
Focus of Attention on
Relevant Multimodal Events

A Developmentally Inspired Architecture
for Active Vision

by

Miranda Grahl

Dissertation

submitted to the

Faculty of Technology at Bielefeld University

in partial fulfillment of the requirements for the degree of

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

December, 2011



A dissertation submitted to the Faculty of Technology at Bielefeld University for the
degree of Doktor-Ingenieur (Dr.-Ing.) on December 13, 2011.

Reviewed by:

Prof. Dr.-Ing. F. Kummert

Dr.-Ing. F. Joublin

Bielefeld University,
Bielefeld, Germany;
Honda Research Institute Europe GmbH,
Offenbach/Main, Germany;

Accepted on April 26, 2012, on behalf of the Faculty of Technology at Bielefeld
University, Germany, by the following dissertation committee:

Prof. Dr. P. Cimiano
Prof. Dr.-Ing. F. Kummert
Dr.-Ing. F. Joublin
Dr.-Ing. Hendrik Koesling

(chairman)
(advisor)
(co-advisor)

Miranda Grahl, �Focus of Attention on Relevant Multimodal Events�

c© 2012 Miranda Grahl
All rights reserved.

Printed on permanent paper ◦◦ ISO 9706.



Danksagung
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Abstract

Future robots should autonomously operate in their environments. The au-
tonomous exploration and understanding of scenes constitutes one of the key
challenges that have to be solved on the way towards this goal. Thereby, existing
research follows different strategies. One of the most promising approaches –
which will be pursued in this thesis, too – is to take inspiration from infant devel-
opment. Similar to robots, infants are confronted with a wealth of information
that initially can not be interpreted by them. Over the course of development,
however, infants acquire capabilities that allow them to explore and understand
previously unknown scenes.

In this respect, the ability to focus on multimodal events is of particular im-
portance in this thesis. The present work aims at developing a computational
framework which allows a robot to control its gaze on important aspects of its
surrounding. Here, we define important aspects as those scene elements which
exhibit characteristic features in multiple sensory modalities. The development
of the framework is based on principles known from infant development. One of
these principles is the transition from an initially reactive gazing behavior, which
is solely based on bottom-up visual filtering processes, towards an expectation-
driven gazing, which makes use of already acquired object knowledge.

The proposed framework comprises multiple computational methods which may
be used by an autonomous robot to exhibit a similar gaze development. Firstly,
a model for unsupervised visual object learning is presented. The method au-
tonomously gathers objects knowledge during the exploration of a scene. Thereby,
scene exploration is initially reactive. Later on, however, already acquired knowl-
edge can be used to bias gaze selection in an expectation-driven manner. Addi-
tionally, the framework comprises a model for multimodal association learning.
The method combines learned visual knowledge with information from other sen-
sory modalities – particularly auditory object characteristics. Once a multimodal
association is achieved, visual as well as auditory object knowledge can be used
to guide robot’s attention. The methods are evaluated in simulations using real
video sequences. An integration in a robot remains for future work.
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1. Introduction

Infants are initially equipped with a minimal set of innately given cognitive abili-
ties. Over the course of development, however, they rapidly gain experience from
interactions with the environment. Thereby, infants exhibit enormous learning
capabilities that by far exceed those of current artificial systems. Infancy research
hence constitutes an important source of inspiration that may ultimately lead to
a way to overcome the restrictions of current artificial systems.

Studies in the field of developmental psychology already served as motivation
for the development of different robotic systems (Lungarella et al., 2003). In
the present work, particular emphasis will be given to the development of visual
competencies. Like newborns autonomous robots initially act in an unknown
environment. They are confronted with a richness of information stemming from
different sensory modalities. Equipping the robot with mechanisms that allow an
efficient exploration of this information, an unsupervised learning from the input
stream, and finally the use of the gathered knowledge are key problems that have
to be solved on the way towards building robots that possess child-like abilities.
This also includes questions like what kind of knowledge has to be predefined
(i.e. innately given to the system) or which other sensory modalities may have
an influence on visual development. Infant development can serve as a road map
in this respect.

An example for a learning situation, in which infants are typically engaged, is
the one where objects are joggled and additionally augmented with sound by a
tutor. A similar scenario can occur for robot learning. For example a humanoid
robot such as the iCub (Metta et al.) may attend to an object, e.g. a red
ball presented by a human. But how should the robot behave, if an object is
presented with object-specific auditory characteristics like the sound of a rolling
ball? Furthermore, how should it behave if a speaking person is interacting with
the robot while holding the red ball in its hand?

In humans, the sound of a rolling ball arouses attention. This includes both audi-
tory attention and visual attention, since we are interested in why the ball makes
noise and in which direction the ball rolls. Similarly, during a communication
we expect the gaze towards our face and are confused if our opponent is look-
ing somewhere else. We are able to control the gaze towards audiovisual events,
because we have learned to suppress incoherent audiovisual distractors that do

1



Chapter 1 Introduction

not stem from the same object. Therefore, it is desirable to equip a robot with a
gazing behavior towards coherent multimodal aspects. Existing artificial systems
lack an adequate gazing behavior because they miss a learning of audiovisual
information. In contrast to this, such a learning exists in early infancy. This
means that infants are able to process and recognize complex objects and learn
to extract relevant audiovisual information.

A proper robot behavior in such situations presumes a detection and a memo-
rization of relations between visual and auditory inputs. Thereby, the learning
of audiovisual object representations strongly relies on an appropriate synchro-
nization of the inputs from both modalities. In the example, such audiovisual
object knowledge may underlie the response of the robot to shift its gaze away
from the ball. More precisely, the heard speech can trigger the robot to attend
to the person’s mouth.

1.1. From Human to Artificial Vision

From an engineering point of view, it is impossible to specify all situations during
the design phase, that the robot will be confronted with during operation time.
Therefore, it is important that a system continuously extends its knowledge on
demand in order to appropriately behave in novel situations. To bootstrap such a
developmental process, some minimal innate behavior structure and scene knowl-
edge may be required. Furthermore, an unsupervised acquisition of object knowl-
edge is needed. The learning of relevant scene information implicates that the
robot attends to it. For this reason, a gaze control strategy as part of an active
vision system constitutes an integral part of an appropriate system architecture.

In humans, eye movements are the result of two complementary processes in the
brain: Firstly, a bottom-up process resulting from early retinal filtering which
produces ”saliency driven eye movements” and secondly, a top-down process
based on learning, memorization, and cognition that results in ”task driven eye
movements”. An exploration of a scene is characterized by saccades and fixations.
Thereby, saccades are rapid eye movements that shift an interesting location in
the center of the visual field, whereas a fixation enables stable visual information
processing such that aspects from the environment can be learned. The com-
plexity of image processing algorithms constitutes a severe problem with respect
to the management of computational resources and memory. Therefore, in ma-
chine vision the term active vision assumes a foveation of the processed visual
information. This means peripheral observations are less weighted and the main
processing focuses on a small region of interest. This is in contrast to passive
vision.

2
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1.2. Problem Statement

Object recognition in an online learning scenario comes along with a wide range
of challenges. For example, most vision-based architectures suffer from training
with hand annotated data resulting in an inflexibility regarding the recognition
of new objects not covered by the training set. This means that those architec-
tures are built for known operation scenarios that are defined during the design
time. So far, little work has been done in the computational modeling of an
object recognition process, that automatically extracts a structure out of audi-
tory and visual cues in order to gain object knowledge, i.e. to build up a system
that incrementally learns an object representation. In order to recognize objects,
an active exploration system needs to remember learned scene information. For
example, Itti et al. (1998) proposed a computational model for a data driven
exploration of the scene by means of a gaze control towards visually salient re-
gions. The model allows to specify salient object locations but misses an adequate
object-driven search. This is because a process that acquires visual object knowl-
edge is missing, such that a robot cannot attend to similar objects at a later
time.

Findings from Cognitive Psychology point to the fact that the ability to track
and to recognize objects is strongly influenced by additional modalities like hap-
tics or audition. For example, Newell (2004) proposed that an object identity
can be maintained by a multisensory representation linking vision with haptic
cues. Xiao et al. (2007) studied the effect of task irrelevant sound on the oculo-
motor system. The analysis with different pitch deviants showed that the ability
to follow a moving object increases with an increase in pitch. Lehmann and Mur-
ray (2005) investigated the influence of past audiovisual object representations on
an unimodal object recognition task. Memory performance was improved if an
object has been perceived in both modalities before. Molholm et al. (2004) also
reported that an audiovisual representation leads to a faster and more accurate
object detection. She hypothesized that auditory input modulates visual brain
areas by which object recognition gets biased.

1.2. Problem Statement

Current artificial systems for active vision do not tackle an autonomous learning
of a gaze control that focuses on multimodal aspects of the environment. They
are either based on a reactive gaze control or presume defined models for visual
and auditory input in order to attend to objects. However, it is well researched
that infants do not rely on predefined models (Spelke, 1981). They rather flexibly
learn audiovisual associations: For example associations that comprise a temporal
synchrony between faces and speech (Flom and Bahrick, 2007), or between mov-
ing toys and objects’ rhythmic sound characteristics (Flom and Bahrick, 2010).

3



Chapter 1 Introduction

Evidence in favor of this view is provided by the work of Richardson and Kirkham
(2004). In an experimental study, saccade movements of six month old infants
were analyzed with respect to audiovisual information. In a learning phase, in-
fants were introduced to look on a screen. On this screen, a bouncing toy was
presented with a rhythmic sound. The toy appeared in a rectangle either on the
left or right side of the screen. The sound was always produced in the center
of the screen. Subsequently, in a testing phase the gaze behavior towards the
learned toy location was analyzed in the presence of an associated sound. The
toy location was presented with an empty rectangle whose position was either not
modified or rotated. In both conditions, infants showed a longer gaze fixation to
the location that was learned with a sound. This gazing behavior was interpreted
by Richardson as a kind of visual prediction mechanism to object locations in the
presence of an object specific sound.

The finding of this experiment can serve as an inspiration for designing a gaze
control strategy for robots. As a key aspect, it suggests a modulation of a vi-
sual filtering process by auditory modalities. This entails the question on how
to equip a system with a minimal innate perceptual knowledge and a mechanism
that learns to structure the perceptual information by itself. This also means to
overcome the problem of audiovisual correlation in the location cue and hence im-
plies the need for a direct measurement of causality between visual and auditory
concepts.

1.3. Relation to Infant Development

In the following, the visual competencies of an approximately eleven month old in-
fant are illustrated in an object learning scenario. This example describes details
on infants’ object learning and gaze control capabilities to cope with audiovisual
scene information that is eligible for an artificial system. The image sequence is
extracted from a video corpus that is part of an infant study which took place
at the Bielefeld University ∗. In this study, parents were invited to demonstrate
different objects and their functions to their infants. One kind of objects were
cups of different colors and the task was to explain how to stack them.

Fig. 1.1 shows a tutoring situation in which a father aims to teach his child ”Ras-
mus” the usage of cups. The presentation of the objects is complemented by
speech as well as sounds produced by the objects themselves. The accompanied
acoustic segments are highlighted with the color red below the figures. Addition-
ally, the father shakes the cup in order to capture the infant’s attention. The
infant consistently fixates the object (Fig. 1.1(a)-Fig. 1.1(b)) with exception of

∗Motionese Corpus, Bielefeld University 2006
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1.3. Relation to Infant Development

(a) green cup and
’look’

(b) green cup and
’cup clutter’

(c) yellow cup and
’then’

(d) yellow cup and
’hello rasmus’

Figure 1.1.: A cup stacking task is presented to a child. The father explains the functions
of different cups. The images (a)-(d) illustrate the interaction sequence.

the combination yellow cup and ’then’ (Fig. 1.1(c)). After a repetition of this
exposure with ’hello Rasmus’ (Fig. 1.1(d)), the infant seems to be interested in
again, shifts its gaze on the yellow cup, and tracks it.

The infant moves its gaze to the position, where a coherent object representation
in both modalities occurs. At the same time, it inhibits gazing towards the
mouth of the father. This implicates that the infant already built an object
representation for the cup during a learning phase. This representation comprises
a visual concept, an auditory concept derived from the coherent speech, and a
location in which the object has been previously observed. The inhibition of
the ”mouth-speech-coherence” indicates that the infant learns to enhance the
attention for the cup in the presence of speech. Therefore, it is reasonable to
research the visual information processing system of infants in order to infer
possible principles that can be likewise applied in artificial systems.

Onset of Memory Based Eye Movements

An automatic recognition and an active gaze control towards objects in the pres-
ence of environmental sounds requires the understanding why infants can de-
tect and discriminate temporal coincidences of audiovisual events (Hollich et al.,
2004). Further, it requires knowledge about the learning mechanism of audiovi-
sual events that are not associated with a specific location (Morrongiello et al.,
1998). This implicates the question how infants configure a visual filtering pro-
cess in the presence of auditory input in order to increase the sensitivity to an
object that is repeatedly presented during a learning phase. In other words, in-
fants need to suppress reflexive eye movements towards auditory events to follow
a voluntary gaze control towards visual aspects. The literature (Spelke, 1994,
2000) shows that infants start to explore their environment with a minimal scene

5
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knowledge and begin to learn visual object representations. Afterward, learned
object representations are combined with other sensory modalities.

In the first months of life, infants’ gazing on objects as well as the tracking of them
is reactive (Von Hofsten and Rosander, 1996). Later on, learned competencies
substitute these reactive mechanisms. The age of three months defines the onset
of such memory based eye movements (Von Hofsten and Rosander, 1997). At
birth an infant is equipped with an immature visual system. The ability to process
visual information is restricted to the periphery of the visual field and leads to an
incomplete perception of an object. In detail, detection of object characteristics
is limited to conspicuous lines and edges (Fogel, 2000). The oculomotor skills
are not fully developed. Hence, infants fail to sustain attention to an object
shortly after birth. This means infants innately direct attention only on simple
visual stimuli (e.g. color and intensity) and are not able to negotiate stable visual
information processing on attended information (Frank et al., 2009). With three
months infants start to develop an active coordination strategy towards objects
and develop visual expectations about their environment that are successively
improved during their first year of life. At that time, infants are able to track
moving objects.

The influence of attended locations on gaze control is characterized by two as-
pects that are important for sustaining attention on objects and consequently for
a stable visual information processing. Firstly, a saccade to a visual stimuli oc-
curring in the peripheral visual field is facilitated, if the stimuli has been already
cued during attending another object. The second aspect relates to the ability of
suppressing previously attended locations in order to focus on new salient targets
(inhibition of return). Richards (2004) showed that three to six month old infants
continuously benefit from the facilitation effect but the performance differs with
respect to the ability to inhibit previously attended locations. The result showed
that five month old infants start to coordinate visual attention. Amso and John-
son (2008) found that two to six month old infants missed the suppression of a
distractor stimuli in the periphery during targeting a visual stimuli. Moreover,
in this study nine months old infants showed the maintenance of the distractor
inhibition over different time delays. This means infants are able to memorize the
suppression of a distractor cue and hence show delayed saccades. Furthermore,
this memorization ability implicates a discrimination between a learned target
and a distractor.

Johnson (1990) related this development to the cortical maturation of the visual
system. He suggested that the primarily orienting gaze behavior in one month
old infants is characterized by a saccadic following of moving objects, whereas the
ability to predict an object location is missing. Two month old infants show the

6
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1.3. Relation to Infant Development

ability to track smooth pursuit. This means the location of a moving target is es-
timated more correctly, but the gaze fixation to the new location is characterized
by a time delay. A more precise estimation of a moving target takes anticipa-
tory looking into account, i.e. predicting the position of a moving target. This
ability is achieved during three to six months and is mediated by the stronger
recruitment of the frontal eye field which is a region involved in memory based
saccade and intended smooth pursuit, but also with the development of area MT
and MST involved in the processing of optical flow and motion prediction.

The development of active saccade generations requires the learning of visual ex-
pectations during the exploration of a scene. This firstly comprises the memoriza-
tion and retrieval of internal object representations (Henderson, 2003). Hereby,
the object representations are learned from observations in the central visual field.
Secondly, to develop visual expectations, causal relations between multiple scene
events have to be determined- a process commonly known as contingency learn-
ing. In conjunction with anticipatory looking it defines a starting point for the
development of visual expectations for an active generation of eye movements.
Both learning circuits develop dependently from each other and Johnson et al.
(1991, 1994) hypothesized that both circuits inhibit each other during early visual
development. Both abilities are emphasized with the age of four months. Dur-
ing this developmental state, infants improve their ability to attend to familiar
objects and are able to habituate to them (Fogel, 2000).

Influence of Audition on Gaze

The depicted tutoring situation (Fig. 1.1) well demonstrates the impact of speech
on infants’ gaze control. The appearance of speech helps the infant to redirect
the gaze towards the yellow cup. This indicates that infants use the auditory
modality for configuring a visual filtering mechanism such that an active gaze
coordination is realized. The following developmental aspects emphasize how in-
fants learn these coupled object representations.

Due to the immaturity of the visual system, the gaze control is initially dom-
inated by acoustic properties of the environment. The auditory dominance grad-
ually decreases with an increase in age (Robinson and Sloutsky, 2010). An active
processing of multimodal information starts at an age of five months. For ex-
ample it has been shown that a visual stimulus is fixated for a longer time, if a
novel rhythm is presented at the same time (Bahrick and Lickliter, 2000). This
suggests an active discrimination of acoustic properties that temporally coin-
cidence with visual information. This means an innately arbitrary crossmodal
processing becomes coordinated as development progresses and infants start to

7



Chapter 1 Introduction

control their gaze towards audiovisual aspects by suppressing the initial auditory
dominance, i.e. they control the gaze independent of the auditory sound location.

The gaze control towards an object may require an active excitation of learned
visual object representations in the presence of an acoustic input, i.e. an active
selection of learned visual concepts that previously have been associated with
acoustic properties. The integration of such top-down knowledge has been ob-
served in one year old infants (Gliga et al., 2010), where an enhancement of brain
activities in the visual cortex was measured during the presentation of objects
with learned verbal labels.

In summary, the literature shows that infants learn to attend to objects with a
minimum of predefined scene knowledge. This minimum becomes evident by re-
active saccades (Aslin, 1988). This gazing behavior can serve as an inspiration for
equipping an artificial system with an initial mechanism that drives the learning
of audiovisual object representations. Furthermore, the learning of an inhibi-
tion mechanism enables infants to discriminate between different visual stimuli.
For machine vision, this mechanism gives important insights in the design of an
appropriate object description that benefits from peripheral scene information.
Evidences from experiments that deal with audiovisual information suggest that
visual processing is influenced by other modalities. Moreover, infants infer ob-
ject locations based on a learned object specific sound which suggests a flexible
processing between the different modalities.

1.4. Research Contribution

The research goal of this thesis is to develop a gaze control strategy that au-
tonomously learns to focus on audiovisual events in its environment. The ap-
proach is inspired by findings from infancy research insofar as it aims at modeling
the development from initially bottom-up driven reactive eye movement towards
learned multimodal top-down attention. For this approach, different factors that
contribute to the learning are investigated. The research contribution lies in the
development of a computational model that acquires visual concepts in an un-
supervised way and further configures those concepts in the presence of acoustic
information.

1.5. Thesis Outline

This thesis is structured as follows. In Chapter 2, related work is reviewed and
discussed. Thereby, neurophysiological and functional aspects of the visual sys-

8
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1.5. Thesis Outline

tem are described and related to current computational models of attention. This
includes models from biology as well as robotics. In Chapter 3, our approach to-
wards a developmental active vision architecture is presented and motivated by
findings from infancy research. Chapter 4 describes our algorithm for the in-
cremental learning of object models during tracking and further analyzes the
achieved performance with respect to the models’ discrimination and general-
ization ability. Secondly, a pruning strategy of filters during object learning
is proposed. This mechanism consolidates the acquired knowledge and show a
way to overcome memory restrictions. Chapter 5 introduces a gradually learned
weighting scheme between temporal coincidences of auditory and visual concepts.
The learned weighting scheme is analyzed according to visual recognition perfor-
mance in the presence of different acoustic classes. Chapter 6 finally discusses
the proposed attention model and suggestions for future work are given.

9
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2. Attention: Process, Gaze Control and Object
Learning

The recognition of objects in our environment depends on many factors. For
example, objects can be perceived by multiple senses, i.e. we can listen to a
knocking hand, see the hand or we can touch it. These senses interact with
each other and facilitate the recognition of the hand. Many research areas deal
with the learning and recognition of such multimodal object representations. In
this thesis the focus lies on the development of appropriate models that can ex-
plain such interactions between the modalities as well as their influence on the
visual attention system. Research on visual attention is not only concerned with
learning processes and recognition mechanisms. In particular, it deals with ques-
tions like how the human brain synchronizes different sensory modalities and how
such processes can be computationally modeled or which role does the similarity
between different sensory information plays in their filtering and memorization
process.

This Chapter first reviews the different research methods that aim at modeling the
interaction of audiovisual information. Then the influence of multimodal sources
on the control of visual attention is described from a neurophysiological point of
view. This Chapter continuous with a review of biologically motivated attention
models, whose focus is the simulation of eye movements. These attention models
are applied in robotics to control the gaze of artificial systems. Finally, this
Chapter concludes by discussing the role of attention in social robotics, where
existing models are reviewed and assessed with respect to their suitability for
learning and recognition in tutoring situations.

2.1. Neurophysiological Process and Function

Eye movements are mainly driven by two processes of the visual system: a
bottom-up process and a top-down process (Posner, 1980). Whereas the former
enables a rapid processing by solely relying on sensory information, the latter
modulates the bottom-up process by incorporating already acquired knowledge.
The bottom-up process is based on a direct forwarding of visual information to
the motor neurons that are linked to eye movements. Those stimulus-driven eye
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movements are the result of an early retinal filtering process and exclude feedback
information, e.g. those resulting from knowledge on the visual or auditory ob-
ject properties. Stimulus-driven eye movements are triggered by a rapid change
in the visual scene and lead to a reflexive gazing behavior. These kinds of eye
movements are also called exogenous, since they do not incorporate learned infor-
mation into a gaze movement towards an object. In summary, bottom-up visual
attention is driven by visual aspects of the scene rather than by the observer’s
prior knowledge and serves for a rapid scene exploration.

The top-down process additionally incorporates feedback information from higher
cognitive functions (Corbetta and Shulman, 2002). This feedback information
may be the output of an object recognition process that comprises information on
already learned visual aspects of the environment. The resulting eye movements
are called task-driven, because they enclose the observer’s prior object knowledge
and thus allow to control the gaze towards known aspects of the environment.
This prior knowledge can comprise, for example, the object color or the direction
into which an object is moving. It is noteworthy that an object search can not
only be biased by visual information of this kind, but also by learned acoustic
object properties. For example, we use bird songs as prior knowledge to search
for an object that corresponds to a bird.

A brain area that is relevant for a rapid visual scene exploration is the superior
colliculus (SC). To execute a saccade, motor maps in the SC are accessed to spec-
ify a new gaze position. Thereby, the SC plays a key role for the coordination of
reflexive saccades as it receives afferent projections from early processing levels,
(e.g. direct input from the retina), the occipital lobe of the visual cortex, as well
as the frontal eye field (FEF). The SC is directly influenced by inputs from its
neighbor structure of the inferior colliculus (IC) that provides information about
sound source direction in head centered coordinates. This sub-cortical structure
is part of the auditory system and enables us to control the gaze towards acous-
tic events of the environment (Trepel, 2003). The integration of auditory sources
occurs in one of the layer of the SC and specifies gaze fixation points to guide
visual attention (Onat et al., 2007). Such interactions of audiovisual information
at an early processing level were also studied by Frens and Van Opstal (1995).
The authors investigated how audiovisual aspects are perceived and how they
trigger a shift in attention. Therefore, saccade characteristics in the presence
of such spatio-temporal events were examined. The results demonstrated a re-
duction of the saccade latency that is evoked by an enhanced synchronization of
both modalities. This shows an important link between the synchronization of
audiovisual events and eye movements.

Contrary to such stimulus-driven eye movements, task-relevant saccades incorpo-
rate aspects learned by the observer. This means that we need to remember and
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2.1. Neurophysiological Process and Function

retrieve these aspects while we look for something concrete in the environment.
Thereby, learned object knowledge can be used for the purpose of different goals
for an artificial gaze control: On the one hand, targeted objects can be biased
using already acquired object knowledge. On the other hand, our attention sys-
tem is equipped with a mechanism that allow to ignore stimuli in the periphery
in order to stabilize the gaze. This is particularly useful to achieve a stable ob-
ject fixation and to prevent sudden eye movements. One way to achieve such a
resistance may be that the system can distinguish between aspects in the center
of the visual field and those that are present in the periphery. This implies that
the robot should not only draw attention to a fixated object, but also to those
objects in the periphery. More precisely, the robot has to attend surroundings
objects, but without bringing them in the center of the visual field. Such gazing
behavior is termed covert attention and is characterized by a slightly less direct
sensing of visual stimuli.

Covert attention benefits from an inhibition of peripheral stimuli. It plays a key
role in top-down attention control. The eye movements are profiting from mem-
orization processes that allow an endogenous rather than exogenous orienting.
These voluntary eye movements can be split into two basic categories: memory-
guided saccades and antisaccades. Amemory-guided saccade involves the retrieval
of cued spatial information of objects during targeting them. This may be im-
portant for a machine vision system as objects are repeatedly cued by tutors at
different locations and the robot needs to remember the object positions. The
incorporation of such spatial information during object targeting is carried out by
working memory processes that affect the gaze control (Theeuwes et al., 2005).
Engelken (1989) analyzed the presence of auditory cues in a visual-search task
and found that onset synchrony of audiovisual components can guide eye move-
ments more efficiently by reducing visual workload. This provides evidence from
a neuropsychological perspective that initial visual reflexes can be structured by
the auditory modality. It may serve as a strategy to develop a gaze control for an
artificial agent. However, it is not desirable that a robot can recognize an object
solely based on its position, since a tutor can demonstrate an object at various
locations. This means that the learning of audiovisual object representations has
to incorporate additional factors that are independent of the object location.

More important for an autonomous learning system may be the mechanism of
an antisaccade. An antisaccade describes the voluntary gaze behavior towards
objects that are in an opposite direction to a primed stimuli. Thereby, two
mechanisms, that are beneficial for a gazing strategy of a robot, are active. On
the one hand, the suppression of reactive saccades and hence an inhibition of
peripheral visual stimuli plays a major role for conducting such saccades. On the
other hand, the visual information system manages the generation of voluntary
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saccades to gaze towards an object. Such interaction of visual processes can help
a robot to stabilize its gazing behavior.

For an automatic gaze control towards objects, it is important to orchestrate
neuronal functions for eye movements and those involved in the process of ob-
ject recognition. In a fMRI study cortical activities were measured during the
execution of reactive and voluntary gaze movements (Mort et al., 2003). Vol-
untary gaze orienting was associated with an increased activity in the FEF and
additionally the intraparietal sulcus. Also Reuter et al. (2010) showed that the
FEF as well as the nearby supplementary eye fields are strongly involved in the
circuit for voluntary gaze control. The mentioned studies show that the FEF
plays a dominant role in the generation of voluntary saccades. But the FEF also
exhibits correlated response activities with respect to areas that are associated
with the recognition process. Monosov et al. (2010) investigated this aspect by
analyzing brain activities independent from eye movements. He found a correla-
tion of activities in the FEF and the inferior temporal cortex that plays a major
rule in recognizing visual stimuli. Similar results were reported by Hopfinger
et al. (2000), where cortical areas next to the FEF showed response activities
independent of eye movements. This emphasizes the involvement of the FEF in
recognition and covert attentional processes even in the absence of gazing.

Whereas the circuits underlying visual gaze control have been extensively studied,
the neural correlates of audiovisual processing are less clear. The analysis of neu-
ral activities in regard to audiovisual object recognition shows that the prompt-
ness as well the accuracy in the presence of a multimodal stimuli is improved.
However, there are no specific locations in the brain to which an audiovisual
object recognition can be assigned. Rather a large activation of the visual cor-
tex was observed in the presence of both modalities (Giard and Peronnet, 1999).
Such modulated activities arising from the processing of bisensory signals that
were also observed in audiovisual speech perception. Kaiser et al. (2005) inves-
tigated audiovisual speech perception by means of the McGurk Effekt (McGurk
and MacDonald, 1976). This popular effect shows that perceived syllables and lip
movements interact and jointly influence speech perception. In general, humans
perceive spoken syllables different in the presence of lip movements if they deviate
from the presently spoken ones, e.g. we perceive spoken syllables ’ba-ba’ as ’da-
da’ if the physical lip movements specify the syllables ’ga-ga’. The focus of the
study of Kaiser et al. (2005) laid on the effect of artificially induced mismatches
between physical lip movements and spoken syllables. The results showed that
a manipulation of lip movements (e.g. ’ta’ to ’pa’) results in a delayed activity
in the occipital cortex. Based on this delayed response, the authors suggested a
top-down modulation of early visual processing by higher motion processing ar-
eas to compensate for an incongruent representation of audiovisual aspects. Not
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only the processing of acoustic features influences the visual information process-
ing, but also visual stimuli can access brain regions that are associated to speech
processing. Howard et al. (1996) analyzed response activities of motion process-
ing areas in the presence of deviating motion stimuli. He additionally found an
increased activation in areas that are associated for speech processing.

The reviewed approaches give evidence for the processing of audiovisual stim-
uli with respect to temporal synchronization. In experimental brain research,
a further feature constitutes the semantic congruency of an audiovisual object
representation. Learning at the semantic level presumes that we have already
classified auditory and visual properties of objects and can derive an object per-
cept from it. This aspect is important because it may give indications whether a
correlation occurs at a very early or rather late processing level. Such evidences
are found by Hein et al. (2007) who studied semantic congruences of audiovisual
objects. Their experiment relied on complementary audiovisual object represen-
tations that are generated by artificial stimuli or are known to subjects. An
example for a known object is an image of a dog and a familiar related sound
such as barking. In case of object incongruency known stimuli such as a dog were
presented with an atypical sound like the ’meow’ of a cat. In summary, subjects
showed an increased response activity to unfamiliar and incongruent object rep-
resentations in brain areas that are associated with learning processes, e.g. the
inferior frontal cortex. In contrast, cortical areas that are linked to storage pro-
cesses such as the posterior superior temporal sulcus and the superior temporal
gyrus are activated in the presence of known congruent objects.

Such alignments of audiovisual features require that object representations are
properly stored and available on demand for an artificial system. Therefore, the
computational storing process of audiovisual objects should be designed in such
way that a recognition of them is possible.

2.2. Object Learning and Attention Models

The development of computational attention models for eye movement simula-
tions is based on the mathematical representations of filtering processes. The
goal for example is to specify interesting regions in images in order to utilize
them for automatic object learning. The advantage of this method relies on a
reduction of object features, so that only relevant object characteristics are left
for a learning process. An attention model constitutes an ideal candidate for an
autonomous learning system, because processing focuses on the essential aspects
of the available visual information. Such a model was developed by Itti et al.
(1998) and Itti et al. (2003), which relies on the principles of stimulus-driven
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Figure 2.1.: Sketch of a bottom-up attention model (adapted from Itti et al. (1998)).
The scene is decomposed in conspicuity maps for color, intensity and ori-
entation. A weighting step linearly combines them into one saliency map
whose maximum response location can serve as a new gazing point. An
inhibition of return (IOR) mechanism suppresses already selected gazing
points.

saccades (see Fig. 2.1). The basic idea is described in Koch and Ullman (1985),
who proposes the mechanism of selective attention that is inspired by the Feature
Integration Theory (Treisman and Gelade, 1980).

The Feature Integration Theory relies on the premise that visual attention is
directed to those aspects which exhibit similarities across different visual char-
acteristics. Characteristics can hereby for example be the color, intensity, or
orientation of objects. From a biological point of view, the idea is supported
by the existence of relevant feature detectors in the visual cortex, sensitive to
receptive fields in visual field (retina). The response behavior of such detectors
decomposes the scene in so-called feature maps. This decomposition is related
to a preattentive processing step, because the scene is convolved by low-level
feature detectors without specifying an object hypothesis. Finally, the combi-
nation of these feature maps leads to a common saliency map, which highlights
particularly salient points that share common visual characteristics. The points
represent potential locations where a robot can allocate its attention. To extract
the best candidate, a winner takes all mechanism is applied to prune the amount
of possible candidates to one location.
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This approach can be exploited for a rough detection of objects and does not re-
quire any top-down guidance, i.e. solely based on low-level visual characteristics.
This is a great advantage if there are objects in the scene, which can be specified
by such simple features. A recognition of them is only possible if object properties
remain unaltered. But in everyday life, we perceive objects in a more complex
way with variations in characteristics like color, perspective, or size. These types
of changes may serve as learning signal for a robot to recognize different kind
of object properties. For example, the rough detection of the object size may
be used to specify object-specific features in more detail. A common method
for object size specification is the image segmentation that may rely on simple
object cues, such as color or shape. Such region specification offers a larger sur-
face than a single saliency point and can serve, e.g. to calculate regional object
characteristics and relations between features.

Such an approach is pursued by Walther and Koch (2006). An appropriate im-
age segmentation is initialized by the model of Itti et al. (1998) and computes
so called proto-objects. These are the result of an automatic segmentation that
is implemented by a spreading mechanism. The extracted proto-objects are used
to control an existing object recognition system based on the learning of object
contour orientation combinations. The spreading mechanism is based on a grad-
ual diffusion step of object-specific features and inhibits scene aspects that are
beyond the attended location. Such inhibition mechanism can be utilized more
efficiently for a modulation of an object recognizer, since a reliable feature ex-
traction is possible. The proposed model by Walther and Koch (2006) features
a one-shot learning method that benefits from the inhibition of areas that lie
outside of the object. But this model lacks a proper classification, i.e. it is un-
known to the system when a new object is available as well as when to extend
the knowledge base with new object knowledge. Such incremental learning of ob-
jects is also proposed by Walther et al. (2005). The model is based on a similar
image segmentation as the above model with the difference that distinguished
Sift-Features (Lowe, 1999) are obtained from the computed salient regions. The
model matches existing object representations to the internal object state and
learns a possible new one.

The principle of inhibition in the modeling of attention systems is not only used to
improve feature selection, but also to model object representations. Frintrop et al.
(2005) (see Fig. 2.2) proposed a method for a goal-directed search that utilizes
learned objects to simulate top-down saccades. A modulation of a visual bottom-
up search is realized in the approach by the varying influence of learned top-down
information. Here, the object is represented by excitatory and inhibitory informa-
tion that highlights salient object parts. The weighting of such learned top-down
information shows that the mechanism may be used by an artificial system to
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Figure 2.2.: Sketch of a top-down modulated computational attention system (adapted
from Frintrop et al. (2005)). The architecture learns top-down knowledge
by a decomposition of objects via inhibitory and excitatory information.

suppress reactive eye movements and learn to direct attention to acquired visual
information. However, the main difference to the above mentioned approaches
above relies in the triggering of learning top-down knowledge. A bottom-up at-
tention model is used to segment only visual information in a specified region of
interest and does not define the position of relevant scene aspects. In detail, the
determination of potential object candidates is either manually predefined or sup-
plied through the output of an object recognition algorithm. A continuous free
exploration of the system does not occur and hence an unsupervised learning of
objects is not supported. Additionally, the acquisition of object representations is
implemented with an offline learning process. This limits the system with respect
to knowledge acquisition, since the system can only focus on previously learned
aspects. More precisely, new aspects are ignored since an additional learning of
them does not occur. Consequently, the system does not implement incremental
learning of top-down knowledge.

The reviewed approaches of Walther et al. (2005) and Walther and Koch (2006)
showed that the mechanism of inhibition may improve the selection of object rele-
vant features. In addition, bottom-up attention models can be used to determine
relevant regions for object learning. The extracted regions can specify the object
itself or describe background information. The approach of Frintrop et al. (2005)
combines both information sources on the basis of low-level features that are given
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2.3. The Role of Multimodal Attention in Robotics

by bottom-up constraints, e.g. color, intensity and orientation. But this way of
object modeling is not invariant to object changes and therefore not sufficient for
an object learning scenario in which objects can be varied freely in their appear-
ance. Contrary, Walther et al. (2005) extracted a set of Sift-Features from regions
that are limited by the object region itself as a representative. This step allows an
object description that is invariant to rotation and therefore more robust. Hence,
it would be useful to find a compromise between these two approaches that allow
a robust object representation, e.g. by a combination of Sift-Features and the
mechanisms of inhibition. However, a foreground and background segmentation
as a basis for the calculation of more complex features like Sift-Features would
simply lead to memory problems. For this, a method may be useful that extracts
only those background characteristics that are relevant for an object description
in order to limit the number of features.

None of the presented approaches deals with an adaptation to varying object
attributes, such as the perspective. A robot should have this ability to auto-
matically expand its knowledge base in order to recognize objects from different
views. In part, the approaches show a learning of top-down knowledge on the
basis of visual modalities that can be used to control robots’ cameras, but not by
additional modalities like auditory characteristics.

Learning multimodal object representations presupposes that visual and auditory
information are acquired and somehow learned in combination with each other.
These aspects are not covered in the above mentioned models. It is shown that
bottom-up visual information is beneficial to trigger the learning of top-down
visual information. However, without a combination of vision and audition an
autonomous system cannot take advantage of acoustic scene features to control
the visual attention to objects. In robotics, the concept of multimodality not
only plays an important role in the development of learning algorithms, but is
also being studied in interaction studies. This aspect will be highlighted in the
next section.

2.3. The Role of Multimodal Attention in Robotics

Multimodal attention systems in robotics are developed and used to enable a flex-
ible interaction with humans. However, numerous parameters vary in a human-
robot interaction and need to be handled by an autonomous agent. For instance,
a free interaction may be characterized by spontaneously shown objects whose
functionalities are arbitrarily demonstrated using other modalities such as speech.
In addition to the presence of speech and other acoustic properties, hand move-
ments or body gestures can guide the interaction. From an engineering point
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of view, this results in a wealth of stimuli with which autonomous learning sys-
tem needs to deal to finally extract meaningful information for an object rep-
resentation. This is challenging in many ways, particularly with respect to the
engineering of learning and recognition processes of audiovisual objects, since
it cannot be determined in advance which objects are shown or at which posi-
tions they appear. Such a position cue can be varied freely by a tutor, so it
is desirable that a robot has the ability to recognize objects invariant of their
locations. In addition, a free interaction between a human and a robot not only
comprises the demonstration of objects but also spontaneously appearing scene
aspects that do not belong to a learned object. Such spontaneous aspects need to
capture smoothly by an artificial agent that may be handled with a suppression
mechanism for such irrelevant scene attributes. One approach to the learning of
such multimodal object representations can be found in the work of Aryananda
(2006). The proposed top-down audiovisual attention system enables the robot
to gather spatio-temporal patterns that result from a joint concurrency of audio-
visual events. The suggested architecture is tested in an interaction study with
humans in order to extract the data stream in visual and auditory segments that
have significant coincided over time. This segmentation can provide an impor-
tant basis for the learning of multimodal objects. In detail, the patterns include
information about whether human faces or toys are shown in coincidence with
acoustic signals such as speech. Crucial to the design of this attention model is
the use of a predefined face recognizer and color histograms for the detection of
toys. Additionally, the classification of acoustic properties is defined by a word
recognizer that is preceded by an energy-based voice activity detector. The co-
incidence of both modalities is determined by a correlation calculation with the
location cue. More precisely, sound localization in azimuth is integrated on a
sensory ego-sphere with the visual stimulus location.

The modeling of attention systems can benefit from online learning due to storing
capacity and computational costs. Typically, the system starts with very little
knowledge about existing objects and builds up object knowledge step by step.
This has the advantage that the system learns to organize perceptual information
in an unsupervised way and acquires new knowledge incrementally if necessary.
The application of off-line trained classification techniques such as in the above
mentioned model has the disadvantage that the system is not able to modify
its own object representations which hence leads to an inflexible gazing behav-
ior. A computational approach not based on pre-trained classifiers is examined
by Ruesch (2008). This attention model is based on the integration of bottom-
up attention models for the auditory and visual modality and can be used to
simulate stimulus-driven eye movements to audiovisual aspects. In detail, the
multimodal integration process is based on the location on an ego-sphere, but in
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Figure 2.3.: Computation of synchrony based on Mutual Information of low level fea-
tures (static features and dynamic features). The model embeds auditory
features (e.g. the intensity) into a bottom-up visual attention model. The
calculated Mutual Information serves to reinforce or to alleviate the weight-
ing (red arrows) of the respective conspicuity maps. Adapted from Rolf
et al. (2009).

contrast to the above approach they localize the sound in azimuth and elevation.
Additionally, the architecture is equipped with a habituation model, which is
gradually updated with multimodal information. A memorization process such
as habituation ensures that multimodal aspects can be focused for a defined time
period. After exceeding a habituation value new points can be targeted. To
avoid refocusing the same points, the gazing strategy is regulated by a so-called
time-decay factor, which inhibits previously attended locations.

Another model, which pursues the modeling of reactive saccades, is the approach
of Rolf et al. (2009)(see Fig. 2.3). Unlike Ruesch (2008), the model is based on
the study of synchrony between features such as the intensity of the auditory
and visual modality. The model is inspired by the Intersensory Redundancy Hy-
pothesis (Bahrick and Lickliter, 2000), that relies on the assumption that infants
increase their attention to redundant perceptual information, e.g. to a knocking
hand. These redundant overlaps in both modalities can help infants to struc-
ture their perceptual environment and to acquire knowledge about constructs
like speech or objects. For this purpose, the presented model is evaluated in
two tutor scenarios: One scenario comprises video data, which shows a parent-
parent interaction. The other scenario is a child-parent interaction. The attention
model computes synchronous portions of both modalities of the scene from the
perspective of the learner and shows an increasing response activity to the infant-
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directed learning scenario. The correlation computation is based on the Mutual
Information (Hershey and Movellan, 1999), which is integrated with a constant
weighting term over time to suppress random correlations. The result is a map
(mixelgram) showing the locations in the camera image in which both modalities
particularly coincide with each other. This temporal integration is useful in a
robot learning scenario, since gazing behavior may be modeled on aspects that
are bright and loud. A proper classification of multimodal objects is missing,
since complex objects are not acquired by the model. Instead, the extension of
an existing bottom-up visual attention model by Itti et al. (2003) is proposed,
which calculates a weighting of conspicuity maps using the proposed correlation
computation. This means that in the event of temporary high synchrony of
both modalities, dynamic features such as optical flow or movement are weighted
stronger in the coincidence computation. The approach shows that the correla-
tion calculation is dominated mainly by features such as the movement of objects
and less by object-specific correlations with auditory features. The system learns
specific positions of the scene where audiovisual correlation is present. However,
the actual classification of audiovisual objects is not integrated and therefore less
usable for a voluntary gazing towards multimodal aspects.

2.4. Summary

The study of voluntary eye movements in neurophysiology shows that the mech-
anism of stimuli suppression in our environment plays an important role. This
may be important in robotics in two ways. On the one hand, such a mechanism
may enable the robot to track an object continuously since distractor stimuli may
be suppressed and thus leading to a stable gazing behavior. On the other hand,
this mechanism may be utilized to direct saccades to an object without generat-
ing random eye movement. The mechanism of inhibition plays an important role
for the generation of endogenous saccades that may biased by already learned
visual knowledge. For the development of voluntary gazing behavior this means
that an artificial agent needs to acquire visual scene knowledge in an unsuper-
vised way and expand it on demand. Furthermore, studies have shown that the
visual information processing is biased not only by visual but also by auditory
top-down knowledge, e.g. in object recognition tasks. In particular, the storage
and recognition performance of objects is decisively influenced by the temporal
synchrony of both modalities. This shows clear indications of how the visual
information processing is supported by the auditory modality, and ultimately af-
fects the recognition of objects. This modulation of visual attention control can
play a key role in the development of an intelligent gazing behavior for a robot.
This principle has not previously been used in robotics, so that there is a lack
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2.4. Summary

of learning processes which simulate voluntary eye movements on multimodal
aspects.

The approaches given by Aryananda (2006), Ruesch (2008) and Rolf et al. (2009)
aim at modeling multimodal attention systems for artificial agents. The fusion of
both modalities is based on the respective position of the observation by the robot,
i.e. local audiovisual features are correlated in the visual field of the robot. Such
’location-based’ approaches can serve for calculating new fixation points and may
equip the robot with an according reactive gazing behavior, but are not sufficient
to model voluntary eye movements on multimodal aspects. This can be inferred
by the aspect that the re-identification process of learned multimodal knowledge
is not modeled, since the approaches lack a causal relationship between auditory
and visual object representations. In detail, the modeling of top-down aspects
such as speech and its influence on visual attention control is not investigated
so far and therefore a specific gaze control for targeting objects using acoustic
features remains. However, such gazing behavior is desirable for a robot and
challenges the automatic acquisition of scene knowledge on demand. Therefore,
it is useful to take developmental aspects into consideration and to investigate the
gazing behavior of infants. The genesis of this gazing behavior is rapidly learned
in infancy and may serve as an inspiration for the development of an artificial
gazing strategy. This aspect is addressed in the next Chapter and serves as
motivation for the development of an Active Vision Architecture.
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3. A Developmentally Inspired Active Vision
Architecture

Infancy research yields insights in how children gradually improve their cognitive
skills over the years. The analysis of such a development allows us to understand
how we learn to comprehend our world and may finally serve as an inspiration for
the development of machine learning algorithms for object recognition. In infancy
research, especially gazing behavior is examined to derive principles of learning
mechanisms. This Chapter gives a summary of the main methods to analyze
infants’ object learning competence. In particular, the influence of acoustics on
object learning is picked out and discussed with respect to potential benefits for
artificial agents. Inspired by findings on infants’ gazing, the last section presents
an Active Vision Architecture that generates voluntary saccades to multimodal
aspects of the environment.

3.1. Object Learning in Infancy Research

Infancy research that deals with visual object learning can be viewed from two
perspectives. One research direction focuses on parental behavior towards chil-
dren while they demonstrate objects to them. The other view examines the
gazing behavior of infants during object learning in tutoring scenarios. Typi-
cally, a parent-infant interaction is characterized by parents altering gestures and
speech when they explain something to their children. Especially, in object learn-
ing scenarios it can be observed that parents synchronize their voice and object
movements in time to gain the attention of their children. Such an alignment
of both modalities is called multimodal motherese and was examined by Gogate
et al. (2000). The study focused on different groups of children aged 5-30 months
and revealed that the synchronization of object movements and speech in care-
giver tutoring is strongest when interacting with the youngest age group. Such a
modification of parental behavior is not only found in the coupling of motion and
speech, but also in sign language communication with deaf children (Masataka,
1992).

From a technical system perspective, it is of interest to detect such redundant
source of information to model them in a machine vision system. Therefore, it is
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important to more deeply explore how young children develop their visual skills
from such multimodal aspects. For this purpose, a review is given of different
factors that affect the looking behavior of infants and which aspects may be ben-
eficial for machine learning. Experimental studies on infant gazing behaviors are
particularly important at preverbal developmental stages to provide qualitative
measures on infant object representations.

In principle, infants’ object competencies such as learning or recognition are
carried out by the analysis of two capabilities. One capability is defined in terms
of discrimination which means whether infants can distinguish between learned
objects and others. The other capability refers to the development of visual
preference in terms of visual recovery, i.e. whether infants recognize objects they
are familiar to. These capabilities are accessed by two basic examination methods:
the Preferential Looking Paradigm and the Habituation Paradigm. Both methods
share a learning phase in which infants are familiarized to objects and a testing
phase in which infant gazing behavior is analyzed to measure whether objects
were learned or not.

3.1.1. Habituation Paradigm

The Habituation Paradigm grants access to infants object competencies by mea-
suring whether they can discriminate between new objects and already learned
objects. Figure 3.1 shows a framework for an experimental setup for object learn-
ing in two conditions with respect to this paradigm. The upper row depicts an
example of a unimodal condition (visual only) whereas the bottom row shows
one for a bimodal condition (audiovisual). The left and right columns describe
the learning and testing phase, respectively. Firstly, in a so-called Habituation-
Phase (Sirois and Mareschal, 2002; Roder et al., 2000), an object is presented
repeatedly to infants and their looking duration to the object is recorded (dashed
line). For example, the visual condition may comprise an image of a flower. In
the bimodal condition, it may be a hammer that is striked with a certain fre-
quency on the table. Here, the hammer serves as visual referent that is learned
in association with a specific rhythm. The stimuli are presented until the infant
shifts its attention to novel aspects in the scene (solid arrow). This attention
shift during habituation is assumed to signal that the child gathered sufficient
information on. Afterward, a testing phase follows.

In the testing phase, infants’ discrimination capabilities are analyzed by means
of looking duration. A novel stimulus is added and the gaze duration is recorded
again. In the unimodal condition this can be archieved by adding the visual
stimulus of a cloud. In the bimodal condition, it may be the change of the
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Figure 3.1.: Sketch of the Habituation-Paradigm in Infancy Research (from left to right).
A habituation-phase is analogous to a learning phase, where decreasing
interest results in a shorter gaze duration to the object (see dashed arrows).
In a testing phase, a novel object is additionally presented and the infant
shows a preference for this object. A new object can comprise a visual object
representation or changes in the auditory characteristic like the rhythm that
is aligned with a moving object. The illustration of the bimodal condition
is adapted from Bahrick and Lickliter (2000).

rhythm with that the hammer strikes on the table. The gaze duration to novel
objects is examined. The presence of a longer gaze duration suggests that infants
can distinguish new introduced stimuli from the learned one. For the unimodal
condition that would result in longer gaze fixations to the cloud. In the bimodal
condition, a longer gaze duration to the hammer is interpreted by a detection of
the changed rhythm. In both cases, this kind of gazing behavior relies on the
assumption that infants have learned and memorized objects from the habituation
trial and subsequently demonstrate more interest to novel objects by increasing
their visual attention to them.

3.1.2. Preferential Looking Paradigm

The Preferential Looking Paradigm (PLP) (Golinkoff et al., 1987) provides an
analysis of both, the discrimination and the recognition capabilities of infants
with respect to objects. In contrast to the Habituation-Paradigm, object compe-
tencies are accessed by an increasing gaze duration on learned objects, i.e. not
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Figure 3.2.: Sketch of the Preferential Looking Paradigm in Infancy Research (from
left to right). Word labels are complemented with novel objects during
a learning phase. One perceptual cue can subsequently guide the visual
attention to objects (Allport, 1989).

by novelty preference. Additionally, the PLP is mostly utilized to examine object
learning in the presence of other modalities. Other modalities may include word
labels or object sounds. One possible procedure is shown in Figure 3.2, where the
left hand side depicts the learning phase and the right hand side shows the test-
ing phase. An application of this paradigm may comprise the goal to get insights
about infants’ word learning capabilities by examining their gazing behavior. For
this purpose, novel visual stimuli are presented with various novel word labels
in a learning phase. Such complementary representations may comprise rela-
tions between objects and word-labels like circle-’mimal’ and semi-circle-’wiau’
as shown in the example.

The subsequent testing phase involves the presentation of previously shown stim-
uli from the learning phase. In this example, both shown visual stimuli (circle,
semi-circle) and one stimulus from the other modality (’mimal’ ). The gaze du-
ration to familiar visual stimuli is examined during the presence of an associative
learned word label. If infants show longer looking times to the object circle, it
is assumed that the infants learned the new label ’mimal’. This gazing behav-
ior following the label ’mimal’ is based on an associative learning step with the
visual referent (circle) and an additional discrimination step of the label ’wiau’.
Such preferential looking at familiar objects is interpreted by the guidance of
complementary learned modalities that may lead to an increase of infants’ visual
attention in terms of object recognition.

The introduced methods show that the examination of infants’ object competen-
cies can be divided into two models. It is noteworthy that the shown examples
just represent possible forms of accessing object competencies and further reduce
the experimental scenario to its essentials. In principle, the first model relies on
the assumption that an object is learned when children are capable of distin-
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guishing it from another object. Such a discrimination ability with respect to
audiovisual components is desirable and is particularly important for an auto-
matic learning of objects. This in turn stresses the relation to the significance
of an appropriate suppression mechanisms of the incoming sensory stimuli (see
Section 2.1). In addition, the model shows that infants are very sensitive to novel
aspects. This may demonstrate a way for an autonomous system to act with new
object knowledge to specify them for an internal memorization.

The second method, however, investigates object learning from a different point
of view in which the learner develops a kind of visual preference. An object is con-
sidered as learned when correct visual referents are focused. The model attempts
to access infants competencies by recovering familiar visual object knowledge
during listening to learned auditory qualities such as labels or sound. Such an
associative learning of multiple modalities and the corresponding triggering of
the visual information system may inspire the development of an artificial gazing
strategy. This mechanism may enable a robot to configure an internal filtering
process that benefits from acoustic qualities to move its eyes to objects.

3.2. State of the Art

It is of interest to get further insights into infants’ gazing especially in the presence
of auditory characteristics and how such characteristics may serve to structure
eye movements of a robot. The shown methods are applied in different ways and
divide infants’ visual competencies into two gazing strategies that may be impor-
tant for artificial saccade generation in robotics. Therefore, the following section
focuses on studies depicted from infancy research with focus on the integration
of multiple modalities and their effect on gazing behavior.

3.2.1. Acoustic Cues and Infants’ Gazing Behavior

Here, it may be important how infants differentiate between acoustic properties
and when they start to associate them with objects. This aspect appears relevant
for an artificial vision system to implement a possible association mechanism be-
tween different modalities. Such mechanisms have been studied by Cummings
et al. (2009), where her experimental work focused on the visual recovery perfor-
mance of infants. In the study, shown objects were provided either by a verbal
label or with a meaningful sound. The set of stimuli comprised the image of a dog
and the word label ’a barking dog’ or the sound of the dog barking like ’woof’.
The experiment demonstrated that 15-25 month old infants develop a visual pref-
erence in the presence of object specific sounds. On the contrary, the presence of
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verbal labels leads also to an increase of visual attention to objects but only for
the older subject group. It has been concluded by Cummings et al. (2009) that
these participants already gained verbal proficiency in their life. Additionally, it
has been shown that infants form object categories in object-label tasks (Balaban
and Waxman, 1997; Fulkerson and Waxman, 2007) and treat words differently to
tones (Ferry et al., 2010).

A similar result is also obtained in a study of Best et al. (2010). Outstanding
in this study is that many different types of visual objects and verbal labels are
presented to infants from 16 to 24 month. The results showed that infants are able
to focus on objects using a variety of verbal labels and use them to structure their
visual environment. In comparison to this, shown objects without labels resulted
in a lack of preferential looking. Such stimuli variance is also characteristic in
learning situations with robots. A variety of acoustic properties may depend on
different object properties and may further vary depending on the tutor. It thus
challenges the way in which a robot can deal with them. Such gazing behavior by
means of acoustic cues can help a machine vision system to form unified object
representations between modalities like the assignment of speech or even tapping
a particular visual object.

The presence of auditory properties may not only help a robot to structure visual
properties, but also to improve the ability to generalize objects. This characteris-
tic has been studied experimentally by Plunkett et al. (2008). The study showed
that infants not only try to associate similarities between modalities, but utilize
labels to merge dissimilar appearing objects into same categories. Such a fusion
process determined by several modalities can support a machine vision system in
considering objects being similar even though their appearance differs.

All studies considered the acquisition of objects to be an associative learning pro-
cess that relies on static object representations. However, in learning scenarios
with robots objects are additionally moved, i.e. they are not always presented
at the same location by a tutor. Consequently, it is interesting to see whether
infants are able to learn objects by relying on dynamic features such as motion
and accompanied sound. More precisely, whether infants gazing behavior contin-
uously relies on associations between dynamic features and rather than on the
location resulting from acoustic sources. Such a mechanism may enable gazing
regardless of sound sources, but prerequisites that the robot is equipped with a
sustaining mechanism that allows him to focus on moving multimodal objects.
The ability to locate multimodal objects irrespective of the sound location (or a
predefined location) is demonstrated by already 6 months old children (Richard-
son and Kirkham, 2004), called Dynamic Spatial Indexing. For this purpose, the
gazing behavior of infants was examined in two studies that are now explained
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Figure 3.3.: Sketch of Spatial Indexing capabilities of infants (from left to right). Sounds
are complemented with bouncing objects during a learning phase. Associ-
ated sounds can serve for guiding attention to an object location. The sound
always appears from the center of the screen. Adapted from Richardson and
Kirkham (2004).

in detail. The insights from these experiments can serve as an inspiration for
designing a gaze control strategy for robots to attend to multimodal events.

The first study considered an associative learning between object movements and
a synchronously played sound to analyze infants gazing strategy irrespective of
sound source locations. The procedure of the experiment is depicted in Figure 3.3.
In a learning phase, infants are confronted with bouncing toys that are presented
in boxes on the right or left side of a screen. Synchronous with the bouncing
toys, infants are listening to sounds. These always appear from the center of
the screen to test infants gazing to multimodal aspects invariant from the sound
location. The stimuli set is presented multiple times. In between, an attention
catcher appears to relocate infants attention to the screen center again.

In a testing phase, the infant is looking at a screen that comprises two empty
boxes in form of rectangles and is listening to sounds of the learning phase. One
of these boxes mark the object position of the learning phase, a so-called critical
location. The final result showed that infants increase their visual attention to
such critical locations using sounds that have been associated with them. This
gives clear indications that infants are able to generate voluntary saccades to
multimodal aspects regardless of sound locations.

This gazing mechanism constitutes a substantial benefit for a machine vision
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Figure 3.4.: Sketch of Dynamic Spatial Indexing capabilities of infants (from left to
right). Sound are accompanied by bouncing objects during a learning phase.
Subsequently, the object location is rotated. Adapted from Richardson and
Kirkham (2004).

system, since the generation of such saccades may enable a voluntary gazing
on multimodal aspects. More precisely, the demonstrated gazing behavior relies
less on the position cue of dominant features, e.g. sound but rather on learned
associations. This fact has been interpreted by Richardson and Kirkham (2004)
in terms of forming of visual expectations that are coupled to the presence of
a sound. Equipping a robot with such an expectation mechanism may allow a
classification of various objects by acoustic properties and further may involve a
weighting of learned visual knowledge. However, it is important that a robot not
only moves the eyes on learned object positions as it was demonstrated in the
previous experiment. Objects may change their locations and this implies that
the robot needs to allocate its attention in a more flexible manner which involves
a kind of position invariance.

Exactly this aspect was studied in the second experiment where a rotation of
multimodal object locations was additionally taken into account. The experiment
was designed to investigate whether infants own the ability of Dynamic Spatial
Indexing (DSI), i.e. use sounds to locate objects, even though the positions
of them changed. Such DSI capabilities were tested in an experiment that is
schematically illustrated in Figure 3.4. Unlike the first experiment (see Fig. 3.3)
an animation is inserted into the learning and testing phase which comprises a
rotation of the object positions in terms of the object boxes. After the animation,
infants were confronted once again with a screen that showed two empty boxes.
Again, a sound is presented from the learning phase and infants’ gazing behavior
is analyzed with respect to visual preference to the boxes. Overall, the result
showed that infants look more frequently at the critical location in the presence
of an associated sound.

The experiment demonstrated that the learning of multimodal objects may be
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implemented by an associative mechanism between different modalities. The
learned association can be used to equip a robot with an expectation mechanism
that operates with different acoustic qualities and activates corresponding visual
object knowledge. Such a development of visual preference may constitute a basis
for a robot to obtain a gazing behavior to multimodal aspects.

Overall, the studies showed that infants learn voluntary gazing by relying less
on bottom-up stimuli. The execution of such voluntary gazing presumes visual
learning processes to gather of top-down knowledge such as object-sound. But
also other top-down factors can control the visual attention of infants during the
acquisition of object competencies. These may be additional features that are
offered by tutors during the learning process such as gazing or pointing gestures
to objects. Additionally, the analysis on the interaction of bottom-up and top-
down processes may shed light on how much prior knowledge should be defined
for an automatic acquisition of audiovisual objects.

Pruden et al. (2006) analyzed this aspect, in particular when infants start to
benefit from such top-down cues and when they rely on simple bottom-up stimuli
in object learning. Her study examined whether infants learn to associate words
with objects. During the learning session, the tutor explicitly gazed to the object.
Special to the study was that infants have to assign labels to salient objects or
boring objects. Here, salient objects possess conspicuous colors or a sparkle
appearance and boring objects were tools with a rather modest appearance. The
result showed that infants at the age of 10-month form label-object associations.
They develop a preferential looking only in the presence of salient objects. This
demonstrates that learning from audiovisual associations is initially driven by
visual salience or driven by simple visual features. This may bootstrap object
learning for a robot. Additionally, the study revealed that the assignment of
words to less salient objects appears later in infancy. Such a late integration
of top-down knowledge demonstrates a way to model voluntary saccades that
initially rely on bottom-up process such as visual saliency. Later on, top-down
knowledge may bias the gaze control which may allow a more voluntary gazing
towards objects regardless of their salient visual appearance.

The above mentioned study used word labels and static objects and relied on
modal specific aspects of objects. However, it may occur that a tutor alters her
speaking behavior and presents objects with different motion amplitudes to the
robot. Therefore, a consistent object description and recognition is not guaran-
teed by modeling an object via individual feature characteristics since they may
strongly vary in both modalities. For this purpose, it may be useful to extract
features that abstract from their individual characteristics and rather comprise
properties shared by both modalities.

This kind of features are called amodal and are intensively studied in infancy
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research. An example for an amodal object property includes the rhythm (see
Fig. 3.2 and Fig. 3.3) that appears in both modalities. An object can be moved
with a certain rhythm and accordingly generates rhythmic sound patterns. In-
fants are able to detect such synchronously occurring events and may use them
as a learning signal (Bahrick and Lickliter, 2000) that enables them to succeed in
difficult discrimination tasks (Bahrick et al., 2010). Such a synchronous presenta-
tion could help a robot to extract relevant learning signals, to build associations
between modalities, and provide a way to combine them. But an associative
learning step that is solely based on rhythm would fail, since rhythm exhibits
various tempi characteristics, e.g. hands can sometimes beat faster or slower on
a table. This may result in several hand-sound pairings. More precisely, visual
objects of the same instance may be associated with different rhythms. However,
it is desirable that a robot can generalize such appearances to shift the attention
to objects. Such generalization capabilities were studied by Farzin et al. (2009).
He showed that infants not only rely on amodal properties for learning but are
able to detect multimodal events by their equivalence in numerosity. For this pur-
pose, infants aged between 6 and 9 months were confronted with jumping toys
and a certain number of tones that were synchronously played in a fix interval. In
a learning phase, they are invited to align the number of tones with the number
of object jumps. Next, the same toys were presented again without movements
as well as the same number of tones differing in their rhythm to examine infants
abilities to abstract amodal features. The result showed that infants can build as-
sociations by using the numerosity of perceptual events and increase their visual
attention to familiar objects irrespective of amodal information.

The detection of redundant information through algorithmic processes requires
the specification of the term synchronicity. In particular, it is important to
define which characteristic in the multimodal signals could allow to measure syn-
chronicity. Additionally, it is not only decisive to specify appropriate features,
but also whether synchronicity is composed of a continuous interplay between
different modalities or fits together more likely from the cooperation of single
events. What exactly is the concept of synchronicity and what is its meaning in
infancy research?

In infancy research, synchronicity is described as a coherent appearance of fea-
tures such as object movements or intensity of voice signals. Gogate et al. (2009)
studied this aspect on the basis of two months old infants and showed that
they are capable of using synchronous onset-offset transitions to discriminate
between different syllable-object pairings. Such transitions are extracted from
object movements and the energy of the audio signal and relates to infants nov-
elty preference. Implementing onsets and offsets may be a major progress for an
automated processing, as this demonstrates a robust feature that abstracts from
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the amplitude of the signal. Another important issue which has been examined
refers to the compensation of time delays between modalities. Such delayed sig-
nals are perceived synchronous in a certain range of time shifts. The range in
which such shifts are perceived as synchronous is also known as intersensory tem-
poral contiguity window (Lewkowicz, 2000). In general, infants can compensate
time shifts up to 350 ms, i.e. this interval can help to compensate inaccuracies
from computational processes such as automatic onset/offset calculations.

3.2.2. Learning during Infancy Sleep

The previous methods assumed that children are in an awake state while per-
forming object learning. Of course, this is necessary to analyze the behavior of
eye movements during the acquisition of object knowledge. But what happens
during the sleeping time in infancy and what benefits can be inferred for an un-
supervised learning of objects? In analogy to infants, a robot may operate in an
’awake’ or ’sleeping’ state. The awake state could correspond to an online phase
in which knowledge is acquired by a visual exploration of the scene. In contrast
during a sleeping state a robot could perform offline processes in which internal
representations are manipulated to enable a deeper processing of acquired knowl-
edge. Hupbach et al. (2009) showed that infants develop enhanced generalization
capabilities with respect to predicted patterns in language, when they have slept
after a learning phase. It is assumed that infants consolidate learned information
during sleep and show an enhanced retrieval performance in long-term memory.
Such a consolidation process may be important for an autonomous system with
respect to two aspects.

Firstly, this process may allow to organize the object memory of the robot so that
it can most efficiently be retrieved. One possibility would be to equip the robot
with a mechanism that merges similar objects as one percept and restructures
existing internal object representations. The second aspect concerns the accumu-
lation of learned object representations by the system. In children, it was observed
that they not only consolidate memory contents during active sleep (Tarullo et al.,
2011), but the sleep also plays an important role in the formation of synaptic con-
nections in the brain. Here, the pruning of synapses is of particular interest for
developing machine learning algorithms. Such a pruning may be useful to prevent
an acquisition of redundant object information and to constraint the growth of
the memory.
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3.3. A Gaze Control Strategy towards Multimodal Events

In the following an active vision architecture is described, which is inspired by
developmental aspects of infants’ visual information processing system. The aim
of the architecture includes the learning of object representations, so that a robot
is able to focus multimodal aspects in its environment. The architecture learns
objects in an unsupervised way, thereby integrating information from different
sensory modalities. These multimodal associations can subsequently be used for
object recognition. In detail, the recognition phase comprises the configuration
of acquired object knowledge based on associations that are extracted during a
learning phase.

Figure 3.5 shows a scheme of the architecture, where functional components are
illustrated by different colors. In principle, the components are classified accord-
ing to four colors: pink, blue, green and light blue. The pink colored components
depict relevant features of both modalities and the correlation calculation between
them. Each of the blue components shows the processing of incoming signals in
terms of learning models and their application. The light blue portion describes
those components that are involved in the overt control of the camera eyes, i.e.
where to look next and what points are interesting to track. The green-colored
component describes a weighting function that allows the robot to increase the
visual attention on multimodal aspects during the processing of learned auditory
knowledge.

Overall, the architecture (Grahl et al., 2011) describes a mechanism for the con-
trol of saccades, which automatically increases the visual attention to multimodal
aspects. For the development of such a control mechanism, it is useful to refer
to the principle of generating voluntary saccades by infants such as shown in the
experiments of Richardson and Kirkham (2004). More precisely, the integration
of top-down knowledge can help an artificial system to focus those objects, whose
visual properties are correlated with auditory cues. To give a detailed overview
of the architecture, in the following individual components are described with
respect to their embedding in the process of attention control.

Top-Down Filter Weighting

In the initial learning phase, the gaze selection of the system is reactive and is
defined by stimulus-driven saccades. Such saccades are simulated following the
model of Itti et al. (1998, 2003) and serve as bootstrapping mechanisms for ob-
ject learning since they initiate the gazing of some aspects in the world, which
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Figure 3.5.: An active vision system for focusing on relevant multimodal aspects.

can serve (when tracked) as a basis to learn visual classifiers for such aspects.
In order to generate saccades towards aspects of the world that are correlated
to some perceived auditory characteristics, the system first builds new saliency
maps whose activity is the result of the filtering of the camera scene by learned
visual filters. This mechanism is in accordance to the learning of object preference
by means of auditory characteristics and inspired by Richardson and Kirkham
(2004). When a sound aspect is perceived that is classified as a previously ex-
perienced sound category, the learned saliency maps are modulated by a set of
weights that are proportional to the multimodal correlation experienced between
the corresponding visual filter and co-occurring auditory features of this sound
class. The different weighted saliency maps corresponding to the learned visual
filters are then summed up in a globally fused saliency map that is used to se-
lect the next gazed point in the world. After learning, the selected gazing point
has a higher probability to correspond to a visual aspect of the world that was
experienced to correlate with the co-occurring sound.
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Saccade/Tracking Control

The learning of voluntary saccades is carried out in a loop, in which visual and
auditory knowledge is incrementally acquired and learned in association with each
other. The gazing time corresponds to a learning phase. Therefore, each time
the camera moves to a new position and tracks the scene for a defined time, the
vision field is processed with a set of visual filters. The visual processing is initially
determined by predefined filters (motion, flickr, color, orientation, intensity) but
is gradually extended by learned visual filters. Each of these filters (predefined or
learned) are applied on the visual field to compute a saliency map, respectively.
These different saliency maps are then fused to a global one in which a winner-
takes-all mechanism is used to determine the next camera gaze position. After
a saccade has been performed, a tracking system takes over the control of the
camera movement for a fixed time interval by keeping the center of the camera
field of view on the point in the world initially chosen by the saccade movement.
The duration of the tracking has been chosen to be fixed for simplicity but could
easily be made variable depending for example on the confidence with which
the tracked point is recognized. The control unit of the camera also records the
camera movements and provides this information to the multimodal correlation
module.

Multimodal Correlation

During the tracking phase, the system checks if the center part of the visual
field (’fovea’) correspond to an existing visual class representation by computing
a kind of ranking of the classifier responses for this visual aspect. If a class
representation fits the perceived visual aspect sufficiently well, it is selected as
a candidate for the correlation with possible auditory sources present at that
time. On the auditory side, the sounds are classified and a best class is selected
based on a similar ranking of the auditory classifier response. In parallel, the
time co-occurrence of onsets of motion, (fovea motion energy/local motion) and
auditory energy is checked supported from infants learning capabilities (Gogate
et al., 2009; Lewkowicz, 2000). When a high correlation and synchrony of such
features is detected, the multimodal correlation module creates an association
between the corresponding visual and auditory classes. This association is done
in form of an association strength matrix which is then provided to the top-down
filter weighting module for a modulation of the saliency map fusion process.
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Classifier and Filter Learning

The visual classifiers and the visual saliency filters are learned autonomously in
an unsupervised way during the camera tracking phase. In theory the auditory
classifiers could be learned in a similar way as the visual ones but to keep the sys-
tem reasonably simple the auditory classifiers were learned off-line in a supervised
way in this work.

Visual Classifier and Filter Learning

The learned visual classifiers and the learned visual saliency filters are tightly
linked. The former are the basis to compute the later. During a tracking phase,
the system first has to decide if the tracked information in the fovea is known or
not. To do so, it compares the visual features present in the fovea with reference
feature vectors already learned. In case of a good match, the matching response
gives the classifier answer. In case of a bad match a new class has to be created
and the currently present visual features in the fovea can be used for that. When
a new class is created, it can be used to build a saliency filter. This is done
by computing the response of the classifier for all positions in the visual field
(not only the fovea). By doing so, a saliency map is obtained where maxima
correspond to locations in the visual field where this classifier responds strongly.
Under the assumption that visual aspects are not highly repetitive in a normal
scene (at least the probability is expected to be low) the expected response of
the saliency map should be maximum in the fovea but rapidly decreasing as a
function of the distance to the fovea. This theoretical response form can be used
as a reference and visual features leading to a classifier response strongly differing
from this reference. This can be used to increase the classifier discrimination
capability by inhibition. Further pruning or fusion mechanisms inspired by infants
learning and restructuring capabilities during sleep (Tarullo et al., 2011), can be
used to optimize and regulate the growth of the visual filter set.

Audio Classifier and Filter Learning

The auditory classifier has been trained offline on supervised information la-
beled by hand (e.g. speech or knocking or sounds). It provides an instantaneous
classification of the auditory stream based on frequency channel features. The
classification response is used to modulate the individual saliency map in their
fusion process and to learn the association strength matrix between multimodal
object classes. In the auditory branch no filters are built from the classifier since
no auditory attention system is considered in this work.
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3.4. Summary

In this Chapter, two methods were introduced that are utilized to analyze the
gazing behavior of infants in object learning scenarios. Overall, these methods are
used for the analysis of the discrimination and recognition performance during
object learning. The interaction with other modalities shows that infants form
associations and use them to recover objects. In addition, they are able to fixate
multimodal objects again irrespectively of the learned location cue by pairing
visual expectations with auditory events.

Based on this principle, an architecture was presented that learns associations
between objects. Here, the recognition of objects is linked to a configuration of the
response behavior of visual classifiers in dependencies of auditory characteristics.
This mechanism allows a robot to classify objects by means of auditory events
and generates corresponding saccades to multimodal aspects. To provide such a
configuration step for a robot, the next Chapter proposes an approach to learn
visual objects in an unsupervised manner during the tracking to utilize them in
an associative learning step. Besides the learning of visual classifiers, the next
Chapter also proposes a method for pruning of redundant scene knowledge.
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4. Unsupervised Acquisition of Visual Object
Representations

Object learning with an artificial system like a robot is challenging mainly due to
two aspects. The first one addresses changes that can occur during the demon-
stration of an object. This includes perturbations with respect to the object’s
appearance as well as changes in the environment, e.g. lighting conditions, per-
spectives changes or variations in reproducibility of tutor actions. The second
aspect addresses online learning and unsupervised learning which refer to mech-
anisms that enable the robot to acquire object concepts during demonstrations.
Online learning is necessary to cope with environmental changes and necessitates
a serial data processing, where the entire data set is not available a-priori and
the processing of it is conducted in a step-wise fashion. The results of a sequen-
tial data processing need to be memorized and available for a next decision step
during the learning phase. If an artificial system is trained offline, i.e. based on a
batch processing of training samples, the training data would have to reflect the
environmental complexity the robot has to cope with. But this is not possible,
because the situations in which an autonomous robot is utilized are typically
not fully known during the design phase. Therefore, many learning mechanisms
are based on unsupervised learning and try to adapt object representations dur-
ing online operation to cope with environmental changes. Objects are mostly
presented from different perspectives by a tutor, which means that an object
appearance can change from view to view. One way to overcome this problem,
i.e. to ensure a view invariant object representation, is to integrate several views
into one object representation. This allows an insertion of new object views upon
demand and therewith provides a method for online learning. This mechanism
hence promotes object constancy - the ability to perceive objects as the same
entities despite variations in their appearance.

The extension of object representations by new views requires the ability to de-
cide whether an observation corresponds to an already known object or to an
unknown object. In the latter case, it would be inappropriate to extend an object
representation; rather a new one has to be created. A spatio-temporal continuity
constraint can be used to resolve this ambiguity. More precisely, physics prevents
abrupt changes with respect to the positions of objects. This means that con-
secutive observations at a particular position in space belong to the same object
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with a very high probability. In contrast, observations stemming from different
positions very likely correspond to different objects. Therefore, spatio-temporal
continuity provides a kind of supervision signal for the classification of different
observations. It supports the robot in building object hypotheses and thereby
enables an appropriate acquisition of object knowledge.

In this Chapter, an approach to unsupervised object learning is proposed. The
learning method incrementally acquires object representations for different demon-
strated objects and extends them by additional object views if necessary. An
object view is extracted with a one-shot learning mechanisms. Furthermore, an
approach to the organization of an object memory is described. This method re-
moves redundant visual information and finally yields an online learning method
with decreased memory requirements.

4.1. State of the Art

In the following, an overview is given about different approaches that aim at
learning object representations, in particular during tracking. The implementa-
tion of such a learning process is carried out in various ways. One method for
object acquisition relates to unsupervised learning, i.e. the system has no prior
knowledge about an object and adapts autonomously to changes in object ap-
pearances. The adaptation of internal object representations can be carried out
online, i.e. the system learns while single object examples are demonstrated to
it. Therefore online adaptation is especially important for model learning dur-
ing tracking. In addition to this, object models in forms of classifiers need to
be robust. Robust means to accomplish a high degree of generalization and dis-
crimination capabilities. Since objects may change in their appearance, classifier
responses can decline over time because the underlying view models are not rep-
resentative of the new object aspect anymore. In such situations, spatio-temporal
constraints can be use to improve the object model.

Many approaches aim at modeling such classifiers by using positive and negative
examples in order to achieve an improved classifier performance (Javed and Ali,
2005; Babenko et al., 2009; Kalal et al., 2010). Classifiers are applied as tracking
mechanisms by learning a scene separation, i.e. an autonomous labeling of nega-
tive and positive scene aspects. These methods are mostly based on the principle
of semi-supervised learning, i.e. classifiers are trained with examples labeled by
humans. The emphasis relies less on the selection of learning examples from the
scene, but on the assumption that a scene can always be binary separated into
an object and a background. Similarities between target objects and nearby in-
formation are not considered, even though it may be important to form an object
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4.1. State of the Art

specific classifier.

4.1.1. Unsupervised Model Learning

One way of unsupervised object learning consists of an adaptive learning of fea-
ture combinations for objects. This approach was pursued by Steil et al. (2007)
for the learning of filter masks, so called adaptive scene depended filters (ASDF).
The scene is segmented based on learned feature combinations, i.e. the scene is
spatially separated into the object itself and the background information. During
demonstration, the tutor presents a fixed number of objects from a fixed number
of different views to the vision system, in which objects are always kept in the
hand. In addition, a skin-color algorithm is used to remove skin-color-specific
elements of the hand. The system learns automatically an object specific filter
that may comprise a features space based on color, edge or dynamic features
such as motion or object velocity. Such a method is possible in the restricted
context of an object-in-hand scenario. However, such a scenario does not cover
all situations, since objects such as mouths or faces can not be presented in such
a way.

A different method that enables an unsupervised acquisition of faces in human-
robot interaction is proposed by Aryananda (2009). In this work the authors
make use of the spatio-temporal continuity to extract video sequences from robot
social interactions using a predefined face-detector and a face tracking device.
The face sequence are then used in an offline process to cluster the faces in
different person classes based on a visual similarity measure This approach uses
an unsupervised clustering approach but relies on a predefined face detection and
tracking that constraints the usability of the approach to face classification. The
offline clustering relies on the availability of training data which makes it difficult
to use such an approach in a reactive online learning system.

4.1.2. Model Learning and Tracking

Learning object models during tracking is mostly used to estimate possible object
positions to enable a continuous tracking of them. Here, a serial processing of im-
age data and an online adaptation is necessary to keep track of object changes.
Furthermore, it is important to enable a robot to form object representations
with little scene information. Additionally, a vision system needs to decide when
to adapt to changing object appearances and therefore needs appropriate crite-
ria. One criterion may rely on an averaging of different object appearances over
time to derive possible object constancy. Another criterion may be based on
spatio-temporal continuity (Makovski et al., 2008). The maintenance of such a
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continuity during object learning can provide a learning mechanism for combining
different object views in order to build an unified object percept. Such a combi-
nation of different views, so-called view-based models (Riesenhuber and Poggio,
2000), can be used to describe an object invariant from different perspectives and
thus finally enables a robust object recognition.

Online Adaptation and Model Learning

One method of online adaptation may comprise the integration of the response
behavior of various models over time. For this purpose, Triesch and von der
Malsburg (2001) extracted object specific prototypes to track objects. These
prototypes describe object features such as position, color, motion or intensity
and set an initial configuration for the tracking process. During the tracking, pro-
totypes are adapted in their feature configuration by a time-moving average to
cope with object changes. The response behavior of prototypes gives evidences
of possible object positions, where an estimation of object locations in case of
occlusions is not possible. Object positions are computed from the response be-
havior of learned prototype statistics, where the prediction is based on velocity
estimation and a linear motion model. The learning of such prototypes is re-
stricted to low level cues and a modeling of more complex object properties such
as 3D rotation remains an open issue. But such an adaptation is important to
ensure the tracking of objects independently of visual changes.

The learning of models during tracking and an appropriate computation of ob-
ject locations can also be based on adjacent object information. Grabner et al.
(2010) developed a supporter model, which comprises the modeling of movements
characteristics of adjacent scene aspects to use them as a feature for object de-
scription. Object positions are predicted based on a voting scheme of neighboring
motion characteristics and therefore also allow the tracking of objects even when
they are occluded. An automatic acquisition of visual scene knowledge and an
on demand learning of them is not considered.

Benefits from Adjacent Observations

Computational object modeling from scratch and the continuous improvement of
object classifiers during tracking in many approaches are based on neighboring
visual aspects. More precisely, in order to build an object model, visual patches
in the center part of a gazed object can be taken as descriptive (or positive)
aspects of the object, whereas visual patches beyond the gazed object can be
used as non-descriptive (or negative) samples of the object. Such an approach
was suggested by Kalal et al. (2010), where the system automatically learns to
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structure unlabeled data into positive and negative samples. The structuring
of the scene relies on the use of a spatial-temporal constraint. This constraint
is derived from object trajectories that result from tracking. In detail, positive
samples are those which lie close to the object trajectory. Negative samples are
specified by positions beyond the trajectories and therefore binarize the scene in
two principal classes. Such a binarization step lacks a differentiated modeling of
the scene background. In this approach, a relation in form of similarities between
the tracked object and the scene background is neither considered nor related to
the learning process. But this may be important for a machine learning system
to enable a comparison between learned classifiers with respect to their response
behaviors in order to delete redundant information accordingly. Furthermore,
this approach can only learn one model for the tracked object and learning of
additional object knowledge is not implemented.

However, learning of multiple object classes is important for a robot, since object
learning in human-robot interaction is characterized by an unknown number of
object demonstrations. This means that a system needs to acquire knowledge
about multiple objects to recognize them later on. For this purpose, Javed and
Ali (2005) initialized multiple classifiers from image data annotated by humans
and subsequently improve the quality of a classifier in a subsequent training phase
by a co-training through positive and negative filter responses of the other classi-
fiers. This semi-supervised approach allows learning and classification of objects
in one framework and takes dependencies between present classifiers into account.
The analysis of response behaviors of multiple classifiers may provide a basis to
identify redundant object knowledge and to reduce computational cost by remov-
ing them. Nevertheless, the number of classifiers is predefined in this approach
which restricts a vision system in the knowledge it can acquire about the scene.
A robot not only needs to learn multiple object classes, but also multiple in-
stances of an object. Another approach that aims at learning object classifiers on
the basis of positive and negative information was suggested by Babenko et al.
(2009). He tried to cope with multiple object instances. The aim of this work
was an improvement of object tracking by means of learning multiple instances
of focused objects. Although the approach combines different object instances to
ensure generalization performance, an appropriate process for learning multiple
classifiers is missing.
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Chapter 4 Unsupervised Acquisition of Visual Object Representations

4.2. A Computational Model for Object Learning during
Tracking

In the following, a computational model for unsupervised object acquisition is
described. This model refers to the component visual classifier learner of the
architecture illustrated in section 3.3. First, an overview of the properties of
an object representation is given. Subsequently, a method for obtaining a view-
invariant object representation is described. This includes decision criteria when
to insert new object views or when to learn a new object representation. The
learning method further involves a fusion of already learned representations to
enhance the recognition performance. Afterward, the computational model is
evaluated on image sequences that show different objects based on which the
discrimination and generalization performance is illustrated.

4.2.1. System Overview

Figure 4.1 shows the principles of the view invariant object representation. An
object representation for object K is described by a classifier FK that accommo-
dates different views of an object in terms of view models fj . In order to design a
flexible response behavior of a classifier, it is necessary to keep the individual re-
sponse characteristics of the respective view models. Therefore, each view model
is equipped with a weighting coefficient cj that is connected to the classifier. This
weighting coefficient is derived by the response behavior of the view model in an
initial learning phase.

The online acquisition of a view model is done in one-shot, i.e. only based on the
current observation. A learned view model comprises one positive feature sj0 and
negative features sji, i = 1 . . . nj , where the negative information is used to im-
prove the response specificity of the view model. This is implemented by an inhi-
bition of peripheral observations. Therefore each view model fj endows weighting
coefficients wji that denotes the strengths of the positive (centered information
wj0) and negative information (peripheral information) wji, i = 1 . . . nj . In order
to obtain models that are invariant to changes in scale, orientation and illumi-
nation, Sift-Features (Lowe, 1999) are used for their description. In summary, a
three-layered representation of objects is chosen:

Object Classifier A classifier FK accumulates different object views fj and is
denoted by a set of view models with FK = {f1, . . . , fm}.
Object View Model An object view is defined as a triple fj = {sj ,wj , cj} with
sj = {sj0, . . . , sjnj , } and wj = {wj0, . . . wjnj}. It consists of a set of Sift-Features
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4.2. A Computational Model for Object Learning during Tracking

Figure 4.1.: Definition of an object representation. A classifier FK (top) comprises dif-
ferent object view models fj (middle) and equates an object representation
(middle) which in turn are represented based on a set of Sift-Features (bot-
tom).

sji, learned weights wji and an extracted normalization coefficient cj .

Sift-Features A Scale-Invariant Feature Transform extracts features for a view
model fj . Each feature vector sji describes a component of a view model by
an orientation histogram and additionally transforms this object characteris-
tic invariant from its scale and orientation. The original Sift-Feature compu-
tation (Lowe, 1999) localizes keypoints on an image which constitute relevant
candidates for an object description. Each keypoint is described by its local
neighborhood. For this neighborhood a histogram is computed that contains ob-
ject characteristics in terms of edge orientations. Typically, a neighborhood is
divided into 4x4 regions and eight possible edge orientations are assumed. This
results in a 4x4x8-dimensional feature vector sji. To ensure illumination invari-
ance, this vector is normalized to unit length.

The overall learning method is show in Figure 4.2. The default visual aspects
are defined by a set of filters (Itti et al., 2003) that extract a salient point. This
point is kept in the central region of the current view during the observation. A
new saccade is triggered by a timer event and the gaze is recentered on a new
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Figure 4.2.: A visual classifier learning process during tracking comprises the selection
of nonlinear features and extracts a visual view model fj with a one-shot
learning process. Reprinted from Grahl et al. (2010) with permission of the
editor.

salient point. Nonlinear features are extracted by Sift-Features. During a fixation
period, an object view model fj is learned by a one-shot learning process from the
centered image I. On the basis of spatio-temporal continuity constraint, the view
model is either fused into an existing classifier F or serves as an initial view of a
new classifier. In the following, the individual processing steps are explained in
detail. In the first step, features are extracted from the image. Here, Sift-Features
are used, since they are known to provide an image description that is largely
invariant to changes in scale, orientation, translation, and affine distortions. The
Sift-Feature extraction first detects keypoints in an image. In the present model,
each pixel of an image is considered to be a keypoint. Next, local orientation
characteristics are extracted for each keypoint. This is done by calculating an
orientation histogram with respect to a local neighborhood of the keypoint. The
resulting Sift descriptors consequently stem from partly overlapping image re-
gions and are centered at the different pixel locations of the image.

4.2.2. One-Shot Model Learning

An image can be described by a set of Sift-Features. Therefore, in a first step
a set of Sift-Features is calculated (see Fig. 4.3). The SIFT extraction defines
each position of I as a keypoint in order to extract a Sift-Feature s. Each
centered image results into a set S of overlapping Sift-Features s that describe the
local orientation characteristics. After the extraction of S, the one-shot learning
process of an object view is done by a selection of relevant features sji. Therefore,
the center feature and relevant peripheral features for the j-th visual view model
are defined by sj0 and sji. Each s is a nonlinear feature that describes a part
of the current observation (image). We can also assume, that a current focused
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4.2. A Computational Model for Object Learning during Tracking

Figure 4.3.: Selection of nonlinear features for a one-shot model learning with an inhi-
bition. The si0 describes the orientation histogram for the center position.
Afterwards a correlation computation is conducted in order to select neg-
ative samples sji for an inhibition of peripheral observations. The 3x3
decomposition of the image is just for illustration purpose.

object and peripheral observations can be described by those features.

Since we would like to learn a view model for the object that is in the center of the
image, the feature sj0 might be an appropriate representation for it. However,
an object description that is only based on a single feature is error-prone as it
would lead to an unspecific response on the image.

More precisely, filtering the image with sj0 will not only yield a peak response
at the center location, but also at positions that share similar local orientation
characteristics. Since such spurious side-peaks should be suppressed, it is not suf-
ficient to describe the object view solely based on the center feature sj0. Rather,
an inhibition of these side-peaks can be done by additionally including those pe-
ripheral features sji that correspond to the side-peak locations. This inhibition
mechanism will finally result in an enhanced specificity of the object model. What
remains is a selection of appropriate features sji. The whole process is based on
the assumption that the object under consideration is only present in the center
of I. This assumption is invalid in scenes with repetitive structures or multiple
instances of the same object but we consider these cases to be statistically rare.
Therefore, let Φj0 denote the response of the feature sj0 on the image. It can be
calculated as

Φj0(x, y) = sj0 ◦ S(x, y) . (4.1)

where ◦ is the dot product operator and S(x, y) the Sift-Feature s extracted from
the image location (x, y). Φj0 constitutes a feature map in which those locations
exhibit a large response, where the original image I correlates with sj0. To
enhance the specificity, Φj0 is subject to a local maxima search. The local maxima
search corresponds to an extraction of those sji that exhibit a large response
correlation with sj0. This means that those peripheral locations (x, y) can be
selected in which sj0 yields a large response. The response of these locations can
be suppressed by inhibiting the feature maps with the response of the feature sji.
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This response is obtained by filtering the image I in a convolution-like way with
sji that is explained in the following.

This selection step results in a set of nonlinear features that contain one positive
sj0 for the center position and a set of negative sji for the inhibition in the
periphery. For an inhibition of peripheral scene information, it is required to
compute a set of feature maps Φji in order to equip the features with appropriate
negative weights. This computation comprises a correlation computation that is
similar to Eq. (4.1) and results in a set of feature maps represented in the matrix
Φji: a matrix of the size that corresponds to the number of features sji × number
of pixels in the image.

Φji(x, y) = sji ◦ S(x, y) . (4.2)

These feature maps are used for the weight initialization. In order to compute the
weighting function of the positive and negative features sji to the view model fj ,
we consider the training of a single layer perceptron where the training samples
are the filter responses Φji and the supervised answer of a Gaussian response
image G with maximal activity in the center. More precisely, the weights are
learned in one-shot via the Moore-Penrose Inverse + (Haykin, 1999) of Φji with
G as an error function:

wji = Φ+
jiG with Φ+

ji = (ΦT
ji ·Φji)

−1 and G = exp
((−x2 − y2

)
/σ2

)
. (4.3)

A weight estimation that is based on Eq. (4.3) can result in positive weights for
the response of negative samples sji. Therefore, an additional pruning step is
conducted for those weights wji > 0. This step removes false positive wji and
corresponding Φji and computes wji again in order to obtain negative weights
with wji < 0.

The entire response Yj of a view model fj can be computed according Eq. (4.4).
It is defined by the weighted linear combination of the computed wji and Φji,
where wji are the inhibition and excitation weights. Additionally, each object
view is equipped with a coefficient cj > 0 that serves as normalization

Yj =
1

c j
·

nj∑
i=0

wji Φji with cj =
∑
x,y

G ·
nj∑
i=0

wji Φji . (4.4)

During an object fixation visual aspect changes can make an object view model
looses its validity and shows a smaller response. This is compensated by a new
object view or a completely new object that is not specified by a current classifier.
Therefore, it is necessary to introduce a method to measure the response behavior
of a model fj . A possible method relies on a normalization step of the response.
For this purpose, a mean average response can be computed that is spatially
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4.2. A Computational Model for Object Learning during Tracking

weighted. This information enables the specification of the expected response
behavior during the initial learning phase. More formally, a derived mean allows
a weighting of a view model response such that the expected activity aj equals
1 to indicate an exact match of an object view model with a currently observed
object:

aj =
∑
x,y

Yj ·G = 1 . (4.5)

A classifier FK accommodates multiple object views, because as much as pos-
sible appropriate object views should be presented in order to enable an object
classification. Desirably, a classifier flexibly responses to different object views
that are obtained by learned model views. One possibility to retain this flexible
response behavior is to calculate each view model response independently from
the others and subsequently sum them to obtain the overall classifier response.
Therefore, it makes sense to compute a weighting coefficient for each view model
fj .

To do so, during tracking the response of fj on the centered image is calculated
via Eq. ( 4.4), where the overall response Yj∗ of the classifier FK is given by the
maximum response of the integrated views:

a
′
j∗(K) =

∑
x,y

G · Yj∗ with FK = Yj∗ = max
j

(Yj) . (4.6)

The resulting center activity a
′
j∗(K) is compared to aj estimated from a filter

in the initial learning phase. A new filter is inserted, if the current Yj∗ does
not fulfill the object hypothesis, i.e. a

′
j∗(K) < θ1, where θ1 is a threshold. This

means during the observation of an object the method integrates multiple views
fj into one visual classifier F.

4.2.3. Model Learning during Tracking

During a saccade an evaluation step is conducted. Its purpose is to decide whether
already learned object models describe the current observation sufficiently well or
whether a new model has to be learned. The first strategy evaluates the center
activity a

′
j∗(K) and decides if an already learned classifier FK for object K is

used for the description of the currently observed object. If so (a
′
j∗(K) ≥ θ2),

the classifier is extended by the current view model FK = FK
⋃ {fj}. If multiple

classifiers FI respond above a defined threshold θ2, they are combined into one
classifier, i.e. FK =

⋃
I FI . In the case that no classifier is available for the

currently observed object (a
′
j∗(K) < θ2 ), a new visual classifier is defined by

FK+1 = {fnew}.
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4.2.4. Evaluation

The evaluation of our method is based on a video sequence that shows a person
who demonstrates a cup stacking task. A saccade movement is determined from
a saliency map that uses color, orientation, motion and intensity features. An
inhibition of return leads to a gaze selection that has not been attended before. A
new saccade is triggered every second and partitions the demonstrated task into
sequences of tracked objects. The mechanism used for object tracking is based
on a modified version of (Triesch and von der Malsburg, 2001). Those sequences
that have more than one object in the center, were removed from the data set in
order to analysis the principal response behavior of the proposed computational
model. In the next Chapters, the analysis bases on image sequences that contain
more than one object in the center.

For the extraction of Sift-Features, we resize the images from 525x525 pixels
to 159x159 pixels. A Sift-Feature describes each pixel in 8 orientations for 4x4
spatial bins extracted from a region with a size of 25x25 pixels. The Gaussian
kernel G is computed with σ = 0.05 (see Eq. (4.3)).

One-Shot Model Learning

At first we evaluate the performance of a one-shot learned visual view model fj
and the insertion of sub views fj into one classifier FK during an evaluation step.
The performance of both are compared to that of a simple visual view model fj0
that does not use the inhibition of peripheral side peaks. In other words fj0 only
relies on sj0 with wj0 = 1. For this, we show an example for the one-shot learning
method and an example for the insertion of new view models during the tracking
of a hand. An example of the one-shot learning method is shown in Fig. 4.4.
The depicted images 0-7 correspond to the feature maps Φj0 and Φji belonging
to the positive feature sj0 and the negative features sji. The image 0 shows the
response of a simple visual model fj0 and corresponds to the feature map Φj0.
Image 8 shows the learned visual model with an inhibition of peripheral regions,
e.g. those that corresponds to the face or the cup.

The feature map depicted in image 0 serves as a basis for the maxima search and
results from Eq. (4.1). The green square marks the positive sample sj0, whereas
red squares mark negative samples sji used for the inhibition. The corresponding
feature maps Φji are shown in images 1-7. By combining image 0 with the
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4.2. A Computational Model for Object Learning during Tracking

Figure 4.4.: Example of a learned one-shot hand model (from left to right) resulted from
a linear combination of one positive feature sj0 and negative features sji
extracted from peripheral observations. Φj0 and Φji are the corresponding
feature maps. The black border on the right and bottom part of the input
image is due to the simulation of camera movements on a fixed size pre-
recorded video stream.

suppression by images 1-7, we obtain the overall model response Yj depicted in
image 8. Thereby, view model fj uses features weights wji= (0.57,-0.08,-0.08
,-0.11,-0.07,-0.02,-0.03,-0.10), a center activity aj=1 and a normalization coeffi-
cient cj=0.11. The first entry of wji corresponds to the weighting term for the
positive sample response Φj0. The remaining negative weighting terms are used
for the negative sample responses Φji. The comparison of both view models
(image 0 and image 8) demonstrates that the inhibition with negative samples
extracted from the periphery enhances the model specificity, so that it is mainly
responsive to the center observation.

Figure 4.5 shows the integration of different view models fj with respect to chang-
ing views of a hand. The insertions are marked with enlarged pictures (from left
to right). The phases 1 and 2 mark the center activity a

′
j∗(K) before and after

the insertion as well as the corresponding saliency maps Yj∗ .

In a first step f1 is learned in one-shot. Subsequently, three additional view
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Figure 4.5.: Example of insertions (gray) of fj during tracking into one visual classifier
F. Image 1 shows the response Y ∗

1 (below the threshold θ1 = 0.9). Image 2
shows the corresponding Y ∗

1 after an insertion of f2. Reprinted from Grahl
et al. (2010) with permission of the editor.

models are gradually inserted into the classifier F. Phase 1 shows that the current
model f1 is no longer valid, since a

′
1∗ decreases. In phase 2 the center activity a

′
1∗

is improved by the insertion of f2. The modification of the classifier again yields
to a specific response at the observed hand (see images 1 and 2).

In order to evaluate the performance of our approach, we compare the different
averaged center activities of f10, f1, and the resulting classifier F that integrates
different views. The models f10 and f1 are derived from the first image of the
tracked sequence. The performance is tested on a data set which contains true
positive (tp) and true negative (tn) hand samples. The top left images in Fig. 4.6
shows the 33 tp samples, whereas the top right images show the 22 tn samples
without the appearance of a hand. The bars in Fig. 4.6 depict the average
response of the three models to these samples. The result illustrates that the
inhibition model f1 shows a better performance than the simple view model f10.
The simple model f10 shows a high response to both data sets, which results in
many false positive detections.

In contrast to this, f1 and F also show a large response to tp samples, but suppress
their activity for objects of other classes (tn samples). Both show a high activity
to different hand views. Thereby, F shows on average a higher activity with
respect to tp samples and therefore performs better than f1.
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4.2. A Computational Model for Object Learning during Tracking

Figure 4.6.: Comparison of a simple visual model f10 (green), an inhibition model f1
(blue), and a classifier F (red) consisting of several object views. Bars mark
their average response a

′
j∗(K) to true positive (tp) and true negative (tn)

samples of hands. The test samples are depicted on the right. Reprinted
from Grahl et al. (2010) with permission of the editor.

Fusion of Visual Classifiers

In a first step, we show the fusion process of two visual classifiers F. The eval-
uation is based on six fixation sequences that capture a left and a right hand.
In a second step, we apply our learning method on image sequences that exhibit
different objects. The fusion of visual classifiers is depicted in Fig. 4.7 (from
left to right). The small image patches at the bottom always show the starting
positions of the observation. The different phases of the learning method are
depicted. Different color bars show the decision phases of the model learning
process during a fixation that are explained below the figure. The corresponding
classifier responses Yj∗ are shown on the right hand side. The black and blue lines
show the activity course for the left and the right hand. In phases 1 and 2 learned
models are fused to improve the visual classifier for the left hand. In phase 3 a
new model for the right hand is extracted. In phases 4 and 5 already learned
models are again fused for a separate recognition of both hands. In phase 6, the
classifiers for the left and the right hand show a similar activity a

′
j∗(K) > θ2 and

are fused into one visual classifier. The resulting classifier response is shown in
image 6. The classifier is now able to detect both hands. The response behavior
with respect to the absence of hand models is evaluated in the following section
and based on image sequences that shows different objects.
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Figure 4.7.: Fusion of visual models during tracking and corresponding a
′
j∗(K) with

θ1 = 0.9 and θ2 = 0.75. The red bar marks the learning of a completely
new visual model, brown depicts the fusion of a newly learned visual model
with an already existing one, and gray shows an insertion of new views.
A green bar marks the fusion of two existing models with a newly learned
model. Reprinted from Grahl et al. (2010) with permission of the editor.

Learning Classifiers for Multiple Objects

The classifier learning during the tracking of different objects is depicted in Fig-
ure 4.8 (from left to right). These objects are cups, hands and faces. We evaluated
15 sequences that resulted in 6 visual classifiers. The bars in Fig. 4.8 show the
activity a

′
j∗(K) of the learned visual classifiers during a fixation, whereas images

at the bottom show the corresponding locations. As can be seen, the learning
process incrementally adds new visual classifiers. The classifiers for the right and
the left hand slowly converge into one classifier. The responses of other filters
show less activities in case of hand fixations. Cups and faces are also learned.
Their responses are specific to cups and faces, respectively. This means they do
not yield an activity for other objects (e.g. a hand).

4.3. Pruning of Acquired Visual Information

In the computational framework presented in the previous section, a new one-shot
model is either inserted into an already learned visual classifier FK or it defines
a completely new classifier. This decision is carried out after each saccade and
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4.3. Pruning of Acquired Visual Information

Figure 4.8.: Activity of different learned visual classifiers during scanning the scene with
θ1=0.9 and θ2=0.75. After a fusion (green bar) of the ’left hand’ classifier
with the ’right hand’ classifier, the resulting classifier shows a high response
characteristic to both hands. Reprinted from Grahl et al. (2010) with per-
mission of the editor.

depends on the responses of already stored object views to the current observa-
tion. As a consequence, the number of classifiers initially increases as long as
new observations are identified. However, over time it converges since more and
more observations can be described by already acquired classifiers. In contrast to
this, the number of view models (and therewith also the number of Sift-Features)
linearly increases during the exploration of a scene because with each saccade a
visual model is inserted. This implicates unfavorable memory costs and process-
ing time. In order to overcome this restriction, the following section examines
two strategies. The first strategy modifies the model fusion step described in Sec-
tion 4.2.3. It re-uses learned visual classifiers in order to minimize the number of
models and features. A second strategy relies on a combination of a retrieval of
visual information and an additional pruning of positive and negative features s
from the current memory.

4.3.1. Re-Use of learned Visual Classifiers

In section 4.2.3, we proposed a fusion of learned visual classifiers. The proposed
strategy thereby assumed that each one-shot model is integrated in the current
object memory. This leads to an immense increase in the number of stored object
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Figure 4.9.: An example of two visual view models f1 and f2 which partly rely on
similar features. Positive features are marked green and negative features
are marked red. Similar responding Sift-Features s are colored blue.

views and corresponding Sift-Features. In the following, the proposed method
is modified, such that it re-uses already learned visual classifiers FK without
a concatenation of similar responding visual models fj . If several models are
responding to a current observation, the most representative model is used for
the learning process. A new visual classifier FK+1 with FK+1 = {fnew} is only
created, if no existing classifier adequately captures the current observation, i.e.
the center activity is a

′
j∗(K) < θ2 instead of always creating a new model. As

this strategy does not incorporate new object views into existing classifiers, each
classifier is solely composed of a single object view.

4.3.2. Pruning of Positive and Negative Features

The second strategy addresses a pruning of features sji on which the object
views f are based on. Therefore, Figure 4.9 first demonstrates the problem of
the linear increase in the number of features during the learning process. It is
a result of redundant occurrences of features within the individual object views.
The example shows two classifiers F1 and F2 consisting each of a single view
f1 and f2, respectively. The two models represent a person’s face as well as a
part of the neck. Thereby, the models rely on partly similar features (colored
blue). The view f1 further shows a feature overlap within itself. In order to
reduce the number of features s, redundant ones should be removed from the
object memory. We consequently propose an organization of the object memory
as shown in Fig. 4.10. Key to the framework is that different views can share
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4.3. Pruning of Acquired Visual Information

Figure 4.10.: Scheme of the object representation: Different view models fj of different
classifiers FK can share features s.

features, which differs from the previously proposed system (see Fig. 4.1). Here,
we additionally restrict classifiers to consist of only one view since we focus on
the examination of redundant response behaviors between learned object models.
The proposed framework could be easily extended to cope with multiple views per
classifier and is applied in the next Chapter. An example of the pruning process
is show in Fig. 4.11, where redundant Sift-Features are reduced within a classifier
F1 that comprises three features. After a pruning step, the memory is reduced
to the two features s1 and s2, where the third feature s3 is further represented
by the feature s2 that additionally keeps the weight w12. The maintenance of
feature specific weights is important, since each weight is learned in the context
of a specific view model. Otherwise the learned view model would decrease its
specificity and this effect is not desirable for an object classifier. An example of
the new memory scheme is shown in Fig. 4.12. It illustrates the organization of
the feature set before and after a pruning step. On the left, the scheme displays
10 Sift-Features. They are used by the object view models depicted in Fig. 4.9.
After a pruning step, the feature set is reduced to seven filters which are partly
shared by both classifiers. The accompanied weights wji, that resulted from the
Moore-Penrose Inverse for each view model fj , are kept. This means that the
response of a view model fj to the current observation can still be calculated as a
weighted superposition of feature maps (see Eq. (4.4)). The introduced memory
scheme hence assigns a set of weights to each Sift-Feature according to its use in
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Figure 4.11.: Example of the object memory before and after pruning. The number of
features is reduced from 3 to 2 features.

Figure 4.12.: Organization of features s of the visual view models depicted in Fig. 4.9 in
a memory-based scheme. The accompanied weights wji (+,-) are retained
that are extracted during the one-shot learning process. Red crosses sym-
bolize the removal of redundant features and green check marks show the
retained samples after pruning. The features s4,s9 and s10 are pruned.
They are further represented by the features s2 and s3 such that f1 and
f2 can share them.

the different view models f . Any feature can consequently be used as a positive
or a negative sample within the different view models.

An appropriate pruning of redundant features requires a similarity computation
that estimates the similarity between the responses of the features. To do so, the
corresponding feature maps Φ can be compared. In order to cope with changing
object appearances, the similarity measurement is further smoothed over time, i.e.
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4.3. Pruning of Acquired Visual Information

a running average of the similarity between feature maps is used as a criterion for
feature pruning. The feature pruning itself selects similar responding candidates
to remove redundant features in the object memory.

Activity Detection of Feature Maps

In order to enhance the response specificity of feature maps Φj irrespective of
environmental changes, the maps are threshold by their averaged activities. This
results in feature vectors Φa

j = [φa
j,1,φ

a
j,2, . . . ,φ

a
j,l]

T composed of l elements with
l = x · y (see Eq. (4.7)). Thereby, Φa

j is normalized to have length ‖Φa
j‖ = 1,

where ‖ · ‖ denotes the Euclidean vector norm with ‖e‖ =
√∑

i e
2
i .

φa
j (x, y) =

⎧⎨
⎩
0, if (φj(x, y)− 1

l

∑
xy φj(x, y)) ≤ 0 .

(φj(x,y)− 1
l

∑
xy φj(x,y))

‖φj(x,y)− 1
l

∑
xy φj(x,y)‖ , otherwise

(4.7)

Similarity Computation of Feature Responses

A similarity between feature maps Φa
j is organized in a similarity matrix A ∈

R
M×M , where M is the total number of Sift-Features. Thereby, an element am,n

corresponds to the measured similarity between two feature maps Φa
m and Φa

n.
The compared feature maps correspond to the m-th and n-th Sift-Features sm
and sn that are currently stored in the memory scheme (see Fig. 4.12). The simi-
larity between two feature maps is calculated based on the normalized Euclidean
distance between them.

âm,n = 1− ‖Φa
m −Φa

n‖√‖Φa
m‖+ ‖Φa

n‖
(4.8)

In order to capture spontaneous changes of A that may result from occlusions or
changing object appearances, the similarity computation is smoothed over time.
Each entry of A is updated at each tracking step according to Eq. (4.9). Thereby,
each current similarity âm,n is weighted with the learning rate λ=1

t according to
its temporal presence in the averaging process. This means, in the initial phase a
similarity âm,n is strongest weighted, whereas later similaries are less taken into
account.

am,n(t) = am,n(t− 1) + λ · [âm,n(t)− am,n(t− 1)] (4.9)
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Candidate Selection and Pruning

During each gaze fixation, a set of similar responding features s are selected that
are used for a pruning step. To do so, the computed similarity matrix A is exam-
ined to find redundant responding features based on their response similarity. To
decide which features can be removed or rather be representative for the further
object learning, these features need to be selected from the object memory. This
can be implemented by those candidates that reveal a large similarity am,n(t).

Since we would like to prune those features that are similarly responding in other
view models, we select those features that exhibit a large similarity value with
am,n(t) ≥ θ3, where θ3 is a threshold. In order to facilitate the pruning pro-
cess, we restrict the computation on the lower triangular matrix of A. As the
object memory is incrementally updated, a straightforward pruning of features
sn is computed in a loop, where each m-th and n-th entry of A is examined.
The feature pruning is continued for so long as no similarity value exceeds the
threshold θ3 and is implemented with:

while maxA ≥ θ3 do
sm ← sn
for i = 1→M do
A(i, n) = 0

end for
end while

This process enables a pruning of several sn, such that they can represent by
only one feature sm. Redundant features are consequently removed after an
assignment.

4.3.3. Evaluation

In the following, the performances of the different pruning strategies are assessed.
Thereby, the method proposed in Section 4.2.3 serves as a baseline against which
the newly introduced strategies are compared. In addition, the strategy ’learning
without inhibition’ comprises object view models without consideration of pe-
ripheral scene knowledge and is compared to the new introduced methods. The
method presented in Section 4.3.1 will be termed ’re-use’ strategy, since it re-
uses the object view models that already have been acquired. In contrast, the
term ’combination’ strategy refers to the method which removes redundant Sift-
Feature (see Section 4.3.2). The latter method is further evaluated with respect
to the influence of the activity detection mechanism. This is done by comparing
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4.3. Pruning of Acquired Visual Information

two simulation runs. The first run uses the activity detection (’combination w/
AD’), whereas the second one does not make use of it (’combination w/o AD’).

The evaluation is carried out in two phases - a training and a testing phase. In the
training phase, the computational framework does not have any prior knowledge
on the objects. This means that learning starts from scratch, but continuously
acquires object knowledge over the course of development. The training phase,
thus, allows an investigation of the framework’s learning dynamics. In contrast,
the testing phase does not involve learning. We rather use the knowledge acquired
during training and assess the system performance on a set of samples that have
not been used for training. This allows an investigation of the discriminative
power as well as the generalization capability of the developed representations.

Training Phase

The evaluation of the pruning methods during a training phase is based on a video
sequence that shows a person who is knocking and speaking †. The training set
comprises 100 simulated gaze fixations of the scene. After the saliency compu-
tation, the data set is manually partitioned into images that contain mouths,
hands, or other fixations (e.g. eyes), respectively. Overall, the data set contains
4 fixations on mouths, 11 fixations on hands, and 85 fixations on other parts of
the scene.

Figure 4.13 depicts the development of the number of Sift-Features during train-
ing for each strategy, respectively. As can be seen, the baseline strategy as well as
a classifier learning with an inhibition results in an approximately linear increase
of the number of features. This is due to the fact that the method continuously
memorizes object views as well as their underlying features. On the contrary,
the number of features converges for the other pruning strategies. Overall, the
plots demonstrate that the pruning strategies are beneficial for reducing memory
requirements. For all pruning strategies the object memory initially increases.
This is due to the fact that the system does not rely on prior knowledge on the
objects and hence has to memorize the observations. However, over time the
’re-use’ and the ’combination’ strategies use already acquired information for the
description of new observations. They consequently have to extend their object

†Saccade movements are determined from a saliency computation that is computed by Itti
et al. (2003). The frequently triggering of new saccades serves to increase the number of
new classifier creation. The images are resized from 1079 × 1919 pixels to 221 × 393 pixels
that corresponds to the resizing factor used before. The Gaussian Image G is adapted to
odd numbers of image length and width and computed with σ = 8. An insertion of new
visual classifier is defined with θ2 = 0.75 during a saccade. The candidate selection from the
similarity matrix is conducted with a threshold θ3 = 0.85.
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memory only if existing models do not cover the new observations appropriately.
Hence, the number of features does not linearly increase, but rather increases
sub-linearly at a much lower rate over time. The object memory (in terms of the
number of features) is significantly reduced as compared to the baseline method.
The ’re-use’ strategy finally results in a medium amount of features, whereas the
best results are obtained using the ’combination’ strategy. The latter method
is particularly beneficial when activity detection is excluded. In this case, the
number of features just slowly increases and remains almost constant after the
gaze fixation number 30.

Figure 4.13.: The number of Sift-Features as a function of the number of gaze fixations
during training. The different plots depict the results of the system when
different pruning strategies are applied.

Table 4.1 illustrates the number of the overall learned models and learned mouth
and hand models for each strategy. Additionally, the corresponding number of
Sift-Features are depicted. As can be seen a comparison of the ratio between the
number of models and features of the baseline and the ’re-use’ strategy does not
show a significant difference. In fact, the ’re-use’ strategy reduces the number
of view models but this only implicitly influences the reduction of features. In
contrast, the ’combination’ strategy tries to minimize the number of features,
where an activity detection leads to a larger number. This is due to the fact that
the system retains principle features of the learned models. The non-linearity
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4.3. Pruning of Acquired Visual Information

applied during AD increases the specificity of the individual feature responses.
This in turn decreases the pair-wise similarity between the feature maps. A
subsequent pruning consequently removes only such features that significantly
overlap with other features. This is in contrast to not using AD, where smaller
overlaps are sufficient to induce a feature pruning. This in turn leads to a false
pruning of features and yields to classifiers that lose their discrimination ability.
Hence, the number of models significantly decreases since this strategy misses the
learning of novel objects. In contrast to this, the incorporation of AD yields a
larger number of features and models. This, however, might be beneficial with
respect to the recognition performance of the system. This is evaluated in the
next part.

strategy # models fj # Sift si # fj mouths # fj hands

baseline 100 430 4 11
without inhibition 100 100 4 11
re-use fi 25 100 2 4
combination w/ AD 29 61 2 6
combination w/o AD 18 24 3 2

Table 4.1.: Number of overall extracted visual view models fj and according number of
Sift-Feature s after the training phase.

For all pruning strategies, the number of hand and mouth models is decreased.
This illustrates that the system dynamically adapts the number to re-use classi-
fiers during the training phase. Objects like hands that reveal a large variability
in their appearance are described accordingly with several models. In contrast,
simple objects like mouths are described with considerable fewer models. The
incorporation of AD yields a larger number of hand models. This is due to the
fact that this strategy captures the variability of object appearances in contrast
to not using AD.

Testing Phase

In the following, we investigate the discriminative power as well as the general-
ization capabilities of the system. The evaluation of the learned visual models
fj is performed on a set of images that show objects in the image center. These
objects have not been seen before by the system and are obtained from the same
saliency computation used in 4.3.3. The obtained objects are manually divided
into three groups: lips, hands, and other object appearances (see Fig. 4.14). The
same classification is manually conducted for the learned visual view models, i.e.
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(a) samples: lips (b) test samples: hands (c) test samples: e.g.
bracelet, shirt

Figure 4.14.: Test data set: The left figure depicts samples for lips (a), the middle one
for hands (b) and the right one samples e.g. for a shirt and parts of a
background (c). The test samples are extracted in a predefined step with
a bottom-up saliency mechanism. The data set contains always 20 samples
for each appearance.

two classes are build for lip and remaining view models as well for hand models.
Remaining models comprise object representations e.g. parts of a shirt or parts
of the table.

It is desirable to obtain relevant view models for lips and hands that give specific
responses to learned visual information and also detect their absence. Therefore,
the system’s generalization capabilities are depicted with the true positive tp
and the true negative error rate tn. The tp measures the activities of lip and
hand view models in the presence of appropriate objects. In contrast, the tn
gives evidences about the response behavior of the remaining view models in the
presence of objects that differ from lips and hands. Further, it is reasonable to
learn lip and hand view models that suppress their activities in the absence of
the learned information: This is evaluated in terms of the false negative error
fn. Such a discriminative response behavior is also desirable for the remaining
models and means to learn models that show a low response in the presence of
objects such as lips and hands. This response behavior is analyzed in terms of
the false positive error rate fp.

The generalization capabilities and discrimination power are analyzed according
to the average center activities a

′
j∗ of the extracted visual models fj in reference

to the presence and absence of objects. The performance characteristics are
depicted in Table 4.2 and 4.3 which describe the average responses over all test
samples for the respective maximum responding classifiers. As can be seen in
Table 4.2 all strategies show a high degree of generalization capabilities illustrated
by the tp and tn rate, with the exception of the combination w/o AD . This is
due to the fact that lip view models partly have been incorrectly replaced by

66



C
h
a
p
te
r
4
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background filters and consequently show a lower response in the presence of
lips. The sensitivity to learned object information is lost which is demonstrated
in the low tp error. This result is presented repeatedly in the analysis of the
discrimination ability. The lack of using AD indicates that the selectivity for lip
and for remaining view models are no longer given. The performance is similar
to learned view models, which miss the inhibition of peripheral observations.
However, the incorporation with AD demonstrates the highest discrimination
capability. This is due to the fact that principle filters remain during the pruning.
A further reason for the high performance could be accounted by the larger
amount of preserved filters compared to the strategy without using AD. This
ratio is not confirmed in comparison to the other strategies, i.e. the amount of
the filter is not crucial, but rather the selection of most representative filters.

The recognition performance for learned hand view models is illustrated in Ta-
ble 4.3. The generalization ability of the different strategies is similar to that of
learned lip view models with exception of the combination w/o AD. This shows
a similar tp rate compared to the other approaches. This is due to the fact that
hand objects are characterized by more structural variance which may lead to
similarities in overlap with objects. In principle, the activity characteristics of
hand view models can be depicted by the fn rate, which is on average higher
in all strategies in comparison to learned lip view models. The discrimination
performance is dominated by remaining view models without incorporation of
AD that demonstrate the lack of selectivity due to incorrect filter pruning. The
fn shows that the learned view models do not retain any object selectivity that
is similar to the models without benefit from inhibition. Consequently, in both
strategies the learned view models continuously respond. This is also confirmed
by the fn rate of those models that lack of an inhibition and the AD that lead to
low discrimination capabilities.

model strategy tp tn fp fn

without inhibition 0.98 0.97 0.89 0.77
baseline 0.93 0.87 0.68 0.38

lips re-use fi 0.92 0.81 0.68 0.31
combination w/ AD 1.00 0.84 0.60 0.29
combination w/o AD 0.66 0.95 0.77 0.62

Table 4.2.: Classification performance of learned lip view models by means of the max-
imum responding filters in average.
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model strategy tp tn fp fn

without inhibition 0.92 0.97 0.86 0.80
baseline 0.87 0.88 0.70 0.59

hands re-use fi 0.85 0.79 0.69 0.53
combination w/ AD 0.81 0.83 0.68 0.54
combination w/o AD 0.81 0.92 0.92 0.64

Table 4.3.: Classification performance of learned hand models by means of the maximum
responding filters in average.

4.4. Summary

In this Chapter, a method for visual model learning during tracking that enables
an incremental learning of multiple object classifiers was proposed. The approach
allows a model learning from scratch and is initialized by a visual bottom-up at-
tention model. In addition to the learning of multiple classifiers, an integration
mechanism is introduced to combine different object views. A classifier is de-
fined as a linear combination of positive and negative samples that improves the
discrimination capabilities during object learning. A spatio-temporal continu-
ity constraint is used as supervision signal for integrating different views into a
classifier. During scene exploration, the acquisition of object knowledge results
in a linear increase of the number of Sift-Filters. Therefore, a pruning strategy
removes appropriate redundant filters to avoid problems in storage capacities.
The removal is based on a pair-wise similarity measurement of filter responses.
The incorporation of a non-linearity during activity detection yields a mainte-
nance of discrimination capabilities and only representative filters are kept by
the computational model.

The model developed so far has been based only on the visual modality and
accordingly generates responses to learned objects. In detail, potential object
locations are computed by learned object-specific filters and are usable for an
artificial agent to generate saccades. However, a generation of voluntary saccades
to multimodal aspects requires the involvement of auditory characteristics and
a classification of filter responses by acoustic features. This classification may
implemented by a weighting scheme so that only relevant object filters are active
in the presence of certain audio signals. The implementation of an appropriate
weighting scheme is the focus of the next Chapter.
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5. Learning Voluntary Gazing towards
Multimodal Events

As we have seen in Chapter 3, children are able to develop a visual preference
during their first year of life with respect to multimodal scene objects. They do
this by an associative learning of audiovisual object properties based on which
auditory characteristics can be subsequently used during visual discrimination
tasks. The implementation of such a gazing behavior may enable artificial agents
to learn from audiovisual scene aspects and use them for a gazing strategy to-
wards multimodal aspects. This chapter focuses on a method for artificial vision
systems by which acoustic scene characteristics can guide voluntary gazing by
means of a top-down integration. To do so, a method is proposed that enables
an unsupervised associative learning of relevant audiovisual object properties.
Secondly, learned object associations are used as a weighting scheme to bias the
visual filtering process during attention shifts towards multimodal objects.

5.1. State of the Art

The learning of shared audiovisual object characteristics bears many challenges.
One challenge relies in the selection of appropriate features that enable a reli-
able measurement of audiovisual commonalities by an artificial agent. Many ap-
proaches aim at the learning of audiovisual commonalities to perform a speaker
localization. Thereby, they assume the existence of scene objects such as lips and
speech (Slaney and Covell, 2000; Hershey and Movellan, 1999). These approaches
generally ignore important features such as object trajectories generated by tutor
interactions as demonstrated by (Delaherche and Chetouani, 2010). Moreover,
the main assumption about speech, lips, or hand presence in the scene is only
valid in very specific experimental setups and relaxing this assumption would
necessarily lead to an autonomous learning of objects present in the scene. This
aspect also refers to the learning of audiovisual object properties that needs to
be acquired during demonstration, i.e. the visual and auditory stream needs to
be processed online to obtain commonalities.

When processing online audiovisual scene information, the processing streams
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of the different modalities need to be adjusted in time to allow temporal compar-
isons. In detail, each processing step such as motion detection or the detection
of auditory energy creates different latencies. These must be compensated in
order to initialize a learning process that benefits from synchrony in different
modalities. This means a learning from audiovisual object properties presumes
time compensated filter responses to detect coincidences. Additionally, an au-
diovisual object can be demonstrated in various ways by a tutor. For example,
a demonstrator marks his hand as particular relevant to the robot by present-
ing it with a slight knocking and with a high motion intensity that results from
hand movements. This means an artificial agent has to cope with such ’slight-
high’ correlated occurrences during object learning (Rolf et al., 2009). Another
possibility may rely in a design of a coincidence calculation that abstracts from
such ’slight-high’ attributes, so that a robot learns whether overlaps of global
audiovisual activities exist by means of acoustic packages (Schillingmann et al.,
2009). This means motion activities of a mouth can be measured in overlap with
the presence of speech signals. Similarly, hand movements may overlap with a
knocking sound. But mouth movements feature a lower motion intensity than
a hand gesture and such position-based approaches may lead to an overshadow-
ing of relevant object movements which hence would not be accessible for object
learning.

A learning of coherent audiovisual activities may be carried out via the mea-
surement of motion activities that exactly match the occurrences of accompanied
acoustic signals. Unfortunately, this matching criterion is not sufficient to learn
audiovisual object presentations such as speech-lips or knocking-hand associa-
tions, since they do not always occur in a synchronous way. More precisely, lip
movements may appear before speech is actually produced which hence may be
audible later for a robot. Therefore, it is of key importance to design a corre-
lation criterion that deals with time shifts, so that asynchronous coherences are
detectable (Lee and Ebrahimi, 2011; El-Sallam and Mian, 2011).

In the following, a multimodal attention system is presented which allows a robot
to attend audiovisual aspects by using acoustic scene properties. The model en-
ables the robot to learn associations by means of audiovisual features that cope
with time shifts. The learned associations support a weighting scheme in terms
of a classifier and allows an autonomous learning system to increase its visual
attention by means of acoustic properties. The proposed method is based on
an associative learning of averaged joint onset activities of visual and auditory
features that are derived during object tracking. The overlap measurement is
done online, i.e. during object demonstration correspondences between onsets
are detected, learned, and finally used to modulate the visual filtering process.
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5.2. A Computational Multimodal Attention System

This section gives an overview of a multimodal attention system that may equip
artificial agents with a gaze control strategy towards multimodal aspects. Sub-
sequently, an example is shown in which the problem of asynchronous event is
described. Additionally, the feature calculation in terms of onset detection is
explained. These onsets are next used in an associative learning step to build
audiovisual object representations. Finally, the benefits of the resulting asso-
ciations are demonstrated within the overall system for gaze control. Thereby,
the systems’ performance is evaluated by means of its discrimination capabilities
during associative learning. The generation of voluntary gazing behavior towards
multimodal scene aspects is evaluated by using learned object associations.

5.2.1. System Overview

The presented system provides a method for learning voluntary gazing strategy
towards multimodal scene aspects. As depicted in Figure 5.1 the method is
divided into a training phase and a testing phase. The training phase describes
the time interval in which the system learns visual object classifiers FK as well
as multimodal coherences in terms of associations between visual and auditory
features. Subsequently, the testing phase describes the application of the learned
associations during the visual filtering process. The result of the classification of
the audio signal is used to select appropriate coefficients ca,v from the learned
multimodal associations and hence serves as a top-down signal to configure the
visual filtering process. Crucial to the testing phase is the combination of several
responses Yj∗ of visual classifiers by means of their weighting information ca,v.
The combination of biased model responses allows the calculation of a multimodal
saliency map salav that shows potential object locations which were previously
learned in association with the acoustic signal.

5.2.2. Feature Extraction

Figure 5.2 shows an example of tracked lips and the corresponding audio signal.
It should motivate the selection of appropriate features for a subsequent learning
of multimodal associations. Demonstrated is an image sequence that comprises
lip movements (V) and the corresponding speech signal (A). The current gaze
fixation of the system is marked by a green dot. For the learning of associations
between object motion activities and their acoustic properties, motion dynamics
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Figure 5.1.: Learning of a multimodal correlation C during object tracking and a com-
putation of an appropriate multimodal saliency map. This saliency map
is the weighted sum of visual classifier responses Yj∗ with corresponding
association coefficients ca,v.

can be measured in many ways. On the one hand, such dynamics can be car-
ried out by local motion changes derived from the scene, e.g. such as the ones
resulting from the opening and the closing of a mouth. For this, motion can be
calculated from local object characteristics. The incorporation of such position-
based information may result in motion activities that are caused by the rotation
of objects instead of motion produced by the object itself.

In the example sequence, this is the rotation of the head that may shadow motion
activities resulting from lip movements. Therefore, the motion extraction from
local regions must be conducted invariant of rotations to be ultimately used for a
correlation analysis. A further possibility to obtain motion dynamics consists in
the exploitation of the object trajectory that may be derived from the tracking
signal. The object trajectory is calculated as one pixel position and allows a
measurement invariant from positions of neighborhood pixels. This is an advan-
tage over the local motion estimation that is based solely on local neighborhood
characteristics.

Figure 5.3 shows an example of the detection of local motion characteristics and
the object trajectory that are extracted from the example sequence of Fig. 5.2.
In addition, the envelope am of the audio signal a(t) is shown. The envelope am
of the audio stream is initially computed by means of its amount with am = |a|.
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Figure 5.2.: An image sequence that shows lips (V) and the accompanied speech signal
(A).

Then the signal is further low-pass filtered with a cut-off frequency of 150 Hz
and resampled to 300 Hz. Afterward, the signal is low-pass filtered with a cut-off
frequency of 10 Hz to extract relevant gradients of the signal. The extraction of
local motion activities over time is denoted with ms and is based on the difference
of local orientation information (see Eq. 5.1) of the current object fixation.

ms(t) =
∑

|sj0(t− 1)− sj0(t)| (5.1)

The feature vectors si0 describe the orientation histogram of the center object
region by a Sift-Feature (Lowe, 1999). In contrast to the difference in orientation
information, the object trajectory is computed by the difference of relative object
positions p(x, y) and is denoted with mt:

mt(t) =
∑

|p(x, y)(t− 1)− p(x, y)(t)| (5.2)

This feature exhibits a high value in the case of significant object movements and
small values in case of slight movement productions. As shown in Figure 5.3,
all three features exhibit different characteristics. Particularly important are the
feature gradients which can be exploited to measure onsets. However, the ex-
ample shows that significant changes in the feature characteristics are typically
time-shifted and hence less useful for detecting synchronous events. In addition,
motion dynamics of object trajectories compared to changes in local orientations
lack a normalization step, i.e. the values are not standardized. This also applies
to the auditory signal. A normalization step is important to determine whether
a significant overlap between visual and auditory gradients exists or not. For ex-
ample, significant mouth movements may basically produce less motion dynamics
than irrelevant little hand movements. In case of a missing normalization, this
may lead to a learning of associations between hand movements and acoustic
signals such as speech, although hand movements are not causing the production
of speech. Therefore, for an associative learning of audiovisual object properties
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Figure 5.3.: Selected features for the visual domain (V) and auditory domain (A). Blue
regions mark significant gradients of the visual features and the auditory
feature. The red region marks the entering of the speech signal.

it is necessary to prepare the learning step such that small lip movements events
are detected by the system and distinguished from rather unimportant motion
events.

The shown preparations for an associative object learning are therefore divided
in three ways, which are now described in detail. The first aspect relates to the
extraction of relevant features, which may be the detection of significant gradients
of the signal. This may be provided by information of onset occurrences of object
motion and associated onset activities of the acoustic signal. The second aspect
concerns the asynchronous occurrences of such onset activities in both modali-
ties, which may give an important evidence to find an appropriate coincidence
measurement. One possibility may rely on exploiting the shown asynchronous
occurrences. For this purpose, it is useful to artificially delay onsets in their re-
sponse behavior to cope with the shown asynchrony. Such delays of onsets may
be based on normalized onsets and may be implemented by a preceded maxima
detection. In summary, there are three steps to extract onsets from the sig-
nal: Onset-Detection, maxima-detection and a step for delaying significant onset
maxima.
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Figure 5.4.: Both, the visual (blue) and auditory features (red) are processed with the
convolution operator according to Eq. 5.3 to obtain onsets. The maxima
of them are marked and their responses are delayed with a half of the
Gaussian operator σ. Plotted are the overlaps between the delayed onset
signals, which can serve as a measurement of a correlation in terms of joint
onset activities (pink).

5.2.3. Onset Detection

An example of an onset-based feature extraction is shown in Figure 5.4. The
example shows motion characteristics of a knocking hand as well as related onsets
detected in the acoustic domain. The detection of onsets involve the extraction
of relevant gradients of the visual and auditory feature, i.e. the extraction of
the beginning of motion dynamics and the beginning of knocking signals. The
onsets o(t) can be calculated using the gradients of a signal x(t), for example by
the derivative of the signal and are calculated in the following with (Wang and
Brown, 2006):

o(t) = −G′
o(t, σ) ∗ x with G

′
o(t, σ) =

−t
πσ2

· exp
(
− t2

2πσ2

)
. (5.3)

∗ denotes the convolution operator and G
′
o(t, σ) the first deviation of a Gaussian

function. In the example, the convolved signal shows possible onset candidates
(o(am), o(mt)) that are characterized by a smooth shape. However, the filter
responses are still not prepared for a measurement of joint onset activities, since
they are not normalized to a unit norm. To do this, maxima peaks are computed
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based on the onsets within a time window over three signal points of o(t). The
resulted events are not sufficient to measure overlaps for longer time intervals.
Therefore, these single peaks are delayed by a Gaussian function during the fil-
tering. The resulting onsets are denoted in the following with do. The resulting
latencies from different convolution steps are continuously compensated in order
to enable an overlap measurement of synchronized filter responses.

5.2.4. Associative Learning and Top-Down Filter Weighting

The learning of associations between auditory and visual features of demonstrated
objects is performed independently of the learning of visual models (see Chap-
ter 4). One possibility for an associative learning step consists in the learning of
overlaps between onsets of both features, i.e. if both events closely follow each
other than the events seems to be associated and are learned by the system.
The investigated learning of overlaps assumes that onsets of the auditory domain
are linked to onsets derived from visual scene characteristics and finally form a
multimodal object representation. Accordingly, a non-represented onset in the
auditory domain can be used as a learning signal by which association weights
can be adapted.

The classification of acoustic onsets is manually done (see Appendix A), i.e.
acoustic properties such as speech or knocking are always correctly recognized
in the learning loop by the system. Of course, the classification behavior during
auditory processing may decisively influence the associative learning. But the
focus of this section refers to gaze control and visual configuration capabilities by
assuming a corrects filtering of auditory characteristics.

Training Phase

First of all, the learning of associations is done in terms of a weighting scheme
that is denoted with C ∈ R

A×V , where A is the number of acoustic classes and V
corresponds to the number of visual models. Thereby, an element ĉa,v corresponds
to a correlation between acoustic delayed onsets do(am) as well as onsets do(ms) or
do(mt) derived from visual features. The measurement corresponds to the product
of both onsets. Since overlaps can vary from joint onset appearances, it is useful
to measure the overlap by means of their averaged frequencies with:

ca,v(t) = ca,v(t− 1) +
1

q
· [ĉa,v(t)− ca,v(t− 1)]

ĉa,v(t) = do(am)(t) · do(∗)(t) with ∗ ∈ {ms,mt}
if do(am)(t) = 1. (5.4)
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During visual model learning, the weighting scheme is gradually extended for
each object K. The averaged frequency ca,v is updated at that time at which
a significant acoustic onset do(am) is appearing, where q denotes how often ca,v
has been updated. This means that at the beginning of training (q=1), the
actual correlation ĉa,v has a large influence, whereas the influence decays later in
time (q > 1). By doing so, the learned correlation ca,v represents the mean of
all instantaneous correlations ĉa,v which have been observed so far. After each
saccade, the calculation is restarted and the associative learning begins again.
The weighting scheme is weakened when auditory onset activities are detected
and visual onsets are missing for this event.

Testing Phase

The resulted weighting scheme C configures the gazing behavior of the system
towards multimodal aspects. Here, association coefficients are used for biasing
the visual filtering mechanism, i.e. the learned coefficient weights bias the corre-
sponding responses of visual classifiers of the system. For example, the presence
of signals such as speech or knocking can trigger classifiers for lips or hands. In
the testing phase, the learned weighting scheme is combined with correspond-
ing classifier responses, so that a saliency map sal is created in which potential
multimodal object positions pop out. This weighting step enables the system
to perform a voluntary gazing behavior by means of a top-down integration of
acoustic properties. The determination of a gaze location towards multimodal
objects is computed by a winner takes all mechanism. It extracts the most salient
position and defines the focus of attention. The calculation of this gaze position
p(x, y)av is computed by means of:

p(x, y)av = max
(x,y)

salav with salav =

M∑
i=1

ca,v · Yvi∗ · Ya∗ (5.5)

The saliency map sal combines the responses of the auditory and visual classi-
fiers by a sum weighted with the association coefficients ca,v, where i = 1 . . .M
corresponds to the i− th visual model. The overall response Yvi∗ corresponds to
the responses of the visual classifiers FK and Ya∗ corresponds to the response be-
havior of the acoustic classifier. For the classification of acoustic onset activities
it is always assumed that Ya∗ = 1.

5.3. Evaluation

The evaluation for generating saccades towards multimodal aspects is done in
two phases. In the first evaluation phase, the discrimination ability of learned

77



Chapter 5 Learning Voluntary Gazing towards Multimodal Events

associations based on onset overlaps is analyzed. More precisely, it is of interest
to what extent overlaps between visual and auditory onsets are accessible and
can be learned by the system. For this, three different objects are tracked and
their audiovisual correlations are calculated according to Eq. 5.4.

In a second evaluation step, the overall gazing behavior of the proposed multi-
modal attention system is analyzed and compared to a reactive attention model (Itti
et al., 2003). For this, visual models are learned during tracking according to
Chapter 4. During the learning of visual scene aspects, the system aligns audio-
visual onsets. Subsequently, a testing phase depicts the gazing behavior towards
multimodal aspects by integrating top-down class information such as speech or
knocking. To do this, the systems’ gazing locations are computed in the presence
of different acoustic classes. The learning of object specific models includes an
extension of the architecture that is described in Section 4.3.1 and takes object
dynamics into account. In detail, new object views are added as soon as object
models loose their validity during tracking.

The learning of visual models is based on two different strategies and evaluated
in the gazing process. The ’baseline’ strategy includes the learning of models
without fusing them. The second method corresponds to the ’combination w/AD’
strategy and includes the reuse of previously learned visual information as well as
the pruning of redundant Sift-Features. The model learning with the ’combination
w/AD’ strategy is carried out to analyze how the removal of redundant object
information affects the gazing performance of the system and how the integration
of auditory top-down information is still helpful for generating voluntary saccades.

Additionally, it is assessed whether extracted audiovisual object associations are
generally useful for a weighting step during the process of visual filtering. For
this, the gazing performance is compared to a gazing strategy that does not
benefit from learning of relevant associations. Here, the systems’ visual response
behavior is weighted equally by not associating the visual models with acoustic
characteristics. Furthermore, the ’best case’ is examined, i.e. the audiovisual
associations are set manually for visual models like hands and lips so that they
are only biased by means of signals of knocking or speech. For example, the
system learns two hand models, the corresponding weights are equipped with
values ca,v = 0.5 to associate the models to the acoustic class knocking. For three
hand models that would result in correlation coefficients ca,v = 0.33 so that the
sum of them is 1.

Associative Learning by Means of Joint Onset Activities

In the first evaluation phase, three objects are focused by the system and ana-
lyzed whether an overlap of onsets in the presence of different acoustic classes is
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accessible by the system. The gaze focus of the system is manually set to objects
such as the mouth, hand, and to the t-shirt of a person and tracked for 2000
frames. Audiovisual associations by means of joint onset activities are calculated
accordingly. The acoustic scene is held constant only varying the observed ob-
jects. This results in 31 onsets for speech and in 86 onsets for the knocking signal.
These onsets overlap with onsets derived from visual features.

For the evaluation, a video sequence is used that shows a person who is knocking
repeatedly on the table. After knocking, the person verbally aligns the number
of taps. The video sequence is recorded with 25 fps and visual features are
extracted according to Eq. 5.1 and 5.2 with ms > 0.5. The difference of temporal
orientation information of the object is computed with a 50x50 image patch of
the current focused objects that is used to calculate local motion energy.

For the extraction of significant onsets in the audio stream a, the signal is pro-
cessed with 16 kHz. The envelope of the auditory signal is computed according
to Section 5.2.2. It is further convolved with the first derivative of a Gaussian
function according to Eq. 5.3. For simplicity, the onset calculation is made in ad-
vance and resulted onsets are threshold with ta= 0.0017 so that o(ams) > ta are
kept for associative learning. The threshold is defined manually and corresponds
to typical onsets of the speech signal.

During object tracking, both visual features mt and ms are computed and con-
volved according to Eq. 5.3. A short convolution window with σ= 0.05 is used to
detect spontaneous gradients. This corresponds to a time window of 403 ms for
the processing of acoustic information and to a time window of 440 ms for the
detection of onsets of motion dynamics derived from visual features.

In Table 5.1, the resulting association matrices C are shown for three different
object models and 2 acoustic classes. The upper three rows describe the associ-
ation coefficients Cmt by using onsets derived from the object trajectory. The
lower three rows describe the matrix Cms resulting from onsets in local motion
activities of the currently tracked object.

It is evident that the use of object trajectories results in overlaps between all
object-sound pairs, where the hand-knocking pair differs from all others. The
difference lies in the discriminative behavior of these associations in comparison
to hand-speech associations. The corresponding association coefficients show a
higher value in case of a hand-knocking occurrence. In all other object-sound
pairs, the association coefficients are more or less equally distributed which indi-
cates that onsets derived from the trajectory are not appropriate for association
learning. The uniform distribution is justified by the fact that many onsets are
continuously produced by the object trajectory. For example, onsets may be a
result of the persons’ body movements that cause a correlation with the acoustic
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object feature speech do(ams) knocking do(amk)

mouth do(mt) 0.46 0.50
hand do(mt) 0.24 0.57
else do(mt) 0.52 0.58

mouth do(ms) 0.04 0
hand do(ms) 0 0.29
else do(ms) 0 0

Table 5.1.: Learned object associations in terms of joint onset activities.

signals that are less object specific. For a machine learning system, the resulting
correlation of audiovisual events is not useful, since mouth-speech associations
may be overshadowed by other associations which prevents gazing towards lips
in the presence of speech signals.

Therefore, it is useful to analyze the resulting associations using local motion
dynamics. In contrast to the use of object trajectories, the use of local mo-
tion activity shows a different association behavior with the auditory domain.
Object-specific associations such as t-shirt-speech or mouth-knocking reveal a
zero correlation, whereas associations such as mouth-speech or hand-knocking
show a positive correlation. The positive mouth-speech correlation may be jus-
tified by a relevant overlap of speech onsets and onsets of local motion that is
caused by lip movements. Particularly, learned associations between the hand
model and the knocking signal are conspicuously. Actually, very little motion
energy should be produced in terms of difference of orientation histograms while
tapping the hand on the table, since its shape is not particularly changing and
therefore should result in less local motion activities.

However, the difference of orientation information of hand objects may be the
result of changing background information of the currently observed object. For
example, this may be the occurring of the table edge before the onset of knock-
ing signal is entering. A further reason for the built association may rely in the
production of local motion by forwards and backwards tilts of a hand during
knocking activities and hence accordingly be close in time to relevant onset in-
formation of knocking signals. These two reasons are not sufficient to use oms as
dominant motion detector for hand movements, since the system can also observe
hands while producing knocking sound, that does not tilt. In addition to this,
the change of background information is only accessible by the system, if the
orientation histogram covers background information, i.e. information beyond
the current tracked object. But this two assumptions are not always fulfilled in

80



C
h
a
p
te
r
5

5.3. Evaluation

a learning scenario and therefore such information is not always accessible by an
artificial agent.

Both visual features show advantages and disadvantages for an associative learn-
ing step. The use of object trajectories results in a meaningful correlation with
respect to hand-knocking associations, but also suffers from the fact that other
multimodal associations are not discriminative. On the contrary, the local motion
energy generated by the difference of orientation histograms shows a discrimina-
tive behavior for relevant speech-mouth associations. However, it can not be
assumed that this feature is always reliably detected for hand movements during
knocking. Therefore, it may be useful to exploit the benefits of both visual fea-
tures in order to use them for an estimation of joint onset activities. Resulting
correlation coefficients may be combined by a multiplication so that the result is
an associative matrix with:

Cmt/ms = Cmt ·Cms (5.6)

where · refers to an element-wise matrix multiplication.

Voluntary Gazing by Means of Top-Down Information

In the following, the learning method derived from section 5.3 is used to build
multimodal object associations during the learning of visual object models. In a
second step, the validity of learned associations is examined, i.e. to what extent
top-down information such as speech or knocking is usable by the system to
generate voluntary saccades towards multimodal events.

On the one hand, it is desirable to equip an artificial agent with a top-down
gazing strategy, so that it make use of object-specific sound to direct gaze towards
corresponding visual objects, e.g. listening to speech and start to move the gaze
towards lips. On the other hand, it is also important that not lip-specific sound
leads to a higher looking frequency towards objects different to lips. This gazing
performance of the system comprises the generalization ability.

In contrast to this, an artificial agent should also be able to generate a little num-
ber of saccades towards objects, when the corresponding learned object-specific
sound is absent (i.e. relying on the bottom-up default saliency process). For
example when the system is listing to acoustic properties of a knocking hand,
this should lead to less frequently looking times towards objects like lips. Addi-
tionally, acoustic properties such as speech should lead to less frequently looking
times on other objects such as hands or the person’s neck. This gazing behavior is
measured in terms of the system’s discrimination capabilities. For the evaluation,
two acoustic classes are examined: speech and knocking and the corresponding
targeting behavior towards multimodal objects of the system is analyzed.
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# F/f # s # Flips/f/s # Fhands/f/s

baseline 15/21 78 1/2/7 2/5/21
combination w/AD 6/11 26 1/2/6 1/2/7

Table 5.2.: Resulted quantities of the visual model learning processes by means of the
’baseline’ and ’combination w/AD’ strategy.

Training Phase

In a training phase, the system explores a scene that shows a person that is
talking and knocking. The system initially explores the scene by bottom-up
saccades (Itti et al., 2003) and salient points are tracked for a specific time. The
exploration phase starts with an observation on the person’s face. A total number
of 15 saccades are generated and are tracked for 100 frames. During this period,
the system learns visual models and aligns audiovisual events by means of the
proposed associative learning step (see Eq. 5.6). During learning the system
extracts one lip model and two hand models.

Result

Table 5.2 shows the results after the learning phase and depicts characteristics
of the model learning processes. The number of visual models F, the number of
integrated view models f , and the number of related stored Sift-Features s are
depicted from the different learning methods. Additionally, the model quantities
are separately shown for lip and hand models. Moreover, Figure 5.5 shows the
extracted association matrix Cmt/ms that has been learned during the extraction
of visual models by using the ’baseline’ strategy.

Overall, the results show that the model learning via the ’combination w/AD
learned’ strategy represents the scene with fewer visual information than the
’baseline’ strategy. This not only holds for the total number of visual models,
but also for the number of model views and the number of Sift-Features. The
removal of redundant information by using a pairwise comparison of the nonlinear
response behavior of Sift-Features results in a reduction of quantities for visual
lip and hand models. In particular, the re-use of models shows its effect with
respect to the reduction of model views for hands.

The result of the associative learning step shows that objects such as the face and
hands yield high association coefficients. This is a result from the combination
of visual features to obtain audiovisual associations. Associations for tracked
objects such as the arm or parts of the t-shirt lack of coefficients and may be
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Figure 5.5.: Associative object learning during tracking. The correlation coefficients are
normalized to 1. The left hand side shows the learned associations for the
’baseline’ strategy. The right hand side depicts the learned associations by
means of the ’combination w/AD’ strategy.

understood by the missing of motion activity. However, the tracking of lips and
hands by the system results into onset overlaps between significant motion onset
and auditory characteristics such as speech and knocking onsets.

Testing Phase

In this phase, the generation of saccades towards multimodal aspects is analyzed.
To do so, learned associations and their weighting in the processing of visual
information are investigated. The classification behavior in terms of multimodal
events is studied using the shift of visual attention by the system. For this, the
system is confronted again with a scene that shows a person that is speaking and
knocking. The occurrence of these two acoustic classes is manually annotated.
The data set comprises 1500 frames which include 677 frames with knocking
segments and 684 frames of speech segments. Again, the acoustic class ’noise’
is not considered here, since an associative learning with objects has not been
taken place. The generation of saccades by the system is based on Eq. 5.5, so that
the presence of acoustic classes triggers the response behavior of learned visual
models. The association coefficients of each acoustic class are normalized to 1
by dividing each coefficient with the overall sum of existing associations for this
class. The result of this triggering process is a linear weighting of model responses
by the corresponding acoustic class, i.e. a multimodal saliency map that offers
locations to shift the focus of attention. The maximum is used as a candidate
for refocusing visual attention in order to control the gaze towards audiovisual
objects. The resulting foci of attention marks objects that are classified manually
to measure the performance of the top-down gaze control.
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model strategy lips hands others

reactive gazing 0.2109 0.0354 0.7537

baseline best case 1 0 0
speech baseline learned 1 0 0

baseline equal 0 0.1829 0.8171

combination w/AD learned 0.9808 0 0.0192
combination w/AD equal 0.2773 0.5605 0.1622

Table 5.3.: Classification performance in the presence of speech models by means of the
maximum response. The gazing probabilities towards objects such as lips,
hands and other objects are shown.

Result

Table 5.3 and Table 5.4 show the result of the visual gazing behavior by the
system. The visual information processing is triggered by two acoustic classes:
speech and knocking and the system’s behavior is analyzed in terms of the gaz-
ing probabilities towards objects such as lips, hands, and other objects. The
’best-case’ is missing for an associative objects-learning during the ’combination
w/AD learned’ strategy, since only one hand and one lip model is learned and
correspondence coefficients are set to the value 1.

At first, the retrieval performance of objects such as lips is examined while the
system is listening to speech. The gazing behavior produced by Itti et al. (2003)
shows that a reactive gazing is less suitable for the recognition of multimodal
objects. This is demonstrated by a less frequent gazing towards lips during the
presence of speech. This may be reasoned by features such as flickr and motion
that are integrated into the bottom-up attention model to generate saccades to-
wards locations that are dominated by such motion dynamics. Since lips produce
very little energy compared to body movements, it is therefore very unlikely that
lips are focused and a reactive strategy leads to a frequent gazing towards other
objects.

In contrast, the application of the learned correlation scheme during the learning
of visual models by means of both ’baseline methods (’best case’, ’learned’)’
results in a frequent looking towards lips. A similar adequate performance is
also shown by the use of the ’combination w/AD learned’ strategy, although
redundant information is removed. The comparison to a uniform distribution
of the correlation coefficients shows a reversal of the system performance. The
speech signal is no longer effective to retrieve lip objects and hence the system
retrieves other objects and also hands. Overall, the learned correlation schemes
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offer a way to control visual attention to lips by an artificial agent. A performance
comparison to a reactive gazing to the ’combination w/AD equal’ strategy shows
similar gazing behavior towards lips. In detail, a lack of object-specific learned
associations leads to the decrease of the specificity of the classification behavior
and shows similar performance such as resulting from a reactive gazing behavior.

The triggering of the visual filtering process by knocking signals shows a similar
gazing performance such as it was observed by using learned speech-lip asso-
ciations. Also here, an inversion of the gaze performance is shown when no
object-specific associations are incorporated into the gazing strategy. However,
the ’combination w/AD learned’ strategy results in a lower classification perfor-
mance compared to speech-lip models. But it clearly shows a better performance
than the use of equally distributed associations. This may be a result of the
pruning step, since it is allowed to merge similar positive samples. This may lead
to a loss of detailed object knowledge of hands. Nevertheless, this strategy shows
a better performance in conjunction with learned associations as compared to
object gazing resulting from a bottom-up gazing mechanisms.

model strategy lips hands others

reactive gazing 0 0.6720 0.3280

baseline best case 0 0.9107 0.0893
knocking baseline learned 0 0.8697 0.1303

baseline equal 0 0.0937 0.9063

combination w/AD learned 0 0.7496 0.2504
combination w/AD equal 0.0132 0.6750 0.3119

Table 5.4.: Classification performance of knocking models by means of the maximum
response. The gazing probabilities towards objects such as lips, hands and
other objects are shown.

5.4. Summary

In this chapter, a method was proposed for learning voluntary gazing towards
multimodal scene aspects that can be used by an artificial agent. The method is
based on a configuration of the visual filtering process and allows a modeling of
visual attention with respect to multimodal events independent from the location
cue. In detail, learned object associations in terms of a weighting scheme allows
a top-down integration of auditory characteristics so that audiovisual objects are
focused irrespectively from an initially learned position.
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Chapter 5 Learning Voluntary Gazing towards Multimodal Events

The learning of voluntary gazing is divided into a learning phase and in a testing
phase, where the learning phase corresponds to a bottom-up process and serves
for the acquisition of audiovisual object associations. An association is computed
by joint onset activities of different modalities. It has been investigated in onset
activities derived from auditory characteristics with local object motion as well
as object trajectories. The combination of both motion dynamics leads to the
maintenance of their shown advantages during association learning with auditory
scene characteristics. In particular, the discriminative properties of local object
dynamics leads to a suppression of multimodal associations in the presence of
objects that do not posses sound production capabilities.

During the testing phase, the trained weighting scheme was used to configure the
response behavior of acquired visual scene knowledge in the presence of acoustic
characteristics. The proposed multimodal attention model yield frequent atten-
tion shifts towards multimodal aspects in comparison to a reactive attention
model. In particular, the gazing performance does not significantly decrease dur-
ing top-down filter weighting by means of visual object knowledge that is removed
from redundancies. The analysis of a reactive gaze control towards multimodal
aspects shows that it is rather dominated by motion dynamics. Furthermore, it
was observed that gazing strategies resulting from an equalized weighting scheme
lead to a reversal of the system’s performance. This aspect stresses the impor-
tance of an active configuration of the visual filtering process by means of learned
object associations.
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6. Summary

In this work, a machine learning method was introduced that allows to control
the visual attention of an autonomous system towards audiovisual scene aspects.
Underlying learning principles derived from infancy research served as inspiration
to model such artificial gazing behavior. One principle comprises the initial vi-
sual reactive gazing behavior of infants that makes use of generic visual features
rather than object knowledge during scene exploration. With increasing age, in-
fants start to structure their reactive gazing behavior by means of the integration
of auditory scene characteristics that may guide visual attention. In particular,
dynamic motion characteristics as well as significant contrasts in auditory signals
of objects play a key role in this respect. More precisely, infants start to con-
trol their visual attention by developing visual expectations in the presence of
object-specific sounds (Richardson and Kirkham, 2004). Equipping a robot with
such a gazing mechanism may enable it to classify objects by their sound and
accordingly learn to control its visual attention to it. In this thesis, this principle
of multimodal classification was implemented by an associative weighting scheme
so that different learned visual aspects are accessible and biased by an artificial
audition system. The integration of top-down knowledge in the visual filtering
process by acoustics categories showed that the developed gazing strategy is able
to produce gazing more frequently on multimodal scene aspects than a reactive
visual attention model. A similar gazing performance was also achieved when
the weighting of visual model information was learned on visual models created
based on a pruning strategy of redundant scene knowledge.

A major focus of this thesis relied in the investigation of a method for an un-
supervised acquisition of object knowledge that can be triggered from acoustic
scene knowledge. The acquisition process takes place during the tracking of ob-
jects, where a spatio-temporal continuity constraint is used as supervision signal
to combine different object views. The learning of object models is characterized
by the inhibition of distractors that occur in the periphery of the visual field. The
inhibition mechanism enables an increasing object specificity that was shown by
improved discrimination capabilities of the system. However, the learning of vi-
sual object knowledge leads to a linear increase in the number of object features.
For this, a method was proposed that enables an artificial agent to make use of
already learned object knowledge in the acquisition process so that redundant
object constituents are removed.
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6.1. Conclusions

The proposed computational model for learning voluntary gazing is benefiting
from audiovisual processing and shows a possibility to control the gaze invariant
from learned object positions. The system is able to shift its attention towards
multimodal objects even though a demonstrator is freely varying object locations.
An initially used reactive gazing mechanism shows that little relevant multimodal
information is accessible to the artificial agent. This stresses the importance
of gradual learning of voluntary gazing by a top-down integration of additional
sensory information. This may be advantageous for an artificial vision system that
needs to cope with the challenge to form multimodal object representations with
little sensory information. Moreover, the weighting of learned visual knowledge
enables a relevant selection of them and thus may reduce time consuming filtering
processes for artificial agents.

6.2. Suggestions for Future Research

In the proposed architecture, the duration of the training and testing phases was
set manually. More precisely, the entering in the bottom-up and top-down process
was externally regulated. Therefore, future research may investigate a flexible
design of the duration of both processes to regulate the switching between them by
the system itself. One possibility may be to model the system’s training duration
in terms of the quality of audiovisual objects representations during tracking. The
gaze fixation policy may be inspired by findings from the Habituation-Paradigma.
More precisely, if the model learning is stagnating for current gaze fixations that
might be a criterion to terminate the training phase, since the system acquired
adequate object knowledge and needs to develop novelty preference to other visual
scene aspects. Such termination criterion may enable the system to regulate the
bottom-up process so that new scene aspects are accessible. Consequently, the
system would possibly be situated in a learning phase, and this aspect may lead
to a shortened training duration and a faster knowledge acquisition.

The suggested method for an unsupervised acquisition of object knowledge is
based on an inhibition mechanism that results into a linear increase of features.
The implementation of a pruning strategy shows a reduction from a linear to
a sub-linear increase. For an artificial agent, it would also make sense if the
amount of stored features converges over time. One approach may comprise the
examination of already stored positive object samples and their use as negative
information for the inhibition process during model construction. Furthermore, it
may be beneficial to build new visual scene knowledge by means of already stored
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6.2. Suggestions for Future Research

object knowledge, e.g. the selection of stored negative samples for an inhibition
of a new learned object model of a current gazed visual aspect.

The proposed architecture was developed to examine the visual gazing behavior
by means of acoustic scene properties. A correct classification of the auditory
input stream was assumed, i.e. this scene knowledge was not acquired during
object demonstration and was defined by external system knowledge given by
the designer. In infancy research, there is also indication that infants benefit
from synchronous audiovisual object properties to segment their acoustic envi-
ronment (Hollich et al., 2005) that may bootstrap the unsupervised acquisition
of auditory classifiers for an autonomous learning system. Particularly impor-
tant is the rhythm that mainly influences the concept formation of language in
infants development (Mehler et al., 1996). Rhythm may be a possible candidate
to form auditory objects for artificial systems, since it abstracts from specific
features such as the description in terms of frequency bands. The description of
repetitive rhythmic patterns in various frequency bands and their occurrence in
combination may constitute one possibility to form an object representation.

Such a description would be a way to create models for speech which may ob-
tain improved generalization and discrimination properties in comparison to low
level features given by frequency response activities. Such an extension of the
proposed architecture may involve the development of acoustic expectations that
are linked to visual object knowledge and may improve the learning performance.
More precisely, learning processes of acoustic scene knowledge may be involved
in the learning loop of voluntary gazing by means of inhibitory effects during
building object associations. For example, the misclassification behavior of audi-
tory models may be exploited by a negative weighting of according visual model
response behaviors during top-down processing.

The proposed associative learning step in Section 5.2.4 is based on joint onset
activities and showed that onset activities may also be produced from object tra-
jectories as a result of the demonstrators’ body movements. The extraction of
relevant object trajectories and an appropriate alignment to acoustic properties
may rely in the assumption of a multimodal rhythm by means of the correspon-
dence of onset-offset transitions in both modalities. This assumption may enable
an artificial agent to reduce produced activities from object trajectories. Addi-
tionally, the incorporation of onset-offset transitions may enable the learning of
object associations invariant from parameters such as speaker’s voice or according
lip movements.

Additionally, the learning of object associations in the proposed architecture re-
sulted in a similar correlation behavior of hands models during knocking activi-
ties. Similar to the categorization behavior of infants (Plunkett et al., 2008), it
may be beneficial for an artificial system to form one object class by means of its
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correlation. This may be a way to cope with dissimilarities within the same ob-
ject instance to arranged multiple object instances in the object memory. Further
future work to object memory refers to the shown lack of audiovisual associations.
This could be used for a further pruning steps to remove irrelevant multimodal
knowledge from object memory.

The shown suggestions are made to improve the gazing strategy for future work.
However, infants do not only develop their visual capabilities based on audi-
tory characteristics but also relay on other modalities. Sensory information such
as odor or tactile object information influence the learning of objects and the
perception of the environment. In particularly, infants use pointing gestures of
interaction partners (Woodward and Guajardo, 2002) as learning signals for ob-
ject discrimination. From the perspective of autonomous learning, it would be
interesting to learn suitable models to structure such sensory information and use
them for artificial attention modeling.
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A. Appendix

A.1. Auditory Onset Classification

The model learning of acoustic classes is a minor focus of this thesis. Therefore
the acoustic classes are manually defined and extracted from the auditory stream
of the analyzed video sequences. The acoustic classes comprise segments such as
speech, knocking and noise. The annotation of the sound sources is conducted
with PRAAT (Boersma and Weenink, 2009). An example of an annotation is
shown in Figure A.1, where the acoustic classes are labeled with an according
string. Each time stamp of the sound source is aligned to a defined class such
as knock, noise and speech. The annotation of the class noise is marked with
an empty string. The manual annotation of the auditory stream serves as online

Figure A.1.: Hand annotation of acoustic classes with the software PRAAT. Segments
for the classes speech,noise and knocking are labeled. The class noise is
aligned with an empty text grid.

classification of detected onsets. The classified onsets are examined as feature for
an associative learning with visual object characteristics.
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