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Abstract. Incremental on-line learning is a research topic gaining
increasing interest in the machine learning community. Such learning
methods are highly adaptive, not restricted to distinct training and ap-
plication phases, and applicable to large volumes of data. In this pa-
per, we present a novel classifier based on the unsupervised topology-
learning TopoART neural network. We demonstrate that this classi-
fier is capable of fast incremental on-line learning and achieves excel-
lent results on standard datasets. We further show that it can success-
fully process imbalanced, incomplete, and noisy data. Due to these
properties, we consider it a promising component for constructing
artificial agents operating in real-world environments.

1 Introduction
The development of artificial agents with cognitive capabilities as
they are found in humans and animals is still an unsolved problem.
While biological agents can manage uncertain ever-changing envi-
ronments with complex interdependencies, artificial agents are often
limited to very specific, extremely simplified, and unchanging prob-
lems.

One possibility to improve the performance of current artifi-
cial systems is the usage of incremental learning mechanisms (e.g,
[1], [18], and [19]). In contrast to traditional machine learning ap-
proaches based on distinct training and application phases, incremen-
tal approaches have to cope with additional difficulties – the most im-
portant being the stability-plasticity dilemma [15]: while plasticity is
required in order to learn anything new, stability ensures that already
acquired knowledge does not get lost in an uncontrolled way.

Sensor data obtained in natural environments often exhibit charac-
teristics which further impede learning. In particular, their distribu-
tions can be non-stationary, noisy, and imbalanced. In addition, indi-
vidual input vectors may be incomplete, for instance, due to different
sensor latencies.

In this paper, we present an incremental classifier (see Section 4)
based on the unsupervised TopoART neural network [26] (see Sec-
tion 3). It is capable of stable and plastic incremental on-line learning
and can cope with noisy, imbalanced, and incomplete data. These
properties are shown using synthetic datasets (see Section 3) and
real-world datasets from the UCI machine learning repository [12]
(see Section 5).

2 Related Work
Adaptive Resonance Theory (ART) neural networks constitute an
early approach to unsupervised incremental on-line learning. They
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incrementally learn a set of templates called categories. Some well-
known ART variants are Fuzzy ART [5] and Gaussian ART [29].
While Fuzzy ART is capable of stable incremental learning using
hyperrectangular categories but is prone to noise, the categories of
Gaussian ART are Gaussians, which diminishes its sensitivity to
noise but impairs the stability of learnt representations.

Regarding the formed representations, Gaussian ART is strongly
related to on-line kernel density estimation (oKDE) [20]: oKDE in-
crementally estimates a Gaussian mixture model representing a given
data distribution. Depending on an adjustable parameter, the esti-
mated distribution is stable to a certain degree.

Incremental topology-learning neural networks, such as Growing
Neural Gas [13], constitute an alternative approach to unsupervised
on-line learning. Some of these networks, e.g., the Self-Organising
Incremental Neural Network (SOINN)[14] and Incremental Grow-
ing Neural Gas (IGNG) [21], alleviate the problems resulting from
the stability-plasticity dilemma. However, they rely on neurons rep-
resenting prototype vectors. During learning, any shift of these pro-
totype vectors in the input space inevitably causes some loss of in-
formation.

TopoART [26] has been proposed as a neural network combining
properties from ART and topology-learning neural networks. As its
architecture and representations are based on Fuzzy ART [5], each
neuron (also called node) represents a hyperrectangular region of the
input space, which can only grow during learning. As a result, once
an input vector has been enclosed by a category, it will stay inside. In
addition, TopoART inherited the insensitivity to noise from SOINN
[14], which is a major improvement in comparison to Fuzzy ART.

The approaches mentioned above are not applicable to supervised
learning tasks such as classification. However several extensions ex-
ist that enable their application to such problems, e.g., ARTMAP [4]
for ART networks, Bayes’ decision rule [28] for mixture models,
and Life-long Learning Cell Structures [16] for prototype-based in-
cremental topology-learning neural networks. The resulting super-
vised learning methods usually inherit the characteristics of their
unsupervised components and ancestors, respectively. In particular,
they learn locally; i.e., adaptations are restricted to a limited set of
parameters.

The Perceptron [22], a very early approach to supervised on-
line learning, possesses a distributed memory. As a consequence, all
trainable parameters are altered during learning rendering Percep-
trons prone to catastrophic forgetting. Furthermore, they have a fixed
structure limiting the complexity of the knowledge that can be stored.
These problems were inherited by multi-layer Perceptrons (MLPs)
[23]. Cascade-Correlation neural networks [11] partially solve them
by means of an incremental structure. But they are restricted to off-
line (batch) learning.
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Figure 1. TopoART neural networks consist of two modules sharing the
input layer F0. Both modules function in an identical way. However, input

to module b is controlled by module a.

Support vector machines (SVMs) [8], an alternative extension
of Perceptrons, learn by solving a quadratic programming problem
based on a fixed training set; i.e., off-line. A subset of the training
samples, called support vectors, is chosen to construct separating hy-
perplanes. Although there are approaches to on-line SVMs (e.g., [2]
and [6]), the underlying model imposes several problems: an ade-
quate kernel has to be selected in advance, the number of occurring
classes needs to be known or is limited to two, and a possibly large
set of input samples has to be collected in addition to the support
vectors to stabilise the learning process.

Recently, several incremental classification frameworks based on
ensemble learning, e.g, ADAIN [17] and Learn++.NSE [10], have
been proposed. These approaches assume that data be provided in
data chunks containing multiple samples. As for each of these chunks
an individual base classifier is trained, a voting mechanism is re-
quired so as to obtain a common prediction. Furthermore, additional
learning methods may be necessary; ADAIN, for instance, uses an
MLP to construct a mapping function connecting past experience
with present data.

TopoART-C, the classifier presented in this paper, is based on
the unsupervised TopoART network. TopoART was chosen as a ba-
sis in order to take advantage of its beneficial properties, namely
its capability of stable incremental on-line learning of noisy data.
TopoART-C constitutes an extension of TopoART for classification
tasks like the Simplified Fuzzy ARTMAP approach [27] used for
Fuzzy ART. The usage of an additional mask layer further allows
predictions to be made based on incomplete data.

3 TopoART
TopoART is strongly related to Fuzzy ART [5]: it shares its basic rep-
resentations, its choice and match functions, and its principal search
and learning mechanisms. However, TopoART extends Fuzzy ART
in such a way that it becomes insensitive to noise and capable of top-
ology learning. One important part of the noise filtering mechanism
is the combination of multiple Fuzzy ART-like modules, where pre-
ceding modules filter the input for successive ones. Therefore, the
standard TopoART architecture as proposed in [26] (see Fig. 1) con-
sists of two modules (a & b). Besides noise filtering, these modules
cluster input data at two different levels of detail.

The clusters are composed of hyperrectangular categories, which

are encoded in the weights of neurons in the respective F2 layer.
By learning edges between different categories, clusters of arbitrary
shapes are formed.

If an input vector

x(t) =
[
x1(t), . . . , xd(t)

]T (1)

is fed into such a network, complement coding is performed resulting
in the vector

xF1(t) =
[
x1(t), . . . , xd(t), 1− x1(t), . . . , 1− xd(t)

]T
. (2)

As a consequence of this encoding that was inherited from Fuzzy
ART, all elements xi(t) of the input vector x(t) must be normalised
to the interval [0, 1].2

xF1(t) is first propagated to the F1 layer of module a. From here,
it is used to activate the F2 nodes of module a based on their weights
given by the matrix WF2a(t).

As TopoART networks learn incrementally and on-line, training
and prediction steps can be mixed arbitrarily. During training, the
activation (choice function)

zF2
j (t) =

∥∥xF1(t) ∧ wF2
j (t)

∥∥
1

α+
∥∥wF2

j (t)
∥∥

1

(3)

of each F2 node j is computed first. ‖·‖1 and ∧ denote the city block
norm and a component-wise minimum operation, respectively (cf.
[5]). The node with the highest activation becomes the best-matching
node bm. Its weights are adapted if the match function∥∥xF1(t) ∧ wF2

j (t)
∥∥

1∥∥xF1(t)
∥∥

1

≥ ρ (4)

is fulfilled for j=bm. Otherwise, the current node bm is reset and
a new best-matching node is determined. If a suitable best-matching
node bm has been found, a second-best-matching node sbm fulfilling
Eq. 4 is sought.

The categories of the best-matching node and the second-best-
matching node are allowed to grow in order to enclose xF1(t) or
partially learn xF1(t), respectively:

wF2
bm(t+ 1) = xF1(t) ∧ wF2

bm(t) (5)

wF2
sbm(t+ 1) = βsbm

(
xF1(t) ∧ wF2

sbm(t)
)

+(1− βsbm)wF2
sbm(t) (6)

In order to learn the topology of the data, bm and sbm are con-
nected by an edge. Already existing edges are not modified. If the
F2 layer is empty or no node is allowed to learn, a new node with
wF2a
new(t+ 1)=xF1(t) is incorporated.
According to Eq. 4, the maximum size of the categories is limited

by the vigilance parameter ρ. Here, the vigilance parameter ρb of
module b is determined depending on the vigilance parameter ρa of
module a:

ρb =
1

2
(ρa + 1) (7)

A value of ρa=0 means that a single category of module a can cover
the entire input space, while a value of ρa=1 results in categories
containing single samples.

2 This normalisation usually requires an estimation of the minimum and max-
imum values for each xi.
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Figure 3. Results for non-stationary data. The training was performed in
three successive phases (top row). In the bottom row, the corresponding

clusters formed by a TopoART network after finishing the respective phase
are shown. The network parameters were adopted from Fig. 2.

The F2 neurons of both modules possess a counter denoted by
nj . Each time a node is adapted, the corresponding counter is incre-
mented. Furthermore, all F2 nodes j with nj<φ are removed every
τ learning cycles of the respective module. Therefore, such neurons
are called node candidates. In contrast, nodes with nj≥φ are perma-
nent; i.e., their categories are completely stable. The node candidates
and the permanent nodes can be considered as the short-term mem-
ory and the long-term memory of the network, respectively.
xF1(t) is only propagated to module b for training if the best-

matching node of module a is permanent. In module b, the processes
of category search and weight adaptation are repeated for the corres-
ponding F2 nodes using ρb instead of ρa. In conjunction with the
input filtering and the node-removal process, this constitutes a pow-
erful noise reduction mechanism. Figure 2 illustrates this mechanism
in comparison to two other popular unsupervised learning methods.
The applied dataset consists of six clusters with 15,000 samples each
as well as ten percent of uniformly distributed random noise (100,000
samples in total). In order to create a stationary data distribution, the
samples were presented once in random order.

TopoART and SOINN were able to determine a detailed clustering
reflecting the six clusters of the input distribution in a high level of
detail. Here, the representation was refined from module a to mod-
ule b and from SOINN layer 1 (SOINN 1) to SOINN layer 2 (SOINN
2). The representation of oKDE also reflects the underlying compo-
nents, but does not include the topological structures. Furthermore,
several Gaussians exclusively represent noise regions.

The capability of TopoART to incrementally learn stable repre-
sentations from noisy non-stationary data is demonstrated in Fig. 3.
Here, the input data used before were reordered and presented in
three consecutive phases. After each training phase, TopoART has
learnt the respective new clusters and the clusters formed during ear-
lier training phases remained stable.

For prediction, xF1(t) is directly propagated to both modules
where the respective best-matching nodes are determined. Here, usu-
ally the alternative activation function

zF2
j (t) = 1−

∥∥(xF1(t) ∧ wF2
j (t)

)
− wF2

j (t)
∥∥

1

d
(8)

that is independent from the category size is applied and the match

function is not computed. The output of a module consists of a vector
yF2(t) with

yF2
j (t) =

{
0 if j 6= bm
1 if j = bm

(9)

and a vector cF2(t) reflecting the clustering structure. For reasons of
stability, node candidates are ignored during prediction.

Details on the adjustment and the effects of the parameters ρa,
βsbm, φ, and τ can be found in [26].

4 TopoART-C

In contrast to TopoART, which clusters presented data, a classifier
requires additional information. In particular, a class label λi is asso-
ciated with each input vector x(t) comprising one or more features
xi(t). This label is either presented for training or predicted based
on x(t). Λ(t) denotes the set of all known class labels at time step t.
In incremental learning scenarios Λ(t) may grow if new data become
available. The current number of known classes is given by |Λ(t)|. In
order to construct a classifier inheriting the advantageous properties
of TopoART, the principal structure of TopoART was preserved and
extended by three additional layers (see Fig. 4).

Both modules obtained a classification layer F3, the nodes of
which represent possible classes λi. These layers receive the out-
put yF2(t) of the respective F2 layer as input. Furthermore, a mask
layer F0m was incorporated so as to enable predictions based on
incomplete input data.

4.1 Training

TopoART-C is trained in a similar way to TopoART. But in order
to account for the class labels, the match function (cf. Eq. 4) was
modified:∥∥xF1(t) ∧ wF2

j (t)
∥∥

1∥∥xF1(t)
∥∥

1

≥ ρ and class(j) = λ(t) (10)
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Figure 4. Structure of TopoART-C. TopoART-C extends the structure of
TopoART by adding a classification layer F3 to each module and a mask

layer F0m to module b.
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Figure 2. Clustering results for stationary data. A two-dimensional synthetic data distribution was learnt by TopoART (TA), SOINN, and oKDE. The relevant
parameters were manually chosen in such a way as to fit the data. Different clusters of TopoART (b & c) and SOINN (d & e) are coloured differently. For

SOINN, the edges connecting individual prototype vectors are shown, as well. In contrast to TopoART and SOINN, the distribution estimated by oKDE (f)
consists of a mixture of Gaussians drawn as ellipses marking the standard deviations. It does not reflect the topological structure of the data.

Here, λ(t) denotes the class label of x(t) and class(j) the class en-
coded by the F3 node that is connected with node j.3

Assuming the match function cannot be fulfilled for any existing
F2 node, a new one with wF2

new(t+ 1)=xF1(t) is incorporated like
in the original TopoART network. Additionally, it is linked to the F3
node representing λ(t). If the network does not know λ(t), a new F3
node representing this label is inserted.

4.2 Prediction

During prediction, the class label λi which best fits the input vector
x(t) is computed by module b using the decision rule:

e(t) = arg max
λi∈Λ(t)

dλi(t) (11)

The discrimination function dλi(t) measures the similarity of x(t)
with the internal representation of class λi:

dλi(t) =
∑

j∈Υb(t)
class(j)=λi

y
F2b
j (t) (12)

dλi(t) depends on the output yF2b of the F2 layer of module b.
The set of all nodes of this layer is denoted by Υb(t). Module a is
completely neglected, as it is only required for training in order to
filter irrelevant data.

If the original output function (Eq. 9) is applied, e(t) yields the
class label of the permanent node whose category has the closest
distance to x(t). But depending on the class boundaries, the resulting
prediction may be suboptimal. Therefore, we propose a more general
output function, which can consider more than one node and allows
for problem specific adaptations. Here, two principal cases have to
be distinguished: either x(t) lies inside one or more categories or it
is enclosed by no category. In the first case, the class label can be
derived from the enclosing categories summarised in the set

E(t) =
{
j ∈ Υb(t) : z

F2b
j (t) = 1

}
. (13)

These nodes are characterised by a maximum activation zF2b
j (t) ac-

cording to Eq. 8. Using the modified output function

y
F2b
j (t) =

{
1 , if j = arg min

k∈E(t)
Sk(t)

0 , otherwise,
(14)

3 Each F2 node can only be connected with a single F3 node.

the prediction corresponds to the class label associated with the
smallest category containing x(t). The category size Sk(t) is defined
as

Sk(t) =

d∑
i=1

∣∣∣(1− wF2
k,d+i(t)

)
− wF2

k,i(t)
∣∣∣. (15)

In the second case, i.e., if no category encloses x(t), predictions
are computed based on the setN of closest neighbours:

N (t) =
{
j ∈ Υb(t) : z

F2b
j (t) ≥ µ+ 1.28σ

}
(16)

µ and σ denote the arithmetic mean and the standard deviation of
z
F2b
j (t) over all F2b neurons, respectively. If the activations were

normally distributed, N (t) would only contain those 10% of the
neurons that have the highest activations.

The contribution of each neighbour to the output function is in-
versely proportional to the distance between its category and x(t):

y
F2b
j (t) =


1

1−zF2b
j (t)∑

n∈N (t)

1

1−zF2b
n (t)

, if j ∈ N (t)

0 , otherwise

(17)

Depending on the data distribution and for computational reasons
it may be advantageous to further limit the number of considered
nodes. Therefore, we incorporated an additional parameter ν which
denotes the maximum cardinality of E(t) andN (t). It does not affect
the underlying representations and may be changed during the appli-
cation of the network. To obtain repeatable results, elements need to
be added to both sets in a predefined way (cf. Eqs. 13 and 16). There-
fore, we decided to add nodes in increasing order of their indices to
E(t) and in decreasing order of their activations to N (t). Provided
that the cardinality has reached the value of ν, the insertion of new
elements is stopped. As a result, established and certain knowledge
is preferred over recently acquired and uncertain knowledge. Due to
this difference to the original output function (cf. Eq. 9), which treats
all nodes equally, we decided to consider not only permanent nodes
but also node candidates for prediction. As a result, the predictions
become slightly less stable. However, the network is better adapted
to recent input, in particular if no established knowledge is available.

In order to make predictions based on incomplete input vectors,
the mask layer F0m is used. Its neurons, the output of which is given
by the mask vector

mF0(t) =
[
mF0

1 (t), . . . ,mF0
d (t)

]T
, (18)



inhibit the network connections that encode elements of the input
vector that are not available; i.e., presented elements are charac-
terised by a mask value mF0

i (t) of 0 and unknown elements by a
value of 1. Hence, the indices of the relevant elements of xF1(t) (cf.
Eq. 2) are given by the index set

M0 =
{
i, i+d : mF0

i (t) = 0
}
. (19)

Using M0, the activation of the F2 nodes of module b can be
determined solely based on the non-inhibited F1 neurons:

z
F2b
j (t) = 1−

∑
i∈M0

∣∣∣min
(
xF1
i (t), w

F2b
ji (t)

)
− wF2b

ji (t)
∣∣∣

1
2
|M0|

(20)

If required, the maximum activation over all F2 nodes of module b
can be applied as a measure of the degree of knowledge the network
has about a certain input vector. Then, input vectors can be rejected
as unknown if the maximum activation is below a threshold.

5 Results
We evaluated TopoART-C using several real-world datasets from the
UCI machine learning repository [12]. In order to show the beneficial
properties of TopoART-C, we selected datasets with varying numbers
of classes and features, with and without missing values, and with
balanced and imbalanced classes (see Table 1). Here, the class ratio
denotes the ratio between the number of samples contained in the
smallest class and in the largest class, respectively. Thus, a class ratio
of 1 shows that a dataset is completely balanced, while class ratios
close to 0 indicate imbalanced datasets.

dataset |Λ| d missing class
values ratio

iris 3 4 no 1.000
ISOLET∗ 26 617 no 0.992
optical digits∗ 10 64 no 0.967
ozone level (1 hour) 2 73 yes 0.030
ozone level (8 hours) 2 73 yes 0.067
page blocks 5 10 no 0.006
pen digits∗ 10 16 no 0.921
wine 3 13 no 0.676
wine quality (red) [9] 6 11 no 0.015
wine quality (white) [9] 7 11 no 0.002
yeast 10 8 no 0.011

Table 1. Number of classes |Λ|, number of features d, existence of missing
values and class ratio for the considered datasets. Those datasets marked

with ∗ contain an independent test set.

For comparison, we used several well-known on-line and off-
line classifiers: the k-nearest neighbour classifier3 (kNN), the naı̈ve
Bayes classifier3 (NB), random trees3 (RTs), the Simplified Fuzzy
ARTMAP (SFAM) [27], and support vector machines4 (SVMs)
using different kernels. These classifiers were compared based on
the harmonic mean accuracy

ACChm =
|Λ|∑

λi∈Λ

1
ACC(λi)

(21)

3 implemented in OpenCV v2.2 [3]
4 implemented in LIBSVM v3.11 [7]

as proposed in [25] for imbalanced datasets. Here, ACC(λi) de-
notes the fraction of correctly classified samples of class λi. In con-
trast to the total accuracy5 and the arithmetic mean of the class-
specific accuracies ACC(λi), ACChm prevents large correctly clas-
sified classes from dominating the classification results; e.g., if one
class cannot be recognised at all, ACChm drops to zero, independent
of the number of test samples available for this class. Provided that
the classification problem is entirely balanced and the class-specific
accuracies are equal, all three accuracy measures are equal.

Table 2 shows the classification results. These results were either
obtained using five-fold cross-validation or refer to the independent
test set that has neither been used for training nor the optimisation of
model parameters before, if available (cf. Table 1). The relevant par-
ameters of the classifiers were determined by means of grid search.6

For training, all features were normalised to the interval [0.05, 0.95].
Input vectors containing missing values were ignored (training and
prediction) and counted as errors (prediction) if the respective clas-
sifier was not able to process incomplete data.

TopoART-C achieved excellent results for the majority (6 of 11)
of the datasets. In particular, it outperformed the other classifiers
on 4 of 6 imbalanced7 datasets including those with missing values
and reached comparatively high accuracies for the remaining two
datasets ‘wine quality (red)’ and ‘wine quality (white)’. Regarding
balanced data, SVMs performed better, especially on the ‘ISOLET’
dataset, which is most likely caused by its large number of features.
Nevertheless, TopoART-C achieved the maximum accuracy on 2 of
5 balanced datasets. In addition, TopoART-C often reached very high
accuracies after a single presentation of all training samples, which is
a good benchmark for incremental on-line learning; without the ca-
pability of stable incremental learning, an on-line learning approach
such as TopoART (cf. Eqs. 5 and 6) would be prone to catastrophic
forgetting resulting in worse results.

6 Conclusion and Outlook

We presented the novel incremental classifier TopoART-C that is
capable of fast on-line learning (cf. Table 2). Accurate predictions
can even be made if the input vectors contain missing values. As
TopoART-C contains the unsupervised TopoART network as major
learning component, it is insensitive to noise (cf. Fig. 2) and can
be applied to non-stationary data (cf. Fig. 3). These properties of
TopoART-C make it an excellent choice for the application to real-
world on-line learning tasks, as they occur, for instance, in cognitive
robotics. In addition, the clusters learnt by the TopoART subnet could
provide additional information on the underlying data.

Furthermore, TopoART-C is not restricted to the usage of
TopoART; alternative neural networks with a TopoART-like structure
such as Hypersphere TopoART [24] can be applied as well. Since
Hypersphere TopoART does not perform complement coding, the re-
sulting classifier could process arbitrarily scaled values even if their
range is not completely known in advance.

5 overall ratio of correctly classified samples
6 kNN: k ∈ {1, 2, . . . , 25}; RTs: use surrogates ∈ {false,true},
variableImportance ∈ {false,true}, nactive vars =
dx with x ∈ [0.1, 0.9] and step size 0.1; SFAM: ρ ∈ [0.75, 1] with step
size 0.01, β ∈ [0.2, 1] with step size 0.2; SVMs: C = 10x with x ∈
[−4, 4] and step size 0.5, γ = 10x with x ∈ [−4, 4] and step size 0.5
(RBF kernel), coef0 = 10x with x ∈ [−4, 4] and step size 0.5 (polyno-
mial kernel), degree ∈ {1, 2, 3, 4, 5} (polynomial kernel); TopoART-C:
ρa ∈ [0.75, 1] with step size 0.01, βsbm ∈ [0, 1] with step size 0.2,
φ ∈ {1, 2, 3, 4, 5}, ν ∈ {1, 2, . . . , 25}

7 class ratio < 0.1



dataset kNNo NB RTstp SFAMo SVMs TopoART-Cop

1 it. 1 it. ≤25 it. polynomial RBF 1 it. ≤25 it.
iris 97.4±2.7 97.0±2.8 96.7±2.4 97.0±2.0 96.9±3.0 98.4±2.0 96.8±3.1 98.9±1.4 98.2±2.7
ISOLET 90.9 0.0 94.5 92.6 93.9 96.3 96.7 91.2 91.6
optical digits 97.9 94.6 96.9 96.9 97.7 97.5 98.4 97.4 97.4
ozone level (1 hour) 29.5±10.7 0.0±0.0 2.2±4.3 42.8±11.6 42.7±11.6 34.1±6.5 26.3±14.4 50.6±27.5 54.4±22.1
ozone level (8 hours) 45.0±6.8 5.5±4.8 10.7±6.9 50.1±9.1 53.7±6.7 50.2±4.1 45.6±4.2 63.9±3.8 60.6±10.3
page blocks 69.6±6.3 79.6±6.0 82.5±4.1 75.4±3.4 75.5±3.3 77.9±3.0 76.4±6.5 82.5±4.0 82.5±6.5
pen digits 97.7 95.8 96.4 97.4 97.9 97.5 98.2 97.7 97.7
wine 96.6±3.1 98.8±1.5 98.8±1.5 98.7±1.7 98.7±1.7 98.3±1.6 98.8±1.0 98.7±1.7 99.1±1.7
wine quality (red) 0.0±0.0 0.0±0.0 0.0±0.0 15.8±20.1 15.9±20.2 0.0±0.0 0.0±0.0 9.1±18.2 9.3±18.6
wine quality (white) 0.0±0.0 5.6±11.2 0.0±0.0 6.2±12.3 0.0±0.0 2.2±4.4 8.5±16.9 7.3±14.5 7.7±15.5
yeast 11.4±14.0 0.0±0.0 0.0±0.0 24.9±20.9 24.4±20.8 7.3±14.5 11.7±23.4 37.7±19.5 36.7±19.7

Table 2. Harmonic mean accuracies and their standard deviations (over the cross-validation runs) in percent. The best results for each dataset are highlighted.
In order to alleviate the comparison, some relevant capabilities of the classifiers are indicated by superscripts: o = on-line learning, t = accept missing values
for training, and p = accept missing values for prediction. In order to compensate for the negative effects of a possibly too small number of training steps, the

respective training sets were presented to the on-line learning approaches except for the kNN classifier up to 25 times. The results are given for the first
iteration (1 it.) and when they converged or the maximum number of iterations was reached (≤25 it.).
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kernel density estimation with Gaussian kernels’, Pattern Recognition,
44(10–11), 2630–2642, (2011).

[21] Yann Prudent and Abdellatif Ennaji, ‘An incremental growing neural
gas learns topologies’, in Proceedings of the International Joint Con-
ference on Neural Networks, volume 2, pp. 1211–1216. IEEE, (2005).

[22] Frank Rosenblatt, ‘The perceptron: A probabilistic model for infor-
mation storage and organization in the brain’, Psychological Review,
65(6), 386–408, (1958).

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams,
‘Learning internal representations by error propagation’, in Parallel
Distributed Processing – Explorations in the Microstructure of Cog-
nition, volume 1, 318–362, MIT Press, seventh edn., (1988).

[24] Marko Tscherepanow, ‘Incremental on-line clustering with a topology-
learning hierarchical ART neural network using hyperspherical cat-
egories’, in Poster and Industry Proceedings of the Industrial Confer-
ence on Data Mining, pp. 22–34. ibai-publishing, (2012).

[25] Marko Tscherepanow, Nickels Jensen, and Franz Kummert, ‘An incre-
mental approach to automated protein localisation’, BMC Bioinformat-
ics, 9(445), (2008).

[26] Marko Tscherepanow, Marko Kortkamp, and Marc Kammer, ‘A hierar-
chical ART network for the stable incremental learning of topological
structures and associations from noisy data’, Neural Networks, 24(8),
906–916, (2011).

[27] Mohammad-Taghi Vakil-Baghmisheh and Nikola Pavešić, ‘A fast sim-
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