A Meta-Model and Toolchain for Improved
Interoperability of Robotic Frameworks

Johannes Wienke, Arne Nordmann, and Sebastian Wrede

Research Institute for Cognition and Robotics, Bielefeld University, Germany

Abstract. The emerging availability of high-quality software repositories for
robotics promises to speed up the construction process of robotic systems through
systematic reuse of software components. However, to reuse components with-
out modification, compatibility at the interface level needs to be created, which
is particularly hard if components were implemented in different robotic frame-
works. In this paper we propose an approach using model-based techniques for
improving component reusability. We specifically address data type compatibility
in a structured way through the development of a generic meta-model capable of
representing data types from different frameworks and their relations. Based on
this model a code generator emits serialization code which makes it possible to
seamlessly reuse the existing data types of different frameworks. The application
of this approach is exemplified by connecting the YARP-based iCub simulation
with a component architecture using a current robotics middleware. Based on our
experiences we describe requirements on robotics frameworks to further increase
the level of interoperability between available components.

1 Introduction

In order to increase the usefulness of robots, they need to be equipped with a mul-
titude of capabilities, which need to be reasonably combined into a working system.
While many capabilities have already been implemented on different robots, their in-
tegration into a single system is still an open problem. A successful integration relies
on an appropriate design of the functional architecture but often also more technical
aspects slow down and complicate the development of integrated systems. As such,
a major practical issue is the diversity of existing development frameworks like ROS
[1], YARP [2], OROCOS [3] or OpenRTM-aist [4]. Even though most of the recent
frameworks use a component-based approach and hence are composed of generally
reusable building blocks, the created components can only be reused easily within the
framework they have been developed for. This is caused by the lack of interoperation
features in most frameworks. Recent development efforts tried to approach this prob-
lem, in particular by equipping frameworks with exchangeable transport layers, e.g.
as done in OpenRTM-aist [5] with a ROS transport. Also YARP and OROCOS now
have ROS transports. While this is a step towards interoperability, several issues still
remain. Besides being able to use another framework’s protocol, full interoperability on
the transport level requires using foreign nameservices and introspection mechanisms.
Otherwise, components imported from a foreign framework expose restrictions in their

usability compared to native components and developers need to add specific excep-
tions for these components. On a more conceptual level, different transport semantics
can prevent interoperability, e.g. if remote procedure call-based interfaces conflict with
event-based communication. Another issue is the incompatibility of data types between
different frameworks. Many frameworks developed type libraries with comparable se-
mantics but using different approaches for Interface Definition Languages (IDLs), se-
rialization schemes, and client APIs. This effectively prevents the reuse of components
across frameworks. Even if transport-level communication is established, either (de-)
serialization would fail or client components would be unable to deal with foreign data
types. This commonly results in exceptions in the architecture like adapter and bridge
components. Such solutions introduce inefficiencies and require manual work. Hence,
a more structured approach to deal with data type incompatibility is required to fully
make use the achieved transport-level interoperation support. Such an approach has to
be easy maintainable and needs to be efficient to preserve the reactivity of the robot
system.

In this paper we introduce an approach, termed Rosetta Stone, to deal with incom-
patible data types. It employs a generic meta-model for data representation and com-
bines it with code generation. Section 2 starts with a discussion of how the interop-
erability issue has been addressed in other frameworks so far. Afterwards, we outline
the conceptual ideas of our approach in Section 3. Based on a use case described in
Section 4 our implementation will be explained in Section 5 and gained experiences
and results of the application in the use case are detailed in Section 6. Finally, we con-
clude in Section 7 including a set of requirements which should be fulfilled by future
frameworks to support data type compatibility.

2 Related Work

Interoperability between software components implemented in different robotics frame-
works is usually achieved by applying classical software design patterns such as bridge,
wrapper or protocol translator [6]. While it is reasonable to apply these techniques to
specific interoperability problems, it imposes significant challenges for the software
design of larger robotic systems if applied in the general case. For instance, using a
dedicated bridge introduces performance penalties due to the additional reading, (de-)
serialization and writing of data from and to connectors which are bound to the different
frameworks. Furthermore, bridges are often specific to single data types and need to be
kept up-to-date with the target types of both frameworks. As a consequence, bridges
or wrappers are constantly out of date [5]. Instead, a more native level of interoper-
ation between different frameworks is highly beneficial to achieve efficient solutions.
In the following, we analyze different frameworks for features they provide towards
native interoperability. As the representation of data is the key focus of this paper, we
specifically examine these issues.

Recently, the Robot Operating System (ROS, [1]) has gained a lot of attention in the
robotics community. It combines a middleware layer for communication with an exten-
sive component collection, especially for mobile robots. Communication is statically
typed and ROS comes with a collection of types based on a custom IDL. A compiler

generates programming language types from these descriptions as well as framework-
specific serialization code. While the transport layer in ROS can be exchanged and dif-
ferent implementations exist, the serialization code cannot be varied by the user, hence
limiting interoperation with other frameworks.

A second widely used framework in robotics is OROCOS [3]. It has exchangeable
transport implementations, e.g. CORBA, mqueue as well as a ROS transport. Addition-
ally, different data representations can be used, called typekits, which are exchangeable
through a plugin system. The traditional typekit is based on user-level C++ class defi-
nitions and a compiler builds serialization code for them by parsing the C++ code. Re-
cently, support to interoperate with ROS has been added through the respective transport
and a new typekit which has to be used by client components instead of the traditional
one. This typekit is based on the ROS IDL to provide compatibility with ROS and the
remaining OROCOS transport implementations cannot be used with these types. While
transports and typekits are exchangeable, their choices are coupled and modifications
to client components are required.

Another framework with exchangeable transports is OpenRTM-aist [5]. It provides
features for hard real-time control and originally uses CORBA for data exchange be-
tween its components. Data types are defined through the CORBA IDL and in the case
of the ROS transport, a duplicated definition of the respective type using the ROS IDL
is required in order to provide the required serialization code to the ROS transport. The
reuse of existing data types in both frameworks is not discussed so far and no mapping
between them is explained in publications.

YARP [2] is a framework mainly used for the iCub robot. In contrast to the afore-
mentioned frameworks, communication in YARP is dynamically typed, employing a
custom data representation (bottles) and serialization approach. The framework has ex-
changeable transports and a partial ROS implementation is available. To combine the
dynamic typing of YARP with the static ROS messages, the ROS transport comes with
a specific compiler which generates YARP-serializable classes from the ROS IDL defi-
nitions, which effectively replaces the existing type system visible to the client compo-
nents and hence requires modifications to them.

Summing up, while most recent frameworks provide ways to connect with other
frameworks on a transport level, the way how data types are handled in these cases is
not clearly structured. Often, special data types need to be chosen based on the transport
decision because for most frameworks there is a strong connection between the trans-
port, the applied serialization mechanism, and the exposed user-level data type API.
This restricts the possible uses cases of the interoperation features and increases the
development overhead when using such features. The issue of how to deal with seman-
tically compatible but differently expressed data types, i.e. how to map between them,
is completely neglected so far.

3 The Rosetta Stone Approach

In order to provide native data-level interoperability between different robotic frame-
works we have developed a generic approach to mediate between the different technolo-
gies, which will be described on a conceptual level in the following paragraphs. The

approach aims at a native integration inside the frameworks for high efficiency without
the need for manual development of bridge components or a dependency on foreign
frameworks. We assume that each of the potentially relevant robotic frameworks uses a
structured and consistent approach of producing and consuming serializable data to be
sent over a network connection. This means that a unified API for data holder classes
and consistent serialization schemes for transmitted data exist, e.g. based on an IDL,
so that at least inside each framework a level of generalization with respect to the data
access is possible. Once this assumption is fulfilled, data communication in robotic
frameworks fundamentally varies in four aspects: a) the programming language used to
produce or consume data, b) the API of the used data holders in this language, c) the
(de-) serialization scheme applied to the data found in the data holders, and d) the
transport mechanism used to communicate the serialized data.

Our approach is based on a meta-model which describes data from the various
robotic frameworks in an abstract and unified way, but including the aforementioned
variables. Once the meta-model is populated with data types from different robotic
frameworks it generates serialization code. The generated code uses the serialization
scheme of one framework (A) on the network level and data types from another one
(B). Assuming that framework B has exchangeable transports and serialization mecha-
nisms, client applications written against this framework can connect with framework
A by plugging in the generated serialization code and the transport for framework A.
As a result, these applications can continue to use their native data types and no mod-
ifications to them are required. By using generated serialization code we can reach a
high performance without requiring a dynamic use of the meta-model at runtime and
without a dependency on the foreign framework’s libraries (and hence increased com-
pilation efforts) to import their serialization implementation. Moreover, no unnecessary
serialization or conversion step is required as in the case of bridges. Finally, the map-
ping of different data types becomes a configuration aspect of the robotic system instead
of being hard-coded.

3.1 Data Representation Features

A first question that arises for the proposed approach is whether it is possible to treat
data from all recent frameworks in a common way, and if so, which features for data rep-
resentation are required in the meta-model. For this purpose we analyzed the available
representation features of common IDL-based serialization mechanisms (and hence
statically typed) as well as the ones of 3 robotics-relevant dynamically typed systems'.
The results of this analysis can be found in Table 1, indicating that besides some vari-
ations, a common and limited feature set available in most solutions can be identified,
which is feasible to represent. On this basis we constructed a meta-model which repre-
sents the majority of the found features and is hence applicable for a broad variety of
data types. In its essence, the meta-model represents data types as composed structures
of named fields, comparable to the structure of most IDLs and programming languages.

"'In our analysis we focused on features for the description of data types. Additional features
found in several IDLs like the possibility to describe RPC interfaces are ignored.

ES
., O 2 g 5
4] on s @ Q
o Q8 E < >]
W= < = g S
o = s E o 2
E = Q € 5 < L o« £ g
- =2 N - - = o Z =
=2 ¥ 8 > s 2 g S = 5 E «
5 © 2 K o £ &y == - 8
I - 2 o @ 2 =2 2 = = g Z 9 9 ©
o 3T B 8 & 2 5 E © = o & F 2 g
5 g 9 = > »u 8 = =5 -~ g =2 2z 92 ZF B >
3 oo 5 m B g & 2 B 5 4 § 3 g g g g K=
sz 3 & = 3 2 ¢£ 2= ¢ & 3 & £ 2 2 8 8 =
&, 2 o 5 35 g 6 3 & X & & v E 8 =3 s % o=
P AAZ@-OP> 2 E =0 AD =R ZE <
Static Typing
Protocol Buffers| x | x | x | X X X X X X
ROSmsg| x | x | x | X X | X X X
LCM X | X | X X | X | X [X X
Message Pack IDL| x | x | x | x X X X X X
Apache Thrift X | X | x X | x| x X X
Apache Avro IDL X[X | x| x|Xx X[x| x| x X | x
Apache Etch X | x| X X | X | X [X X X
OMGIDL| x | x | x | x X X | x| x X X | x| x
Dynamic Typing
YARP X | X X X X X
ALValue X | x X X
JSON| x | x | x X X X X

Table 1: A matrix of features commonly found in different IDLs / dynamically typed
data serialization solution. Features not applicable for dynamically typed solutions are
marked in gray.

Currently supported data type features are: (signed/unsigned integers with different bit
sizes, floats, strings, blobs, structs, arrays, unions.

3.2 Required Mapping Capabilities

Even though data types can be represented in a common meta-model, compatible types
from different robotic systems still need to form separate entities in the meta-model,
because for the code generation we need to be able to distinguish between them. More-
over, field names and representations usually do not exactly match between two se-
mantically compatible types from different frameworks. E.g., a field might be called
angle in one framework using radians but in the second framework it is called phi
and based on degrees. For these reasons the meta-model also needs to contain a map-
ping between types which relates different fields and converts some representational
differences. While the ability to map fields of different names is an essential require-
ment, the question arises which further capabilities are usually required. To find out an
initial set of these capabilities that copes with the majority of cases, we analyzed the
mapping of messages from the ROS common_msgs package to and from our own data
types defined in the RST library [7]. For this purpose, we first decided which data types
of one framework are semantically compatible with data types from the second, to de-
fine a set of realistic mapping candidates. For each candidate we then manually decided
which operation categories are required to achieve a mapping. The results can be found
in Table 2. Categories were chosen to reflect semantically related operations?, namely:
Arithmetic: basic mathematical operations (always selected when units were not clear
from the type description, e.g. rad vs. degrees); Array reorder: shifting of entries of

2 For brevity we excluded the obvious category of mapping varying field names.

B .
o -G.E § é 2 § » TSJL
2 § & 8 ¢ 2 g & E
g ¥ = O 2 8 & = ‘2“
£ = o 2 £ = 9 3
= g £ &£ 3 8 & g &
5 5 B g 28 53 v @ 3
ROS <« < &»# = & «n ~x O A RST
CompressedImage.msg X | X x? Image.proto
Image.msg X X x? Image.proto
JointState.msg| X JointPositionState.proto
JointState.msg| x JointAngles.proto
JointState.msg| x JointTorques.proto
JointState.msg| x X ProprioceptionState.proto
JointTrajectory.msg| x X Point2DTimeseries.proto
JointTrajectoryPoint.msg| x X Point2DTimestampPair.proto
KeyValue.msg X X Key ValuePair.proto
Odometry.msg| x Pose.proto
Path.msg| x X X Point2DTimeseries.proto
Point.msg| x Vec3DDouble.proto
Point.msg| x Vec3DFloat.proto
Point.msg| x Translation.proto
Point32.msg| x Vec3DDouble.proto
Point32.msg| x Vec3DFloat.proto
Point32.msg| x Translation.proto
PointCloud.msg| x X PointCloud3DFloat.proto
Polygon.msg| x X PointCloud3DFloat.proto
Pose.msg| x Pose.proto
Pose2D.msg| x X Pose.proto
Quaternion.msg| X Rotation.proto
RegionOfInterest.msg| X BoundingBox.proto
TimeReference.msg| x x | x [Timestamp.proto
Transform.msg| x Pose.proto
Vector3.msg| x Vec3DDouble.proto
Vector3.msg| x Vec3DFloat.proto
Vector3.msg| x Translation.proto
Wrench.msg| x Wrench.proto

Table 2: Operations likely to be required when converting between ROS and RST types.

any sequence-like container, e.g. to swap planes in image types; String manipulation:
common string operations; Image compression: to decode compressed images; Predi-
cate assignment: assignment to target type values based on logical predicates; Subtype
loops: looping on and conversion of nested subtypes (composition); Rejection: abort
translation in case of a dynamically detected incompatibility (e.g. unsupported image
encoding); Generators: generation of values not found in the source type, e.g. constant
value or loop variables; Date manipulation: conversion of date formats.

Starting with the total 65 message definitions of ROS and 65 message types in RST
(by coincidence), 29 possible mapping candidates were found*. The results of this anal-
ysis are depicted in Table 2. For the majority of the mapping candidates arithmetic
operations and the possibility to handle and convert collection-like contents (e.g. a list
of floats to a list containing special JointValue objects) sufficed to achieve a map-
ping of all contents that can be represented in both messages. A notable but important
exception is the mapping of image types. The definitions in both frameworks are rather

3 In ROS messages types often exist once without a header containing timestamps and if neces-
sary a second time including this header. We did not consider the timestamped messages for
the mapping if the comparable version without timestamp was already a valid candidate.

Compile Time

"Source" IDL Mapping "Target" IDL

"foo" target.fl = source.fl message Foo {

(target.f2 = source.f2 required double f1 = 1;
(f1 double) for i from 6 to required uint32 f2 = 2;
(f2 uint32) len(source.f3) a0

S N 1 A -7
"Source" >~ - -7 "Target"
Serialization | Meta. - ———--1 Serialization
Mechanism - Mechanism
YARP binary MOdEI protobuf binary
T __ SS9 l________T----—-—--——-.
! Run Time

Serialized Data Generated Data-Holder

(YARP Bottle) Code (ProtoBuf Style)

00010010010100101001611 | | class FooConverter: = = =™ class Foo {

01101010010101601001016 public rsb::Converter { double get f1() {

01010100010011101111. . . e o

Fig. 1: User-supplied contents of the meta-model used to create serialization code and
the application of this serialization code.

complex involving different byte representations, image depths, channels etc. While
the meta-data representing these different image types can be mapped with the afore-
mentioned operations, the actual image data needs to be manipulated if no matching
representation modes exist. This requires a more fine grained operation on the byte
array contained in both message types.

We also analyzed a mapping from RST to data types used in YARP-based systems
[2] and vice versa. Here the situation is different, as no formal message definitions exist.
To find out commonly used message formats we analyzed the data continuously sent by
the simulator for the iCub robot. For publisher-based data two semantically different
types could be identified:

1. messages containing joint angle information as a list of doubles
2. messages for images with the following format (Lisp-like notation):

((VOCAB mat) (VOCAB rgb) ((INT 3) (INT 230400)
(INT 8) (INT 320) (INT 240)) (BLOB 230400))

A mapping of the first message type requires arithmetic operations and potentially gen-
erators (e.g. to fill out the joint names which are not given in the bottle) and subtype
loops to convert the angle list to more specific types or vice versa. For the image type
the same remarks are valid as in the ROS case. Additionally, for controlling the robot,
messages in the following format are sent over RPC-based channels:

((VOCAB set) (VOCAB poss)

((DOUBLE 0.0) (DOUBLE 0.0) (DOUBLE 0.0)))

These messages are comparable to the joint angle lists except that also YARP vocabu-
lary items need to be generated.

Based on the aforementioned observations our meta-model contains mapping abili-
ties for the most common operations. This is realized by defining each mapping through
a Lisp-like code block with a restricted feature set that allows facilitates the static code
generation.

iCub Simulator Application

CCA Component

Simulator

0001001001

0110101001
rosetta
user
YARP Bottles — 1 code

tcp-yarp
rosetta

0001001001
0110101001

Fig.2: Use case, connecting CCA components to the iCub simulator by using the
Rosetta framework to interchange proprioceptive sensor feedback and an image stream
from the iCub’s internal cameras.

3.3 Application of the Meta-Model for Code Generation

For being able to generate serialization code from the meta-model two additional as-
pects must be contained in the model. These are the data holder APIs and the serial-
ization schemes. The API needs to be known to provide the native interface to client
applications while the serialization scheme is required to provide transport-level com-
patibility of data types through the correct serialization scheme. Figure 1 summarizes
the required data in the meta-model (upper part, supplied by the user) and how the data
can be used to generate deserialization code for binary data received from a foreign
framework. Summing up, by using a generic meta-model for the unified representa-
tion of data types and their relation we are able to create code that efficiently translates
serialized data from one robotic framework to the native data holder API in another
framework. As a result, frameworks are connected without requiring manually written
bridge components and the native interfaces in both middlewares are preserved. This
prevents changes in components and increases their reusability.

In the following sections we are now going to introduce a use case where the con-
nection of different frameworks is beneficial. Afterwards we will describe the actual
implementation of the Rosetta Stone system and its application for the use case.

4 Use Case

As a an exemplary use case for the aforementioned approach, we decided to integrate
the iCub simulator from the RobotCub project into our component architecture CCA
(Compliant Control Architecture [8]), which is based on the RSB middleware [7]. The
use case is driven by the AMARSi* project, where CCA was developed and the iCub
is used as one of the main robot platforms. However, development of the robot was
done in a predecessor project and diverging requirements resulted in the existence of
two frameworks. To be able to conduct experiments with CCA components on the iCub
simulator, the Rosetta approach allows CCA components to communicate over YARP,
the middleware used by the iCub simulator. For this purpose joint angles and camera

4 http://amarsi-project.org

Front End Middle End/Model Back End

«artifacty = «class» :' - -
PB Schema J data-type . C:iﬂlfacclj» E
s ; B .m. ::- -

«artifacty = -
= parse T «class» 155 558
RNG Schema| . ~» mechanism «artifactr 5
«artifacty =
ROS ms

«class»

1 g Python code
uint32 : T

«class»

select ‘T yarp-bottle

Fig. 3: Architecture overview for the Rosetta implementation.

image need to be transferred, which are two diverse but very common data types in
robotics, hence reflecting a wide variety of possible applications.

In more details, the iCub simulator transmits images and joint angles as YARP
bottles and CCA uses protocol buffer representation from RST for exchanging data
between different processes. Therefore we need to translate between these two data
representations. The anticipated result is that this is possible without changes in the
implementation of the simulator or in CCA components, i.e. through configuration.
Moreover, performance should not be degraded, which is specifically challenging for
the image types with a significant payload size.

5 Rosetta Implementation

The Rosetta approach is realized as a compiler toolchain implemented in Common Lisp.
As shown in the static view in Figure 3, the Rosetta implementation is structured as a
traditional compiler with frontend, middleend and backend.

The frontend parses data type specifications expressed in existing IDL languages
into meta-model elements resolving dependencies between type specifications. The cur-
rent implementation supports parsing of protocol buffer, LCM and ROS IDL definitions.
Similarly, mapping specifications are processed by this component. Additionally, syn-
tactic as well as basic semantic checks (e.g., duplicate field names or unresolved for-
ward references) are performed by the parsers.The middleend manipulates meta-model

Listing 1.1: Excerpt from the mapping specification for the iCub simulator joint angles.

import "rst/kinematics/JointAngles.proto"
import "bottle—structure—icub—torso—command.bottle—schema"

data—holder: rst.kinematics.JointAngles
wire—schema: yarp.icub.torso.command

unpack—rules:
len (. angles) = 3
.angles[0] = .angles.a0
.angles[1] = .angles.al

elements encompassing data types, mappings and serialization mechanisms. According
to the desired code generation target (either data holders or serialization code) suitable
intermediate representations are generated. The backend generates output based on the
intermediate representation and language-specific templates for different programming
languages. Currently supported are C++, Python and Common Lisp®. Generated code
artifacts include data holder classes mimicking a native API (e.g., protocol buffer) and
serialization code for different robotic frameworks (e.g., ROS or YARP).

To provide a dynamic view of the Rosetta implementation a typical sequence of
processing steps in relation to the use-case introduced in Section 4 is as follows:

1. One or more IDL files are read and parsed by the frontend (in the use-case: files
containing RST types JointAngles and Image, and the descriptions of the
corresponding YARP bottle structures®) .

2. Optionally, a mapping description is read (in the use-case: a mapping for joint-angle
types and a mapping for image types, see Listing 1.1).

At this point, data types and mappings are represented in the meta-model.

3. For the given serialization mechanism and data types the transformation rules spec-
ified in the mapping are applied (in the use-case: respective mapping rules for joint-
angle types and image types).

At this point, abstract intermediate code implementing the mapping and (de-) seri-
alization has been generated.

4. A template for the given target language is instantiated and populated (in the use-
case: C++ protocol buffer API templates).

5. The template is expanded and the result written into output file(s) (in the use-case:
C++ code in separate files for data-holder and serialization code).

The resulting serialization code needs to be used by the framework which attaches to a
foreign one, ideally through configuration changes.

6 Gained Experiences

Our use case served as a first qualitative evaluation of how the Rosetta framework im-
proves the compatibility between different robotic frameworks, without the need for
changes or adaptations on the implementation level in one of the involved frameworks
or applications. In this case we evaluated what and how much work had to be done in
i) the iCub simulator, ii) Rosetta and iii) the application (CCA components).

As anticipated, the iCub simulator was left untouched for integration with the CCA
application. We completely relied on the YARP bottle format and serialization for joint
angles and images, as required by the simulator. For Rosetta, we had to specify the
mapping between YARP bottles and the domain-types used in CCA. As YARP does not
provide static types and a declarative syntax for them, we had to add such a schema
description for YARP in Rosetta, in order to address fields from the YARP bottles in
the mapping. Afterwards, mappings were defined between the YARP bottle format for

5 For Common Lisp output of the middleend is directly passed to the integrated compiler.
% Cf. Section 6

images and joint angles, and the RST types used in CCA. Within the CCA applica-
tion, the transport and the data converter for network communication had to be changed
through RSB’s configuration mechanism. The relevant ports of the involved CCA com-
ponents had to be configured to publish over and listen to the t cp—yarp transport that
is available as an RSB extension. Furthermore, the generated Rosetta serialization code
(generated from IDL and mapping specifications) had to be registered for incoming and
outgoing YARP image bottles and YARP joint angle bottles.

In summary, after specifying the Rosetta mappings between data representations
and generating the serialization code, no changes were required for the simulator and
necessary changes on CCA-side were limited to configuration aspects.

In addition to this qualitative evaluation we also analyzed the performance of the
generated serialization code within the use case. For this purpose we compared the de-
serialization of a binary encoded YARP bottle containing double-precision joint angles
using Rosetta and with the native YARP implementation. Rosetta deserialized to C++
RST types while YARP used the native bottle classes in the C++ API. The encoded
message had a size of 200 bytes and was deserialized 1.000.000 times. On a Linux
desktop computer with an Intel Xeon 8 core processor at 2.4 GHz the YARP implemen-
tation required 3.96 s real time whereas our own deserialization code needed 0.13 s. Test
programs were compiled using GCC and the O2 optimization level. The huge perfor-
mance boost can can be explained by the fact that Rosetta has an additional schema of
the transmitted data (see above), while the native YARP implementation is completely
dynamic. As a consequence, the Rosetta-generated deserialization code can skip many
checks and decoding of several bytes that need to be deserialized by the native imple-
mentation to dynamically find out the structure of the bottle. This performance allows
to receive simulation results in the use case without any performance degradation.

7 Conclusion

Nowadays, the middleware layers of most modern robotic frameworks allow a direct
embedding of multiple transports acting as connectors to other frameworks. Further-
more, many of the current frameworks already employ a code generation approach
where the necessary client API classes and serialization code are generated. However,
still most of the frameworks lack a clear separation of concerns regarding the type
representation at user-level and the resulting serialization format which is beneficial
to achieve interoperability without component modification. Moreover, frameworks do
not consider type mapping and transformation as an important concern.

The Rosetta approach proposed in this contribution addresses these aspects in order
to achieve native interoperability between components of different robotics architec-
tures. Based on an analysis of features commonly found in different IDLs and necessary
mapping operations between a set of typical robotic data types expressed in different
representations, required capabilities for a type mapping language were identified in this
contribution. On this basis a meta-model for representing types and mapping functions
was developed, which allows to generate several code-level artifacts for native robotic
system interoperabiliy. The introduced approach is so far unique, because none of the

frameworks addressed native type mapping and transformation routines in the process
of generating serialization code for seamless interoperability.

Scientifically, a common representation for data types and their mappings will fa-
cilitate, e.g., analysis and comparison of different data types used in current robotic
systems. Practically, the developed approach not only allows better interoperability and
thus reusability of software components across robotic frameworks but also contributes
to achieve integration within a single large-scale ecosystem such as ROS given the
number of semantically equivalent but syntactically different robotics data types. Fu-
ture work will concentrate on the development of a domain specific language which
eases the specification of mappings and transformations between data types in robotic
systems. Moreover, additional ways of applying the compiler architecture will be evalu-
ated. E.g., in cases where frameworks lack interchangeable transports and serialization
mechanisms Rosetta can generate serialization-to-serialization code for efficient and
configuration-defined bridge components.

Acknowledgments

This work partially was funded by the European FP7 projects HUMAVIPS (grant no.
247525) and AMARS:I (grant no. 248311). Many thanks to Jan Moringen for his work
on the Rosetta toolchain.

References

1. Morgan Quigley et al. ROS: an open-source Robot Operating System. In ICRA Workshop on
Open Source Software, 2009.

2. Giorgio Metta and Paul Fitzpatrick. YARP: yet another robot platform. Journal on Advanced
Robotics, 3(1):43-48, 2006.

3. Peter Soetens. A Software Framework for Real-Time and Distributed Robot and Machine
Control. PhD thesis, Department of Mechanical Engineering, Katholieke Universiteit Leu-
ven, Belgium, 2006. http://www.mech.kuleuven.be/dept/resources/docs/
soetens.pdf.

4. Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A Software Platform for Component
Based RT-System Development: OpenRTM-Aist. In Simulation, Modeling, and Programming
for Autonomous Robots, Berlin, Heidelberg, 2008. Springer.

5. Geoffrey Biggs, Noriaki Ando, and Tetsuo Kotoku. Native Robot Software Framework Inter-
operation. In Simulation, Modeling, and Programming for Autonomous Robots, Darmstadt,
Germany, 2010. Springer.

6. Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented Software Ar-
chitecture, Volume 4: A Pattern Language for Distributed Computing. Wiley, Chichester, UK,
2007.

7. Johannes Wienke and Sebastian Wrede. A middleware for collaborative research in exper-
imental robotics. In IEEE/SICE International Symposium on System Integration (SII12011),
Kyoto, Japan, 2011. IEEE, IEEE.

8. Arne Nordmann, Matthias Rolf, and Sebastian Wrede. Software Abstractions for Simulation
and Control of a Continuum Robot. In SIMPAR, Tsukuba, Japan, 2012. accepted.

