Enabling Federated Search with
Heterogeneous Search Engines
Combining FAST Data Search and Lucene

Sergey Chernov!, Bernd Fehling?, Christian Kohlschiitter!,
Wolfgang Nejdl!, Dirk Pieper?, and Friedrich Summann?

L3S Research Center
University of Hannover

Expo Plaza 1
30539 Hannover

?Bielefeld University Library
University of Bielefeld
Universitétsstr. 25
33615 Bielefeld

March 22, 2006

Contents

1 Introduction 6
1.1 Vascoda Background and Motivation 6
1.2 Digital Libraries Background 8
1.3 Information Retrieval Background 10

1.3.1 Distributed Search Engine Architecture 10
1.3.2 Important Terms 10
1.3.3 Distributed Information Retrieval 12
1.4 Report Overview i 14
2 Existing Components for Federated Search 15
2.1 Protocols for Distributed Search 15
2.1.1 Z39.50-2003 16
212 ZING e 16
213 OAI-PMH.o 17
2.1.4 SDARTS 17
2.2 SDLIP Protocol Description 18
22.1 SDLIPHistory 18
2.2.2 Interfaces and Architecture 18
2.3 STARTS Protocol Description 20
2.3.1 Architecture and Assumptions 20
2.3.2 Query Language/Interface 21
2.3.3 Source Metadata 25
2.4 FAST and Lucene: General Description 29
24.1 FASTDataSearch 29
242 Luceneo 29

Federated Search Project Report. Version 1.0

3 Query Processing and Ranking 31
3.1 Document Indexing and Query Processing 31
3.1.1 Document Pre-processing 31
3.1.2 Retrieval Models, 32
3.1.3 Distributed Query Processing 34
3.2 Distributed Ranking oo 35
32.1 Scenario. 35
3.3 Additional Issues in Distributed Ranking 36
4 Combining Lucene and FAST 38
4.1 Distributed Search withLucene 38
41.1 Background oL 38
4.1.2 Core Concepts for Indexing within Lucene 40
413 SearchinLucene 40
4.2 Distributed Search with FAST 43
42.1 Background L 43
422 FIXML 44
4.2.3 Prospective Federated Search using FAST 47
4.3 Combining Lucene and FAST Data Search 47
4.3.1 Plugin Architecture 47

4.3.2 Importing FAST Data Search Collections into Lucene us-
mgFIXML 49
4.3.3 Plugin Implementation Schedule 52
5 Evaluation 53
5.1 Collection Description, 53
5.2 Federation Setup 54
5.3 Hypotheses 55
54 Results. 55
54.1 Re-indexingo 55
542 Search. 57
6 Conclusion and Further Work 58
6.1 Project Results and Recommendations 58
6.2 Joining Costs and Setup Considerations 59
6.3 NextSteps e e 60

Federated Search Project Report. Version 1.0

6 Zusammenfassung & Ausblick
6.1 Ergebnisse und Empfehlungen
6.2 Beitrittskosten und mogliche Konstellationen
6.3 Ausblick.

Bibliography

A Appendix: Lucene, FAST and STARTS Interoperability

62
62
63
65

66

69

Executive Summary

This report analyses Federated Search in the VASCODA context, specifically fo-
cusing on the existing TIB Hannover and UB Bielefeld search infrastructures. We
first describe general requirements for a seamless integration of the two full-text
search systems FAST (Bielefeld) and Lucene (Hannover), and evaluate possible
scenarios, types of queries, and different ranking procedures.

We then proceed to describe a Federated Search infrastructure to be imple-
mented on top of these existing systems. An important feature of the proposed
federation infrastructure is that participants do not have to change their existing
search and cataloging systems. Communication within the federation is performed
via additional plugins, which can be implemented by the participants, provided by
search engine vendors or by a third party. When participating in the federation,
all documents (both full-text and metadata) stay at the provider side, no library
document / metadata exchange is necessary.

The integration of collections is based on a common protocol, SDARTS, to
be supported by every member of search federation. SDARTS is a hybrid of the
two protocols SDLIP and STARTS. SDLIP was developed by Stanford Univer-
sity, the University of California at Berkeley, the California Digital Library, and
others. STARTS protocol was designed in the Digital Library project at Stanford
University and based on feedback from several search engines vendors. Addi-
tional advantages can be gained by agreeing on a common document schema, as
proposed by the Vascoda initiative, though this is not a precondition for Federated
Search.

Uberblick

Dieser Bericht analysiert verteilte Suche (Federated Search) im VASCODA-Kontext,
ausgehend von den Suchinfrastrukturen der TIB Hannover und der UB Biele-
feld. Die Arbeit beginnt mit der Spezifikation grundsitzlicher Anforderungen fiir
eine nahtlose Integration bestehender Volltext-Suchsysteme, im speziellen FAST
Data Search (Bielefeld) und Lucene (Hannover), vergleicht deren Funktionalititen
und evaluiert mogliche Szenarien fiir den Einsatz der Systeme im Rahmen einer
verteilten Suchinfrastruktur.

Der Bericht beschreibt eine verteilte Suchinfrastruktur, die aufbauend auf diesen
bestehenden Systemen implementiert werden kann. Wichtig hierbei ist, dass alle
Teilnehmer an dieser Foderation ihre bestehenden Such- und Katalogsysteme weitest-
gehend weiterverwenden konnen. Die Kommunikation innerhalb der Foderation
erfolgt mittels zusétzlicher Komponenten, sogenannter Plugins, die durch den
Suchmaschinen-Anbieter, den Teilnehmer selbst oder einem Drittanbieter imple-
mentiert werden konnen. Ein Austausch von Dokumenten / Metadaten zwischen
den Teilnehmern ist hierbei nicht notwendig.

Die Integration der Dokumentsammlungen erfolgt iiber ein gemeinsames Pro-
tokoll, SDARTS, das von jedem Teilnehmer unterstiitzt wird. SDARTS setzt sich
aus den zwei Protokollen SDLIP und SDARTS zusammen. SDLIP wurde von
der Stanford University, der University of California at Berkeley, der Califor-
nia Digital Library und anderen entwickelt. Das STARTS Protokoll wurde im
Digital Library Projekt in der Stanford University zusammen mit verschiedenen
Suchmaschinenanbietern entwickelt. Die Nutzung eines gemeinsames Dokument
/ Metadatenschemas ist von Vorteil, aber keine Voraussetzung fiir verteilte Suche.

Chapter 1

Introduction

1.1 Vascoda Background and Motivation

The Vascoda strategy report[19] states the Vascoda vision as becoming “the corner
stone for a common German digital library”, the main goal being the integration
of distributed scientific information in Germany and beyond.

The central Vascoda information portal currently provides a metasearch en-
vironment, which however does not meet the expectations of the customers who
have become used to Google-like search engines and interfaces. In order to guar-
antee the success of the Vascoda project, the regulation board proposed to sub-
stitute the metasearch portal with up-to-date search engine technology. One pos-
sibility would be to build up an index of all Vascoda-relevant scientific content,
based on the FAST Data Search search engine! operated by the HBZ. The HBZ
intends to index about 60,000,000 documents? of about 300 collections, also and
especially including the so called “Deep Web”. While this is an ambitious project,
it seems unrealistic that a single central provider will be able to index all infor-
mation that is needed for a German Digital Library. In addition to the required
capacity for such a central system, important publishers and content providers
will not be able to make their data available for this central system because of
licensing contracts they have with other publishers or providers. Also, since there
already is a rich market of information providers as well as search engine systems,
not every information provider will be able/interested to deal with the FAST Data
Search engine used by HBZ.

"http://www.fastsearch.com/
2By documents we refer to documents, full-text or abstract, and their metadata annotation

Federated Search Project Report. Version 1.0

Therefore, a cooperative environment built on an heterogeneous search in-
frastructure is preferrable. In such an Federated Search environment, the partners
are able to keep their own search systems, and handle storage and indexing in a
decentralized way, yet the results will look as if they were generated using a single
centralized installation. The concept of such a federated search engine infrastruc-
ture is illustrated in Figure 1.1. Large boxes correspond to information providers,
smaller embedded boxes represent search engines.

BASE T ®

FLY S

]| +] s —

ﬂ |U lﬂhﬁfﬁ&“"“'““’“"

Wtgen, information, mnaics, _;“;_’. >

=< (m}
vascoda

CiteSeer.IST ast i

Scientific Literature Digital Library

Figure 1.1: How can we query all these document collections in a seamless way?

As the HBZ proposal did not make any arrangements for such a federated sys-
tem [17], the Vascoda regulation board asked for examination of Federated Search
in the Vascoda context [18]. Providing such a Federated Search infrastructure has
the additional advantage that the participating institutions can then also integrate
data from the central Vascoda system into their own information systems, e.g. in
their subject portals or their own search engines.

Currently, two major members of Vascoda, the German National Library of
Science and Technology (Technische Informationsbibliothek, TIB) and FIZ Tech-
nik, already have their own search engines based on the open-source Lucene
search library [7, 9], a well-known alternative to commercial search engine soft-
ware. Bielefeld University Library relies on a customized installation of Fast Data
Search, focusing on search over OAI resources. All three members intend to keep
and integrate their systems into a Federated Search Vascoda infrastructure.

7

Federated Search Project Report. Version 1.0

This report discusses the requirements for such a Federated Search infrastruc-
ture, and focuses on Lucene- and FAST Data Search—based systems. It also pro-
vides suggestions for Federated Search in general. In the near future, each Vas-
coda project member will have to think about how to integrate other (especially
commercial) scientific search engines, e.g. Google Scholar®, Scirus*, Scopus’
etc., in order to provide a preferable portal for the end—user through the Vascoda
federation.

1.2 Digital Libraries Background

Digital Libraries (DLs) have become an important part of educational, research
and business processes. They provide up to date information to support decision
making, serve as a source of learning materials and textbooks, and deliver patents
and standard specifications. The success of the Open Archives Initiative (OAI),
including the rise of academic repository systems for all types of digital informa-
tion, provided an important starting point for the provision of scientific resources.
Still, there is a strong need to include Web resources into scientic search scenarios,
usually based on Web search engine technology.

Most DLs specialize in some area of interest: the Patent Documents collection
of the TIB for example contains several million patent documents. Users access
DLs via a Web-based query interface, one per library. The query interfaces run
on top of local search engines, which can be custom-built for libraries, built upon
open source projects or bought from search engine vendors. The vast majority of
prospective users do not know precisely which DL interfaces they need to query
in order to accomplish a particular task. Metasearch engines address this problem
by providing a single unified query interface and combining search results from
multiple DLs, usually implemented as a single, centralized metasearch broker. A
system collects the final result lists from each underlying DL and re-ranks them to
get a unified importance ordering of the results. To do this, it solely analyzes a list
of search results, not the documents themselves nor any collection-wide statistics.
Therefore, it cannot exploit the usual information retrieval measures which search
engines apply internally. While this allows search even over uncooperative DLs,
the re-ranking process unavoidably results in loss of rank quality.

3http://scholar.google.com/
*http://www.scirus.com
Shttp://www.scopus.com

Federated Search Project Report. Version 1.0

A better approach is Federated Search. Here, brokers and search engines coop-
erate in order to deliver a common, consistent ranking, to provide search quality
results compareable to search based on a single search engine. In general, this
goal is not easy to achieve due to differences in search engine implementations
and DL schemata. Factors like stemming algorithms, stop word lists, local col-
lection statistics, ranking formulae, etc., should be unified across the federation.
Usually, however, search engine companies do not provide detailed specifications
of their products, citing intellectual property reasons.

In principle, a distributed search system using only one search engine brand
could be developed relatively easy by the engine manufacturer, using proprietary
protocols. Such a system is very valuable in a single-company search cluster (for
example, Google has their own federated/distributed search infrastructure [2]).
However, in a truly federated scenario, it is almost impossible and probably very
undesirable to force every participant to use a single product, especially when an-
other search system is already in use. In this case, the institutions have already
invested much effort and money in customizing their systems, have defined com-
plex workflows in order prepare documents for search, and of course, have their
staff trained in the use of their system.

Therefore, instead of forcing libraries to use a completely new system, this re-
ports describes a standardized Federated Search infrastructure where participants
can continue using their existing search engines. Information exchange between
these search engines is performed using open standard protocols. Technically, the
approach is based on the use of plugins, providing the interface to different search
engines, which we describe in detail in Section 4.3.1.

Specifically, we focus on enabling Federated Search over DLs like the TIB,
which uses a search system based on the open-source search library Lucene, and
the Bielefeld University Library, which uses the commercial FAST Data Search
engine. The approach has to be scalable and new DLs should be easily connected
to the infrastructure. The required search functionality includes both full-text and
metadata search capabilities. In general, the approach is easily extendable to other
search engines and to intranet search applications.

Combining the information from many DLs is a non-trivial task, which re-
quires a common standard interface for query and result exchange. Instead of
defining a new protocol, we re-use an existing protocol, SDARTS, which was
proposed by Columbia University [11]. It is built on two complementary pro-
tocols for distributed search, namely SDLIP [13] and STARTS [10], which are
described in detail in Chapter 2.

When integrating heterogeneous information, different data structures and en-

9

Federated Search Project Report. Version 1.0

try formats used in different DLs cause additional problems. This is true for
metasearch, for HBZ’s proposal using a centralized system, and for Federated
Search. The integration of available document schemas is therefore not a focus of
this report, a solution could build on a common schema which has been specified
in Vascoda [20] already.

Regarding document collections, this report considers text-oriented search
over all covered documents, including document metadata (author, year of pub-
lication, abstract, etc.) and document full-text. When presenting result lists
for queries, the shown documents should be ranked in the order of importance,
the most relevant documents being presented first. Given that the Vascoda li-
braries already cooperate in various ways, we assume Vascoda participants will
also cooperate to perform Federated Search and deliver appropriate information
about ranking information for result merging. This substantially improves current
metasearch systems, where ranking can only be performed in a very limited way
due to lack of detailed statistics about documents and information sources.

1.3 Information Retrieval Background

1.3.1 Distributed Search Engine Architecture

The main unit in a distributed information retrieval environment is the broker,
providing access to the distributed search engines. Users define a set of databases
to be queried, the broker itself stores an appropriate set of statistics about every
database/search engine participating in the search process. The broker receives
queries from the user and propagate them to the available search engines, even-
tually restricting search to a subset of them, using database selection algorithms.
The broker then collects, merges, reorganizes and displays results in a unified re-
sult list of ranked documents. Of course, the federation may be accessed by more
than one broker, possibly having different functionalities and serving different
user groups. A Federated Search architecture is shown in Figure 1.2.

The important notions and concepts relevant for distributed informational re-
trieval are described below.

1.3.2 Important Terms

Information retrieval deals with architectures, algorithms and methods used for
performing search among internet resources, DLs, institutional repositories, and

10

Federated Search Project Report. Version 1.0

TIB
Lucene

¢ .
.
\

FEDERATION l

Bielefeld
FAST
“u - - '

Federated Federated Federated
Search Search Search
GUI 1 GUI 2 GUI 3

4

Y

Figure 1.2: Federated Search Engine architecture

text and multimedia databases. The main goal is to find the relevant documents
for a query from a collection of documents. The documents are pre-processed and
placed into an index, a set of data-structures for efficient retrieval.

A typical search engine is based on the single-database model. In the model,
the documents from the available document sources are collected into a central-
ized repository and indexed. The whole model is effective if the index is large
enough to satisfy most of the user’s information needs and if the search engine
uses an appropriate retrieval system.

A retrieval system is a set of retrieval algorithms for different purposes: rank-
ing, stemming, index processing, relevance feedback and so on. Many models are
based on the bag-of-words model, which assumes that every document is repre-
sented by the words contained in the document. A well-known model extending
bag-of-words is the Vector Space Model.

When search engine results are presented in a specific order, we call this a
result ranking.

11

Federated Search Project Report. Version 1.0

1.3.3 Distributed Information Retrieval

Distributed information retrieval appears when the documents of interest are spread
across many sources. In this setup, it is possible to collect all documents on one
server or establish multiple search engines, one for each collection of documents.
The search process is then performed across the network, using distributed servers,
this being a distinctive feature of distributed information retrieval.

Distributed search is based on the multi-database model, where several text
databases are modelled explicitly. The multi-database model for information re-
trieval has many tasks in common with the single-database model, but also has to
address additional problems [6], namely °:

e The resource description task;
e The database selection task;

e The query mapping task;

e The result merging task.

As these issues are the main driving factors for distributed information retrieval
research, we briefly describe them below.

Resource description task

A full-text database provides information about its contents in a set of statistics,
which is called “resource description” or ‘“collection-wide information”. It may
include data about the number of specific term occurrences in a particular docu-
ments, in a collection, or a number of indexed documents. Resource description
data is obtained during the index creation step. The availability of collection-wide
information depends on the level of cooperation in the system. The STARTS stan-
dard [10] is a good choice for a Federated Search environment, where all search
engines present their results in a unified resource description format.”

®We enlarged this list with the “Query mapping task”
7Still, when they are not willing to cooperate, one can infer some statistics from query-based
sampling [15].

12

Federated Search Project Report. Version 1.0

Database selection task

The collected resource descriptions are used for database selection and query rout-
ing tasks, as we are usually not interested in querying those databases which are
unlikely to contain relevant documents. Rather, we want to be able to select only
the relevant databases to our query, according to their resource descriptions. One
simple way to do this is to ask the user to manually pick the set of interesting
databases. Another option is to calculate automatically a “usefulness measure” of
each database. Usually, this measure is based on the vector space model.

An intermediate approach between completely manual and automatic selec-
tion is a subject-oriented grouping of retrieval resources. Based on additional
metadata information (by data providers or secondary sources) for the database
descriptions, we can dynamically compose the set of relevant databases for each
query. For example, the DBIS application of Regensburg University Library col-
lects such information in a distributed way from the member libraries. Currently,
this system includes about 5,000 resource descriptions contributed by 73 libraries.

Query mapping task

An important and difficult task is the handling of different document schemata
and query languages. The document schema mostly depends on the coverage
and origin of data. Some databases cover basic reference data only, while other
resources contain enriched information with subject or classification information,
abstract or additional description parts. Other databases contain both abstract and
full-text.

In practice, we have to work with data of different quality. The same docu-
ments will have different representations in different database environments. For
example, Anglo-American collections often lack European special characters and
person names only cover first names in abbreviated form. In some databases,
metadata is split into fine-grained parts: a title could contain several subtitles.
Also, search engine products have many query languages, with different syntax
and complexity. These facts influence the database structure, query and result
representation. These differences call for upstream query transformation and a
downstream result display reorganization, they are not a problem of distributed
search per se, but rather a problem caused by lack of standard for data entry and
description. Therefore, this problem cannot be solved purely by technical means
(i.e. automatic mapping), but rather by agreements between the institutions par-
ticipating in the federation.

13

Federated Search Project Report. Version 1.0

Result merging task

The result merging problem arises when a query is performed over several se-
lected databases and we want to create one single ranking out of these results.
This problem is not trivial, since the computation of the similarity/importance
scores for documents requires collection-wide statistics. The scores are not di-
rectly comparable among different collections and the most accurate solution can
only be obtained by global score normalization, based on a a cooperative Feder-
ated Search environment.

Metasearch and Federated Search environments

An important property of distributed search engine is the degree of cooperation.
We can divide distributed search infrastructures into two categories:

e Metasearch (uncooperative, isolated environment);
e Federated Search (cooperative, integrated environment).

Metasearch has no other access to the individual databases than a ranked list
of document descriptions in the response to a query. Federated Search has ac-
cess to document and collection-wide statistics like T'F and DF' (these notions
are described in details in Subsection 3.1.2). The result rankings produced by
metasearch strategies are thus less appropriate than Federated Search rankings.

In this report we assume that all collections in the proposed system provide
the necessary statistics.

1.4 Report Overview

The remainder of this report is organized as follows. In Chapter 2, we describe the
requirements for a Federated Search infrastructure. We start with a description of
the existing SDARTS protocol and continue with a discussion of how to imple-
ment SDARTS within FAST Data Search and Lucene. In Chapter 3, we present
details of document indexing and ranking algorithms. The implementation details
for Lucene-based and FAST-search engines are given in Chapter 4. Chapter 5
contains results of a preliminary evaluation of our proposed Federated Search in-
frastructure using a first prototype. Chapter 6 provides a short summary of this
report.

14

Chapter 2

Existing Components for Federated
Search

In this chapter, we describe current efforts for a Federated Search infrastructure.
In Section 2.1, we start with the analysis of several protocols for search interop-
erability in DLs context. Section 2.2 and Section 2.3 contain descriptions of the
two most relevant protocols, SDLIP and STARTS, composing the SDARTS pro-
tocol for distributed search, which we have chosen as foundation for our federated
search infrastructure. In Section 2.4, we provide some background information
about the FAST Data Search search engine and the Lucene information retrieval
library; their capabilities with respect to the STARTS protocol are analyzed in the
Appendix.

2.1 Protocols for Distributed Search

Search in DLs is performed using online search interfaces. A common search
interface is important, as it eliminates the need to enter the same query several
times, once for every library of interest. This common interface should automati-
cally convert a query into an appropriate format and send it to a number of selected
DLs. It can also provide benefits like increased search coverage and a unified doc-
ument ranking. Better usability is another advantage, as users only have to use a
single graphical user interface.

The main challenge for such an interface is to guarantee proper query con-
version and consistent merging of results from different DLs. A single query
interface is often collection-specific. On various search engines, the queries may

15

Federated Search Project Report. Version 1.0

be executed quite differently, document relevance is computed using inhomoge-
neous statistics, and final result lists are incomparable. In the following we review
several protocols addressing at least some aspects of federated search.

2.1.1 Z39.50-2003

739.50[3] 1s an ANSI Standard for querying different information systems via
a unified interface, which is already used by a number of DLs. The Z39.50
ZDSR profile (http://www.loc.gov/z3950/agency/profiles/zdsr.html) is a specifi-
cation similar to STARTS for merging homogeneous search engines (also see
http://www.lub.lu.se/tk/demos/DGD97.html). However, ZDSR just specifies what
STARTS does (while requiring the full payload of Z39.50), and therefore is just
too complex for our task.

2.1.2 ZING

ZING, “Z39.50-International: Next Generation”', covers a number of initiatives
by Z39.50 implementors to make the intellectual/semantic content of Z39.50 more
broadly available. This protocol is more attractive to information providers, de-
velopers, vendors, and users because of lower implementation barriers, while pre-
serving the existing intellectual contributions of Z39.50 accumulated over nearly
20 years.

Current ZING initiatives are SRW (including SRU), CQL, ZOOM, ez3950,
and ZeeRex. Some (e.g. SRW/U) seek to evolve Z39.50 to a more mainstream
protocol, while others (e.g. ZOOM) try to preserve the existing protocol but to
hide its complexity. Most of these approaches are either too implementation-
specific or not powerful enough with respect to Federated Search requirements.

For example, the Common Query Language (CQL)? is a formal language for
representing queries to information retrieval systems such as web indices, biblio-
graphic catalogs and museum collection information. The design objective is that
queries are human readable and writable, and that the language is intuitive while
maintaining the expressiveness of more complex languages. CQL tries to com-
bine simplicity and intuitiveness of expression for simple every-day queries, with
the richness of more expressive languages to accomodate complex concepts when

"http://www.loc.gov/z3950/agency/zing/
http://www.loc.gov/standards/sru/cql/

16

Federated Search Project Report. Version 1.0

necessary. It is not possible, though, to provide additional statistics with the query
needed for homogeneous ranking.

2.1.3 OAI-PMH

The Open Archives Initiative Protocol for Metadata Harvesting [12] is another
well-known and widely used protocol. It provides an application-independent
interoperability framework based on metadata harvesting. The metadata may be
in any format that is agreed upon by a community (or by any discrete set of data
and service providers), although unqualified Dublin Core is specified to provide
a basic level of interoperability. Metadata from many sources can be gathered
together in one database, and services can be provided based on this centrally
harvested (aggregated) data. The protocol is not useful for search activity, though.
Since data should be stored in distributed indices and not be collected in one place,
OAI-PMH does not help to provide federated search per se. It can help by unifying
document schemata to a certain degree. Different search engines already started to
integrate this information into their index (Google Scholar, Scirus, OAlster etc.)

2.1.4 SDARTS

The SDARTS protocol [11] is a hybrid of two separate protocols: the Simple
Digital Library Interoperability Protocol [13] (SDLIP) and the Stanford Protocol
Proposal for Internet Retrieval and Search [10] (STARTS).

SDLIP is a protocol jointly developed by Stanford University, the University
of California at Berkeley and at Santa Barbara, the San Diego Supercomputer
Center, the California DL, and others. SDLIP is an abstraction of lower-level
metasearch operations. It proposes a layered, common query interface for many
document collections, and also provides access to source metadata.

STARTS defines a protocol which enables search engines to provide necessary
information for interoperability. This protocol was developed in the DL project at
Stanford University and based on feedback from several search engine vendors.
The protocol defines the set of statistics and metadata about document collections,
which allows the creation of a consistent document ranking across several search
engines.

SDARTS provides both the basic search operations from SDLIP and a set
of statistics defined in STARTS, which are necessary for homogeneous result
ranking. Another advantage is that a reference open source implementation of
SDARTS is available, which makes it a very good choice for our federated search

17

Federated Search Project Report. Version 1.0

infrastructure. We therefore describe the SDLIP and STARTS protocols in more
detail in Section 2.2 and Section 2.3.

2.2 SDLIP Protocol Description

2.2.1 SDLIP History

SDLIP stands for Simple DL Interoperability Protocol (SDLIP; pronounced S-
D-Lip)[13]°. It evolved from the CORBA-based DL Interoperability Protocol
(DLIOP) in Stanford University’s DL project. The protocol was developed jointly
with the Universities of California at Berkeley and Santa Barbara, the San Diego
Supercomputer Center (SDSC), and the California DL (CDL), trying to find a
trade-off between a full-fledged search middleware like Z39.50, and the typical
ad hoc search protocol for the Web.

SDLIP is used to request search operations over information sources, with
special focus on scalability. Its design allows DL applications to run both on
PC and handheld devices. The protocol is implemented in two variants, on top
of CORBA or HTTP protocols. It supports both synchronous and asynchronous
modes. In synchronous mode, the user waits until the full set of search operations
is finished, while in asynchronous mode partial results can be accessed as soon as
they come in.

2.2.2 Interfaces and Architecture

The main concept in SDLIP is the Library Service Proxy (LSP), which can be
seen as a “broker”. It has a back end and a front end. The back end is a socket for
the collections to be connected, its implementation is specific for every single col-
lection. The front end supports SDLIP and is used by clients to issue the queries
to the sources. When a user poses a query, it is translated into SDLIP syntax and
sent to selected DLs. Each library uses a corresponding implementation of the
backend, for example a “FAST-SDLIP” proxy, “Lucene-SDLIP” proxy, and so on
(assuming that such proxies are available).

The operations in SDLIP are grouped into three interfaces (see Fig. 2.1). The
search interface receives the queries, the result access interface provides access to
the set of result documents, the source metadata interface provides resource de-
scriptions. This separation allows quite complicated interconnection setups. For

3See also http://dbpubs.stanford.edu:8091/~testbed/doc2/SDLIP/

18

Federated Search Project Report. Version 1.0

Interfaces
Search Library
Result Access (Service
Source Metadata Proxy

Figure 2.1: SDLIP Interfaces

example, the first resource can provide a search interface, while the result access
interface can be implemented in second resource and after query execution the first
resource delegates the responsibility to return results to the second resource. The
protocol also supports a “state parking meter” notion, which is similar to “time-
to-live”, but is applied to the time of not deleting the previous search results at the
collection side. This parameter can be used to control caching strategies. Also,
there are server session ID and client request ID, which are used to distinguish
between requests.

The main SDLIP implementation architecture is presented at Fig. 2.2. SDLIP
aims at easy development of client applications, and construction of LSPs/brokers
that wrap arbitrary sources. Only the client application and the LSP have to be im-
plemented, the transport layer is provided by standard libraries. The transmission
of queries and results is system-independent and can be done through CORBA,
HTTP, or some other means. More details about the SDLIP protocol can be found
in [13].

Library Information

Client Service S
Proxy ource
A A
Y Y
SDLIP SDLIP
Network
HTTP, CORBA, .. HTTP, CORBA, ...

Figure 2.2: SDLIP Implementation Architecture

19

Federated Search Project Report. Version 1.0

2.3 STARTS Protocol Description

The following section is based on the STARTS description in [10]. In the context
of the Stanford DL project, a number of search engine companies and other big
IT companies participated in the design of a protocol for search and retrieval of
documents from distributed DLs. The key idea was that Stanford’s database group
could act as an unbiased party, it could analyze requirements from different search
engine vendors and propose a balanced protocol, acceptable for all parties. This
procedure was intentionally done at an informal level, in order to avoid time delays
unavoidable for official standards.

Eleven companies participated in defining STARTS: Fulcrum, Infoseek, PLS,
Verity, WAIS, Microsoft Network, Excite, GILS, Harvest, Hewlett-Packard Lab-
oratories and Netscape. The Stanford group met individually with each company
and discussed the possible solutions for each problem in detail. After the first
draft of the STARTS proposal was released, two more revisions followed, using
feedback from the companies and organizations involved. The revised draft was
then discussed at a special workshop with all participants, where they discussed
the remaining open issues and produced feedback for the final draft.

2.3.1 Architecture and Assumptions

The STARTS architecture can be applied to a large number of resources. Every
resource may accomodate one or several document sources. The information how
to contact each source is exported by the resource. In our setup, this means that
every DL can have many subcollections; smaller portals can provide query inter-
faces to many single DLs. Every source has an associated search engine, number
of documents per source is not limited.

STARTS can be compared with the Z39.50 [3] standard, which provides most
of the STARTS functionality. But STARTS is much simpler and easier to im-
plement. The protocol is designed for automatic communication between query
interfaces, not for end users. It is simple in the sense that communications are
sessionless, and information sources are stateless. The normal usage scenario as-
sumes querying several sources, which requires two types of regular activity:

e Periodical extraction of the list of available sources from resources (to find
out what sources are available for querying)

e Periodical extraction of metadata and content summaries from the sources

20

Federated Search Project Report. Version 1.0

(to be able to decide, given a query, what sources are potentially useful for
the query)

When the user submits a query, a Federated Search interface (or search broker)
should perform the following:

1. Issue the query to a source at a resource (Source 1 in Fig. 2.3), possibly
specifying other sources at the resource where to evaluate the query (Source
2 in Fig. 2.3);

2. Issue the query to other promising resources (serially, or in parallel to 1.).

3. Get the results from the multiple resources, merge them, and present them
to the user.

O\)e'd &\
& oy
Q@e&\ S8, 4

Figure 2.3: STARTS Distributed Search

Results

I

Query

The protocol defines how to query sources and what information the sources
export about themselves. It does not describe an architecture for distributed search
(in our case this is done by SDLIP). STARTS primarily describes which informa-
tion is needed for distributed search, in order to retrieve and to combine results.
The protocol keeps the common requirements for implementors to a minimum,
while it enables optional sophisticated features for advanced search engines.

2.3.2 Query Language/Interface

Every search engine implementing STARTS has to support several basic features.
First, any query should consist of two parts:

e a filter expression;

Federated Search Project Report. Version 1.0

e aranking expression.

A filter expression defines the documents that qualify for the answer, usually
using boolean operators. The ranking expression associates a score to these docu-
ments, ranking them accordingly. For example, consider the following query with
filter expression:

((author "Norbert Fuhr") and (title "Daffodil"))

and a ranking expression:

list ((body-of-text "digital") (body-of-text "libraries")).

This query returns documents having “Norbert Fuhr” as one of the authors and
the word “Daffodil” in their title. The documents that match the filter expression
are then ranked according to how well their text matches the words “digital” and
“libraries”.

If the ranking expression is empty, the documents are ranked according to the
parameters given in the filter expression. In principle, a filter expression can also
be empty; then, all documents qualify for the answer. Sources also might only
partially support such expressions, e.g. only filter expressions. Hence, they must
indicate what type of expressions they support as part of their metadata.

The number of keywords in both the filter and the ranking expressions is not
limited by STARTS. Terms can be combined with “AND” and “OR” operators.
The ranking expressions also can use “LIST” operator, for grouping a set of terms.
The terms in a ranking expression may have an associated weight, indicating their
relative importance in the ranking expression. Both types of expressions are de-
scribed in more detail later in this section.

L-strings

In STARTS an L-string is defined as either a string (e.g., "Norbert Fuhr",

or a string qualified with its associated language or language and country. The
language—country qualification follows the format described in standard RFC 1766[1].
For example, the L-string [en-US "handy"] states that the string “handy” is

a word in American English. The L-string is a Unicode sequence encoded using
UTEF-8, so all relevant languages and character sets are supported.

22

Federated Search Project Report. Version 1.0

Atomic terms

When an L-string is enriched with attributes, e.g. (author "Norbert Fuhr"),
it becomes a term. Attributes can be of two types, field or modifier. For example,
in the expression (date-last-modified > "2003-10-01"), the string
date-last-modified is a field and > is a modifier. STARTS defines the
“Basic-1” set of attributes. This list has several predecessors, some of its field
were defined in Z39.50-1995 Bib-1 use attributes, and later extended in GILS
attribute set.

Fields

The fields correspond to a metadata or a body fields, associated with the term,
e.g. author, year, etc. Each term can have one associated field, if the field
assignment is empty, term is associated with any field. Fields are divided into
supported and optional. Supported fields must be recognized by any source, while
interpretation can still vary among sources. We listed STARTS fields in Table 2.1

[Field [Required | Description]
Author yes
Body-of-text no
Document-text no For relevance feedback.
Formatted according to the International Standard
Date/time-last-modified | yes ISO 8601 (e.g., “1996-12-317).
Linkage yes URL of the document.
Linkage-type no MIME type of the document.
Cross-reference-linkage | no List of URLSs in document.

The language(s) of the document, as a [ist of Tanguage
tags as defined in RFC 1766. For example, a query
term (language “en-US”) matches a document with
value for the language field “en-US es”. This docu-
Language no ment has parts in American English and in Spanish.
Astring (maybe representing a query in some query
language not in the protocol) that the source somehow
Free-form-text no knows how to interpret.

Table 2.1: Fields

Modifiers

The modifiers indicate, what values are represented by a term, e.g. treat the term
as a stem, as its word’s phonetics (soundex) representation etc. Zero or more
modifiers can be specified for each term. In the STARTS the set of modifiers
corresponds to the Z39.50 “relation attributes”, see Table 2.2.

23

Federated Search Project Report. Version 1.0

[Modifier | Default Value
If applicable, e.g., for fields like “Date/time-last-
<, <=,=,>=, >, != | modified”, default: =
Phonetic (soundex) no soundex
Stem no stemming
Thesaurus no thesaurus expansion
Right-truncation the term “as is”, without right-truncating it
Left-truncation the term “as is”, without left-truncating it
Case-sensitive case insensitive

Table 2.2: Query Modifiers

Complex filter expressions

For building complex filter expressions from the terms, STARTS uses simple filter
expressions, listed in Table 2.3. The first three operators are well-known Boolean
operators. The PROX operator is also widely used in information retrieval tasks.
For example, consider two terms t 1 and t 2 and the following filter expression:

AND

OR

AND-NOT

PROX, specifying two terms, the required distance between them, and whether
the order of the terms matters.

Table 2.3: Filter Expressions

(tl prox[3,T] t2)

The documents that match this filter expression contain t 1 followed by t2
with at most three words in between them. “T” (for “true”) indicates that the word
order matters (i.e., that t 1 has to appear before £ 2).

Complex ranking expressions

The ranking expressions from the Table 2.4 are used for building complex
ranking expressions from the terms. If a source supports ranking expressions, it
must support all these operators. Each term in a ranking expression may have a
weight (a real number between 0 and 1) associated with it, indicating the relative
importance of the term in the query.

Global settings

The information to be supplied with a query is presented in Table 2.5.

24

Federated Search Project Report. Version 1.0

AND

OR

AND-NOT

PROX, specifying two terms, the required distance between them, and whether
the order of the terms matters.

LIST, which simply groups together a set of terms.

Table 2.4: Ranking Expressions

[Field | Description | Default value |
Whether the source should delete stop words fromthe | Drop the stop
Drop stop words query or not. words
Default attribute set used in the query, optional, for
Default attribute set notational convenience. Basic-1
Default language used in the query, optional, for no-
tational convenience, and overridden by the specifica-
Default language tions at the L-string level. No default

Additional sources

Sources in the same resource, where to evaluate the
query in addition to the source where the query was
submitted.

no other source

Returned fields Fields returned in the query answer Title, Linkage
Score of the
documents for

Fields used to sort the query results, and whether the | the query, in

Sorting fields order is ascending (“a”) or descending (“d”). descending order.

Documents returned Min | Minimum acceptable document score No default

Documents returned Max

Maximum acceptable number of documents

20 documents

Table 2.5: Information propagated with a query

Result Merging

After receiving a query, the source reports the number of documents in the result
set. Since the source might modify the given query before processing it, the source
also reports the query that it actually processed. Besides that, for every item in the
result set, the source provides the information presented in Table 2.6:

Optionally, a set of test queries can be specified. The results for these queries
from different sources can be used for “calibrating” the final scores. The mecha-
nism for handling duplicates is not static in STARTS, one has the choice to present
only one document in the result or several identical documents having the same
URL.

2.3.3 Source Metadata

In order to only select the most relevant sources for the query, we need additional
information. With respect to this task, each source exports two types of informa-
tion: metadata-based description (a list of metadata attributes) and statistics-based

25

Federated Search Project Report. Version 1.0

[Field

Description

Score

The unnormalized score of the document for the query

ID (of source)

The id of the source(s) where the document appears

The number of times that the query term appears in

TF (for every term) the document
The weight of the query term in the document, as assigned by the search engine
associated with the source, e.g., the normalized TFXIDF weight for the query
term in the document, or whatever other weighing of terms in documents the
TW (for every term) | search engine might use

DF (for every term)

The number of documents in the source that contain the term, this information is
also provided as part of the metadata for the source

DSize

The size of the document in bytes

DCount

The number of tokens, as determined by the source, in the document

Table 2.6: Information propagated with a result

description (a content summary of the source). The resource also exports resource

descriptions with metadata for the covered sources.

Source metadata attributes

The information about every source is wrapped in metadata fields, which we list
in Table 2.7. These source metadata attributes show the source capabilities, i.e.
whether it supports the required functionality or not. This information is also
helpful for reformulating the query according to a specific implementation of a

source’s search engine.

26

Federated Search Project Report. Version 1.0

Field

Required [

Description

FieldsSupported

yes

What optional fields are supported in addition to the
required ones. Also, each field optionally is accom-
panied by a list of the languages that are used in that
field within the source. Required fields can also be
listed here with their corresponding language list.

ModifiersSupported

yes

What modifiers are supported. Also, each modifier
is optionally accompanied by a list of the languages
for which it is supported at the source. Modifiers like
stem are language dependent.

FieldModifierCombinations

no

‘What field-modifier combinations are supported. For
example, stem might not be supported for the author
field at a source.

QueryPartsSupported

no

‘Whether the source supports ranking expressions only
(“R”), filter expressions only (“F”), or both (“RF”).
Default: “RE”

ScoreRange

This is the minimum and maximum score that a doc-
ument can get for a query; we use this information
for merging ranks. Valid bounds include -infinity and
+infinity, respectively.

RankingAlgorithmID

yes

Even if we do not know/understand the actual algo-
rithm used, it is useful to know that two sources use
the same algorithm.

TokenizerIDList

no

E.g., (Acme-1 en-US) (Acme-2 es), meaning that to-
kenizer Acme-1 is used for strings in American Eng-
lish, and tokenizer Acme-2 is used for strings in Span-
ish. Even when we do not know how the actual tok-
enizer works, it is useful to know that two sources use
the same tokenizer.

SampleDatabaseResults

yes

The URL to get the query results for a sample docu-
ment collection.

StopWordList

yes

TurnOffStopWords

yes

Whether we can turn off the use of stop words at the
source or not.

SourceLanguage

no

List of languages present at the source.

SourceName

no

Linkage

yes

URL where the source should be queried.

ContentSummaryLinkage

The URL of the source content summary; see below.

DateChanged

no

The date when the source’s metadata was modified
last.

DateExpires

no

The date when the source metadata will be reviewed,
and therefore, when the source metadata should be
extracted again.

Abstract

no

The abstract of the source.

AccessConstraints

no

A description of the constraints or Iegal prerequisites
for accessing the source.

Contact

no

Contact information of the administrator of the
source.

Table 2.7: Source metadata attributes

27

Federated Search Project Report. Version 1.0

Source content summary

Another type of information about the source is the content summary. This kind
of data is used to decide the degree of source relevance to the query. It is also cru-
cial for normalizing the relevance scores of results and making them comparable
across many sources. The required information is presented in Table 2.8. The rec-
ommended default parameters for content summary creation are: the words listed
are not stemmed, stop-words are not removed, the words are case sensitive, each
word is accompanied by corresponding field information.

[Field [Description
Stemming on/off
Stop-words included/not included
Case sensitive on/off

Total number of documents in
source
List of words List of words that appear in the source.

Table 2.8: Source content summary

The list of words that appear on the source also has several subfields per every
word, see Table 2.9.

[Field | Description]
Index field corresponding to where in the documents they occurred, e.g., (title
Index field “databases”), (abstract “databases”), etc.
In addition, the words might be qualified with their corresponding Tanguage, e.g.,
Language [en-US “behavior”].

Total number of postings for each word, i.e., the number of occurrences of a
Number of postings | word in the source.

Document frequency for each word, i.e., the number of documents that contain
DF the word.

Table 2.9: Information provided for each word in content summary word list

Resource definition

The resource is in charge for exporting the information from the contained sources.
It should provide a list of provided sources and URLs to metadata attributes. This
information is sufficient for brokers to prepare the query, retrieve and merge the
results.

28

Federated Search Project Report. Version 1.0

2.4 FAST and Lucene: General Description

2.4.1 FAST Data Search

FAST Data Search is a commercial software system by the Norwegian company
Fast Search & Transfer (FAST) with a sound history as a competitive solution
on the rapidly grown search engine market. Their software was the foundation
for the AllTheWeb search engine (www.alltheweb.com). The core of the FAST
system contains a full-text engine accompanied by a broad set of the Web-oriented
search engine features and tools. It is designed to accomodate the typical search
engine characteristics: speed, linguistic features and ranking methods which fulfill
users needs for result weighting. The ranking functionality is a configurable set
of values with some hidden algorithms and parameters behind.

FAST software plays an important role in the Vascoda project because major
Vascoda members use FAST as their basic system. Besides, some prospective
Vascoda member institutions will use FAST to present their portal or database—
oriented activities. Vascoda is Web-based and there is a strong need to integrate
search engine functionality into the main and subject portals. This covers search
engine functionalities, like advanced user interfaces, fast retrieval and result dis-
play, crawling of scientific information (e.g., based on the common link lists) and
a high quality ranking.

FAST interfaces and APIs have to be further investigated. This includes low-
level interfaces like direct HTTP calls, XML-based HTTP communication and
Web service based architecture. Apart from the technical layer, the ideal scenario
of integrating FAST resources with external search environments should cover all
FAST search engine features with focus on the topic-based ranking support.

STARTS functions can be delivered either by using FAST API functions (sup-
ported: HTTP GET, C++, Java, .NET) or by specific scripts for analyzing internal
resources. A complete comparison between STARTS and FAST capabilities is
given in Appendix A.

2.4.2 Lucene

Lucene is an information retrieval library, which was created in 1997 by Doug
Cutting, an experienced search engine developer. In 2000, Lucene became an
open-source project and was released at SourceForge; since 2001, Lucene is an
official Apache project. Over time, several active developers joined Cutting’s ini-
tiative, now providing a solid developer and user base. Originally written in Java,

29

Federated Search Project Report. Version 1.0

Lucene has also been ported to programming languages like C++, C#, Perl, and
Python. Major advantages of Lucene are its simplicity, efficiency, well-written
code and good documentation. Recently, the book “Lucene in Action” [9] has
been published, which makes it easy to understand Lucene core functionality and
gives a good overview of its additional capabilities.

The application area of Lucene is wide, it is used for search on discussion
groups at Fortune 100 companies, bug tracking systems, and Web search engines
(such as Nutch*). As any other open source product, it can be extended by every-
one, a feature especially appreciated by developers. This is also important for us,
since we are building evolving infrastructure and need to keep control over the
code, to be able to extend federated search capabilities in future. The Lucene li-
cense is very unrestrictive, its integration does not require any fees to be paid to
the original authors, for example. In addition, the Lucene mailing list acts as a
free source of technical support. Meanwhile, several companies now also offer
enterprise-level support for Lucene.

A proof-of-concept implementation of SDARTS for Lucene has been released
by the SDARTS authors[8], although this implementation is somewhat outdated
now. The implementation provides an SDLIP-to-Lucene query translator, means
for maintaining (or automatically generating) collection-wide information, and
for querying and retrieving documents. The version is based on a very early ver-
sion of Lucene, and still requires significant effort to make it work with recent
(recommended) Lucene versions.

A complete comparison between STARTS and Lucene capabilities is given in
Appendix A.

“http://lucene.apache.org/nutch/

30

Chapter 3

Query Processing and Ranking

This chapter addresses search engine developers and people with information re-
trieval background. We discuss document ranking in federated search, possible
problems and solutions. In Section 3.1, we describe necessary components of
the document indexing process. Starting with document pre-processing steps, we
then briefly introduce two most appropriate retrieval models and continue with
a description of query processing in distributed search. In Section 3.2, we de-
scribe a general distributed search scenario, the possible ranking inconsistencies
and problems are discussed in Section 3.3.

3.1 Document Indexing and Query Processing

3.1.1 Document Pre-processing

Natural languages inavoidably contain information which is redundant or over-
specified for search. This includes punctuation, filler words or groups of words
with the same basic meaning. Thus, in a preparation step prior to indexing, input
text consisting of words is being converted into a stream of tokens, this is called
tokenization; such a stream is the consolidated form of continuous text. A term
basically is a token, but with the addition of a field (or zone), such as “author =
John Doe” would map to “author:John author:Doe”.
The conversion step usually prepares the text in the following ways:

e Stopwords.
The most frequent words in a language, like “the”, “and” or “is” in English,
do not have rich semantics. They are called “stopwords” and get removed

31

Federated Search Project Report. Version 1.0

from the document representation. The set of specified stopwords is usu-
ally stored in a list, it can also be determined after a first indexing step by
counting the number of occurrences.

e Stemming.
Word variations with the same stem like “run”, “runner” and “running” are
mapped into one term, corresponding to a particular stem, a stemming al-
gorithm performs this process. In this example the term is “run”. There are
several algorithms available, most of them being focused on one language
and, moreover, incompatible to each other, as they might produce different
terms for the same input.

e Anti-Phrasing.

Besides a simple stop words detection, many search engines, including
FAST Data Search, provide extensive Natural Language Support, in par-
ticular a so-called anti-phrasing function. Based on a standard dictionary
supporting several languages, this function removes redundant phrases from
the query. Those phrases are parts of a query that do not contribute to the
query’s meaning, such as “Where do I find ...” or “I am searching everything
about ...”.

The same preparation steps are performed on a user’s query, again transform-
ing a list of words into a list of terms.

3.1.2 Retrieval Models

An important characteristic of an information retrieval system is its underlying
retrieval model. This model specifies the procedure of estimation the probabil-
ity that a document will be judged relevant. The final document ranking being
presented to the user is based on this estimate.

Vector Space Model

The Vector Space Model is most widely used in search engines. In this model, a
document D is represented by the vector d= (wy,wa, ..., wy), Wwhere m is the
number of distinct terms, and w; is the weight indicating the “importance” of term
t; in representing the semantics of the document. For all terms that do not occur
in the document, corresponding entries will be zero, making the full document
vector very sparse.

32

Federated Search Project Report. Version 1.0

If a term occurs in the document, two factors are of importance in weight
assignment. The first factor is the term frequency (7'F'). It is the number of the
term’s occurrences in the document.! The term weight in the document vector is
proportional to T'F'. The more often the term occurs, the greater is its assumed
importance in representing a document’s semantics.

The second factor affecting the weight is the document frequency (D F’). It is
the number of documents containing a particular term. The term weight is propor-
tional to the inverse document frequency / D F'. The I D F' measure is computed as
the logarithm of the ratio N/DF', where N is the overall number of documents in
the collection. The more frequently the term appears in the documents, the less is
its importance in discriminating between the documents containing the term from
the documents not having it.

A common standard for term weighting is the combination of T'F' and IDF’,
namely the T'F'xI D F' product and its variants. A simple query Q (being a set of
keywords) is also transformed into an m-dimensional vector ¢ = (wq, we, . . . , Wy,)
using the same preparation steps applied to the documents. After creation of ¢,
a similarity measure between the query’s vector and all documents’ vectors & is
being computed. This estimate is based on a similarity function, which can be the
Euclidian distance or the angle measure inside the vector space. The most popular
similarity function is the cosine measure, which is computed as a scalar product
between ¢ and d.

For our Federated Search infrastructure, we will use the Vector Space Model.
It is effective, simple and well-known in the DL community. For developers who
are interested in advanced models, we also provide details for an alternative Lan-
guage Modeling approach:

Language Modeling-based Model

Another popular approach that tries to overcome a heuristic nature of term weight
estimation comes from the so-called probabilistic model. The Language modeling
approach [14] to information retrieval attempts to predict a probability of a query
generation given a document. Although details may be different, the main idea
can be described as follows: every document is viewed as a sample generated
from a special language. A language model for each document can be estimated
during indexing. The relevance of a document for a particular query is formulated

'In information retrieval terminology, the term “frequency” is used as a synonym for “count”.
2 At least for those documents which contain all required terms at least once

33

Federated Search Project Report. Version 1.0

as how likely the query is generated from the language model for that document.
The likelihood for the query () to be generated from the language model of the
document D is computed as follows [16]:

Q|
P(Q|D) = HA-P(MDHU —\) - P(t|G) (3.1)

Where:

t; — is the query item in the query Q);

P(t;]D) — is the probability for ¢; to appear in the document D;

P(t;|G)) — is the probability for the term ¢; to be used in the common language
model, e.g. in English;

A — is the smoothing parameter between zero and one.

The role of P(¢;|C) is to smooth the probability of the document D to generate
the query term ¢;, particularly when P(¢;| D) is equal to zero.

3.1.3 Distributed Query Processing

A schema for query processing in distributed information retrieval scenario is pre-
sented on Figure 3.1 [5].

<P,g> Selection <P’, g> Retrieval <R’, o> Merging Rm
P1 _ > Pl’ » R1'
P2 \

Py — Py — Ry —— D Rn
p, —> Py — J R’ _—

Ps

Figure 3.1: A query processing scheme in distributed search

A query ¢ is posed on the set of search engines that are represented by their
resource descriptions P;. A search broker selects a subset of servers P’, which are
the most promising ones to contain the relevant documents. The broker routes the
query ¢ to each selected search engine P, and obtains a set of document rankings

34

Federated Search Project Report. Version 1.0

R’ from the selected servers. In practice, a user is only interested in the best “top-
k” results, where k usually is between 10 and 100. For this, all rankings R; are
merged into one rank Rm and the top-k results are presented to the user. Text
retrieval aims at high relevance of the results at minimum response time. These
two components are translated into the general issues of effectiveness (quality)
and efficiency (speed) of query processing.

3.2 Distributed Ranking

3.2.1 Scenario

For a simple, yet easily extendable scenario, assume two document collections A
and B. They do not contain duplicate documents and each is indexed by its own
search engine. Both search engines have identical retrieval systems, i.e. identical
stemming algorithms, stopword lists, metadata fields supported, query modifiers
and Term Frequency (7'F') - Inverted Term Frequency (/ D F') ranking formulae:

|ql

SimilarityScore = Z TF; - IDF; (3.2)
i=1
TO
TF = — (3.3)
| D
N
IDF = log — 4
0 (34

T O — the number of term occurences in the document

|D| — the document length measured in terms

N — the number of documents in the collection

DF' — the document “frequency”, the number of documents with the term.

As a simple query, the user poses a query consisting of two keywords ¢; and gs.
It is not specified, whether they should appear in metadata or in the document’s
text body. We also assume that environment is cooperative and we can obtain
any necessary information from any collection. Our goal is to achieve the same
result ranking in the distributed cases as produced by the same search engine on
the single collection C, which contains all the documents from A and B. Since
the retrieval systems are identical, T'F’ values are directly comparable on both

35

Federated Search Project Report. Version 1.0

Global document scores —>

Number of docs N; and

N;+DF,;
A B document frequency DF; " X---»
statistics for every term in
“Na*DF, .Ng+DFg database i
Search engine |:|

U Broker O

Global Inverted
Document Frequency GIDF;
GIDF; T

Figure 3.2: Statistics propagation for result merging

resources. For collection-dependent statistics N and D F', we compute the global
IDF, GIDF, and use the following normalized ranking formula:

|ql

DistributedSimilarityScore = Z TF;-GIDF; (3.5)
i=1
Na+ Np

IDF =log —————— 3.6

¢ °® DFy + DFg (36)

For this setup, the distributed similarity score in 3.5 is equal to the similarity scores
computed on single collection C.

Most notably, the necessary /N and D F' values need only to be computed once
(preferably according to the scheme from [4]), before query time, and regulary
after changes in the collections (document additions, deletions, and updates). The
communication flow for such an aggregation is presented on Fig 3.2. During query
execution, the search engines compute results with comparable scores, since they
use common global inverse document frequency G1DF’, which is sent with the
query. The global ranking is then achieved by merging each sub-results list in
descending order of global similarity score.

3.3 Additional Issues in Distributed Ranking

In the cooperative environment, where all search engines provide necessary sta-
tistics, we can achieve the consistent merging as produced by a non-distributed

36

Federated Search Project Report. Version 1.0

system, also known as the perfect merging. In practice, it is difficult to guarantee
exactly the same ranking as that of the centralized database with all documents
from all databases involved. We enlarged the list from [10] of several issues,
which can reduce search quality:

e Some relevant documents are missed after the database selection step;
e Database selection may be poor, if required statistics are not provided;
e Some collections may not provide N and D F' values for normalization;
e Different stemmers influence both 7F" and I D F’ values;

e Different stopword lists influence T'F' and [D F’ values;

e Overlap affects globally computed I D F' values;

e Query syntaxes may be incompatible;

e Unknown features of the proprietary algorithms cannot be removed;

e Document schemata (Metadata fields etc.) on resources do not match.

Another point to be considered is the case when several distinct documents
yield the same similarity score. Whenever there is an additional overlap between
collections, document duplicates may occur at not directly succeeding positions
of the ranking. A viable solution to overcome this problem is to not only take
the score as the only ranking criterion, but to additonally sort documents with the
same score by their document identifier (URI, etc.).

In chapter 2, we defined specifications which are recommended for DLs in
a Federated Search infrastructure. If the requirements from the specification are
satisfied by the participating libraries, the system will produce the result ranking
as described in general scenario in Section 3.2.

Most of aforementioned problems are relevant for both full-text and metadata
search. Therefore, the solutions are also applicable to both types of search. The
only special problem, which occurs in metadata search is a problem of collection-
schema mapping. There is no universal solution for it so far, but the most impor-
tant set of fields is defined in STARTS protocol as mandatory for all participants.
Additional search fields besides this set are optional and can be queried as well,
but the system does not guarantee a perfectly consistent ranking for them.

37

Chapter 4
Combining Lucene and FAST

In this chapter, we describe search engines based on Lucene and FAST Data
Search, with respect to Federated Search. In Section 4.1, we present the details
of Lucene-based search engines. A preliminary implementation of an interface to
the FAST index is described in section 4.2.1. Section 4.3 describes the integration
of Lucene and FAST search engines into the federation.

4.1 Distributed Search with Lucene

4.1.1 Background

Lucene notably differs from other systems like FAST Data Search because it is not
a complete search engine. In fact, it is a programming library, which allows the
easy creation of a search engine with desired properties and functionality. Lucene
has been implemented in several programming languages, we are considering its
original (and main-line) Java implementation.

Lucene provides many required core components for search, in a high-quality,
well performing and extensible way. Functionalities not directly related to search,
such as crawling, text extraction and result representation, are not directly focused
by Lucene. Even though a few such examples exist, it is still up to the developer
to correctly provide data for building up the index and to correctly retrieve and
display results from a search, using additional components. While it is reasonably
easy to set up a small application for full-text search, for a full understanding
of the library and especially for creating high-performance search applications
good technical skills as well as consolidated knowledge in information retrieval

38

Federated Search Project Report. Version 1.0

are recommended.

In table 4.1, we define the steps to be considered for indexing with Lucene in

general, and within our Federated Search scenario.

Stage Description

| Our Setup

l

1. Specify what should be indexed (plain full-text,
text with metadata,binary data etc.)

We index full-text with additional metadata fields.
Some metadata is expressed by tokenized text,
some other by keywords.

2. Specify what kind of queries should be sup-
ported (term queries, phrase queries, range queries
etc.)

We want to support at least following query types:
terms, phrases, boolean clauses.

3. Specify the index schema (name the fields, de-
fine the indexing strategy and specify how to trans-
late input data into terms.)

Our input data consists of several document col-
lections, which can be accessed separately. Field
names and values are defined according to a fixed
schema and the values are pre-processed. For term
creation, each portion of the document (full-text
or metadata field), its text contents only have to
be split into tokens separated by whitespace. Each
token is then assigned to the current field to form
a term.

4. Specify how search will be performed (query
formulation, result display etc.)

Searches are performed via the SDARTS API
(queries passed to Lucene, results passed back to
the caller). SDARTS queries have to be converted
into the Lucene API counterpart, Lucene results
back to SDARTS format.

5. Specify how and where the index should be
stored (one index, several distributed ones etc.)

Distribution on physical level is not necessary;
each index can be stored on one hard disk. In
case of performance issues, we can consider parti-
tioning and distribute them over multiple servers.

Table 4.1: Lucene Indexing Stages

Depending on these specifications, the complexity of the setup can be esti-
mated as well as the required components. Our scenario implies a medium com-
plexity level of the Lucene installation (large number of documents, full-text and
metadata search with simple query types).

Based on these requirements, the developer then has to implement the follow-
ing components in addition to using the Lucene standard API:

1. A custom Parser and Translator for importing documents into Lucene.
2. A Lucene representation of document collections (for indexing and search.)

3. The SDARTS wrappers for Lucene (probably re-using parts from the SDARTS
distribution.)

39

Federated Search Project Report. Version 1.0

4.1.2 Core Concepts for Indexing within Lucene

Lucene supports a broad scope of how to prepare data for full-text search. A
central notion is the Document, which is a container for both indexed/searchable
and stored/retrievable data. A Document may consist of several fields, each of
them containing text, keywords or even binary data. A Field may be indexed into
terms or simply be stored for later retrieval. A Term represents a token (word, date,
email address etc.) from a text, annotated with the corresponding Field name.

The Documents are converted field-wise into terms by an Analyzer. This cov-
ers tokenization, converting to lowercase, stemming/lemmatization, stop-word fil-
tering, etc. By using a custom Analyzer, the developer has full control over the
term creation process.

The Documents can be made searchable by writing them into an index stored
in a Directory (harddisk- or memory-based), using an IndexWriter. Internally,
Lucene creates very compact index structures upon the given terms, such as in-
verted term-vector indices (in order to find documents similar to another one) as
well as positional indices in order to support phrase queries. The TF and DF val-
ues are computed and stored as well as a general normalization factor for each
Document, which, for example, contains a boost value for additional up- or down-
ranking specific results (like PageRank).

The Document updates are only supported indirectly, by deleting the old Doc-
ument and adding a new one. A deletion is performed in two steps. First, the
Document 1s marked as deleted (search will indeed keep ranking using the old N
and DF values, but simply ignore such documents in the result set). Upon request
or when enough documents are marked as deleted, the index is re-created without
these deleted Documents.

This re-creation step is very fast, since the index itself consists of several Seg-
ments of Documents. Each Segment basically is a small, immutable index. New
Documents are added as one-Document Segments and are then merged with other
Segments to a bigger one. The way how merging is performed can be config-
ured and heavily influences indexing performance. Search performance can be
improved by merging all Segments to one single Segment again.

4.1.3 Search in Lucene

Lucene not only provides means for centralized search, but also for a distributed
setup using the same concepts. Its rich API has a simplistic definition of a Search-
able collection, providing methods for retrieving:

40

Federated Search Project Report. Version 1.0

the number of documents in the collection (N);
the document frequency (DF) of a given Term in the collection;

the search results Hits, where Hit is internal, numerical Document id plus
score for a given query, eventually sorted and filtered to given criteria;

the stored document data for a given Document id.

Such a Searchable can simply be a local index (accessible by an IndexSearcher),
a single index on a remote system (providing a RemoteSearchable), or a combina-
tion thereof, which may also be combined again, and so on. There are two ways
of combining Searchers, using the MultiSearcher and the ParalleIMultiSearcher.
The former performs a search over Searchables one after each other, whereas the
latter queries all collections in parallel'.

The different query types (term-, phrase-, boolean-query etc.) are represented
as derived forms of an abstract Query, such as TermQuery, PhraseQuery, Boolean-
Query, RangeQuery and so on, which may be aggregated (e.g., a BooleanQuery
may contain several other queries of type TermQuery as well as BooleanQuery

etc.).

Any search, distributed or on a single index, consists of the following steps:

Specify the TFXIDF normalization formula (Similarity). Usually, Lucene’s
default implementation, DefaultSimilarity is used.

Specity the Query, eventually being a complex composition of several oth-
ers. A QueryParser can transform query strings into this representation.

Rewrite the Query into more primitive queries optimized for the current
index and compute boost factors.

Create the query Weight (normalization factor based upon the query and the
collection)?

Retrieve the Scorer object, which is used to compute ranking scores, based
upon the query weight and the Searchable’s similarity formula®.

"While the idea of querying collections serially may sound inefficient, it may be used for
search scenarios where only a certain maximum number of results from a specific list of prioritized
collections is required. Still, in our scenario we will prefer the parallel implementation.

ZDepending on the structure of the Query, this may be an aggregate of several sub-Weights.

3 As with the Weights, this may be an aggregate of several sub-Scorers

41

Federated Search Project Report. Version 1.0

e Collect Hits object from the Searchable, sorting them in descending order
according to the score computed by the given Scorer.

e Provide access to the stored Document data for the collected Hits, using the
Document id as the key.

It is remarkable that Lucene clearly distinguishes between remote search and
parallelized search facilities. The latter can also be useful on a single server when
multi-threading is available. On the other hand, Lucene’s remote search feature
currently only exists as a Java RMI-based implementation, a rather Java-centric
standard for remote method invocation, which may connect to any other Search-
able on another server. However, the creation of another interface is simple (for
SOAP, only a few Stub classes have to be created.)

Lucene’s MultiSearcher implementation does not need to care about all these
details. At instantiation time, a MultiSearcher sets up very little collection-wide
information — a mapping table for converting sub-Searchers’ (local) Document
ids to a global representation. As Lucene’s Document ids are integer numbers,
and guaranteed to be gap-less (apart from documents marked as deleted), this is
coded as offsets derived from the maximum document id of each source.

At query preparation time, the MultiSearcher retrieves the local DF values for
all terms in the query and aggregates them to a set of global document frequencies.
This global DF, along with the global maximum document id, is then passed to all
sub-Searchers as the Weight.

Currently, there seems to be a small conceptual mistake in this implementa-
tion, as the DF values get refreshed for each distinct query, whereas the local-to-
global id mapping is set up only once at instantiation time. While this saves some
setup time, as DF values only need to be computed as necessary, any change (up-
date/deletion of documents) in the downstream collections requires the creation
of a fresh MultiSearcher. What is currently missing is the interaction between
MultiSearcher and its sub-Searchers in such cases.

Also, the ranking formula used in Lucene by default (DefaultSimilarity) differs
a little bit from the one shown in 3.2:

42

Federated Search Project Report. Version 1.0

score(q,d) = Z (\VTF; i a- (log) + 1.0) - boost(t.field in d) -
(tin q)
V|terms € t.field in d|71) :
[terms € ¢ N d|

[terms € ¢|

\/sumOquuaredWeights mn qi1

N
(DF, + 1

Besides looking a little bit more complex, it does obey the same principles,
with the notable difference that the square-root of DF' is used. However, this
can be seen as an optimization for normalizing scores, just as the logarithm for
N-DF %

In cases where this ranking formula might not fit, Lucene provides the option
to specify a custom ranking algorithm (extending Similarity).

4.2 Distributed Search with FAST

4.2.1 Background

The FAST system can retrieve information from the Web using a crawler, from
relational databases using a database connector and from the file system using a
file traverser.

The FAST crawler scans the specified Web sites and follows hyperlinks based
on configurable rules, extracts the desired information and detects duplicates. The
document processing transfers the HTML content into structured data as defined
by the Web representation. The Crawler supports incremental crawling, dynamic
pages, entitled content (cookies, SSL, password), HTTP 1.0/1.1, FTP, frames, ro-
bots.txt and META tags. Additionally, FAST supports the handling of JavaScript
parts, especially indexing dynamic content generated by JavaScript on the client
side.

Its database connector currently provides Content Connectors for the most
popular SQL databases, including Oracle and Microsoft SQL server.

The File Traverser scans the local file system and retrieves documents of vari-
ous formats in a similar way as the crawler.

XML content can be submitted directly via the Content API or the File Tra-
verser. FAST Data Search supports Row-Set XML and conversion from cus-

43

Federated Search Project Report. Version 1.0

tom XML formats. The XML conversion is performed as part of the document
processing stage, and is controlled using an XSL Style Sheet or an XPath-based
configuration file. The sketch on Fig. 4.2.1 shows the data workflow for BASE,
the Bielefeld Academic Search Engine:

Data- > Database
T Connector \
Web Crawler 7 FIXML —_— E

Pre-Processing [~ File Traverser

Figure 4.1: FAST Dataflow

The indexing process is highly configurable and covers a list of internal (pro-
vided by FAST) and external steps which can be defined and ordered per collec-
tion. The indexing stages in FAST are summarized in Table 4.2.

4.2.2 FIXML

The FAST search engine processes incoming data in a flexible, multi-step process-
ing stage. This covers both internal FAST filter stages and additional, individual
stages. At the end of this pipeline, a file in the internal FIXML format has been
produced which will then be used by the internal FAST index process.

Since some of the steps are really internal to the system and not documented,
the following description can only provide an overview.

The Fast IndeXer Markup Language (FIXML) format defines the internal in-
dexing structure according to the index configuration. In particular, the configu-
ration defines the list of fields which may appear in the FIXML files (for context,
summary and ranking purposes) and the fields which will be lemmatized.

The FIXML files consist of a context, a summary and a ranking division. The
structure is presented in Table 4.4

Internal parts are separated by the token “FASTpbFAST”, for example:

<context name="bcondctype"><! [CDATA|[
FASTpbFAST Text FASTpbFAST article FASTpbLFAST
]1></context>

44

Federated Search Project Report. Version 1.0

Indexing Stage

| Description

1. Language Detects the languages of the document and used encoding and writes this
and encoding information into the corresponding internal fields (language, languages for
detection multi-language objects, charset). This is later used for lemmatization.
2. Format

. Detects the document format.
detection

3. Delete MIME
Type

In specific cases, the specified format type found in the document is wrong.
Therefore this stage deletes the information.

4. Set MIME This is an added stage to reset the mime type externally, in case of correcting

Type wrong information.

5. Handle

ipped fil

?'Iﬁ]pcim Ireesss) Uncompresses zipped object files, detects the occurring document format and
P resets the internal format field of the unpacked file and its included document.

and set new

format.

6. Set content
type

This stage sets a BASE—specific field which defines whether the document
contains just metadata or metadata with full-text.

7. PostScript

Reads a PostScript document, transforms it into a raw text format and writes

conversion the results into specific fields
8. PDF Reads a PDF document, extracts the raw text and writes the result into specifc
conversion fields.

This stage processes all input formats (ML for multi-language) and can handle
9. SearchML- - . .
Converter more than 220 different file formats. It extracts the raw text from the original

file.

10. Generate
teaser based on
defined fields

This stage builds the teaser document summary.

11. Tokeniza-
tion of selected
fields

Takes field content of specified fields and extracts a normalized form.

12. Lemmatiza-
tion

This stage handles the fields for lemmatization (defined in the index
configuration file) based on the detected language and packs the lemmatized
word forms into the internal structures.

13. Vectoriza-
tion

This step determines a document’s vector in vector space. This can be used
later for a vector space search. At this point, a file in FIXML format has been
produced which contains the result of the processing steps. This file will be
processed by the internal FAST index process as final step.

14. Indexing

The index process itself can be influenced by various settings shown in
Table 4.3.

Table 4.2: FAST Indexing Stages

45

Federated Search Project Report. Version 1.0

[Setting Field [Description

name -

type used for sorting

string a free-text string field

int32 a 32 bit signed integer

float decimal number (represented by 32 bits)

double decimal number with extended range (represented by 32 bits)

datetime date and time (ISO-8601 format)

lemmatize enables lemmatization and synonym queries

full-sort enables sorting feature for the field

index enables indexing of this field

tokenize ena.bles language dependent tokenizing (.removing/normalizing punctuation,
capital letters, word characters) at the field level

. enables creation of similarity vectors for the specified field. A changeable

vectorize . . .
stopword list depending on the detected language of the document is used

substring if specified, the field will be configured to support substring queries

boundarymatch determines if seérches within a field can be anchored to the beginning and/or
the end of the field

phrases enables phrase query support in the index for the defined composite-field

Table 4.3: FAST Indexing Settings

Context at least once
Ranking optional
Attribute vectors | optional
Summary optional

Table 4.4: FIXML Structures

The context part contains those fields which are used for indexing the docu-
ment, e.g. for querying. The words are added in the catalog’s index dictionary
in a case-insensitive way (lowercase). It contains both the normalized words (the
corresponding field names start with a “bcon”) and the lemmatised field (the field
name starts with a “bcol”) divided into the normalized tags followed by the lem-
matised versions. Thus, fields which are defined as “to be lemmatised” appear
twice, with a header of “bcon” (normalized) and “bcol” (lemmatised).

Example for a lemmatised field’s content:

24 april 2003 FASTpbFAST beitrags beitrage beitrages

The ranking section defines static ranking values, which may influence (boost)
the final ranking. In addition to that, the “attribute vectors” section holds informa-
tion used for drill-down search; the according field names start with “bavn”, for
example:

<attrVec name="bavncharset">
<avField><! [CDATA[utf-8]]1></avField>
</attrvVec>

46

Federated Search Project Report. Version 1.0

The summary section contains those fields which are used for preparation of
the result display of the specific document. Obviously, this content is stored in the
index as well to construct the original format of the document without storing it
in its original format. The summary chapter is optional.

The final section describes the document vector, which can be used for “find-
like-this”-typed searches. Example:

<sField name="docvector"> <! [CDATA[]
adressdatenbank, 1] [pflege, 0.816497]
[erfassten daten, 0.645497]

]1> </sField>

4.2.3 Prospective Federated Search using FAST

For future versions, a new feature called “federated search” is being developed
by FAST. While not yet announced officially, this feature seems to support FAST
search systems only. If so, it would rather be a distributed search tool for homoge-
neous systems than a Federated Search environment in our terms, and would not
suit the needs of combining search engine systems from different vendors. Still,
for a FAST only environment, this is certainly an interesting feature to look into
it deeper.

4.3 Combining Lucene and FAST Data Search

4.3.1 Plugin Architecture

While being very similar at some points, the two search engine products consid-
ered (FAST Data Search and Lucene) clearly expose incompatiblities on several
levels: index structures, API and ranking. Since FAST Data Search is a com-
mercial, closed-source product, we were not able to have a deeper look into the
technical internals. For the near future, we also do neither expect that these struc-
tures can and will be adapted to conform to the Lucene API, nor vice versa. As
a long-term perspective, we hope that both systems will ship with a SDARTS-
conformant interface.

In the meantime, we propose the following plugin-based approach. Given the
fact that FAST Data Search provides many valuable features prior to indexing
(especially crawling and text-preprocessing), whereas Lucene concentrates on the

47

Federated Search Project Report. Version 1.0

indexing part, we will combine the advantages of both systems into one applica-
tion, so most existing applications and workflows can be preserved.

This application will take input data (pre-processed documents) from both
FAST and Lucene installations and index them in a homogeneous manner. Think
of this indexing component as a plugin to both search engine systems. Since
Lucene is open-source and already one of the two engines to be supported, the
plugin will be based upon its libraries.

Each search engine which participates in the search federation will have such
a (Lucene-based) plugin. Search in the federation is then performed over these
plugins instead of the original vendor’s system. However, per-site search (that is,
outside the federation) can still be accomplished without the plugin.

The plugin-enriched Federated Search infrastructure is shown in figure 4.2.
The participating instutions may provide several user interfaces, with different
layouts and functionalities, inside the federation, from which a user can perform
queries over the federation. This can be accomplished by querying the plugins
from the Ul in parallel, or let another specialized plugin do this for the user inter-
face.

TIB
Lucene

Plugin

Bielefeld

Federated Federated Federated
Search Search Search
GUI 1 GUI 2 GUI 3

I

[
(7]
(]
=
vs]

Figure 4.2: Federated Search infrastructure using the Plugin Architecture

Federated Search Project Report. Version 1.0

This approach provides the advantages of centralized search (homogeneous
index structure, ranking and API), while offering distributed search using stan-
dard Lucene features. For this, the original document data has to be automatically
re-indexed by the Lucene-Plugin, whenever the document collection changes. As
a consequence, additional system resources are required (harddisk space, CPU,
RAM). However, these resources would probably be necessary for participating
in the federation anyway. On the other side, the plugin architecture will impose
no major administrative overhead, since the search engine administrators can still
specify all crawling- and processing parameters in the original search engine prod-
uct.

Of course, the concept of a “plugin” is not limited to a Lucene-based imple-
mentation. The plugin simply serves as a common (open) platform for homoge-
neous, cooperative distributed search and Lucene suits very well here.

4.3.2 Importing FAST Data Search Collections into Lucene us-
ing FIXML

The aforementioned procedure of re-indexing the document data into the plugin’s
index structure clearly depends on the underlying search engine. We will now
examine how the plugins can be implemented for each search engine.

FAST Data Search uses an intermediate file format for describing indexable
document collections, FIXML. It contains all documentation information which
should go directly to the indexer (that means, the input data has already been
transformed to indexable terms: analyzed, tokenized, stemmed etc.). FIXML uses
data-centric XML for document representation and index description.

A document in FIXML consists of the following parts:

e Contexts (= fields / zones). Each (named) context may hold a sequence of
searchable tokens. FIXML stores them as white space-separated literals,
enclosed in one CDATA section.

e Catalogs. Contains zero or more Contexts. This can efficiently be used to
partition the index.

e Summary Information. Each (named) summary field may hold human-
readable, non-indexed data, for result presentation.

e Attribute Vectors. Each (named) attribute vector may hold one or more
terms (each enclosed in a CDATA section) which can be used for refining the

49

Federated Search Project Report. Version 1.0

search (dynamic drill-down), e.g. restrict the results to pages by a specific
author or to pages from a specific category etc.

e Additional Rank Information. A numerical document weight/boost.

This structure is comparable to Lucene’s document API. Both structures de-
scribe documents as a set of fields containing token information. However, the
way to define such a structure in Lucene is different. Lucene has less levels of
separation. For example, in Lucene, a field can directly be marked “to be stored”,
“to be indexed” or both. It also does not provide the “catalog” abstraction layer.
Moreover, FAST’s dynamic drill-down feature using Attribute Vectors is not di-
rectly provided in the Lucene distribution, but can be added by a custom imple-
mentation.

Since the FIXML data is already pre-processed, we can take this document
data and index it using Lucene and some custom glue-code. Also important, the
FIXML data only changes partially when documents are added or deleted from the
document collection, so a full Lucene-index rebuild is not necessary in most cases,
it can be easily accomplished by adding/masking the new/deleted documents. In
general, some FAST’s data structure concepts can be translated to Lucene as pre-
sented in the Table 4.5.

[FAST Index Feature | Lucene Index Counterpart]

Modeled as a set of Lucene indexes in the same base directory. Each index
contains the same number of Lucene documents. Then, in Lucene, a document
Catalog in FAST terminology is the union of all indexes’ documents which have the same
document ID. Such index sets can be accessed via Lucene's ParallelReader class,
which makes this set look like a single Lucene index.

Could be stored along with the index information. However, summary field
Summary information | names seem to be different from context names in FIXML, so we will simply
have a “special” catalog which only contains stored, yet unindexed data.

We also treat them as a special catalog, which only contains indexed data. In

Attribute Vectors contrast to regular catalogs, we do not tokenize the attribute values.

Table 4.5: Comparison of FAST's and Lucene's data structure concepts

As a proof of concept, we have developed a prototype plugin for FAST Data
Search, which translates FIXML document collections into Lucene structures.
The plugin consists of three components, consisting of several classes:

1. The Lucene index glue code (Indexer)

50

Federated Search Project Report. Version 1.0

e LuceneCatalog. Provides read/write/search access to one Lucene in-
dex (using IndexReader, IndexWriter, IndexSearcher)

e LuceneCollection. Provides access to a set of LuceneCatalogs. This
re-models FAST’s concept of indexes (collections) with sub-indexes
(catalogs) in Lucene. The catalogs are grouped on harddisk in a com-
mon directory.

2. The collection converter (Parser)

e FIXMLDocument. Abstract definition of a document originally de-
scribed by FIXML.

o FIXMLParser. Parses FIXML files into FIXMLDocument instances.

o FIXMLIndexer. Takes FIXMLDocuments and indexes them into a
LuceneCollection.

3. The query processor (Searchable)

e CollectionSearchable. Provides a Lucene Searchable interface for a
LuceneCollection. The set of catalogs to be used for search can be
specified.

e QueryServlet. The Web interface to the CollectionSearchable.

As Lucene is a programming library, not a deployment-ready software, it is
hardly possible to estimate the requirements of adaptation of an existing search
engine for use with the Federated Search infrastructure. However, if the Lucene
index files can be accessed directly, the major task is to map the document data to
the federation’s common schema. This involves the conversion between different
Lucene Analyzers and different field names. Usually, this conversion is static, that
is, the documents have to be re-indexed, just as with FAST Data Search. However,
if the same Analyzer has been used, it is likely that only the field names have to
be mapped, which can be done dynamically, without re-indexing. We have tested
the latter case with a test document set from TIB, the results are discussed in
Section 5.

While not being in the focus of this paper, we are confident that the costs
for integrating collections from other search engines or databases (e.g. MySQL)
are similar to our effort for FAST Data Search. Indeed, the major advantage of
our approach is that we do not require the export of collection statistics from the
original product.

51

Federated Search Project Report. Version 1.0

4.3.3 Plugin Implementation Schedule

Regarding a production version of our implementation, we estimate the additional
time needed for implementation of a SDARTS-compliant plugin infrastructure
between TIB and Bielefeld Libraries with 8 person months (PM), detailed as fol-
lows:

e Additional studies (0.5 PM);

e Implementation of interfaces to support SDARTS functionality (2.5 PM):

interfaces for source content summary, query modifiers, filter expressions/ranking

expressions, information imbedded in query, information imbedded in re-
sult, source metadata attributes;

e Implementation based on these interfaces for TIB Lucene installation (1
PM): document schema investigation, mapping between generic interface
and TIB backend instance;

e Implementation based on these interfaces for Bielefeld installation (1 PM):
document schema investigation, mapping between generic interface and
Bielefeld backend instance;

e Prototype testing with all collections from TIB (1 PM);
e Prototype testing between Bielefeld and TIB (1 PM);

e Writing developer and user guides (1 PM);

52

Chapter 5

Evaluation

This chapter contains results of the evaluation of our first prototype. We describe
test collections, connection setup and some preliminary numbers for indexing and
search performance.

5.1 Collection Description

For the representativeness of our evaluation, we used several well-known docu-
ment collections, a collection based on the HU-Berlin EDOC document set (meta-
data and full-text), the ArXiv, and Citeseer OAI metadata collections.

EDOC! is the institutional repository of Humboldt University. It holds theses,
dissertations, scientific publications in general and public readings. The document
full-text is stored in a variety of formats (SGML, XML, PDF, PS, HTML); non-
text data (video, simulations, ...) is availabe as well. Only publications approved
by the university libraries of Humboldt University are accepted. Currently, about
2,500 documents are provided. CiteSeer? is a system at Penn State University,
USA, which provides a scientific literature DL and search engine with the focus
on literature in computer and information science. There is a special emphasis on
citation analysis. At the moment, the system contains more than 700,000 docu-
ments. The ArXiv preprint server® is located at Cornell University Library and
provides access to more than 350,000 electronic documents in Physics, Mathe-
matics, Computer Science and Quantitative Biology.

'http://edoc.hu-berlin.de
http://citeseer.ist.psu.edu/
Shttp://arxiv.org/

33

Federated Search Project Report. Version 1.0

In order to avoid difficulties at pre-indexing stages (crawling, tokenizing, stem-
ming etc.), it was essential to have these collections already in a format suitable
for search.

We have collected the annotated metadata via their freely available OAI in-
terfaces. In the case of EDOC, we enriched it with the associated full-text, using
Bielefeld’s installation of FAST Data Search, the Bielefeld Academic Search En-
gine (BASE).

Since we had to define a common document schema, we simply re-used BASE’s
custom structure, defining several fields for metadata properties and a field for the
document’s full-text (if available). In order to import the collection into our fed-
eration setup, we passed the created FIXML files (see Subsection 4.2.2) to our
plugin for re-indexing.

5.2 Federation Setup

For our experiments, we have set up a small federation of two search engines
between Bielefeld University Library and L3S Research Center, using one server
per institution. The servers communicate via a regular internet connection.

On each server, we have installed our plugin prototype and the corresponding
Web front-end. The front-end only communicates to the local plugin, which then
may access local, disk-based Lucene document collections or external, network-
connected plugins, depending on the exact evaluation task.

The server in Hannover was a Dual Intel Xeon 2.8 GHz machine, the server in
Bielefeld was powered by a Dual AMD Opteron 250, both showing a BogoMIPS
speed index of around 5000 (A: 5554, B: 4782). On the Bielefeld server, a Lucene-
plugin based version of the BASE (Bielefeld Academic Search Engine) Web user
interface has been deployed, on the Hannover server a fictitious “HASE” (Han-
nover Academic Search Engine) front-end, also running on top of a a Lucene-
plugin search engine. Both GUIs, HASE and BASE are only connected to their
local search plugins. The plugins then connect to the local collections (ArXiv and
CiteSeer in Bielefeld and EDOC in Hannover) as well as to the plugin at the other
side. This setup is depicted in figure 5.1.

For some tests, the setup has also been modified to have the connection be-
tween Hannover and Bielefeld uni-directional (that is, a search on HASE would
only provide local results, whereas a search on BASE would combine local with
remote results, and vice versa).

54

Federated Search Project Report. Version 1.0

Bielefeld (UB) Hannover (L3S)

BASE] |] HASE
I I

Plugin &3 {‘T;, Plugin

@ @ £ @

ArXiv CiteSeer EDOC

Figure 5.1: Test scenario for Federated Search

5.3 Hypotheses

Due to the underlying algorithms (see 3), we might expect that there is no dif-
ference in the result set (simple presence and position in the result list) between
a local, combined index covering all collections and the distributed scenario pro-
posed using Lucene-based Federated Search.

Also, we expect almost no difference in search performance, since the collec-
tion statistics information is not exchanged at query time, but only at startup time
and whenever updates in any of the included collections have occurred. Since
the result display will only list a fixed number of results per page (usually 10
short descriptions, all of about the same length), the time necessary for retrieving
this results list from the contributing plugins is constant, i.e. not dependent on
the number of found entries, depending only on the servers’ overall performance
(CPU + network 1/0).

Figure 5.2 shows how the outputs of HASE and BASE should look like. Please
note the different number of results (HASE: 2315 vs. BASE: 2917) in the picture,
due to the uni-directional connection setup mentioned above.

5.4 Results

5.4.1 Re-indexing

Our current prototype re-indexed the metadata-only ArXiv collection (350,000
entries) in almost 2 hours; the EDOC full-text document set (2500 documents)

55

Federated Search Project Report. Version 1.0

FedSearch —— Re

Datei Bearbeiten Ansicht Gehe Lesezeichen Extras Hilfe

<EI - : - @ @ ‘ http:/ /webbase:9090 fedsearch f7q=Rerlin |E‘ @co M

HAS E Hannover Academic Search Engine

Search: erlin

Datei Bearbeiten Ansicht Cehe Lesezeichen Extras Hilfe

Parsed as: "beolbody:berlin® Query tim <EI - : - é’j @ ‘ http:/ /utesys.ub.uni-bielefeld.de:8080/ fedsearch /2q=Berlir |E‘ ©co |
2315 Hits. Displaying 1 - 10. [
: BA E Bielefeld Academic Search Engine
1. Summing up (0.24989203),

Dobratz, Susanne ; Sum|

Germany ; Wissenschaft Search: erlin Search
bsumadcidentifier:

http://edoc.hu-berlin.de/etd200
bsumadctitle: Summing up

bsumtitle: Summi W
b:::ur,ehﬁ:ryz:gcuﬁu_beﬁm 2917 Hits. Displaying 1 - 10. Refine your search:

Parsed as: "beolbody:berlin® Query time: 0.116s; Drill-down time: 0.0s

. DE RHEUMATE PRAESER 1. Summing up (1.0); ?uc[d:]Sl.USS])) '

Virchow, Rudolphus ; DE Dobratz, Susanne ; Summing up ; Humbo\dt; University Berlin,
Germany ; Wissenschaft und Kultur allgemein

bsumdcidentifier:

http://edoc.hu-berlin.de/etd2003/dobratz-susanne/Prt-PPT/index.ppt

bsumadctitle: Summing up

bsumtitle: Summing up

bsumurl: http://edoc.hu-berlin.de/etd2003/dobratz-susanne/Prt-PPT/index.ppt

~

Humbaldt University Berl
bsumdcidentifier:

http://edoc.hu-berlin.de/dissert]
bsumdctitle: DE RHEUMATE PR
bsumtitle: DE RHEUMATE PRAE
bsumurl:
http://edoc.hu-berlin.de/dissert|
2. DE RHEUMATE PRAESERTIM CORNEAE (1.0); docld=352355

3. DE ARISTOTELE ET ALE Virchow, Rudolphus ; DE RHEUMATE PRAESERTIM CORNEAE ;
Hegel, Frid. Guil. Carol. Humboldt University Berlin, Germany ; Medizin ; Medizin
el . bsumadcidentifier:
Fertig http://edoc.hu-berlin.de/dissertationen/historisch/ virchow-rudolphus/HTML/index.html

bsumdctitle: DE RHEUMATE PRAESERTIM CORNEAE

bsumtitle: DE RHEUMATE PRAESERTIM CORNEAE

bsumurl:
http://edoc.hu-beriin.de/dissertationen/historisch/virchow-rudolphus/HTML/index . html

w

. DE ARISTOTELE ET ALEXANDRQ MAGNOQ (1.0); docld=352596
Hegel, Frid. Guil. Carol. ; DE ARISTOTELE ET ALEXANDRO

[T

Fertig

Figure 5.2: Bielefeld and Hannover prototype search engines

was imported in 19 minutes. We expect that re-indexing will be even faster with a
production—level implementation.

The resulting index structure was about 20-40% of the size of the uncom-
pressed FIXML data (depending on collection input) and also, interestingly, about
a third of the size of the original FAST index data. This might be due to redun-
dancy in the FAST data structures, or, more likely, to extra data structures in the
FAST index not used in Lucene. However, we have no further documentation
regarding the FAST Data Search index structure.

The values show that there is only a slight overhead induced by the re-indexation
compared to a centralized index based on FAST Data Search, or a possible imple-
mentation of Federated Search provided natively by FAST.

56

Federated Search Project Report. Version 1.0

5.4.2 Search

We performed several searches (one-word-, multi-word- and phrase queries) on
our federation as well as on a local index, both using Lucene. We measured
average query time and also compared the rankings for one word, multi-word
and phrase queries. Query times of a distributed setup were almost equal to a
local setup (always about 0.05-0.15 seconds per query, with an overhead of ca.
0.4 seconds for the distributed setup).

While in most cases the rankings were equal, as expected, in some cases we
noticed that the ranking is only almost identical. The difference between local
and distributed search results comes from the fact that Lucene only ranks by nu-
merical score, then by document ID, which in turn is influenced by Lucene’s
MultiSearcher — all documents from a collection A have lower document
IDs that those from collection B. Hence, whenever identical documents are spread
over several collections, it is not guaranteed that they are directly listed after each
other. A solution to this problem is to simply sort all documents with the same
score literally by URI. This adds no major performance penalty, as we can do this
in the GUI (i.e., only for the top-ranked results).

57

Chapter 6

Conclusion and Further Work

6.1 Project Results and Recommendations

This report analyses Federated Search in the VASCODA context, focusing on
the existing TIB Hannover and UB Bielefeld search infrastructures. Specifically,
it describe general requirements for a seamless integration of the two full-text
search systems FAST (Bielefeld) and Lucene (Hannover), and evaluate possible
scenarios, types of queries, and different ranking procedures, and then describes
how a Federated Search infrastructure can be implemented on top of these existing
systems.

An important feature of the proposed federation infrastructure is that partici-
pants do not have to change their existing search and cataloging systems. Com-
munication within the federation is performed via additional plugins, which can
be implemented by the participants, provided by search engine vendors or by a
third party. When participating in the federation, all documents (both full-text and
metadata) stay at the provider side, no library document / metadata exchange is
necessary.

The integration of collections is based on a common protocol, SDARTS, to
be supported by every member of search federation. SDARTS is a hybrid of the
two protocols SDLIP and STARTS. SDLIP was developed by Stanford Univer-
sity, the University of California at Berkeley, the California Digital Library, and
others. STARTS protocol was designed in the Digital Library project at Stanford
University and based on feedback from several search engines vendors. Addi-
tional advantages can be gained by agreeing on a common document schema, as
proposed by the Vascoda initiative, though this is not a precondition for Federated

58

Federated Search Project Report. Version 1.0

Search.
The main advantages of this Federated Search architecture are the following:

1. The quality of the search results is better than in usual metasearch approach,
because the final document ranking is consistent, i.e. equal to a centralized
setup.

2. The infrastructure does not require a centralized control point, every DL
keeps its content private and does not need to uncover it to other partici-
pants.

3. The connection to the federation requires only a small effort, one SDARTS-
compatible plugin has to be developed per one search engine product (not
per installation). This can be accomplished by the original product vendor
or by third-party.

4. The local search system management infrastructure and workflow does not
change, so every DL can connect Federated Search indexes to its current
interface, not being forced to switch to another software. This makes the
participation in DL federation easy, and increases coverage and quality of
search.

A preliminary prototype of the proposed plugin mechanism integrates FAST
and Lucene-based document collections and produces a combined homogeneous
document ranking. The prototype currently does not employ SDARTS itself, it
merely shows the principal possibility of Federated Search using well-known al-
gorithms present in current search engine systems. However, we recommend to
use the existing SDARTS protocol for the production version.

6.2 Joining Costs and Setup Considerations

The important question is what a DL has to do for joining the federation, how
much it costs and what actions are required? One might guess, that additional
Federated Search capabilities might require a lot of efforts comparable to the in-
stallation of a complex search system. Fortunately, this is not the case, every new
participant has just to make a reasonably small effort. A DL has to provide a fast
Internet connection and additional computational power, it can be a new server
or parts of resources of current servers (depending on the current setup). A new

59

Federated Search Project Report. Version 1.0

participant also has to provide storage space for the Federated Search index files,
which in our experiments lead to an increase of about 30% over the size of original
FAST index. If the local search engine product is already used by another library
in the federation, the cost of developing a new plugin for a prospective participant
can be shared with all other members which use the same type of search engine.
For example, all FAST users can share the price for developing and maintaining a
Federated Search plugin for FAST Data Search.

The proposed plugin architecture can be deployed in several ways (including
combinations of the following):

e Plugin provision

1. The library provides its own plugin

2. A third-party provides the plugin on behalf of the library
e Search Interface provision

1. The library provides its own search interface

2. A third-party provides a common search interface for the federation

Providing the plugin through a third-party makes sense whenever a digital li-
brary does not have sufficient resources to directly participate in the federation. In
this case, the DL may supply the service provider with documents/ abstract infor-
mation or just with the Lucene index files generated by a local plugin (which does
not have to be connected to the federation). The latter case might be considered
safer with respect to copyright issues because only information strictly required
for the search functionalities is exchanged.

While there is no limit on the number of search interfaces in principle, we
suggest that at least one common portal provides access to all collections made
available by the participants (most probably the Vascoda portal).

Compared to a homogeneous search engine architecture, the additional costs
are managable since they do not increase with the number of participants but with
the number of different systems. Any additional expenses, like network, compu-
tational and human resources apply to both solutions, homogeneous (e.g. FAST
only) and heterogeneous architectures (SDARTS).

6.3 Next Steps

The next major step is to implement a full production-version plugin for all col-
lections of the current participants, Bielefeld Library and Hannover Technical Li-

60

Federated Search Project Report. Version 1.0

brary. This will require additional programming and testing, the final search inter-
face should then be able to search over any number of available collections. We
expect that the implementation takes about 8 person months (see Section 4.3.3). It
is possible to speed up this process by distributing the tasks among several people.

The second step is to set up a larger federation between several institutions.
After that, additional services built upon the Federated Search infrastructure are
possible, such as application-domain specific user interfaces, search result post-
processors services and others, which can help to improve search experience.

Once a federation is established, we recommend to start a dialog with the
search engine vendors who could directly supply the search software together
with a module suitable for Federated Search, thus enabling libraries to get the
necessary components through regular software updates.

61

Chapter 6

Zusammenfassung & Ausblick

6.1 Ergebnisse und Empfehlungen

Dieser Bericht analysiert verteilte Suche (Federated Search) im VASCODA-Kontext,
ausgehend von den Suchinfrastrukturen der TIB Hannover und der UB Biele-
feld. Die Arbeit beginnt mit der Spezifikation grundsétzlicher Anforderungen fiir
eine nahtlose Integration bestehender Volltext-Suchsysteme, im speziellen FAST
Data Search (Bielefeld) und Lucene (Hannover), vergleicht deren Funktionalititen
und evaluiert mogliche Szenarien fiir den Einsatz der Systeme im Rahmen einer
verteilten Suchinfrastruktur.

Der Bericht beschreibt eine verteilte Suchinfrastruktur, die aufbauend auf diesen
bestehenden Systemen implementiert werden kann. Wichtig hierbei ist, dass alle
Teilnehmer an dieser Foderation ihre bestehenden Such- und Katalogsysteme weitest-
gehend weiterverwenden konnen. Die Kommunikation innerhalb der Foderation
erfolgt mittels zusdtzlicher Komponenten, sogenannter Plugins, die durch den
Suchmaschinen-Anbieter, den Teilnehmer selbst oder einem Drittanbieter imple-
mentiert werden konnen. Ein Austausch von Dokumenten / Metadaten zwischen
den Teilnehmern ist hierbei nicht notwendig.

Die Integration der Dokumentsammlungen erfolgt iiber ein gemeinsames Pro-
tokoll, SDARTS, das von jedem Teilnehmer unterstiitzt wird. SDARTS setzt sich
aus den zwei Protokollen SDLIP und SDARTS zusammen. SDLIP wurde von
der Stanford University, der University of California at Berkeley, der Califor-
nia Digital Library und anderen entwickelt. Das STARTS Protokoll wurde im
Digital Library Projekt in der Stanford University zusammen mit verschiedenen
Suchmaschinenanbietern entwickelt. Die Nutzung eines gemeinsames Dokument

62

Federated Search Project Report. Version 1.0

/ Metadatenschemas ist von Vorteil, aber keine Voraussetzung fiir verteilte Suche.
Die wichtigsten Vorteile der in diesem Bericht beschriebenen verteilten Suchar-
chitektur lassen sich wie folgt zusammenfassen:

1. Die Qualitidt der Suchergebnisse ist besser als mit herkommlicher Meta-
Suche, da das erzeugte Ranking konsistent ist, d.h. identisch zu dem einer
einzigen Suchmaschine.

2. Die Infrastruktur erfordert keine zentrale Umschlagstelle, jede digitale Bib-
liothek behilt weiterhin die volle Kontrolle iiber die eigenen Inhalte und
muss diese anderen Teilnehmern nicht offenlegen.

3. Die Anbindung an die Foderation erfordert nur geringen Zusatzaufwand.
Lediglich ein SDARTS-kompatibles Plugin muss pro Suchmaschinen-Produkt
entwickelt werden (nicht pro Installation). Dies kann z.B. durch den Her-
steller oder durch Dritte erfolgen.

4. Die bibliotheksinterne Infrastruktur und ihre Verwaltungsabldufe bleiben
erhalten. Jede digitale Bibliothek kann so ohne vollstindige Systemumstel-
lung an der verteilten Suchinfrastruktur teilnehmen. Durch die einfache In-
tegrierbarkeit erhohen sich die Abdeckung und die Qualitidt der Foderation.

Ein vorlédufiger Prototyp des vorgeschlagenen Plugin-Mechanismus integri-
ert FAST- und Lucene-basierte Dokument-Kollektionen und erlaubt homogenes
Dokument-Ranking iiber verteilte Kollektionen. Der Proof-of-Concept-Prototyp
selbst setzt SDARTS derzeit nicht ein, sondern zeigt vielmehr die prinzipielle
Einsatzbarkeit von verteilter Suche auf Basis etablierter Algorithmen. Fiir den
Produktiveinsatz empfehlen wir aber jedenfalls den Einsatz von SDARTS.

6.2 Beitrittskosten und mogliche Konstellationen

Fiir jede an einer solchen verteilten Sucharchitektur interessierte Bibliothek stellt
sich natiirlich die Frage, was zu tun ist, um der Foderation beizutreten und was
dies kostet. Man mag annehmen, dass eine zusitzliche Funktionalitdt wie Fed-
erated Search einen dhnlich groBBen Installations- und Wartungsaufwand mit sich
bringt wie die Installation eines kompletten Suchmaschinen-Systems. Gliicklicherweise

63

Federated Search Project Report. Version 1.0

ist dies nicht der Fall, der Aufwand fiir die Teilnahme ist angemessen: Eine digi-
tale Bibliothek muss eine schnelle Internetverbindung und zusitzliche Rechenleis-
tung bereitstellen (z.B. ein neuer Server oder dedizierte Ressourcen eines beste-
henden, abhédngig von der jeweiligen lokalen Situation). Ferner muss der Teil-
nehmer gegebenenfalls zusitzlichen Speicherplatz fiir die Reindexierung der Datenbesténde
zur Verfiigung stellen. In unseren Experimenten mit FAST Data Search war dies
etwa 30% Zusatzaufwand (Festplattenspeicher) zum urspriinglichen FAST-Index.

Fiir den Fall, dass das eingesetzte Suchmaschinen-System bereits von einer
anderen digitalen Bibliothek verwendet wird, konnen die Entwicklungskosten fiir
das Plugin geteilt werden.

Die in diesem Bericht beschriebene verteilte Suchmaschinenarchitektur kann
in folgenden verschiedenen Ausprigungen eingesetzt werden (inklusive Kombi-
nationen):

e Bereitstellung des Plugins

1. Die Bibliothek stellt das Plugin selbst zur Verfiigung.

2. Ein Drittanbieter stellt das Plugin im Namen der Bibliothek der Foderation
zur Verfiigung.

e Such-Oberfliche

1. Jede Bibliothek bietet eine eigene Suchmaschinen-Oberfldche.

2. Ein Drittanbieter stellt eine einheitlicher Oberfliche fiir die gesamte
Foderation bereit.

Das Bereitstellen von Plugins iiber Drittanbieter macht dann Sinn, wenn der
digitale Bibliothek selbst nur unzureichende Ressourcen zur Verfiigung stehen,
um direkt an der Foderation teilzunehmen. In diesem Fall kann die Bibliothek
dem Drittanbieter die Original-Dokumente (Zusammenfassungen etc.) iibermitteln,
oder einfach die Lucene-Indexdaten, die von einem lokalen Plugin erzeugt werden
(dieses Plugin muss dann nicht an die Foderation angebunden sein). Der zweite
Ansatz kann als “sicherer” in Bezug auf urheber- und lizenzrechtliche Belange
angesehen werden, da ausschlieBlich Informationen {ibermittelt werden miissen,
die tatdschlich fiir die Durchfiihrung der Suche notwendig sind.

Obwohl der vorgeschlagene Ansatz die Anzahl der eingesetzten Such-Oberfldchen
(Portale) nicht impliziert, schlagen wir vor, dass es ein gemeinsam vermarktetes
Portal gibt, das den Zugriff auf alle angeschlossenen Dokument-Kollektionen bi-
etet, z.B. das Vascoda-Portal.

64

Federated Search Project Report. Version 1.0

Im Vergleich zu einer homogenen Suchmaschinenarchitektur sind die An-
schaffungskosten liberschaubar, da sie nicht mit der Anzahl der Teilnehmer skalieren,
sondern mit der Anzahl der unterschiedlichen Suchsysteme. Alle weiteren Aus-
gaben, wie Netzwerk-, Rechen- oder Personalressourcen fallen bei beiden Ansétzen
an, sowohl fiir homogene Systeme (z.B. Federated Search mit FAST-Suchmaschinen)
als auch fiir heterogene Systeme (mittels SDARTS).

6.3 Ausblick

Der néchste Schritt ist die Implementation eines voll funktionsfiahigen Plugins auf
der Basis von SDARTS, zwischen den beiden Installationen in Bielefeld und Han-
nover. Dies erfordert zusitzliche Programmierung und Tests; die endgiiltige Ver-
sion soll in der Lage sein, beliebig viele Dokument-Kollektionen in der Foderation
anzubieten. Wir gehen davon aus, dass die Implementation etwa 8 Personen-
monate in Anspruch nehmen wird (siehe Abschnitt 4.3.3 fiir Details).

Im AnschluB3 daran ist vorgesehen, die Foderation um andere Teilnehmer zu
erweitern. Weiters kann tiber zusétzliche Dienste nachgedacht werden, die auf der
verteilten Sucharchitektur aufbauen, wie z.B. anwendungsspezifische Benutzer-
oberflachen, augmentierte Suche usw.

Sobald eine solche Foderation aufgebaut ist, sollte der Dialog mit Suchmaschinen-
Herstellern gesucht werden, um deren Systeme direkt mit einem SDARTS-kompatiblen
Modul auszustatten, das dann bequem per Softwareupdate eingespielt werden
kann.

65

Bibliography

[1] Harald Alvestrand. Tags for the Identification of Languages (RFC 1766).
http://asg.web.cmu.edu/rfc/rfcl766.html, 1995.

[2] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web Search for a Planet:
The Google Cluster Architecture. IEEE Micro, pages 22—28, March 2003.

[3] An American National Standard Developed by the National Information
Standards Organization. Information Retrieval (Z239.50): Application Ser-
vice Definition and Protocol Specification, 2003.

[4] J. P. Callan, Z. Lu, and W. Bruce Croft. Searching Distributed Collections
with Inference Networks. In E. A. Fox, P. Ingwersen, and R. Fidel, editors,
SIGIR ’95: Proceedings of the 18th Annual International Conference on
Research and Development in Information Retrieval, pages 21-28, Seattle,
Washington, 1995. ACM Press.

[5] Nicholas Eric Craswell. Methods for Distributed Information Retrieval. PhD
thesis, ANU, January 01 2001.

[6] W. Bruce Croft. Combining Approaches to IR. In DELOS Workshop: Infor-
mation Seeking, Searching and Querying in Digital Libraries, 2000.

[7] Doug Cutting et al. Lucene. http://lucene.apache.orgq.

[8] Panagiotis G. Ipeirotis et al. SDARTS Server Specification. http:
//sdarts.cs.columbia.edu/javadocs/index.html, 2004.

[9] Otis Gospodnetic and Erik Hatcher. Lucene in Action. Manning, 2005.

[10] Luis Gravano, Kevin Chen-Chuan Chang, Hector Garcia-Molina, and An-
dreas Paepcke. STARTS: Stanford Proposal for Internet Meta-Searching. In

66

Federated Search Project Report. Version 1.0

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

SIGMOD °97: Proceedings of the 1997 ACM International Conference on
Management of Data, pages 207-218, 1997.

Noah Green, Panagiotis G. Ipeirotis, and Luis Gravano. SDLIP + STARTS =
SDARTS a Protocol and Toolkit for Metasearching. In JCDL "01: Proceed-
ings of the The First ACM and IEEE Joint Conference on Digital Libraries,
pages 207-214, 2001.

Open Archives Initiative. The Open Archives Initiative Protocol for Meta-
data Harvesting Protocol Version 2.0 of 2002-06-14. http://www.
openarchives.org/OAI/openarchivesprotocol.html.

Andreas Paepcke, R. Brandriff, G. Janee, R. Larson, B. Ludaescher, S. Mel-
nik, and S. Raghavan. Search Middleware and the Simple Digital Library
Interoperability Protocol. In D-Lib Magazine, volume 6, 2000.

Jay M. Ponte and W. Bruce Croft. A language modeling approach to in-
formation retrieval. In Research and Development in Information Retrieval,
pages 275-281, 1998.

Luo Si and Jamie Callan. A Semisupervised Learning Method to Merge
Search Engine Results. ACM Transactions on Information Systems,
21(4):457-491, 2003.

Luo Si, Rong Jin, James P. Callan, and Paul Ogilvie. A language model-
ing framework for resource selection and results merging. In CIKM ’02:
Proceedings of the ACM 11th Conference on Information and Knowledge
Management, pages 391-397, 2002.

Vascoda. Einsatz von Suchmaschinentechnologie fiir die Zusam-
menfilhrung und Aufbereitung heterogener wissenschaftlicher
Fachdatenbanken aus dem Deep Web. Antrag des HBZ vom
29.08.2005. http://intranet.vascoda.de/fileadmin/
vascoda-storage/Steuerungsgremium/Protokolle/
SG2005-09-02_0Unterlagen.zip.

Vascoda. Minutes from the Vascoda regulation board meeting. http:
//intranet.vascoda.de/fileadmin/vascoda—-storage/
Steuerungsgremium/Protokolle/SG_2005-09-02_
Unterlagen.zip.

67

Federated Search Project Report. Version 1.0

[19] Vascoda. Strategie vascoda. Verabschiedet auf der Sitzung des Steuerungs-
gremiums am 28.07.2004 in Hannover. http://intranet.vascoda.
de/fileadmin/vascoda-storage/Steuerungsgremium/
Strategie/strategievascoda20040728.pdf.

[20] Vascoda. Vascoda Application Profile Version 1.0. Zur Standardisierung
von Metadatenlieferungen an Vascoda. Stand August 2005. http://www.
dl-forum.de/dateien/vascoda_AP_1.0_vorb.pdf.

68

Appendix A

Appendix: Lucene, FAST and
STARTS Interoperability

69

Federated Search Project Report. Version 1.0

paioddns jou si siyy ‘s8psjmouy 4no o3 1ses| 1y i+

uonejusws|dwi |euonnippe Aq papusixe/paysidwodde aq ue)

“x

sak + ou 'SWJ9] Jo 39S e J4ay31a8o3 sdnous Aldwig 1S
'SI911BW SWISY Y1 JO JSPJO BY3 J9ydym
sah soA | pue ‘wayl usamiaq dsduelsip pasinbas ayl ‘swusl oml saijdadg XOdd
sok sok - 1ON-ANV
sok sok - d0
sok sok - ANV
suoissaidx3y Sunjuey
'SIS11BW SWISY Y1 JO JSPJO SY3 JSydym
sak soAk | pue ‘wayl usamiaq sduelsip patinbas ay3 ‘swusl omy saiydadg X0dd
sok soA - 1ON-ANV
sok soh - H0
sok sok - ANV
suoissaidx3 49114
x S ou SAI}ISUSSUI 95BD SAINISUSS-95BY)
x SoA sok 1 Suileounl-ys| INOYUM ‘ SI se, Wil 3Y3 uoljesunJ1-yaT]
x SoA sok 3 Sunneounu3-1y3u Inoym * si se, WUl Yyl uol1eounu1-1ysiy
% S9K soA uoisuedxs snunesayl ou sninesay |
% S9A ou Suiwwals ou w91g
% S9K ou X9punos ou (xepunos) o11uoyy
= :ney
sok sk | -ap ', palipow-ise|-awil/a1e(, 91| Sp|dY Joj 'S ‘s|qediidde y <= = =L =E>
saapoy Asend
sok + ou '924Nn0s ay3 ul Jeadde eyl spiom Jo 1si SpJoMm JO 1sI7
92.4nos
sak soh - | ul sjuswndop jo Jaquinu |ejo]
% S9K + ou Jjo/uo SAINISUSS aseD)
sah + ou papn|aul j0u/papnjoul spiom-doig
sak + ou Jj0/uo Sulwwg
Krewiwing juaju0) 32un0g
auaonT 1Sv4 uondudsaqg/anjep nejaq Kyadoag

S1YVLS yum Aljiqiredwod | Sy pue suadn T’y

°|qeL

70

Federated Search Project Report. Version 1.0

pauioddns jou si siyl ‘aSpsjmouy Jno o] 1ses| 1y i+

uonjejuswa|dwi |euonippe Aq papusixe/paysidwodde aq ue) x
uswn
sak s9A | -d0p SYy1 ul ‘924n0s Syl AQ PaulWISISP SE ‘SuSY0l JO JSquinu Sy | uno)Q
sok sok $91AQ Ul JUSWNDOP 3Y3 JO 9ZIS 3y | 9z15Q
92.nos
ay3 Joj elepelaw ay3 jo 1ed se papinoid os|e s uollewIoul SIyl
sak Oou | ‘wJS] Syl UIBIUOD 1Byl 92JNOS SY3 Ul SIUSWNDOP JO JSquinu sy | (was Asans o)) 4@
asn
ySiw suISus yoJess ayl sjuLWND0P Ul swual Jo SulySiem Jsyio
JSAS1BYM JO ‘JUSWINDOP 3Y3 Ul wusl Aisnb ay1 Joy 1ySiem 4qIxd L
pazijewJou ay3 "8'9 ‘924N0s aY1 Y1Im paleldosse aulSus yoiess ay3
sok ou | Aq pauBisse se ‘uswndoop syl ul wudl Assnb syl Jo 1ySiom sy | (was1 Asans Jos) ML
Jusw
sok ou | -ndop sy3 ul sieadde wusl Ausnb sy3 1Byl Sswiy Jo Jsquuinu Sy | (w1 Aons uoy) 41
sak soA sieadde juswinoop ay3 a1aym (s)224nos ay1 Jo pi ay | (e24n0s Jo) Q|
sak ou Aisnb 8y Joj JUSWINDOP BY3 JO 9J0DS pazijewiouun ay | 9100G
3nsay e yum pajesedoid uoilew.oju]
‘sjusw
sak ou | -ndop Qg :}Neje ‘SIUSWNDOP Jo Jaquinu djqeidsdde Wnwixel Xe[\ pauiniai sjuswindoq
sak ou "OU :}jnNeya(] "9401S JusWNOOp 3|qeldasde wnwiullp Ulp\ pauinial sjuswnsoQ
"J9pJo Suipuadsap ui ‘Aisnb sy Joj syuswin
-d0p ay3 jo 210ds :3neysq ‘(,p,) Suipusossp Jo (e,) Suipusose
sak soA | sI Jopio Byl Jayleym pue ‘synsal Assnb syl 140s 01 pasn sp[ai4 spjay Suiuiog
sak % S "a8exui ‘93| :1neyeq ‘Jemsue Aisnb ayi ul pauinial sppai4 Sp|aly pauiniay
'924n0s Jay3io
ou :3nejeQ ‘pa1rwqgns si Aisnb sy3 sssym sd4nos sy 01 uolippe
% S9K « S9A | ul Aienb sy s1enjens 01 aJ9ym ‘924NOSIJ SWES DYl Ul S9IUNOG S92IN0S |EUOIIPPY
‘ou :3neysQg
‘|9AS| Bulls-| Y3 1e suol1ed1y123ds sy3 AQ USPPIIISAO PUB ‘9DUSIUSA
% S9A sok | -uod |euoilelou Joj ‘|euonndo ‘Aisnb sy ul pasn a3en3ue| 1nejeQg a8en3ue| 1jnejoq
"I-DIseq :}Nejd('9JUSIUSAUOD
x SOA sak |euonjelou Joy ‘jeuonndo ‘Assnb syi ui pssn 3ss sinquille 1jnejsq 195 91nquile 3 neq
‘'spiom dois
ay1 doup :nejo "El1EPEISW S,924N0S BY] WO} 9DINOS B B SPIOM
doi1s jo Ssn Sy3 JJO UJN] UED 11 JI SMOUY JSUDJesselsw Y 'jou Jo
% S + ou | Aisnb syl wouy spiom dois ay3 919[9p pP|NOYS 924N0S Y1 JSYISYAA spiom dois douQg
A1and) e yum pajesedoid uonewloju|
auaon 1Sv4 uondudsaqg/anjep 1nejaq Aadoag

71

Federated Search Project Report. Version 1.0

paioddns jou si siyy ‘s8psjmouy 4no o3 1ses| 1y i+

uonejuswa|dwi |euonnippe Aq papusixe/paysidwodde aq ue) x
% S9A % S9A ou "924N0S 3Y1 JO JOBJISIUIWIPE Y] JO UOITBW.IOUI 1DBIUOD) 10e3U0)
'924n0s 3Y3 3uissad
% S9K % S ou | -de Joj sausinbaiaid eS| Jo sjulesisuod ayi jo uonduossp S1UIBJISUOT)SSIIDY
% S9K % S ou "924N0S 3Y1 JO 10eJIsqe oy | 12eIISqY
‘urese
pS1oeJIXS 9Q P|NOYS ElepEel1SW S24N0S Syl USym ‘siojalsyl
% S9K % S ou | pue ‘pamainaJ 9 [|IM ElEPEISW 924NOS Syl USYM 31ep By salidxge1eq
% S9K % S ou "PoIJIpPOW 1SB| SEM BIEPEISW 924N0S 9yl USYM d1ep oy | paSueydsieq
x SA % SOK sok *MOJ9q 995 :AJewwnS 1U91U0d 924N0S 3yl JO YN dY L a8eyuIjAlewwinGlualU0Y)
% S9K % SOK sok ‘pauanb aq pjnoys 924nos ay1 ausym YN a8exun
sok x 59K ou - SweN924n0g
x 59K x 59K ou '924n0s 3Y3 1e jussaid saSen3ue| Jo 1s1 s3en3ues24nog
‘J0U IO
% S9K + ou saA | @24nos ay1 1e spiom doils Jo 9N SYj JJO UIN] UED M JSYIDYAA spioppdoigjyouany
sk + ou sok - 1s1pioppdorg
"uo1129|
x S9A x S9A s9A | -]0d juswnoop s|dwes e Joj s3ynsaJ Aisnb sy1 198 01 YN SYL synsoyjaseqelegs|dweg
"J9ZIUSY0] SWES SY] SN SS24N0S OM]
1BY] MOUY 01 [NJIsn SI 11 ‘SYIOM JSZIUSXO] [ENIDE Yl MOY MOUY
10U Op oM USYM usAT ‘ysiuedg ul s3ulIIS JOj PasN SI Z-aWdy
19Z1us)0] pue ‘ysijSug uedlBWY Ul SSULIlS Joj pasn S| T-aWdy
sak ou ou | Jsziusyol jeyy Suiuesw ‘(se g-swdy) (SN-us T-swdy) 83 1S Q|49zZIuUaN 0|
‘WYLI0S|e SWeS Y] 9SN S824N0S OM] 1BU] MOUY O} [njasn
sak ou s9A | sI 11 pasn wyjilioF|e [en1de Syl MOUY 10U Op SM USUYM USAT alwyiuo3|ySunjuey
‘A|oA13oadsal ‘Ajluiui+ pue Ajluiyul- spnjoul spunoq pijiep
‘syues 3uiSisw Joj uoljewoul siy} asn am ‘Asanb e uoy 198 ued
sak + ou s9A | juswnNdop € 1Byl 9401S WNWIXEW PUEB WnWIUIW 3yl SI SIy | s8ueys100g
4, yneyeq “(,.4¥..) yroq Jo (4,) Ajuo suoissaudxa 4o1|1
sok sok ou | ‘(,¥,) Ajuo suoissaidxs Bunjues spoddns 924n0s ay1 JSYIBYAA pauioddngsuedAisnd
'924N0s € 1e p[al} Joyine ay1 Joj paroddns aq 1ou yYSiw waels
sak SoA ou | ‘sjdwexs o4 "papioddns sie suolleulquIod JS1JIpoW-p[al) IBYAA SUOI1eUIqUIOD)JSIIPOIAIPISI
‘Juspusdsp s3enSue| sie WIS 9¥1| SISIHIPOJA "924N0S SY3 1€
pauoddns si 11 yoiym Joy seSenSue| ay3 o 1s1| e Aq paiuedwodde
sok sok soAk | Ajjeuoinndo si Jsijipow yoes ‘os|y ‘parioddns sie sisiipow 1eYAA pauoddngsisiipoy
38l
a8en3ue| Suipuodssiiod 19yl Y1IM 243y pa1si| 9 OS|e ued spialy
paJinbay "924n0s syl ul p|aly 1Yl ul pasn aJe jeyl seden3ue)
a1 jo 1s1| e Aq psiuedwodde Ajjeuoindo si pjaly yoes ‘os|y ‘ssuo
soh sok soA | paJinbai syl 01 uoilippe ul pauoddns ase spjaiy |euoindo 1eypA psauoddngsp|ai4
s9INqI11y elepelajy 224nog
auaonT 1Sv4 paiinbay uondudsaqg/anjep negaq Kyadoag

72

