FORM expressions. Taking into account the fact that the polynomials we are facing
with are rather simple (only one or two1 variables), we decided to stick to FORMs onboard polynomial
procedures. However, if desired, it is always possible to switch on the external simplification of
polynomials.

In Figure 3.5 we give an overview of the implementation including all programs for the generation
of the corresponding sector relations, symmetries and generalized recurrence relations discussed in
Sections 2.5, 2.6.2 and more explicitly for vacuum topologies in Section 3.2. These programs are able
to generate the necessary ingredients from scratch and, in case appropriate shifts and recurrence
relations are provided by external software able to translated it into the notation we are using. In
the following we would like to discuss the building blocks and the program flow in Figure 3.5 in
more detail.

Once sector relations, symmetries and generalized recurrence relations of auxiliary topology Ax
are provided, one can start and generate the corresponding seed integrals for physical sectors
(topologies) up to the required rmax. The reduction of a sector is started by specifying its iden-
tification number ID. As already mentioned, a reduction always starts from the bottom of the
subsector tree cf. Fig. 3.4. In other words, if a sector with identification number ID has physical
subsectors, they need to be reduced before that sector is reduced. The “Prepare Job” routine takes
care that all subsectors are present and ready for substitution as soon as the reduction is started.
On top of this, the user can specify the size of a bunch of seed integrals which is delivered in each
run by the “Job Center” for processing. If not specified, the algorithm chooses an appropriate
bunch size. The “Job Center” calls the “Laporta Main Block” and passes a certain number of
seed integrals (as defined in bunch size) for reduction. As indicated, the Laporta algorithm re-
quires proper sector relations to shift physical subsectors to their representatives as well as sector
symmetries to symmetrize the corresponding expressions.

In Listing 3.1 we give an example how the symmetrization of expressions is actually implemented.
The symmetrization procedures as in Listing 3.1 as well as sector relation procedures are automat-
ically generated for each topology. Since generalized recurrence relations do only relate sectors Tt
to subsectors Tt−1 (cf. Fig. 2.7), we only need to include sector relations and symmetries of phys-
ical subsectors with (t − 1)-propagators for a reduction of t-propagator topologies. The different

1In addition to the space-time dimension d from e. g. Eq. (2.77) we introduce an arbitrary power x for exactly one
propagator instead of an integer value. This issue is discussed in Section 3.3.3.
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Figure 3.5: The schematic of the implementation including all programs for generation of sector re-
lations, symmetries, generalized recurrence relations (GRR) and seed integrals. Dashed
arrows are indicating the input which need to be provided by the user to run the re-
duction properly.

ingredients in “Laporta Main Block” are the following:

1. Generate generalized recurrence relation for a given seed integral out of set It,r,D.

2. Shift physical subsectors Tt−1 to their representatives and detect zero sectors.

3. Apply the symmetrization procedure for sector Tt and its physical subsectors.

4. Substitute relations (stored in tablebase Told) of sector Tt already obtained in previous runs.

5. Rewrite expression as left-hand side equals right-hand side. The left-hand side is determined
by the ordering given in Section 2.7.

6. Substitute already known recurrence relations for physical subsectors.

In case new relations have been found, denoted in the flow diagram 3.5 by “new Id?”, they are not
immediately substituted in the relations which are already part of the subsystem. At any time,
the subsystem is stored within the tablebase as well as in simple ASCII files for each relation. The
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id J ’ ( s0 ? , s1 ? pos , s2 ? pos , s3 ? pos , 0 , 0 , 0 ) = f s y ( J ’ ( s0 , s1 , s2 , s3 , 0 , 0 , 0 ) ,
J ’ ( s0 , s1 , s3 , s2 , 0 , 0 , 0 ) ,
J ’ ( s0 , s2 , s1 , s3 , 0 , 0 , 0 ) ,
J ’ ( s0 , s3 , s1 , s2 , 0 , 0 , 0 ) ,
J ’ ( s0 , s2 , s3 , s1 , 0 , 0 , 0 ) ,
J ’ ( s0 , s3 , s2 , s1 , 0 , 0 , 0 ) ,
J ’ ) ;

symmetrize f s y ; id f s y (? a , J ’ ( ? b ) ) = J ’ ( ? b ) ;

Listing 3.1: The symmetrization procedure in FORM for physical sector 56 (factorized topology
111000, cf. Fig. 3.3) of auxiliary topology A6. The topology has 3! = 6 symmetries
(all permutations of three elements) as can be seen inside the fsy(...) function on the
right-hand side. The procedure works as follows: Once the left-hand side is matched,
the integral is replaced by the function fsy(...) containing all possible permutations of
propagator powers si as dictated by the corresponding sector symmetries. Then the
function fsy(...) is uniquely symmetrized (more precisely, the order of arguments is
rearranged) by using FORMs symmetry statement symmetrize. After symmetrization,
we take the last argument of fsy(...) as the new integral, cf. Eqs. (3.11) and (3.12).
We note that primes as in J ′ are not allowed and need to be replaced in order to get
functional FORM code.

substitution is done as follows: A new tablebase Tnew is created for relations gathered during the
last run. That tablebase is then used to substitute those relations in the already existing relations
stored in ASCII files. If it turns out that no substitution happened (case differentiation “Match?”),
the new relations are simply added to the old tablebase Told using the tablebase addto statement.
In case some relations were substituted, it is necessary to create a new tablebase directly out of
the ASCII files.

The procedure looks, at first glance, rather complicated but turns out to be more efficient than
an implementation without tablebases. One can reduce the loss of time caused by creating new
tablebases by choosing larger bunch sizes right from the beginning. On the other hand, larger
bunch sizes have negative impact on the runtime in the “Laporta Main Block” and, if too large
bunch sizes are chosen, memory issues will appear. A typical bunch size value is of about 100 seed
integrals. The “Job Center” passes seed integrals It,r,D until the predefined rmax is reached. The
order of processing seed integrals is inverse to the order of extracting integrals, see Section 2.6.4.

3.3.3 Adapting the Implementation to Derive Difference Equations

In this section we describe how the implementation discussed in Section 3.3.2 is adapted to derive
so-called difference equations. We would like to start extending the notation of Eq. (3.2) by an
additional index X ∈ [1,M ] keeping track of an arbitrary power x on propagator DX

J ′′(n) = J ′′(X,n0, n1, . . . , nM ) =

∫ (d′)

k1,...,kNk

1

Dn1
1 . . . DnX+x

X . . . DnM
M

, n ∈ ZM+2 , (3.13)

with Di = q2
i + 1 and d′ = d − 2n0, n0 ≤ 0. Similar to Eq. (3.2) we neglect the trivial prefactor

carrying the mass dependence. In the case x = 0 and n0 = 0 we recover the integrals J ′(n0 = 0,n)
and J(n) in Eqs. (2.57),(3.2) immediately

J(n1, . . . , nM ) = J ′(n0 = 0, n1, . . . , nM ) = J ′′(X,n0 = 0, n1, . . . , nM )
∣
∣
∣
x=0

. (3.14)

Let us assume we have used the Laporta algorithm successfully and reduced the set It,r,D for values
rmax,Dmax to a small number of master integrals. Those integrals cannot be further simplified
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(i. e. expressed through simpler ones) using generalized recurrence relations. They need to be
solved by other means. We would like to solve the remaining master integrals by the method of
difference equations [18]. For auxiliary topology A1, A3, A6, A10 and A15 the complete sets of master
integrals are given in Section 3.4. The question how to solve these equations will be discussed in
great detail in Chapter 4. At this point, only basic concepts and definitions are necessary to proceed
with the adaption.

A linear difference equation of order R in variable x is defined as

R∑

j=0

fn,j(x)J ′′(X,n0, n1, . . . , nX + x+ j, . . . , nM ) = Gn(x) , (3.15)

where fn,j(x) are polynomials in x and space-time dimension d and Gn(x) being known functions.
We would like to bring Eq. (3.15) in a different form, by shifting x→ x− nX we get

R∑

j=0

pn,j(x)J ′′(X,n0, n1, . . . , x+ j, . . . , nM ) = Fn(x) , (3.16)

with pn,j(x) = fn,j(x− nX) and Fn(x) = Gn(x− nX). Let us consider a specific n = (X = 1, n0 =
0, 1, . . . , 1) ∈ ZM+2 corresponding to master integrals of the form

B = J ′′(1, 0, 1, . . . , 1) = J(x, 1, . . . , 1) , (3.17)

and define the quantity
UD1(x) = J(x, 1, . . . , 1) , (3.18)

where the subscript D1 indicates that the first propagator is raised to power x. In case x = 1 we
recover the master integrals given in Eq. (3.17), the general form of Eq. (3.16) becomes

R∑

j=0

pj(x)UD1(x+ j) = F (x) . (3.19)

The function F (x) on the right-hand side is a linear combination of integrals similar2 to UD1

but some of the denominators D1,D2, . . . ,DM are missing. In other words, F (x) is composed
out of integrals with a smaller number of positive propagators t compared to UD1(x) which has
exactly M positive ones. We can raise any of the M propagators in Eq. (3.17) to power x and in
complete analogy to Eq. (3.18) define functions UDj (x). The corresponding difference equations,
each satisfied by one of the UDj are, in general, all different but coincide in x = 1,

UDj (1) = B . (3.20)

This turns out to be a nontrivial crosscheck of the consistency of the calculation. A more detailed
discussion on this and related topics will follow in Chapter 4. For the moment, it is sufficient to
know what kind of equations we are looking for. The algorithm discussed in Section 3.3.2 can be
modified to derive linear difference equations in a single variable x as defined in Eq. (3.15).

Let us start by recalling the basic assumption made in Laporta’s algorithm. We have assumed
that all powers of propagators n = (n1, . . . , nM ) are fixed integer values. With an arbitrary power
x, the unique ordering given in Section 2.7 does not work but it can be modified to that case
without making big changes. We already started in that direction by introducing the notation in
Eq. (3.13). Without losing generality, we assume x to be a positive nonzero integer x ∈ N+\{0}.

2Similar does not mean that the propagator D1 is necessarily raised to power x.
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As a consequence, propagator X always counts as a propagator with positive power independent
of the actual value of nX . For example, let us consider auxiliary topology A3. We could have the
following integrals

J ′′(3, 0, 1, 1, 1) and J ′′(3, 0, 1, 1, 0) , (3.21)

both belonging to the same 3-propagator sector 7 (111) although the latter one seems to be the
factorized topology 6 with binary representation (110). From that point of view, the propagator
X carrying power nX + x is distinguished among the others. Therefore we redefine the number of
positive propagators t for an integral J ′′(X,n0, n1, . . . , nM ) as

t =
M∑

i=1
i6=nX

θ(ni − 1) + 1 . (3.22)

In complete analogy to Eqs. (2.58),(2.79) we combine a certain class of integrals together by defining

It,r,D,X ≡
{
J ′′(X,n0, n1, . . . , nM ) | with (r, s = 0) as usual, t via Eq. (3.22), n0 = −D} . (3.23)

Since we are interested in deriving appropriate difference equations rather than to perform a re-
duction, the ordering needs to be adjusted by taking into account the structure of the difference
equations in Eq. (3.15). The ordering for extracting integrals is as follows. We take the integral
with

1. smallest value n0. In case of degenerate integrals with the same value n0 proceed with 2..

2. largest number of different propagators t. If more than one integral has the same value t
proceed with 3..

3. largest X. If more than one integral has the same value X proceed with 4..

4. largest value r′ =
∑M
i=1,i6=nX

|ni|, the sum of absolute powers of propagators except propagator
X. If more than one integral has the same value r′ proceed with 5..

5. greatest power nM . If more than one integral has the same power nM proceed with the
greatest power nM−1, . . . , the greatest n1.

We start again and give highest priority to integrals with higher dimensions followed by the number
of different propagators t according to Eq. (3.22). After that, we are ordering the position of the
arbitrary index x by prefering those integrals with larger X which is in fact an arbitrary choice.
As a consequence the ordering tends to shuffle the arbitrary index x to smaller values X. Then
we take into account that powers of propagators sitting on propagator X should not be treated
in the same way as powers of the remaining ones. To be more precise, we are ignoring the value
nX and compute the absolute sum of the remaining propagators as indicated in 4.. This favors a
reduction of the remaining indices to smaller values of r′ and, to some extent, powers are rerouted
to propagator X. Having again a closer look on Eq. (3.15) we realize that this is exactly the
behavior we are aiming at. Notice that, if we would have chosen the traditional r+ s criterion (see
unique ordering in Section 2.7) powers would preferably be shifted to the first few propagators but
not to a specific one. We complete the ordering by demanding the same prescription (5.) already
used in Section 2.7.

In Table 3.4 an example based on auxiliary topology A3 (i. e. 2-loop massive tadpoles) is given
to show what integral out of a set of integrals is determined to be the most complicated one.

At this point we would like to focus on the implementation. Certain changes need to be done to
incorporate this feature in the existing implementation. The most important are discussed with the
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Rule J ′′(3,−1, 1, 1, 2) J ′′(3,−1, 1, 2, 1) J ′′(3,−1, 2, 1, 1) J ′′(1,−1, 2, 1, 1) J ′′(3, 0, 3, 1, 1)

1 -1 -1 -1 -1 0
2 3 3 3 3 3
3 3 3 3 1 3
4 2 3 3 2 4
5 - n2

√
n1 - -

Table 3.4: Using our choice of an unique ordering to determine the most complicated integral out
of a set of five integrals. The integrals J ′′(X,n0, n1, n2, n3) are 2-loop massive tadpoles
(auxiliary topology A3) using the notation of Eq. (3.13). We have indicated which
integral would be chosen to be the most complicated one.

help of example code. Basically, all procedures implemented for the reduction can also be used for
the generation of difference equations. However, they expect integer valued indices and therefore
we need to take care what happens with propagator X carrying power nX + x. We are discussing
the necessary changes one after another. Let us start and consider the generation of generalized
recurrence relations in the case of auxiliary topology A1 out of the seed integral

J ′′(1, 0, 1) −→ I ′(0, 1 + x) , (3.24)

where we have explicitly written the arbitrary power on propagator 1. Since FORMs pattern matching
is not restricted to integer valued function arguments the right-hand side of Eq. (3.24) can be
directly replaced by the generalized recurrence relation we already use

I ′(0, 1 + x) −→ 0 = I ′(0, 1 + x)− I ′(−1, (1 + x)− 1)(1 + x) , (3.25)

which is nothing but the D-operator relation of Eq. (2.48). The function I ′ is temporarily intro-
duced3 and in the end rewritten back in terms of function J ′′

0 = J ′′(1, 0, 1) − (1 + x)J ′′(1,−1, 0) . (3.26)

As we can see from Eq. (3.26), the prefactor contains x and, in general, also the space-time di-
mension d. The benefit of this rather cumbersome looking procedure is that the existing program
routines for generating generalized recurrence relations can be used again. In Listing 3.2 we have
outlined the implementation of Eqs.(3.24)-(3.26) in FORM. As it turns out, also the routines for
sector relations, symmetries and the identification of zero sectors can be used again. In order to
do so, we are temporarily assigning a large positive integer (e. g. let us say 1000) to propagator
X i. e. nx + x → nx + 1000. After the procedures for sector relations or sector symmetries have
been applied to the expression we write the result again in terms of the notation of Eq. (3.13).
For example, let us consider auxiliary topology A6 and the sector symmetrization of sector 56, we
could have the following situation

J ′′(3, 0, 1, 2, 3, 0, 0, 0) −→ J ′(0, 1, 2, 1003, 0, 0, 0) , (3.27)

applying the symmetrization procedure given in Listing 3.1 we get

J ′(0, 1, 2, 1003, 0, 0, 0) −→ J ′(0, 1003, 2, 1, 0, 0, 0) . (3.28)

As we can see, the sector symmetrization changed the position of the propagator carrying power
nX +x from X = 3 to X = 1. By looking for the large power we are able to keep track of the index
carrying power x. Back in J ′′ notation the result reads

J ′′(1, 0, 3, 2, 1, 0, 0, 0) . (3.29)

3The function I ′ is similar to J ′ in Eq. (3.2) but the latter was only used in the context of integer valued arguments.
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id J ’ ’ ( s00 ? , s0 ? , s1 ?) = I ’ ( s0 , x∗ d e l t a (1 , s00)+s1 ) ;
id I ’ ( s0 ? , s1 ?) =

+I ’ ( s0 , s1 )∗ po lyr (1 , 1 )
+I ’ ( s0−1, s1 +1)∗po lyr (−s1 , 1 ) ;

id I ’ ( ? a , s1 ? ! number , ? b) = J ’ ’ ( na rg s (? a ) , ? a , r e p l a c e (x , 0 )∗ s1 , ? b ) ;

Listing 3.2: Procedure to generate generalized recurrence relations out of seed integrals J ′′ in FORM

for physical sector 1 (cf. Fig. 3.3) of auxiliary topology A1. The procedure works as
follows: The function J ′′ is rewritten in terms of function I ′ with propagator power
s1 + x similar to Eq. (3.24). For seed integral I ′ the generalized recurrence relation is
generated cf. Eq. (3.25). The function polyr contains coefficient functions which are,
in general, ratios of multivariate polynomials. As already mentioned, for polynomial
simplification FORMs build-in functionalities are being used and consequently polyr is
declared as polyratfun [100]. In the end, function I ′ is expressed in terms of the
notation we originally started with.

It must be guaranteed that the value is large enough to avoid wrong identifications of that propa-
gator. In FORM the rewriting in terms of J ′′ is incorporated by subtracting the value initially added
to propagator X from all propagator powers n1 − 1000, . . . , nM − 1000. The propagator with pos-
itive power indicates the position of x. In the end, the value is added again except to propagator
X. In Listing 3.3 the procedure is outlined. The rewriting of integrals in Eqs. (3.24)-(3.26) and

id J ’ ’ ( s00 ? , s0 ? , . . . , s ‘M’ ? ) =
J ’ ( s0 ,<1000∗ d e l t a (1 , s00)+s1 > , . . . ,<1000∗ d e l t a ( ‘M‘ loop ’ ’ , s00)+s ‘M’>) ;

<−−(∗)
id J ’ ( s0 ? , . . . , s ‘M’ ? ) = J ’(< s0 −1000> , . . . ,< s ‘M’−1000>);
id J ’ ( ? a , s1 ? pos0 , ? b) = J ’ ’ ( na rg s (? a ) , ? a , s1 , ? b ) ;
id J ’ ( s00 ? , s0 ? , . . . , s ‘M’ ? ) =

J ’ ’ ( s00 ,1000+ s0 ,<1000∗ d e l t a p (1 , s00)+s1 > , . . . ,<1000∗ d e l t a p ( ‘M’ , s00)+s ‘M’>) ;

Listing 3.3: The program code in FORM necessary to rewrite notation J ′′ of Eq. (3.13) in terms of J ′

in Eq. (3.2) and back again. The program routines of sector symmetries (see Lst. 3.1),
relations, and the identification of zeros used for J ′ are inserted right after the first id

statement indicated by (*).

Eqs. (3.27)-(3.29) appears trivial and straightforward but it took some time to figure out what
would actually be the most reliable way to implement this in FORM.

We conclude this section focusing on the generation of seed integrals. Since we are interested in
deriving difference equations for the remaining master integrals rather than to perform a reduction,
it should be sufficient to consider seed integrals It,r,D,X with relatively small rmax. However, as we
will see in Section 3.4.1, we encounter difference equations of order R = 7 and presumably even
higher ones at the five loop level. In order to obtain such difference equations rather large rmax are
necessary. We restrict seed integrals to those with D = 0 corresponding to integrals with space-
time dimensions d. This seems reasonable because we are looking for difference equations having
physical space-time dimensions i. e. d′ = d. On top of this, by introducing index X specifying what
propagator is actually raised to power nX + x, we naively enlarge the number of seed integrals by
a factor t. This is because each propagator carrying a positive power needs to be treated in the
same way. As it turns out, it is not necessary to raise each propagator to power nX + x separately.
We raise only very few propagators to power nX + x which are determined by the topology under
consideration. For example, let us again consider auxiliary topology A6 and sector 56 with binary
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representation (111110). We have exactly two non-equivalent propagators X = 1, 2 resulting in two
difference equations not related by sector symmetries. In other words, it is sufficient to generate
seed integrals where X = 1 and X = 2 rather than for all possible X = 1, . . . , 5. If we would have
generated seed integrals also for X = 3, 4 and X = 5 (X = 6 is not considered because n6 = 0) no
additional relations would have been produced because they are all related to the former ones via
sector symmetries.

In other words, before seed integrals can be generated one needs to find out the non-equivalent
propagators for the corresponding topologies. By doing so, the number of seed integrals is sig-
nificantly reduced which is especially advantageous in cases where t is large and the number of
non-equivalent propagators X rather small. More on this issue will be discussed in Section 3.4.1.

3.4 Reduction: Master Integrals, Bottlenecks, Results

We start this section rediscovering already known results for massive tadpoles up to 4-loop followed
by new results at the 5-loop level. This serves as a good check for our implemented algorithms.
As we have outlined in great detail in Section 3.3.1, a reduction is performed to reduce massive
tadpoles to very few so-called master integrals forming a basis in such a way that all integrals can
be expressed in terms of those

J ′(n0, n1, . . . , nM ) =
NM∑

i=1

ciJ
′
i , (3.30)

where the coefficients ci are ratios of polynomials in space-time dimensions d. In order to find out
how many and what kind of master integrals we are faced with, a reduction without subsectors
is performed. All subsectors Tt−1 which are showing up in a reduction of physical sector Tt with
identification number ID are immediately set to zero. This renders each reduction of physical
sectors Tt independent because subsectors do not have to be substituted in the corresponding
subsystems.

The reduction is performed up to rmax = t + 4 with D = 0 where t is the actual number of
positive propagators of physical sector Tt as specified in Tables A.1 and A.2. We use generalized
recurrence relations as described in Sec. 2.7 and the complete set of sector symmetries for all
topologies cf. Tables A.3 and A.4.

In Table 3.5 we have summarized the number of master integrals found in that reduction for
auxiliary topology A1, A3, A6, A10 and A15. In case of the one-, two-, three-, and four-loop massive
tadpole the same number of master integrals, as already known from the literature, is obtained (see
e. g. [101]). The number of master integrals at the five-loop level (auxiliary topology A15) has been
determined for the first time and turns out to be of the order of twice the number of topologies.

4-loop : 8,1011 7,1009 5,841

Figure 3.6: In addition to those in Figure 3.3 there are 0 + 0 + 0 + 3 fully massive master integrals
having dots on several propagators. A dot on a line indicates that the corresponding
propagator carries an extra power. Lines without dots are representing propagators
with power 1.

There is at least a single master integral for each topology which has all positive propagators
to power 1, the corner integral. This is especially the case for auxiliary topology A1, A3 and A6
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Auxiliary Topology Master Integrals Topologies Runtime

A1 1 1 < 1 sec
A3 2 2 < 1 sec
A6 5 5 ∼ 2 secs
A10 19 16 ∼ 2 mins
A15 132 67 ∼ 5 hrs

Table 3.5: The total number of master integrals in comparison to the number of topologies for
auxiliary topology A1, A3, A6, A10 and A15. It can be seen that auxiliary topology A1, A3

and A6 corresponding to the one-, two-, and three-loop massive tadpole have exactly the
same number of master integrals as topologies. In fact, each topology has exactly one
master integral. Starting at 4-loop (auxiliary topology A10) we encounter more master
integrals than topologies. At 5-loop (A15) we have roughly a factor two more master
integrals than topologies. The runtime given in the last column is the time necessary to
process all seed integrals up to rmax = t+ 4 with D = 0 using 12 CPUs.

where we have exactly one master integral for each topology. Beyond that level we have additional
master integrals having squared and cubed propagators. In Figure 3.6 those master integrals are
diagrammatically shown up to 4-loop. The corresponding powers of propagators are given in Table
3.6 using the notation of Eq. (3.1) simplifying to J(n) in case n0 = 0. As a consequence of our

Ad. Master t ID Propagator Powers

1 5 841 J3,1,0,1,0,0,1,0,0,1

2 7 1009 J2,1,1,1,1,1,0,0,0,1

3 8 1011 J2,1,1,1,1,1,0,0,1,1

Table 3.6: In addition to those in Table A.1 there are master integrals with dots on some propaga-
tors. In this context, the representatives in Table A.1 denoted as I... are understood as
the master integrals J... without dots.

specific choice for the unique ordering in Sec. 3.3.2 we end up with master integrals in physical
space-time dimensions i. e. n0 = 0. This means Eq. (3.30) simplifies to

J ′(n0, n1, . . . , nM ) =
NM∑

i=1

ciJi , (3.31)

where NM is the number of master integrals given in Tab. 3.5. Let us move on and consider the
5-loop case according to auxiliary topology A15. In complete analogy to the one-, two- , three-
and four-loop case, each of the 67 topologies has a master integral with all propagators raised to
power 1 as well as the 65 additional ones diagrammatically shown in Figure A.2 in Appendix A.1.
The master integrals with squared and cubed propagators are again summarized in Table A.6 in
Appendix A.1. Consequently, we end up with a total number of master integrals of 67 + 65 = 132.

An independent reduction has been performed [102] in Reduze using integration-by-parts rela-
tions and a couple of carefully chosen sector symmetries. The number of master integrals coincides
except in 7-propagator topology 30858. In this sector we end up, in addition to the corner integral,
with one more master integral with an extra dot, cf. Tables. A.2 and A.6. We double-checked
the reduction in this sector and found again two master integrals. From the integration-by-parts
reduction [102] one obtains the following relation

IBP
= f(d)× + subsectors , (3.32)
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with f(d) = 1− d/4 which is absent in our system of equations. We also performed the reduction
with integration-by-parts relations in this sector and found exactly the same relation in a small
reduction up to rmax = t + 2 without using sector symmetries. So, indeed the relation seems to
be correct. We do not think this is a conceptional problem of the generalized recurrence relations
because in all other sectors we perfectly agree. It might has something to do with the specific
choice of the ordering in combination with the symmetrization procedures. For the moment, we
stick with the 132 master integrals instead of 131.

We would like to conclude this section with comments on the general reduction. In addition
to the reduction outlined above, a full reduction has been performed including substitutions of
subsectors. We perform a reduction up to rmax = t + (12 − t) + 1 with D = 0 and D = 1 in a
reasonable amount of time (few days using 12 CPUs). Even one or two more dots are not a problem
at all.

However, as we already know from Eq. (2.78) in Sec. 2.7, each irreducible scalar product less
(s → s− 1) increases r by Nk − 1. For example, let us consider an integral belonging to sector Tt
of auxiliary topology A15 having 5 irreducible scalar products i. e. s = 5. In the worst case, the
T -operator increases r by 5 · (5− 1) = 20 and integrals with shifted dimensions D = 5 show up. A
reduction of this kind of integrals would require a reduction with rmax = t + 20 and D = 1, . . . , 5
which is simply out of reach.

At the moment, it seems more realistic to perform a reduction using the traditional integration-
by-parts relations and a carefully chosen set of sector symmetries rather than rewriting integrals
with irreducible scalar products in terms of integrals in higher space-time dimensions. However,
by choosing a specific set4 of sector symmetries we are, in some sense, abandoning the idea of an
automated approach which was the idea initially started with cf. Sec. 2.6. It seems that only very
few sector symmetries are in fact necessary to reduce the number of master integrals significantly.
Unfortunately, it is not known how to identify these sector symmetries in a systematic way. The
result presented at this point using a somewhat different approach might be useful for further
investigations along these lines.

3.4.1 Difference Equations for Master Integrals

As we have seen in the previous section, the approach we are using does not seem to be the most
suitable method to perform a complete reduction. However, for computing difference equations
this method is particularly interesting because the master integrals we are faced with do not have
irreducible scalar products at all. This means that relatively small rmax are sufficient and their
value is essentially determined by the actual order R of the difference equations we are looking
for. Of course, right from the beginning, we do not know the orders of difference equations but it
appears natural to assume that they do not differ very much in the order from those we can find
in the literature for the lower loop levels (see e. g. [18]).

Due to the fact that the implementation outlined in Sec. 3.3.3 has not been tested so far we
start and derive the already known difference equations up to the 4-loop level before using the
implementation for the 5-loop case. In complete analogy to the approach in Sec. 3.4 a reduction
without subsectors is performed in order to get an idea what orders of difference equations we are
facing. By recalling the definition in Eq. (3.15) we realize that a reduction without subsectors
corresponds to the homogeneous part of the difference equation. As mentioned before, it is in
general not necessary to generate seed integrals IX,t,r,D for all X because the relations obtained
from seed integrals with different X turn out to be related to a large extent by sector symmetries.
Only very few so-called non-equivalent propagators, specifying which propagators need to be raised

4Remember a reduction without sector symmetries leads to a rather large set of master integrals. On the other
hand, one cannot simply include all sector symmetries because of the large number cf. Tables A.3 and A.4.
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X=1, X=1 X=2, X=1, X=1 X=3, X=1

Figure 3.7: Shown are the non-equivalent positions X of the propagator carrying power nX + x for
topologies of auxiliary topology A6. The propagator raised to power nX +x is indicated
for each topology by dashed lines and in the subscript. The notation of Eq. (3.13) and
momentum labeling in Fig. 3.2 is used.

to power nX +x, are necessary to obtain the complete set of difference equations. In Figure 3.7 we
give two examples of two non-equivalent propagators on the basis of topology 62 and topology 60
of auxiliary topology A6. Consequently, at 3-loop we have a total number of 7 difference equations.

In order to find the non-equivalent propagators we generate seed integrals for all X and perform
a small reduction with rmax = t. Those seed integrals producing new relations are determined and
the corresponding values of X are specifying the propagators which need to be raised to nX + x.
In Table 3.7 we have summarized the orders of the difference equations for auxiliary topology

Topo t ID Propagator X Order R

1 1 1 1 1

Topo t ID Propagator X Order R

1 2 6 1 1

2 3 7 1 2

Topo t ID Propagator X Order R

1 3 56 1 1

2 4 60 1,3 2,1
3 4 51 1 2

4 5 62 1,2 2,2

5 6 63 1 2

Topo t ID Propagator X Order R

1 4 960 1 1

2 5 992 1,2 2,1
3 5 961 1,4 2,1
4 5 841 1 4

5 6 1008 1,3,4 2,1,2
6 6 993 1,2,4 5,2,2
7 6 978 1 2
8 6 952 1 2

9 7 1016 1,4 2,2
10 7 1012 1,3 2,1
11 7 1010 1,2,5 2,2,2
12 7 1009 1,3,4 3,3,3

13 8 1020 1,3,4,8 2,2,3,2
14 8 1011 1,3 4,3

15 9 1022 1,2 3,2
16 9 511 2 3

Table 3.7: The order R of difference equations for all topologies of auxiliary topology A1, A3, A6

and A10. The last two columns are showing all non-equivalent propagators X and the
order R of the difference equation which is associated to that propagator.

A1, A3, A6 and A10 obtained from our approach. The orders of difference equations shown in
Tab. 3.7 are always the lowest orders found for the corresponding topologies and propagators X.
We have observed that a reduction for a particular topology needs to be performed at least up to
rmax = R in order to find appropriate difference equations. Going beyond that limit additional
difference equations of higher orders R′ > R will occur. For instance, let us consider topology 1 of
auxiliary topology A1, the corresponding difference equation is of order R = 1 and reads

J ′′(1, 0, 1) + J ′′(1, 0, 0)
d − 2x

2x
= 0 , (3.33)
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using the notation of Eq. (2.57) and writing power n1 + x explicitly we get

J(1 + x) + J(x)
d − 2x

2x
= 0 , (3.34)

which is exactly the recurrence relation we have encountered in Eq. (2.17) for the 1-loop massive
tadpole with m2 = 1. The difference equation of topology 1 of order R = 2 is

J(2 + x)− J(x)
d− 2x

2x

d− 2(x+ 1)

2(x+ 1)
= 0 . (3.35)

At this point we would like to point out that Eqs. (3.34) and (3.35) are homogeneous difference
equations which are, in fact, exceptional cases. All difference equations discussed in this work5 are
nonhomogeneous difference equations i. e. Gn(x) 6= 0 in context of Eq. (3.15).

We do not consider difference equations of higher orders R′ > R because, in general, solving
these equations gets more and more involved as the order increases. This issue will be discussed in
Chapter 4. From Tab. 3.7 we can easily read of the number of difference equations one is facing at
the different loop levels. There are 1 + 2 + 7 + 33 difference equations with orders up to R = 5.

In complete analogy to Tab. 3.7, the 5-loop difference equations are summarized in Table A.5
in Appendix A.1. There are in total 234 difference equations for 67 topologies. Even without the
subsectors, we were not able to determine the homogeneous part of all of the difference equations
which is indicated by the question marks. So far we have found orders of difference equations up
to R = 7 for two 7-propagator topologies with identification number 30214 and 29703. It is most
likely that a large part (presumably all) of the difference equations labeled with questions marks
are of orders higher than we can achieve with our implementation at the moment.

t rmax Runtime

5 8 ∼ 1 hr
6 7 ∼ 2 hrs
7 6 ∼ 10 hrs
8 5-6 ∼ 1-2 days
9 4-5 ∼ 2-3 days
10 3-4 ∼ 2-3 days
11 3-4 ∼ 4-5 days
12 3-4 ∼ 5-6 days

Table 3.8: Shown are the values of rmax we were able to achieve in the reduction without subsectors
for auxiliary topology A15. The runtime given in the last column is the time necessary
to process all seed integrals It,r,D,X with r ≤ rmax,D = 0 and X according to Tab. A.5
using up to 12 CPUs.

The reduction of auxiliary topology A15 without subsectors has been performed up to the values
of rmax shown in Table 3.8. At a certain point, we decided to stop the reduction because it took
too much time to process and substitute relations generated out of seed integrals with relatively
small bunch sizes (typically 20 seed integral).

As mentioned before, the method of generalized recurrence relations is particularly advantageous
for small numbers of positive propagators t because we are effectively working with t indices instead
of M . With increasing t the advantage gets smaller and we are again faced with large combinatorics.
On top of this, also the typical order R of difference equations at the 5-loop level seems to be quite

5Except the factorized Nk-propagator topologies 1, 6, 56, 960 and 31744 of auxiliary topology A1, A3, A6, A10 and
A15, respectively.
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large and therefore reductions up to rather large r are necessary. Based on the values for rmax
given in Tab. 3.8 we expect the remaining difference equations (cf. Tab. A.5) to be at least of order
R = 7, 6, 5, 4, 4, 4 for the 7, 8, 9, 10, 11 and 12-propagator topologies, respectively.

For a given sector Tt one can try and separate the seed integrals with different X and perform
independent reductions for each X. This would lead to smaller numbers of seed integrals in each
reduction but in the end it does not solve the problem. Eventually, it seems quite difficult to
improve the existing implementation to such an extent that all difference equations at 5-loop will
be accessible.

Let us now focus on the full reduction including all subsectors. The 1 + 2 + 7 + 33 difference
equations for auxiliary topology A1, A3, A6 and A10 corresponding to the 1-, 2- ,3- and 4-loop
massive tadpole have been derived without any problems. We used the already known difference
equations up to the 4-loop level [103], obtained from an independent calculation, to check our
results. They turn out to be in agreement. For example, let us consider topology 7 of auxiliary
topology A3, the corresponding difference equation is a nonhomogeneous difference equation of
order R = 2 and reads

R=2∑

j=0

pj(x)J(x+ j, 1, 1) = J(x, 1, 0)
(2 − d)(d− 2x)

2x
(3.36)

with

p0(x) = 2x− d , p1(x) = 3 + 2x− d , p2(x) = −3− 3x . (3.37)

The right-hand side of Eq. (3.36) represents the nonhomogeneous part F (x) as defined in Eq. (3.16).
It contains the factorized topology 6 denoted as J(x, 1, 0) and can be written as a product of two
1-loop massive tadpoles

J(x, 1, 0) = J(x)J(1) , (3.38)

where the function J on the left- and right-hand side are defined according to auxiliary topology A3

and A1, respectively. At this point, it is worth mentioning that before a nonhomogeneous difference
equation can be solved, the function F (x) needs to be determined. As we will see in Chapter 4,
this function is again determined by solving appropriate difference equations.

Let us move on and consider the 5-loop case. Because of the reasons outlined above, we were
not able to compute all difference equations. Only very few of those shown in Tab. A.5 are in fact
available because many of the corresponding nonhomogeneous parts F (x) are not fully reduced to
master integrals. For instance, let us assume a 12-propagator difference equation of order R = 5
is given. The nonhomogeneous part F (x) is basically made out of all physical subsectors Tt with
Nk ≤ t < 12 and those subsectors need to be reduced up to rmax = 12 + R. This is not possible,
as can be seen from Tab. 3.8, and therefore a difference equation of that kind is completely out of
range even if we were able to compute the homogeneous part in the first place. Of course, such a
scenario represents the worst possible case. In practice, although we are rather limited in rmax, a
considerable number of difference equations is available.

The difference equations we have determined in the full reduction are highlighted in Tab. A.5.
Some of the difference equations have been found but are still of higher order (indicated with
brackets) compared to what we have found in the reduction without subsectors. For example, the
difference equation of topology 32704,X = 3 has R = 2 but we have got R = 3 in the full reduction;
indicating that a simpler difference equation is generated later for values r > rmax. In other words,
although we have determined a difference equation of order R it is not excluded that another with
R′ < R is going to show up later. However, based on our experience it is usually the other way
around.
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Because of the fact that some of the difference equations are rather lengthy objects we have
decided to make them online available [83]. The files contain the complete set of difference equations
of auxiliary topology A1, A3, A6, A10 as well as those indicated in Table A.5 for A15.

At this point we would like to point out that the 234 difference equations summarized in Tab. A.5
are not sufficient to determine all master integrals. As it can be seen from Tab. A.6, there are in
fact 14 master integrals having dots on distinct propagators which are, at first glance, not covered
by the difference equation we have derived so far. That is, because we have only considered those
where all propagator powers are equal to one, except the propagator which is raised to power
nX + x, cf. Eqs. (3.17)-(3.19). In order to solve this problem we can either derive new difference
relations for these master integrals by forcing the algorithm to generate difference equations where
exactly one of the propagator powers ni, i 6= X is equal to two, or by trying to find relations which
relate the master integrals to those having all propagators to power one ni = 1, i 6= X. We decided
to proceed with the latter approach. All of the 14 above mentioned master integrals can be related
to those with only one propagator having power ni 6= 1 by using the relations which we derived in
the reduction process of Section 3.4, cf. Eq. (3.30). As it turns out, for some masters we need to
introduce integrals with more dots compared to the number of dots of the master integral we want
to replace. In Figure 3.8b we have shown what integrals need to be considered if the replacement
is performed for all of the 14 master integrals. Of course, that specific choice of master integrals is

7,29703 8,30222 9,32270

9,30231 9,30231 9,30231

10,32596 10,32596 10,32279

10,30239 10,30239 11,30526

12,30527 12,30527

(a) The 14 master integrals which are not covered
by the difference equations we have derived and
summarized in Table A.5.

−→

7,29703 8,30222 9,32270 9,30231

9,30231 9,30231 10,32596

10,32596 10,32596 10,32279

10,30239 10,30239 11,30526

12,30527 12,30527 12,30527

(b) The 14 master integrals in (a) can be expressed as
a linear combination of those in Figures A.1, A.2 and
16 additional master integrals, all with dots on a single
propagator.

Figure 3.8: Basis transformation for fully massive tadpoles at 5-loop with dots sitting on different
propagators. The 14 master integrals with dots on different propagators are shown in
(a). Our choice of new master integrals is given in (b) where all except one propagator
are raised to power one. All new master integrals are covered by the difference equations
summarized in Table A.5. In that sense, the new basis in Eq. (3.30) is then formed
by the master integral given in Figures A.1 and A.2 where those with dots on different
propagators are replaced by the master integrals in (b).

ambiguous. We could have chosen a different set of master integrals because, to a certain extent,
we can decide which of the nonequivalent propagators X is raised to a higher power. For example,
let us consider topology 30222 which has three non-equivalent propagators X = 1, 2, 3. In order
to rewrite the corresponding master integral we decided to raise propagator 3 to power 3, but it
would also be possible to raise propagator 2 to power 3 or propagator 1 to power 4. The master
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Ad. Master t ID Propagator Powers

7 7 29703 J1,1,3,0,1,0,0,0,0,0,0,0,1,1,1

15 8 30222 J1,1,3,0,1,1,0,0,0,0,0,1,1,1,0

23 9 32270 J1,1,3,1,1,1,0,0,0,0,0,1,1,1,0

31 9 30231 J4,1,1,0,1,1,0,0,0,0,1,0,1,1,1

32 9 30231 J1,1,1,0,1,1,0,0,0,0,1,0,3,1,1

33 9 30231 J1,1,1,0,1,1,0,0,0,0,1,0,4,1,1

37 10 32596 J4,1,1,1,1,1,1,0,1,0,1,0,1,0,0

38 10 32596 J1,1,1,1,1,3,1,0,1,0,1,0,1,0,0

38/1 10 32596 J1,1,1,1,1,4,1,0,1,0,1,0,1,0,0

45 10 32279 J4,1,1,1,1,1,0,0,0,0,1,0,1,1,1

48 10 30239 J1,1,3,0,1,1,0,0,0,0,1,1,1,1,1

49 10 30239 J1,1,1,0,1,1,0,0,0,0,1,1,1,3,1

59 11 30526 J4,1,1,0,1,1,1,0,0,1,1,1,1,1,0

63 12 30527 J4,1,1,0,1,1,1,0,0,1,1,1,1,1,1

64 12 30527 J1,1,1,0,1,3,1,0,0,1,1,1,1,1,1

64/1 12 30527 J1,1,1,0,1,4,1,0,0,1,1,1,1,1,1

Table 3.9: The 16 master integrals we have chosen in order to rewrite those with dots on different
propagators, cf. Figure 3.8. Combining the master integrals from Tables A.2 and A.6 and
replacing the 14 master integrals by those listed above we end up with 67+ 65+ 2 = 134
master integrals for auxiliary topology A15.

integral of sector 30222 with dots on different propagators, cf. Tab. A.2, can be expressed in terms
of those with dots only on single propagators

GRR
= −2 +

d2 − 10 d+ 24

4
+
d− 5

3
+ subsectors , (3.39)

which are in turn covered by the difference equations shown in Tab. A.5. There is not always a
one-to-one translation6 especially in the case only a small number of nonequivalent propagators is
available. As a consequence, for topology 32596 and 30527 we are left, in each case, with one more
master integral and therefore 16 in total. In complete analogy to Tab. A.6, the master integrals
diagrammatically shown in Fig. 3.8b are given in Table 3.9 in the usual propagator representation.
The master integrals in Fig. 3.8a are, according to the ordering we have used (see Section 2.7) for
the reduction, all simpler then those in Fig. 3.8b. However, from the point of solving them by
means of difference equations it is exactly the other way around. As we will see in Chapter 4, it
simply does not make any difference whether the integral has a propagator to power 1 or 10. The
latter case is surprisingly less problematic.

We conclude this section with some addition remarks on the results. A different approach using
generalized recurrence relations has been implemented and used to perform a reduction of fully
massive tadpoles up to the 5-loop level. For the first time an upper limit on the number of master
integrals at 5-loop is given. They are explicitly shown in Tabs. A.2 and A.6. In addition, the
algorithm has been adapted to generate difference equations for the remaining master integrals. In
order to check the validity of our results we performed cross-checks with already known difference
equations up the 4-loop level and found that they perfectly agree. We used the implementation to
go one step further and derived difference equations for a large number of physical sectors at the
5-loop level.

6The last two integrals in Eq. (3.39) are already master integrals and therefore we replace one master integral in
terms of exactly one other.
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4 Solving the System of Difference Equations by

Means of Factorial Series

In Chapter 3 we have derived difference equations for fully massive tadpoles up to the 5-loop
level. Now we would like to discuss how difference equations can be solved in order to get an
expression for the remaining master integrals. The theory of linear difference equations [22] is
well-developed (G. Boole ∼ 1850, N. E. Norlund 1929, L. M. Milne-Thomson 1933) and provides
powerful mathematical tools to tackle those problems efficiently. However, as they are not well-
known we start this chapter and review the basic concepts and tools for difference equations.

Although the theory of difference equations is known for such a long time the first work on
solving actual Feynman integrals was published in 2000 by S. Laporta [18, 104] and a couple of
publications [105, 13, 106] using the same method in the following years. Because of the fact that
this method offers an almost automatic and independent evaluation of master integrals it became
quite popular [14, 15]. The general idea is to solve linear difference equations by means of so-called
factorial series. Factorial series turn out to be as important for difference equations as power series
for differential equations.

This chapter is organized as follows. In Section 4.1 we introduce the basic definitions. Then
in Section 4.2.1 we define the factorial series and summarize important properties. In addition,
we introduce Boole’s operators [22] to write the solution in terms of factorial series of difference
equations in a more convenient way similar to a power series solution of a differential equation.
The homogeneous and nonhomogeneous solution of the difference equation are discussed in Section
4.2.2. The general solution is a sum of all homogeneous solutions times some constants as well as
a particular solution of the nonhomogeneous system. The determination of these constants will be
outlined in Section 4.3 for the Euclidean massive case. Then in Section 4.4 we discuss the numerical
evaluation of the factorial series. We conclude this chapter in Section 4.5 by applying the method
to fully massive tadpoles up to the 5-loop level.

Although we refer from time to time to massive tadpoles, the following discussion is not restricted
to that class of integrals. We try to give a concise review of solving linear difference equations by
means of factorial series. The discussion presented here is based on references [18] and [22].

4.1 General Introduction and Definitions

Let us recall the notation introduced in the previous chapter for writing Feynman integrals as lists
of integers

J ′′(n) = J ′′(X,n0, n1, . . . , nM ) =

∫ (d′)

k1,...,kNk

1

Dn1
1 . . . DnX+x

X . . . DnM
M

, n ∈ ZM+2 , (4.1)

with Di = q2
i +1 and d′ = d−2n0, n0 ≤ 0. The propagators are defined in an appropriate auxiliary

topology such as A1, A3, A6, A10 and A15 for the vacuum case in Section 3.1. In Section 3.4.1 we
have observed that certain functions J ′′(n) are satisfying so-called linear difference equations of
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order R which are defined by (see also Eqs. (3.15)-(3.19) in Sec. 3.3.3)

R∑

j=0

pn,j(x)J ′′(X,n0, n1, . . . , x+ j, . . . , nM ) = Fn(x) , (4.2)

where pn,j(x) are polynomials in x and space-time dimension d and Fn(x) are functions containing
integrals similar to J ′′ but some of the denominators D1,D2, . . . ,DM are canceled. More precisely,
if J ′′(n) belongs to the t-propagator sector Tt, the function Fn(x) on the right-hand side of Eq. (4.2)
is in general made out of all t′-propagator subsectors (physical ones) with t′ ranging from Nk up to
t − 1. Linear difference equations are belonging to a certain class of functional equations relating
functions with integer-shifted arguments. In some sense they can be seen as a discretized form
of differential equations [106]. Difference equations such as in Eq. (4.2) are quite similar to the
recurrence relations we have derived in Sec. 3.4 but with the difference that they relate integrals
with fixed integer valued arguments rather than having an arbitrary index.

One could ask, why do we only consider difference equations in a single variable x and not those
in several variables. If we consider difference equations in more than a single variable we would
immediately face a system of partial difference equations which is, of course, more difficult to solve
than those systems having only a single unknown variable x. Also from the numerical point of
view, a system with a large number of variables (let us say a multidimensional integration) is more
difficult to solve than a 1-dimensional integration if we ask for a high precision result.

In order to illustrate this let us start with an example of a homogeneous linear difference equation
in a single variable [106]. The well-known Fibonacci numbers 1, 1, 2, 3, 5, 8, . . . are defined through
the recursive relation

I(n + 2) = I(n+ 1) + I(n) , (4.3)

with seed values

I(1) = I(2) = 1 . (4.4)

The recurrence relation in Eq. (4.3) can be understood as a second order linear difference equation
with constant coefficients. Let us try to solve the equation by using the ansatz I(n) = µn, we get
the so-called characteristic equation

µ2 − µ− 1 = 0 , (4.5)

which has two solutions

µ1 =
1 +
√

5

2
, µ2 =

1−
√

5

2
. (4.6)

The general solution is a linear combination of the homogeneous solutions µn1 and µn2 . The constants
can be fixed by using the initial conditions in Eq. (4.4) and yields

I(n) =
1√
5
µn1 −

1√
5
µn2 . (4.7)

Let us go ahead and consider another very illustrative example which is the 1-loop massive tadpole
of Eq. (2.15) with

J(n+ 1) = −d− 2n

2nm2
J(n) , (4.8)

that is a homogeneous difference equation of first order. The difference equation has been derived
in Eq. (2.16) using the corresponding integration-by-parts relation with arbitrary power n or in
the general framework of Sec. 3.3.3 in Eq. (3.34) with generalized recurrence relations. We do not
solve Eq. (4.8) at this point because we would like to introduce a general formalism first allowing
to tackle that kind of problem in a more systematic way.
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It is worth mentioning that contrary to what the definition of the linear difference equation
in Eq. (4.2) suggests, one could also consider difference equations with respect to the space-time
dimensions d′ corresponding to X = 0. It would be rather simple to adapt the implementation1

outlined in Sec. 3.3.3 to compute difference equations w.r.t. the space-time dimensions. However,
we are not discussing this in the following. For more details see e. g. [107]. A somewhat different
approach making use of the analytic properties of the integrals as functions of the space-time
dimensions (which is considered to be a complex variable) called the DRA method can be found in
[108, 109].

4.2 Solving the Difference Equation via Factorial Series

For reasons of convenience a slightly simplified version of the general definition in Eq. (4.2) is used.
In complete analogy to Eqs. (3.17)-(3.19) we pick a specific n = (X = 1, n0 = 0, 1, . . . , 1) ∈ ZM+2

corresponding to master integrals of the form

B = J ′′(1, 0, 1, . . . , 1) = J(x, 1, . . . , 1) , (4.9)

and define the quantity

U(x) = J(x, 1, . . . , 1) . (4.10)

In case x = 1 we recover the master integrals given in Eq. (4.9), such that the general form of
Eq. (4.2) becomes

R∑

j=0

pj(x)U(x+ j) = F (x) , (4.11)

where pj(x) and F (x) are the functions pn,j(x) and Fn(x) in Eq. (4.2) for the n ∈ ZM+2 specified
above. The general solution of the nonhomogeneous Eq. (4.11) is determined by a particular
solution UNH of Eq. (4.11) and the general solution UHO of the homogeneous equation

U(x) = UHO(x) + UNH(x) , (4.12)

where the general solution UHO is given by

UHO(x) =
R∑

j=1

ω̃j(x)UHOj (x) , (4.13)

satisfying the homogeneous equation

R∑

j=0

pj(x)UHO(x+ j) = 0 . (4.14)

The functions ω̃j(x) in Eq. (4.13) are periodic functions of period 1 and the set {UHO1 , . . . , UHOR }
forms a fundamental system of independent solutions of Eq. (4.14). In other words, the full solution
of the nonhomogeneous difference equation in Eq. (4.11) reduces to the problem of finding a funda-
mental system of solutions of the homogeneous equation including the determination of functions
ω̃j(x) as well as a particular solution of Eq. (4.11). For more details see Chapter XII in [22].

1Actually, the ordering we are using needs to be modified.
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4.2.1 The Factorial Series and Boole’s Operators

The factorial series of the first kind is defined by

∞∑

s=0

asΓ(x+ 1)

Γ(x−K + s+ 1)
=

Γ(x+ 1)

Γ(x−K + 1)

(

a0 +
a1

x−K + 1
+

a2

(x−K + 1)(x−K + 2)
+ . . .

)

, (4.15)

where ai are the coefficients of the series and K an arbitrary parameter. It turns out, the series
converges in every point on the half-plane limited on the left by ℜx = λ where λ is the abscissa of
convergence. As we will see later on, the coefficients as we are faced with in this work behave as
|as| ∼ s!sα for large s. For a more detailed discussion we refer to [22], Chapter X.

The general idea is to use factorial series as an ansatz for UHO and UNH . At this point, one
could ask why to use factorial series and not a simple asymptotic expansion in 1/x which is quite
similar to factorial series of the first kind. To answer this question, let us consider the following
function [106]

Ψ′(x) ≡ d2

dn2
ln Γ(n) (4.16)

which satisfies the nonhomogeneous first order difference equation

Ψ′(n+ 1)−Ψ′(n) = − 1

n2
. (4.17)

We expand Eq. (4.16) in terms of a power series in 1/n and obtain the asymptotic series

Ψ′(n) =
1

n
+

1

2n2
+
∞∑

k=1

B2k

n2k+1
, (4.18)

where B2k are the Bernoulli numbers behaving for large k as B2k ≈ 2(2k)!/(2π)2k . It is obvious,
the expansion in Eq. (4.18) converges only for small n. On the other hand, an expansion in terms
of factorial series yields

Ψ′(n) =
∞∑

s=1

Γ(s)

s

Γ(n)

Γ(n+ s)
, (4.19)

being convergent for n > 0. Factorial series do have the advantage to be convergent on a large
domain. As we will see later on, the factorial series expansions of UHO and UNH are evaluated for
relatively large x in order to increase the convergence of the series.

The situation outlined above is quite similar to our problem except the fact that the function
Ψ′(n) is not known from the beginning. These functions are the master integrals we are looking
for.

Before we discuss how factorial series expansions for the homogeneous and nonhomogeneous
solutions UHO and UNH are obtained, it is convenient to introduce a special kind of symbolic
operators allowing us to solve the problem in complete analogy to the method of Frobenius for
ordinary differential equation. The method has been devised by Boole and therefore the operators
are known as Boole’s operators. Let us start and define the ρ-operator by

ρmU(x) =
Γ(x+ 1)

Γ(x−m+ 1)
U(x−m) , (4.20)

where m is a positive integer. The operator is distributive and obeys the index law

ρmρnU(x) = ρm+nU(x) , (4.21)
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and if the operand be unity we write

ρm1 = ρm =
Γ(x+ 1)

Γ(x−m+ 1)
. (4.22)

The π-operator is defined by
πU(x) = x [U(x)− U(x− 1)] , (4.23)

which is clearly distributive and obeys the index law. Some important properties are summarized
in the following

[π, ρ]U(x) = ρU(x) ,

(π + ρ)U(x) = xU(x) ,

p(π)ρmU(x) = ρmp(π +m)U(x) ,

(4.24)

where p(λ) is some polynomial. They can be easily proven by starting right from the operator
definitions and using the property of the gamma function Γ(x + 1) = xΓ(x). For more details
we refer to [22], Chapter XIV. Having these operators at hand, the factorial series expansion in
Eq. (4.15) becomes

∞∑

s=0

asΓ(x+ 1)

Γ(x−K + s+ 1)
=
∞∑

s=0

asρ
K−s = a0ρ

K + a1ρ
K−1 + . . . , (4.25)

which is an expansion in powers of ρ−1. Consequently, the treatment is similar to that of a power
series approach for ordinary differential equations.

4.2.2 Solution of Homogeneous and Nonhomogeneous Difference Equation

Let us recall the homogeneous difference equation from Sec. 4.2, we have

R∑

j=0

pj(x)UHO(x+ j) = 0 , (4.26)

by shifting x→ x−R we get
R∑

j=0

qj(x)UHO(x− j) = 0 . (4.27)

where qi(x) are polynomials related to the former ones by qj(x) = pR−j(x − R). We perform a
change of variable UHO(x) = µxV HO(x), Eq. (4.27) becomes

µRq0(x)V HO(x) + µR−1q1(x)V HO(x− 1) + · · ·+ qR(x)V HO(x−R) = 0 , (4.28)

where µ is an unspecified parameter. We start preparing the equation in such a way that the
operators of Sec. 4.2.1 can be used. Let us multiply the equation by x(x− 1)(x− 2) . . . (x−R+ 1)
having in mind that xV (x− 1) = ρV (x), x(x− 1)V (x− 2) = ρ2V (x), . . . holds, we get

[

φ0(x, µ) + φ1(x, µ)ρ+ · · · + φR(x, µ)ρR
]

V HO(x) = 0 , (4.29)

where φi are polynomials in variable x and µ. Because of the fact that a multiplication by x
corresponds to the multiplication by π + ρ we substitute Eqs. (4.24) as long as possible and arrive
at [

f0(π, µ) + f1(π, µ)ρ+ f2(π, µ)ρ2 + · · · + fm+1(π, µ)ρm+1
]

V HO(x) = 0 , (4.30)
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the so-called first canonical form of the difference equations with polynomials fi in π and µ. For
the difference equations we are considering in this work, the polynomial fm+1(π, µ) turns out to
be independent of π. This fact and simple power counting in Eq. (4.30) leads immediately to an
algebraic equation in µ

fm+1(µ) = 0 , (4.31)

the so-called characteristic equation. We have already encountered this equation in Eq. (4.5) in
the example of Fibonacci’s numbers. The characteristic equation has always R solutions different
from zero. We denote the λ distinct solutions by µ1, µ2, . . . , µλ and for each distinct solution
µ = µi, i = 1, . . . , λ the first canonical form in Eq. (4.30) becomes

[

f0(π) + f1(π)ρ+ f2(π)ρ2 + · · · + fm(π)ρm
]

V HO(x) = 0 . (4.32)

At this point we recall Eq. (4.25) and try to satisfy Eq. (4.32) with a factorial series expansion

V HO(x) =
∞∑

s=0

asΓ(x+ 1)

Γ(x−K + s+ 1)
=
∞∑

s=0

asρ
K−s = a0ρ

K + a1ρ
K−1 + . . . , (4.33)

leading to recurrence relations for the coefficients as

a0fm(K +m) = 0 ,

a1fm(K +m− 1) + a0fm−1(K +m− 1) = 0 ,

a2fm(K +m− 2) + a1fm−1(K +m− 2) + a0fm−2(K +m− 2) = 0 ,

...

asfm(K +m− s) + as−1fm−1(K +m− s) + · · · + as−mf0(K +m− s) = 0 ,

(4.34)

where the last row holds for s ≥ m. Let us suppose a0 differs from zero, then from Eq. (4.34) we
obtain

fm(K +m) = 0 , (4.35)

the so-called indicial equation having a certain number ν of roots2, in the following denoted by
K1,K2, . . . ,Kν . We further assume that all roots are distinct. In case there are no roots differing
just by a positive integer we have

fm(K +m− s) 6= 0 , s = 1, 2, 3, . . . , (4.36)

and consequently the coefficients as can be successively obtained for every s through the recurrence
relations in Eq. (4.34). On the other hand, if there are so-called congruent roots i. e. those only
differing by a positive integer we will have fm(K+m−s0) = 0 for some specific s0 and consequently
the term as0fm(K + m − s0) in Eq. (4.34) is equal to zero. In this situation we are not able
to determine as0 because the remaining part of the recurrence relation always vanishes for the
difference equations considered here. The coefficient as0 keeps undetermined and can be freely
chosen, usually we set as0 = 0.

Each series with µi, i = 1, . . . , λ and corresponding solution of the indicial equation Kij , j =
1, . . . , νi,

V HO
ij (x) =

∞∑

s=0

a
(i,j)
s Γ(x+ 1)

Γ(x−Kij + s+ 1)
, (4.37)

2The number of roots ν coincides with the multiplicity of µi.
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is a formal solution of the first canonical form given in Eq. (4.30). The coefficients a
(i,j)
s are obtained

by solving the system of recurrence relations in Eq. (4.34) for (νi,Kij). The general solution of the
homogeneous difference equation in Eq. (4.26) is a linear combination of all

∑λ
i=1 νi = R solutions

UHO(x) =
λ∑

i=1

νi∑

j=1

ω̃ik(x)µxi V
HO
ij (x) , (4.38)

with periodic functions ω̃ij similar to those in Eq. (4.13). As we will see later, in practice, there
is usually not more than one solution UHOij (x) = µxi V

HO
ij (x) contributing to the general solution of

Eq. (4.38).
Before we proceed and discuss how one can obtain a particular solution of the nonhomogeneous

difference equation in Eq. (4.11), we would like to show the concepts introduced above on the basis
of the 1-loop massive tadpole [106]. Let us start and recall the difference equation from Eq. (4.8),
relabeling n by x and shifting x→ x− 1 we get

m2(x− 1)J(x) − (x− 1− d/2)J(x − 1) = 0 , (4.39)

which is, as already mentioned, a homogeneous difference equation of first order. Let us try to find
a solution in terms of factorial series by substituting J(x) = µxV (x),

µm2(x− 1)V (x)− (x− 1− d/2)V (x− 1) = 0 , (4.40)

where we have multiplied the equation by µ1−x. That is exactly the form of Eq. (4.28), multiplying
by x, using the fact that xV (x − 1) = ρV (x) and keeping in mind that xV (x) = (π + ρ)V (x), we
obtain the first canonical form

[

f0(π, µ) + f1(π, µ)ρ+ f2(π, µ)ρ2
]

V (x) = 0 , (4.41)

with

f0(π, µ) = µm2π(π − 1) ,

f1(π, µ) = (2µm2 − 1)(π − 1) + d/2 ,

f2(π, µ) = µm2 − 1 ,

(4.42)

where we have used [π, ρ] = ρ in order to shift the π-operators to the left. Indeed, f2 is independent
of π, solving the characteristic equation we get µ = 1/m2. Plugging this value into Eqs. (4.42) and
solving the indicial equations fm=1(π = K + 1) = 0 we obtain K = −d/2. Let us determine the
recurrence relation for coefficient as, from Eq. (4.34) we immediately have

asf1(−d/2 + 1− s) + as−1f0(−d/2 + 1− s) = 0 , (4.43)

and consequently

as =
1

s

(

s+
d

2

)(

s+
d

2
− 1

)

as−1 . (4.44)

It turns out, that the recurrence relation can be solved analytically

as =
s∏

i=1

1

i

(

s+
d

2

)(

i+
d

2
− 1

)

a0 =
1

s!

Γ(d/2 + 1 + s)

Γ(d/2 + 1)

Γ(d/2 + s)

Γ(d/2)
a0 , (4.45)

which is, in fact, more exception than the rule. All recurrence relations we will encounter in the
following are solved numerically. This issue will be discussed in Section 4.4. The coefficient a0 in
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Eq. (4.45) remains undetermined and needs to be calculated by other means. We usually set the
coefficients of homogeneous solutions to a0 = 1 such that their value is absorbed in the functions
ω̃ij in Eq. (4.38). They can be determined by comparing the large-x behaviors of the integral J(x)
and its factorial series V (x) as we will outline in Section 4.3. For the moment, it is sufficient to
consider the large-x behavior of the 1-loop massive tadpole given in Eq. (2.15),

J(x) = (m2)d/2−x
∫

k1

1

(k2
1 + 1)n

≈ (m2)d/2−xπ−d/2
∫

ddk1e
−xk2

1 = (m2)d/2−xx−d/2 . (4.46)

The factorial series in Eq. (4.33) behaves for large x as V (x) ≈ a0x
K . Plugging the values for µ and

K in U(x) = µxηV (x), taking the limit to large x and comparing with Eq. (4.46) we immediately
find η = (m2)d/2. Combining all ingredients, the final result becomes

U(x) = (m2)d/2−x
∞∑

s=0

1

s!

Γ(x+ 1)

Γ(x+ d/2 + s+ 1)

Γ(d/2 + 1 + s)

Γ(d/2 + 1)

Γ(d/2 + s)

Γ(d/2)
, (4.47)

which evaluates to the well-known expression

J(x) = (m2)d/2−xΓ(x− d/2)

Γ(x)
. (4.48)

In this example we performed all steps with an arbitrary mass squared m2. It was our intention to
point out where the dependence on the mass exactly enters. In the case of fully massive tadpoles
with auxiliary topology A1, A3, A6, A10 and A15, cf. Fig. 3.1, the mass is equal to 1 and will be
reconstructed in the end by taking into account the prefactor shown in Eq. (3.2).

Before we focus on the problem how a particular solution for the nonhomogeneous difference
equation (4.11) is found, we would like to comment on the convergence of the factorial series
obtained for the 1-loop massive tadpole. For large s the term in the factorial series proportional to
as behaves as

as
Γ(x+ d/2 + s+ 1)

≈ s!sd−1

s!sd/2+x
= sd/2−1−x , (4.49)

leading to an abscissa of convergence of x = d/2. This means that for x > d/2 the series converges
and the rate of convergence increases with larger values x. On the other hand, Eq. (4.49) tells us
that for values x < d/2 the series does not converge although the final result in Eq. (4.48) works
perfectly for those values. However, in general, neither the recurrence relations for the coefficients
as nor the summation in Eq. (4.47) can be performed analytically. As we will see later, in practice,
the factorial series will be evaluated numerically for values x′ = x+ i where i is some large integer.
This value can be related to the desired one, say J(x), by using recurrence relations such as the
relation in Eq. (4.39) recursively J(x + i − 1), J(x + i − 2), . . . , J(x). A more detailed discussion
on the issue will follow in Section 4.4.

Let us now move on and consider the nonhomogeneous difference equation (4.11) of order R,

R∑

j=0

pj(x)UNH(x+ j) = F (x) , (4.50)

where UNH(x) indicates that we are seeking for a particular solution. In complete analogy to the
homogeneous case we shift x→ x−R and obtain

R∑

j=0

qj(x)UNH(x− j) = F ′(x) , (4.51)
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with polynomials qj(x) = pR−j(x−R) and F ′(x) = F (x−R). We assume that the right-hand side
is already known in terms of a factorial series expansion F ′(x) = µxT (x) with

T (x) = c0ρ
K + c1ρ

K−1 + c2ρ
K−2 + . . . , (4.52)

where µ,K are constants and ci the coefficients of the series. In fact, they are in turn determined
by solving appropriate difference equations for the corresponding subsectors. As before, we bring
Eq. (4.51) to first canonical form by making the substitution UNH(x) = µ′xV NH(x). Using the π-
and ρ-operators and Eqs. (4.24) we get

[

f0(π) + f1(π)ρ+ f2(π)ρ2 + · · ·+ fm(π)ρm
]

V NH(x) = T (x) , (4.53)

where we have already chosen µ′ = µ and substituted this value in functions f0(π), . . . , fm(π). Let
us assume V NH(x) has an expansion of the form

V NH(x) = a0ρ
K−m + a1ρ

K−m−1 + a2ρ
K−m−2 + . . . , (4.54)

by substituting V NH(x) in Eq. (4.53) we obtain recurrence relations for the coefficients as in the
manner as in Eq. (4.34),

a0fm(K) = c0 ,

a1fm(K − 1) + a0fm−1(K − 1) = c1 ,

a2fm(K − 2) + a1fm−1(K − 2) + a0fm−2(K − 2) = c2 ,

...

asfm(K − s) + as−1fm−1(K − s) + · · ·+ as−mf0(K − s) = cs ,

(4.55)

where the last row holds for s ≥ m. As before, it can happen that fm(K−s0) vanishes for a certain
s0 and consequently we are not able to determine as0 from Eq. (4.55). In that situation, we are
free to choose a value for that coefficient. The assumption we have made regarding the structure
of the nonhomogeneous part of the equation F ′(x) = µxT (x) is usually not applicable. In fact, we
are faced with a structure like

F ′(x) = µx
N∑

i=0

pi(x)Ti(x) , (4.56)

where N is the number of master integrals the nonhomogeneous part is made of. For each integral,
it is necessary to have an appropriate factorial series expansion in order to proceed. With the
help of Eqs. (4.24) we replace pi(x) by pi(π + ρ) and let the operators act on the factorial series
expansion Ti. After this procedure, we are again in the situation of having an expansion as in
Eq. (4.52) with new coefficients c′i. If the factorial series VNH(x) converges, we have found a special
solution UNH(x) = µxV NH(x) of the nonhomogeneous difference equation (4.11).

4.3 Determine Arbitrary Constants: Large-x Behavior

We have already encountered the problem of determining the function ω̃ for the 1-loop massive
tadpole in Eq. (4.46). In order to discuss this issue more generally let us recall the general solution
of the nonhomogeneous difference equation (4.11) given by

U(x) =
R∑

j=1

ηjU
HO
j (x) + UNH(x) . (4.57)
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where ηj are the constants we need to determine. In Eq. (4.57) we assumed explicitly that x is an
integer valued number. In this case, the periodic functions ω̃j(x) from Eq. (4.13) do not depend on
x and can be replaced by constants ηj .

The weights ηj of the homogeneous solutions UHOj (x) can be obtained by comparing the large-x
behavior of the integral

U(x) = J(x, 1, . . . , 1) , (4.58)

and its factorial series in Eq. (4.57). Let us write the integral in Eq. (4.58) as

U(x) =

∫

k1

1

(k2
1 + 1)x

g(k1) , (4.59)

where we have separated the propagator carrying power x from the rest denoted by g(k1) which is
a (Nk − 1)-loop two-point function

g(k1) =

∫

k2,...,kNk

1

D2D3 . . . DM
, (4.60)

and can be understood, from the diagrammatic point of view, as the original diagram where the
propagator carrying power x is cut away. In the following we show that the large-x behavior of
Eq. (4.58) is determined by the behavior of g(k1) for small k1. It should be pointed out, that the
derivation only works in the case of massive propagators in Euclidean space-time. Let us start and
write the integration in Eq. (4.59) in terms of an angular and radial part

U(x) =
1

Γ(d/2)

∫ ∞

0

dk2
1(k2

1)d/2−1

(k2
1 + 1)x

f(k2
1) , (4.61)

where the function f is related to g by

f(k2
1) =

1

Ωd

∫

dΩd(k̂1)g(k1) , (4.62)

with Ωd = 2πd/2/Γ(d/2). The key observation is that, in the limit to large x, the denominator
(k2

1 + 1)x of Eq. (4.61) gives a strong contribution for values k2
1 ≈ 0. Because of the assumptions

we have made, the function f(k2
1) behaves well for values k2

1 ≥ 0 which leads to the fact that the
large-x behavior is solely determined by f(k2

1) for small k2
1 . Without going into great detail, it

turns out that the leading asymptotic behavior of U(x) is given by

U(x) ≈ (1)d/2−xx−d/2f(0) , (4.63)

where the first factor in brackets indicates where the mass dependence would enter in case we would
have started with an arbitrary mass squared m2

1 instead of m2
1 = 1. For more details we refer to

the complete derivation in reference [18], Section 5.1. If we compare Eqs. (4.59), (4.63) and (4.46)
and keep in mind that f(0) = g(0) we can write

lim
x→∞

U(x) =

∫

k1

1

(k2
1 + 1)x

× g(0) = x−d/2g(0) , (4.64)

indicating that in the large-x limit, integral U(x) factorizes into a one-loop massive tadpole having
asymptotics ∼ x−d/2 times g(0) corresponding to an integral with Nk−1 loops. In case the integral
g(0) is not known it can be calculated in the same way, which means we generate the corresponding
difference equations, solve them by means of factorial series and calculate the arbitrary constants
of their solutions by considering the large-x behavior of a function g′(0) having Nk − 2 loops. By
repeating this procedure we can determine all arbitrary constants ηj for any difference equation.
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For example, let us consider topology 51 of auxiliary topology A6. Let us further assume we have
already found the factorial series expansion (µi,Ki and coefficients ai,s) for

U(x) ≡ J(x, 1, 0, 0, 1, 1) = =

∫

k1,k2,k3

1

(k2
1 + 1)x

1

k2
2 + 1

1

(k1 − k3)2 + 1

1

(k2 − k3)2 + 1
,

(4.65)
in order to compute the master integral

B = U(1) = J(1, 1, 0, 0, 1, 1) = . (4.66)

The remaining task is to determine the weights ηj for the homogeneous solutions in Eq. (4.57).
According to Eq. (4.63) they are determined by the function

g(0) =

∫

k2,k3

1

k2
2 + 1

1

k2
3 + 1

1

(k2 − k3)2 + 1
, (4.67)

which turns out to be the sunset integral

J(1, 1, 1) = , (4.68)

belonging to topology 7 of auxiliary topology A3. Again, in case the integral J(1, 1, 1) has not been
determined yet, the corresponding difference equation3 can be solved by means of a factorial series
expansions yielding a certain combination of µi,Ki and coefficients ai,s. In complete analogy, the
weights ηj are determined by comparing the large-x behaviors of

J(x, 1, 1) = =

∫

k1,k2

1

(k2
1 + 1)x

1

k2
2 + 1

1

(k1 − k2)2 + 1
, (4.69)

and its factorial series. Taking the limit of large x in Eq. (4.69) we get g′(0) = J(2) which is the
1-loop massive tadpole with squared propagator known in terms of Γ functions; see Eq. (4.48).

4.4 Numerical Evaluation of Factorial Series

In Section 4.2.2 we have outlined how to obtain a solution of a nonhomogeneous difference equation
of order R by means of factorial series expansions. The solution requires the determination of
R arbitrary constants ηj, the weights of the different homogeneous solutions. They have been
determined by comparing the large-x limit of the integral and its factorial series, discussed for the
fully massive case in Section 4.3.

As already mentioned, it is usually not possible to solve the system of recurrence relations for
coefficients as in Eqs. (4.34) and (4.55) analytically. The fact that it was possible for the 1-loop
massive tadpole in Eq. (4.45) is only because of its simple structure. Moreover, also the summation
of an infinite sum as e. g. in Eq. (4.47) constitutes a severe problem and can, in general, not be
done analytically.

We tackle this problem numerically by using truncated expansions in ǫ = (4 − d)/2 for all
quantities such as the coefficients as and a truncated summation of the factorial series up to a large
but finite smax. The truncated series are computed up to the first nǫ terms. Let us begin and
analyze the convergence properties of the factorial series by writing

U (α)(x) =
(

µ(α)
)x
∞∑

s=0

a(α)
s

Γ(x+ 1)

Γ(x+ 1−K(α) + s)
, (4.70)

3The difference equation of the massive sunset integral is given in Eqs. (3.36) and (3.37) which is a nonhomogeneous
second order difference equation.
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where (α) represents either a solution of the homogeneous equation or the particular solution of
the nonhomogeneous difference equation. Whether the series converges or not is determined by
the abscissa of convergence λ which turns out to be related to the solutions µj of the characteristic
(4.31) by

λ <∞ : if none of µj satisfies 0 < |µj/µ(α) − 1| < 1

λ =∞ : otherwise
, (4.71)

where j ranges from 1, . . . , R. The proof can be found in [22], Chapter X. An abscissa of convergence
λ =∞ corresponds to a series which is everywhere divergent. In this case the integral U (α)(1) needs
to be calculated by other means. Fortunately, for fully massive tadpoles we have always encountered
the former case in Eq. (4.71). The factorial series with λ <∞ converges logarithmically, this means
the partial sum Sm(x) minus U (α)(x) behaves for large m as

|Sm(x)− U (α)(x)| ∼ mλ−x . (4.72)

The abscissa of convergence is usually around λ ∼ 1 meaning a direct evaluation of U (α)(1) is not
possible. For instance, the abscissa of convergence of the 1-loop massive tadpole in Eq. (4.49) is λ =
2 in the limit d→ 4. From Eq. (4.72) it is easy to see that the rate of convergence increases for larger
values of x. Consequently, one chooses a suitable large value xmax, computes the corresponding
expansion U (α)(xmax + 1),. . . ,U (α)(xmax + R − 1) and uses the recurrence relation in Eqs. (4.11)
and (4.14) recursively in order to get the expansion for values U (α)(xmax − 1), . . . , U (α)(1).

However, one should keep in mind that each iteration of the recurrence relations can result in
lowering the number of significant digits E. Let us define the quantity

A−1 = min
j
|µj/µ(α)| , (4.73)

where j = 1, . . . , R. It turns out that the recurrence is unstable in case A > 1 inducing an error
in each iteration of factor A. In case A = 1 and µ(α) being a root of the characteristic equation
(4.31) having multiplicity ν > 1, we observe an error increased by a factor nv−1 after n iterations.
For more details we refer to [18], Chapter 6.1.

Let us, for example, assume we have solved the characteristic equation and found the roots
µ1 = 1, µ2 = −1/3 resulting in A = 3. Let us further assume the factorial series in Eq. (4.70) needs
to be evaluated for xmax = 8. This would lead to an error of about 37 ≈ 2000 or equivalently a loss
of 3 significant digits. One can estimate the number of digits C necessary to start with in order to
achieve a precision of E significant digits for U (α)(1) by

C = E + xmax log10 A . (4.74)

From the point of view of a fixed precision arithmetic (C fixed), it is crucial to choose a value for
xmax as small as possible but, on the other hand, having in mind that small values xmax require
very large values of smax to obtain a considerable number of significant digits E. If possible, it is
advantageous to work with multiprecision arithmetics where large values for C and xmax can be
chosen, and rather small values for smax are sufficient to achieve the desired numerical precision.
The actual values of C and smax depend on the difference equation and will be discussed in Section
4.5 on the basis of fully massive tadpoles.

Let us conclude this section with some remarks on the truncated series in ǫ. Since all quantities
are truncated expansions in ǫ up to the first nǫ terms with numerical coefficients, we are basically
left with operations like multiplications and divisions of numbers of precision C. With respect to
U (α)(x), the dominant operation turns out to be the multiplication of series and therefore one can
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estimate that the computing time of U (α)(x) grows quadratically in nǫ. However, also divisions
of series are involved, for the coefficients as in Eqs. (4.34) and (4.55) as well as in each iteration
(x→ x− 1) via the recurrence relation in Eqs. (4.11) and (4.14), but they are by far less frequent
than multiplications and therefore negligible in this estimate.

Usually, it is necessary to start with an larger number nǫ of terms in the expansion than required
in the final answer. That is, because cancellation effects can take place when series are summed, or
divided by those starting with a nonvanishing power in ǫ. The number of terms nǫ for the expansions
are determined case by case, for each difference equations separately. On top of this, it happens
that so-called unphysical poles show up. They need to be removed before taking the resulting ǫ
expansions as input (coefficients or arbitrary constants) for the next calculation. Unphysical poles
are poles whose coefficients are almost zero (for example < 10−30). In this case, a cutoff needs
to be introduced in order to remove such poles. Otherwise we will lose a considerable amount of
significant digits.

4.5 Application to Fully Massive Tadpoles up to 5-loop

In this section we describe how the difference equations obtained in Section 3.4.1 are actually pro-
cessed in order to get a numerical answer for the remaining master integrals. For this task, we have
implemented the procedure outlined in Section 4.2.2 in FORM. After the auxiliary topology, sector
identification number ID as well as the information which propagator X carries the additional
power nX + x is provided, it performs all the steps necessary to obtain a factorial series expansion
for that sector. The program generates files for the specified difference equation containing the
parameters µi,Kij and coefficients as which are then handed to Mathematica for numerical eval-
uation. We decided to perform the numerics in Mathematica because it provides a nice balance
between speed and programming efforts.

Let us consider a t-propagator difference equation. In general, the nonhomogeneous part F (x)
is made out of a large number of physical sectors Tt′ with t′ < t positive propagators. In order
to compute a particular solution of the nonhomogeneous difference equation, it is necessary to
have factorial series expansions for all subsectors such that the coefficients on the right-hand side of
Eq. (4.53) are known. This can be achieved by starting the evaluation from the simplest topologies,
that is, the topology with the smallest number of positive propagators, all the way up to the most
complicated ones.

Furthermore, as we have pointed out in Section 4.3, the arbitrary constants ηj are determined by
integrals having one loop less than the difference equation we are interested in. This means, before
one can actually perform the numerical evaluation of a Nk-loop t-propagator difference equation,
one should have already performed a similar calculation at (Nk − 1)-loop.

Our primary goal is to get first results at the 5-loop level rather than to recalculate the already
known master integrals up to the 4-loop level [13, 14, 15]. Consequently, we only compute those
integrals at the lower loops levels which are contributing to the 5-loop master integral we are
interested in.

The plan of this section is as follows. In order to illustrate the numerics, we show, on the basis of
the 1-loop massive tadpole, the general structure of the files generated by our routines and handed
to Mathematica. We will explicitly show the convergence properties of the factorial series. Then
we move on and consider the 2-loop sunset topology (sector 7 of auxiliary topology A3) where we
will show which of the solutions V HO

ij (x) and V NH(x) in fact contributes to the full solution U(x)
in Eq. (4.12). As we will see, almost all of the homogeneous solutions do not contribute because
of wrong asymptotics in the large-x limit. For massive tadpoles, we are usually left with only one
out of R homogeneous solutions as well as the particular solution of the nonhomogeneous system.
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c l e a r [ aL1S1R0 , aL1S1R1 ] ;
(∗ topo logy : L1S1 has 1/1 homogeneous s o l u t i o n s ∗)
L1S1mu1 = 1 ;
L1S1K1 = −1/2∗d ;
(∗ topo logy : L1S1 has 0 non−homogeneous s o l u t i o n ∗)
aL1S1R1 [ 1 , 0 ] = 1 ;
aL1S1R1 [1 ,−1] = 0 ;
aL1S1R1 [dummy, 1 , s ] = S imp l i fy [ So lve [{0 == +aL1S1R1[1 ,1+ s ]∗(−2−2∗ s )

+aL1S1R1 [ 1 , s ]∗ ( 2 ∗ s+2∗sˆ2+d+2∗d∗ s+1/2∗d ˆ2)} , aL1S1R1 [ 1 , s ] ] [ [ 1 , 1 , 2 ] ] ] ;
aL1S1R1 [ 1 , s ] := aL1S1R1 [ 1 , s ] = aL1S1R1 [dummy, 1 , s ] + O[ e ] ˆ emax ; // S impl i fy
IaL1S1 [ x , i ] := N[Gamma[ x+1] ∗ Sum[ aL1S1R1 [ 2 , s ] /Gamma[ x−L1S1K1+s +1] ∗ s ! ,

{ s , i , 0 ,−1} ] , acc ] ;
(∗ pushdown r e l a t i o n ∗)
IaPdL1S1 [dummy, X , b ] = S imp l i fy [ So lve [{0 == −po lyr [X−1/2∗d , 1 ] ∗

IaPdL1S1 [X, b]+ po lyr [X, 1 ] ∗ IaPdL1S1[1+X, b ]} , IaPdL1S1 [X, b ] ] [ [ 1 , 1 , 2 ] ] ] ;
IaPdL1S1 [ x , xmax , smax ] := IaPdL1S1 [ x , xmax , smax ] = I f [ x < xmax , S imp l i fy [
IaPdL1S1 [dummy, x , xmax , smax ] ] , IaL1S1 [ x , smax ] ] ;

Listing 4.1: The Mathematica code for sector 1 of auxiliary topology A1 generated by the FORM

routines. The file contains the parameters µ = 1 and K = −d/2 indicated by L1S1mu1

and L1S1K1. The parameters are, of course, the same as those we have derived from
Eqs. (4.42). The routine finds exactly one homogeneous solution and zero nonhomo-
geneous solutions. The first coefficient a1 is set to 1 (aL1S1R1[1,0] = 1) which is
equivalent to η = 1 obtained from the large-x expansion in Eq. (4.46). In addition, the
recurrence for the coefficients as (aL1S1R1[dummy,1,s ]) and ‘pushdown’ (x→ x− 1)
relation (IaPdL1S1[dummy,X ,b ]) are given.

A typical input file for Mathematica is shown in Listing 4.1. It contains the parameters µ and
K as well as the recurrence for coefficients as and the ‘pushdown’ relation which is repeatedly used
in order to relate the U(xmax) to the desired one, say, U(1). There are exactly four parameters
acc,emax,xmax and smax which need to be specified by the user:

• acc: The number of digits used for the numerical evaluation. Corresponds to C in Eq. (4.74).

• emax: The number of terms up to ǫ-expansions are performed. Similar to nǫ in Section 4.4.

• xmax: The value of x where the factorial series U(x) is evaluated. The value is empirically
chosen and has typically a value of xmax = 20, . . . , 50.

• smax: The summation of the factorial series is performed with smax terms. We use values up
to smax ∼ 1500.

Once all the parameter including the space-time dimensions d are specified, one can start and
compute ǫ expansions for the coefficients as. This is done, for the example in Listing 4.1, by
writing Table[aL1S1R1[2,s] = N[aL1S1R1[1,s]/s!,acc],s,0,smax]; where so-called reduced
coefficients a′s = as/s! are computed. That is, from the numerical point of view, necessary because
in the limit to large s, the coefficients behave as |as| ∼ s!sα. After this procedure, the table
aL1S1R1[2,s] consists of smax + 1 coefficients expanded around ǫ up to the nǫ-th order with
accuracy C. Now, we have all the ingredients in order to start the summation of the truncated
factorial series IaL1S1[x ,i ]. The summation is started by writing, for example IaL1S1[10,60],
which means the series is evaluated at x = 10 and truncated at smax = 60 terms. We immediately
get the ǫ expansion of U(10)

U(10) ≈ 0.013889 + 0.027995ǫ + 0.029139ǫ2 + 0.020779ǫ3 + 0.011381ǫ4 +O(ǫ5) , (4.75)
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(a) The series converges pretty well for values x >
λ = 2, the abscissa of convergence and, as predicted by
Eq. (4.72), the rate of convergence increases for larger
values of x.
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(b) The recurrence relation is repeatedly used to relate
U(xmax) to U(1). In this case we have A = 1 indicating
that the recurrence relation is stable, cf. Eq. (4.73).

Figure 4.1: Numerical evaluation of fully massive tadpole J(x) and its factorial series U(x) in
d = 4− 2ǫ dimensions. Plotted is the logarithm of the leading term in ǫ of J(x)−U(x)
while varying the values for smax and xmax. We have considered two scenarios: In
(a) the factorial series is evaluated up to s = smax terms for three different values of
x = 1, 10, 40. In scenario (b) we truncate the factorial series at smax = 50 and compute
U(1) via the recurrence relation for values xmax = 1, . . . , 60. The calculcation has been
performed with a precision of C = 100 digits.

where only a 5-digit accuracy is shown. The result agrees up to an error of about 10−9 with the
exact result J(10) from Eq. (4.48). In Figure 4.1a the error is plotted on a logarithmic scale for
three different values of x = 1, 10, 40 by varying the number of terms smax included in the factorial
series.

As we have already mentioned, the series cannot be evaluated at values x ≤ λ where λ is the
abscissa of convergence (blue dots in Fig. 4.1a). However, these are usually the values we are
interested in. In order to get an result for, say U(1), we evaluate the factorial series for some large
value x = xmax where the series converges pretty well and relate that value to U(1) by using the
recurrence relations in Eq. (4.39) repeatedly. This is done by writing IaPdL1S1[1,30,60] which
means U(x) is evaluated at x = 30 with a truncated series of smax = 60 terms and then related
to U(1) by applying the recurrence relations 29 times U(29), U(28), . . . , U(1). This is shown in
Fig. 4.1b, where the factorial series (smax = 50) is evaluated for different values x = 1, . . . , 60 and
shifted to U(1) by using the recurrence relation xmax − 1 times, in case xmax = 60 we get

U(1)

Γ(1 + ǫ)
≈ −1

ǫ
− 1− ǫ− ǫ2 − ǫ3 − ǫ4 +O(ǫ5) , (4.76)

with an accuracy of about 27-digits. In the case of the 1-loop massive tadpole, the recurrence
relations turns out to be stable (A = 1) and therefore it is advantageous to choose the value xmax
as large as possible. However, for all other difference equations we will have an unstable recurrence
and therefore the value needs to be chosen carefully.

Let us now move on and consider sector 7 of auxiliary topology A3. We show on the basis of
that example which homogeneous solution is contributing and those who are discarded because of
a wrong asymtotic behaviour. Starting from Eq. (4.69), we have

J(x, 1, 1) = =

∫

k1,k2

1

(k2
1 + 1)x

1

k2
2 + 1

1

(k1 − k2)2 + 1
, (4.77)
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the corresponding difference equation can be found in Section 3.4.1 in Eqs. (3.36) and (3.37). By
shifting x→ x− 2, taking into account that

U(x) ≡ J(x, 1, 1) , J(x− 2, 1, 0) = J(x− 2)J(1) , (4.78)

and making use of the corresponding difference equation (4.8), we can rewrite J(x− 2) in terms of
J(x− 1) and get

(x− d)U(x− 2) + (2x− d− 1)U(x− 1)− 3(x− 1)U(x) + (d− 2)J(x− 1)J(1) = 0 , (4.79)

which is a somewhat simpler representation of the difference equation. Of course, the algorithm we
have outlined in Section 3.3.3 does not take care of how the polynomials pi(x) look like. From our
point of view, it is not a drawback to work with slightly more complicated polynomials because
our approach is highly automated and therefore the advantage is not that big. However, for the
following pen and pencil derivation it does.

In complete analogy to the procedure outlined in Section 4.2.2 we start and consider the ho-
mogeneous part of difference equation (4.79). Performing the change of variable U(x) = µxV (x),
multiplying by x(x− 1)µ2−x and using the properties of the ρ- and π-operator we obtain the first
canonical form [

f0(π, µ) + f1(π, µ)ρ+ f2(π, µ)ρ2 + f3(π, µ)ρ3
]

V (x) = 0 , (4.80)

with

f0(π, µ) = −3µ2π3 + 6µ2π2 − 3µ2π ,

f1(π, µ) =
[

2µ− 9µ2
]

π2 +
[

21µ2 − (3 + d)µ
]

π + (d+ 1)µ− 12µ2 ,

f2(π, µ) =
[

1 + 4µ− 9µ2
]

π − d− (5 + d)µ + 15µ2 ,

f3(π, µ) = 1 + 2µ− 3µ2 .

(4.81)

Again, we find that f3 is independent of π and by solving the characteristic equation we obtain
µ1 = −1/3 and µ2 = 1. The corresponding values of Ki are determined by the indicial equations
fm=2(π = Ki + 2m,µ = µi) = 0 and give K1 = K2 = 1/2−d/2. Before we compute the coefficients
as via the system of recurrence relations in Eq. (4.34), we focus on the structure of the full solution

U(x) = η1U1(x) + η2U2(x) + U3(x) , (4.82)

where HO and NH in the exponent of the homogeneous and nonhomogeneous solutions are sup-
pressed. They are written in terms of factorial series expansions and read

Ui(x) = µxi

∞∑

s=0

a
(i)
s Γ(x+ 1)

Γ(x−Ki + s+ 1)
, j = 1, 2, 3 , (4.83)

where a
(1)
0 = a

(2)
0 = 1. The weights η1 and η2 are determined by comparing the large-x behaviour

of the series

U1(x) ≈ (1)xx1/2−d/2 ,

U2(x) ≈ (−1/3)xx1/2−d/2 ,
(4.84)

and J(x, 1, 1) which is, according to Eqs. (4.64) and (4.69), given by

J(x, 1, 1) ≈ x−d/2g(0) = x−d/2J(2) , (4.85)
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which immediately yields η1 = η2 = 0. This means, because of the wrong asymptotics in the large-x
limit, the homogeneous solutions U1 and U2 do not contribute at all. Consequently, we do not need

to determine the recurrence relations for coefficients a
(1)
i and a

(2)
i . Going back to Eq. (4.79) and

keeping the nonhomogeneous part we get

[

f0(π) + f1(π)ρ+ f2(π)ρ2
]

V3(x) = (2− d)(x− 1)J(1)ρVJ (x) , (4.86)

where U3(x) = µxV3(x) and UJ(x) = µxVJ(x) is the factorial series expansion of the 1-loop massive
tadpole with coefficients as as defined in Eq. (4.44). The values µ3 = µ,K3 = K of the particular
solution U3(x) are fixed by the factorial series expansion UJ(x) with µ = 1 and K = −d/2,
cf. Eq. (4.42). Rewriting x on the right-hand side of Eq. (4.86) in terms of operator ρ + π and
plugging in the factorial series expansion of V3(x) and VJ(x) we get the recurrence relation for the

coefficients a
(3)
s

a(3)
s f2(s̄) + a

(3)
s−1f1(s̄) + a

(3)
s−2f0(s̄) = (2− d)J(1)

[

as −
(
d

2
+ s− 1

)

as−1

]

. (4.87)

where s̄ = −d/2 + 2 − s and a
(3)
s = 0 for s < 0. We point out again that the coefficients as need

to be determined before the recurrence relations in Eq. (4.55) can be used. Because of the fact
that the homogeneous solutions U1(x) and U2(x) do not contribute, the full solution of Eq. (4.82)
becomes

U(x) =
∞∑

s=0

a
(3)
s Γ(x+ 1)

Γ(x+ d/2 + s+ 1)
, (4.88)

with coefficients a
(3)
s via the recurrence relation in Eq. (4.87). Now we have everything at hand in

order to perform the summation of Eq. (4.88). In analogy to Listing 4.1, a similar program code
for the numerical evaluation of sector 7 of auxiliary topology A3 is generated. For instance, by
writing IaPdL2S7[1,60,600] and dividing the result by Γ2(1 + ǫ) we get

U(1)

Γ2(1 + ǫ)
≈ −1.5ǫ−2 − 4.5ǫ−1 − 6.984139142 − 18.00878162ǫ − 27.99422356ǫ2

− 72.00378660ǫ3 − 111.9974983ǫ4 +O(ǫ5) , (4.89)

where only the first 10-digits are shown. The result agrees up to an error of 10−50 with the analytic
result in e. g. [110]. We have used C = 200 digits of precision, evaluated the series at xmax = 60
and truncated the sum at smax = 600. Because we are using the recurrence relation in Eq. (4.79)
repeatedly, an error of about 360, equivalent to a loss of approximately 30 digits of precision, is
induced4.

The next step is to evaluate the basketball topology, corresponding to sector 51 of auxiliary
topology A6 we have

J(x, 1, 0, 0, 1, 1) = =

∫

k1,k2,k3

1

(k2
1 + 1)x

1

k2
2 + 1

1

(k1 − k3)2 + 1

1

(k2 − k3)2 + 1
, (4.90)

where U(x) ≡ J(x, 1, 0, 0, 1, 1) satisfies a nonhomogeneous second order difference equation. Solving
the corresponding characteristic and indical equations we obtain µ1 = 1, µ2 = −1/8 and K1 =
−d/2,K2 = 1 − d. According to Eq. (4.73), the iterative use of the recurrence relation is even
more unstable A = 8. This suggests that a rather small value xmax should be used to evaluate
the factorial series U(x). As before, by comparing the large-x behaviour we get η1 = J(1, 1, 1)

4Remember, we have µ1 = −1/3 and µ2 = 1 and therefore A = 3.
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and η2 = 0 where the 2-loop massive tadpole J(1, 1, 1) is already evaluted up to high accuracy in
Eq. (4.89). The full solution is then given by the homogeneous solution U1(x) in addition to the
particular U3(x) with µ3 = 1 and K3 = −d/2− 1,

U(x) = η1U1(x) + U3(x) , (4.91)

and numerically via IaPdL3S51[1,40,400] (only 10-digits are shown)

U(1)

Γ3(1 + ǫ)
≈ −2 · 10−16ǫ−4 + 2ǫ−3 + 7.666666667ǫ−2 + 17.5ǫ−1 + 22.91666667

+ 21.25179105ǫ − 184.2300051ǫ2 − 661.1105862ǫ3 − 3685.054779ǫ4 +O(ǫ5) , (4.92)

where we have performed the summation up to smax = 400 terms evaluated at xmax = 40. The
ǫ-expansion in Eq. (4.92) agrees with the result given in the literature e. g. [18]. For the first time,
an unphysical pole ǫ−4 with small coefficient shows up. The pole is removed by introducing an
appropriate cutoff parameter. Let us move on and consider topology 841 of auxiliary topology A10

J(x, 1, 0, 1, 0, 0, 1, 0, 0, 1) = =

∫

k1,...,k4

1

(k2
1 + 1)x

1

k2
2 + 1

1

k2
4 + 1

1

(k3 − k4)2 + 1

× 1

(k1 − k2 − k3)2 + 1
,

(4.93)

with U(x) ≡ J(x, 1, 0, 1, 0, 0, 1, 0, 0, 1) satisfied by a nonhomogeneous difference equation of fourth
order, cf. Tab. 3.7. The corresponding characteristic and indicial equations are solved and yield

µ1 = 1 , K1 = 1− d ,
µ2 = 1 , K2 = −d/2 ,
µ3 = −1/3 , K3 = 3/2 − 3/2d ,

µ4 = −1/15 , K4 = 3/2 − 3/2d ,

(4.94)

where only the second solution has the correct asymptotics η1 = η3 = η4 = 0 and η2 = J(1, 1, 0, 0, 1, 1)
determined by Eq. (4.92). As before, the full solution is only a sum of one homogeneous solution
and the particular solution U5(x) with µ5 = 1 and K5 = −d/2 − 1,

U(x) = η2U2(x) + U5(x) . (4.95)

One should have in mind, that the iterative use of the corresponding recurrence relation is unstable
and due to A = 15 only relatively small xmax are practical values. The numerical evaluation is
executed by IaPdL4S841[1,20,1000] and results in

U(1)

Γ4(1 + ǫ)
≈ −2.5ǫ−4 − 11.6666667ǫ−3 − 31.7013889ǫ−2 − 67.5289350ǫ−1 − 140.220544

− 573.534698ǫ − 2756.21983ǫ2 − 18239.9257ǫ3 − 86167.4785ǫ4 +O(ǫ5) , (4.96)

which agrees in the first 7-digits with the result given in the literature e. g. [13]. The second master
integral with two dots corresponding to U(3), cf. Fig. 3.6, reads

U(3)

Γ4(1 + ǫ)
≈ 1.166666667ǫ−3 + 4.479166668ǫ−2 + 10.05208333ǫ−1 + 2.627366651 + 74.67742608ǫ

− 520.3653331ǫ2 + 1324.251969ǫ3 − 11776.14198ǫ4 +O(ǫ5) . (4.97)

Here we have performed the summation up to smax = 1000 terms and used the recurrence relation
with xmax = 20. Unphysical poles proportional to ǫ−7, ǫ−6 and ǫ−5 have been removed in case
of U(1) by an appropriate cutoff. In case of U(3) we removed poles proportional to ǫ−6, ǫ−5 and
ǫ−4. It should be pointed out that the numerical evaluation was performed with C = 1150 digits
accuracy and ǫmax = 13.
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4.5.1 The 5-loop 6-propagator topology 28686: Massive Sunset Topology

In the previous section we have prepared all the ingredients necessary to evaluate the factorial
series of the first nontrivial 5-loop topology 28686

J(x, 1, 1, 0, . . . , 0, 1, 1, 1, 0) = =

∫

k1,...,k5

1

(k2
1 + 1)x

1

k2
2 + 1

1

k2
3 + 1

1

(k3 − k5)2 + 1

× 1

(k4 − k5)2 + 1

1

(k1 + k2 − k4)2 + 1
.

(4.98)

As before, we define the function U(x) ≡ J(x, 1, 1, 0, . . . , 0, 1, 1, 1, 0) and obtain the two master
integrals5 shown in Figs. A.1 and A.2,

B1 = , B2 = , (4.99)

by evaluating B1 = U(1) and B2 = U(3). The function U(x) satisfies the following nonhomogeneous
difference equation of fourth order

R=4∑

j=0

pj(x)U(x+ j) = −15(−2 + d)4(d− 2x)J(x)J4(1) (4.100)

with

p0(x) = x(4− 2d+ x)(2− d+ x)(10− 5d+ 2x)(6 − 3d+ 2x) ,

p1(x) = 2x(24 − 17d + 3d2 + 24x− 10dx+ 4x2)(120 − 98d + 20d2 + 87x − 36dx + 15x2) ,

p2(x) = 4x(1 + x)(1248 − 932d + 196d2 − 8d3 + 2130x − 1180dx + 148d2x+ 975x2

− 294dx2 + 129x3) ,

p3(x) = −128x(1 + x)(2 + x)(150 − 83d+ 11d2 + 85x− 26dx+ 11x2) ,

p4(x) = 768x(1 + x)(2 + x)(3 + x)(6− 2d+ x) ,

(4.101)

where common factors are canceled in order to simplify the polynomials as much as possible. This
and other difference equations at 5-loop can be found in [83]. We can, as in Eq. (4.79), take
advantage of the recurrence relation J(x) = −2x/(d − 2x)J(x + 1) and simplify the polynomials
further. Consequently, we can divide the equation in Eq. (4.100) by x and the factor d− 2x on the
right-hand side cancels. This results in simpler recurrence relations for the coefficients as. Solving
the characteristic and indicial equation, we get

µ1 = 1 , K1 = −1− d/2 ,
µ2 = 1 , K2 = −d/2 ,
µ3 = −1/8 , K3 = 2− 2d ,

µ4 = −1/24 , K4 = 2− 2d ,

(4.102)

where we have congruent roots K1 and K2. For the first time we need to include two homogeneous
solutions, those with µ1 = 1, K1 = −1 − d/2 and µ2 = 1, K1 = −d/2. The corresponding weight
η1 can be fixed by comparing the next-to-leading asymptotic behavior of the factorial series

U(x) = η1U1(x) + η2U2(x) + U5(x) , (4.103)

5The integral B1 can be found in the literature [111]. It was evaluated in coordinate space.
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and the integral U(x) in Eq. (4.98). Let us therefore recall Eqs. (4.61) and (4.62) from Section 4.3,

U(x) =
1

Γ(d/2)

∫ ∞

0

dk2
1(k2

1)d/2−1

(k2
1 + 1)x

f(k2
1) , (4.104)

where

f(k2
1) =

1

Ωd

∫

dΩd(k̂1)g(k1) , (4.105)

with Ωd = 2πd/2/Γ(d/2), the d-dimensional solid angle and g(k1) defined as in Eq. (4.60). As we
already know, the large-x behavior of Eq. (4.104) is determined by f(k2

1) for small values of k2
1 .

Performing the change of variable k2
1 = u

1−u , Eq. (4.104) takes the form

U(x) =
1

Γ(d/2)

∫ 1

0
duud/2−1(1− u)x−1−d/2f̄(u) , f̄(u) = f(u/(1− u)) . (4.106)

We expand the function f̄(u) = (1 − u)β
∑∞
s=0 bsu

s for small u and make use of the beta function
in Eq. (1.5), we get

U(x) = µx0

∞∑

s=0

as
Γ(x+ 1)

Γ(x+ 1−K0 + s)
−→
x→∞

a0x
K0 + a1x

K0−1 + . . . , (4.107)

with µ0 = 1, K0 = −d/2, β = d/2 + 1 and as = bsΓ(s + d/2)/Γ(d/2). The coefficients bs can be
obtained by expanding f(k2

1) for small k2
1 ,

f(k2
1) =

∞∑

s=0

fs(k
2
1)s , (4.108)

and comparing it with f̄(u) = f(u/(1 − u)) in an expansion for small u. We obtain b0 = f0 and
b1 = f1 + βb0 = f1 + βf0. For the 5-loop massive sunset integral in Eq. (4.98), the function g(k1)
is given by

g(k1) =

∫

k2,...,k5

1

(k2 + k4)2 + 1

1

k2
3 + 1

1

(k3 − k5)2 + 1

1

(k4 − k5)2 + 1

1

(k1 + k2)2 + 1
, (4.109)

where we have shifted the momentum by k2 → k2 + k4. Expanding g(k1) to second order yields

g(k1) = g(0) + k1µ
∂

∂k1µ
g(k1)

∣
∣
∣
∣
k1=0

+ k1µk1ν
∂

∂k1µ

∂

∂k1ν
g(k1)

∣
∣
∣
∣
k1=0

+ . . . , (4.110)

where the term proportional to k1µ vanishes. We take the derivatives with respect to k1µ and k1ν

and get

g(k1) = g(0) +

∫

k2,...,k5

[

. . .

] [

−2
k2

1

(k2
2 + 1)2

+ 8
(k1 · k2)2

(k2
2 + 1)3

]

+ . . . . (4.111)

The bracket [ . . . ] contains propagators which do not depend on the external momentum k1,
cf. Eq. (4.109). Since the second integral is proportional to k2

1 , we can easily decompose the
scalar product

g(k1) = g(0) + k2
1

∫

k2,...,k5

[

. . .

][

− 2

(k2
2 + 1)2

+
8

d

k2
2 + 1− 1

(k2
2 + 1)3

]

+ . . . , (4.112)
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and perform the angular integrations to obtain f(k2
1). According to Eqs. (4.105) and (4.108) we

have

f0 = f(0) = g(0) = , f1 = −2 +
8

d

[

−
]

. (4.113)

The 4-loop sunset integral with only one dot can be expressed (via the reduction relations obtained
in Chapter 3) in terms of the sunset integral without dots

=
5− 2d

5
, (4.114)

and therefore

b0 = f0 = , b1 = f1 + βf0 =
80− 42d+ 13d2

10d
− 8

d
. (4.115)

In order to get the weights η1 and η2, we compare Eq. (4.107) and the solution in Eq. (4.103) for
large x,

U(x) ≈ a0x
−d/2 + a1x

−d/2−1 + . . . , (4.116)

with a0 = b0 and a1 = b1Γ(d/2+1)/Γ(d/2) = d/2 b1 and consequently η1 = d/2 b1, η2 = b0. The nu-
merical evaluation for x = 10 without using the recurrence relation is done by IaL5S28686[10,250]

and results in

U(10)

Γ5(1 + ǫ)
≈ −0.0347222222ǫ−4−0.255421143ǫ−3−0.975147382ǫ−2−2.63727153ǫ−1−5.85855985

− 16.6156462ǫ − 61.4446834ǫ2 − 370.873404ǫ3 − 1838.14378ǫ4 +O(ǫ5) , (4.117)

where we performed the summation with a rather small smax = 250 and C = 1150 digits accuracy.
It turns out, the factorial series converges pretty well for x = 10. The ǫ-expansion in Eq. (4.117) is
given to 9-digit accuracy. We computed the factorial series expansion for different x ranging from
5, . . . , 30 and compared the leading term with the result obtained by FIESTA [112]. We found a
perfect agreement. Unfortunately, we are not able to get a suitable result for x = 1 nor x = 3, yet.

x U(x)/Γ5(1 + ǫ) FIESTA

30 -0.0030788 -0.003079
20 -0.0073099 -0.00731
10 -0.0347222 -0.034722
5 -0.2083345 -0.208331

Table 4.1: Comparison of the coefficient of the leading term ∼ ǫ−4 with results obtained by FIESTA.
The value for x = 5 is directly obtained without using the pushdown relation. The rate
of convergence is, as expected, quite poor and requires a large smax = 1300. In case of
x = 10, 20 and 30 it is sufficient to sum up smax = 100 terms in the truncated factorial
series.

The reason is due to a numerical instability of the difference equations in Eq. (4.100) which is used
for the pushdown of U(xmax) down to the desired value U(x) with x = 1, 3. Let us therefore inspect
the difference equation in more detail. In each pushdown we evaluate U(xi + 1), . . . , U(xi + 4) and
solve the recurrence relation for U(xi). This involves the division by p0(xi) which has the following
roots

x = 0, x = 2, x = 3, x = 4, x = 5 . (4.118)
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In other words, if we try to evaluate U(5) out of U(5 + 1), . . . , U(5 + 4) we run into a prob-
lem. For instance, evaluating the series for xmax = 10 and using the pushdown relation via
IaPdL5S28686[5,10,1000] we obtain

U(5)

Γ5(1 + ǫ)
≈ 4.804061 ·10−7ǫ−5−0.2083593ǫ−4−1.360090ǫ−3−4.641037ǫ−2−11.35768ǫ−1 +O(ǫ0) ,

(4.119)
where the leading term appears because of the instability. The term proportional to ǫ−5 should
vanish but we need to remove it with an appropriate cutoff. Even with smax = 1000 we only achieve
10−7 which is rather poor. The same happens for the pushdown of U(5) → U(4), U(4) → U(3)
and U(3) → U(2) which completely spoils the numerical evaluation of U(3) and U(1). In case of
x = 3 with pushdown from xmax = 10 via IaPdL5S28686[3,10,1000] we have

U(3)

Γ5(1 + ǫ)
≈ 0.00005764873ǫ−7 − 0.002183870ǫ−6 − 0.04013510ǫ−5 − 1.687390ǫ−4 − 8.364475ǫ−3

− 21.58991ǫ−2 +O(ǫ−1) , (4.120)

where the first relevant pole is ∼ ǫ−4. According to FIESTA, its coefficient equals −1.5, we obtain
−1.687.... Here it is not sufficient to simply increase the number of terms smax in the truncated
factorial series. Rather we need to improve our numerics on a deeper level in order to get results
for the relevant values x = 1 and x = 3.

The first cross-check with an independent method shows that the corresponding difference equa-
tion is correct. This means, as soon as we have the numerics under control, we can proceed and
start to solve the difference equations for higher topologies with t > 6 propagators.
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5 Summary and Concluding Remarks

For this thesis we studied a certain class of vacuum integrals, the so-called fully massive tadpoles
(bubbles). For this purpose, we implemented a Laporta algorithm using the algebraic manipulator
FORM. This implementation was used to perform a reduction to master integrals. We have, for the
first time, determined the master integrals at the 5-loop level. In addition, the implementation was
modified in such a way that we were able to derive difference equations for a large number of these
master integrals. Thus we started to solve the system of difference equation at the 5-loop level by
means of factorial series expansions.

The Feynman integral reduction of the fully massive tadpoles up to the 5-loop level was per-
formed with a modified Laporta approach. In contrast to the usual integration-by-parts relations
we employed generalized recurrence relations based on Tarasov’s idea of dimensional recurrence re-
lations. Only the use of those special recurrence relations enabled us to go beyond the 4-loop level
and study the reduction problem at 5-loop. The main idea here was to get rid of irreducible scalar
products and consequently reduce the effective number of indices (propagators) in the problem of
M down to t in case a t-propagator topology is considered. This was especially advantageous for
topologies where t is rather small compared to M . Also the complete set of sector symmetries,
playing a crucial role in the reduction process, was included. This would have hardly been pos-
sible in the traditional approach with integration-by-parts relations. Although our reduction via
generalized recurrence relations was successful, we think a complete reduction at 5-loop seems to
be more realistic with ordinary integration-by-parts relations and a carefully chosen set of sector
symmetries. Our result on the number of master integral can be seen as an upper limit because all
the symmetries are included.

Once all master integral were identified, we modified the reduction algorithm in such a way
that appropriate difference equations can be derived. We computed difference equations for a
considerable number of 5-loop topologies as well as rediscovered the known ones at the lower loop
levels. There are 134 master integrals covered by 243 difference equations at the 5-loop level.
We determined the full difference equation of 117 and the homogeneous part of 187 difference
equations. In case of 56 difference equations we were not able to determine the homogeneous part
and therefore even the order of that difference equation is unknown. The difference equations
we found have orders up to R = 7 and there are, presumably, even higher ones in the set of
the 56 unknown. The majority of the difference equations which we fully determined belong to
topologies with a rather small number of positive propagators t. This is not very surprising since
we ran into computational problems mainly due to large expressions of physical subsectors which
are more and more present with increasing t. It should be pointed out that in order to get the
nonhomogeneous part of the remaining difference equations, whose homogeneous part is already
known, is merely a question of computing time. In the case of the 56 difference equations, where
neither the homogeneous nor the nonhomogeneous part is known, we are not complete sure. It
is likely, on the one hand, that some are simply of higher order R and we did not found them
because of an insufficient depth in the reduction. On the other hand, for some specific topologies
e. g. 31246, 32270 or 31516 where not a single difference equation has been found so far, it seems
unlikely that they are, say, all of order R > 5. This needs to be investigated in the future.

The master integrals satisfy the difference equations we derived. They can be solved in order
to get the ǫ-expansion for the corresponding master integral. We started to solve the system of
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difference equation by means of factorial series expansions in the case of the first nontrivial 5-
loop topology 28686 (sunset topology). Our factorial series expansion converges but turns out to
be, from the numerical point of view, problematic. We performed certain cross-checks and found
agreement with the result obtained by FIESTA. However, in order to get high precision results for
the relevant master integrals we need to improve our numerical evaluation.

In conclusion we point out that the work presented here shows that the 5-loop level is, indeed,
doable and accessible with today’s methods and resources.
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A Appendix

A.1 Additional Figures and Tables

Topo t ID Binary Rep.

1 1 1 I1

Topo t ID Binary Rep.

1 2 6 I1,1,0

2 3 7 I1,1,1

Topo t ID Binary Rep.

1 3 56 I1,1,1,0,0,0

2 4 60 I1,1,1,1,0,0

3 4 51 I1,1,0,0,1,1

4 5 62 I1,1,1,1,1,0

5 6 63 I1,1,1,1,1,1

Topo t ID Binary Rep.

1 4 960 I1,1,1,1,0,0,0,0,0,0

2 5 992 I1,1,1,1,1,0,0,0,0,0

3 5 961 I1,1,1,1,0,0,0,0,0,1

4 5 841 I1,1,0,1,0,0,1,0,0,1

5 6 1008 I1,1,1,1,1,1,0,0,0,0

6 6 993 I1,1,1,1,1,0,0,0,0,1

7 6 978 I1,1,1,1,0,1,0,0,1,0

8 6 952 I1,1,1,0,1,1,1,0,0,0

9 7 1016 I1,1,1,1,1,1,1,0,0,0

10 7 1012 I1,1,1,1,1,1,0,1,0,0

11 7 1010 I1,1,1,1,1,1,0,0,1,0

12 7 1009 I1,1,1,1,1,1,0,0,0,1

13 8 1020 I1,1,1,1,1,1,1,1,0,0

14 8 1011 I1,1,1,1,1,1,0,0,1,1

15 9 1022 I1,1,1,1,1,1,1,1,1,0

16 9 511 I0,1,1,1,1,1,1,1,1,1

Table A.1: Our representative(s) of 1,2,5 and 16 physical sector(s) (topologies) of massive tadpoles
up to 4-loop. The number of lines t, the unique identification number ID and the
corresponding binary representation is shown.
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Topo t ID Binary Rep.

1 5 31744 I1,1,1,1,1,0,0,0,0,0,0,0,0,0,0

2 6 32256 I1,1,1,1,1,1,0,0,0,0,0,0,0,0,0

3 6 31746 I1,1,1,1,1,0,0,0,0,0,0,0,0,1,0

4 6 29702 I1,1,1,0,1,0,0,0,0,0,0,0,1,1,0

5 6 28686 I1,1,1,0,0,0,0,0,0,0,0,1,1,1,0

6 7 32512 I1,1,1,1,1,1,1,0,0,0,0,0,0,0,0

7 7 32288 I1,1,1,1,1,1,0,0,0,1,0,0,0,0,0

8 7 32258 I1,1,1,1,1,1,0,0,0,0,0,0,0,1,0

9 7 31754 I1,1,1,1,1,0,0,0,0,0,0,1,0,1,0

10 7 30872 I1,1,1,1,0,0,0,1,0,0,1,1,0,0,0

11 7 30858 I1,1,1,1,0,0,0,1,0,0,0,1,0,1,0

12 7 30214 I1,1,1,0,1,1,0,0,0,0,0,0,1,1,0

13 7 29703 I1,1,1,0,1,0,0,0,0,0,0,0,1,1,1

14 8 32640 I1,1,1,1,1,1,1,1,0,0,0,0,0,0,0

15 8 32576 I1,1,1,1,1,1,1,0,1,0,0,0,0,0,0

16 8 32528 I1,1,1,1,1,1,1,0,0,0,1,0,0,0,0

17 8 32513 I1,1,1,1,1,1,1,0,0,0,0,0,0,0,1

18 8 32386 I1,1,1,1,1,1,0,1,0,0,0,0,0,1,0

19 8 32274 I1,1,1,1,1,1,0,0,0,0,1,0,0,1,0

20 8 32266 I1,1,1,1,1,1,0,0,0,0,0,1,0,1,0

21 8 32259 I1,1,1,1,1,1,0,0,0,0,0,0,0,1,1

22 8 31380 I1,1,1,1,0,1,0,1,0,0,1,0,1,0,0

23 8 31246 I1,1,1,1,0,1,0,0,0,0,0,1,1,1,0

24 8 30876 I1,1,1,1,0,0,0,1,0,0,1,1,1,0,0

25 8 30862 I1,1,1,1,0,0,0,1,0,0,0,1,1,1,0

26 8 30222 I1,1,1,0,1,1,0,0,0,0,0,1,1,1,0

27 9 32704 I1,1,1,1,1,1,1,1,1,0,0,0,0,0,0

28 9 32648 I1,1,1,1,1,1,1,1,0,0,0,1,0,0,0

29 9 32608 I1,1,1,1,1,1,1,0,1,1,0,0,0,0,0

30 9 32592 I1,1,1,1,1,1,1,0,1,0,1,0,0,0,0

31 9 32529 I1,1,1,1,1,1,1,0,0,0,1,0,0,0,1

32 9 32518 I1,1,1,1,1,1,1,0,0,0,0,0,1,1,0

33 9 32394 I1,1,1,1,1,1,0,1,0,0,0,1,0,1,0

34 9 32390 I1,1,1,1,1,1,0,1,0,0,0,0,1,1,0

Topo t ID Binary Rep.

35 9 32329 I1,1,1,1,1,1,0,0,1,0,0,1,0,0,1

36 9 32278 I1,1,1,1,1,1,0,0,0,0,1,0,1,1,0

37 9 32270 I1,1,1,1,1,1,0,0,0,0,0,1,1,1,0

38 9 32267 I1,1,1,1,1,1,0,0,0,0,0,1,0,1,1

39 9 31516 I1,1,1,1,0,1,1,0,0,0,1,1,1,0,0

40 9 31388 I1,1,1,1,0,1,0,1,0,0,1,1,1,0,0

41 9 30231 I1,1,1,0,1,1,0,0,0,0,1,0,1,1,1

42 10 32736 I1,1,1,1,1,1,1,1,1,1,0,0,0,0,0

43 10 32712 I1,1,1,1,1,1,1,1,1,0,0,1,0,0,0

44 10 32708 I1,1,1,1,1,1,1,1,1,0,0,0,1,0,0

45 10 32674 I1,1,1,1,1,1,1,1,0,1,0,0,0,1,0

46 10 32652 I1,1,1,1,1,1,1,1,0,0,0,1,1,0,0

47 10 32596 I1,1,1,1,1,1,1,0,1,0,1,0,1,0,0

48 10 32562 I1,1,1,1,1,1,1,0,0,1,1,0,0,1,0

49 10 32534 I1,1,1,1,1,1,1,0,0,0,1,0,1,1,0

50 10 32398 I1,1,1,1,1,1,0,1,0,0,0,1,1,1,0

51 10 32391 I1,1,1,1,1,1,0,1,0,0,0,0,1,1,1

52 10 32279 I1,1,1,1,1,1,0,0,0,0,1,0,1,1,1

53 10 31420 I1,1,1,1,0,1,0,1,0,1,1,1,1,0,0

54 10 30563 I1,1,1,0,1,1,1,0,1,1,0,0,0,1,1

55 10 30239 I1,1,1,0,1,1,0,0,0,0,1,1,1,1,1

56 10 29550 I1,1,1,0,0,1,1,0,1,1,0,1,1,1,0

57 11 32744 I1,1,1,1,1,1,1,1,1,1,0,1,0,0,0

58 11 32737 I1,1,1,1,1,1,1,1,1,1,0,0,0,0,1

59 11 32713 I1,1,1,1,1,1,1,1,1,0,0,1,0,0,1

60 11 32682 I1,1,1,1,1,1,1,1,0,1,0,1,0,1,0

61 11 31736 I1,1,1,1,0,1,1,1,1,1,1,1,0,0,0

62 11 30691 I1,1,1,0,1,1,1,1,1,1,0,0,0,1,1

63 11 30526 I1,1,1,0,1,1,1,0,0,1,1,1,1,1,0

64 12 32745 I1,1,1,1,1,1,1,1,1,1,0,1,0,0,1

65 12 31740 I1,1,1,1,0,1,1,1,1,1,1,1,1,0,0

66 12 30699 I1,1,1,0,1,1,1,1,1,1,0,1,0,1,1

67 12 30527 I1,1,1,0,1,1,1,0,0,1,1,1,1,1,1

Table A.2: Our representatives of all 67 physical sectors (topologies) of massive tadpoles at 5-loop.
The number of lines t, the unique identification number ID and the corresponding
binary representation is shown.
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:
12,30527 12,31740 12,30699 12,32745 11,31736 11,30691

:
11,30526 11,32682 11,32744 11,32737 11,32713 10,29550

:
10,30239 10,31420 10,30563 10,32391 10,32279 10,32562

:
10,32534 10,32596 10,32398 10,32736 10,32708 10,32712

:
10,32652 10,32674 9,30231 9,31388 9,31516 9,32278

:
9,32518 9,32390 9,32267 9,32270 9,32608 9,32592 9,32394

:
9,32529 9,32704 9,32648 9,32329 8,30862 8,30876 8,31246

:
8,31380 8,30222 8,32259 8,32274 8,32386 8,32266 8,32528

:
8,32576 8,32513 8,32640 7,30858 7,29703 7,30872 7,30214

:
7,32258 7,31745 7,32288 7,32512 6,28686 6,29702

:
6,31746 6,32256 5,31744

Figure A.1: The complete set of vacuum topologies at the 5-loop level is shown. The identification
number ID and number of positive propagators t associated to each topology is given
as subcript. The set of topologies consists of generic topologies (not factorizing) and
those build out of products of topologies from lower loops. We have 48 generic vacuum
topologies and 19 factorized topologies. Thanks to Jannis Schücker for providing the
vacuum topologies [113].
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:
6,29702 6,28686 7,30858 7,30214 7,30214 7,29703 7,29703

:
7,29703 8,32259 8,31246 8,31246 8,31246 8,30862 8,30222

:
8,30222 8,30222 9,32608 9,32390 9,32278 9,32270 9,32270

:
9,32270 9,32270 9,32270 9,32267 9,31516 9,31516 9,31516

:
9,31388 9,30231 9,30231 9,30231 9,30231 9,30231 10,32736

:
10,32596 10,32596 10,32596 10,32596 10,32534 10,32398 10,32391

:
10,32279 10,32279 10,32279 10,32279 10,30239 10,30239

:
10,30239 10,30239 10,29550 10,29550 10,29550 11,32744

:
11,31736 11,30526 11,30526 11,30526 11,30526 11,30526

:
12,31740 12,30527 12,30527 12,30527 12,30527

Figure A.2: In addition to those in Figure A.1 there are 65 fully massive 5-loop master integrals
with dots on several propagators. A dot on a line indicates that the corresponding
propagator carries an extra power. Lines without dots represent propagators with
power 1.
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Substitute relation 1,...,k in rel. k + 1:

i = i + 1
i = 1

j = j + 1

yes

no

yes

existing relations 1,...,k and set
Substitute relation k + 1 in already

k = k + 1

if i < imax

Apply (IBP+SYM)i to seed integral j:

→ 0 = (
∑

m cmJm)
k+1

→ 0 = (
∑

m c
′
mJ
′
m)
k+1

Initialisation for given t, rmax, smax:

Determine most complicated integral

ordering and compute new relation:
J ′l ∈ {Jm} according to the unique

START

END

no

no

if i,j = i, jmax

if rhs 6= 0

yes

jmax=#Seed integrals =
∑

r,sN (It,r,s)

J ′l = −∑m 6=l c′′mJ ′m, c′′m =
c′
m

c′
l

i=j=1,k=0,imax=#IBP/SYM

Figure A.3: The schematic of the Laporta algorithm in its basic shape. It is shown how the algo-
rithm can be implemented in computer algebra systems. The algorithm is initialized
by specifing the auxiliary topology AM , the sector Tt (topology) under consideration
and upper limits rmax, smax for generating and processing the identities.
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Topo t ID S(IBP) S(GRR)

1 1 1 1 1

Topo t ID S(IBP) S(GRR)

1 2 6 4 2

2 3 7 6 6

Topo t ID S(IBP) S(GRR)

1 3 56 24 6

2 4 60 12 6
3 4 51 24 24

4 5 62 8 8

5 6 63 24 24

Topo t ID S(IBP) S(GRR)

1 4 960 192 24

2 5 992 48 12
3 5 961 48 24
4 5 841 120 120

5 6 1008 16 8
6 6 993 12 12
7 6 978 144 72
8 6 952 48 48

9 7 1016 48 48
10 7 1012 48 24
11 7 1010 8 8
12 7 1009 8 8

13 8 1020 8 8
14 8 1011 8 8

15 9 1022 12 12
16 9 511 72 72

Table A.3: The number of sector symmetries for massive tadpoles up to 4-loop. It is shown that
the number of sector symmetries in the framework of generalized recurrence relations
(GRR) is considerably smaller than in the traditional approach using integration-by-
parts (IBP) relations.
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Topo t ID S(IBP) S(GRR)

1 5 31744 1920 120

2 6 32256 288 36
3 6 31746 192 48
4 6 29702 240 120
5 6 28686 720 720

6 7 32512 64 16
7 7 32288 288 72
8 7 32258 24 12
9 7 31754 288 144

10 7 30872 96 48
11 7 30858 72 72
12 7 30214 48 48
13 7 29703 48 48

14 8 32640 96 48
15 8 32576 16 8
16 8 32528 96 48
17 8 32513 192 48
18 8 32386 48 48
19 8 32274 16 16
20 8 32266 12 12
21 8 32259 16 8
22 8 31380 16 16
23 8 31246 8 8
24 8 30876 384 384
25 8 30862 32 32
26 8 30222 24 24

27 9 32704 16 16
28 9 32648 16 8
29 9 32608 16 8
30 9 32592 8 8
31 9 32529 288 144
32 9 32518 48 48
33 9 32394 24 24
34 9 32390 4 4

Topo t ID S(IBP) S(GRR)

35 9 32329 384 384
36 9 32278 8 8
37 9 32270 4 4
38 9 32267 16 16
39 9 31516 4 4
40 9 31388 32 32
41 9 30231 12 12

42 10 32736 4 4
43 10 32712 8 8
44 10 32708 8 8
45 10 32674 32 32
46 10 32652 24 12
47 10 32596 10 10
48 10 32562 32 32
49 10 32534 4 4
50 10 32398 4 4
51 10 32391 8 8
52 10 32279 2 2
53 10 31420 32 32
54 10 30563 144 72
55 10 30239 12 12
56 10 29550 16 16

57 11 32744 2 2
58 11 32737 4 4
59 11 32713 8 8
60 11 32682 32 32
61 11 31736 4 4
62 11 30691 16 16
63 11 30526 4 4

64 12 32745 4 4
65 12 31740 48 48
66 12 30699 12 12
67 12 30527 16 16

Table A.4: The number of sector symmetries for massive tadpoles at 5-loop. It is shown that the
number of sector symmetries in the framework of generalized recurrence relations (GRR)
is considerably smaller than in the traditional approach using integration-by-parts (IBP)
relations.
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Topo t ID Propag X Order R

1 5 31744 1 1

2 6 32256 1,2 2,1
3 6 31746 1,3 2,1
4 6 29702 1,3 4,1
5 6 28686 1 4

6 7 32512 1,2,3 2,1,2
7 7 32288 1,5 2,1
8 7 32258 1,2,3,5 5,2,2,1
9 7 31754 1,3 2,2

10 7 30872 1,4 2,1
11 7 30858 1,2 5,2
12 7 30214 1,2,3 7,4,2
13 7 29703 1,3 7,?

14 8 32640 1,2,3 2,1,2
15 8 32576 1,2,5,6 2,2,1,2
16 8 32528 1,2,3 2,2,2
17 8 32513 1,2 2,1
18 8 32386 1,2,3 5,2,2
19 8 32274 1,3,4 5,2,2
20 8 32266 1,2,3,5,6 5,2,2,2,2
21 8 32259 1,2,3,5 3,3,3,1
22 8 31380 1,2,3,8 ?,2,2,2
23 8 31246 1,2,4,6 ?,?,?,?
24 8 30876 1 2
25 8 30862 1,2 4,3
26 8 30222 1,2,3 ?,?,?

27 9 32704 1,2,3,4,6 2,2,2(3),2,2
28 9 32648 1,2,3,4,12 3,1,2,2,2
29 9 32608 1,5,6 4,1,3
30 9 32592 1,3,4,6 2,2,2,2
31 9 32529 1,2 2,2
32 9 32518 1,2 2,2
33 9 32394 1,2,3,12 5,2,2,2
34 9 32390 1,2,3,4,5,8,13 ?,3,2,3,3,3,3

t ID Propag X Order R

35 9 32329 1,3 2,2
36 9 32278 1,2,3,5,14 ?,3,2,3,3
37 9 32270 1,2,3,6,12 ?,?,?,?,?
38 9 32267 1,2,3,5 3,3,4,2
39 9 31516 1,2,3,6,12 ?,?,?,?,?
40 9 31388 1,2,6 3,4,3
41 9 30231 1,13 ?,?

42 10 32736 1,2,3,5,6,9 ?,4,4,2,3,3
43 10 32712 1,2,5,6,8 3,2,2,2,2
44 10 32708 1,2,3,4,6,13 3,2,2,2,2,2
45 10 32674 1,2,3,4 3,2,2,2
46 10 32652 1,2,3 3,1,2
47 10 32596 1,6 ?,?
48 10 32562 1,3,4 3,2,2
49 10 32534 1,2,3,4,11,13 ?,4,2,4,3,3
50 10 32398 1,2,3,4,5,6 ?,3,2,3,?,2
51 10 32391 1,2,3,6 ?,4,3,3
52 10 32279 1,3,4,6,13,14 ?,?,?,?,?,?
53 10 31420 1,6 3,3
54 10 30563 1,5 3,1
55 10 30239 1,3,14 ?,?,?
56 10 29550 1,6,12 ?,?,?

57 11 32744 1,2,5,6,7,8,10 ?,4,2,?,3,2,3
58 11 32737 1,2,3,5,6,9,15 3,2,3,2,2,2,3
59 11 32713 1,2,3,4,7 3,2,2,2,2
60 11 32682 1,2,3 2,2,2
61 11 31736 1,3,4,7 ?,3,3,?
62 11 30691 1,2,3,5 ?,3,3,2
63 11 30526 1,2,3,6,7 ?,?,?,?,?

64 12 32745 1,2,3,7,8 3,2,3,2,2
65 12 31740 1 ?
66 12 30699 1,2,5 ?,3,2
67 12 30527 1,6 ?,?

Table A.5: The order R of difference equations for all topologies of auxiliary topology A15. The last
two columns show all non-equivalent propagators X and the order R of the difference
equation which is associated with that propagator. A question mark indicates that
the corresponding difference equation (more precisely the homogeneous part) has not
been determined, yet. Those difference equations whose nonhomogeneous part Gn(x) is
known are indicated in red.
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Ad. Master t ID Propagator Powers

1 6 29702 J3,1,1,0,1,0,0,0,0,0,0,0,1,1,0

2 6 28686 J3,1,1,0,0,0,0,0,0,0,0,1,1,1,0

3 7 30858 J2,1,1,1,0,0,0,1,0,0,0,1,0,1,0

4 7 30214 J2,1,1,0,1,1,0,0,0,0,0,0,1,1,0

5 7 30214 J3,1,1,0,1,1,0,0,0,0,0,0,1,1,0

6 7 29703 J2,1,1,0,1,0,0,0,0,0,0,0,1,1,1

7 7 29703 J2,2,1,0,1,0,0,0,0,0,0,0,1,1,1

8 7 29703 J3,1,1,0,1,0,0,0,0,0,0,0,1,1,1

9 8 32259 J2,1,1,1,1,1,0,0,0,0,0,0,0,1,1

10 8 31246 J1,2,1,1,0,1,0,0,0,0,0,1,1,1,0

11 8 31246 J2,1,1,1,0,1,0,0,0,0,0,1,1,1,0

12 8 31246 J3,1,1,1,0,1,0,0,0,0,0,1,1,1,0

13 8 30862 J2,1,1,1,0,0,0,1,0,0,0,1,1,1,0

14 8 30222 J2,1,1,0,1,1,0,0,0,0,0,1,1,1,0

15 8 30222 J2,2,1,0,1,1,0,0,0,0,0,1,1,1,0

16 8 30222 J3,1,1,0,1,1,0,0,0,0,0,1,1,1,0

17 9 32608 J2,1,1,1,1,1,1,0,1,1,0,0,0,0,0

18 9 32390 J2,1,1,1,1,1,0,1,0,0,0,0,1,1,0

19 9 32278 J2,1,1,1,1,1,0,0,0,0,1,0,1,1,0

20 9 32270 J1,1,2,1,1,1,0,0,0,0,0,1,1,1,0

21 9 32270 J1,2,1,1,1,1,0,0,0,0,0,1,1,1,0

22 9 32270 J2,1,1,1,1,1,0,0,0,0,0,1,1,1,0

23 9 32270 J2,2,1,1,1,1,0,0,0,0,0,1,1,1,0

24 9 32270 J3,1,1,1,1,1,0,0,0,0,0,1,1,1,0

25 9 32267 J2,1,1,1,1,1,0,0,0,0,0,1,0,1,1

26 9 31516 J1,1,2,1,0,1,1,0,0,0,1,1,1,0,0

27 9 31516 J1,2,1,1,0,1,1,0,0,0,1,1,1,0,0

28 9 31516 J2,1,1,1,0,1,1,0,0,0,1,1,1,0,0

29 9 31388 J2,1,1,1,0,1,0,1,0,0,1,1,1,0,0

30 9 30231 J2,1,1,0,1,1,0,0,0,0,1,0,1,1,1

31 9 30231 J2,1,1,0,1,1,0,0,0,0,2,0,1,1,1

32 9 30231 J2,1,2,0,1,1,0,0,0,0,1,0,1,1,1

33 9 30231 J2,2,1,0,1,1,0,0,0,0,1,0,1,1,1

34 9 30231 J3,1,1,0,1,1,0,0,0,0,1,0,1,1,1

t ID Propagator Powers

35 10 32736 J2,1,1,1,1,1,1,1,1,1,0,0,0,0,0

36 10 32596 J2,1,1,1,1,1,1,0,1,0,1,0,1,0,0

37 10 32596 J2,1,2,1,1,1,1,0,1,0,1,0,1,0,0

38 10 32596 J2,2,1,1,1,1,1,0,1,0,1,0,1,0,0

39 10 32596 J3,1,1,1,1,1,1,0,1,0,1,0,1,0,0

40 10 32534 J2,1,1,1,1,1,1,0,0,0,1,0,1,1,0

41 10 32398 J2,1,1,1,1,1,0,1,0,0,0,1,1,1,0

42 10 32391 J2,1,1,1,1,1,0,1,0,0,0,0,1,1,1

43 10 32279 J1,1,1,2,1,1,0,0,0,0,1,0,1,1,1

44 10 32279 J2,1,1,1,1,1,0,0,0,0,1,0,1,1,1

45 10 32279 J2,2,1,1,1,1,0,0,0,0,1,0,1,1,1

46 10 32279 J3,1,1,1,1,1,0,0,0,0,1,0,1,1,1

47 10 30239 J2,1,1,0,1,1,0,0,0,0,1,1,1,1,1

48 10 30239 J2,1,2,0,1,1,0,0,0,0,1,1,1,1,1

49 10 30239 J2,2,1,0,1,1,0,0,0,0,1,1,1,1,1

50 10 30239 J3,1,1,0,1,1,0,0,0,0,1,1,1,1,1

51 10 29550 J1,1,1,0,0,2,1,0,1,1,0,1,1,1,0

52 10 29550 J2,1,1,0,0,1,1,0,1,1,0,1,1,1,0

53 10 29550 J3,1,1,0,0,1,1,0,1,1,0,1,1,1,0

54 11 32744 J2,1,1,1,1,1,1,1,1,1,0,1,0,0,0

55 11 31736 J2,1,1,1,0,1,1,1,1,1,1,1,0,0,0

56 11 30526 J1,1,2,0,1,1,1,0,0,1,1,1,1,1,0

57 11 30526 J1,2,1,0,1,1,1,0,0,1,1,1,1,1,0

58 11 30526 J2,1,1,0,1,1,1,0,0,1,1,1,1,1,0

59 11 30526 J2,2,1,0,1,1,1,0,0,1,1,1,1,1,0

60 11 30526 J3,1,1,0,1,1,1,0,0,1,1,1,1,1,0

61 12 31740 J3,1,1,1,0,1,1,1,1,1,1,1,1,0,0

62 12 30527 J2,1,1,0,1,1,1,0,0,1,1,1,1,1,1

63 12 30527 J2,1,2,0,1,1,1,0,0,1,1,1,1,1,1

64 12 30527 J2,2,1,0,1,1,1,0,0,1,1,1,1,1,1

65 12 30527 J3,1,1,0,1,1,1,0,0,1,1,1,1,1,1

Table A.6: In addition to those in Table A.2 there are master integrals with dots on some prop-
agators. In this context, the representatives in Table A.2 denoted as I... are under-
stood as the master integrals J... without dots. Combining both tables we end up with
67 + 65 = 132 master integrals for auxiliary topology A15.
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[103] York Schröder. Private Notes on Difference Equations of Massive Tadpoles up to 4-loop. Not

published.

[104] S. Laporta. Calculation of master integrals by difference equations. Phys.Lett., B504:188–194,
2001.

[105] S. Laporta. High precision epsilon expansions of three loop master integrals contributing to
the electron g-2 in QED. Phys.Lett., B523:95–101, 2001.

[106] S. Laporta. Calculation of Feynman integrals by difference equations. Acta Phys.Polon.,
B34:5323–5334, 2003.

[107] O.V. Tarasov. Application and explicit solution of recurrence relations with respect to space-
time dimension. Nucl.Phys.Proc.Suppl., 89:237–245, 2000.

[108] R.N. Lee. Space-time dimensionality D as complex variable: Calculating loop integrals using
dimensional recurrence relation and analytical properties with respect to D. Nucl.Phys.,
B830:474–492, 2010.

[109] Roman N. Lee. DRA method: Powerful tool for the calculation of the loop integrals. 2012.
6 pages, contribution to ACAT2011 proceedings, Uxbridge, London, September 5-9, 2011.

[110] Andrei I. Davydychev and J.B. Tausk. Two loop selfenergy diagrams with different masses
and the momentum expansion. Nucl.Phys., B397:123–142, 1993.

[111] S. Groote, J.G. Korner, and A.A. Pivovarov. On the evaluation of a certain class of Feynman
diagrams in x-space: Sunrise-type topologies at any loop order. Annals Phys., 322:2374–2445,
2007.

[112] A.V. Smirnov and M.N. Tentyukov. Feynman Integral Evaluation by a Sector decomposiTion
Approach (FIESTA). Comput.Phys.Commun., 180:735–746, 2009.
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