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Chapter 1

Introduction

In recent years, the processes of population genetics, which describe the genetic
structure of populations under the influence of evolutionary forces such as mu-
tation, selection, recombination, migration, and genetic drift, have been a rich
source of fascinating probabilistic problems. More precisely, the dynamics is often
well understood in the limit of infinite population size, where a law of large num-
bers leads to a deterministic description (in terms of discrete dynamical systems
or differential equations), but great challenges ensue if the population is finite, in
particular if there is interaction between individuals, such as competition (selec-
tion) or recombination (the combination of genetic material of two parents into
the ‘mixed’ genetic type of an offspring); see [12, 17, 20].

For finite populations, there are mainly two classes of models in population ge-
netics. One important class are branching processes where individuals reproduce
independently and thus the population size varies. See [24] for an introductory
overview.

At the other extreme, one may consider models where the population size is fixed.
On the one hand, the Wright-Fisher model where the successive generation is
drawn out of the preceding, thus models species with non-overlapping generations
[17]. On the other hand, the Moran model, first formulated by Moran [42] in 1958.
In its simplest formulation, one considers a population of N individuals. Each
individual is either of type 0 or 1. At each time step, one individual is randomly
chosen and replaces another randomly chosen one. Of course, one may extend
this simple model by further evolutionary forces.

In this thesis, we consider a Moran model with recombination and mutation and
a Moran model with selection and mutation.
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Recombination

Recombination means the exchange and rearrangement of genetic material at
sexual reproduction. It is one of the major sources of genetic variability. This
induces interaction between the individuals in the model.

Interactions usually make the infinite-population model nonlinear and, often,
already difficult enough to treat. In the corresponding stochastic model, they
are reflected by transition rates (or probabilities) that depend nonlinearly on the
current state of the system and often result in processes whose treatment provides
enormous challenges. Even the relationship between the stochastic process and its
deterministic counterpart, the infinite-population model is usually unclear (apart
from the infinite population limit). In particular, the expectation of the stochastic
process is, usually, not given by the corresponding deterministic dynamics - in
general, such coincidence is reserved for populations of individuals that evolve
independently.

In most processes of population genetics with interaction, even the analysis of
the expectation is difficult. Its dynamics does, usually, not only depend on the
current expectation, but on higher moments, whose change, in turn, depends on
even higher moments. Formulating this hierarchy of dependencies is a common
approach for stochastic processes arising in various applications in physics, chem-
istry, and biology [39, 38, 14]. Usually, this hierarchy continues indefinitely (it
does not ‘close’); to extract at least an approximation to the (lower) moments
of interest, some method of ‘moment closure’ must be employed (in the simplest
case, a truncation) [14]. Most approaches in this field are purely heuristic. One
concept was developed by Levermore [39] where the moment closure is chosen
such that the entropy is maximised.

A recent paper that provides a good overview on moment closure in the context
of population dynamics is from Hausken [26] in which he systemizes the common
approaches and shows that the approximations indeed improve when the ’power’
of the moment closure increases.

The corresponding deterministic systems (that arise through a law of large num-
bers) are also often tackled via systems of moments or cumulants, see [12, Ch.
V.4] for an overview.

Models of recombination take a special role between linear and nonlinear models.
Although there is abundant interaction and hence nonlinearity, the deterministic
system that describes the frequencies of all possible (geno)types may be (exactly)
transformed into a linear one by embedding it into a higher-dimensional space
(more explicitly, by adding further components that correspond to products of
type frequencies). This method is known as Haldane linearisation [41]. The
underlying linear structure even allows a diagonalisation and explicit solution,
see [52] and references therein. In certain important special cases (notably, in so-
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called single-crossover dynamics in continuous time), this solution is surprisingly
simple and immediately plausible [3, 8].

Elucidating underlying linear structures in the corresponding stochastic system
(more precisely, in the Moran model with recombination) has only started very
recently whereas a lot of literature is available for the corresponding retrospective
processes, that means backward in time, as the ancestral recombination graph.
See [28] and references therein for a good introduction.

In the aforementioned single-crossover case, Bobrowski et al. [10] analysed the
asymptotic behaviour in the presence of mutation. They obtain the surprising
result that the stationary distribution is hardly affected by recombination rather
than mutation and resampling.

Baake and Herms [6] observed that the expected type frequencies in the finite
system (but without genetic drift) follow those in the deterministic model; this
could be explained by the (conditional) independence of certain marginalised
processes that appear as ‘subsystems’ of the stochastic model. This and other
results now lead to the question whether in the general recombination scheme
(i.e., not restricted to single crossovers) the dynamics of the expectations may
be embedded into a higher but finite dimensional space, such that they are given
by a finite system of differential equations. Is there an equivalent of Haldane
linearisation in the sense of moments?

In Chapter 2 we will address these questions in the framework of the Moran
model with recombination and mutation. In particular, we will show that the
system of moments closes here after a finite number of steps, without any need
for approximations, as long as there is no genetic drift. This may be considered as
a stochastic analogue of Haldane linearisation. First, we present a short excursus
about recombination in the field of genetic algebras and conduct Haldane lin-
earisation in this context which originally motivated us to investigate the Moran
model with recombination with respect to moment closure.

Selection

In Chapter 3, we investigate problems that arise in the Moran model with selec-
tion and mutation. Whereas in Chapter 2, our focus was on the behaviour of our
model in forward time, here we concentrate on properties in backward time.

From a biological point of view, interesting questions are such as how strong is
selection, what is a good choice for the parameters or how does selection interact
with genetic drift (for example, a favoured mutation may get lost due to random
individual reproduction nevertheless in expectation its frequency should grow
exponentially [50])?

Of course, these effects shall be measured and quantified with data. Typically,
one has some data of the current population but no chance to get data from all
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generations needed for an evolutionarily relevant time span. Thus, one has to
reconstruct the ancestry of a sample of the population probabilistically.

This problem is tackled by coalescent theory. Typical questions in coalescent
theory are [5]:

• What is the ancestry of the sample?

• What is a good choice of the genetic parameters governing the process?

• When does the genealogical tree reach its root, the most recent common
ancestor? What is its type?

It is often more convenient in population genetics to pass to the diffusion limit.
By a proper scaling of parameters and acceleration of time, the Moran model
converges weakly to a diffusion limit if the number of individuals tends to infinity
[37]. The importance of this limit comes from the fact that on the one hand
random fluctuations in the population are kept and thus it is a valid approxi-
mation for a finite population and on the other hand these diffusion processes
are often mathematically easier to analyse. See [17, Ch. 7] for an introduction.
The disadavantage of this approach is that the graphical representation, as it is
naturally provided by the Moran model, gets lost.

Kingman [34, 35] 1981 described a method to construct genealogies in the neutral
model, that means without selection. For a given sample without types, drawn
from the diffusion limit, one considers their behaviour in the past where repro-
duction events lead to the merging of lines. One finally reaches a state with one
single lineage, determines its type from the stationary distribution of the forward
process and imposes the mutation process on the lines in forward time. The sim-
plicity of this procedure hinges on the fact that in the neutral model reproduction
of single individuals is independent of their types and of the composition of the
background population. In the last thirty years, a lot of literature came up to
this neutral model. For an overview see [17].

If selection is incorporated, this simple procedure is no more applicable. For a
very long period of time it seemed intractable to construct a coalescent for models
with selection. Not before 1997, Krone and Neuhauser [43] provided a procedure
by which genealogies under the influence of selection may be constructed, the
so-called ancestral selection graph. They overcome the mentioned problems by
the permission of branching events in backward time that means, new lines may
emerge. So, a large graph is constructed, out of which the true genealogical tree
must be extracted, the remaining lines called virtual lines.

Another approach was first suggested by Kaplan, Darden and Hudson [31] in 1988.
The idea is to divide the population into groups (so called ’demes’) of individuals
of the same type and then model their genealogy by the structured coalescent. In
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this model, mutation corresponds to migration between the demes [9]. In 2004,
Barton, Etheridge, Sturm [9] formalised this approach and proved existence of
this process. They underline that simulations based on the structured coalescent
are “essentially more efficient” compared to those based on the ancestral selection
graph and that their approach applies two “very general forms of selection”.

A natural question that comes up in this field is the distribution of the most recent
common ancestor in these models. Whereas in the neutral model its distribution
is simply given by the stationary distribution of the forward-process, in models
with selection this should no more be true. It is a sensible conjecture that it is
more likely that it is favoured under selection [21].

In 2002, Fearnhead [21] calculated its distribution with the help of the construc-
tion of the common ancestor process. The construction of this process is similar
to the ancestral selection graph. The key idea is to look at the ancestry of a single
lineage. Compared to the ancestral selection graph an essential simplification is
possible due to the observation that only unfit virtual lines may affect the geneal-
ogy of this individual. In the deep past, its line must coincide with the line of
the common ancestor of the whole population. Thus, its stationary distribution
is the distribution of the most recent common ancestor in the ancestral selection
graph. Fearnhead gives an explicit distribution in the case of purifying selection
and proves its stationarity by a rather technical verification of the stationarity
condition.

In 2007, Taylor [50] also considers a common ancestor process starting from
the structured coalescent approach. He first considers the retrospective process
which is the structured coalescent for sample size 1 and identifies the common
ancestor process as its time-reversed process. To this end, he needs the common
ancestor distribution which is the stationary distribution of both the forward and
backward in time process. For this, he defines the conditional probability h(x)
which is the probability that the ancestor of the current population is fit, if the
frequency of fit individuals in the current population is x. It is no surprise that
the distributions from Fearnhead’s and Taylor’s approach coincide.

Unfortunately, their solutions are no more connected to the particle picture of
the Moran model. Nevertheless, there is some remarkable interest in models that
permit particle interpretations. A particle picture from the diffusion limit was
provided by the look-down process in 1996 [15] for the neutral case. Here, each
particle is given a level, and only particles of lower levels may be replaced at
birth events. From this process, the former diffusion limit may be regained if the
number of particles tends to infinity. A further convenient property is, that the
genealogy of these particles is explicit and the common ancestor is the particle
of the highest level. For the nonneutral model the construction of the look-down
process becomes much more difficult and especially the genealogies can no more
be recovered that easily [16]. See [18, Ch. 5] for an overview.
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In Chapter 3 we connect the common ancestor distribution directly to the Moran
model with the aim to enlighten the quantities in thei formula and to provide
a particle picture behind this distribution. After a short introduction into the
construction of the common ancestor process and a presentation of the results of
Fearnhead and Taylor, we derive a boundary value problem that describes the
distribution of the common ancestor via a first step argument directly from the
Moran model without a loop way over diffusion theory or the construction of
a sophisticated process as it was done by Taylor [50] and Fearnhead [21]. We
are also able to solve this problem directly from the Moran model. This provides
some better understanding of the process and enables us to present a new particle
picture comparable to the look down process in the case of no mutation.



Chapter 2

Moment closure in a Moran model

with recombination

The main results of this chapter have been published in [7], it is joint work with
Ellen Baake. We follow the presentation in [7]. Beyond this, we undergo an
excursus about genetic algebras. The occupation on this field motivated us to
apply the moment approach to the Moran model with recombination.

2.1 Excursus about genetic algebras

In the first part of this section we give a short introduction into the theory of
genetic algebras and Haldane linearisation. Detailed presentations of this topic
may be found in [54, 40, 46]. Then we apply this theory to the dynamics of
recombination.

Consider a collection of gametes a1, . . . , an. The span of these over the real num-
bers may be considered as a vector space together with the canonical addition
and scalar multiplication. The convex combinations of these gametes may nat-
urally be interpreted as populations with the weights as the frequencies of the
corresponding gametes or types.

When two types mate, some other types may emerge. We express the mating by
a multiplication:

aiaj =

n∑

k=1

γijkak

with γijk ≥ 0,
n∑

k=1

γijk = 1, being the probability that the offspring of this mat-

ing event is ak. By this reasoning, it is clear that algebras naturally arise in
the description of genetic inheritance. The standard example is the Mendelian
algebra:
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Example 2.1. [Gametic algebra with recombination [54, Ex.1.3]] We consider a
population of gametes. Each gamete has two loci which may be occupied either
by allele A or a, and B or b, respectively. Thus, four types of gametes are present:

a1 := AB, a2 := Ab, a3 := aB, a4 = ab.

We consider these four gametes as free vectors over R. The multiplication is
explained via the following table

a1 a2 a3 a4
a1 a1

1
2
(a1 + a2)

1
2
(a1 + a3)

1
2
(a1 + a4)−

1
2
θd

a2 a2
1
2
(a2 + a3) +

1
2
θd 1

2
(a2 + a4)

a3 a3
1
2
(a3 + a4)

a4 a4

where d := a1 − a2 − a3 + a4.

These multiplication rules reflect the following heredity scheme: if two gametes
of the same type mate, the offspring will be of this type, too. If type a1 mates
with a2, then the offspring will be of type a1 or a2 with the same frequency.
These rules reflect simple Mendelian inheritance. A special situation is on hand
for the pairing of a1 and a4, or a2 and a3, respectively. Here, recombination
may interfere. Thus, with probability θ the gametes may exchange their genetic
material. In the case of types a1 and a4 this means that the resulting gametes
will be of type a2 and a3. So, with probability 1 − θ, the resulting offspring will
be a1 and a4 with the same frequency and with probability θ it will be a2 and a3
with the same frequency.

In the table, we omitted the entries below the diagonal due to symmetry. It is
clear that for biological reasons the multiplication should be commutative.

Hereby, we consider a convex combination of the four basis vectors as a population
and θ may be interpreted as the recombination probability. The product of a
population with itself is then again a population and denotes the reproductive
step of the population. �

The most general definition of algebras in this field is the algebra with genetic
realization or stochastic algebra.
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Definition 2.2. An algebra is called algebra with genetic or stochastic if it has
a basis a1, . . . , an such that the multiplication is given by

aiaj =
n∑

k=1

γijkak,

where the multiplication constants γijk fulfill the equations

γijk ≥ 0, i, j, k = 1, . . . , n

and
n∑

k=1

γijk = 1, i, j = 1, . . . , n.

This basis is then called natural basis.

The algebra in Example 2.1 is stochastic.

Consider three populations P,Q and R. From a biological point of view it is
obvious that it makes a difference whether P and Q mate first and their product
with R or whether the product of Q and R mates with P . Mathematically this
means that algebras in genetics are usually not associative.

Likewise, it is obvious that it should not matter whether P mates Q orQmates P .
Thus, algebras in genetics are usually commutative. Compare with our example.

Definition 2.3. An algebra A over a field k is called baric if it admits a non-
trivial algebra homomorphism

ω : A → k,

which is called the weight function.

For an algebra with genetic realisation in the natural basis a1, . . . , an, define an
algebra homomorphism ω : A → k by ω(aj) = 1. Thus, algebras with genetic
realisation are baric algebras. The reverse is not true in general.

Algebras with genetic realisation turn out to be very general objects. Schafer [48]
gave a definition for genetic algebras, called Schafer-genetic. This definition is
very useful because on the one hand most algebras with an application in genetics
fulfill the conditions, and on the other hand these have some useful properties.
In our context, it is an important fact that Schafer-genetic algebras are baric
algebras whose weight function is unique [41]. Thus, the set of populations,
which is the pre-image of 1 under the weight function, is well-defined.

Gonshor gave a definition which is equivalent to Schafer’s1 but is of more practical
use because the conditions are usually easier to check.

1Woerz-Busekroes [54] points out that this assertion is only true if the underlying field
is algebraically closed. Otherwise there are examples of Schafer-genetic algebras which are
not Gonshor-genetic. In account of this subtlety, Woerz-Busekroes gives a slightly different
definition than Gonshor.
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Definition 2.4. [23, 46] A commutative finite dimensional algebra A is called
Gonshor-genetic if there exists a basis {a0, a1, . . . , an} with

aiaj =
n∑

k=0

γijkak,

such that the multiplication constants satisfy

γ000 = 1,

γ0jk = 0, for k < j,

γijk = 0, for i, j > 0 and k ≤ max(i, j).

Such a basis is called canonical basis for A.

Example 2.5. We change the basis by the matrix






1 0 0 0
1 −1 0 0
1 0 −1 0
1 −1 −1 1







this means the vectors c0 = a1, c1 = a1−a2, c2 = a1−a3, and c3 = a1−a2−a3+a4
make up the new basis. In this basis, the multiplication is given by the following
table:

c0 c1 c2 c3
c0 c0

1
2
c1

1
2
c2

1
2
(1− θ)c3

c1 0 1
2
θc3 0

c2 0 0
c3 0

Thus, this algebra is Gonshor-genetic. �

Woerz [54] gives a detailed overview on the construction of genetic algebras ac-
cording to Heuch [27], Reiersol [47], and Holgate [30]. Essentially, it is the tensor
product of the gametic algebras of the different alleles at the corresponding loci.
For our presentation it suffices to look at the concrete algebras as we do in the
second part of this excursus. Heuch [27] showed that the recombination algebra
is genetic.

We are interested in the analysis of the evolution map

E : p 7→ p2.

A problem is to determine successive generations in terms of the initial generation.
Haldane [25] gave a constructive procedure which tackled this problem. It was
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later theoretically examined by Holgate [29] and McHale and Ringwood [41]. The
key idea is to embed the set of populations which is the pre-image of 1 under the
weight function into a (higher but) finite dimensional vector space V such that
the following diagram commutes, where L is a linear map.

ω−1(1)
D

−−−→ V


yE



yL

ω−1(1)
D

−−−→ V

(2.1)

In our context we call algebras linearisable, if this procedure succeeds for the
evolution map.

Example 2.6. In the situation of our example in the canonical basis, the set of
populations ω−1(1) is simply given by

{p = c0 + g1c1 + g2c2 + g3c3 | g1, g2, g3 ∈ R}.

We consider the effect of the evolution map on such an arbitrary population
p = c0 + g1c1 + g2c2 + g3c3:

E(p) = p2 = c20 + 2g1c0c1 + 2g2c0c2 + 2g3c0c3 + 21p2c1c2
= c0 + g1c1 + g2c2 + ((1− θ)g3 + θg1g2)c3 .

Thus, the coordinates are mapped in the following way:

g1 7→ g1, g2 7→ g2, g3 7→ (1− θ)g3 + θg1g2.

So the transformation is nonlinear; a product term emerges. We take this new
product term as an additional basis vector in the higher dimensional vector space
W . In this vector space, we may represent the evolution map by the following
matrix: 





1 0 0 0
0 1 0 0
0 0 1− θ 0
0 0 θ 1







and hence obtain a linear mapping. �

Holgate [29] stated that genetic algebras are linearisable.

McHale and Ringwood found necessary and sufficient conditions for linearisability
which they summarized in the following theorem.

Theorem 2.7. [41] A baric algebra A is Haldane linearisable if and only if the
plenary power2 A[r] is Schafer-genetic for some integer r.

2Plenary powers are defined recursively: a[1] := a, a[r] := a[r−1]a[r−1].
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In our example we first go over to the canonical basis before we linearise the
dynamics. Abraham [1] showed that for Schafer algebras the linearisation is in-
dependent of the basis. Hence, the vector space in which the algebra is embedded
is unique. Nevertheless, for practical use it is convenient to go to the canonical
basis.

Haldane Linearisation for the recombination gametic algebra

We are interested in the concrete shape of Haldane linearisation in the context of
recombination algebras. So, we pursued it for algebras with two, three, and four
sites [51, 53].

2 sites

In this case, the natural basis of our algebra is given by m · n gametes: a1 =
[1, 1], a2 = [1, 2], . . . , amn = [m,n], with multiplication given by

[i, j]× [k, l] =
1

2

(
[i, j] + [k, l]

)
+

1

2
θ
(
−([i, j] + [k, l]) + [i, l] + [k, j]

)

for all 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n, where θ again is the recombination probability.

The canonical basis is then given by

w1 = [1, 1] = a1 ,

wj = [1, 1]− [1, j] = a1 − aj for j = 2, . . . , n ,

wkn+1 = [1, 1]− [k + 1, 1] = a1 − akn+1 for k = 1, . . . , m− 1 ,

wkn+j+1 = [1, 1]− [1, j + 1]− [k + 1, 1] + [k + 1, j + 1] ,

= a1 − aj+1 − akn+1 + akn+j+1 k = 1, . . . , m− 1 , j = 1, . . . , n− 1 .

and denoted by the following transformation matrix:










1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1










︸ ︷︷ ︸

m×m

⊗












1 0 0 · · · · · · 0
1 −1 0 · · · · · · 0
1 0 −1 · · · · · · 0
...

...
...

...
...

...
...

...
...

...
1 0 0 · · · · · · −1












︸ ︷︷ ︸

n×n
︸ ︷︷ ︸

(mn)×(mn)

.
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Here, ⊗ denotes the tensor product for matrices, also known as Kronecker product
[22]. The new basis is Gonshor as the following equations reveal:

w1 × w1 = w1 ,

w1 × wj =
1

2
wj for j = 2, . . . , n ,

w1 × wkn+1 =
1

2
wkn+1 for k = 1, . . . , m− 1 ,

w1 × wkn+j+1 =
1

2
θwkn+j+1 for k = 1, . . . , m− 1 and j = 1, . . . , n− 1 ,

while all other multiplications yield 0. The populations are then given by

p = w1 + g2w2 + . . .+ gmnwmn with gi ∈ R .

Under the evolution map E the coordinates gi are mapped in the following way:

gj 7→ gj for j = 1, . . . , n and j = n+ 1, 2n+ 1, . . . , (m− 1)n+ 1

gkn+j+1 7→ (1− θ)gkn+j+1 + θgj+1gkn+1 k = 1, . . . , m− 1, j = 1, . . . , n− 1 .

For the linearisation we extend the vector space by (m − 1)(n − 1) new basis
vectors, namely

gj,k = gj+1 · gkn+1 for k = 1, . . . , m− 1 and j = 1, . . . , n− 1

and map them onto themselves. Then the dynamics can be described by a (2mn−
m− n)× (2mn−m− n)-matrix:1(m−1)+(n−1) ⊕

(1(m−1)(n−1) ⊗

(
1− θ θ
0 1

))

,

where ⊕ denotes the Kronecker sum of two matrices [22].

The shape of this matrix can be understood in the following way. In the new
Gonshor basis we have the specified type a1 = [1, 1], and all other new basis
vectors are defined in respect to it. Recombination of this type with another type
that carries allele 1 at site 1 or 2 does not change the types. These are covered
by the identity matrix. Recombination events with other types do change the
composition of the population and, of course, their dynamics is essentially the
same as in Example 2.6.

3 sites

In the situation of three sites, three recombination events are possible. We intro-
duce the probabilities θ1, and θ2 resp., for the recombination events (1|23), and
(12|3) resp. The double crossover event (13|2) has probability γ.
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In the natural basis, which is analogue to the two-site case, a1 = [1, 1, 1], a2 =
[1, 1, 2], . . . , an1n2n3

= [n1, n2, n3], the multiplication is then given by

[a, b, c]× [d, e, f ] =
1

2

(
[a, b, c] + [d, e, f ]

)

+
1

2
θ1
(
−[a, b, c]− [d, e, f ] + [a, e, f ] + [d, b, c]

)

+
1

2
θ2
(
−[a, b, c]− [d, e, f ] + [a, b, f ] + [d, e, c]

)

+
1

2
γ
(
−[a, b, c]− [d, e, f ] + [a, e, c] + [d, b, f ]

)
.

Again, we change the basis. The new basis is given by

w1,1,1 = [1, 1, 1] ,

w1,1,k = [1, 1, 1] − [1, 1, k] for k = 2, . . . , n3 ,

w1,j,1 = [1, 1, 1] − [1, j, 1] for j = 2, . . . , n2 ,

wi,1,1 = [1, 1, 1] − [i, 1, 1] for i = 2, . . . n1 ,

wi,j,1 = [1, 1, 1] − [1, j, 1] − [i, 1, 1] + [i, j, 1] for i = 2, . . . , n1 and j = 2, . . . , n2 ,

wi,1,k = [1, 1, 1] − [i, 1, 1] − [1, 1, k] + [i, 1, k] for i = 2, . . . , n1 and k = 2, . . . , n3 ,

w1,j,k = [1, 1, 1] − [1, j, 1] − [1, 1, k] + [1, j, k] for j = 2, . . . , n2 and k = 2, . . . , n3 ,

wi,j,k = [1, 1, 1] − [1, 1, k] − [1, j, 1] − [i, 1, 1] + [1, j, k] + [i, 1, k] + [i, j, 1] − [i, j, k]

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 .

where the transformation is represented by the matrix










1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1










︸ ︷︷ ︸

n1×n1

⊗












1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

...
...

...
1 0 · · · · · · −1












︸ ︷︷ ︸

n2×n2

⊗










1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1










︸ ︷︷ ︸

n3×n3

.

This basis is Gonshor.

Again, we consider the action of the evolution map onto the coordinates of an
arbitrary population p = g1,1,1w1,1,1 + g1,1,2w1,1,2 + . . .+ gn1,n2,n3wn1,n2,n3

:
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g1,1,1 7→ g1,1,1 ,

g1,1,k 7→ g1,1,k k = 2, . . . , n3 ,

g1,j,1 7→ g1,j,1 j = 2, . . . , n2 ,

gi,1,1 7→ gi,1,1 i = 2, . . . n1 ,

gi,j,1 7→ (1− θ1 − γ)gi,j,1 + (θ1 + γ)g1,j,1 · gi,1,1 i = 2, . . . , n1 , j = 2, . . . , n2 ,

gi,1,k 7→ (1− θ1 − θ2)g
i,1,k + (θ1 + θ2)g

1,1,k · gi,1,1 i = 2, . . . , n1 , k = 2, . . . , n3 ,

g1,j,k 7→ (1− θ2 − γ)g1,j,k + (θ2 + γ)g1,1,k · g1,j,1 j = 2, . . . , n2 , k = 2, . . . , n3 ,

gi,j,k 7→ (1− θ1 − θ2 − γ)gi,j,k + θ1 · g
i,1,1 · g1,j,k + θ2 · g

1,1,k + γ · g1,j,1 · gi,1,k

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 .

New product terms arise. Under the evolution map, these are mapped in the
following way:

g1,j,1 · gi,1,1 7→ g1,j,1 · gi,1,1 for i = 2, . . . , n1 and j = 2, . . . , n2 ,

g1,1,k · gi,1,1 7→ g1,1,k · gi,1,1 for i = 2, . . . , n1 and k = 2, . . . , n3 ,

g1,1,k · g1,j,1 7→ g1,1,k · g1,j,1 for j = 2, . . . , n2 and k = 2, . . . , n3 ,

gi,1,1 · g1,j,k 7→ gi,1,1
(
(1− θ2 − γ)g1,j,k + g1,1,k · g1,j,1(θ2 + γ)

)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

g1,1,k · gi,j,1 7→ g1,1,k
(
(1− θ1 − γ)gi,j,1 + g1,j,1 · gi,1,1(θ1 + γ)

)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

g1,j,1 · gi,1,k 7→ g1,j,1
(
(1− θ1 − θ2)g

i,1,k + g1,1,k · gi,1,1(θ1 + θ2)
)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

.

A further product term emerges, it is mapped onto itself:

gi,1,1 · g1,1,k · g1,j,1 7→ gi,1,1 · g1,1,k · g1,j,1

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3.

Thus, the dynamics can be linearised by adding these

(n1 − 1)(n2 − 1) + (n1 − 1)(n3 − 1) + (n2 − 1)(n3 − 1) + 4(n1 − 1)(n2 − 1)(n3 − 1)

additional parameters and the resulting linear mapping is represented by the
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following matrix:1(n1−1)+(n2−1)+(n3−1) ⊕ 1(n1−1)(n2−1) ⊗

(
1− θ1 − γ θ1 + γ

0 1

)

⊕ 1(n1−1)(n3−1) ⊗

(
1− θ1 − θ2 θ1 + θ2

0 1

)

⊕ 1(n2−1)(n3−1) ⊗

(
1− θ2 − γ θ2 + γ

0 1

)

⊕1(n1−1)(n2−1)(n3−1) ⊗









1− θ1 − θ2 − γ θ1 θ2 γ 0
0 1− θ2 − γ 0 0 θ2 + γ
0 0 1− θ1 − γ 0 θ1 + γ
0 0 0 1− θ1 − θ2 θ1 + θ2
0 0 0 0 1









Again, the structure of the matrix can be explained by the same reasoning as
in the two sites case. Types that carry allele 1 at two sites correspond to the
identity matrix, those which carry allele 1 at one site reveal essentially the same
dynamics as in the two-site case and those that differ from the specified type a1
at all of their sites belong to the building block with the 4× 4-matrix.

4 sites

With four sites, we have six recombination events and thus six parameters. The
multiplication rule is

[a, b, c, d]× [e, f, g, h] =
1

2

(
[a, b, c, d] + [e, f, g, h]

)

+
1

2
θ1
(
−[a, b, c, d]− [e, f, g, h] + [a, f, g, h] + [e, b, c, d]

)

+
1

2
θ2
(
−[a, b, c, d]− [e, f, g, h] + [a, b, g, h] + [e, f, c, d]

)

+
1

2
θ3
(
−[a, b, c, d]− [e, f, g, h] + [a, b, c, h] + [e, f, g, d]

)

+
1

2
γ1
(
−[a, b, c, d]− [e, f, g, h] + [a, f, c, d] + [e, b, c, d]

)

+
1

2
γ2
(
−[a, b, c, d]− [e, f, g, h] + [a, b, g, d] + [e, f, c, h]

)

+
1

2
γ3
(
−[a, b, c, d]− [e, f, g, h] + [a, f, g, d] + [e, b, c, h]

)

+
1

2
σ
(
−[a, b, c, d]− [e, f, g, h] + [a, f, c, h] + [e, b, g, d]

)
.
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Again, we specify one type [1, 1, 1, 1] for the change of the basis. It works following
the same procedure as in the previous cases. It becomes clear that it is comparable
to the Moebius transformation [2]

[i, j, k, l] 7→
∑

U⊂P({i,j,k,l})

(−1)|U |[1, U ],

where the notation [1, U ] means that the type is made up of the alleles in U at
the corresponding sites and 1 elsewhere. The corresponding matrix is clear. This
basis is also Gonshor.

Again, we consider the effect of the evolution map onto an arbitrary population
and add emerging product terms of the coordinates as new basis vectors. The
scheme that we could observe in the two and three site cases is approved. Each
possible product of coordinates that belongs to one or several recombination
events of an arbitrary type with the specified type occurs. For example, the new
coordinates that emerge together with the coordinate gijkl are listed in the first
column of the following table.

gijkl 1− θ1 − θ2 − θ3 − γ1 − γ2 − γ3 − σ
gi111g1jkl 1− θ2 − θ3 − γ1 − γ2 − γ3 − σ
gij11g11kl (1− θ1 − γ1 − γ3 − σ)(1− θ3 − γ2 − γ3 − σ)
gijk1g111l 1− θ1 − θ2 − γ1 − γ2 − γ3 − σ
gi1klg1j11 1− θ1 − θ2 − θ3 − γ2 − γ3 − σ
gij1lg11k1 1− θ1 − θ2 − θ3 − γ1 − γ3 − σ
gi11lg1jk1 (1− θ1 − θ2 − θ3 − σ)(1− θ2 − γ1 − γ2 − σ)
gi1k1g1j1m (1− θ1 − θ2 − γ2 − γ3)(1− θ2 − θ3 − γ1 − γ3)
gi111g1j11g11kl 1− θ3 − γ2 − γ3 − σ
gi111g1jk1g111l 1− θ2 − γ1 − γ2 − σ
gi111g1j1lg11k1 1− θ2 − γ1 − γ2 − σ
gij11g11k1g111l 1− θ2 − θ3 − γ1 − γ3
gi1k1g1j11g111l 1− θ1 − θ2 − γ2 − γ3
gi11lg1j11g11k1 1− θ1 − θ2 − θ3 − σ
gi111g1j11g11k1g111l 1

The building blocks of the matrix that represents the evolution map are thus
15 × 15 matrices and we do not present them in this thesis. These are upper
triangular, too. The eigenvalues are listed in the second column of the table
above.

Thus, for some basis vectors, the scheme of the dynamics that could be found
in the previous cases remains. However, for some vectors, new product terms
emerge, and we could not give a proper heuristic interpretation of these. So, the
dynamics becomes somewhat cumbersome. Thus, a generalisation for more sites
is not obvious, and the dynamics does not permit an obvious heuristic interpre-
tation anymore.
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Conclusion

Our interest lied in the dynamics of recombination in the framework of genetic
algebras. We wanted to determine the solution of the Haldane linearisation proce-
dure explicitly and stated it for the first four sites. Unfortunately, the out-coming
eigenvalues did not give some more insight into the dynamics.

The dimension of the algebra depends on the number of alleles and the solutions
become very large for a wide type space. Another disadvantage of this approach
lies in the fact that the concrete solution is only available after the change of
basis.

An ansatz that does not have these disadvantages is discussed in detail in [52, 53]
in the case of single-crossover recombination.

Nevertheless, the basic idea of Haldane linearisation which works successfully
in the field of genetic algebras, which is adding nonlinear terms as additional
basis vectors, motivated us to tackle the dynamics of the Moran model with
recombination with the moment closure approach.

2.2 Moran model with recombination

We consider a population of N individuals. Each of them is endowed with the
set S = {1, . . . , n} of sites. These can be interpreted as nucleotide positions in a
string of DNA or as gene loci on a chromosome. For each site i there is a finite
set Xi of alleles that may occur at site i. A string of alleles is then called a type,

X :=×n

i=1
Xi is the type space.

We are interested in modeling recombination, which means the rearrangement of
genetic material in sexually reproducing populations. It may occur during meio-
sis, the creation of gametes, that is egg cells or sperm. Homologous chromosomes
may cross over at some points and exchange the genetic material in between (see
Figure 2.1).

In the following, we will assign recombination events to subsets of sites in a
natural way. Let G ⊂ S. Then the corresponding recombination event between
two individuals is the following: the alleles at the sites given by G remain at
their positions, whereas the alleles at the sites in Ḡ, the complement of G, are
exchanged (see Figure 2.2).

We define the mappings pG : X ×X → X, G ⊂ S by

pG(x, y) = :
(

×i∈G
{xi}

)

×
(

×i∈Ḡ
{yi}

)

: , (2.2)

where : · · · : means that the coordinates are ordered as in X. So, pG(x, y) and
p
Ḡ
(x, y) are the new types resulting from the recombination event corresponding
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Figure 2.1: Recombination
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Figure 2.2: Recombination event defined by the set G (circled sites)

to G between the types x and y. Obviously, pG(x, y) = p
Ḡ
(y, x). So, G and Ḡ

essentially correspond to the same recombination event.

We now define a Moran model with recombination and mutation. Each individ-
ual undergoes recombination events corresponding to G ⊂ S at rate ̺G/4 ≥ 0 for
all G ⊂ S. The recombination partner is chosen out of the whole population (in-
cluding the opening individual itself). Then they exchange their genetic material
according to the recombination event corresponding to G (see Figure 2.3). To
keep things well-defined, the recombination rates ̺G have the properties ̺G = ̺

Ḡ

and ̺∅ = ̺S = 0.

Furthermore, mutation events may occur. An allele xi ∈ Xi at site i mutates into
allele yi ∈ Xi with rate µi

xiyi
≥ 0. Thus, the mutation rate depends on both the

parental and the offspring allele.

Additionally, we introduce birth events or, more precisely, resampling. Each
individual produces an offspring at rate b/2 ≥ 0. The offspring inherits the
parent’s type and replaces another individual, randomly chosen from the entire
population (again including the parent individual).

In the following we are interested in the composition of the population, so we
define the stochastic process (Zt)t≥0 with state space

E := {ω counting measure on X with ω(X) = N},
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x y

̺G

N individuals

pG(x, y) p
Ḡ
(x, y)t

t1

· · · · ·

Figure 2.3: Moran model with recombination. At time t1 the second individual,
which is of type x, undergoes a recombination event corresponding to G and
chooses its partner randomly, here the fourth individual, which is of type y; from
that time on, the individuals are of type pG(x, y) and p

Ḡ
(x, y).

by

Zt({x}) := number of individuals of type x.

In the following we will use shorthands like Zt(x), z(x) instead of Zt({x}), z({x}).
Recombination, mutation and resampling events induce the following transitions
if Zt = z:

z → z + vU,x,y with vU,x,y := −δx − δy + δp
G
(x,y) + δp

Ḡ
(x,y)

at rate
1

N
̺Gz(x)z(y) for x, y ∈ X, G ⊂ S,

(2.3)

z → z − δ(x
1
,...,xi,...,xn)

+ δ(x
1
,...,yi,...,xn)

at rate µi
xiyi

z(x), (2.4)

z → z + δx − δy at rate
b

2N
z(x)z(y). (2.5)

The rate in (2.3) is determined in the following way: An individual of type x
recombines at rate 1

4
̺Gz(x) and chooses one individual of type y with probability

z(y)
N

. This leads to the rate 1
4N
̺Gz(x)z(y) which needs to be multiplied by 4 to

account for the fact that the recombination could be initiated by an individual
of type y and that recombination according to G is the same as recombination
according to Ḡ.
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A brief comment on the model is in order. We consider recombination and repro-
duction as independent events whereas, in true biology, recombination is coupled
to reproduction. We use the decoupled version here because it is simpler, and
because it allows to clearly separate the effects of random recombination from
those of random reproduction. This version is also used elsewhere [45], on the
argument that recombination events are rare.

For a subset G ⊂ S we define XG :=×i∈G
Xi and the mapping πG : X → XG

as the canonical projection. Let ω be a (signed) measure on X. We define
the pullback πG. by πG.ω := ω ◦ π−1

G . So, πG. maps a measure on X onto its
corresponding marginal measure on XG.

In the following, marginal processes of Zt will play a crucial role. The following
proposition states that these are Markov chains, too. It is an extension of Lemma
1 in [6].

Proposition 2.8. Let I ⊂ S, and let (Zt)t≥0 be the recombination process as
defined by equations (2.3)-(2.5). Then (πI .Zt)t≥0 is a Markov process with state
space EI := {ω counting measure on XI , ω(XI) = N}.

Proof. Obviously, (πI .Zt)t≥0 is a stochastic process on EI .

We must show that the transition rates of (πI .Zt)t≥0 only depend on the current
state of the process. A recombination event induces the following transition:

πI .z → πI .(z + vU,x,y),

with
πI .vU,x,y = δπ

I
(p

G
(x,y)) + δπ

I
(p

Ḡ
(x,y)) − δπ

I
(x) − δπ

I
(y) (2.6)

and πI(pG(x, y)) = :
(

×i∈G∩I
{xi}

)

×
(

×i∈Ḡ∩I
{yi}

)

: in line with (2.2).

Consider now any nonzero jump. If it comes from a recombination event, it must
be of the form (2.6). That means there are types xI , yI ∈ XI and a subset H of
I such that (πI .z)(xI ) and (πI .z)(yI) both decrease by one and the frequencies
of the marginal types arising in the recombination event corresponding to H
increase. The rate for this transition is then given by the sum of all transitions
of the original process that induce this transition in the marginal process:

∑

G⊂S:
G∩I=H

∑

x∈X:
πI(x)=xI

∑

y∈X:
π
I
(y)=y

I

̺G
N
z(x)z(y) =

∑

G⊂S:
G∩I=H

̺G
N

(
πI .z

)(
xI
)
·
(
πI .z

)(
yI
)

=
̺
(I)
H

N

(
πI .z

)
(xI) ·

(
πI .z

)
(yI),

(2.7)

with ̺
(I)
H :=

∑

G⊂S:G∩I=H

̺G. So, this last term depends only on the current state

of the marginal process (πI .Zt)t≥0.
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A mutation event of an individual of type x at site i from allele xi to allele yi
induces the following transition of πI .Zt:

πI .z → πI .z + πI .δ(...,yi,... ) − πI .δ(...,xi,... )
.

This jump is zero if i /∈ I. Obviously, the transition rate is µi
xiyi

(πI .z)(πI(x))
and depends merely on the current state of πI .Zt, too. The case of resampling is
treated analogously.

This proof is an example for the so-called lumping procedure for Markov chains,
compare [13, 32] for the general context or [4] for the sequence context considered
here.

Remark 2.9. A comparison between (2.3) and (2.7) shows that the marginal
process (πI .Zt)t≥0 can itself be considered as a recombination process on the sites
I. So, assertions about Zt will also hold for all derived marginal processes.

2.3 Recombination alone

In this Section we restrict ourselves to the case without mutation and resampling,
that means with µi

xiyi
= b = 0 for all i ∈ S and xi, yi ∈ Xi.

Since vU,x,y = 0 for some x, y ∈ X, there are ‘empty’ recombination events
at positive rate, but including these redundancies makes the rates in (2.3) so
simple. The rates become considerably more complicated if only ‘true jumps’ are
considered. This is already visible in the projection onto a single type. Let x ∈ X
and Zt = z. In order to figure out the rate for the transition z(x) → z(x) + 1, we
first determine the set of all pairs of types x̃, ỹ ∈ X such that for a given G ⊂ S
the jump vG,x̃,ỹ(x) equals 1:

{{x̃,ỹ} ⊂ X : vG,x̃,ỹ(x) = 1}

= {{x̃, ỹ} ⊂ X : πG(x̃) = πG(x), πḠ(ỹ) = πḠ(x), x̃ 6= x, ỹ 6= x}

= {{x̃, ỹ} ⊂ X : x̃ ∈ π−1
G

(
πG(x)

)
\ {x}, ỹ ∈ π−1

Ḡ

(
πḠ(x)

)
\ {x}}.

This leads to the transition rate
∑

G⊂S

̺G
2N

[(
πG.z

)(
πG(x)

)
− z(x)

][(
πḠ.z

)(
πḠ(x)

)
− z(x)

]
. (2.8)

The transition rate for z(x) → z(x)−1 can be figured out analogously; vG,x̃,ỹ(x) =

−1 iff x̃ = x and ỹ is any type which is neither in π−1
G

(
πG(x)

)
nor in π−1

Ḡ

(
π
Ḡ
(x)
)
.

Since π−1
G

(
πG(x)

)
∩ π−1

Ḡ

(
π
Ḡ
(x)
)
= {x} one has the rate

∑

G⊂S

̺G
2N

z(x)
[
N −

(
πG.z

)(
πG(x)

)
−
(
πḠ.z

)(
πḠ(x)

)
+ z(x)

]
. (2.9)
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Our aim is now to reformulate the process with the help of additional random
variables, so that the transition rates become simpler, in particular, unaffected
by empty events. To this end, we define two new counting measures derived from
(Zt)t≥0, namely (Ut)t≥0 by U0(x) = 0 and

Ut(x) = number of events at which x-individuals are created until time t

and (Vt)t≥0 by V0(x) = 0 and

Vt(x) = number of events at which x-individuals are broken up until time t.

These processes also count events at which Zt does not change, namely the case
that individuals of type x are created and broken up at the same time. This
may happen when an individual of type x recombines according to G with an
individual of type y with πG(y) = πG(x). Whenever this occurs, both counters
increase but their difference remains unchanged. Altogether, we thus have

Zt = Z0 + Ut − Vt (2.10)

with the transition rates of Ut and Vt unaffected by ‘empty’ events: For Ut(x) = u,
u→ u+ 1 happens at rate

∑

G⊂S

̺G
2N

(
πG.z

)(
πG(x)

)
·
(
πḠ.z

)(
πḠ(x)

)
,

and for Vt(x) = v, the transition v → v + 1 happens at rate

∑

G⊂S

̺G
2
z(x).

In the following, marginal processes will emerge frequently. We introduce a short-
hand, symbolic notation similar to the one described in [3]. Fix an arbitrary
x ∈ X and define for a subset G = {g1, . . . , g|G|} of sites

[G]t := [g1, . . . , g|G|]t :=
(
πG.Zt

)(
πG(x)

)
.

[G]t is the number of individuals that are identical to x at the sites corresponding
to G, at time t. Again, we use shorthands [g1, . . . , g|G|]t instead of [{g1, . . . , g|G|}]t.

Note that we suppress the dependence on x in [G]t for ease of notation. Analo-
gously, we define for the processes Ut and Vt:

〈G〉t :=
(
πG.Ut

)(
πG(x)

)
,

(G)t :=
(
πG.Vt

)(
πG(x)

)
.
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By Remark 2.9, we can now consider [G]t as a recombination process on |G| sites
evaluated at the type (xg

1

, . . . , xg
|G|
).

For |G| = 2, the distribution of 〈g1, g2〉t can be given explicitly because the
transition rates

∑

H⊂S:|H∩G|=1

̺H
2N

[g1]t[g2]t =: a (2.11)

are constant in time because all 1-site marginals are constant in time. So, 〈g1, g2〉t
follows a Poisson distribution with parameter at.

2.3.1 Analysis of the expectation

Since we will use it frequently, we want to recall an elementary fact concerning
the dynamics of the mean of a continuous-time Markov chain with a finite state
space, which is often used implicitly. The proof is a straightforward exercise that
can be found in [6, Fact 1], for example.

Lemma 2.10. Let (Zt)t≥0 be a Markov process with finite state space E ⊂ Zd

with transition rates q(z, z + v) for transitions from z to z + v for z ∈ E, v 6= 0
(let q(z, z + v) = 0 if z + v /∈ E). Then the following equation holds for all t ≥ 0

d

dt
E(Zt) = E(F (Zt)),

where F is defined as

F (z) :=
∑

v∈Zd

vq(z, z + v).

Lemma 2.10 together with the representation of Zt in (2.10) gives us the dynamics
of the mean:

d

dt
E
[

[1, . . . , n]t

]

=
∑

G⊂S

E
[ ̺G
2N

([G]t[Ḡ]t −N · [1, . . . , n]t)
]

. (2.12)

The motivation for this comes from the well-understood special case of sin-
gle crossovers [6]. Here, all recombination rates that are attached to multiple
crossover recombination events vanish. This affects all ̺G with G that either do
not contain 1 or n, or have gaps.

In this case, the induced marginal processes are conditionally independent of each
other and so moment closure is immediate [6, Lemma 1 and Theorem 1]:
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d

dt
E
[

[1, . . . , n]t

]

=
∑

G⊂S

E
[ ̺G
2N

([G]t[Ḡ]t −N · [1, . . . , n]t)
]

=
∑

G⊂S

̺G
2N

(E
[

[G]t

]

E
[

[Ḡ]t

]

−N · E
[

[1, . . . , n]t

]

).

We obtain a finite nonlinear system of differential equations, whose solution is
known in closed form [3].

The independence relies on two properties. First, a single crossover recombination
event induces a pair of marginal processes [G]t, [Ḡ]t for which {G, Ḡ} is an ordered
partition of S. Second, a single crossover recombination event only affects one of
the induced processes while leaving the other one constant.

With general recombination both these properties are violated. First, marginal
processes arise that are given by non-ordered partitions, so even single-crossover
recombination events may affect both processes at the same instant. Second,
a multiple-crossover recombination event may affect the frequency of a pair of
marginals that are given by an ordered partition. So, the independence of the
induced marginal processes is violated in two ways.

Let us now look at (2.12) again. On the right-hand side, an expectation of
products emerges. This is what one may expect due to the inherent nonlinearity
of the recombination process. Nevertheless, we see that no site arises more than
once, so the arising products are described by a partition of sites. This leads
us to the following question: Given an arbitrary partition of sites, what is the
dynamics of the mean of the product of the induced marginal processes? Theorem
2.12 below answers this. For its formulation we need the following definition.

Definition 2.11. Let {Aj}j∈J be a collection of sets with Ai ∩ Aj = ∅, i 6= j.
Define AJ :=

⋃

j∈J

Aj. Then, G ⊂ AJ disrupts {Aj}j∈J , denoted by G|{Aj}j∈J , if

G ∩ Aj 6= ∅ and G + Aj for all j ∈ J . For |J | = 1, we simply write G|Aj.

Note that for a collection of pairwise disjoint subsets of sites {Aj}j∈J disrupted by
G, in a recombination event corresponding to G between individuals of marginal
types πG(x) and πAJ\G

(x), the processes 〈Aj〉t, j ∈ J , increase. Similarly, in the
recombination event corresponding to G between individuals of marginal types
πAK

(x) and πAJ\AK
(x) for K ⊂ J , the processes (Aj)t, j ∈ J , increase.
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With these preparations, we are now ready to state

Theorem 2.12. Let m ≤ n, M := {1, . . . , m} and A := {A1, . . . , Am} be a
partition of {1, . . . , n}. Define P as the set of all triples (I, J,K), where {I, J,K}

is a partition of M . Then the derivative of E
[
∏

ℓ∈M

[Aℓ]t

]

is

E
[ ∑

(I,J,K)∈P
I 6=M

∏

i∈I

[Ai]t
∑

K̃⊂K

∑

G⊂AJ

G|{Aj}j∈J

̺IK,G

4N
(−1)|K|[AK̃ ∪G]t[AK\K̃ ∪Gc]t

]

,
(2.13)

where Gc is the complement of G in AJ and ̺IK,G is defined as

̺IK,G :=
∑

D⊂AI

∑

H⊂AK

H|{Ak}k∈K

̺H∪D∪G. (2.14)

Remark 2.13. The right-hand side of (2.13) may be read in the following way.
The set I indicates the parts of the genome that remain unchanged under the
corresponding recombination event, the sets J and K indicate sets for which the
derived processes Ut and Vt, respectively, increase. So the splitting of Zt into Ut

and Vt does not only simplify the calculation but also shows up in the result.

Proof of Theorem 2.12. Define

〈Aℓ〉
t
δt := 〈Aℓ〉t+δt − 〈Aℓ〉t

and
(Aℓ)

t
δt := (Aℓ)t+δt − (Aℓ)t,

then
[Aℓ]t+δt = [Aℓ]t + 〈Aℓ〉

t
δt − (Aℓ)

t
δt

and
∏

ℓ∈M [Aℓ]t+δt reads

∏

ℓ∈M

[Aℓ]t+δt =
∑

(I,J,K)∈P

(−1)|K|
∏

i∈I

[Ai]t
∏

j∈J

〈Aj〉
t
δt

∏

k∈K

(Ak)
t
δt.

Let t+ δt be the time of the first recombination event after time t.
Then, a summand

∏

i∈I [Ai]t
∏

j∈J〈Aj〉
t
δt

∏

k∈K(Ak)
t
δt may evaluate to:

• zero if there is any j ∈ J or k ∈ K such that 〈Aj〉
t
δt = 0 or (Ak)

t
δt = 0;

• (−1)|K|
∏

i∈I [Ai]t otherwise, that means if 〈Aj〉
t
δt = (Ak)

t
δt = 1 for all j ∈ J ,

k ∈ K.
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The latter transition comes from recombination events that correspond to the
union of some G disrupting {Aj}j∈J and H disrupting {Ak}k∈K and any subset
D of AI . At such recombination events, the recombining individuals must be of
the following form: x-alleles at G, Gc resp., x-alleles at Ak, k ∈ K, whereas the
particular Ak may be arbitrarily distributed across the two individuals (but the
individual sets may not be disrupted!). Thus, the complete rate reads

r(I, J,K) :=
∑

K̃⊂K

∑

G⊂AJ

G|{Aj}j∈J

̺IK,G

4N
[AK̃ ∪G]t[AK\K̃ ∪Gc]t, (2.15)

with Gc and ̺IK,G as defined above. This is the rate of the event that the terms
corresponding to J and K increase, that means it is the rate of all recombination
events such that Aj , j ∈ J , bindings arise, and such that Ak, k ∈ K, bindings
break.

Thus,
d

dt
E
[ ∏

ℓ∈M

[Aℓ]t

]

= E
[ ∑

(I,J,K)∈P
I 6=M

(−1)|K|
∏

i∈I

[Ai]tr(I, J,K)
]

,

which is the assertion of the theorem.

Let us now consider the implication of the theorem for the moment-closure prob-
lem. The theorem tells us that the dynamics of the mean of a product of marginal
processes defined by a partition of sites can be described by the mean of another
product of marginal processes defined by a (finer) partition of sites. Since the
number of sites is finite and so is the number of partitions of sites, the moment
closure approach (for the mean) directly leads to a finite and linear system of
ODE’s. We have thus proved

Corollary 2.14. For the Moran model with recombination alone, the moment
approach closes.

Example 2.15. For three sites, the whole system of differential equations arising
in the moment approach is still not too complex.

d

dt
E
[

[1, 2, 3]t

]

=E
[̺1
N
[1]t[2, 3]t +

̺2
N
[2]t[1, 3]t +

̺3
N
[3]t[1, 2]t

]

− E
[̺1 + ̺2 + ̺3

N
[1, 2, 3]t

]

.

d

dt
E
[

[12]t

]

=
̺1 + ̺2
N

E
[

[1]t[2]t − [12]t

]

.
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d

dt
E
[

[13]t

]

=
̺1 + ̺3
N

E
[

[1]t[3]t − [13]t

]

.

d

dt
E
[

[23]t

]

=
̺2 + ̺3
N

E
[

[2]t[3]t − [23]t

]

.

d

dt
E
[

[1]t

]

=
d

dt
E
[

[2]t

]

=
d

dt
E
[

[3]t

]

= 0.

�

The size of these systems explodes with the number of sites. Nevertheless, there
is much redundancy in the concrete calculation of particular means. For example,
in the analysis of E

[
[1, 2, 3, 4]t

]
, marginal processes on three sites emerge. Ac-

cording to Remark 2.9, these can be treated as recombination processes on three
sites, such that by a proper summation of the recombination rates, one can eas-
ily determine their solutions given the solution of the three-sites recombination
process.

2.3.2 Comparison with the deterministic dynamics

We now want to compare the result of Theorem 2.12 to the corresponding deter-
ministic dynamics. To this end, let M(X) be the space of all measures on X.
For G ⊂ S define the recombinator3 RG

by

RG(ω) :=
1

|ω|
(πG.ω)⊗ (πḠ.ω)

with RG(0) = 0. Consider the following dynamical system on M(X):

ω̇ =
∑

G⊂S

̺G
2

(
RG − 1)ω. (2.16)

This is the infinite population limit of the recombination process (without and
with resampling) in the following sense. If we consider ẐN

t := 1
N
Zt and let

limN→∞ ẐN
0 = p0, then

lim
N→∞

sup
s≤t

|ẐN
s − ps| = 0 (2.17)

with probability 1, where ps is the solution of the initial value problem (2.16)
with ω0 = p0. This is shown in [6] for the special case of single-crossovers, but
it is obvious that the proof, which is based on the general law of large numbers

3This is a generalisation of the recombinator in [3]. Note that notational similarity is de-
ceptive because G denotes sites here rather than ‘links’ (the bonds between sites) as in [3].
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by Ethier and Kurtz ([19, Thm. 11.2.1], see also [37]), may be generalised to the
case of multiple crossovers.

We are now interested in the relationship between (2.13) and the deterministic
dynamics. If ωt follows (2.16), then a (tensor) product of marginal measures
(πA1

.ωt)⊗· · ·⊗ (πAm
.ωt) given by a partition of sites as in Theorem 2.12 exhibits

the following dynamics:

d

dt

(

(πA1
.ωt)⊗ · · · ⊗ (πAm

.ωt)
)

=
(

πA1
.
(∑

G⊂S

̺G
2
(RG − 1))(ωt)

)

⊗
(
πA2

.ωt

)
⊗ · · · ⊗

(
πAm

.ωt

)

+
(
πA1

.ωt

)
⊗
(

πA2
.
(∑

G⊂S

̺G
2
(RG − 1))(ωt)

)

⊗
(
πA3

.ωt

)
⊗ · · · ⊗

(
πAm

.ωt

)

+ · · ·+
(
πA1

.ωt

)
⊗ · · · ⊗

(
πAm−1

.ωt

)
⊗
(

πAm
.
(∑

G⊂S

̺G
2
(RG − 1))(ωt)

)

=
m∑

j=1

∑

B⊂Aj

̺B
(
πA1

.ωt

)
⊗ · · · ⊗

[ 1

|ωt|

(
πB.ωt

)
⊗
(
πAj\B

.ωt

)
−
(
πAj

.ωt

)]

⊗ · · · ⊗
(
πAm

.ωt

)
,

(2.18)

with ̺B :=
∑

H⊂S
H∩Aj=B

̺H .

Compare this to (2.13), and only consider summands where |J | = 1 and |K| = 0
or |J | = 0 and |K| = 1. According to Remark 2.13, we can understand the
corresponding transitions as ‘uncorrelated’ events at which only one marginal
process changes at a given instant. We get the following terms on the right-hand
side of (2.13):

• J = {j}, K = ∅:

E
[ ∏

i:i 6=j

[Ai]t
∑

G⊂Aj

G|Aj

̺
M\{j}
∅,G

4N
[G]t[Aj \G]t

]

, (2.19)

• J = ∅, K = {j}:

E
[ ∏

i:i 6=j

[Ai]t
̺
M\{j}
{j},∅

4N
(−1)[Aj]tN

]

, (2.20)

with (cf. (2.14))

̺
M\{j}
{j},∅ =

∑

D⊂AI

∑

H⊂Aj

H|Aj

̺H∪D =
∑

H⊂Aj

H|Aj

∑

D⊂AI

̺H∪D =
∑

H⊂Aj

H|Aj

̺
M\{j}
∅,H .
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Adding all terms of kind (2.19) and (2.20), one obtains the analogue of the right-
hand side of (2.18). According to Remark 2.13, the summands with |J ∪K| ≥ 2
correspond to ‘correlated’ events at which two or more marginal processes change
simultaneously.

We may thus conclude that the uncorrelated events correspond to the determin-
istic equation. We will now show that the correlated events are of lower order
and thus tend to zero in the limit N → ∞. To this end, look at (2.12). The right-
hand side consists of the terms 1

N
[G]t[Ḡ]t and [1, . . . , n]t. They are both of order

N , since each individual term [. . . ]t is of order N (which follows, for example,
from (2.17)). Let us look at the derivative of the mean of 1

N
[G]t[Ḡ]t (cf. (2.13)).

The terms with |I| = 1 (those belonging to ‘uncorrelated’ events) will be of order
N again, whereas the terms with I = ∅ are of order 1. By differentiating terms

such as E
[

1
N2 [A1]t[A2]t[A3]t

]

and beyond, the same observation applies: the order

of summands belonging to ‘correlated’ events is less or equal 1, so for the relative
frequencies ([1, . . . , n]t/N) the dynamics of the mean tends to the dynamics of
the deterministic model.

2.3.3 Two sites, arbitrary moments

In the case of two sites, the recombination process is rather simple. This mainly
relies on the fact that the transition rate for 〈1, 2〉t is constant, as we have already
seen in (2.11). Furthermore, the set of partitions of two sites is trivial. In this
special case we can easily show moment closure for arbitrary moments. The
simplicity of the setting permits to look at [1, 2]t itself without considering 〈1, 2〉t
and (1, 2)t. The process [1, 2]mt has the following possible transitions (cf. (2.8),
(2.9)):

[1, 2]mt → ([1, 2]t + 1)m at rate
̺1
N
([1]t − [1, 2]t)([2]t − [1, 2]t)

and

[1, 2]mt → ([1, 2]t − 1)m at rate
̺1
N
[1, 2]t(N − [1]t − [2]t + [1, 2]t).

Using the binomial theorem and eliminating empty transitions, we obtain for the
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derivative of the m-th moment:

̺1
N

m−1∑

k=0

E
[(m

k

)

[1, 2]kt ([1]t − [1, 2]t)([2]t − [1, 2]t)
]

+
̺1
N

m−1∑

k=0

(−1)m−kE
[(m

k

)

[1, 2]kt [1, 2]t(N − [1]t − [2]t + [1, 2]t)
]

=
m−2∑

k=0

E
[̺1
N

(
m

k

)

[1, 2]kt {[1]t[2]t − 2δ
(2)
m−k[1, 2]tc+ 2δ

(2)
m−k+1[1, 2]

2
t + (−1)m−k[1, 2]tN}

]

+
̺1m

N
E
[

[1, 2]m−1([1]t[2]t − [1, 2]tN)
]

,

with c := ([1]t + [2]t) and

δ
(2)
m−k :=

{

1 if m− k ≡ 0 mod 2

0 otherwise.

So all emerging terms are moments of order m or less.

2.4 Recombination and Mutation

We now want to add mutation to our process. Let us first look at the process with

mutation alone, e.g. b = ̺G = 0. By Lemma 2.10, the derivative of E
[

[1, . . . , n]t

]

is:
∑

j∈S

( ∑

y∈Xj

µj
yxj

[1, . . . , j − 1, j + 1, . . . , n]t −
∑

y∈Xj\{xj}

µj
xjy

[1, . . . , n]t

)

.

So, it only consists of linear terms and marginal processes. When we consider
a product of marginal processes given by a partition of sites as in the previous
section, we have, due to the fact that mutation only acts on single sites indepen-
dently of others:

d

dt
E

[
∏

ℓ∈M

[Aℓ]t

]

=E

[
∑

ℓ∈M

( ∏

i∈M\{ℓ}

[Ai]t
∑

j∈Aℓ

∑

y∈Xj

µj
yxj

[Aℓ \ {j}]t

)

−
∑

ℓ∈M

( ∏

i∈M\{ℓ}

[Ai]t
∑

j∈Aℓ

∑

y∈Xj\{xj}

µj
xjy

[Aℓ]t

)
]

.

What happens when we add recombination? Let FM and FR, respectively, be
the ‘mean rate of change functions’ from Lemma 2.10 for

∏

ℓ∈M [Aℓ]t from the
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process with solely mutation and recombination, respectively. Since mutation
and recombination proceed independently, the respective function FRM for the
recombination-mutation process is then just FR + FM and according to Lemma

2.10 we have for d
dt
E
[
∏

ℓ∈M [Aℓ]t

]

:

E

[
∑

(I,J,K)∈P
I 6=M

∏

i∈I

[Ai]t(−1)|K|
∑

K̃⊂K

∑

G⊂AJ

G|{Aj}j∈J

̺IK,G

4N
[AK̃ ∪G]t[AK\K̃ ∪Gc]t

+
∑

ℓ∈M

( ∏

i∈M\{ℓ}

[Ai]t
∑

j∈Aℓ

∑

y∈Xj

µj
yxj

[Aℓ \ {j}]t

)

−
∑

ℓ∈M

( ∏

i∈M\{ℓ}

[Ai]t
∑

j∈Aℓ

∑

y∈Xj\{xj}

µj
xjy

[Aℓ]t

)
]

.

So, the arising terms are the same as in the pure recombination process plus
linear terms. It is therefore clear that we have moment closure here as well.

2.5 Recombination and Resampling

In this section, we set b > 0 and the mutation rates zero again, so we look at
the Moran model with recombination and resampling only. At first glance, one
may think that resampling has no effect on the expectation since the process with
resampling alone has a constant mean. Indeed, the first derivative of the mean
looks the same as in the pure recombination case:

d

dt
E
[
[1, 2]t

]
=
̺1
N
E
[
[1]t[2]t − [1, 2]tN

]
. (2.21)

However, due to resampling, the one-site marginal processes are no longer con-
stant, so we do not have instantaneous moment closure any more (cf. (2.5): at
a resampling event, the frequency of alleles may change). The derivative of their
product is obtained after an elementary but lengthy calculation:

d

dt
E
[
[1]t[2]t

]
=

b

N
E
[
[1, 2]tN − [1]t[2]t

]
. (2.22)

We obtain a finite linear system of differential equations, namely (2.21) and (2.22).
In particular, we obtain

d

dt
E
[
[1, 2]tN − [1]t[2]t

]
= −

(̺1
N

+
b

N

)
E
[
[1, 2]tN − [1]t[2]t

]
(2.23)
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with the obvious exponential solution. The term [1, 2]tN − [1]t[2]t is a correlation
function, a so called linkage disequilibrium, which is widely used in population
genetics. We see that both, recombination and resampling, reduce correlations
between sites.

For more than two sites, exact moment closure can no longer be established. To
make this plausible, we will only present the derivative of E

[
[1]t[2]t[3]t

]
(again,

the calculation is elementary but lengthy), which is a term that emerges in the
derivatives of the process on three sites due to recombination:

d

dt
E
[
[1]t[2]t[3]t

]
=

b

N
E
[
[1]t[2, 3]tN + [2]t[1, 3]tN + [3]t[1, 2]tN + [1]t[1, 2]t[1, 3]t

+ [2]t[1, 2]t[2, 3]t + [3]t[1, 3]t[2, 3]t − 3[1]t[2]t[3]t

− [1]2t [1, 2, 3]t − [2]2t [1, 2, 3]t − [3]2t [1, 2, 3]t
]
.

The last three terms are quadratic and it is clear that further differentiating
will lead to terms such as [1]3t [2]t[3]t whose derivative will contain moments of
even higher order. Thus, the interaction between recombination and resampling
destroys moment closure.

2.6 Conclusion

In this chapter, we have extended the single-crossover Moran model from [6] to
include general recombination. The dynamics of the expectation under general
recombination becomes significantly more complicated. In particular, it now
deviates from the dynamics in the infinite population model. The reason is the
loss of independence of certain marginal processes.

As is usual with nonlinear processes, the dynamics of a given moment requires
higher moments. Nevertheless, in this case after a finite number of steps no
additional terms emerge. This is due to the fact that the arising processes may
in each step be described by a partition of sites. When mutation is included,
this exact moment closure persists, but the arising processes can no longer be
described by a partition of sites. Altogether, we have an exception to the rule that
the dynamics of the moments of nonlinear processes lead to infinite hierarchies
of ODE’s.

This exact moment closure gets lost when we extend the model to include genetic
drift (i.e., resampling). This is, of course, disappointing since the Moran model
with recombination alone is mathematically interesting, but of limited biological
value. Nevertheless, the resulting hierarchy of moments might be interesting to
analyse with respect to the various possibilities of approximate moment closure.

Furthermore, the arising terms such as E
[ ∏

ℓ∈M

[Aℓ]t
]

are of considerable interest

in population genetics beyond this moment closure procedure since they are the
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building blocks of the linkage disequilibria [12] that are so important in population
genetics (compare (2.23) for the simplest example).



Chapter 3

Towards a particle picture behind

the common ancestor distribution

In this chapter, we consider a Moran model with selection and mutation. We first
present some results of Fearnhead and Taylor that we will prove in another way.
Since this provides us with a better understanding of the Moran model we may
then propose a new particle model in the case without mutation. In opposite to
the situation in the previous chapter, here, the integration of mutation makes the
situation substantially more complicated.

3.1 Moran model with selection and genealogies

We consider a population of N individuals of type i ∈ S = {0, 1}. Individuals of
type 1 reproduce at rate 1, individuals of type 0 are favoured by selection, they
reproduce at rate 1 + sN , sN ≥ 0. In a reproduction event, the new individual
replaces a randomly chosen other one.

Additionally, mutation events may occur. An individual mutates at rate uN .
With probability ν0, it will then be of type 0, with probability ν1 := 1 − ν0, it
will be of type 1. So, uN may be considered as the overall mutation rate. Note,
that the mutation is independent of the original type. Obviously, the population
size N remains constant.

This model is called a Moran model due to its properties continuous time and
constant population size. Besides the Wright-Fisher model, which is formulated
in discrete time, it is one of the standard models in population genetics. It
can be considered as an interacting particle system and allows for a graphical
representation (see Fig. 3.1). Another important class of models in population
genetics are branching processes. In contrast to the Moran model and the Wright
Fisher model, the population size varies, see [24].
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Figure 3.1: Moran model with selection. The lines represent single individuals,
their initial types are denoted at the top, their final types at the bottom. The
origin of an arrow marks the birth of an individual, whereas the individual at the
tip is replaced. Mutation events are marked with dots.

Consider the process (Y N
t )t≥0 where Y N

t is the number of individuals of type 0
at time t. It is a Markov jump process. For Y N

t = k, k = 0, . . . , N , the following
transitions are possible:

k → k + 1 at rate (N − k)
(
uNν0 + (1 + sN)

k

N

)
,

k → k + 1 at rate k
(
uNν1 +

N − k

N

)
.

(3.1)

A standard technique in population genetics is to consider the diffusion limit.
Hereby, the population size tends to infinity and additionally the time is rescaled
by the population size. Since stochastic fluctuations remain possible in the dif-
fusion limit, it is a reasonable approximation for finite populations and permits
the application of results for diffusion processes. To this purpose, we define the
normalised process (XN

t )t≥0 by

XN
t :=

1

N
Y N
Nt. (3.2)

The parameters uN and sN are assumed to be scaled by the population size such
that

NuN → θ and
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NsN → σ,

for some nonnegative θ and σ.

Then the sequence of processes (XN
t )t≥0 converges to the diffusion limit (Xt)t≥0

for N → ∞ in distribution [37]. It is characterised by its generator [17, 37]

Aφ(x) = x(1− x)φ′′(x) +
(
θν0(1− x)− θν1x+ σx(1 − x)

)
φ′(x). (3.3)

where φ ∈ C2([0, 1]).

The diffusion limit has a well-known stationary distribution, its density is given
by Wright’s formula

f(x) :=
1

C
xθν0−1(1− x1)

θν
1
−1eσx, (3.4)

with normalising constant C.

For an overview of diffusion theory in the context of population genetics, see
[17, 20].

Remark 3.1. As usual in the relevant literature, we will omit the index N in
the parameters of the Moran model in the latter, e.g. write s instead of sN .

Remark 3.2. The stationary distribution (3.4) may be deduced from the dif-
fusion process. Alternatively, one may derive (3.4) directly from the stationary
distribution of the Moran model which is also known explicitly [17, Ch. 7 and 8].

Remark 3.3. A finite particle representation in the diffusion limit is provided
by the construction of the look-down process (originated by Donnelly and Kurtz
[15], also see [18, Ch. 5] for a review). This construction relies on assigning levels
to each particle. The analogue to birth-death events are look-down events. In
the absence of selection, only particles from higher levels may be replaced by
particles from lower levels. Thus, the particle of the lowest level will be ancestral
to all particles after some finite time.

When selection is incorporated, one can no more conserve the property that the
death always takes place in the higher level because the death rates depend on
the type and the background. The ancestral particle may be found anyway but
the procedure needs to enlarge the state space if selective events take place. This
idea of the construction to be used is similar to the one of the ancestral selection
graph defined by Krone and Neuhauser [36] which will be discussed later.

Remark 3.4. In the formulation of the Moran model, the mutation rate often
contains a factor 2. This factor is included to make sure that the Moran model
shares the same diffusion limit as the Wright-Fisher model. Since we do not
consider the Wright-Fisher model in this thesis, we do not stick to this convention.
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Figure 3.2: We grab a sample out of the population (boxed individuals) and
follow their genealogy backwards in time (fat lines). The fifth individual is the
most recent common ancestor.

3.1.1 Genealogies

This section aims to introduce some theory that is necessary to understand the
issues handled in this chapter and to present the main previous results. The
presentation is mainly a summary of a review paper [5]. First, we want to explain
the construction of genealogies.

We are given a realisation of the Moran model. We take a sample of individuals
and are interested in their joint history. We can construct a genealogical tree in
the following way: we trace the lines of the individuals from the sample backwards
in time. Whenever a line is hit by the tip of an arrow we look at the origin of
the arrow. If it belongs to the sample the lines merge. We call this a coalescent
event. In this way, we can extract a genealogy, which is the genealogical tree
together with the types along the branches (see Figure 3.1.1). The root of the
tree is the most recent common ancestor (MRCA) of the sample, the individual
which is ancestral to the whole sample.

But how can we sample genealogies for a sample of n individuals without a given
realisation of the Moran model? We address this question in this section.
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The neutral case

A simple situation is present when selection is not incorporated in the model,
that means, when we set s = 0. In this neutral case, individuals reproduce
independently. Thus, we may first construct the genealogical tree of n individuals
while ignoring their types and then introducing the types afterwards.

The leaves are obviously given by the sample individuals. But when does the first
coalescent event occur? It emerges when a sample individual reproduces and its
offspring replaces another sample individual. Since each individual reproduces
at rate 1, n individuals are present and a sample individual is hit at probability
(n− 1)/N , the rate is

n(n− 1)

N
.

So, after some exponentially distributed waiting time a coalescent event happens
and two arbitrary lines merge. This procedure is continued until there is only one
line left. In account of a scaling of time by factor N , this procedure corresponds
to the well-known Kingman coalescent [34, 35].

In the second step, we assign types along the branches. For this, we assume that
the population is stationary. We draw the type of the MRCA out of the stationary
distribution which is also known in the finite population case which in the neutral
case is obviously simply given by the mutation rates. Usually, one constructs
these genealogies for an underlying infinite population in the diffusion limit. The
stationary distribution is then given by (3.4). Whenever a line branches, the
individuals inherit the parental type. In addition, mutation events happen along
the branches in forward time at rates uνi, and θνi, i = 0, 1, in the rescaled version,
respectively.

3.1.2 The ancestral selection graph

The construction of the coalescent in the neutral case relies on the fact that
the individuals reproduce independently of their types. So, we can introduce
types after the construction of the tree topology. This is crucial since offspring
individuals must be of the parental type and thus only the merge of edges of the
same type may be allowed.

In the nonneutral case the emergence of branches in the tree topology is no more
independent of the type of the corresponding individual. Krone and Neuhauser
[36, 43] developed a construction that copes with this problem. The key idea is
to differ artificially between neutral and selective events, and to decide after the
introduction of types, whether selective branches maintain or not. Again, one
splits the mutational from the reproduction process. The procedure goes in three
steps:
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Figure 3.3: Construction of the ASG. Left: Graph without types. Dashed
branches are incoming. Right: Introduction of types and mutation events.
Branch I is unfit and thus virtual. Branch II is fit and so real. The MRCA
deviates from the UA.

• Construction of the graph topology without types. We start with n indi-
viduals. Again, two branches coalesce at rate n(n − 1) due to the same
reasoning as in the neutral case. Additionally, we consider selection. At
this step, selective events are possible in all lines and they cause the split-
ting of a branch. It happens at rate σn. We label one branch the incoming
branch and the other the continuing branch. After some finite time the
sample size will almost surely be one. At this point of time we stop and
call this individual the ultimate ancestor.

• We draw the type of the ultimate ancestor from the stationary distribution
(3.4) and run the mutation process along the graph. At a coalescent event,
the offspring inherits the parental type as in the neutral case. At branching
events, we must decide, which line is the the parental one. We proceed
according to the following rule: If the incoming branch is fit, then it is
parental. If it is unfit, the continuing line is parental. We call the parental
line the real line, the other line is called virtual line.

• We extract the final genealogy by taking all real lines and rejecting all
virtual lines.

We briefly want to motivate the transition rates of the birth-death process that
constructs the graph topology. The death rate and the mutation rates are ex-
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plained in the same way as in the neutral case. Birth events arise at selective
events. In the Moran model, the rate that a sample individual undergoes a se-
lective event and hits an individual that does not yet belong to the graph is
ns(N − n). Since the probability that a sample individual hits another line in
the graph is zero in an infinite population, we neglect this event. Then, in the
diffusion limit the birth rate is the limit for N → ∞.

Remark 3.5. The construction of the topology of the graph in step one is inde-
pendent of the types of the respective particles. Thus, the type of the first single
particle is not distinguished in any way. This is the reason that it is appropriate
to determine the type of the ultimate ancestor from the stationary distribution
(3.4) of the forward process. One should keep in mind that the ultimate ancestor
is not necessarily the most recent common ancestor and so, the distributions may
deviate. For a rigorous reasoning see [16, Lemma 8.1 and Thm. 8.2].

Remark 3.6. A central aim of this chapter is the derivation of the stationary
distribution of the type of the common ancestor. In the neutral case this is simply
the stationary distribution of the forward process.

Things become more complicated when selection takes place. It is a reasonable
conjecture that the most recent common ancestor of a sample or the whole pop-
ulation is fitter than a randomly chosen individual because it has descendants
in all generations. An individual that is an ancestor of the most recent common
ancestor is obviously ancestral to the whole sample and population, respectively.
Thus, the stationary distribution of a process which describes the type of the
common ancestor describes the distribution of the most recent common ancestor,
too [21].

3.2 Previous results

3.2.1 Graphical representation

The ancestry of a single individual

Following the reasoning of Remark 3.6, we want to give a procedure how to
construct the genealogy of one individual of given type which was presented by
Fearnhead [21]. Stephens and Donnelly also developed an algorithm that gives
the genealogy of known samples of arbitrary (finite) size [49, Algorithm 3.2], but
in the context of this chapter we are only interested in the simpler case of sample
size 1.
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Exchangeability and notation

We describe samples from our model by a summary statistics, where a vector
(n0, n1) means that our sample consists of n0 individuals of type 0 and n1 in-
dividuals of type 1, respectively. Nevertheless, this representation ignores any
kind of ordering of the sample. Due to exchangeability, the probability of each
ordered sample with the same summary statistics is equal. Though some abuse
of notation, we describe with p(n = (n0, n1)) the probability of an ordered sample
from a stationary population. It is given by

p(n) =
1

C

∫ 1

0

xn0
+θν

0
−1(1− x)n1

+θν
1
−1 exp(σx)dx.

Within this notation, we always imply that a sample n consists of n individuals.
We write

p(i|n) =
p(n+ ei)

p(n)

for the conditional probability that the n+1st individual in the sample is of type
i given that the first n individuals have the summary statistics n.

Transitions and rates

We follow the line of one individual backwards in time. Thus, in the first step we
draw its type from Wright’s formula, p(ei). Then we follow its ancestry backwards
in time. The mutation processes run backward in time. Since branching events
may occur, and thus the number of lines may rise, we must describe the time
evolution of a sample. Our states are in

E = {
(
i, (n0, n1)

)
, i ∈ {0, 1}, n0, n1 ∈ N0},

where the first entry denotes the type of the real branch and (n0, n1) are the
multiplicities of virtual branches with the corresponding types.
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The following events may occur. Fearnhead [21] gives the rates which are cal-
culated via time reversal ([44, Ch. 3.7], [11, Ch.8.5]. See [5] for a detailed
presentation. If the current state is

(
i, (n0, n1)

)
, then the possible events and

their rates are

• Coalescence of two branches of type j at rate (nj + δij)(nj + δij − 1)p(n+
ei − ej)/p(n+ ei). The new state is (i,n− ej).

• Mutation of the real branch at rate θνip(n+ ej)/p(n+ ei)
1 with new state

(j,n).

• Mutation of a virtual branch at rate njθνjp(n+ei−ej +ek)/p(n+ei) with
new state (i,n+ ek − ej).

• Branching to an unfit incoming branch with new state (i,n + e1) at rate
(nj + δij)σp(ei + e1)/p(n+ ei). Here, the continuing type is parental.

• Branching to a fit incoming branch with new state (i,n+ ek) at rate (n0 +
δi0)σp(n+ ei + ek)/p(n+ ei). Here, the incoming branch is parental.

The common ancestor process and its stationary distribution

The procedure above serves to construct a genealogical graph, coming from a
sample of size one. Since we are only interested in the distribution of the common
ancestor, we do not necessarily need the full genealogy. Indeed, a simplification is
possible. The Markov property is still maintained when we remove all fit virtual
lines. This is due to the following reasoning. Take a closer look at the possible
transitions above. The rates of transition 3 and 5 may be rewritten as follows

njθνjp(n+ ei − ej)

p(n+ ei)
p(k|n+ ei − ej)

and
(n0 + δi0)σp(k|n+ ei).

In both cases the new type is drawn from the conditional probability given the
composition of the remaining population. But this means that the type of these
individuals cannot affect the genealogy of the remaining sample, otherwise there
should be more dependence. This reasoning relies on [21, Theorem 1]. Thus we
may remove transitions 3 and 5 which are the only transitions where fit virtual
lines may emerge. We obtain the following dynamics for this so called common
ancestor process. See [21, 5] for a detailed presentation.

1This rate deviates from the one in [21] by a factor 2, see Remark 3.4.
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Again, given we are in state
(
i, (n0, n1)

)
, then the possible events and their rates

are

• Mutation of the real branch at rate θνip(n+ ej)/p(n+ ei) with new state
(j,n).

• Removal of a virtual branch at a coalescence event or by mutation at rate
((n1 + δi1)(n1 + δi1 − 1) + θν1n1)p(n + ei − e1)/p(n + ei) with new state
(i,n− e1).

• Branching at rate σ(n1 + 1)p(n+ ei + e1)/p(n+ ei).

Starting in (i, (0, 0)) with probability p(ei), Fearnhead defines this process as the
common ancestor process. Its stationary distribution is given by the following
theorem.

Theorem 3.7 ([21], Lemma 1, Theorem 3). Let θ > 0, σ ≥ 0, ν0 > 0 and

0 < ν1 < 1. For k ∈ N define λ
(k)
1 , . . . , λ

(k)
k+1 by λ

(k)
k+1 = 0 and

λ
(k)
i−1 =

σ

i+ θ + σ − (i+ θν1)λ
(k)
i

. (3.5)

The limits

λi = lim
k→∞

λ
(k)
i (3.6)

exist and satisfy 0 ≤ λi ≤ 1 for all i and the stationary distribution of the common
ancestor process is

πF (j,n) =







( n
1∏

i=1

λi

)

p(n+ e
0
), if j = 0,

( n
1∏

i=1

λi

)

(1− λn+1)p(n+ e
1
), if j = 1.

(3.7)

Summing over the frequencies of virtual lines then gives the distribution (π0, π1)
of the common ancestor:

π0 =
∑

n

πF (0,n). (3.8)

Fearnhead proves this theorem by a verification of the stationarity condition
’πQ = 0’. We will find a different way to this result which gives some insight into
the particle picture behind the scenery.
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3.2.2 The diffusion approximation - structured coalescent

Another approach to the common ancestor distribution was pursued by Taylor
[50]. He considers a diffusion process arising from a Wright-Fisher model. This
model is closely related to the Moran model. One considers a population of N
individuals, each individual is of type 0 or 1. The model is in discrete time,
the next generation is drawn from the current. Each new individual is drawn
independently of the others from the current generation, where individuals of
type 1 have weight 1, individuals of type 0 have weight 1 + s. Then, the new
individual is a nonmutant copy at probability 1− u, with probability uν0 it is of
type 0, and with probability uν1 of type 1 respectively.

In the diffusion limit the frequency of fit individuals is then described by a Markov
process with generator2

Âφ(x) =
1

2
x(1− x)φ′′(x) +

(
θν0(1− x)− θν1x+ σx(1− x)

)
φ′(x).

where φ ∈ C2([0, 1]). This is basically the same generator as in (3.3), they only
differ by a factor 1/2. This is due to the fact that the Moran model coalesces
twice as often as the Wright-Fisher model, cf [17, Sect. 1.5], Remark 3.4.

Corresponding to this diffusion, Taylor [50] considers the coalescent process intro-
duced by Kaplan et al [31]. It is called the structured coalescent and characterized
by its generator [9]

G̃φ(n0, n1, x) =

(
n0

2

)
1

x

(
φ(n0 − 1, n1, x)− φ(n0, n1, x)

)

+

(
n1

2

)
1

1− x

(
φ(n0, n1 − 1, x)− φ(n0, n1, x)

)

+ n0θν0
1− x

x

(
φ(n0 − 1, n1 + 1, x)− φ(n0, n1, x)

)

+ n1θν1
x

1− x

(
φ(n0 + 1, n1 − 1, x)− φ(n0, n1, x)

)
+ Âφ(n0, n1, x),

where φ(n0, n1, ·) ∈ C2([0, 1]) for each n0, n1 ∈ N. In [9], Barton et al. derive the
generator from a Moran model (that additionally incorporates recombination)
because in opposite to the Wright-Fisher model the frequency of fit alleles in the
Moran model has a reversible invariant measure which makes the calculations
significantly easier. Nevertheless, the genealogies of a sample from the population
given by the two models coincide in the diffusion limit because the diffusion

2Taylor even considers density-dependent selection, this means, the selection coefficient is
a function of x. The general results about the uniqueness of the solution are valid under this
generalization. However, he does not give an explicit formula for the stationary distribution in
this general case.



50 Towards a particle picture behind the common ancestor distribution

approximations for both models are the same and in both models the particles
are not ordered. Thus, the generator derived from the Moran model is also
valid for the structured coalescent coming from a Wright-Fisher diffusion (under
consideration of the factor 2).

They show that the stochastic process with this generator exists and is unique.
Hereby, the existence is not obvious since the coalescence and migration rates may
become unbounded if the frequency of fit alleles tends to zero or one (Chapter 4
in [9] and Lemma 2.1 in [50]).

Only interested in samples of size 1, one can consider a bivariate process in the
space E = ({0} × (0, 1]) ∪ {1} × [0, 1)), where the first coordinate gives the type
of the ancestral lineage. The generator of the structured coalescent with sample
size 1 then is

G̃φ(0, x) = θν0
1− x

x

(
φ(1, x)− φ(0, x)

)
+ Âφ(0, x)

G̃φ(1, x) = θν1
x

1− x

(
φ(0, x)− φ(1, x)

)
+ Âφ(1, x)

(3.9)

for functions φ that are twice continuously differentiable on E and have compact
support.

Taylor examines the same question as Fearnhead, that is the distribution of the
common ancestor. To this end, he introduces the conditional probability h, where
h(x) is the probability that in a population with a frequency of x fit individuals,
the common ancestor is fit. The stationary measure of the structured coalescent
as in (3.9) is then given by

πT (0, dx) = π(0, x)dx = h(x)f(x)dx

πT (1, dx) = π(1, x)dx = (1− h(x))f(x)dx,

where f is the density of the stationary measure from (3.4). Taylor shows that h
is given by a boundary value problem

Âh(x)−
(

θν0
1− x

x
+ θν1

x

1− x

)

h(x) = −θν1
x

1− x
,

h(0) = 0, h(1) = 1.
(3.10)

He proves the following lemma concerning existence, uniqueness and smoothness
of the solution of this boundary value problem.

Lemma 3.8 ([50], Lemma 2.3.). There exists a unique solution to the bvp (3.10)
which is holomorphic on (0, 1) and whose first derivative can be continuously
extended to [0, 1].

Furthermore, Taylor shows that the stationary distribution of the retrospective
process is unique.
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Taylor defines the common ancestor process as the time-reversal of the retro-
spective process. Its generator is then given by the adjoint of G̃ with respect
to π(z, x). He shows that the solution of the corresponding martingale problem
exists and is unique [50, Prop. 2.7].

Taylor states the following lemma which connects his diffusion and Fearnhead’s
graphical representation.

Lemma 3.9 ([50], Lemma 4.1). Let (λn)n≥1 be the sequence defined in (3.5) and
(3.6). Then,

h(x) = x+ x

∞∑

n=1

(1− x)n
( n∏

i=1

λi

)

. (3.11)

Thus, the marginal distributions of Taylor’s and Fearnhead’s solutions coincide:

π0 =

∫ 1

0

h(x)f(x)dx =

∫ 1

0

xf(x)dx+

∫ 1

0

∞∑

n=1

x(1− x)nf(x)dx
( n∏

i=1

λi

)

=

∞∑

n
1
=0

( n
1∏

i=1

λi

)

p(n+ e0) =

∞∑

n
1
=0

πF (0,n).

This coincidence of both approaches is intuitively clear because they are derived
from the same basic models.

3.3 Towards the particle model behind the diffu-

sion

3.3.1 Recursion for h

In this section, we want to find a new approach to the conditional probability
h, and (hNk )k=0,...,N , respectively. The latter is defined as the probability that
after some finite time an individual of type 0 will be the ancestor of the whole
population given that there are k individuals of type 0 in a current population
of size N . To clarify the presentation, we will omit the upper index N in the
further course. We follow the presentation in [33]. The ansatz for the calculation
of hk is a first step analysis argument. The following lemma which is often used
implicitly clarifies this approach [11].
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Lemma 3.10. [First-Step Analysis] Let X = (Xt)t≥0 be a time-homogeneous
Markov process with countable state space E and A ⊂ E closed (in the sense of
Markov processes) subset in E. Let Tx be the residence time in state x ∈ E. Then

P(X absorbs in A | X0 = x)

=
∑

y 6=x

P(XTx
= y | X0 = x) · P(X absorbs in A | X0 = y). (3.12)

We apply this lemma to the probability hk. To this end, we follow the offspring
of a sample.

Definition 3.11. [[33], offspring process] Consider a given sample of n0 individ-
uals of type 0 and n1 individuals of type 1, respectively. Let O0 = (n0, n1) and Ot

be the composition of the offspring of the sample at time t > 0.

Then, we call (Ot, Yt)t≥0 with Yt as defined in (3.1) the offspring process which is
a Markov process with state space

EO = {((m0, m1), k), m0, m1 ∈ N, m0 +m1 ≤ N, 0 ≤ k ≤ N}.

Remark 3.12. Since in the nonneutral model the reproduction rates depend on
the frequency of fit alleles, it is necessary to record the background frequency of
fit alleles in order to obtain the Markov property.

This process has one absorbing state, namely the extinction of the sample. Fur-
thermore, all states of the offspring process with offspring size N form a closed
set A:

A := {((m0, m1), k) ∈ E, m0 +m1 = N}.

So, let (O0, Y0) = ((k, 0), k). Obviously, the probability that the offspring process
gets trapped in A is exactly the conditional probability that after some finite time
a fit individual will be ancestral to the whole population, that is hk.
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Thus, we are in the framework of Lemma 3.10 and may apply it to the the off-
spring process. We consider all possible transitions given we are in state ((k, 0), k),
calculate their rates and the absorption probability at the new state [33].

1. Replacement of an individual of type 1: ((k, 0), k) → ((k + 1, 0), k)

happens at rate (1 + s)k(N−k)
N

. The absorption probability in this state is
hk+1.

2. Replacement of an individual of type 0: ((k, 0), k) → ((k − 1, 0), k − 1)

happens at rate k(N−k)
N

, the absorption probability is hk−1.

3. Mutation of an individual of type 0: ((k, 0), k) → ((k − 1, 0), k − 1)
happens at rate uν1k. The probability that any single individual of type
1 is after some finite time the common ancestor of the entire population
is 1 − hk−1 given the process is in state ((k − 1, 0), k − 1). For a selected

individual this probability is then
1−h

k−1

N−k+1
. So, the absorption probability

for the sample individuals then is

hk−1 +
1− hk−1

N − k + 1
.

4. Mutation of an individual of type 1: ((k, 0), k) → ((k, 0), k + 1)
happens at rate uν0(N − k). The absorption probability of the sample is
the probability that any individual of type 0 is the common ancestor of the
population in the future apart from the selected individual which does not
belong to the sample, this is (1− 1

k+1
)hk+1.

With this and Lemma 3.10 we obtain

Theorem 3.13. [33] The probability (hk)k=0,...,N fulfills the following recursion
for k = 1, . . . , N − 1

Rhk =(1 + s)
k(N − k)

k
hk+1 +

k(N − k)

N
hk−1

+ uν0(N − k)
(

hk+1 −
hk+1

k + 1

)

+ uν1k
(

hk−1 +
1− hk−1

N − k + 1

) (3.13)

with R =
(

(2 + s)k(N−k)
N

+ uν0(N − k) + uν1k
)

and boundary conditions h0 = 0,

hN = 1.

In the neutral case, h(x) = x, and hk = k
N

, respectively. So, just by neutrality,
there is always a positive fixation probability. We want to quantify the additional
advantage given by selection and so define

ψ(x) := h(x)− x,
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and

ψk := hk −
k

N
,

respectively.

These quantities can also be characterized by a recursion, which one may derive
by a first-step-analysis. Of course, one may derive these formulas directly from
equation (3.13) [33].

Proposition 3.14. The quantities ψk, k = 1, . . . , N − 1 follow the recursion

NRψk =
(

(1 + s)k(N − k) +
k

k + 1
(N − k)Nuν0

)

ψk+1

+
(

k(N − k) +
N − k

N + 1− k
iNuν1

)

ψk−1 + k(N − k)
s

N
,

(3.14)

with ψ0 = ψN = 0.

With these results, we will directly derive a boundary value problem which de-
scribes the conditional probability h as it was done in [33]. However, the reasoning
in [33] works under the assumption that the quantities hk converge towards h in
an adequate sense. In the following two sections we will prove the validity of
this assumption. This proof is rather tedious. For this we first need an explicit
solution of recursion 3.14, which we derive iin the following section.

3.3.2 Solution of the recursion

We can give an explicit solution for the recursion (3.14). The following Lemma
turns out to be helpful

Lemma 3.15. Let ψj, j = 0, . . . , N be the quantities defined in (3.14). Then the
following relation holds for k = 1, . . . , N :

(1 +
Nuν1
k

)ψN−k = (1 +Nuν1)ψN−1 + (1 + s+
Nuν0

N − k + 1
)ψN−k+1 − (k − 1)

s

N
.

(3.15)

Proof. Recursion (3.14) is equivalent to:

(

(2 + s) +
N

k
uν0 +

N

N − k
uν1

)

ψk =
(

(1 + s) +
N

k + 1
uν0

)

ψk+1

+
(

1 +
N

N + 1− k
uν1

)

ψk−1 +
s

N
.

(3.16)



3.3 Towards the particle model behind the diffusion 55

Summation over the first k − 1 expressions of (3.16) gives

k−1∑

j=1

(2 + s+
Nuν0
N − j

+
Nuν1
j

)ψN−j =

k−1∑

j=1

(1 + s+
Nuν0

N − j + 1
)ψN−j+1

+

k−1∑

j=1

(1 +
Nuν1
j + 1

)ψN−j−1 +
(k − 1)s

N
,

which is equivalent to the assertion of the Lemma.

The advantage that equation (3.15) has over (3.31) is that it gives a formula
in which ψN−k only depends on ψN−k+1, the preceding value. Evaluating this
formula for some little k suggests the solution of recursion (3.14).

Theorem 3.16. The solution of recursion (3.14) is given by

ψN−k =
k∑

ℓ=1

Ak
ℓB

k−1
ℓ

[
(1 +Nuν1)ψN−1 −

(ℓ− 1)s

N

]
, (3.17)

for k = 0, . . . , N with

Aℓ+m
ℓ :=

m∏

j=0

ℓ+ j

ℓ+ j +Nuν1

and

Bℓ+m
ℓ :=

m∏

j=0

(1 + s+
Nuν0

N − ℓ− j
).

Proof. Obviously, ψN = 0 holds. For k ≥ 1, we must check that ψN−k as it is
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given by (3.17) complies with (3.15):

ψN−k =
k

k +Nuν1

[

(1 +Nuν1)ψN−1 + (1 + s+
Nuν0

N − k + 1
)ψn−k+1 − (k − 1)

s

N

]

=
k

k +Nuν1

[

(1 +Nuν1)ψN−1 − (k − 1)
s

N

+ (1 + s+
Nuν0

N − k + 1
)

k−1∑

ℓ=1

Ak−1
ℓ Bk−2

ℓ [(1 +Nuν1)ψN−1 + (ℓ− 1)
s

N
]
]

=
k

k +Nuν1

[

(1 +Nuν1)ψN−1 − (k − 1)
s

N

+

k−1∑

ℓ=1

Ak−1
ℓ Bk−1

ℓ [(1 +Nuν1)ψN−1 + (ℓ− 1)
s

N
]
]

=Ak
k

(

(1 +Nuν1)ψN−1 − (k − 1)
s

N

)

+
k−1∑

ℓ=1

Ak
ℓB

k−1
ℓ [(1 +Nuν1)ψN−1 + (ℓ− 1)

s

N
]

=
k∑

ℓ=1

Ak
ℓB

k−1
ℓ [(1 +Nuν1)ψN−1 + (ℓ− 1)

s

N
].

Obviously, we may dispose of ψN−1 in (3.17) by using the boundary condition
ψ0 = 0. This leads to

ψN−1 =
s

1 +Nuν1

N−1∑

ℓ=0

N−1−ℓ
N

AN
N−ℓB

N−1
N−ℓ

N−1∑

ℓ=0

AN
N−ℓB

N−1
N−ℓ

.

So, we have

Corollary 3.17.

ψN−k =
k∑

ℓ=1

Ak
ℓB

k−1
ℓ s

[

N−1∑

ℓ=0

N−1−ℓ
N

AN
N−ℓB

N−1
N−ℓ

N−1∑

ℓ=0

AN
N−ℓB

N−1
N−ℓ

−
(ℓ− 1)

N

]

. (3.18)

In the following section we use this solution to prove the convergence of hk towards
h.
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3.3.3 Convergence of hk towards h

In Theorem 3.13 we give a recursion that describes the quantities (hk)k=0,...,N

as defined in Section 3.3.1. Taylor gives an explicit solution of the boundary
value problem for h [50, Eq (23)]. We also found a slightly different way to
this solution in Section 3.3.6. With this solution at hand, we may prove the
convergence of the hk towards h in the following sense: Let x ∈ [0, 1] and let
(kN)N∈N with 0 ≤ kN ≤ N and kN/N → x. Then, hk

N
/N → h(x) which is

simply the convergence of real numbers.

We show the convergence in this sense for the quantities ψk, which are defined
by ψk := hk − k/N , ψ(x) := h(x) − x respectively. By the definition, it is clear
that their convergence assures the convergence of the hk, too.

Lemma 3.18. The ψN−1, given by (3.14), have the following asymptotic be-
haviour

lim
N→∞

NψN−1 =
σ

1 + θν1
(1− p̃),

where

p̃ :=

∫ 1

0
eσy(1− y)θν1yθν0+1dy
∫ 1

0
eσy(1− y)θν1yθν0dy

.

Proof. The ψk are given by (3.17) which is

ψN−k =

k∑

ℓ=1

Ak
ℓB

k−1
ℓ

[
(1 +Nuν1)ψN−1 −

(ℓ− 1)s

N

]
.

For k = N we use the boundary condition ψ0 = 0 and obtain

ψN−1 =
s

1 +Nuν1

N∑

ℓ=1

AN
ℓ B

N−1
ℓ

ℓ−1
N

N∑

ℓ=1

AN
ℓ B

N−1
ℓ

. (3.19)

We consider the coefficients AN
ℓ and BN−1

ℓ . With ℓ > 1, we have for the coeffi-
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cients AN
ℓ :

AN
ℓ =

N∏

j=ℓ

j

j +Nuν1
=

N∏

j=ℓ

(1 +
Nuν1
j

)−1

= exp

[

−

N∑

j=ℓ

log(1 +
Nuν1
j

)

]

= exp

[

−Nuν1

N∑

j=ℓ

1

j
−

N∑

j=ℓ

R1(
Nuν1
j

)

]

= exp

[

−Nuν1

( N∑

j=1

1

j
−

ℓ−1∑

j=1

1

j

)
]

exp

[

−
N∑

j=ℓ

R1(
Nuν1
j

)

]

= exp

[

−Nuν1

(

log(N)− log(ℓ− 1)
)
]

× exp

[

−

N∑

j=ℓ

R1(
Nuν1
j

)−Nuν1R2(N) +Nuν1R2(ℓ− 1)

]

=

(

ℓ− 1

N

)Nuν
1

exp

[

−

N∑

j=ℓ

R1(
Nuν1
j

)−Nuν1R2(N) +Nuν1R2(ℓ− 1)

]

,

(3.20)

where the functions R1 and R2 are defined by

R1(x) := log(1 + x)− x

and

R2(n) :=

n∑

i=1

1

i
− γ − log(n),

and γ is the Euler-Mascheroni constant. For R1, we have the estimate |R1(x)| ≤
x2

2
for x ≥ 0 and R2(n) ∈ O( 1

n
) for n → ∞. We must keep in mind, that this

transformation cannot be done for ℓ = 1.
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Similarly, we obtain for BN−1
ℓ with ℓ < N :

BN−1
ℓ =

N−ℓ∏

j=1

(1 + s +
Nuν0
j

) = exp

[
N−ℓ∑

j=1

(s+
Nuν0
j

)

]

exp

[
N−ℓ∑

j=1

R1(s+
Nuν0
j

)

]

=exp((N − ℓ)s) exp
[

Nuν0 log(N − ℓ)
]

× exp

[
N−ℓ∑

j=1

R1(s+
Nuν0
j

) +Nuν0(γ +R2(N − ℓ))

]

=exp((N − ℓ)s)(N − ℓ)Nuν
0

× exp

[
N−ℓ∑

j=1

R1(s+
Nuν0
j

) +Nuν0(γ +R2(N − ℓ))

]

.

(3.21)

In the case ℓ = N , we have by definition BN−1
N = 1.

Define step functions TN
1 : [0, 1] → R by

TN
1 (y) =







0, y ≤ 1
N
;

exp(sN N−ℓ
N

)
(

ℓ−1
N

)Nuν
1
+1(

N−ℓ
N

)Nuν
0

exp
[

R(N, ℓ)
]

, ℓ−1
N

< y ≤ ℓ
N
,

ℓ = 2, . . . , N − 1;
(

N−1
N

)Nuν
1
+1(

1
N

)Nuν
0

× exp
[

− R1(
Nuν

1

N
)−Nuν1R2(N) +Nuν1R2(N − 1)

]

, y > N−1
N
,

where

R(N, ℓ) :=−
N∑

j=ℓ

R1(
Nuν1
j

)−Nuν1R2(N) +Nuν1R2(ℓ− 1)

+
N−ℓ∑

j=1

R1(s+
Nuν0
j

) +Nuν0(R2(N − ℓ) + γ).

Again, we have a look at (3.19):

NψN−k =
Ns

1 +Nuν1

N∑

ℓ=1

AN
ℓ B

N−1
ℓ

ℓ−1
N

N∑

ℓ=1

AN
ℓ B

N−1
ℓ

=
Ns

1 +Nuν1

1
N

N∑

ℓ=1

AN
ℓ B

N−1
ℓ N−Nuν

0
ℓ−1
N

1
N

N∑

ℓ=1

AN
ℓ B

N−1
ℓ N−Nuν

0

.
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Then, the numerator is just the integral of TN
1 with respect to the Lebesgue

measure. Let y ∈ (0, 1) and define ℓyN ∈ N by ℓyN − 1/N < y ≤ ℓyN/N . Then,
ℓyN → ∞ and N − ℓyN → ∞ as N → ∞. Then, R(N, ℓyN) → θγ + C as N → ∞,

where C := limN→∞

N∑

j=1

R1(s +
Nuν

0

j
), which is finite since |R1(x)| ≤ x2/2 and

s ∈ O(1/N). Thus,

TN
1 (y) → g(y) := exp(σ(1− y))yθν1+1(1− y)θν0 exp(γ + C) as N → ∞.

Furthermore, there is a K > 0 with TN
1 ≤ K for all N ∈ N, since for arbitrary

ℓ = 2, . . . , N − 1:

exp(sN
N − ℓ

N
)
(ℓ− 1

N

)Nuν
1
+1(N − ℓ

N

)Nuν
0

exp
[

R(N, ℓ)
]

≤ exp(sN) exp
[

R(N, ℓ)
]

≤ exp(sN) exp

[
N∑

j=1

|R1(
Nuν1
j

)|+Nuν1|R2(N)|+Nuν1|R2(ℓ− 1)|

+
N∑

j=1

|R1(s+
Nuν0
j

)|+ |Nuν0R2(N − ℓ)|+Nuν0γ

]

Since the series
N∑

j=1

|R1(
Nuν

1

j
)| and

N∑

j=1

|R1(s +
Nuν

0

j
)| converge, the sums are less

than some K1 > 0. Furthermore, the maximum over all |R2(n)|, which we denote
by K2, exists because R2 vanishes for large arguments. Trivially, there are upper
bounds K3, K4 and K5, for Ns, Nuν0 and Nuν1, such that we finally have

|TN
1 (y)| ≤ exp(K3) exp(2K1 +K4γ + 2K5K2 +K4K2) =: K

for 1
N
< y ≤ N−1

N
. For y ≤ 1

N
, TN

1 is zero, and for y > N−1
N

, it is obviously
bounded, too. So, we have

lim
N→∞

∫ 1

0

TN
1 (y)dy =

∫ 1

0

(
lim

N→∞
TN
1 (y)

)
dy.

Of course, we can do the same procedure for the denominator of (3.19) since it
deviates from the numerator just by the factor (ℓ − 1)/N , that means, we may
define step functions TN

2 which are bounded and converge almost everywhere to
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exp(σ(1− y))yθν1(1− y)θν0 exp(θγ + C). Thus, we have

lim
N→∞

NψN−1 =
σ

1 + θν1

∫ 1

0
exp(σ(1− y))yθν1+1(1− y)θν0 exp(θγ + C)dy
∫ 1

0
exp(σ(1− y))yθν1(1− y)θν0 exp(θγ + C)dy

=
σ

1 + θν1

∫ 1

0
exp(σ(1− y))yθν1+1(1− y)θν0dy
∫ 1

0
exp(σ(1− y))yθν1(1− y)θν0dy

=
σ

1 + θν1

∫ 1

0
eσy(1− y)θν1+1yθν0dy
∫ 1

0
eσy(1− y)θν1yθν0dy

=
σ

1 + θν1

(

1−

∫ 1

0
eσy(1− y)θν1yθν0+1dy
∫ 1

0
eσy(1− y)θν1yθν0dy

)

=
σ

1 + θν1
(1− p̃),

where we used in the fourth step that

∫ 1

0

eσy(1− y)θν1+1yθν0dy +

∫ 1

0

eσy(1− y)θν1yθν0+1dy =

∫ 1

0

eσy(1− y)θν1yθν0dy.

Theorem 3.19. Let x ∈ [0, 1], (kN)N∈N a sequence of natural numbers with

kN ≤ N and limN→∞
k
N

N
= x. Then, the sequence (ψk

N
)N∈N converges to ψ(x) as

it is given in (3.36), the unique solution of the boundary value problem (3.26).

Proof. From Theorem 3.16 we have

ψk =
1

N

N−k∑

ℓ=1

AN−k
ℓ BN−k−1

ℓ [(1 +Nuν1)NψN−1 −Ns
ℓ− 1

N
] (3.22)

Similar to our approach in the previous Lemma, we first consider AN−k
ℓ and

BN−k−1
ℓ and use the same notation for the error functions R1 and R2 that emerge

in the approximation of the harmonic series and of the series expansion of the
logarithm.
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Let ℓ > 1, k > 0, then

AN−k
ℓ = exp

[

−

N−k∑

j=ℓ

Nuν1
j

−

N−k∑

j=ℓ

R1(
Nuν1
j

)
]

= exp
[

−Nuν1

(N−k∑

j=1

1

j
−

ℓ−1∑

j=1

1

j

)

−

N−k∑

j=ℓ

R1(
Nuν1
j

)
]

= exp
[

−Nuν1(log(N − k)− log(ℓ− 1))
]

exp
[

−

N−k∑

j=ℓ

R1(
Nuν1
j

)−Nuν1(R2(N − k)− R2(ℓ− 1))
]

=
(ℓ− 1

N

)Nuν
1

(N − k

N

)−Nuν
1

exp
[

−
N−k∑

j=ℓ

R1(
Nuν1
j

)−Nuν1(R2(N − k)− R2(ℓ− 1))
]

For BN−k−1
ℓ with k > 0 and ℓ < N − k, we have

BN−k−1
ℓ =

N−ℓ∏

j=k+1

(1 + s+
Nuν0
j

)

= exp
[ N−ℓ∑

j=k+1

(s+
Nuν0
j

) +
N−ℓ∑

k+1

R1(s+
Nuν0
j

)
]

= exp(s(N − ℓ− k)) exp
[

Nuν0(log(N − ℓ)− log(k))
]

exp
[ N−ℓ∑

j=k+1

R1(s+
Nuν0
j

) +Nuν0(R2(N − ℓ)− R2(k))
]

= exp(s(N − k − ℓ))
(N − ℓ

N

)Nuν
0

( k

N

)−Nuν
0

exp
[ N−ℓ∑

j=k+1

R1(s+
Nuν0
j

) +Nuν0(R2(N − ℓ)− R2(k))
]

.

For the error, we define a function R by

R(N, k, ℓ) :=−
N−k∑

j=ℓ

R1(
Nuν1
j

)−Nuν1(R2(N − k)−R2(ℓ− 1))

+

N−ℓ∑

j=k+1

R1(s+
Nuν0
j

) +Nuν0(R2(N − ℓ)−R2(k)).
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Now, let x ∈ (0, 1) and (kN)N∈N a sequence with 0 ≤ kN ≤ N and kN/N → x as
N → ∞. Since we are interested in the limit for N → ∞, we may assume, that
1 ≤ kN ≤ N − 1. Define a step function Tk

N
: [0, 1] → R by

Tk
N
(y) =







0, if y = 0;

A
N−kN
1 B

N−kN−1
1 [(1 +Nuν1)NψN−1], if 0 < y ≤ 1

N
;

e−sk
N

(
k
N

N

)−Nuν
0

(
N−k

N

N

)−Nuν
1

es(N−ℓ)
(

N−ℓ
N

)Nuν
0

(
ℓ−1
N

)Nuν
1

×[(1 +Nuν1)NψN−1 −Ns ℓ−1
N

] exp[R(N, kN , ℓ)],

if ℓ−1
N

< y ≤ ℓ
N
, ℓ = 2, . . . , N − kN − 1;

A
N−k

N

N−k
N
[(1 +Nuν1)NψN−1 −Ns

N−kN−1

N
], if

N−kN−1

N
< y ≤

N−kN
N

;

0, if y >
N−kN

N
.

Then the right-hand side of (3.22) is just the integral of Tk
N
. Let y ∈ (0, 1) and

ℓyN such that (ℓyN − 1)/N < y ≤ ℓyN/N . Then, ℓyN , N − ℓyN , kN , N − kN tend to
infinity as N → ∞ and thus R(N, kN , ℓ

y
N) vanishes for large N . For y ∈ {0, 1},

we have Tk
N
(y) = 0 for large N . So,

g(y) := lim
N→∞

Tk
N
(y) =1[0,1−x](y)e

−σxx−θν
0(1− x)−θν

1

eσ(1−y)(1− y)θν0yθν1[(1 + θν1)
σ

1 + θν1
(1− p̃)− σy]

almost everywhere. In analogy to the proof of the previous Lemma, we can see
that the functions Tk

N
are bounded3, and that we may also apply dominated

convergence to obtain that

lim
N→∞

ψk
N
= lim

N→∞

∫ 1

0

Tk
N
(y)dy =

∫ 1

0

g(y)dy.

3Maybe, it is not quite obvious, that the terms for y ≤ 1
N

are bounded, too. Trivially,

A
N−k

N

1 ≤ 1. Furthermore,

B
N−k

N
−1

1 = es(N−k
N
−1)
(N − 1

kN

)Nuν
0

exp
[ N−1∑

j=k
N
+1

R1(s+
Nuν0
j

)+Nuν0(R2(N−1)−R2(kN ))
]

,

which is also bounded since (N − 1)/kN → 1
x
.
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Via a substitution, we finally see that this limit is indeed ψ(x) as given in (3.36):

∫ 1−x

0

eσ(1−y)(1− y)θν0yθν1σ(1− p̃− y)dy =

∫ 1

x

eσyyθν0(1− y)θν1σ(y − p̃)dy

=σ

∫ 1

0

eσyyθν0(1− y)θν1(y − p̃)dy

+ σ

∫ x

0

eσyyθν0(1− y)θν1(p̃− y)dy

=σ

∫ x

0

eσyyθν0(1− y)θν1(p̃− y)dy,

where we used that

σ

∫ 1

0

eσyyθν0(1− y)θν1(y − p̃)dy = 0

due to the definition of p̃. The proof is not complete yet. We must check the
convergence at the boundaries, that means

lim
N→∞

ψk
N
= 0

for arbitrary sequences kN with

lim
N→∞

kN
N

= 0 or lim
N→∞

kN
N

= 1.

We first consider the case kN/N → 1. Since ψN = 0, we may assume that
kN < N . From the previous reasoning we have

ψk
N
=exp(−Ns

kN
N

)
(kN
N

)−Nuν
0

(N − kN
N

)−Nuν
1

×
1

N

N−kN−1
∑

ℓ=2

[

es(N−ℓ)
(N − ℓ

N

)Nuν
0

(ℓ− 1

N

)Nuν
1

[(1 +Nuν1)NψN−1 −Ns
ℓ− 1

N
]

× exp(R(N, kN , ℓ))
]

+
1

N
A

N−k
N

1 B
N−k

N
−1

1 [(1 +Nuν1)NψN−1]

+
1

N
A

N−k
N

N−k
N
[(1 +Nuν1)NψN−1 −Ns

N − kN − 1

N
].

We obviously may find upper bounds for exp(−Ns
k
N

N
),
(

k
N

N

)−Nuν
0

, exp(s(N−ℓ)),
(

N−ℓ
N

)Nuν
0

, [(1+Nuν1)NψN−1−Ns
ℓ−1
N

], R(N, kN , ℓ),A
N−kN
1 B

N−kN−1
1 andA

N−kN
N−k

N
,

such that we obtain
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|ψk
N
| ≤C1

(N − kN
N

)−Nuν
1 1

N

N−k
N
−1

∑

ℓ=2

(ℓ− 1

N

)Nuν
1

+
C2

N

≤C1
1

N

N−k
N
−1

∑

ℓ=2

(N − kN − 1

N − kN

)Nuν
1

+
C2

N

≤C1
1

N
(N − kN − 2) +

C2

N
→ 0 as N → ∞.

It is not obvious how to obtain the same result for kN/N → 0 from this solution of
the recursion. It becomes apparent that it is very simple again, when we consider
the solution of the recursion starting from the bottom. See the following Lemma.
We will also use (3.23) and (3.24). Here, we assume kN > 0. With this, we have

ψk
N
=e−kN s(

kN
N

)−Nuν
0(
N − kN
N

)−Nuν
1

×
1

N

k
N
−1
∑

ℓ=2

[

eℓs(
ℓ− 1

N
)Nuν

0(
N − ℓ

N
)Nuν

1[(1 + s+Nuν0)Nψ1 −
ℓ− 1

N
Ns]

× exp[R(N, kN , ℓ)]
]

+
1

N
Ã

k
N

1 B̃
k
N

1 (1 + s+Nuν0)Nψ1

+
1

N
Ã

kN
k
N
[(1 + s+Nuν0)Nψ1 − (kN − 1)s],

where

R(N, kN , ℓ) :=−Nuν0R2(kN) +Nuν0R2(ℓ− 1)−

k
N∑

j=ℓ

R1(s+
Nuν0
j

)

+Nuν1(R2(N − ℓ)−R2(N − kN)) +
N−ℓ∑

j=N−k
N
+1

R1(
Nuν1
j

).

As in the previous case with limit 1, we may find upper bounds for all factors
apart from (kN/N)−Nuν

0 and finally obtain

|ψk
N
| ≤ C3

1

N

kN−1
∑

ℓ=2

(
ℓ− 1

kN
)Nuν

0 +
C4

N
≤ C3

1

N
(kN − 2) +

C4

N
→ 0 as N → ∞.
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Lemma 3.20. A solution of recursion (3.14) is given by

ψk =

k∑

ℓ=1

Ãk
ℓ B̃

k−1
ℓ [(1 + s+Nuν0)ψ1 −

(ℓ− 1)s

N
],

where

Ãk
ℓ :=

k∏

j=ℓ

j

j(1 + s) +Nuν0

and

B̃k−1
ℓ :=

N−ℓ∏

j=N−k+1

(1 +
Nuν1
j

).

Furthermore,

lim
N→∞

Nψ1 =
σ

1 + θν0
p̃.

Proof. For the first assertion, we sum the first k − 1 expressions of (3.14):

k−1∑

j=1

(2 + s+
Nuν0
j

+
Nuν1
N − j

)ψj =

k−1∑

j=1

(1 + s+
Nuν0
j + 1

)ψj+1

+

k−1∑

j=1

(1 +
Nuν1

N + 1− j
)ψj−1 + (k − 1)

s

N
,

which leads to

(1 + s+
Nuν0
k

)ψk = (1 + s+Nuν0)ψ1 + (1 +
Nuν1

N − k + 1
)ψk−1 − (k − 1)

s

N
.

We check the assertion by induction and use the equation above:

ψk =
k

k(1 + s) +Nuν0
[(1 + s+Nuν0)ψ1 − (k − 1)

s

N

+
N − k + 1 +Nuν1

N − k + 1

k−1∑

ℓ=1

Ãk−1
ℓ B̃k−2

ℓ [(1 + s+Nuν0)ψ1 −
(ℓ− 1)s

N
]]

=Ãk
k

[

(1 + s+Nuν0)ψ1 − (k − 1)
s

N

+
k−1∑

ℓ=1

Ãk−1
ℓ B̃k−1

ℓ [(1 + s +Nuν0)ψ1 −
(ℓ− 1)s

N
]

]

=
k∑

ℓ=1

Ãk
ℓ B̃

k−1
ℓ [(1 + s+Nuν0)ψ1 −

(ℓ− 1)s

N
].
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So, we proceed with the second assertion. The first assertion gives for k = N ,
where we use ψN = 0:

Nψ1 =
Ns

1 + s+Nuν0

1
N

N∑

ℓ=1

ℓ−1
N
ÃN

ℓ B̃
N−1
ℓ

1
N

N∑

ℓ=1

ÃN
ℓ B̃

N−1
ℓ

.

As we did in Lemma 3.18, we first consider the coefficients Ãk
ℓ and B̃k−1

ℓ . For
ℓ > 1,

Ãk
ℓ =

k∏

j=ℓ

(j(1 + s) +Nuν0
j

)−1

=exp
[

−
k∑

j=ℓ

log(1 + s+
Nuν0
j

)
]

=exp
[

−

k∑

j=ℓ

(s+
Nuν0
j

)−

k∑

j=ℓ

R1(s +
Nuν0
j

)
]

=exp
[

− (k − ℓ)s−Nuν0

k∑

j=ℓ

1

j
−

k∑

j=ℓ

R1(s +
Nuν0
j

)
]

=e(ℓ−k)s exp
[

−Nuν0 log(k) +Nuν0 log(ℓ− 1)−Nuν0R2(k) +Nuν0R2(ℓ− 1)

−
k∑

j=ℓ

R1(s+
Nuν0
j

)
]

=e(ℓ−k)s
(ℓ− 1

k

)Nuν
0

exp
[

−Nuν0R2(k) +Nuν0R2(ℓ− 1)−

k∑

j=ℓ

R1(s+
Nuν0
j

)
]

.

(3.23)

For B̃k−1
ℓ with k < N and ℓ < k, we have
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B̃k−1
ℓ =

N−ℓ∏

j=N−k+1

(1 +
Nuν1
j

) = exp
[ N−ℓ∑

j=N−k+1

log(1 +
Nuν1
j

)
]

=exp
[

Nuν1

N−ℓ∑

j=N−k+1

1

j
+

N−ℓ∑

j=N−k+1

R1(
Nuν1
j

)
]

=exp
[

Nuν1(log(N − ℓ)− log(N − k)) +Nuν1(R2(N − ℓ)− R2(N − k))

+

N−ℓ∑

j=N−k+1

R1(
Nuν1
j

)
]

=
(N − ℓ

N − k

)Nuν
1

exp
[

Nuν1(R2(N − ℓ)−R2(N − k)) +

N−ℓ∑

j=N−k+1

R1(
Nuν1
j

)
]

(3.24)

for k < N , and for k = N :

B̃N−1
ℓ = (N − ℓ)Nuν

1 exp
[

Nuν1(R2(N − ℓ) + γ) +
N−ℓ∑

j=1

R1(
Nuν1
j

)
]

.

By following a completely analogue reasoning as in Lemma 3.18, we obtain in the
limit

lim
N→∞

Nψ1 =
σ

1 + θν0

∫ 1

0
eσyyθν0+1(1− y)θν1dy
∫ 1

0
eσyyθν0(1− y)θν1dy

=
σ

1 + θν0
p̃,

which is the second assertion.
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3.3.4 Derivation of the boundary value problem

As mentioned at the end of Section 3.3.1, we may derive the boundary value
problem directly from the recursion in Theorem 3.13.

Theorem 3.21. The conditional probability h fulfills the following boundary value
problem

0 =x(1 − x)h′′(x) + (σx(1− x) + θν0(1− x)− θν1x)h
′(x)

− θ
(

ν0
1− x

x
+ ν1

x

1− x

)

h(x) + θν1
x

1− x
, h(0) = 0, h(1) = 1.

(3.25)

Proof. From Theorem 3.19 we know that the probability (hk)0≤k≤N converges to
the conditional probability h. Equation (3.13) is equivalent to

0 =
k(N − k)

N2
N2
(

hk+1 − 2hk + hk−1

)

+Ns
k(N − k)

N
N
(

hk+1 − hk

)

+Nuν0
N − k

N
N
(

hk+1 − hk

)

+Nuν1
k

N
N
(

hk−1 − hk

)

−Nuν0
N − k

N

Nhk+1

k + 1
+Nuν1

k

N

N(1 − hk−1)

N − k + 1

and yields for N tends to infinity, k
N

→ x, x ∈ (0, 1) and due to the fact that h
is holomorphic in (0, 1) (see Lemma 3.8) the assertion of the theorem.

So, we can derive the same boundary value problem for the conditional probability
h as in [50] directly from the Moran model. (3.25) directly gives the boundary
value problem for ψ [33]:

Proposition 3.22. The function ψ follows the following boundary value problem
on [0, 1]:

0 =x(1 − x)ψ′′(x) + σx(1 − x)ψ′(x) + θν0(1− x)
(

ψ′(x)−
ψ(x)

x

)

− θν1x
(

ψ′(x) +
ψ(x)

1− x

)

+ σx(1− x), ψ(0) = ψ(1) = 0.

(3.26)

3.3.5 Solution of the boundary value problem

The aim of this section is to give an explicit solution of the boundary value
problem (3.10). As in [50], we consider the series expansion

h(x) = x+ x

∞∑

j=1

aj(1− x)j , (3.27)



70 Towards a particle picture behind the common ancestor distribution

and define for further analysis the function v

v(x) :=
h(x)− x

x
=
ψ(x)

x
=
∑

j≥1

aj(1− x)j , x ∈ (0, 1].

In terms of v, the coefficients aj can be written as

aj = (−1)j
v(j)(1)

j!
, j ∈ N. (3.28)

From here on Taylor proceeds with a verification of Fearnheads solution using
the λn-coefficients from (3.5) and (3.6).

We proceed in another way and derive the recursion for the coefficients aj directly
from the first step analysis result for hk, (3.13). 4 To this end, we first analyse
the connection between the functions v and ψ.

Lemma 3.23. The n− th derivative of v is

v(n)(x) =

n∑

i=0

(−1)i
n!

(n− i)!

ψ(n−i)(x)

xi+1
.

Proof. The proposition follows from induction:

v(n+1)(x) =
d

dx
v(n)(x)

=
d

dx

n∑

i=0

(−1)i
n!

(n− i)!

ψ(n−i)(x)

xi+1

=
n∑

i=0

(−1)i
n!

(n− i)!

[ψ(n+1−i)(x)

xi+1
− (i+ 1)

ψ(n−i)(x)

xi+2

]

=

n∑

i=0

(−1)i
n!

(n− i)!

ψ(n+1−i)(x)

xi+1
+

n∑

i=0

(−1)i+1(i+ 1)
n!

(n− i)!

ψ(n−i)(x)

xi+2

=
n∑

i=0

(−1)i
n!

(n− i)!

ψ(n+1−i)(x)

xi+1
+

n+1∑

i=1

(−1)ii
n!

(n + 1− i)!

ψ(n+1−i)(x)

xi+1

=
ψ(n+1)(x)

x
+

n∑

i=1

(−1)i
n!

(n + 1− i)!
(n+ 1− i+ i)

ψ(n+1−i)(x)

xi+1

+ (−1)n+1ψ(x)

xn+2

=
n+1∑

i=0

(−1)i
(n+ 1)!

(n+ 1− i)!

ψ(n+1−i)(x)

xi+1
.

4This approach was already described in [33], but not conducted till its end. She stops with
the derivation of the second derivative of ψ in 1.
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From Lemma 3.23 follows a recursion for aj .

Proposition 3.24. For aj, j ∈ N, from (3.27), the following recursion holds

aj = (−1)j
ψ(j)(1)

j!
+ aj−1

with a1 = −v′(1) = ψ′(1).

Proof. This follows directly from Lemma 3.23:

aj =(−1)j
v(j)(1)

j!

=(−1)j
ψ(j)(1)

j!
+

(−1)j

j!

j
∑

i=1

(−1)i
j!

(j − i)!
ψ(j−i)(1)

=(−1)j
ψ(j)(1)

j!
+

(−1)j

j!

j−1
∑

i=0

(−1)i+1 j!

(j − 1− i)!
ψ(j−1−i)(1)

=(−1)j
ψ(j)(1)

j!
+

(−1)j−1

(j − 1)!

j−1
∑

i=0

(−1)i
(j − 1)!

(j − 1− i)!
ψ(j−1−i)(1)

=(−1)j
ψ(j)(1)

j!
+ aj−1.

As a trivial consequence of Proposition 3.24, we can give the aj in terms of
derivatives of ψ:

aj =

j
∑

i=0

(−1)i
ψ(i)(1)

i!
.

Thus, we reduce the calculation of the aj to the calculation of the derivatives of
ψ in 1. For this purpose, we will use recursion (3.14) for ψk.

Derivatives of ψ

We are interested in dn

dpn
ψ(1) = ψ(n)(1). We may derive it from the quantities ψk

with the help of the formula

ψ(n)(1) = lim
N→∞

Nn

n∑

j=0

(−1)k
(
n

j

)

ψN−j . (3.29)
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Remark 3.25. Due to the fact that recursion (3.14) is of degree two, this ap-
proach cannot directly help to calculate ψ′(1). Furthermore, we will only be able
to give recursions for higher derivatives in terms of lower derivatives and these
thus still depend on an explicit value for ψ′(1). Nevertheless, we already deter-
mined a1 in Lemma 3.18. Another approach towards a1 will be ginven in Section
3.3.6.

The second derivative

For i = N − 1, recursion (3.14) gives

ψN−2 =
2

2 +Nuν1

[

(2 + s+
N

N − 1
uν0 +Nuν1)ψN−1 −

s

N

]

.

So, for the second derivative we have

N2
[

ψN−2ψN−1 + ψN−2

]

= N2
[

− 2ψN−1 + ψN−2

]

=
2N2

2 +Nuν1

[

− (2 +Nuν1)ψN−1 +
2 +Nuν1

2
ψN−2

]

=
2N2

2 +Nuν1

[

(−2 −Nuν1 + 2 + s+
N

N − 1
uν0 +Nν1)ψN−1 −

s

N

]

=
2

2 +Nuν1

[

− (
N

N − 1
Nuν0 +Ns)(−NψN−1)−Ns

]

.

Thus,

ψ′′(1) =
2

2 + θν1

[

− (θν0 + σ)ψ′(1)− σ
]

.

The third derivative

For higher derivatives it is useful to replace ψN−n according to the recursion, as
we did for the second derivative. For k = N − n+ 1 we have from (3.16)

ψN−n =
n

n +Nuν1

[

(2 + s+
N

N − n+ 1
uν0 +

N

n− 1
)ψN−n+1

− (1 + s+
N

N − n + 2
uν0)ψN−n+2 −

s

N

]

.

(3.30)

This equation holds for n = 2, . . . , N .

The crucial simplification comes from the fact that the term s
N

does not depend
on k. An equivalent expression to (3.14) is
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s

N
=(2 + s+

N

k
uν0 +

N

N − k
uν1)ψk − (1 + s+

N

k + 1
uν0)ψk+1

− (1 +
N

N + 1− k
uν1)ψk−1.

We evaluate it for k = N − n+ 2 and plug it into (3.30):

ψN−n =
n

n +Nuν1

[

(3 + s+
N

N − n+ 1
uν0 +

2N

n− 1
uν1)ψN−n+1

− (3 + 2s+
2N

N − n + 2
uν0 +

N

n− 2
uν1)ψN−n+2

+ (1 + s +
N

N − n+ 3
uν0)ψN−n+3

]

,

(3.31)

which holds for n = 3, . . . , N .

For the calculation of the third derivative we evaluate (3.31) for n = 3 and plug
it into (3.29):

N3[ψN − 3ψN−1 + 3ψN−2 − ψN−3]

=
3N3

3 +Nuν1

[

(3 +Nuν1)(−ψN−1 + ψN−2)−
3 +Nuν1

3
ψN−3

]

=
3N3

3 +Nuν1

[

(3 +Nuν1)(−ψN−1 + ψN−2)

+ (3 + 2s+ 2
N

N − 1
uν0 +Nuν1)ψN−1 − (3 + s+

N

N − 2
uν0 +Nuν1)ψN−2

]

=
3

3 +Nuν1

[

N2(−2ψN−1 + ψN−2)(−Ns−
N

N − 2
Nuν0)

−
2N2

(N − 1)(N − 2)
Nuν0NψN−1

]

.

Thus,

ψ(3)(1) =
3

3 + θν1

[

− (σ + θν0)ψ
′′(1) + 2θν0ψ

′(1)
]

.

Higher derivatives

For the n−th derivative we can proceed in the same way as we did for the third
derivative: replace ψN−n by formula (3.31), and sort all terms in the right manner.
This step must be executed several times. The following lemma gives a formula
for the product after the k−th step.
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Lemma 3.26. Let 0 ≤ k ≤ n ≤ N and ψj, 0 ≤ j ≤ N , as given by (3.14) and
ψ0 = ψN = 0, then

n∑

j=0

(−1)j
(
n

j

)

ψN−j =
n

n +Nuν1

[n +Nuν1
n

n−k∑

j=1

(−1)j
(
n

j

)

ψN−j

− s
n−1∑

j=n−k+1

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=n−k+1

(

(−1)n−ℓ−1 (n− 1)!N(N − ℓ− 1)!

ℓ!(N − n+ 1)!

ℓ∑

j=n−k+1

(−1)j
(
ℓ

j

)

ψN−j

)

+ (−1)n−k+1

(
n− 3

k − 1

)

(1 +
Nuν1

n− k + 1
)ψN−n+k−1

− (−1)n−k

(
n− 3

k − 2

)

(3 + 2s+
2Nuν0

N − n + k
+
Nuν1
n− k

)ψN−n+k

+ (−1)n−k+1

(
n− 3

k − 3

)

(1 + s+
Nuν0

N − n + k
)ψN−n+k

+ (−1)n−k

(
n− 3

k − 2

)

(1 + s+
Nuν0

N − n+ k + 1
)ψN−n+k+1

]

.

(3.32)

Proof. The proof is per induction, the calculations are straightforward. For the
basis we replace ψN−n via equation (3.31) and transform the terms in the right
way, the inductive step then is done the same way. We only present the inductive
step beginning from the right-hand side of (3.32).

n+Nuν1
n

n−k∑

j=1

(−1)j
(
n

j

)

ψN−j − s
n−1∑

j=n−k+1

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=n−k+1

(

(−1)n−ℓ−1 (n− 1)!N(N − ℓ− 1)!

ℓ!(N − n+ 1)!

ℓ∑

j=n−k+1

(−1)j
(
ℓ

j

)

ψN−j

)

+ (−1)n−k+1

(
n− 3

k − 1

)

(1 +
Nuν1

n− k + 1
)ψN−n+k−1

− (−1)n−k

(
n− 3

k − 2

)

(3 + 2s+
2Nuν0

N − n + k
+
Nuν1
n− k

)ψN−n+k

+ (−1)n−k+1

(
n− 3

k − 3

)

(1 + s+
Nuν0

N − n + k
)ψN−n+k

+ (−1)n−k

(
n− 3

k − 2

)

(1 + s+
Nuν0

N − n+ k + 1
)ψN−n+k+1

(3.33)
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=
n+Nuν1

n

n−k−1∑

j=1

(−1)j
(
n

j

)

ψN−j − s
n−1∑

j=n−k+1

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=n−k+1

(−1)n−ℓ−1 (n− 1)!

ℓ!

N

(N − n + 1) · · · (N − ℓ)

ℓ∑

j=n−k+1

(−1)j
(
ℓ

j

)

ψN−j

+ (−1)n−k 1

n

(
n

n− k

)

ψN−n+k(n+Nuν1)

+ (−1)n−k+1

(
n− 3

k − 1

)

(3 + s+ uν0
N

N − n+ k
+ uν1

2N

n− k
)ψN−n+k

− (−1)n−k+1

(
n− 3

k − 1

)

(3 + 2s+ uν0
2N

N − n+ k + 1
+ uν1

N

n− k − 1
)ψN−n+k+1

+ (−1)n−k+1

(
n− 3

k − 1

)

(1 + s+ uν0
N

N − n+ k + 2
)ψN−n+k+2

− (−1)n−k

(
n− 3

k − 2

)

(3 + 2s+ 2uν0
N

N − n + k
+ uν1

N

n− k
)ψN−n+k

+ (−1)n−k+1

(
n− 3

k − 3

)

(1 + s+ uν0
N

N − n+ k
)ψN−n+k

+ (−1)n−k

(
n− 3

k − 2

)

(1 + s+ uν0
N

N − n + k + 1
)ψN−n+k+1

=
n+Nuν1

n

n−k−1∑

j=1

(−1)j
(
n

j

)

ψN−j − s

n−1∑

j=n−k+1

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=n−k+1

(−1)n−ℓ−1 (n− 1)!

ℓ!

N

(N − n + 1) · · · (N − ℓ)

ℓ∑

j=n−k+1

(−1)j
(
ℓ

j

)

ψN−j

+ (−1)n−k(n+Nuν1)
(n− 1)!

k!(n− k)!
ψN−n+k

+ (−1)n−k(s+ uν0
N

N − n+ k
)

(

−

(
n− 3

k − 1

)

− 2

(
n− 3

k − 2

)

−

(
n− 3

k − 3

))

ψN−n+k

+(−1)n−k−1

((
n− 3

k − 1

)

(3 + uν1
2N

n− k
) +

(
n− 3

k − 2

)

(3 + uν1
N

n− k
)

+

(
n− 3

k − 3

))

ψN−n+k

− (−1)n−k+1

(
n− 3

k − 1

)

(3 + 2s+ uν0
2N

N − n+ k + 1
+ uν1

N

n− k − 1
)ψN−n+k+1

+ (−1)n−k

(
n− 3

k − 2

)

(1 + s+ uν0
N

N − n + k + 1
)ψN−n+k+1

+ (−1)n−k−1

(
n− 3

k − 1

)

(1 + s+ uν0
N

N − n+ k + 2
)ψN−n+k+2
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=
n +Nuν1

n

n−k−1∑

j=1

(−1)j
(
n

j

)

ψN−j − s
n−1∑

j=n−k

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=n−k

(−1)n−ℓ−1 (n− 1)!

ℓ!

N

(N − n+ 1) · · · (N − ℓ)

ℓ∑

j=n−k

(−1)j
(
ℓ

j

)

ψN−j (∗)

+ (−1)n−k

(
n− 3

k

)

(1 +
uν1
n− k

N)ψN−n+k

− (−1)n−k+1

(
n− 3

k − 1

)

(3 + 2s+ uν0
2N

N − n + k + 1
+ uν1

N

n− k − 1
)ψN−n+k+1

+ (−1)n−k

(
n− 3

k − 2

)

(1 + s+ uν0
N

N − n+ k + 1
)ψN−n+k+1

+ (−1)n−k+1

(
n− 3

k − 1

)

(1 + s+ uν0
N

N − n+ k + 2
)ψN−n+k+2.

The step in line ∗ may still be unclear. For completeness, we must check the
coefficients of ψN−n+k. The coefficients corresponding to s fit obviously, corre-
sponding to Nuν1 and 1 they do so, too. After all, it is not obvious that the
coefficients of Nuν0 fit. Some calculation gives that the difference between

−uν0

n−1∑

ℓ=n−k+1

(−1)n−ℓ−1 (n− 1)!

ℓ!

N

(N − n+ 1) · · · (N − ℓ)

ℓ∑

j=n−k+1

(−1)j
(
ℓ

j

)

ψN−j

and

−uν0

n−1∑

ℓ=n−k

(−1)n−ℓ−1 (n− 1)!

ℓ!

N

(N − n+ 1) · · · (N − ℓ)

ℓ∑

j=n−k

(−1)j
(
ℓ

j

)

ψN−j

is

−uν0

k∑

ℓ=1

(−1)n−k+ℓ−1 (n− 1)!

(n− k)!(k − ℓ)!

N

(N − n+ 1) · · · (N − n + ℓ)
.

This equals

−uν0(−1)n−k N

N − n+ k

(
n− 1

k − 1

)

ψN−n+k

due to Lemma 3.27.
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Lemma 3.27. Let k ∈ N, a ≤ 0, then

k∑

ℓ=1

(−1)ℓ−1 (k − 1)!

(k − ℓ)!

1

(a+ 1) · · · (a+ ℓ)
=

1

(a+ k)
.

Proof. The proof is a straight forward induction:

k+1∑

ℓ=1

(−1)ℓ−1 k!

(k + 1− ℓ)!(a + 1) · · · (a+ ℓ)

=

k∑

ℓ=0

(−1)ℓ
k!

(k − ℓ)!(a+ 1) · · · (a + ℓ+ 1)

=−
k

a + 1

k∑

ℓ=1

(−1)ℓ−1 (k − 1)!

(k − ℓ)!

1

(a+ 2) · · · (a + 1 + ℓ)
+

1

a + 1

=−
k

a + 1

1

a + 1 + k
+

1

a+ 1
=

1

a + k + 1
.

With Lemma 3.26 follows

Theorem 3.28. For n ≥ 3 and ψ given by the boundary value problem (3.26)
we have

ψ(n)(1) =
n

n+ θν1

[

− σψ(n−1)(1)− θν0

n−1∑

k=1

(−1)k−1 (n− 1)!

(n− k)!
ψ(n−k)(1)

]

or equivalently

ψ(n)(1) =
n

n+ θν1

[

− (n− 1 + σ + θν0 + θν1)σψ
(n−1)(1)− (n− 1)σψ(n−2)(1)

]

,

which holds for n ≥ 4.
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Proof. We evaluate the result in Lemma 3.26 at k = n− 1:

n∑

k=0

(−1)k
(
n

k

)

ψN−k =
n

n+Nuν1

[

− (n +Nuν1)ψN−1 − s
n−1∑

j=2

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=2

(−1)n−ℓ−1 (n− 1)!N(N − ℓ− 1)!

ℓ!(N − n + 1)!

n−1∑

j=2

(−1)j
(
ℓ

j

)

ψN−j

+ (n− 3)(1 + s+
Nuν0
N − 1

)ψN−1 − (1 + s+ uν0)ψN

+ (3 + 2s+ 2
Nuν0
N − 1

+Nuν1)ψN−1

]

=
n

n +Nuν1

[

− s
n−1∑

j=2

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=2

(−1)n−ℓ−1 (n− 1)!N(N − ℓ− 1)!

ℓ!(N − n + 1)!

n−1∑

j=2

(−1)j
(
ℓ

j

)

ψN−j

+
(

(n− 1)(s+
Nuν0
n− 1

)
)

ψN−1

]

=
n

n +Nuν1

[

− s
n−1∑

j=1

(−1)j
(
n− 1

j

)

ψN−j

− uν0

n−1∑

ℓ=1

(−1)n−ℓ−1 (n− 1)!N(N − ℓ− 1)!

ℓ!(N − n + 1)!

n−1∑

j=1

(−1)j
(
ℓ

j

)

ψN−j

]

.

From this, the first assertion in the theorem follows as N → ∞.

The first assertion is equivalent with

(n+ θν1)ψ
(n)(1) + nσψ(n−1)(1) =− θν0

n−1∑

k=1

(−1)k−1 n!

(n− k)!
ψ(n−k)(1)

⇔ −(n + θν1)ψ
(n)(1)− nσψ(n−1)(1) =− θν0

n∑

k=2

(−1)k−1 n!

(n+ 1− k)!
ψ(n+1−k)(1),

which we plug in the expression for the (n+ 1)th derivative again:

ψ(n+1)(1) =
n+ 1

n+ 1 + θν1

[

− σψ(n)(1)− θν0

n∑

k=1

(−1)k−1 n!

(n+ 1− k)!
ψ(n+1−k)(1)

]

=
n+ 1

n+ 1 + θν1

[

− σψ(n)(1)− θν0ψ
(n)(1)− (n + θν1)ψ

(n)(1)− nσψ(n−1)(1)
]

,

which is the second assertion.
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With Proposition 3.24,

an−2 =

n−1∑

k=1

(−1)k−1 (n− 1)!

(n− k)!
ψ(n−k)(1).

This term emerges in the first assertion in Theorem 3.28. So,

ψ(n)(1) =
n

n + θν1

[(
− σ − θν0

)
ψ(n−1)(1) + θν0(n− 1)!(−1)n−2an−2

]

.

Together with Proposition 3.24 we can deduce for n ≥ 3

an =(−1)n
ψ(n)(1)

n!
+ an−1

=
(−1)n

n!

n

n + θν1

[(
− σ − θν0

)
ψ(n−1)(1) + θν0(n− 1)!(−1)n−2an−2

]
+ an−1

=
1

n + θν0

[

(σ + θν0)
(−1)n−1ψ(n−1)(1)

(n− 1)!
+ θν0an−2

]

+ an−1

=
1

n + θν0

[

(σ + θν0)(an−1 − an−2) + θν0an−2

]

+ an−1

=
1

n + θν1

[

(n + σ + θ)an−1 − σan−2

]

,

which is the same recursion that one may deduce from the definition of the λj in
Theorem 3.7.

We need to determine the seed value a2:

a2 =− ψ′(1) +
1

2
ψ′′(1)

=− ψ′(1) +
2

2 + θν1

[

− (θν0 + σ)ψ′(1)− σ
]

=a1 +
2

2 + θν1

[

(θν0 + σ)a1 − σ
]

=
2

2 + θν1

[

− (2 + θ + σ)a1 − σ
]

.

We already determined a1 in Lemma 3.18, so we may state

Theorem 3.29. The coefficients aj in ansatz (3.27) are given by

a1 =
σ

1 + ν1
(1− p̃), and a2 =

2

2 + θν1
[
(2 + θ + σ)σ

1− θν1
(1− p̃)− σ]

and for j ≥ 3 by the recursion

aj =
1

j + θν1

[

(j + σ + θ)aj−1 − σaj−2

]

.
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Remark 3.30. In this section, we presented an alternative approach towards
the conditional distribution hk. Since it is derived directly from the elementary
model, this approach may allow to find a heuristic interpretation of the coefficients
aj . In Sections 3.4 and 3.5, we present some results in this context.

3.3.6 Alternative solution of the boundary value problem

In the previous sections we conducted and solve a power series approach to the
boundary value problem for h. Nevertheless, one may also directly solve the
differential equation and impose the boundary conditions. This solution permits
a reasonably faster way of determining a1. Again, we start with the boundary
value problem (3.26)

ψ′′(x) +
(θν0
x

−
θν1
1− x

+ σ
)

ψ′(x)−
(θν0
x2

+
θν1

(1− x)2

)

ψ(x) = −σ

on (0, 1) with boundary conditions ψ(0) = ψ(1) = 0.

We define

a(x) :=x(1− x),

b(x) :=θν0(1− x)− θν1x+ σx(1− x), and

c(x) :=θν0
1− x

x
+ θν1

x

1− x
.

Then the differential equation reads

ψ′′(x) +
b(x)

a(x)
ψ′(x)−

c(x)

a(x)
ψ(x) = −σ.

We first consider the following first order linear homogeneous differential equation

ϕ′(x) +
b(x)

a(x)
ϕ(x) = 0.

A solution is

ϕ1(x) = exp
(

−

∫ x b(y)

a(y)
dy
)

= x−θν
0(1− x)−θν

1e−σx.

Since

ϕ
′′

1(x) = −
b(x)

a(x)
ϕ

′

1(x)−
d

dx

b(x)

a(x)
and

d

dx

(

b(x)

a(x)

)

=
c(x)

a(x)
,

(3.34)
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ϕ1 solves the homogeneous equation

ψ′′(x) +
b(x)

a(x)
ψ′(x)−

c(x)

a(x)
ψ(x) = 0.

According to the method of variation of parameters we know that

z(x) = ϕ1

∫ x h(x)

ϕ1(y)
dy

is the solution of the inhomogeneous equation

ϕ′(x) +
b(x)

a(x)
ϕ(x) = h(x).

Set h(x) = −σx+ c,

ϕ′(x) +
b(x)

a(x)
ϕ(x) = −σx+ c.

Differentiating of this equation gives

ψ′′(x) + (
θν0
x

−
θν1
1− x

+ σ)ψ′(x)− (
θν0
x2

+
θν1

(1− x)2
)ψ(x) = −σ

which is our original differential equation. So,

z(x) = −σϕ1(x)

∫ x y + c

ϕ1(y)
dy

solves the differential equation.

We still have to consider boundary conditions. Since ψ(0) = 0, set the lower
integration bound 0 and due to ψ(1) = 0, choose c such that

−c =

∫ 1

0
y

ϕ
1
(y)
dy

∫ 1

0
1

ϕ
1
(y)
dy

=

∫ 1

0
yθν0+1(1− y)θν1eσydy
∫ 1

0
yθν0(1− y)θν1eσydy

= p̃, (3.35)

where p̃ is defined as in Lemma 3.18.

Remark 3.31. The constant p̃ is both the expectation of the frequency of fit
alleles under the variance-biased stationary distribution with density Cσy(1−y)π
(where C is a normalizing constant) and also the probability that a sample of
three individuals from a stationary population contains exactly two individuals
of type 0 conditional on it containing at least one individual of each genotype
[50].
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Lemma 3.8 tells us that this solution is unique. So, we may state

Theorem 3.32. The unique solution of the boundary value problem (3.26) is

ψ(x) = σ

∫ x

0

(p̃− y)
(y

x

)θν
0

(1− y

1− x

)θν
1

eσ(y−x)dy. (3.36)

With this solution we can calculate the coefficient a1.

Corollary 3.33.

a1 =
σ

1 + θν1
(1− p̃).

Proof.

ψ′(x) =
d

dx
ψ(x) = σ(p̃− x) + ψ(x)(−σ − θν0x

−1 + θν1(1− x)−1).

Since ψ′(x) can be continuously extended to [0, 1] (Lemma 3.8), we have

ψ′(1) = lim
xր1

ψ′(x) = σ(x̃− 1) + θν1 lim
xր1

ψ(x)

1− x
= σ(p̃− 1)− θν1ψ

′(1).

So,

a1 = −v′(1) = −ψ′(1) =
σ

1 + θν1
(1− p̃).

Remark 3.34. Taylor derives the same solution [50, Eq. (23)]. He pursues a
more complicated power series approach. The simplicity of our approach relies
on the properties of the coefficient functions in (3.34).

3.4 No mutation

In Section 3.3.3 we calculated an explicit formula for h(x) and the seed value a1
directly from the solution of the recursion (3.14). In the case without mutation
this derivation simplifies considerably. This hinges on the fact that the solution
of the recursion is then much simpler since Aℓ+m

ℓ = 1, Bℓ+m
ℓ = (1 + s)m+1:

ψN−k =

k∑

ℓ=1

(1+s)k−ℓ[ψN−1−(ℓ−1)
s

N
] =

k−1∑

j=0

(1+s)j[ψN−1−(k−j−1)
s

N
]. (3.37)
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Evaluating this at ψ0 = 0 leads to

0 = ψ0 =
N−1∑

j=0

(1 + s)j[ψN−1 − (N − j − 1)
s

N
]

= NψN−1

1

N

N−1∑

j=0

(1 +
Ns

N
)N

j

N −Ns
1

N

N−1∑

j=0

N − j − 1

N
(1 +

Ns

N
)N

j

N .

Letting N tend to infinity, we receive an expression for ψ′(1):

ψ′(1) = −
σ
∫ 1

0
(1− y)eσydy
∫ 1

0
eσydy

.

With

p̃ :=

∫ 1

0
yeσydy

∫ 1

0
eσydy

,

which is the p̃ from equation (3.35), we again have

ψ′(1) = σ(p̃− 1).

We can also calculate ψ(x) from equation (3.37). Define a sequence kN ∈ N with

kN ≤ N such that
kN
N

→ x as N → ∞ for some x ∈ [0, 1]. Then

ψN−k
N
= NψN−1

1

N

kN−1
∑

j=0

(1 +
Ns

N
)N

j

N −Ns
1

N

kN−1
∑

j=0

kN − j − 1

N
(1 +

Ns

N
)N

j

N .

Letting N → ∞ leads to

ψ(1− x) = −ψ′(1)

∫ x

0

eσydy − σ

∫ x

0

(x− y)eσydy

= σ

∫ x

0

(1− x− p̃+ y)eσydy

= σ

∫ 1−x

0

(p̃− y)eσydy.
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With (3.18) we can give a simple formula for hk in the case without mutation:

hN−k =
N − k

N
+ ψN−k

=
N − k

N
+

k∑

ℓ=1

Ak
ℓB

k−1
ℓ s

[
N−1∑

ℓ=0

N−1−ℓ
N

AN
N−ℓB

N−1
N−ℓ

N−1∑

ℓ=0

AN
N−ℓB

N−1
N−ℓ

−
(ℓ− 1)

N

]

=
1

N
N−1∑

j=0

(1 + s)j

[

(N − k)

N−1∑

i=0

(1 + s)i

+
(
(1 + s)k − 1

)
N−1∑

i=0

(N − 1− i)(1 + s)i

−
(
(1 + s)N − 1

)
k−1∑

i=0

(k − 1− i)(1 + s)i

]

=
1

N
N−1∑

j=0

(1 + s)j

[
k−1∑

i=0

(
N − k −N + 1 + i+ k − 1− i)(1 + s)i

+

N−1∑

i=k

(N − k −N + 1 + i)(1 + s)i

+

N+k−1∑

i=k

(N − 1 + k − i)(1 + s)i

−
N+k−1∑

i=N

(N − 1 + k − i)(1 + s)i

]

=
1

N
N−1∑

j=0

(1 + s)j

[

(N − k)

N−1∑

i=k

(1 + s)i + k

N−1∑

i=k

(1 + s)i

]

=

N−1∑

i=k

(1 + s)i

N−1∑

j=0

(1 + s)j
,

(3.38)

where we used in the second step that

1 + s

N−1∑

i=0

(1 + s)i = (1 + s)N .



3.4 No mutation 85

Of course, this formula is well known (for a nice derivation via a martingale
argument, see [17]). It motivates a new particle model which we present in
Section 3.5.

Path mirroring principle

We found an alternative approach to this equation via a path mirroring principle
which we shortly present here.

Equation (3.38) gives us the absorption probability of the fit individuals, given
that there are k fit individuals in the current population. When we look at
the “dual” event, absorption of the unfit individual, given that there are k unfit
individuals present, we have:

1− hN−k =

k−1∑

j=0

(1 + s)j

N−1∑

j=0

(1 + s)j
= (1 + s)−(N−k)hk. (3.39)

We can deduce this relation not only from (3.38) but also from a path mirroring
principle. To this end, consider a direct path from k to N , this means the embed-
ded Markov chain (Xi)i∈N has the states k, k + 1, k + 2, . . . , N . The probability
for this path is

(1 + s)N−k

(2 + s)N−k
.

Look at the path N − k,N − k − 1, . . . , 0. Its probability is

1

(2 + s)N−k
.

Of course, there are many other possible paths from k to N . For each of these
paths we want to define a mirrored path. The original path always starts in k and
ends in N , therefore the mirrored path starts in N − k. Whenever the original
path increases by one, the mirrored path decreases by one and vice versa. Thus,
the mirrored path always ends in 0. For example, the mirrored path of the direct
path k, k+1, . . . , N is N −k,N −k−1, . . . , 0. All the other paths contain loops,
some states are visited more than once. In a loop the number of increments
is obviously the same as the number of decrements. So, the probability of the
loop in the original path and in the mirrored path are the same. This means, the
probabilities of the original and the mirrored path always only differ by the factor
(1+s)N−k which we already calculated for the direct paths. Since the probability
for all paths from k to N , N − k to 0 respectively, is hk, 1 − hN−k respectively,
this reasoning already establishes equation (3.39).

We do not know yet how to devolve this reasoning onto the situation with selection
and mutation.
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3.5 New particle model

In the Moran model with selection but without mutation, the conditional prob-
ability hk reads

hk =

k∑

i=1

(1 + s)N−i

N−1∑

i=0

(1 + s)i

as we know from (3.38). We want to formulate a new particle model with the
same empirical distribution in which we may assign an absorption probability to
the summands on the right-hand side.

Again, we look at a population with N individuals of type 0 or 1. We introduce
some spatial structure by enumerating them starting with the fit individuals.
Each individual reproduces itself by rate 1, which we may regard as the neutral
reproduction as in the Moran model. Then, a randomly chosen individual dies.
This event also induces a change in the spatial structure. Given the parental
individual is number j and the number of the individual that dies is i:

• If i = j, this corresponds to an empty event, nothing happens;

• if i < j, the offspring individual is numbered with j − 1, the individuals’
numbers from i+ 1 to j − 1 are decreased by one;

• if i > j, the offspring individual is numbered with j + 1, the individuals’
numbers from j + 1 to i− 1 are augmented by one.

Furthermore, each individual reproduces at rate s. Again, the individual which
is replaced is chosen randomly. This occurs with the constraint, that only those
individuals are replaced whose number is greater than the parental one’s. If their
number is smaller, the offspring individual does not survive.

Remark 3.35. Effectively, this new model introduces N types with different fit-
ness values. The individual with number 1 is the fittest, itself and its offspring
cannot be harmed by selective reproduction events which happen at higher num-
bered individuals. So, this new model takes an idea from the look-down process.

We can look at it in another way: we start at time 0, and neutral and selective
events mean arrows in the graphical representation. Then we resolve the arrows
in the way that selective arrows are only valid if they end at an individual which
is left to or at such an offspring. This resolving of selective arrows is similar to
the procedure in the construction of the ancestral selection graph.
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Remark 3.36. We can additionally keep ancestry in mind. Therefore, for each
time t ≥ 0, we define a partition At := {Ai

t, i = 1, . . . , N} of the set {1, . . . , N}
at time 0, where Ai

t contains all offspring of individual i at time t. Then, the sets
Ai

t can be written as Ai
t = {ℓ|k1 ≤ ℓ ≤ k2} for some k1 ≤ k2 ∈ {1, . . . , N}. Thus,

reproduction events preserve the ordering of the individuals corresponding to the
ancestry.

Lemma 3.37. In the new particle model, look at the individuals numbered with
1, . . . , j at time 0. Let Xjt be the number of their offspring at time t. Then, Xjt
has the same law as Yt, the empirical distribution from the Moran model, given
Y0 = j.

Proof. Both chains can only jump by one. Let Xjt = k. Since the offspring
are the first k individuals (Remark 3.36), all selective reproduction events are
successful. Thus, the rate for the transition k → k + 1 is

(N − k)(1 + sN)
k

N
.

On the other hand, no selective reproduction event that is initiated by an individ-
ual with number m > k can delete one of the first k individuals. Thus, transition
k → k − 1 happens at rate

k
N − k

N
.

These are the same jumps and rates as for Yt.

The following theorem is a direct consequence of this lemma.

Theorem 3.38. Yt, the number of fit individuals, has the same the law in the
new and the old model.

The next theorem addresses the question at the beginning of this section. It gives
an interpretation of the conditional probability hk.

Theorem 3.39. The absorption probability of individual i is

(1 + s)N−i

N−1∑

j=0

(1 + s)j
.

Proof. We proof this by induction. With Lemma 3.37, it is obvious that the
fixation probability of individual 1 is

(1 + s)N−1

N−1∑

j=0

(1 + s)j
.
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With Lemma 3.37, we can determine the fixation probability of the first (i−1)th
and of the first i individuals. The difference is

(1 + s)N−i

N−1∑

j=0

(1 + s)j
.

Since the fixation probability of the first i − 1 individuals is, according to the
induction hypothesis, the sum of the fixation probabilities of each single individual
1, . . . , i−1, it is clear that this is exactly the additional fixation probability coming
from individual i.

Remark 3.40. The new particle model permits an interpretation for the coeffi-
cient a1. For this, we look at

ψN−1 =hN−1 − (1−
1

N
) = −

1
N−1∑

j=0

(1 + s)j
+

1

N

=

−N + 1 +
N−1∑

j=1

(1 + s)N−j

N
N−1∑

j=0

(1 + s)j
.

We look at the summands in the numerator. Each of them is the fixation proba-
bility for a particle. With

(1 + s)N−j = 1 + s

N−j−1
∑

k=0

(1 + s)k,

we split the summands in the numerator into a “neutral” and a “selective” part.
Thus, we have

NψN−1 =

−N +N + s
N−2∑

k=0

(N − 1− k)(1 + s)k

N−1∑

j=0

(1 + s)j
−−−→
N→∞

a1.

So, a1 is the part of the fixation probability that is contributed by that offspring
of the first N − 1 individuals that arose by selective events.
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3.6 Conclusion

In this chapter, we presented the approaches of Fearnhead and Taylor towards
the common ancestor distribution and their solutions. We could give another
way to this solution directly derived from the Moran model with selection and
mutation.

However, we restricted ourselves to a two-type model with constant selection coef-
ficient. In contrast to this, Fearnhead solved this problem for a multi-type model
(with the restriction on only two fitness classes and constant selection coefficient).
It should be possible to apply our ansatz onto this extension successfully.

Taylor only considered a two-type model, too. However, he could prove exis-
tence and uniqueness of the solution for the boundary value problem (3.10) with
density-dependent selection (which means that the selection coefficient σ = σ(x)
depends on the frequency of fit alleles x. However, he does not present an ex-
plicit solution in this case. It seems that the first-step argument to derive the
bvp should work. However, it is arguable whether the ansatz we followed to solve
the bvp would be successful. For example, the independence of the term s

N
, that

leads to (3.30) would not be valid anymore.

The passage to the diffusion limit is a common approach in population genetics.
Since in this limit the particle presentation gets lost, one is concerned with the
question whether one may reach the results directly from the particle model or
regain a particle presentation from the diffusion limit. An example for this is the
look-down process. In this chapter we provided a contribution to these efforts.
Especially, we presented another particle model in the case without mutation.
Unfortunately, we have not been able to give a comparable model in the case
with selection and mutation yet.
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