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Abstract. The Team of Bielefeld (ToBI) was founded in 2009. The
robocup activities are embedded in a long-term research history towards
human-robot interaction with laypersons in regular home environments.
The robocup@home competition is an important benchmark and mile-
stone for the overall research goal. For robocup 2011, the team concen-
trates on mixed-initiative scenarios, sophisticated scene understanding
methods including semantically annotated maps, and an easy to use pro-
gramming environment.

1 Introduction

The Robocup@Home competition aims at bringing robotic platforms to use in
regular home environments. Thus, the robot needs to deal with unprepared do-
mestic environments, perform tasks in them, autonomously, and interact with
laypersons. ToBI (Team of Bielefeld) has been founded in 2009 and successfully
participated in the German Open 2009 and 2010 as well as the Robocup 2009 in
Graz and RoboCup 2010 in Singapore. The robotic platform and software envi-
ronment has been developed based on a long history of research in human-robot
interaction [1, 2]. The overall research goal is to provide a robot with capabilities
that enable the interactive teaching of skills and tasks through natural commu-
nication in previously unknown environments.

The challenge is two-fold. On the one hand, we need to understand the com-
municative cues of humans and how they interpret robotic behavior [3]. On the
other hand, we need to provide technology that is able to perceive the environ-
ment, detect and recognize humans, navigate in changing environments, localize
and manipulate objects, initiate and understand a spoken dialog. Thus, it is im-
portant to go beyond typical command-style interaction and to support mixed-
initiative learning tasks. In the ToBI system this is managed by a sophisticated
dialog model that enables flexible dialog structures [4, 5].

In this year’s competition, we extend the scene understanding of our robot.
Most robotic systems build a 2D map of the environment by using laser scans
and associate semantic labels to certain places that are known beforehand or are
interactively tought to the system like in the walk-and-talk task. However, there
is no understanding of a table, desk, or sideboard where objects are typically
placed on. In this year’s Robocup@Home competition, we will make a first step
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towards this goal by integrating a 3D scene analysis component that is based on
a 3D depth sensor. During exploration tasks, the system is continuously map-
ping the environment and is accumulating semantic information in an additional
annotation layer.

Another focus of the system is to provide an easy to use programming envi-
ronment for experimentation. An abstract sensor- and actuator interface (Bon-
SAI) encapsulates the sensors, components, and behavior strategies of the sys-
tem. Providing an easy to use Java-API, it allows to a fast modeling and iterative
change of the robot behavior during experimental trials. The abstraction also
allows to formulate, re-use, and compare behavior strategies, e.g. searching an
environment, that are independent of specific tasks. As the student team mem-
bers are changing every year, a steep learning curve can be observed using the
BonSAI-API and associated tools.

2 The ToBI Platform
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Fig. 1. The robot ToBI with it’s
components shown on the right.
From top right: microphone, cam-
eras for object/face detection, Swis-
sranger 3D sensor, KATANA arm
and laser range finder.

The robot platform ToBI is based on
the research platform GuiaBotTM by
MobileRobots1 customized and equipped
with sensors that allow for an analy-
sis of the current situation. ToBI is a
consequent advancement of the BIRON
(BIlefeld Robot companiON) platform in
the RoboCup@Home context. It can be
rooted to a continuous development origi-
nating in 2001 until now. It comprises two
piggyback laptops to provide the compu-
tational power and to achieve a system
running autonomously and in real-time
for HRI. The robot base is a PatrolBotTM

which is 59cm in length, 48cm in width,
weighs approx. 45 kilograms with batter-
ies. It is maneuverable with 1.7 meters per
second maximum translation and 300+
degrees rotation per second. The drive is a
two-wheel differential drive with two pas-
sive rear casters for balance. Inside the
base there is a 180 degree laser range
finder with a scanning height of 30cm
above the floor (SICK LMS, see Fig.1 bot-
tom right). In contrast to most other Pa-
trolBot bases, ToBI does not use an addi-
tional internal computer. The piggyback

1 www.mobilerobots.com



III

Fig. 2. Software components of the ToBI system and their level of abstraction from
the hardware.

laptops are Core2Duo c© processors with 2GB main memory and are run-
ning Ubuntu Linux. The cameras that are used for person and object detec-
tion/recognition are 2MP CCD firewire cameras (Point Grey Grashopper, see
Fig.1). One is facing down for object detection/recognition, the second camera
is facing up for face detection/recognition. For room classification and providing
3D object positions, ToBI is equipped with an optical imaging system for real
time 3D image data acquisition.

Additionally the robot is equipped with a Katana IPR 5 degrees-of-freedom
(DOF) arm (see Fig.1 second from bottom on the right); a small and lightweight
manipulator driven by 6 DC-Motors with integrated digital position encoders.
The end-effector is a sensor-gripper with distance and touch sensors (6 inside, 4
outside) allowing to grasp and manipulate objects up to 400 grams throughout
the arm’s envelope of operation. The upper part of the robot houses a touch
screen (≈ 15in) as well as the system speaker. The on board microphone has
a hyper-cardioid polar pattern and is mounted on top of the upper part of the
robot. The overall height is approximately 140cm.

3 ToBI’s Software Architecture

The software architecture of the ToBI system consists of many different compo-
nents, each of which is a piece of software providing functionality, e.g. speech
recognition, to the system. Figure 2 shows the different components that are
used for the RoboCup 2011. The different colors from bottom to top refer to
the level of abstraction from the hardware. All components follow the concept
of Information-Driven-Integration (IDI) [6] by sharing their data via an active
memory [7] within the system. Components in the black level at the bottom
are either depending on direct sensory input or have a direct connection to the
hardware. The obstacle avoidance for instance needs to get the input of the laser
sensor (see bottom right on Fig. 1) at high frequencies to be able to detect ob-
stacles while the robot is moving whereas the motor control represents a direct
connection to the motors of the robot base to actually move the robot. Compo-
nents of the light yellow level in the middle are not as depending on the robot’s
hardware and can facilitate information and/or functions provided by compo-
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nents of the layer below or of the same layer as indicated by the communication
direction in Fig. 2. The person tracking e.g. fuses information from the lowest
layer (Laser) as well as information from the face recognition. The upper layer in
Figure 2 comprises components that facilitate the BonSAI library to implement
certain skills of the robot, which are used to solve the various challenges of the
RoboCup@HOME tasks.

As it has been pointed out by Brugali [8] the configuration of the system,
the connections between components at runtime, is crucial for component-based
systems such as the ToBI system. This configuration defines to a great extend
what the robot is able to do at a certain point of time. This implies that the
configuration needs to be dynamic to enable the system to react to changes in
the environment. Our approach makes functionality of the robot feasible and
explicitly models the desired robot behavior. With different scenarios and more
complex tasks for a robot to interact in, this focus on designing the behavior
of the robot and its interaction capabilities improves the system performance in
complex environments. This is what we aim to achieve with BonSAI.

3.1 Modeling HRI

Sensors Actuators
Laser Navigation
Camera Camera
Speech Speech
Odometry Arm
Position Screen
Map
Speed
Object
Person

Table 1. The sensors
and actuators available
in BonSAI.

BonSAI is a domain-specific library that builds up
on the concept of sensors and actuators that allow
the linking of perception to action. The sensors and
actuators that are provided by BonSAI are listed in
table 3.1. These sensors and actuators reach beyond
simple hardware abstraction by encapsulating com-
plex perception-action-linking processes. The ability
of BonSAI to configure the system allows to have sim-
ple interfaces, e.g. the Person sensor, which trigger a
complex sequence of actions in the Functional Com-
ponent level (see Fig. 2). One of the benefits of this
approach is that a system configuration as described
earlier now is linked to a specific skill of the robot.
This is e.g. the Follow Me skill (see top level Fig. 2)
that employs among others the Person sensor and the
Navigation actuator. To give you an example: Within

the Follow Me, the robot obviously needs to move, therefor the Navigation ac-
tuator is used which will trigger processes from the levels below (see Fig. 2) to
navigate the robot to the desired position.

Calling the actuator automatically takes care of configuring the system and
all necessary components. This behavior-oriented design (BOD) as e.g. proposed
by Bryson [9] enables the developer to model the behavior and the interaction
instead of the system configuration, which increases the flexibility of the interac-
tion and strongly supports iterative system design. With BonSAI it is possible to
model a robot behavior in such a way that the skills of the robot, e.g. following
a person, and strategies, e.g. for recovering or searching, are modeled together
to form more flexible and interactive behaviors.
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Fig. 3. Layout of the SeAM map.

The paradigm for our iterative design approach is to model the robot be-
havior locally, which means that strategies as described above are part of the
behavior and are not spread over many components or rules. The behaviors also
should be minimal, e.g. modeling one functionality of the robot such as Follow
Me, and should be modular to enable combination of many behaviors for a spe-
cific scenario such as the RoboCup. This also eases up the design process of a
robot behavior for developers, because they don’t have to design rules for the
different component configurations, which would require a detailed knowledge of
the whole system. Additional experience gained over the years via user studies
and the RoboCup can be implemented into individual behaviors. This makes
improvements of the interaction measurable for each behavior in a quantitative
manner and can improve the overall robot performance.

4 Semantic Map Annotation and Information Fusion

In order to improve the effectiveness of search tasks, the robot performs a scene
analysis of its environment and builds up a 2D representation of the possibly
most interesting regions. The basis for the semantically annotated map is an
occupancy grid representing the spatial structure of the environment generated
by a SLAM implementation [10]. This map contains only physical obstacles
that can be detected by the laser range finder, such as walls and furniture.
Additional grid map layers on top of the SLAM obstacle map are introduced
by our “Semantic Annotation Mapping” approach (SeAM) to encode the low-
level visual cues calculated while the robot explores its environment (see Fig.
3). These overlays are used for a more detailed analysis later on. Hence, the
combination of these information can be considered as a mechanism for mapping
spatial attention that constantly runs as a subconscious background process.

4.1 Vision Components

In the case of lost-and-found tasks, the annotation component relies on two
low-level visual cues to establish the attention map. At first, potential object
positions are detected within the robot’s visual field by using simple and com-
putationally efficient visual features. E.g., it makes more sense to look for a red
chips box in a cupboard with red stuff in it than to search for it on a green
wall. Additionally we detect horizontal surfaces in the perceived environment.
An example of the outcome of these components is depicted in Fig. 4.
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Horizontal Surface Extraction. Similar to [11], we use the fact that objects
are most likely placed on horizontal surfaces. Technically, the information about
these surfaces in the current visual field analyzes a 3D point cloud received from
a SwissRanger camera [12] (see Fig. 4(c)).

Color Distribution Detection. Suppose the robot searches for a known red
box of chips, as seen in Fig. 4(a). The system loads the corresponding model from
the memory and during the whole search process, it executes a fast detection
component. The purpose of this detector is to identify potential locations of
the chips within the robot’s visual field by employing the known appearance of
the target object. In this work, we use a search for the target color distribution
quite similar to [13]. Important requirements for a potential detector are its low
computational complexity and applicability for low-pixel images of the object
and changes in lighting, pose, scale, deformation, or occlusion.

4.2 Spatial Mapping

In order to register information-rich regions into the grid maps, the visual infor-
mation need to be spatially estimated relatively to the robot’s current position.
The 3D plane description can be easily transformed into a 2D aerial view rep-
resentation. In case of the color distribution cue, the direction of the detected
location can be calculated using several facts about the camera’s properties like
FoV and resolution, as well as how it is mounted on the robot (see Fig. 5(a)).

The actual mapping of the found regions is done by raising or lowering the
cell values of the corresponding layer in the SeAM map. If a cell is covered by
the recognized cue region its value is lowered, but is raised for cells which are
covered by the robot’s field of view and not the detected region. This encoding
is similar to the representation of the SLAM results. While values near 0.5 mean
unknown area, higher values mean free space and lower values mean detected
attention regions (corresponding to obstacles in SLAM).

Because of the layer structure of the grid maps representing the same spatial
area, information from multiple layers can be fused to generate more sophisti-
cated data. We introduce an additional grid map layer that fuses information
from the color detector and the horizontal surface detector. Semantically this
map represents object hypotheses on horizontal surfaces above the floor (object-

(a) Original scene (b) Color matching (c) Planes in 3D space

Fig. 4. Results of the input sources for the attention mapping mechanism.
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(a) Visual cue (b) Robot’s viewport (c) Color detector map

Fig. 5. Steps when mapping visual cues from color detector.

on-plane map). The probabilities are only raised if both detectors vote for the
same cell. More details can be found in [14].

4.3 Map Acquisition through Exploration

To gain initial information about the environment we usually use a frontier-
based exploration strategy as proposed by [15] using the SLAM map. In order to
perform a visual exploration using the robot’s camera, the necessary information
of areas covered by the camera’s view port are encoded in the SeAM map which is
a grid map similar to the SLAM map. This information can be used by applying
the exploration algorithm to one of the camera’s attention maps to perform a
visual exploration.

When performing an actual search, the software can provide viewpoints that
provide a reasonable view on the interesting areas. Viewpoints close to the actual
objects are desired to receive enough pixels for the recognition component, as
well as views from different angles to confirm the recognition result.

5 Conclusion

We have described the main features of the ToBI system for Robocup 2011 in-
cluding sophisticated approaches for person detection and 3D scene analysis.
BonSAI represents a flexible rapid prototyping environment, providing capabil-
ities of robotic systems by defining a set of essential functions for such systems.

The RoboCup@HOME competition in 2009 served as an initial benchmark
of the newly adapted platform. The Team of Bielefeld (ToBI) finished 8th place,
starting with the new hardware and no experience in competitions like RoboCup.
The determined tasks had to be designed from scratch because there where no
such demands for our platform prior to the RoboCup competition. BonSAI with
its abstraction of the system functionality proved to be very effective for de-
signing determined tasks, e.g. the Who-is-Who task where the robot has to au-
tonomously find three persons in the arena and re-identify them at the entrance
door of the arena in a given time. This scenario is well defined for a script-like
component as the number of people in the scene is known in advance and also
what actions the robot should take. Additionally the runtime of the task can be
used as ultimate trigger for the robot’s behavior. In contrast, other tasks like
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the open challenges or General Purpose Service Robot task have no determined
set of goals. Here a flexible human-robot interaction is much more in focus, the
robot needs to deal much more flexible with its capabilities and an enriched
understanding of the environment is essential. In this paper we presented some
avenues towards this goal.
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