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Abstract

How is communicative gesture behavior in robots perceived by humans? Although

gesture is a crucial feature of social interaction, this research question is still

largely unexplored in the field of social robotics. The present work thus sets out to

investigate how robot gesture can be used to design and realize more natural and

human-like communication capabilities for social robots. The adopted approach is

twofold. Firstly, the technical challenges encountered when implementing a speech-

gesture generation model on a robotic platform are tackled. The realized framework

enables a humanoid robot to flexibly produce synthetic speech and co-verbal hand

and arm gestures at run-time; in contrast to many existing models, these gestures

are not limited to a predefined repertoire of motor actions. Fine synchronization

of the two modalities is achieved by means of a sophisticated multimodal scheduler

specifically implemented for humanoid robot gesture and speech. Secondly, the

achieved flexibility in robot gesture is exploited in controlled experiments. To gain a

deeper understanding of how communicative robot gesture might impact and shape

human perception and evaluation of human-robot interaction, two experimental

studies were conducted. The findings reveal that participants evaluate the robot

more positively when non-verbal behaviors such as hand and arm gestures are

displayed along with speech. Surprisingly, this effect was particularly pronounced

when the robot’s gesturing behavior was partly incongruent with speech. These

findings contribute new insights into human perception and understanding of

non-verbal behaviors in artificial embodied agents. Ultimately, they support the

presented approach of endowing social robots with communicative gesture.

Keywords: Multimodal Interaction and Conversational Skills, Robot Gesture,

Non-verbal Cues and Expressiveness, Social Human-Robot Interaction, Robot

Companions and Social Robots.
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“As the tongue speaketh to the ear,

so the gesture speaketh to the eye.”

Sir Francis Bacon

Chapter 1

Introduction

1.1 Motivation

Robots today are very different than they were about 50 years ago. While

industrial robots with functional layouts and production-specific purposes were

dominating in the late 1950s, they are no longer designed to function exclusively

as manufacturing aids. Remarkable advances made since the introduction of

the first robots have led to a great diversity of robotics applications as well

as mechanical designs. The wide range of robotics applications today includes

museum and reception attendants, toys and entertainment devices, household and

service robots, route guides, educational robots, and robots for elderly assistance,

therapy, and rehabilitation.

In light of such advances, the roles of robots have become increasingly social,

thus bringing about a shift from machines that are designed for traditional human-

robot interaction (HRI), such as tele-operated mechanical manipulation, to robots

intended for social HRI. In view of this transformation, many authors have

demanded improved design for robots to be capable of engaging in meaningful

social interactions with humans (e.g., Breazeal, 2003). Along with the attempt

to define and name this new category of robots – with Fong et al. (2003) calling

them “socially interactive robots” and Breazeal (2002) using the term “sociable

robots” – a whole new research area has since emerged.

Social robotics research is dedicated to designing, developing and evaluating

robots that can engage in social environments in a way that is appealing to human

interaction partners. However, interaction is often difficult because inexperienced

users do not understand the robot’s internal states, intentions, actions, and

expectations. To facilitate successful interaction, social robots should provide

communicative functionality that is both natural and intuitive to humans. The

appropriate level of such communicative functionality strongly depends on the
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appearance of the robot and attributions thus made to it. Different design

approaches can be chosen depending on the social context and use of the robot.

Fong et al. (2003) define four broad categories of social robots based on their

appearance and level of embodiment: anthropomorphic, zoomorphic, caricatured,

and functionally designed robots (see Figure 1.1 for illustrative examples).

While the last three design categories are targeted at establishing a human-

creature relationship which does not evoke as high an expectation on the human’s

side, anthropomorphic design, in contrast, is broadly recommended to support

an intuitive and meaningful interaction with humans (Breazeal, 2002; Duffy,

2003). Furthermore, equipping the robot with human-like body features, such

as a head, two arms, and two legs, is considered a useful means to elicit the

broad spectrum of responses that humans usually direct toward one another. This

phenomenon is typically referred to as anthropomorphism (Epley et al., 2007), i.e.,

the attribution of human qualities to non-living objects, and it is increased when

“social” movements or behaviors are displayed by the robot (Duffy, 2003). But

what types of social movements or behaviors can lead to an increased acceptance

of robot companions based on such anthropomorphic inferences?

a)

b) c)

d)

Figure 1.1: Four basic categories and according examples of social robots based on

appearance and level of embodiment as defined by Fong et al. (2003): a) anthropomorphic

(AIST’s HRP-4C), b) zoomorphic (Sony’s Aibo), c) caricatured (Philips’ iCat), d)

functionally designed (Bielefeld University’s BIRON).
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Fong et al. (2003) identify the use of gestures as one crucial aspect when

designing robots that are intended to engage in meaningful social interactions with

humans. In fact, given the design of humanoid robots, they are typically expected

to exhibit human-like communicative behaviors, using their bodies for non-verbal

expression just as humans do. Representing an integral component of human

communicative behavior (Kendon, 1986; McNeill, 1992), speech-accompanying

hand and arm gestures are primary candidates for extending the communicative

capabilities of social robots. Not only are gestures frequently used by human

speakers to illustrate what they express in speech (Cassell et al., 1998; McNeill,

2005), more crucially, they help to convey information which speech alone some-

times cannot provide, as in referential, spatial or iconic information (Hostetter,

2011). At the same time, human listeners have been shown to be well-attentive

to information conveyed via such non-verbal behaviors (Goldin-Meadow, 1999;

Hostetter, 2011). In addition, providing multiple modalities helps to dissolve

ambiguity that is typical of unimodal communication and, consequently, to in-

crease robustness of communication. Therefore it appears reasonable to equip

humanoid robots that are intended to engage in natural and comprehensible HRI

with co-verbal gestures.

Although gesture may be extended to include gaze, head and eye gestures, facial

expressions, and body movements that manipulate objects in the environment,

in this thesis the term gesture is used to refer specifically to hand and arm

movements with a communicative intent. That means, gestures convey conceptual

information which distinguishes them from other – arbitrary or functional – motor

movements performed by the robot, hence the thesis title “conceptual motorics”.

The motivation to particularly focus on robot gesture in the present work is

manifold and includes the following aspects.

• At the present time, only few scientific approaches have addressed the design and

generation of social hand gestures for robots, and in effect, even fewer empirically

validated design guidelines exist. A common practice in the generation of robot

gesture is for roboticists to design and model non-verbal behaviors in a way that

they consider suitable and realistic, without necessarily building upon theories

from gesture research.

• In order to develop robots with human-like behaviors, researchers need to

understand these behaviors in detail, for example, how such body movements

are generated, how they can be related to conveying communicative intent,
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and what contextual characteristics lead to a better understanding of gestures.

For this, social robots should be used as platforms for research on human

communication, anthropomorphism, and embodiment. As a result, modeling

human behavior on robots does not only help to equip them with enhanced social

capabilities, but it also advances our understanding of how such mechanisms

function in humans.

• Previous research in social HRI that has addressed the issue of gesture genera-

tion has not sufficiently and systematically evaluated people’s perception and

understanding of such non-verbal behaviors in robots with human-like embodi-

ment. However, investigating the effect of robot gesture is considered key to

improving gesture-based HRI and a step toward more sociable and acceptable

robots in the future.

1.2 Objectives and Contributions

The work presented in this thesis aims to systematically address the above

described challenges with a humanoid robot in an interdisciplinary approach.

The following two main objectives combine both technically and psychologically

inspired research and lead to the outlined contributions in each field:

(1) The first – technically motivated – objective is to develop and implement a

robot control architecture for ‘conceptual motorics’, i.e., meaningful hand and

arm movements that convey communicative intent and which can thus be

considered conceptual. The resulting framework should enable a humanoid

robot to flexibly produce synchronized speech and gesture at run-time, while

not being limited to a predefined repertoire of motor actions. This requires

an interface that combines conceptual representations of meaning and com-

municative intent as occurring in dialogue with a motor control layer for

speech and hand movements. The chosen approach draws upon experiences

already gained with the development of the Articulated Communicator Engine

(ACE; Kopp and Wachsmuth, 2004), which represents the speech and gesture

production model underlying the virtual agent MAX (see Figure 1.2). Given

the different constraints encountered in the domain of physical robots, the

implemented system should further extend the original multimodal scheduler

in ACE with additional features, namely a predictive forward model and
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Figure 1.2: The goal of the present work is (1) to realize speech and non-verbal

behavior generation for a physical humanoid robot (right) by transferring an existing

virtual agent framework as employed for the conversational agent MAX (left), and (2)

to subsequently evaluate it in controlled experiments of human-robot interaction.

an interactive feedback mechanism, to achieve optimal synchronization of

robot gesture and speech. The contribution of this first major objective will

thus be the realization of a multimodal action generation framework that is

specifically tailored to the requirements of speech and gesture synthesis for the

humanoid robot. Ideally, on a more abstract level, providing a valid solution

for this specific robotic platform will represent a proof of concept that will

demonstrate the feasibility of the chosen approach, namely employing a vir-

tual agent framework for behavior realization in arbitrary physical humanoid

robots. Accordingly, in future it should be possible to transfer the developed

system to any other robotic platform with humanoid embodiment.

(2) The second – psychologically motivated – objective is to exploit the achieved

flexibility in robot gesture, based on the implementation of a robot control

architecture for ‘conceptual motorics’, for controlled experimental gesture

studies. Since only very few studies in the area of HRI have so far focused on

the perception of robotic hand gestures, this research objective will complement

existing work by providing the field of social robotics with new empirical

findings. On the micro-level, it should be investigated how humans perceive

and understand gestural patterns performed by the humanoid robot. For this

purpose, functions and effects of various speech-gesture deliveries should be

examined in an interactional context. A macro-level analysis, on the other
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hand, is intended to reveal how people experience the robot in dependence

on its non-verbal communicative behavior during interaction. It should

further explore whether and how the use of gesture affects the mental models

humans form of a humanoid robot during interaction. The findings of these

experimental studies aim to advance HRI research by giving new insights into

human perception and understanding of social non-verbal behaviors in robotic

agents. Consequently, the second major objective will contribute towards

novel approaches in designing and building better artificial communicators.

1.3 Research Questions

The two major objectives stated above have been broken down into a set of

research questions. A research question (RQ) is broader and less stringent than

a hypothesis by formally stating the goal of the research. The following list

summarizes the central research questions that have substantially driven the

present work and are addressed in various parts of this thesis.

RQ1: Why should humanoid robots display non-verbal behavior such as hand

gesture? (→ Sections 1.1 and 2.2.2)

RQ2: What distinguishes the present approach from other existing solutions?

(→ Sections 3.2.1 and 3.3)

RQ3: What are the main challenges that have to be tackled when transferring a

speech-gesture synthesis framework (i.e., ACE) from a virtual agent to a

physical humanoid robot? (→ Section 4.3)

RQ4: What are possible approaches to the realization of an ACE-based robot

control architecture? Which approach represents the most suitable solution

and why? (→ Sections 5.1 and 5.2)

RQ5: Given the physical constraints of the humanoid robot (e.g., velocity limits,

variation in mechanical degrees of freedom), how can the synchronization

of robot gesture and speech be optimized to account for these limitations?

(→ Sections 6.1.3, 6.2, and 6.3)

RQ6: How do human interaction partners accept and evaluate multimodal robot

behavior generated with the implemented framework? More specifically,
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how does non-verbal behavior, in particular hand gestures, of a humanoid

robot impact and shape the human’s interaction experience and assessment

of the robot, e.g., in terms of subjective likability? (→ Sections 7.3 and 8.3)

RQ7: How does human-like behavior in a humanoid robot affect the anthropo-

morphic perceptions and mental models humans form of the robot during

interaction? (→ Section 8.3)

1.4 Scope of the Thesis

The focus of the present work lies on the generation and evaluation of multimodal

robot behavior with a special emphasis on co-verbal hand gesture. In general,

computational approaches to synthesizing multimodal behavior can be modeled

as three consecutive tasks as displayed in Figure 1.3 (adapted from Reiter and

Dale, 2000): firstly, determining what to convey (i.e., content planning); secondly,

determining how to convey it (i.e., behavior planning); finally, conveying it (i.e.,

behavior realization).

Action Selection & 
Content Planning

Behavior Planning

Conveying it

How to convey it?

What to convey?

Behavior Realization
(ACE)

Figure 1.3: Behavior generation pipeline adapted from Reiter and Dale (2000); the

work of this thesis focuses on the behavior realization at the lowest level of the pipeline.
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By addressing the third task of this behavior generation pipeline, ACE operates

at the behavior realization layer, yet the overall system used by the virtual

agent MAX also provides an integrated content planning and behavior planning

framework. The scope of this thesis is limited to ACE-based behavior realization

at the lowest level of the generation pipeline, which forms the starting point for an

interface endowing the humanoid robot with multimodal behavior. This means,

we assume that the selection of appropriate actions and respective utterances is

handled by other instances of the ‘cognitive architecture’ that drives the robot’s

behavior. Since addressing this issue would demand its own research project (see,

for example, Kopp et al., 2008), strategies for the selection and planning of action,

content, and behavior fall outside the scope of the present work.

Furthermore, the work presented in this thesis builds upon previous work that

has been the subject matter of several years of research and which is described

in detail in another dissertation (Kopp, 2003). An in-depth summary of the full

functionality and often complex intricacies of the original ACE framework would

thus go beyond the scope of this thesis. For this reason, it was decided to refrain

from a detailed description of the complete system, but instead, to only highlight

those aspects of it that are of explicit relevance to the above research questions.

The work described in this thesis was accomplished in two major steps in

accordance with the research objectives stated in Section 1.2. Although the

technical implementation of a speech-gesture generation framework (objective 1 ) is

a prerequisite for conducting the experimental studies (objective 2 ), it is important

to note that the primary purpose of these studies is not to evaluate the technical

framework or to benchmark its functionality by testing different implementations.

Instead, the aim is to utilize the realized framework as a tool for investigating

more general research questions regarding the acceptance and evaluation of robot

gestures by human interaction partners.

Finally, the work and results presented in this thesis are directly applicable only

to the robot used; however, a certain potential of abstraction and generalization,

with regard to both the technical implementation and the empirical evaluation

studies, can be expected. Note that, if not stated otherwise, throughout this thesis

the terms “robot” and “humanoid robot” refer to the Honda humanoid robot

which served as the research platform for the present research (see Figure 1.2).

8



1. INTRODUCTION

1.5 Structure of the Thesis

This thesis is divided into three core parts based on the intended scientific direction

and contribution:

• Part I covers background information essential to the technical and empirical

work described in later sections. Specifically, in Chapter 2 fundamental results

from communication research in psychology are summarized, describing in

detail what is currently known about speech and gesture in human multimodal

communication. In Chapter 3 an overview of the current state of the art is

provided with emphasis on the generation and evaluation of speech and gesture

for artificial communicators. Models both for virtual conversational agents and

for social robots are presented.

• Part II provides a description of the technical implementation realized

on the humanoid robot for speech-gesture generation and synchronization.

Specifically, in Chapter 4 a system overview is given in the context of already

existing modules and the required extensions. Moreover, the main challenges

faced when transferring an action generation framework from a virtual agent

platform to a physical robot are discussed. In Chapter 5 the robot control

architecture conceptualizing the generation of robotic hand and arm movements

for gesture synthesis based on the virtual agent framework ACE is described. In

Chapter 6 the synchronization of the generated robot gesture with speech as

an additional constraining modality is explained. In this context, an extended

multimodal scheduler for finer and more flexible synchronization of the two

modalities is presented.

• Part III introduces the empirical evaluation of the developed framework

for speech and gesture generation with the humanoid robot. In particular, the

set-ups, hypotheses and procedures of the two conducted experimental studies

are described in Chapters 7 and 8 respectively. Results obtained from an

analysis of the collected data from each study are presented and discussed.

Finally, Chapter 9 concludes the thesis with a summary and discussion of its

contributions, especially with regard to the field of socially interactive agents (both

virtual and robotic). The last section of the chapter outlines the scope for future

research direction, highlighting desirable extensions to the realized speech-gesture
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generation framework, as well as further research avenues for the evaluation of

robot gestures. It is hoped that these avenues will be tackled in the future and

that they will further consolidate the contributions presented.

Resulting Publications

The work presented in this thesis has resulted in the following peer-reviewed

publications: Salem et al. (2009, 2010a,b,c, 2011a,b,c); Salem (2011); Salem et al.

(2012); Wachsmuth and Salem (to appear).
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“Pantomime without discourse will leave

you nearly tranquil, discourse without

gestures will wring tears from you.”

Jean-Jacques Rousseau

Chapter 2

Gesture and Speech in Human

Communication

In light of the motivation, objectives, and research questions introduced in the

previous chapter, it appears sensible to provide an overview of some fundamental

concepts that have been presented in the field of gesture research. Despite it

being a relatively young research area, an extensive body of work investigating the

phenomenon of human gesture has already been presented in the literature (e.g.,

McNeill, 1992, 2000, 2005; Kendon, 1997, 2004; Goldin-Meadow, 2003; Hostetter,

2011). Providing a comprehensive review or meta-analysis of all significant concepts

and findings would thus go beyond the scope of this thesis. For this reason, only

literature of particular relevance to the present research project is reviewed and

discussed in this chapter.

Specifically, in Section 2.1 terminology that is relevant to the work outlined

in this thesis and basic notions from the field of gesture research are introduced.

Moreover, various approaches to classifying different types of gestures are presented

and the structure of gesture is outlined. In Section 2.2 the combination of speech

and gesture is described with a focus on the synchronization of the two modalities,

as well as their semantic relationship. Note that speech-related findings presented

in this section generalize only to stress-timed languages such as English, German,

and Dutch; however, they may also apply to other languages. Finally, the purpose

and use of gestures in multimodal communication is elucidated on the basis of

different theories of gesture production models.

2.1 Gesture

Gesture is a phenomenon of human communication that has been studied by

researchers from various disciplines for many years. A multiplicity of hand, arm
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and body movements can all be considered to be gestures, and although no

universal or generally accepted definition of the term gesture exists, a great variety

of definitions that emphasize different communicative aspects can be found in

the literature. A selection of some definitions and classifications of gesture is

presented in the following.

2.1.1 Definition of Gesture

According to Oxford Dictionaries Online, the word gesture, when used as a noun,

refers to “a movement of part of the body, especially a hand or the head, to

express an idea or meaning”1. Although accounting for the communicative quality

of this type of non-verbal behavior, this definition does not provide information

about the relationship between such body movement and spoken language.

In contrast, in his early work, Kendon (1980) refers to “speech-associated hand

and arm movements [which are] to be distinguished from other kinds of bodily

movement that can be observed in interaction” (p. 207) as ‘gesticulation’. Kendon

(2004) further mentions that “for an action to be treated as ‘gesture’ it must

have features that make it stand out as such” (p. 10), i.e., listeners can identify a

gesture as part of the meaning of the spoken utterance (Kendon, 1997). Unlike

task-oriented movements like reaching or object manipulation, the characteristic

shape and dynamical properties of gestures enable humans to distinguish them

from subsidiary movements and to perceive them as meaningful (Wachsmuth

and Kopp, 2002). Based on this definition, accidental gestures, fidgeting and

so-called ‘self-adaptors’ (Kendon, 1980), i.e., movements in which the speaker

touches or manipulates his own body, are not considered gestures. McNeill and

Levy (1982) support this discriminating view by defining gesture as “any visible

movement of the hand(s) excluding selfadaptors (scratching the head, fixing the

hair)” (p. 5). This implies that gestures differ from other body movements on

the level of intention, namely the intention to communicate (see also Melinger

and Levelt, 2004). Accordingly, Väänänen and Böhm (1993) define gestures as

“body movements which are used to convey some information from one person to

another”. Importantly though, and in accordance with other gesture researchers

(e.g., McNeill, 1992; Iverson and Goldin-Meadow, 1998; Beattie, 2003), Kendon

(1980) states that gesture is an integral part of speaking, meaning that gesture

1http://oxforddictionaries.com/ – accessed September 2011
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and language form an integrated communicative system. In fact, about 90 % of

hand gestures are generated in association with speech (McNeill, 1992), and are

predominantly found to be performed in a spontaneous and idiosyncratic (i.e.,

speaker-dependent) manner (Cassell, 1998).

In line with these findings and the above definitions, the present work focuses

on hand gestures that are produced along with speech, i.e., so-called co-verbal

gestures, and which moreover pursue a communicative intent. However, gesture

researchers often assume that some types of gestures communicate more than

others (Hostetter, 2011). Since the focus of this thesis is on communicative robot

gesture, the present investigations are limited to those types of gestures that

are believed to be particularly communicative. Along with a classification and

discussion of other gesture types, the gesture categories central to this research

project are reviewed and outlined in the following section.

2.1.2 Classification of Gesture

Although the focus of this thesis is on spontaneous co-verbal gestures, it is helpful

to first place them into a broader context to promote a clear understanding of

their distinctive properties. Much gesture research has sought to describe and

categorize the different types of gesture (e.g., Efron, 1972; McNeill, 1992; Kendon,

2004), leading to a great variety of definitions and categorizations that are based

on different distinction criteria.

One such categorization was originally proposed by Kendon (1988), which

was later arranged along an axis and labeled by McNeill (1992) as Kendon’s

Continuum. It is illustrated in Figure 2.1. As one moves from left to right along

this axis, i.e., from gesticulation to sign languages, three reciprocal changes are to

be noted, which are further illustrated by the following three dimensions (based

on McNeill, 1992, 2000, 2005).

1) Relationship to speech. The extent to which speech is an obligatory ac-

companiment of gesture decreases.

2) Relationship to linguistic properties. The extent to which gesture shows

properties that are typical of language increases.

3) Relationship to conventions. The extent to which gesture follows agreed

conventions increases.
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Gesticulation
Language-like 

Gestures

Pantomimes

Emblems

Sign Languages

Figure 2.1: Kendon’s Continuum, adapted from McNeill (1992, 2000).2

Gesticulation, based on the above definitions referred to as ‘gesture’ in this thesis,

is obligatorily accompanied by speech. At the same time, its properties are the

least language-like, i.e., such hand movements do not show the traits that are

typical of a linguistic system. Finally, gesticulations are not conventionalized,

since they are idiosyncratic and thus do not follow any specified rules.

Language-like gestures resemble gesticulations in form and appearance, however,

they form parts of sentences by occupying a grammatical slot that replaces speech,

e.g., “the meeting went [gesture]”, with a gesture expressing the word ‘so-so’, for

example by twisting the flat open hand. As a result, such gestures are performed

in association with, but do not coincide with speech, and this way they take on

some traits of a linguistic system. Similar to gesticulations, they are typically not

conventionalized, since different gestures can be used to express the same word. In

the given example with the word ‘so-so’, for example, a swinging head movement

or sceptic facial expression could be used instead of the twisting hand gesture.

Pantomimes, by definition, are not accompanied by speech. In effect, while

replacing spoken language, they show linguistic properties in that they can be

combined into a sequence of gestures. To be correctly interpreted and understood

by the observer, pantomimes follow some socially regulated conventions.

2In the original version from 1992, pantomimes were ordered before emblems, however,

McNeill noted that their ordering was probably arbitrary. In a later version published in 2000,

he uses both an ordering in which emblems appear before pantomimes (p. 2) and one in which

pantomimes are listed before emblems (p. 3), depending on the relationship dimension considered.

For this reason, it was decided to portray them on a coequal level in this figure.
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Emblems such as the ‘V-for-victory’ sign or ‘OK’ sign have speech-independent

symbolic status. They show limited language-like properties in that they must

meet certain constraints of well-formedness in order to be interpreted correctly.

For example, the thumb and the little finger cannot be used to form the ‘OK’

sign. However, they lack syntactic potential and compositionality, i.e., it is not

possible to combine multiple emblems into a gesture sequence. Finally, emblematic

gestures are locally or even globally conventionalized signs and are thus commonly

understood within their cultural range.

Sign languages consist of socially regulated signs and are characterized by obligato-

rily absence of speech – in fact, simultaneous speaking (in non-deaf individuals) has

a disruptive effect on both modalities (McNeill, 2000). Comprehensive linguistic

structures that follow the same essential properties of all spoken languages, as

well as the fully conventionalized nature of these signs within a given community

ultimately justify the position of sign languages at the end of Kendon’s Continuum.

Based on these observations, the relationship between the three reciprocal

changes along Kendon’s Continuum as listed above can be summarized as fol-

lows. Verbal and non-verbal aspects of human communication are complementary:

spoken language is conventionalized, whereas gesticulation is idiosyncratic. Ac-

cordingly, the less the modality of speech is used, the more language-like and

thus conventionalized the modality of gesture becomes in order to compensate for

the lack of spoken language. Based on the three aforementioned dimensions, in

comparison to the other points along Kendon’s Continuum, gesticulation stands

out with the following characteristics (McNeill, 2005):

• Only gesticulation is obligatorily accompanied by speech and thus integrated

with linguistic content which, to the speaker who is unaware of his gesturing

behavior, appears to be the main means of communication.

• Only gesticulation is unwitting, i.e., spontaneous, and not consciously produced

like symbols or signs.

• Gesticulation does not follow any specified rules or conventions, although it is

not unlikely to find similar gesturing patterns across different speakers.

Although gesticulation only forms one point on the Continuum, it represents

the dominating gesture type (over 99 % of gesture) in conversation, discourse,

storytelling, and spatial description (McNeill, 2005). Gesticulations are therefore
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also referred to as conversational gestures (Krauss et al., 1996). Since the focus of

this thesis is on such speech-accompanying gesticulations, they are specified in

more detail in the following.

Types of Co-Verbal Gestures

Over the past few decades, there have been several proposals to further classify

the category of spontaneous co-verbal gesticulation into systems of gesture types,

most of which were inspired by the early work of Efron (1941), Ekman and

Friesen (1969), and Wundt (1973). These systems primarily vary in the number

of gesture classes they suggest. One of the most accepted classification schemes in

gesture research literature was introduced by McNeill (1992). Drawing inspiration

from the semiotic categories suggested by Peirce (1960), he distinguishes four

main types of co-verbal gestures: beats, deictics, iconics, and metaphorics. In

his later work, however, McNeill (2005) claimed that the search for categories

actually seems misled: since the majority of gestures are multifaceted, it is more

appropriate to think in terms of combinable dimensions rather than categories. In

this way, dimensions can be combined without the need for a hierarchy. For the

sake of simplicity though, at this point we adopt the four gesture classes originally

suggested; a more detailed description of each class is given below.

• Beat gestures are simple, repetitive, oscillating hand movements performed

along with the rhythmical pulsation of accompanying speech without conveying

any obvious semantic content (Feyereisen et al., 1988; Hostetter, 2011). They

have been termed ‘beats’ because they resemble the beating of musical time as

performed by an orchestra conductor.3 Unlike other gesture types, beat gestures

tend to have the same form regardless of the speech content (McNeill and Levy,

1982). Typically, they consist of only two movement phases in which simple

flicks of the hands are performed either in an up- and downward or back- and

forward direction. Beat gestures relate to the rhythmic structure of speech by

synchronizing with its prosody, even though this relationship has been found to

3Originally, they have been named ‘batons’ in other classification schemes (Efron, 1941;

Ekman and Friesen, 1969), hence referring to the instrument itself rather than the movement

performed when using it. Other names suggested in the gesture literature include ‘motor

movements’ (Hadar, 1989; Krauss et al., 1996), ‘punctuating movements’ (Freedman, 1977), and

‘speech-marking hand movements’ (Rimé and Schiaratura, 1991).
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be more complex than often claimed in the literature (see McClave, 1994). By

stressing the relevant parts of the discourse, gestural beats mark the information

structure of the utterance. They further serve a pragmatic function when they

accompany meta-comments on the speaker’s own linguistic discourse and speech

repairs (Cassell et al., 1998).

• Deictic gestures are classical pointing gestures that are typically performed

with an extended index finger, “although any extensible object or body part

can be used, including the head, nose, or chin, as well as manipulated artifacts”

(McNeill, 1992, p. 80). Such gestures serve to indicate or spatialize discourse

entities, e.g., locations, events, persons, objects, or object properties. These

entities can either be concrete, i.e., physically present in the speaker’s gesture

space, or of an abstract nature, i.e., pointing at non-physical targets. An example

for the use of an abstract deictic gesture is pointing to the side while saying

“no, I meant [the other movie]”. In conversations, discourse, and narratives, the

majority of pointing gestures are of this abstract kind, while they are rarely if

ever used to point at concrete entities (McNeill, 1992). While concrete pointing

can be observed in young children before their first birthday, abstract pointing

is typically only employed from the age of twelve (McNeill, 2005).

• Iconic gestures depict features of semantic content, which are also present in

speech, by means of similarity between the form or manner of the gesture and its

speech referent (McNeill, 2005; Ekman and Friesen, 1969). Such features of the

semantic content can refer to concrete entities (e.g., triangular gesture depicting

the shape or size of the ‘give way’ traffic sign), actions (e.g., circular gesture

describing a rolling movement), or events (e.g., fist moving downwards to mime

a falling rock). When describing spatial concepts, actions, or events, iconic

gestures can reveal information about the speaker’s viewpoint and imagistic

mental representations of the described content (Alibali et al., 1999, 2000; Beat-

tie and Shovelton, 2002; Alibali, 2005). These have been shown to differ across

cultures and languages (Kita and Özyürek, 2003), as spatial and lexical infor-

mation is conceptualized and processed differently depending on the speaker’s

cultural background (Kita, 2009). However, despite this tight connectedness

and co-expressiveness of iconic gesture and speech, the information conveyed in

each modality is not necessarily identical (Church and Goldin-Meadow, 1986;

Roth, 2002; McNeill, 2005). This means, for example, that iconic gestures may
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describe the manner in which an action is carried out, even if this information

is not given in the accompanying verbal expression (Cassell et al., 1998).

• Metaphoric gestures are similar to iconics in that they depict images, how-

ever, rather than representing concrete entities, they refer to abstract features,

concepts, or ideas. Thus they have also been labeled ‘ideographics’ in other

classification schemes (Efron, 1941; Ekman and Friesen, 1969). An example for

a metaphoric gesture is a circular movement performed with the hand while

saying “I told him over and over again”. By representing an abstract feature

of the described content, such gesture combines an iconic component with

a metaphoric component (McNeill, 1992). In the given example, the iconic

component consists of the circular form of the gesture, while at a metaphorical

level, the circle expresses the notion of endlessness. Due to their more complex

nature, it is not always easy to distinguish metaphoric from iconic gestures; this

fact is also reflected in the more recent demand to think of combinable gesture

dimensions rather than different types (McNeill, 2005; Krauss et al., 2000).

The latter two gesture classes, i.e., iconic and metaphoric gestures, are also referred

to as representational gestures (Hostetter, 2011), since they particularly represent

the content of speech by conveying or indicating meaning. Although McNeill’s

quadruple classification scheme is not considered to be accounting for all types

of co-verbal gestures that can occur in conversational contexts, it still covers the

majority of hand gestures that can be observed in narrative discourse. In fact,

many researchers have adapted this four-way distinction, while partly modifying,

simplifying, or adding further categories to it. In this regard so-called interactive

gestures (Bavelas et al., 1992), i.e., movements that regulate interaction (especially

turn-taking) between speakers, are worth mentioning.

A useful aggregation of McNeill’s gesture classes was suggested by Krauss

et al. (2000) who proposes two main categories of conversational gestures: motor

movements, which are equivalent to beat gestures, and lexical movements, which

are related to the semantic content of the accompanying speech and comprise

McNeill’s classes of deictic, iconic, and metaphoric gestures. The focus of the

present work is on such lexical movements, and in the following of this thesis (if not

stated otherwise), any occurrence of the term gesture will be referring specifically

to representational (i.e., iconic and metaphoric) and deictic gestures. This is based

on the assumption that these types of gesture are particularly communicative
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Beat Gestures Deictic Gestures Iconic Gestures
Metaphoric 
Gestures

Motor Movements

Lexical Movements

Representational Gestures

!

! !

Co-Verbal Gestures

(Gesticulation)

Figure 2.2: Classifcation of co-verbal gestures, adapted from McNeill (1992), Krauss

et al. (2000), and Hostetter (2011); the gesture types that fall into the scope of the

present work are framed in red.

(Hostetter, 2011). Other types such as beat gestures as well as interactive gestures

fall outside the scope of the present work. Figure 2.2 summarizes and illustrates

the types of co-verbal gestures reviewed in this section and highlights the ones

that are relevant to the remainder of this thesis.

2.1.3 Structure of Gesture

Kendon (1972) observed a hierarchical organization of human body motion which,

in his later work (Kendon, 1980), he applied to specifically describe the structure

of gesture. Based on his analysis of the hierarchy of gesture movements, Kendon

distinguished between what he called a gesture unit (‘G-Unit’), gesture phrase

(‘G-Phrase’), and gesture phase. Located at the top level of the hierarchy and thus

forming the largest time interval, a gesture unit describes the period between

two successive rest positions of the limbs. That means, it comprises all hand and

arm movements that are performed from the moment the limbs start moving away

from a rest position, e.g., arms hanging down, until the moment they return to

one. It may contain one or several gesture phrases. A gesture phrase in turn

is what is typically referred to as a ‘gesture’. It can consist of up to five gesture

phases, which are ordered in a sequence over time. Kendon initially differentiated

among preparation, stroke, and retraction phase; Kita (1990) later added the two
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time

! !

!

!

!

Preparation Stroke Retraction

Gesture Unit

Gesture Phrase

(Pre-stroke Hold) (Post-stroke Hold)

Figure 2.3: Hierarchical gesture structure and temporal gesture phases as suggested

by Kendon (1972, 1980) and Kita (1990).

non-obligatory pre-stroke hold and post-stroke hold phases. The hierarchical and

temporal structure of gestures is illustrated in Figure 2.3; the different gesture

phases are described in more detail below.

• Preparation. The hand moves away either from the rest position or from the

end position of a previous gesture and is brought into the position in gesture

space from which it can begin the upcoming stroke. The preparation phase

typically anticipates the co-expressive linguistic segments which convey the

gesture’s meaning (McNeill, 1992). Kita et al. (1998) note that the preparation

can potentially begin with a liberating movement, e.g., unfolding crossed arms,

before the actual target-directed preparation movement starts. The latter can

be further divided into two phases: location preparation, in which the hand is

brought to the designated stroke start position, and hand-internal preparation, in

which the shape and orientation of the hand are adjusted. Location preparation

always precedes and typically overlaps with hand-internal preparation.

• Pre-stroke hold. Once the start position including the hand shape and

orientation for the commencement of the stroke has been reached, this posture
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might be briefly ceased in a pre-stroke hold. This is typically done to delay the

stroke until the corresponding linguistic segment is ready to be expressed.

• Stroke. According to McNeill (2005), the stroke – also referred to as the nucleus

of a gesture phrase (Kendon, 1972) – is the expressive phase of the gesture

which bears meaning in relation to concurrent speech. It is often characterized

as the most effortful gesture phase (Kendon, 1980; McNeill, 1992), in the sense

that this phase consumes the most energy and exertion due to maximized

acceleration. However, this phenomenological definition is problematic when

two-phase gestures such as deictics are concerned, in which the preparation is

followed by a motionless hold rather than an effortful stroke movement. For

these cases, Duncan (quoted in McNeill, 2005) extended the gesture phase

classification with the concept of stroke hold phases for non-dynamic strokes.

This notion was further supported by Kita et al. (1998) who differentiated

among two different types of holds: firstly, independent holds which equal stroke

holds and are so termed as they can occur on their own; secondly, dependent

holds which correlate to pre- and post-stroke holds and are so named due to

their dependence on the gesture strokes.

• Post-stroke hold. Having reached the final position at the end of the stroke,

the hand may freeze in this posture for a more or less brief moment before

the retraction begins. Such post-stroke hold is typically performed if the

corresponding linguistic segment has not been fully articulated yet, while the

stroke itself has been completed. Similar to the pre-stroke hold, it thus serves

the synchronization of the gesture stroke with accompanying speech. Moreover,

it may extend and stress the meaning conveyed by the gesture stroke for the

duration of the hold (Kita, 1990).

• Retraction. The hand subsides to a rest position which, however, does not

necessarily have to be the same as at the beginning. Especially if the relaxation

is temporary due to another upcoming gesture phrase, only a partial retraction

(Kita et al., 1998) may be performed, before the actual rest position has been

reached. Such anticipation of the upcoming gesture may cause the retraction

phase of one gesture to become one with the preparation phase of the following

gesture (Cassell et al., 1994), thus leading to a direct transition. From a

functional point of view, the start of the retraction phase reveals “the moment

at which the meaning of the gesture has been fully discharged” (McNeill, 2005,
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p. 33). Other terms used to describe the retraction phase are recovery or return

phase (Kendon, 1972, 1980).

Note that except for the stroke, all other gesture phases are optional and can be

either partially or completely skipped, especially when multiple gesture phrases

are present.

2.2 Combining Speech and Gesture

In view of the first major research objective of the present work, namely to enable

a humanoid robot to produce synchronized speech and gesture, it is reasonable

to model such a concept based on multimodal communication as observed in

the human counterpart. The combination and synchronization of speech and

gesture has been a central aspect of investigation among researchers from various

disciplines including Psychology, Linguistics, and Neuroscience. A growing body of

empirical evidence has led to the general view that gestures are a way of expression

that is tightly linked to speech and language respectively (e.g., McNeill, 1992;

Goldin-Meadow, 2003; Kendon, 2004).

The exact relationship between the two modalities, however, has not yet been

entirely deciphered. According to Kendon (2007) the theoretical models trying to

formalize this issue can be roughly divided into two different views: on the one

hand, “speech auxiliary theories” (p. 7–8) regard speech as the primary modality

and gesture as aids to the speaker (e.g., supported by Freedman, 1977; Rimé and

Schiaratura, 1991; Kita, 2000; Krauss et al., 2000); on the other hand, “partnership

theories” (p. 8) consider gesture and speech to be co-operative and equal partners

in the production of multimodal utterances (e.g., supported by McNeill, 1992;

Clark, 1996; Gullberg, 1998; de Ruiter, 2000; Kendon, 2004).

Despite the controversy, findings from human-related studies are being in-

creasingly applied to research areas focusing on artificial communication, e.g., for

human-machine interaction, computer animation or social robots. In order to

model realistic and acceptable communicative behavior for an artificial communi-

cator such as an embodied conversational agent (ECA) or a humanoid robot, a

fine grasp of the precise interplay between speech and gesture is crucial. For this

purpose, reference units for both modalities must be identified and precisely spec-

ified before putting them into a mutual context. Thus, the following subsections

are aimed at elucidating empirical findings with regard to the relationship between
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speech and co-verbal gesture in human communication. Various perspectives as

well as terminological definitions that are relevant to the technical implementation

presented in the second part of this thesis are thereby discussed.

2.2.1 Speech-Gesture Synchrony

Following the above mentioned controversy regarding the general relationship

between speech and gesture, i.e., whether one modality is superior to the other

or whether they are operating at the same level, the issue of synchronization is

equally inconclusive. As de Ruiter (2000) notes, synchronization is difficult to

define, since the “synchrony between gesture and speech is the synchrony between

two time intervals that are often hard to define” (p. 297–298). Nevertheless,

a number of gesture researchers have attempted to define these intervals more

precisely; a brief history of their work is summarized in the following.

Temporal Relationship between Speech and Gesture

In the early 1960s, Condon was one of the first to carry out thorough analyses to

investigate the temporal relationship between speech and body movement. He

observed that a speaker’s movements are finely synchronized with his own speech,

which led him to suspect a common neurological basis of the two modalities and

to term their relationship self-synchrony (Condon, 1976).

Kendon (1972, 1980) built on Condon’s findings and extended his work by

specifying in more detail the hierarchical components of gesture units and defining

their different gesture phases (see Figure 2.3). He identified the stroke to be

the dynamic peak of the gestural movement, thus forming the smallest unit of

a gesture. More importantly though with regard to the temporal relationship

between speech and gesture, Kendon discovered that the gesture stroke generally

begins shortly before or right at the onset of the stressed syllable in speech, but

never follows. Note, however, that opposed to generalizations that had been

previously made by Schegloff (l984) and McNeill (1992), he later found that the

time of completion of the gesture stroke does not have to coincide with, but can

indeed follow the tonic syllable of the co-occurrent speech (Kendon, 2004).

Kendon further described a correspondence between the different hierarchical

levels in which both gesture and speech are organized. At a higher level, gesture

units align with what he called locutions, which typically comprise complete
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sentences (Kendon, 1980). In the same way that gesture units can consist of one

or more gesture phrases, locutions accordingly consist of a number of prosodic

phrases, so-called tone units (based on the definition by Crystal and Davy, 1969).

Similar to how gesture phrases represent meaningful units of bodily action, tone

units are “packages of speech production identified by prosodic features which

correspond to units of discourse meaning” (Kendon, 2004, p. 108), e.g., as given

by sub-clauses in a sentence.4 This concerted expression of meaning at the level

of tone unit and gesture phrase is what Kendon (1980) termed idea unit, which

led him to believe that speech and gesture originate from one and the same

underlying process. Finally, at the lowest level of both hierarchies, the gesture

stroke corresponds to the nucleus of the prosodic phrase, which is represented

by the tonic (i.e., most prominent, stressed) syllable in speech. The hierarchical

organization and synchronization of speech and gesture as suggested by Kendon

(1972, 1980) is illustrated in Figure 2.4.

Locution Gesture Unit

Tone Unit Gesture Phrase

Nucleus Stroke

Speech Gesture

Idea

Unit

Figure 2.4: Hierarchical organization and synchronization of speech and gesture based

on Kendon (1972, 1980).

4In view of this definition, tone units are similar to what Levelt (1989) specified as intonation

phrases, which in turn consist of a series of phonological phrases, i.e., one or several connected

words of spoken language.
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Kendon (1980) notes, however, that below the locution and gesture unit level

respectively, the association between entities of the two modalities is less stringent.

For example, tone units do not necessarily correspond to gesture phrases on a

one-to-one basis, i.e., one tone unit can be associated with more than one gesture

phrase and vice versa, although this rather represents the exceptional case.

Partially building on Kendon’s work and his idea of a common origin for

both modalities, McNeill (1992) states that “gesture and speech have a constant

relationship in time” (p. 25). This is based on the assumption that gestures

generally anticipate and synchronize with speech, which seems sensible in light

of the optional preparation as well as hold phases before and after the gesture

stroke. To clarify the temporal relationship between speech and gesture, McNeill

formalized three synchrony rules that apply specifically to the stroke phase of the

gesture (p. 26–29):

• Phonological Synchrony Rule. Based on observations described by Kendon

(1980), the gesture stroke precedes or ends at – but never follows – the “phonolog-

ical peak syllable of speech” (McNeill, 1992, p. 26). This suggests an integration

of the stroke phase into the phonology of the spoken utterance.

• Semantic Synchrony Rule. If speech and gesture occur together, the same

meanings are conveyed by both modalities at the same time. That means, as

gestures supplement or complement the content of speech, both channels express

the same idea unit (McNeill, 1992). According to de Ruiter (2000), this type of

synchrony “follows from the fact that both gesture and speech ultimately derive

from the same communicative intention” (p. 304). The semantic synchrony rule

applies even when speech is interrupted by pauses, or in cases with multiple

gestures or clauses.

• Pragmatic Synchrony Rule. If speech and gesture occur together, they

“perform the same pragmatic functions” (McNeill, 1992, p. 29). This rule is

particularly applicable to metaphoric co-verbal gestures, which might not be

directly related to the speech content on a strictly semantic level, but rather

on a pragmatic level. For example, the spoken utterance “the meeting went on

and on” accompanied by a circular gesture movement representing the lasting

nature of the meeting depicts a case of co-expressivity on the pragmatic level.

Pragmatic synchrony can often have an emphasizing or contrasting effect which

highlights the relevant information of the utterance (Kendon, 2004).
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Although McNeill’s synchrony rules were originally derived from a limited number

of direct observations, their validity has been backed up by several more recent

empirical studies, for example, Loehr (2007), Özyürek et al. (2007), and Kelly

et al. (2004).

Definition of Reference Units of Speech-Gesture Synchronization

Despite the general acceptance of above described synchrony rules, researchers

such as de Ruiter (2000) point out that the definition of synchronization is more

complex and problematic than it may seem:

“The conceptual representation (the ‘state of affairs’ [Levelt 1989] or

the ‘Idea Unit’ [McNeill 1992]) from which the gesture is derived might

be overtly realized in speech as a (possibly complex) phrase, and is not

necessarily realized overtly as a single word. Therefore, it is by no

means straightforward to unambiguously identify the affiliate of a given

gesture.” (p. 297)

McNeill (2005) agrees that the identification of what the gesture literature often

refers to as the lexical affiliate can indeed prove difficult, since it has been variously

interpreted. He adopts the definition introduced by Schegloff (l984) by specifying

the lexical affiliate to be the word(s) corresponding most closely to a gesture in

terms of meaning. This affiliate, however, has to be distinguished from the co-

expressive speech segment that might synchronize temporally with a gesture, but

not necessarily semantically. McNeill cites an explicative example of the distinction

between the lexical affiliate and co-expressive speech originally presented by Engle

(2000): a study participant attempting to describe a lock-and-key mechanism

said “lift them to a height, to the perfect height, where it [enables] the key to

move”. The word “enables” was temporally synchronized with the stroke of an

iconic gesture miming a key turning movement, thus representing the co-expressive

speech segment. The lexical affiliate, namely “key” or “key to move”, however, only

occurred after the gesture stroke. McNeill attempts to explain such co-expressivity

by interpreting the word “enables” combined with the turning gesture to convey

the concept of ‘being able to turn the key’ by lifting them (i.e., the tumblers) up.

This way, the newsworthy content is highlighted by means of complimentary, but

temporally synchronized, information via both modalities. On another note, this
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example and interpretation is in line with aforementioned claim stating that the

gesture stroke precedes and thus anticipates the lexical affiliate.

To simplify matters, and in light of the technical objective of the present work,

we shall define the term affiliate in the sense of a ‘conceptual affiliate’ rather than

a ‘lexical affiliate’ as follows:

Definition 1: The affiliate is defined as the co-expressive word or sub-phrase

in speech that conveys the same idea unit as its corresponding gesture.

To achieve this co-expressive synchrony, the gesture stroke onset generally precedes

or, at the latest, begins right at the onset of the stressed syllable (i.e., the nucleus)

of the affiliate. In the case of a static stroke (e.g., stroke hold of a deictic gesture),

the stroke phase is assumed to last for the duration of the affiliate; in the case of

a dynamic stroke (e.g., of an iconic gesture), the stroke phase is assumed to be

optionally followed by a post-stroke hold for the remaining duration of the affiliate.

This definition is in line with McNeill’s synchrony rules as described above and

further follows Kendon’s specification of a tone unit, which co-expresses an idea

unit together with its associated gesture phrase (see Figure 2.4).

At a higher level of speech-gesture communication, we can define a multimodal

utterance to represent an utterance (typically comprising one spoken sentence)

in which at least one sub-phrase is accompanied by a gesture. Such multimodal

utterance, in turn, is composed of one or multiple so-called chunks, which can

consist of speech or gesture, or both. For the latter case, in which both modalities

are used, we can adopt the following definition of a multimodal chunk from Kopp

(2003, p. 21):

Definition 2: A multimodal chunk of speech-gesture production is defined as

a pair of an intonation phrase and a co-expressive gesture phrase. Within each

chunk, the prominent concept (idea unit) is concertedly conveyed by a gesture and

an affiliate.

According to this definition, a multimodal utterance comprising several gestures

is considered to consist of multiple chunks, since each chunk can only contain

a single gesture. The hierarchical structure and organization of a multimodal

utterance, as well as the synchronization within a multimodal chunk as described

above is illustrated in Figure 2.5. Corresponding cross-modal synchronization
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Affiliate Gesture

Nucleus Stroke

Idea

Unit

Multimodal

Utterance

Multimodal
Chunki

(= Locution + Gesture Unit)

Intonation Phrase Gesture Phrase

(Multimodal)
Chunk1

(Multimodal)
Chunkn

Figure 2.5: Hierarchical structure of a multimodal utterance and synchronization

within a multimodal chunk; partly derived from Kendon (1980) and Kopp (2003).

dependencies between units of an intonation phrase and a gesture phrase are

visualized by double-headed arrows.

Cross-Modal Adaptation

In order to model multimodal communication based on speech and gesture for

an artificial communicator like a robot, it is important to understand how the

two modalities adapt to each other during the process of synchronization. A

common view, also expressed by Kopp (2003, p. 22) with reference to Levelt et al.

(1985) and de Ruiter (1998), assumes that in multimodal communication, gesture

predominantly and more flexibly adjusts to speech, especially following the onset

of speech and gesture production. This type of alignment is typically achieved via

hold phases which may be inserted before or after a gesture stroke. Such view is

in line with what McNeill (1992) refers to as a gesture’s anticipation of speech.
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Kendon (2004), however, opposes this view by giving a series of examples

which clearly demonstrate the existence of two cases: firstly, instances in which

gesture adjusts to speech by means of adequately timed preparation or additional

hold phases; secondly, instances in which speech adapts to gesture by means of

pauses which do not arise from word searches or difficulties in speaking.5 He

summarizes his findings as follows:

“The precise way in which a coincidence is achieved between a gesture

phrase and that part of the tone unit to which it is related semantically

appears to be variable. In our interpretation, this means that the

speaker can adjust both speech and gesture one to another as if they

are two separate expressive resources which can be deployed, each in

relation to the other, in different ways according to how the utterance

is being fashioned.” (p. 126)

In view of the technical objective of the present work and the need to model

the synchronization process between speech and gesture for artificial communi-

cators, we shall adopt the latter notion presented by Kendon. Thus, we assume

cross-modal adaptation to be possible both for gesture by means of anticipating

preparation and hold phases and for speech by means of pauses. However, on the

basis of the findings presented by Levelt et al. (1985) and de Ruiter (1998), we

further assume gesture adaptation to speech to predominate in speech-gesture

synchronization. That means, synchronization between the two modalities is pri-

marily achieved by means of gesture adapting to running speech, and secondarily

by means of speech pausing to adapt to continuous gesturing.

A more detailed description and review of the relevant literature concerning

the concept of speech-gesture synchronization can be found in de Ruiter (1998,

p. 5–48) and Kopp (2003, p. 22–28, in German).

2.2.2 Semantic Relationship

Although gesture and speech occur in close temporal synchrony and typically

convey the same idea unit, they can express their meanings in very different

5Although not explicitly mentioned by Kendon (2004), this implies an adaptation of the

speech rate to gesture: generally, speech rate may be either decreased by means of pauses or by

speaking more slowly, or it may be increased by speaking faster.
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ways (McNeill, 1992). In other words, the semantic relationship between the two

communication channels can vary depending on how the information conveyed

by one modality relates to the other. Generally, the relationship between gesture

and speech content can be divided into two broad classes which are described in

the following.

1) Redundant. If a gesture conveys identical information as the accompanying

speech, it is referred to as being redundant or matching (Hostetter and Alibali,

2008; Church and Goldin-Meadow, 1986). Using such gesture is considered

to help illustrate or emphasize what is being said. For example, a speaker

could draw a circle in the air with his index finger while saying “he took the

[round] cup coaster”. This iconic gesture is redundant in that it illustrates the

object property, namely its round shape, when this attribute is simultaneously

expressed via speech. By definition, the information conveyed in a redundant

gesture is always congruent with the information content expressed via speech.

2) Non-redundant. If a gesture conveys information that is not simultaneously

conveyed in the accompanying speech, it is referred to as non-redundant,

complementary, supplementary, or mismatching (Alibali et al., 2000; Melinger

and Kita, 2004; Hostetter, 2011; Church and Goldin-Meadow, 1986). The use

of such gesture provides additional information which might also be important

to the message conveyed, but is not explicitly expressed in speech. Like in the

above example, a speaker could draw a circle in the air with his index finger,

however, this time saying “he took the [cup coaster]”. In this case, information

about the shape of the object is only conveyed in the gesture. Moreover, non-

redundant iconic gestures are frequently used to provide additional information

about the manner in which an action or movement is performed, when this

is not expressed in accompanying speech. This is particularly true for verbs

that describe movement without specifying the exact manner of motion, such

as “go”, “come”, or “leave” (Cassell et al., 1998). In some instances, gestures

may communicate information that is complementary at the temporal or

prosodical level of the speech affiliate, but not necessarily at the level of the

discourse, e.g., if the same related information is given in a preceding or

following phrase of speech (Alibali et al., 2000). Non-redundant gestures can

be further subdivided into congruent and incongruent gestures in relation

to speech. While gestures of the first subgroup convey information that is

complementary but semantically consistent with what is expressed in speech,
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the latter subgroup describes gestures whose information content contradicts

the message conveyed in speech. However, except by mistake (e.g., when

saying “turn right here” while pointing to the left side), such incongruent

speech-gesture mismatches do not typically occur in the discourse of normal

adults (Cassell et al., 1998). Yet they are occasionally used as stimuli in gesture

studies, in which the semantic or temporal relationship between speech and

gesture is deliberatively manipulated to investigate the resulting effects on

the listener (e.g., McNeill et al., 1994; Cassell et al., 1998; Kelly et al., 2004;

Özyürek et al., 2007; Galati and Samuel, 2011; Habets et al., 2011).

Given these two classes of possible semantic relationships between speech and

gesture, the question regarding their potentially different communicative value

arises. In other words, although both redundant and non-redundant gestures are

likely to have an effect on communication, they may do so in different ways.

Addressing this issue as part of an extensive meta-analysis, Hostetter (2011)

investigated whether gestures are more communicative – in terms of being more

informative – when they are non-redundant with speech as opposed to when

they are redundant. Based on a comparison of the findings from a number of

studies, she comes to the conclusion that indeed gestures have a larger effect on

communication when they are not completely redundant with the accompanying

speech. This insight may not be surprising, since listeners arguably gain only

little from seeing the speaker’s gesture when all the important information is also

expressed in speech.

Importantly though, research suggests that listeners generally notice informa-

tion that is exclusively conveyed in a speaker’s gesture and frequently integrate

this information when later on asked to retell the content they had listened to (e.g.,

McNeill et al., 1994; Cassell et al., 1998). This implies that listeners frequently

pick up the meanings expressed by gestures and incorporate them into their

spoken narrative. Such ‘speech-gesture binding’, as McNeill (2005) calls it, has

been shown to work both ways: Kelly et al. (1999) found that study participants

recalled information that was actually expressed in speech as having been gestural.

Accordingly, these experiments reveal that gesture and speech exchange semantic

information freely and spontaneously in the listener’s memory.

Despite the fact that non-redundant gestures communicate more than re-

dundant gestures, both types of gesture have been shown to be beneficial to

communication in multiple ways. Firstly, listeners who see a speaker’s gestures
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have better immediate comprehension of the speaker’s semantic intent than when

speech is not accompanied by visible gestures (Hostetter, 2011, based on the

computed mean effect size across 63 study samples in her meta-analysis). Sec-

ondly, several studies suggest that seeing gestures during interaction can be a

beneficial aid for subsequent information retrieval and memory with regard to the

communicated information (e.g., Kelly et al., 1999; Galati and Samuel, 2011).

These findings are particularly true for deictic and representational gesture

(Kelly et al., 1999, 2004; Beattie and Shovelton, 2001; Feyereisen, 2006). Thus,

they motivate the objectives of the present work, namely to endow a humanoid

robot with these types of co-verbal communicative gesture and, furthermore, to

investigate whether findings from human-human communication also hold true

for human-robot interaction (see RQ1).

2.2.3 Function of Co-Verbal Gesture

The previous section has focused primarily on how a speaker’s combined use of

speech and gesture affects the listener in an interaction. In fact, traditionally,

gestures were viewed to serve a communicative function by providing informa-

tion to listeners about the semantic content of the speaker’s utterance (Kendon,

1994; Krauss et al., 2000). Nowadays, however, this one-sided view is considered

outdated, as it fails to account for the many complex ways in which gestures can

contribute to communication, particularly in dependence on the type of gesture

employed. But if gestures are not primarily produced to facilitate comprehension

on the listener’s side, what other function do they serve?

As a matter of fact, some researchers claim that gestures convey only little or

no information to addressees, suggesting that gestures are not at all intended to

communicate (Krauss et al., 1991). This view typically stems from observations

disclosing that people gesture even when they cannot see each other (e.g., while

speaking on the telephone), thus showing that comprehension on the listener’s side

and communication in general are still effectively possible without gesture. Rimé

(1982), for example, measured the gesture rate in pairs of study participants who

had been instructed to converse about movies either with or without a partition

between them. He found that the frequency of gesture use was only slightly

reduced when participants could not see each other compared to when they could.

Furthermore, even blind speakers who have never observed gestures by others

have been shown to gesture while they speak (Iverson and Goldin-Meadow, 1997).

34



2. GESTURE AND SPEECH IN HUMAN COMMUNICATION

Such findings have led some researches to believe that speakers do not use

gestures for the purpose of communicating to the listener, but primarily for

themselves, specifically to support lexical access in spontaneous speech (Rimé

and Schiaratura, 1991; Krauss et al., 1991, 1996; Hadar and Butterworth, 1997).

This view has been backed up by studies in which speakers were prevented from

gesturing: compared to when they were able to gesture, the restriction was shown

to decrease speech fluency with regard to spatial content (Rauscher et al., 1996)

and to increase retrieval failures in a ‘tip-of-the-tongue’ situation (Frick-Horbury

and Guttentag, 1998).

Given these findings, researchers increasingly share a view that attributes a

cognitive function to gesture. This, however, does not necessarily preclude the

communicative function traditionally assigned to gesture, especially since other

studies showed that listeners do attend to information conveyed by the speaker’s

gestures, particularly when they are non-redundant with speech (Goldin-Meadow

et al., 1992; McNeill et al., 1994). Moreover, there is evidence that, depending

on the experimental task, speakers actually gesture more when the interlocutor

can see them. For example, Cohen and Harrison (1973) and Cohen (1977) found

that when asking participants to give route directions, far more (mainly deictic)

gestures were used when speaker and listener were mutually visible than when

they were not.

Bavelas and colleagues conducted similar experiments in which they manipu-

lated the presence or visibility of interlocutors (Bavelas et al., 1992; Bavelas, 1994);

the results led them to distinguish between interactive gestures and topic gestures.

The purpose of interactive gestures is to help maintain the conversation, e.g., by

cross-referencing new content to the general theme of the conversation, indicating

agreement with or understanding of the other’s contribution, or by managing turn

taking. Hence, interactive gestures refer directly to the interlocutor and provide

no information on the topic of discourse. In contrast, topic gestures depict aspects

of utterance content, expressing semantic information that is directly related to

the topic of conversation. Importantly though, Bavelas et al. showed that when

speakers could not see each other, they refrained from using interactive gestures

but continued to use topic gestures.

In a later experiment in which participants described a complex picture either

in a face-to-face conversation, via telephone or in a monologue to a tape recorder,

Bavelas et al. (2008) identified yet another dimension that influenced the speaker’s
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use of gestures. They showed that not only visibility affects the type and frequency

of gesturing – e.g., interactive and non-redundant gestures were most used in the

face-to-face condition – but also highlighted the role of dialogue when speaking.

They basically argued that, despite the lack of visibility, speakers in the telephone

condition did not use significantly less topic gestures than in the face-to-face

condition because they were engaging in a dialogue.

Furthermore, Bavelas et al. (2008) made a good case for the importance of the

stimulus used in studies of this kind, arguing that findings from previous studies

differed substantially due to the varying nature of experimental tasks. These

ranged widely, e.g., from completely non-visual material (Krauss et al., 1995,

Exps. 1 & 2, sound and taste stimuli), to abstract topics like discussing opinions

on movies (Rimé, 1982), to giving spatial directions (Cohen and Harrison, 1973;

Cohen, 1977), to describing a scene from a cartoon (Bavelas et al., 1992; McNeill

et al., 1994), or other highly visual material (Bavelas et al., 2008). In fact, it was

shown that the experimental stimulus characteristics, i.e., whether the assigned

topic was likely to elicit a high gesturing rate or not, have a significant effect on

measured gesture rates (Krauss et al., 1995; Bavelas et al., 2002).

In summary, past research on the function of gesture suggests that different

types of gestures are used in different communicative settings to serve different

– communicative or cognitive – functions. Depending on their function, in turn,

gestures are likely to have different origins within the speaker’s mind (Krauss

et al., 2000). Indeed, many attempts have been made to conceptualize the exact

origin of and mechanisms behind co-verbal gesture production, yielding a great

variety of theoretical models to be found in the gesture literature. Since a number

of extensive overviews presenting the various models of gesture production have

already been given by other authors (e.g., Kopp, 2003; Bergmann, 2011), the

following subsection will be limited to a brief summary of these different views.

Theoretical Models of Gesture Production

As becomes obvious from the above written, the exact function and thus the

underlying model of gesture production in human discourse is still a subject to

controversial discussion. The controversy is related to the two different views

regarding the relationship between speech and gesture as mentioned at the begin-

ning of Section 2.2: while one suggests that the two modalities are arranged in a

functional hierarchy, typically with speech being the primary modality (Krauss
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et al., 2000), the second view considers speech and gesture to be operating as equal

partners in communication (Kendon, 2007). This crucial distinction is reflected

in the different psychological and psycholinguistic models and theories that have

been proposed in the gesture literature, based on which they can be roughly

divided into two sets (Gullberg et al., 2008).

The first set, which is based on the ‘gesture as auxiliary’ assumption, ei-

ther views gestures as serving and facilitating lexical retrieval (Lexical Retrieval

Hypothesis, Krauss et al., 2000) or considers gestures as contributing to the con-

ceptual planning and packaging of imagistic content for verbalisation (Information

Packaging Hypothesis, Freedman, 1977; Alibali et al., 2000). The second set of

model-based theories regards gestures as an integral part of utterance production;

however, they vary in focus. Either they support the ‘gestures as a window into

the speaker’s mind’ view (Growth Point Theory, McNeill, 1992, 2005; McNeill

and Duncan, 2000), or they concentrate on the interaction between imagistic and

linguistic thinking (Interface Hypothesis, Kita and Özyürek, 2003), or they focus

on the communicative intention which drives the two communication channels to

form a coherent multimodal utterance (e.g., Sketch Model, de Ruiter, 2000).

An illustrative view of the classification of the models presented in this section

is displayed in Figure 2.6. Note that the list of theories and models respectively

given in this short overview is by far not exhaustive, as new models are constantly

emerging and old models are frequently being updated. For a more detailed review

see, for example, Bergmann (2011).

Theoretical Gesture 
Production Models

Speech primary,
gesture auxiliary

Speech & gesture
as equal partners

Lexical 
Retrieval 

Hypothesis

Information 
Packaging 
Hypothesis

Growth Point 
Theory

Interface 
Hypothesis

Sketch Model

Figure 2.6: Theoretical models of gesture production; adaptation of classification

scheme as proposed by Gullberg et al. (2008).
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2.3 Summary

In view of the research objectives of this thesis, namely to endow a humanoid

robot with synchronized speech and gesture and further to evaluate the robot’s

communicative behavior, it is reasonable to consider and investigate such multi-

modal communication in humans as a starting point. In fact, in order to model

realistic and acceptable communicative behavior for an artificial communicator, a

thorough understanding of the concept of speech-accompanying gesture as well

as the precise interplay between the two modalities is crucial. For this reason,

the relevant literature from the field of gesture research was reviewed in this

chapter, focusing on psychological and psycholinguistic communication theories.

Furthermore, definitions of relevant terminology were provided.

Initially, Section 2.1 provided an isolated view on the phenomenon of human

gesture. A number of definitions of the term gesture were first given in 2.1.1,

before presenting Kendon’s Continuum as a representative classification scheme for

categorizing different types of gesture in 2.1.2. It comprises five different gesture

classes ordered along a horizontal axis, namely (1) gesticulation, (2) language-

like gestures, (3) pantomimes, (4) emblems, and (5) sign languages. Moving

from gesticulation to sign languages along this axis, each gesture class varies with

regards to its relationship to a) speech, b) linguistic properties, and c) conventions.

The first class, gesticulation, was identified to stand out with a number of

characteristics: first, only gesticulation is obligatorily accompanied by speech;

second, gesticulation is produced spontaneously and unwittingly; finally, it does

not follow any specified rules or conventions. Representing the dominating gesture

class in human discourse and conversation, gesticulation is also referred to as

conversational gesture and was thus highlighted as being central to the work

presented in this thesis.

Based on a subsequent, more detailed breakdown of the types of co-verbal

gestures which the gesticulation class can comprise, three gesture types were

pointed out as being relevant to the following parts of the thesis: (1) iconics,

(2) metaphorics, and (3) deictics. The first two types taken together are also

referred to as representational gestures; all three types together, in turn, have

been labeled lexical movements, since they are related to the semantic content of

the accompanying speech. From this point on, these three types will represent

what is meant by the term gesture.
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In Section 2.1.3, the structure of gesture was investigated, yielding a hierarchical

organization on three levels. At the top level, a gesture unit spans the period

between two successive rest positions of the limbs. It comprises at least one

gesture phrase, which equals what is typically referred to as a ‘gesture’. This, in

turn, consists of up to five gesture phrases: preparation, pre-stroke hold, stroke,

post-stroke hold, and retraction. Except for the stroke phase, all other gesture

phases are optional and may be either partially or completely skipped, e.g., when

multiple gestures are performed in a row.

Following the detailed description of the basic concepts related to gesture,

in Section 2.2 the combination of speech and gesture was brought into focus.

Although no universal definition of the exact relationship between the two modal-

ities exists, a number of aspects that shape this relationship were elucidated. At

first, in 2.2.1, speech-gesture synchrony was reviewed with a focus on the temporal

relationship that regulates the interplay between the two modalities. In particular,

three temporal synchrony rules as proposed by McNeill (1992) were presented:

(1) the phonological synchrony rule stating that the gesture stroke precedes

or ends at, but never follows, the prominent syllable of speech; (2) the semantic

synchrony rule claiming that speech and gesture convey the same meanings

whenever they co-occur; (3) the pragmatic synchrony rule stating that speech

and gesture serve the same pragmatic functions.

Subsequently, in anticipation of the technical implementation presented in the

second part of this thesis, a couple of definitions were given to specify distinct ref-

erence units of the speech-gesture synchronization process: Definition 1 introduced

the term affiliate which is specified as the word or sub-phrase that is associated

with the accompanying gesture; Definition 2 specified the term multimodal

chunk as a pair of an intonation phrase and a co-expressive gesture phrase which

concertedly convey the common idea unit.

A further point of interest elucidated with regard to the synchronization of

speech and gesture was the process of cross-modal adaptation. It was found that

adaptation is possible both for gesture by means of anticipating preparation and

hold phases, and for speech by means of pauses. It is assumed that synchroniza-

tion is primarily achieved by means of gesture adapting to running speech, and

secondarily by means of speech pausing to adapt to continuous gesturing.

Section 2.2.2 was dedicated to the investigation of the semantic relationship

that speech and gesture may establish during the communicative process. Impor-
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tantly, two relationship classes were identified: firstly, redundant gestures convey

identical information as the accompanying speech; secondly, non-redundant

gestures convey information that is not simultaneously conveyed in the accom-

panying speech. The latter class can be further subdivided into congruent and

incongruent gesture, depending on whether or not the information conveyed in

the gesture is semantically consistent with what is expressed in speech. With

reference to empirical findings from the gesture literature, it was further found

that gestures are more communicative when they are non-redundant rather than

redundant with speech. Generally though, both types of gesture have been shown

to be beneficial to communication, as they can foster both the listener’s immediate

comprehension and subsequent information retrieval and memory. These findings

are particularly true for deictic and representational (i.e., iconic and metaphorical)

gestures; thus, they substantiate the choice to focus on these gesture types in light

of the objectives of the present work.

Finally, in Section 2.2.3, the function of co-verbal gesture was examined,

yielding two major functions which gestures are viewed to serve: first, by providing

information for the listener about the semantic content of the speaker’s utterance,

a gesture may serve a communicative function; second, as gestures have been

shown to support the speaker in terms of lexical access in spontaneous speech,

they are considered to further serve a cognitive function.

Concluding the review of this chapter, an overview of different theoretical

models of gesture production was given. The theories and models respectively

can be roughly divided into two sets: theories of the first set are based on the

assumption that speech is the primary modality of an utterance, while gesture is

subordinate and serves an auxiliary function; theories of the second set, in turn,

consider speech and gesture to be equal partners in the production of multimodal

utterances.
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“If literature isn’t everything, it’s not worth

a single hour of someone’s trouble.”

Jean-Paul Sartre

Chapter 3

Artificial Communicators: State of

the Art

This chapter sets out to provide an overview of the state of the art of computational

approaches aiming at the generation and evaluation of speech and gesture for

artificial communicators. In this way, it establishes the technical context for

the implementation presented in Part II as well as the empirical context for the

experiments described in Part III of this thesis.

Two research areas are relevant to the present work: firstly, computer ani-

mation in which researchers have developed frameworks to realize multimodal

communication behavior in virtual conversational agents; secondly, robotics in

which researchers have explored various approaches to generate non-verbal behav-

iors along with speech in humanoid robots. The challenges are similar in that both

research areas demand a high degree of control and flexibility so that human-like

motion can be adapted to a system with non-human kinematics. The levels of

complexity encountered in each field, however, are not equivalent. Although

the range of different body types found in virtual embodied agents is manifold

and hence challenging, character animation has less restrictive motion than even

the most state-of-the-art humanoid robots (Pollard et al., 2002). For example,

animation of virtual agents reduces or even eliminates the problems of handling

joint and velocity limits; in a robot body, however, these have to be explicitly

addressed given real physical restrictions.

The chapter is organized as follows. In Section 3.1 the first area of interest

is explored by presenting and assessing various scientific frameworks that endow

virtual agents with multimodal communicative behavior. In addition, evidence

resulting from the empirical evaluation of such systems is provided. In Section

3.2 the second field of interest is introduced by presenting a number of related

robotic systems from both technical and empirical points of view.
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3.1 Virtual Agents

In contrast to the research area of robotics, the challenge of generating speech and

co-verbal gesture has already been tackled rather extensively in various ways within

the domain of virtual agents. Such agents, also known as Virtual Humans (VHs),

Intelligent Virtual Agents (IVAs), and Embodied Conversational Agents (ECAs),

have been around for over a decade. As a result, many technical implementations

have been described in the relevant literature, some of which are presented in the

following (3.1.1). Findings resulting from empirical studies that investigate the

effect of such multimodal communicative behavior on human-computer interaction

(HCI) using virtual agents are then summarized (3.1.2).

3.1.1 Technical Implementations

Existing implementations vary across the different levels of the behavior generation

pipeline which has been introduced in the first chapter and is illustrated in

Figure 1.3. Since the present thesis is concerned only with behavior realization

at the lowest level of the pipeline, the description of existing frameworks in this

chapter will mainly focus on differences at this level. Moreover, since the actual

object of investigation is multimodal behavior realization for humanoid robots,

the review of virtual agent platforms is not intended to be exhaustive. Rather,

by outlining a selection of frameworks, it gives an idea of the beginnings of ECA

research and the difficulties already encountered when generating synchronized

speech and gesture for computer animated agents. This, in turn, will provide a

general understanding of the increasing challenges that have to be tackled when

realizing such behaviors on a physical robot platform.

Animated Conversation

The first ECA system to provide time-based synchronization of speech and gesture

at the word and syllable level was introduced by Cassell et al. (1994). Drawing

inspiration from psychological gesture research, their Animated Conversation

system models the generation of both verbal and non-verbal behavior such as

hand gesture, gaze, and facial expression in a hierarchical system architecture

as illustrated in Figure 3.1. The multimodal capabilities of the system are

demonstrated in an interaction between two autonomous graphical agents.
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Figure 3.1: Architecture of the Animated Conversation system and generated example

output (Cassell et al., 1994; Cassell, 1996).

At the top level of the system, the ‘Dialogue Planner’ assigns gestures to the

rhematic content of speech, i.e., the part that provides some new information

about the discourse theme. This process is based on a simple rule-based approach:

if the semantic content of speech is literally or metaphorically spatial, an iconic

or metaphoric gesture respectively is selected; if the content is spatializable or

refers to an entity, a deictic gesture is selected; otherwise, if the new information

in discourse falls into neither of these categories, a beat gesture is selected.

At the ‘Gesture & Utterance Synchronization’ level, the coordination of speech

and gesture is performed heuristically by adapting gesture timing to phoneme

time information derived from the speech synthesizer. That is, start and end times
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of phonemes are used to parametrize gesture time (Cassell, 1996). Apart from

this synchronization step, speech synthesis and gesture generation are prepared in

two separate processes that run independently from each other in a feedforward

manner. Each gesture has a fixed duration and is generated from a library of

predefined templates which is called upon by the animation system.

This approach has several limitations. First, the use of predefined gesture tem-

plates limits the flexibility and variety of generated co-verbal gesture. Additional

gestures have to be hand-crafted and added to the lexicon together with the timing

information for both the length of the preparation time required and the total

execution time of the gesture. This fixed timing information leads to the second

major limitation: given the incapacity to adjust gesture speed, the animation of a

gesture can only be handled and scheduled as an atomic unit. If the total duration

of a prospective gesture exceeds the time given by an intonation phrase, it is

completely skipped. Finally, the separation and isolation respectively of the two

planning processes for speech and gesture poses another issue: after scheduling a

gesture for a spoken utterance, no feedback information about the current state

of the animation system is sent back to the planning module, making subsequent

adjustments impossible. This ballistic approach also affects the processing of

subsequent multimodal utterances, which are prepared completely independently

from each other. Ultimately, the Animated Conversation system suffers from a

lack of real-time capabilities in the generation of multimodal behaviors and does

not allow for interaction with a real user (Noma et al., 2000; Cassell et al., 2000).

REA

A further approach introduced by Cassell et al. (2000) is the REA (Real Estate

Agent) system in which a female virtual agent operates as a real estate salesperson.

While interacting with a human user, the agent presents various real estate

properties and provides detailed visual and verbal information about a particular

property upon the user’s request. The system builds on experience gained from the

Animated Conversation project, however, it is more advanced in that it can handle

bi-directional communication. That is, in addition to the real-time generation

of multimodal utterances, the system also attempts to process and understand

multimodal input from the user.

The underlying system architecture (see Figure 3.2) is based on sequential

processing of user input and provides different modules for each processing stage of
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Figure 3.2: Architecture of the REA system and generated example output (Cassell

et al., 2000).

the discourse. First, the ‘Input Manager’ module handles input data from various

modalities, as collected by two video cameras mounted above the agent’s screen

and by a microphone attached to the user. The module then decides whether the

data requires an instant, hardwired reaction, e.g., greeting behavior to stimuli

such as the appearance of the user, or deliberative discourse processing.

The ‘Deliberative Module’ handles input from both interactional behaviors

and propositional behaviors. Given such input, it maintains a discourse model

for the interpretation of the current conversation, e.g., by keeping records of

previous statements made by both the user and the agent. For this purpose, it

employs an ‘Understanding Module’ and a ‘Decision Module’ with reference to a

global knowledge base. This, in turn, results in a formulated sequence of actions

that express the desired communicative or task goal. The ‘Generation Module’

subsequently translates the chosen discourse functions into surface behaviors by

producing a set of primitive actions including speech, gesture, and facial expression.

Finally, and most importantly with regard to the present work, the ‘Action

Scheduler’ module represents the motor controller in which the multimodal output

actions for the embodied agent are coordinated and scheduled at the lowest level.

During the process, the module falls back on a set of atomic modality-specific

commands and subsequently executes them in a synchronized manner. To achieve
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such cross-modal synchrony, gesture timing is heuristically adapted to the timing

of ballistically generated speech, in a similar fashion as realized in the Animated

Conversation system. Furthermore, execution of behaviors is event-driven, i.e.,

event conditions are assigned to each output action, specifying when exactly and

in what interdependence the action should be executed. Besides the scheduler,

the output system further consists of ‘Output Devices’ comprising an animation

component as well as a rendering component.

Despite its elaborate architecture, the REA system is still limited in some

aspects. Cassell et al. (2000) particularly point out major weaknesses with regard

to timing as well as to synchrony of multimodal behaviors. Firstly, the short

response time needed for hardwired reactions stands in stark contrast to the

great latency caused by the deliberative discourse processing module, leading to

inconsistencies in the agent’s overall behavior. Secondly, synchronization of verbal

and non-verbal behaviors is not always successfully accomplished by the system,

e.g., a hand gesture may occur after its co-expressive speech segment has been

uttered. As stated by the authors, “the problem is due primarily to the difficulty

of synchronizing events across output devices, and of predicting in advance how

long it will take to execute particular behaviors” (Cassell et al., 2000, p. 59).

Adding to this issue is the fact that gestures are handled as atomic predefined

keyframe animations which, apart from some open parameters, cannot be flexibly

timed and adjusted, e.g., to varying speed demands. Finally, once triggered

by a preconditioned event, both verbal and non-verbal behaviors are executed

ballistically, i.e., the system does not provide any means for feedback-based

adjustments of miscalculated scheduling.

BEAT

Yet another system proposed by Cassell et al. (2001) is the Behavior Expression

Animation Toolkit (BEAT ). Based on a modular architecture (see Figure 3.3),

the system enables an animated virtual human to generate appropriate and

synchronized non-verbal behaviors and synthesized speech from typed input text.

For this purpose, it draws upon rules derived from research in human conversational

behavior which are represented in a knowledge base as well as in a discourse model.

More specifically, the processing of the user’s input is performed in real-time by

three major modules which are further illustrated in the following.

First, with reference to a discourse model, the ‘Language Tagging’ module
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Text Input

Figure 3.3: Architecture of the BEAT system and generated example output (Cassell

et al., 2001).

analyzes the plain-text input and annotates it with XML tags indicating linguistic

and contextual features. For this, the text is first broken up into clauses, each of

which is considered as representing a proposition. Clauses are typically recognized

by the placement of verb phrases or punctuation. Based on heuristics proposed by

Hiyakumoto et al. (1997), each clause is divided into smaller units of information

structure to distinguish the discourse theme (i.e., the present topic) from the

rheme (i.e., new subject or information). These units, in turn, are further broken

down into word phrases which either describe an action or an object. Finally, at

the word level, new words that have not previously occurred in the discourse as

well as contrasting words are tagged according to these additional properties.

The resulting XML trees are subsequently forwarded to the ‘Behavior Genera-

tion’ module which consists of two sub-modules. First, the ‘Behavior Suggestion’

module which uses a set of rule-based behavior generators augments the XML text

with suggestions for appropriate non-verbal behaviors. Each of these generators

is responsible for a different kind of behavior, e.g., the ‘beat gesture generator’

suggests beat gestures for rhematic discourse information when no other gesture

is found to be appropriate. Resulting behavior suggestions are specified with

a tree node that defines the time interval in which they are active, a priority

value that can be used to resolve potential conflicts, degrees of freedom (DOF)

required for animation, and the gesture specification needed for rendering. The

module also determines whether different behavior suggestions can co-articulate,
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i.e., occur during other behaviors using the same DOF. Given the updated tree

which contains many potentially incompatible behavior suggestions, the ‘Behavior

Selection’ module then applies a set of filters to cut down the choice of behaviors

to the set of behaviors that eventually will be used for animation. For this, filters

can delete conflicting suggestions or those with a priority falling below a predefined

threshold.

Finally, in the last step of processing, the ‘Behavior Scheduling’ module converts

the incoming XML tree into a set of time-based instructions to be executed by the

animation system. Cross-modal synchrony is achieved by constructing a schedule

for the animation subsystem based on word and phoneme timing information

obtained from the text-to-speech (TTS) engine. At the final stage of scheduling,

the abstract animation schedule is translated into a format specific to the animation

subsystem in use, typically defined as a continuous keyframe animation.

Although the toolkit is extensible, e.g., by allowing for new generator rules as

well as predefined gestures to be later added to the system, it has similar limitations

as its predecessors. Again, the level of animation is restricted to lexicon-based,

predefined animations of set durations. This constrains the flexibility of the

system given its inability to adapt the gesture’s execution time, e.g., by stretching

or shortening it. At the same time, synchronization is a unidirectional process

in which synthesized speech cannot be modulated to adapt to gesture timing.

Finally, as in the previously presented systems, speech and gesture are executed

ballistically in BEAT, which prevents further adjustments once behaviors have

been scheduled and sent to the realization pipeline.

GRETA

The interactive expressive GRETA system (Hartmann et al., 2002, 2005) is another

example of a real-time animated conversational agent. The female character is able

to communicate with a human user by means of verbal and non-verbal behaviors

such as gestures, head movements, gaze, and facial expressions. In view of the

present work, the system’s modular Gesture Engine is of particular interest and

is illustrated in Figure 3.4. The engine interprets an utterance file specified in

the Affective Presentation Markup Language (APML; DeCarolis et al., 2004) and

generates the designated multimodal behavior on the GRETA agent.

For this, specified speech output is first processed by the TTS engine Festival

(Black and Taylor, 1997) to obtain phoneme timing information which is required to
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Figure 3.4: Architecture of the Gesture Engine of the GRETA system and generated

example output (Hartmann et al., 2005).

synchronize gesture to speech. Markup tags describing communicative functions

are considered for gesture matching and are extracted by the ‘TurnPlanner’.

Based on a straightforward lexical lookup, the ‘GesturePlanner’ then assigns

predefined prototype gestures stored in the ‘GestureLibrary’ to the communicative

function tags. Given their abstract specification and timing information, the

‘MotorPlanner’ concretizes the gesture prototypes by calculating joint angles and

timing for each keyframe of the gesture animation. Finally, a set of ‘Interpolators’

generates intermediate frames for the complete animation file which is then

executed concertedly with the synthesized sound file.

Similar to the above described virtual agent systems, the GRETA framework

is limited in that gesture timing is solely determined by speech timing. To account

for this limitation, gesture preparation and retraction phases are to some extent

adjustable within their predefined time ranges, and intermediate rest poses are

inserted if the time between two gestures is too long for a direct transition. In
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addition, the prototype gestures stored in the gesture library can be parametrized

at different levels of the planning pipeline, e.g., by modulating the spatial or

temporal extent, or the smoothness and continuity of the movement (Hartmann

et al., 2005). Nevertheless, the underlying scheduling algorithm is completely

deterministic. This means, all time constraints are set a priori, i.e., before the

actual behavior execution which is then performed ballistically with no possibility

of on-line adjustment. This results in limited flexibility of the system, which

is further fortified by the lexicon-based storage and usage of predefined gesture

templates.

MAX

In contrast to all of the above described approaches, the system underlying the

virtual agent MAX (Multimodal Assembly eXpert) is the first to provide for

mutual adaptation mechanisms between the timing of speech and gesture (Kopp

and Wachsmuth, 2004). It further builds upon an integrated architecture in which

the planning of both content and form across both modalities is coupled (Kopp

et al., 2008), taking into account the meaning conveyed in non-verbal utterances.

Operating as the agent’s real-time behavior realizer, the Articulated Com-

municator Engine (ACE) aims at generating lifelike, synchronized verbal and

non-verbal behaviors in a natural flow of multimodal behavior. ACE has been

employed in a number of research projects and is currently used as an action

generation framework in multiple virtual agent systems besides MAX, for example,

NUMACK (Kopp et al., 2004).

The multimodal production model of ACE draws inspiration from McNeill’s

Growth Point Theory1 of human communication (Sowa et al., 2008), according

to which speech and gesture are tightly coupled and co-express the same idea

unit2 (McNeill, 1992). It is further based on an empirically suggested assumption

referred to as the segmentation hypothesis (Kopp and Wachsmuth, 2004), which

claims that the production of continuous speech and gesture is organized in

successive segments. Each of these segments, in turn, corresponds to what has

been previously defined as a multimodal chunk of speech-gesture production

(see Definition 2, Chapter 2.2.1), comprising a pair of an intonation phrase and

1See Chapter 2.2.3
2See Chapter 2.2.1 and Figure 2.4
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a co-expressive gesture phrase. That means, complex utterances with several

different gestures consist of multiple successive chunks.

As a result of this approach, the innovative quality of the ACE framework

particularly lies in its incremental on-line scheduling of multimodal behavior for

virtual agents, which handles cross-modal interactions at different levels of an

utterance. This corresponds to mutual adaptations that are believed to take

effect when humans synchronize co-expressive elements of the two modalities

(Sowa et al., 2008). The modular ACE system architecture implementing this

theory-driven approach is illustrated in Figure 3.5 and is briefly elucidated in

the following. More detailed information about the underlying mechanisms and

relevant implementation details are further provided in Chapter 4.2.1.

It is assumed that, before ACE comes into play at the behavior realization level,

the selection of appropriate actions has been taken care of by other, higher-level,

Preprocessor

Multimodal 
Utterance Plan

Realization Module

Motor 
Planner

Execution

FeedbackSynthesizer

TTS
System

Gesture PlanSpeech Output

Incremental 
Multimodal Scheduler 

Figure 3.5: Architecture of the Articulated Communicator Engine (ACE) of the MAX

system and generated example output.
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planners of the behavior generation pipeline3. The resulting multimodal behavior

description is converted into a format that can be processed by ACE. To this end,

a specification file is generated using the XML-conform Multimodal Utterance

Representation Markup Language (MURML; Kranstedt et al., 2002), based on

which gestures can be specified in two different ways.

Firstly, similar to the first three virtual agent systems described in this section,

gestures can be described in terms of keyframe animations. For this, each keyframe

specifies a part of the overall gesture movement pattern by describing the state of

each joint at a given time. Speed information for the interpolation between every

two successive keyframes and the corresponding affiliation to parts of speech are

obtained from assigned time identifiers. For use in ACE, keyframe animations can

be defined either manually or derived from motion capturing data from a human

demonstrator, allowing for the animation of virtual agents in real-time.

Secondly, gestures can be specified on a higher level of abstraction in a feature-

based representation format adopted from HamNoSys (Prillwitz et al., 1989), a

notation system for sign languages. This approach is based on the assumption

that the communicative intent of a gesture can be sufficiently described in terms

of spatio-temporal form features, corresponding to the posture of the meaning-

bearing stroke phase (Kranstedt et al., 2002). As with keyframe animations,

gesture affiliation to dedicated linguistic elements is determined by matching

time identifiers. Figure 3.6 illustrates an example of a feature-based MURML

specification for multimodal behavior generation, describing the co-verbal gesture

in an overt form. In the present work, the focus is on the generation of such feature-

based utterance descriptions, since this high-level definition of gestures in terms of

their spatial targets and form properties appears to be more biologically plausible

than the keyframe-based approach (see Chapter 4.2.1). Moreover, from a semantic

point of view, specifying gestures based on their overt form features reflects a

more conceptual approach to describing meaningful gestural body movements.

Once the ACE system has received the MURML input file, it is translated into

a multimodal utterance plan by the ‘Preprocessor’. The utterance plan is then

3See Kopp et al. (2008) and Bergmann and Kopp (2009) for more information on how this

is currently conducted in the MAX system. Note that it is also possible to refer to predefined

gestures stored in a ‘gesticon’, however, this is not a favored strategy, since it limits the flexibility

of the agent’s behavior.
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Figure 3.6: Example of a feature-based MURML specification for multimodal utter-

ances and the resulting gesture.

forwarded to the actual ‘Realization Module’ which contains the ‘Incremental

Multimodal Scheduler & Synthesizer’. This sub-module, in turn, which has access

to the text-to-speech system and the motor planner, plans and schedules the

behaviors of the two modalities so that they can be appropriately synchronized

during execution. The incremental scheduling and production of successive coher-

ent chunks is realized by processing each chunk on a separate blackboard running

through a sequence of different states as illustrated in Figure 3.7. Given an

utterance consisting of multiple chunks, the modalities are coordinated at two

different levels.

First, for intra-chunk scheduling, the gesture is timed such that its meaning-

bearing stroke phase starts before (0.3 seconds or one syllable) or with the linguistic

affiliate and completely spans it, if necessary by inserting a dedicated hold phase.

This temporal synchrony is mainly accomplished by the gesture’s adaptation to

the timing of speech, for which absolute phoneme timing information is obtained

from the text-to-speech system. Once scheduled and ready to be executed, speech

and gesture run ballistically within a chunk, i.e., their execution is unaffected by

the progress of the other respective modality.

Second, for inter-chunk scheduling between two successive chunks, both speech

and gesture can anticipate the forthcoming chunk and adapt to it depending on

their timing. For gesture, this adaptation referred to as co-articulation effects

may range from the insertion of an intermediate rest pose to a direct transition
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Incremental Multimodal Scheduler

Figure 3.7: Incremental multimodal scheduler in ACE running through a sequence of

processing states (adapted from Kopp and Wachsmuth, 2004).

movement skipping the retraction phase or parts thereof. For speech, a silent

pause may be inserted between two intonation phrases for the duration of the

preparation phase of the following gesture. Such adaptive flexibility in the form of

inter-chunk synchrony is achieved by a global scheduler which plans the following

chunk in advance while monitoring the chunk currently in execution. Once the

predecessor has been executed, the plan for the next chunk may be refined based

on the current state of speech and gesture generation. It is not until this moment

that animations satisfying movement and timing constraints now determined are

created. This highly flexible level of generativity builds upon the ability of ACE to

generate all animations that are required to drive the agent’s skeleton in real-time

and from scratch (Kopp and Wachsmuth, 2004).

In summary, the ACE system attempts to overcome some of the issues found in

the previous frameworks presented above, based on the implementation of several

innovative features. Specifically, these are expressed in the level of flexibility pro-

vided by the ACE scheduler as well as the possibility to generate gestures without

the use of predefined templates or detailed keyframe descriptions. However, despite

the increased degree of flexibility compared to the above described frameworks,

even in ACE the generation of speech and gesture suffers from some conceptual

shortcomings. In particular, the cross-modal synchronization mechanisms realized
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in the framework are not entirely realistically modeled. Despite providing for

mutual adaptation at the inter-chunk level, lacking adjustability within a chunk as

well as the ballistic generation of complete gesture and intonation phrases conflict

with findings from psychology (e.g., Kendon, 2004).

Addressing the challenge of flexibly scheduling and synthesizing multimodal

behavior, a few approaches using the newly established Behavior Markup Language

(BML; Kopp et al., 2006; Vilhjálmsson et al., 2007) have been introduced in recent

years, for example, SmartBody (Thiebaux et al., 2008), EMBR (Heloir and Kipp,

2010), and Elckerlyk (van Welbergen et al., 2010). Nevertheless, even at the present

time, ACE is still considered a very sophisticated framework for the animation of

virtual agents and is frequently extended with new features, including a fusion

with the Elckerlyk system for support of the BML standard. As a result, ACE

represents a suitable foundation for a speech-and-gesture generation system for

humanoid robots as envisaged by the present work.

3.1.2 Empirical Evaluations

In addition to the technical contributions presented in the area of embodied

conversational agents, there has also been active work in evaluating the effect of

multimodal communicative behavior in virtual agents. Several empirical studies

have focused on non-verbal behaviors such as gaze, nodding, or facial expressions,

partly in combination with emotions (e.g., Heylen et al., 2002; Buisine et al., 2006;

Kipp and Gebhard, 2008; Lee et al., 2010). Of more relevance to the present

work, however, are those studies that have investigated the effect of hand and arm

gestures in particular on human perception of virtual agents, e.g., with regard to

traits such as naturalness, believability, or likability.

In one such study, Cassell and Thorisson (1999) showed that a virtual agent’s

non-verbal behaviors, specifically beat gestures, are more important to users in

conversational interaction than the expression of emotional feedback. Besides

playing a crucial role in supporting the dialog process, such non-verbal behaviors

were also found to result in higher user ratings of the agent’s perceived lifelikeness

and fluidity of interaction.

In contrast, Krämer et al. (2003) found no significant effect on humans’

perception of the agent in a comparison between an ECA using gesture and

one that did not gesture while presenting a TV/VCR device to the user. The

gesturing agent was perceived as equally likable, competent, and relaxed as its non-
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gesturing counterpart. However, a significant effect was found when comparing

participants who were confronted with a system that used only written text output

or synthesized speech output with those confronted with an embodied virtual

agent: while participants in the text and audio condition reported increased

helpfulness of the non-animated system, participants confronted with the virtual

agent felt more entertained.

In a study using various animated agents for short technical presentations (Bui-

sine et al., 2004), three different speech-gesture cooperation strategies with regard

to the semantic relationship between both modalities were tested: redundancy,

complementarity, and speech-unrelated gestures. Multimodal strategies proved to

influence participants’ subjective impressions of the quality of explanation, which

was particularly true for male participants: the quality of the agent’s explanation

was rated more positively when it was using redundant or complementary gestures

as opposed to speech-unrelated gestures. In addition, the agent’s appearance was

found to affect its likability, as well as participants’ ability to recall the content

presented to them by the agent.

Kipp et al. (2007) applied the concept of gesture units (Kendon, 1980) to

a virtual agent’s gesture generation, in order to produce a continuous flow of

movement. This was realized by connecting neighboring gestures within a single

utterance segment with a hold rather than a retraction phase. They hypothesized

that a virtual agent generating such gesture units is perceived as more natural than

one using singletons by separating every two gestures with a retraction. Results

confirmed their hypothesis, as participants not only rated the agent producing

gesture unit as more natural, but also as more friendly, more trustworthy, and, by

trend, more competent. Finally, the agent using singleton gestures was perceived

as more nervous than the one employing hold phases between successive gestures.

In another study conducted by Krämer et al. (2007), the conversational agent

MAX communicated by either utilizing a set of co-verbal gestures alongside speech,

typically by self-touching or movement of the eyebrows, or by utilizing speech

alone without any such accompanying gestures. Human participants were then

invited to rate their perception of MAX’s behavioral-emotional state, for example,

its level of aggressiveness, its degree of liveliness, etc. Crucially, the results of the

study suggested that virtual agents are perceived in a more positive light when

they are able to produce co-verbal gestures alongside speech rather than acting in

a speech-only modality.
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Bergmann et al. (2010) modeled the gestures of MAX based on real humans’

non-verbal behavior and subsequently set out to question the communicative

quality of these models via human participation. The main finding was that MAX

was perceived as more likable, competent, and human-like when gesture models

based on individual speakers were applied, as opposed to combined gestures of a

collection of speakers, random gestures, or no gestures.

Finally, Neff et al. (2010) investigated how language generation, gesture rate,

and different movement performance parameters can be varied to increase or

decrease the perceived extraversion of a virtual agent. Testing four experimental

conditions, these factors were modulated to change the agent’s level of extraversion

(from very low to very high), demonstrating indeed a statistically significant effect

on human perception of this personality trait.

3.2 Robotics

While being a fairly established subject of research in the field of conversational

virtual agents, the generation together with the evaluation of the effects of co-

verbal communicative gesture is still largely unexplored in robotics. Typically, in

traditional robotics, recognition rather than synthesis of gesture has been mainly

brought into focus. Furthermore, within the few existing approaches claiming to

be dedicated to gesture generation, the term ‘gesture’ has been widely used to

denote object manipulation tasks rather than non-verbal communicative behaviors.

For example, Calinon and Billard (2007) refer to the drawing of stylized alphabet

letters as gestures in their work.

Many researchers have focused on the translation of human motion for gesture

generation in various robots, usually aiming at imitation of movements captured

from a human demonstrator, e.g., Billard et al. (2008). Further techniques for

limiting human motion of upper body gestures to movements achievable by a

variety of different robotic platforms have been presented by Pollard et al. (2002)

and Miyashita et al. (2006). However, these models mainly focus on technical

aspects of generating robotic motion that fulfills little or no communicative

function. In addition, they are limited in that they do not combine generated

non-verbal behaviors with further output modalities such as speech.

Generally, only few approaches have so far pursued both the generation of

humanoid robot gesture and the investigation of human perception of such robot
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behavior; however, an upward trend has been noticeable in recent years. In the

following, several technical approaches implementing speech-gesture generation

for robots, as found in the relevant literature, are presented (3.2.1). Findings from

empirical studies that investigate the effect of such multimodal communicative

behavior on human-robot interaction (HRI) are then summarized (3.2.2).

3.2.1 Technical Implementations

Only a few robotic systems incorporate both speech and gesture synthesis; however,

in most cases the robots are equipped with a set of predefined or even pre-

recorded gestures that are not generated on-line but simply replayed during

human-robot interaction. Furthermore, such approaches are often realized on

rather simple robotic platforms with less complex robot bodies, e.g., providing

only limited mobility and less DOF. Characteristic features of related approaches

to robot gesture generation are categorized in the following and are further

illustrated by presenting a selection of implementation examples that fall into

each category. Note, however, that most outlined systems belong to multiple of

the listed categories.

Predefined gestures and limited body expressiveness

The personal robot Maggie (see Figure 3.8a) aims at interacting with humans in

a natural way in order to establish a peer-to-peer relationship with them (Salichs

et al., 2006; Gorostiza et al., 2006). For this purpose, the robot is equipped

with a predefined set of implemented gestures, which can be expressed through

movements of the head, the eyelids, and the arms. However, given the design of

the robot’s arms with only 1DOF each and no end-effectors (i.e., hands) attached

to them, the level of arm gesture expressiveness is rather limited. For example,

the generation of iconics and other complex communicative gestures typically

requires more DOF than provided by the Maggie platform.

Another example of gesture generation presented by Sidner et al. (2003) is

the penguin robot Mel (see Figure 3.8b), which is able to engage humans in a

collaborative conversation. In a dedicated research scenario, Mel employs speech

and gesture to indicate engagement behaviors while telling human interlocutors

about the functions of a newly invented object placed on a table in the same

room. However, the gestures generated in this context are also predefined in a set
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of action descriptions, called the ‘recipe library’, e.g., specifying how to greet a

Figure 3.8: Examples of robotic platforms used for gesture generation: a) personal

robot Maggie (Salichs et al., 2006), b) penguin robot Mel (Sidner et al., 2003), c)

communication robot Fritz (Bennewitz et al., 2007).

visitor, how to present the invented object, etc. The descriptions are not written

in scripts, but rather as task models with annotations of how to convey certain

utterances. Besides lacking on-line generation capabilities, the zoomorphic design

of the Mel platform provides only limited flexibility and expressiveness with regard

to feasible body movements for arm gesture generation.

The communication robot Fritz (see Figure 3.8c) introduced by Bennewitz

et al. (2007) uses speech, facial expressions, eye-gaze, and gesture to appear

livelier while interacting with people. Although the arm gestures produced during

interactional conversations are generated on-line, they mainly consist of predefined

culture-specific emblems, beat and pointing gestures to direct the attention of the

communication partner towards certain objects. To further add to the robot’s

liveliness, Fritz performs minuscule non-gestural arm movements in randomized

oscillations instead of standing still while idle. However, body movements are

performed in a rather jerky fashion. Furthermore, and similar to the previously

described platforms, the level of gesture expressiveness is limited since the robot

is not equipped with any hands and generally comprises less DOF.
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Unfavorable appearance of the gesturing robot

The appearance of the gesture generating robots presented in the previous sub-

section differs substantially from the humanoid robot used for the present work.

Besides comprising less DOF and lacking end-effectors, they generally expose only

little or no humanoid traits. As stated by Minato et al. (2004), however, the

appearance of a robot can be just as important as its behavior when evaluating the

experience felt by human interaction partners. In other words, the robot’s design

is crucial if we are to eventually study the effect of robot gesture on humans.

Macdorman and Ishiguro (2006) have researched human perception of robot

appearance as based on different levels of embodiment, with android robots

representing the most anthropomorphic form. Although an innovative approach,

android robots only feature certain hard-coded gestures and thus still lack any

real-time gesture-generating capability. Moreover, findings presented by Saygin

et al. (2011) suggest that the mismatch between the highly human-like appearance

of androids and their mechanical, less human-like movement behavior may lead

to increased prediction error in the brain, possibly accounting for the ‘uncanny

valley’ phenomenon (Mori, 1970).

Given these empirical findings, a major advantage of using the Honda humanoid

robot as a research platform for the present works lies in its humanoid, yet not

too human-like appearance and smooth, yet not completely natural movement

behavior. Although the robot in question cannot mimic any facial expression, it

is advantageous to use such a platform, since the focus of the present work lies

on hand and arm gestures. This way, the perception of the robot’s gestural arm

movements can be assessed as the primary non-verbal behavior.

Limitation to a single gesture type

Many approaches of communicative gesture synthesis for humanoid robots are

limited to the implementation and evaluation of a single type of gesture, instead of

providing a general framework that can handle all, or at least a variety of, gesture

types. For example, Sugiyama et al. (2007) and Okuno et al. (2009) present systems

that focus on the generation of deictic gestures for object indication and route

direction-giving respectively, both using the Robovie robot (see Figure 3.9a).

Okuno et al. justify their choice to focus only on one type of gesture, namely

deictics, by arguing that it is difficult for a robot to express other gesture types
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Figure 3.9: Examples of robotic platforms used for single gesture type generation: a)

deictic gesture performed by Robovie (Okuno et al., 2009), b) emblematic gesture for

expressing the emotional states of the WE-4RII robot (Itoh et al., 2004), c) open hand

gesture generated by BERTI (Bremner et al., 2009).

such as iconics or beats. They further explain that the effect of such imagistic or

rhythmic gestures on the human listener are unclear and thus declare deictics to

be “the most promising gesture” (p. 56).

In another approach targeting only one gesture type, Itoh et al. (2004) im-

plemented emblems for displaying emotional states on the WE-4RII robot (see

Figure 3.9b). For this, gesture generation is based on predefined motion patterns

specifying the position and posture of the robot’s hands, as well as time informa-

tion about the trajectory using 3D spline functions. However, since emblematic

gestures typically communicate without the need for spoken language, speech

synthesis and synchronization with the generated gestures were not addressed.

Finally, Bremner et al. (2009) focused on a small range of gestures of the open

hand for the upper-torso humanoid robot BERTI (see Figure 3.9c). To verify

and evaluate their proposed control algorithm, they implemented four different

open-handed gestures. Timings for speech-gesture synchronization were guessed

and predefined at the coding stage, thus resulting in gesture movements that are

entirely pre-planned in form and duration. During execution, movements of the

different gesture phases (i.e., preparation, stroke, and retraction) are triggered by

events in the speech. Although open hand gestures may be employed to generate

a variety of emblems and beat gestures, the exclusive use of only one hand shape

significantly limits the flexibility and expressiveness of the gesturing robot.
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Building on experience from the virtual agents domain

In recent years, the idea of building upon experiences gained from previously devel-

oped virtual agent frameworks has also been taken up by a few other researchers.

For example, Mead et al. (2010) generate gestural behaviors along with speech

for the upper-torso humanoid robot Bandit III (see Figure 3.10a) using the

NonVerbal Behavior Generator (NVBG), a system that was originally developed

for embodied conversational agents (Lee and Marsella, 2006). NVBG consists

of a set of rules that can be employed to determine which gestures correspond

to a given verbal content. These rules are derived from user activity modeling

and are based on specific keywords and sentence structures. In contrast to the

work presented in the present thesis, Mead et al.’s approach uses an element from

the virtual agent domain for behavior planning rather than realization at the

lowest level of the behavior generation pipeline (see Figure 1.3). In their proposed

system, the actual realization of selected gestural behaviors is performed by a

robot-specific implementation that roughly attempts to synchronize robot gestures

to the speech output at the phrase level rather than to the exact affiliate.

More similar to the present work in that it transfers a virtual agent framework

for behavior realization to a humanoid robot is the approach proposed by Le et al.

(2011). By building on and extending the above described GRETA system (see

Figure 3.4), the resulting speech-gesture generation system aims at endowing the

robot NAO (see Figure 3.10b) with multimodal communicative expressiveness.

Figure 3.10: Examples of robotic platforms used for gesture generation: a) Bandit III

robot (Mead et al., 2010), b) NAO robot (Le et al., 2011; Gouaillier et al., 2009).
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For this, the original framework was extended with a gesture repository containing

pre-tested gesture descriptions specifically compiled for the NAO robot, i.e.,

taking into account feasibility constraints of the robot’s physical body. Gesture

specifications are stored in a symbolic format, while the generation of the actual

gestures and their trajectories respectively is initiated and realized at run-time.

However, the limitations of the underlying virtual agent framework as highlighted

in Section 3.1.1, e.g., the need for predefined gestures stored in a lexicon as well as

the lack of cross-modal synchronization mechanisms, still remain in the proposed

robot-specific system. In addition, with a height of only 0.57m (Gouaillier et al.,

2009), the NAO robot used in Le et al’s approach is fairly small and thus only

limitedly suitable for operating and interacting in the human living space.

Open-loop control and unidirectional synchronization

One of the few models that resembles our approach in that it attempts to generate

a multitude of gesture types for the Honda humanoid robot was presented by

Ng-Thow-Hing et al. (2010). Similar to the above described BEAT system (Section

3.1.1), their proposed model reconstructs the communicative intent through text

and parts-of-speech analysis to select appropriate gestures based on arbitrary

input text. For the generation of a selected gesture, predefined gesture templates

are used, specifying the basic trajectory in a set of key points for the hand position,

wrist rotation, and hand shape. These parameter values can be further modulated

based on probabilistic elements, so that multiple instances of the same input text

do not result in the generation of identical gestures.

However, a major limitation of this system – which also applies to all other ap-

proaches presented in this section – is the open-loop control of the implementation.

That means, once the gesture plan has been generated from a given input text,

speech and gesture are generated ballistically and cannot be further re-adjusted

at run-time, e.g., based on sensory feedback. Furthermore, as it is generally the

case in systems that attempt to synchronize synthetic speech and gesture, running

speech completely dictates the timing of the generated gestures, while gestures, in

contrast, cannot affect the produced speech output.

To the best of knowledge, such unidirectional synchronization as well as the

open-loop production of multimodal behaviors is characteristic of all currently

existing approaches to the generation of robot gestures. As a result, the major

technical contribution of the work presented in this thesis is twofold: first, it
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provides an implementation of a speech-gesture production system for a humanoid

robot which is based on one of the most sophisticated virtual agent frameworks;

second, it stands out from other existing robotic gesture generating systems

by incorporating reactive closed-loop feedback for a more flexible approach to

multimodal robot expressiveness (see RQ2).

3.2.2 Empirical Evaluations

Despite the interesting implications of the evaluation studies conducted with

virtual agents, one must be cautious when transferring empirical findings from

the domain of such animated graphical characters to the domain of social robots.

Firstly, the presence of real physical constraints in robotic platforms can alter the

perceived level of realism. Secondly, given the greater degree of embodiment that

is possible in a real-world system, interaction with a robot is potentially richer:

human participants could, for example, walk around or even touch a real robot.

This makes the interaction experience more complex and is naturally expected to

affect the outcome of the results.

Since the research area of speech-gesture synthesis for communicative robots

is a fairly new one, most existing approaches are still mainly concerned with the

technical realization of such systems. In the area of human-robot interaction,

comparatively much research, e.g., carried out by Mutlu et al. (2009), has studied

the effect of robot gaze as an important aspect of non-verbal behavior. In contrast,

not much research has focused on the evaluation of co-verbal hand and arm gestures

in particular. Consequently, only few data derived from empirical analyses of the

effects and acceptance of communicative robot gesture in HRI have been provided

in the literature so far. In many cases only pilot studies with few participants and

no experimental hypothesis have been conducted, mainly to validate the technical

implementation. In other instances, the evaluation of the system was merely

undertaken by means of video-based studies in which participants did not actually

interact with the robot, as done for example by Narahara and Maeno (2007), Li

et al. (2009), Riek et al. (2010), and Ng-Thow-Hing et al. (2010).

However, in order to obtain a representative assessment of robot gesture and

the human perception thereof, it is important to evaluate such non-verbal behavior

in actual interaction scenarios. For example, a human-sized robot performing jerky

gesture movements may potentially be perceived as dangerous by a human sharing

the same interaction space, whereas a video of the same gesturing robot may not
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elicit any feelings of threat or fear in the human observer. Therefore, scope and

space of robot gestures can only be accurately and appropriately observed and

assessed based on real interactions in suitable test scenarios.

Up to the present time, only very few of such experimental HRI studies focusing

specifically on the effect and perception of robotic hand and arm gestures have

been conducted. In one such study, Sugiyama et al. (2007) investigated the degree

to which participants perceived the interaction with the gesturing Robovie robot

(see Figure 3.9a) to be as natural as inter-human communication. During the

experiment, participants were asked to arrange five objects of similar size and

shape freely within the interaction space and subsequently to point out one of

them to the robot using a pointing gesture and a verbal cue. The robot then

confirmed that it had recognized the according object by also generating a pointing

gesture and a verbal cue. After a total of four trials, a questionnaire item (‘yes/no’

question) was used to ask participants whether the interaction with the robot was

natural, which resulted in a significant majority of affirmative answers. However,

although providing some useful findings, drawbacks of the study can be seen in the

fact that it lacks a control condition and in the exclusive use of pointing gestures.

Another empirical study, conducted by Kim et al. (2008), examined how certain

characteristics of the displayed robot gestures affect participants’ impressions

of the robot’s personality. Specifically, gesture size (small vs. large), velocity

(slow vs. fast), and frequency (low vs. high) were defined and manipulated as

independent variables, yielding a combinatory sample of eight different gestures.

In the experiment, participants were presented with these gestures performed

by the AMIET robot (see Figure 3.11a) along with generated speech and,

after each multimodal utterance, were asked to assess the robot’s personality.

This was conducted by rating two questionnaire items on seven-point Likert

scales, one with endpoints 1 = introvert and 7 = extravert, the other one with

endpoints 1 = feeling and 7 = thinking. To summarize the results, manipulation

of gesture size, velocity, and frequency were shown to significantly influence

the perceived level of introversion/extraversion, while a significant interaction

effect of gesture size and velocity was found with regard to the personality item

feeling/thinking. To illustrate, large and fast gestures of high frequency, for

example, were associated with a more extroverted personality than smaller-sized,

slow gestures of low frequency. In conclusion, the results indicate that controlling

certain design factors of robot gestures affects human perception of a robot’s
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a) b)

Figure 3.11: Robotic platforms used for evaluation studies on gesture-based HRI: a)

AMIET robot (Kim et al., 2008), b) Robosapiens RSMedia (O’Brien et al., 2011).

personality traits and, at a more general level, suggest that a robot’s personality

can be successfully expressed via gestures. Although testing a variety of gesture

types, a main limitation of the study, however, lies in the fact that participants

did not actually interact with the robot but merely acted as passive observers

during the experiment.

O’Brien et al. (2011) conducted an experimental study using the humanoid

toy robot Robosapiens RSMedia (see Figure 3.11b), in order to evaluate the

impact of the robot’s gaze and arm gestures on a collaborative HRI task. For

this, two conditions were designed: first, a gesture condition in which the robot

used gaze (by orienting the head toward the human) and pointing gestures to

refer to objects along with speech; second, a control condition in which neither

the robot’s head nor arms were moving, but rather remained in their default

position for the entire interaction. Participants in both test groups were asked

to solve a task together with the robot which, for example, asked the human to

retrieve, use, or manipulate various objects in the interaction space. Analyses

of post-experimental questionnaires revealed that the robot was rated as having

significantly better interaction skills and as being a better collaborator when it

interacted multimodally via speech, gaze, and gestures than when it used speech

only. Although the study contributes some important findings, the individual

effects of gaze and gesture respectively remain unidentified. Moreover, similar to

the study by Sugiyama et al. (2007), only one type of gesture, namely deictics,
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was examined. Finally, given its height of only 0.58m4, results derived from a

study using the rather toy-sized Robosapiens RSMedia may only partially apply

to more human-sized robots which, however, are more likely to be used in people’s

households and to regularly interact with humans in the future.

A further study investigating both the individual and combined contribution

of gazing and co-verbal gesture to the persuasiveness of a story-telling robot was

presented by Ham et al. (2011). In four experimental conditions, the NAO robot

(see Figure 3.10b) told participants a persuasive story about the consequences

of lying using the following communication channels: 1) speech only, 2) speech

with gaze, 3) speech with gesture, or 4) speech with both gaze and gesture. The

persuasive effect was measured by using post-experimental questionnaires asking

participants to evaluate the lying individual from the robot’s story. Results showed

that gazing had a significant effect on the robot’s persuasiveness, i.e., participants

being gazed at by the robot were persuaded more by the message conveyed by the

story than participants who were not gazed at. In addition, a robot using gestures

was found to be more persuasive when it additionally used gazing than when

it only gestured along with speech, suggesting that the combination of gesture

and gaze can increase the persuasive effect of the robot. Similar to the study

conducted by Kim et al. (2008), however, Ham et al.’s experiment lacked real

interaction between humans and the robot, as participants were asked to only

observe and listen to NAO while it was telling the story.

Also using the NAO robot, Park et al. (2011) studied the effects of robot gesture

on social conversation in a simple HRI situation. In their experiment, gestural

behavior was manipulated in two experimental conditions: gesture vs. no-gesture.

Participants were first asked to observe the robot during a four-minute exposure

in which NAO, depending on the condition, either used only speech or gesture

along with speech. Subsequently, participants were invited to rate their perception

of the robot based on several questionnaire items. In summary, results showed

that the gesturing robot was perceived as having a higher level of conversation

proficiency and appeared to be more familiar as well as human-like than the one

using speech only. Furthermore, participants expressed a greater desire to talk to

the robot that displayed speech-accompanying gestures than to the robot that

was not employing such non-verbal behavior. As in the study presented by Ham

4http://www.wowwee.com/en/support/rs-media - accessed December 2011
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et al. (2011), weaknesses of the experiment are the non-interactive character of

the test scenario as well as the small size of the NAO robot in use.

In conclusion, the review of empirical findings resulting from the study of

gesture-based HRI as presented in the relevant literature shows that the evaluation

of such robot behavior is still in the early stages, thus offering ample scope for

further research. At the same time, common limitations of previous studies, as

described above, can be identified. First, due to their availability and affordability,

small-sized robots such as NAO and Robosapiens RSMedia are increasingly used to

study human-robot interaction. This may certainly lead to a number of empirical

implications, however, it remains questionable whether the results obtained from

studies using such toy-sized robots can be generalized, especially with regard to

human-sized robots. Second, in line with the criticism outlined in Section 3.2.1

with regard to technical implementations, many studies focus on the evaluation of

a single type of gesture, typically deictics. Finally, most evaluation studies are

conducted in robotic laboratories which are not designed to provide an environment

familiar to human participants. Although unavoidable and valid, it is likely that

the unfamiliar atmosphere in addition to the unusual experience of interacting

with a robot may influence the outcome of the studies.

3.3 Summary and Discussion

Putting the major objectives of the present work into context, the purpose of this

chapter was to provide an overview of the current state of the art with regard to

computational approaches to the generation and evaluation of speech and gesture

for artificial communicators. Two research areas were identified as relevant, thus

motivating the structure of the chapter: first, the area of virtual agents, in

which systems for the realization and evaluation of multimodal communicative

behavior for computer animated characters have been developed; second, the field

of robotics, in which a variety of approaches to the generation and analysis of

speech-accompanying non-verbal behaviors for social robots have been presented.

Accordingly, in Section 3.1 the first point of focus, namely the review of

contributions from the virtual agent community, was addressed. Initially, Sec-

tion 3.1.1 offered a technical perspective by presenting and discussing the following

virtual agent frameworks allowing for multimodal communicative behavior: Ani-

mated Conversation, REA, BEAT, GRETA, and finally, MAX, which provides
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the foundation for the technical work of this thesis. As introduced, a core part

of the behavior generation system underlying the agent MAX is formed by the

Articulated Communicator Engine (ACE). In contrast to the other presented

approaches, ACE was outlined as being the first virtual agent framework to provide

for mutual adaptation mechanisms between the timing of speech and gesture at

run-time. This was discussed as being advantageous, since it can overcome several

issues encountered in previous systems by providing greater flexibility and the

possibility to generate gestures without predefined templates or detailed keyframe

descriptions.

Moreover, inspired by theories from human gesture research, ACE is built on

the assumption that the production of continuous speech and gesture is organized

in successive coherent chunks. For behavior generation with ACE, multimodal

utterances can optionally be specified as keyframe animations or as feature-

based descriptions using the Multimodal Utterance Representation Markup

Language (MURML). Finally, the innovative quality of the ACE framework

manifests itself in an incremental on-line scheduling mechanism for multi-

modal agent behavior, which handles cross-modal interactions at different levels

of an utterance. Due to these advanced features, ACE was identified as a suit-

able technical basis and starting-point for the development of a speech-gesture

generation model for social robots as intended by the present research.

Complementing the technical view on virtual agent systems, Section 3.1.2

provided empirical findings from experimental studies conducted with such agents.

More specifically, a selection of studies investigating the effect of hand and arm

gestures on human perception of virtual agents, e.g., with regard to traits such as

naturalness, believability, and likability, were reviewed. In summary, in most cases

the agent’s gesturing behavior was found to positively affect the way in which it

was perceived and rated by human participants.

In Section 3.2, the second point of focus was then introduced and discussed

by presenting a number of related robotic systems from both technical and

empirical points of view. To begin with, Section 3.2.1 provided a categorization of

characteristic features of related technical approaches to robot gesture generation

and further illustrated them by outlining a selection of implementation examples.

Generally, existing systems can be classified to belong to one or more of the

following categories characterizing the given approach:

- Predefined gestures and limited body expressiveness. The system is
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equipped with a set of predefined or pre-recorded gestures which are not gener-

ated on-line during HRI. The robot’s expressiveness may be limited due to less

complex body design, e.g., with less DOF, no hands, restricted mobility, etc.

- Unfavorable appearance of the gesturing robot. The robot in use may

expose only little or no humanoid traits, look ‘uncanny’, be too small, or may

be otherwise limited in its appearance, e.g., due to its design (see above).

- Limitation to a single gesture type. The approach is limited to the im-

plementation and evaluation of a single type of gesture, instead of providing a

general framework able to handle all, or at least a variety, of gesture types.

- Building on experience from the virtual agents domain. Similar to the

work presented in this thesis, the proposed system may build on elements taken

from, and originally developed for, the virtual agents domain.

- Open-loop control and unidirectional synchronization. All previously

presented approaches produce multimodal robot behavior using open-loop con-

trol, i.e., without sensory feedback, and unidirectional synchronization mecha-

nisms, limiting the flexibility of the system and its adjustability at run-time.

In especially addressing the issue of open-loop control, the major technical con-

tribution of the present work is thus to provide an implementation for co-verbal

robot gesture generation which stands out from existing systems in multiple

ways. First, the proposed approach uses an advanced humanoid and human-sized

robot which is highly expressive due to its design, large number of DOF, and

smooth body movements. Second, it builds on one of the most sophisticated

virtual agent frameworks. Finally, and most importantly, for the first time in a

robotic framework, it incorporates reactive closed-loop feedback for cross-modal

synchronization (see RQ2).

Following this technical view on existing gesture generating robotic systems,

Section 3.2.2 was dedicated to the empirical perspective on speech-gesture synthesis

for communicative robots. Generally, building acceptable artificial communicators

such as social robots demands a thorough understanding of the assumptions

that humans make about such interactive machines and how they perceive them

during interaction. To arrive at such an understanding of the dynamics of gesture-

based HRI, it is therefore necessary to study real interactions between humans

and social robots in suitable situations. However, only few relevant studies

investigating the effects, perception, and acceptance of robot gesture in HRI

could be found, with even less of them specifically focusing on hand and arm
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gesture in particular. Moreover, many common limitations were identified with

regard to the experimental design or procedure of most studies, e.g., due to the

lack of real interaction, the use of toy-sized robots, or the consideration of only

one gesture type. Nevertheless, results generally suggest a beneficial effect of

non-verbal robot behavior such as gesture on the human observer and interaction

partner respectively. Since there is still ample scope and need for evaluation,

the second major contribution of the present work is to provide a set of novel

empirical findings about the effect that co-verbal communicative robot gesture

may have on human interaction partners.

71



72



Part II: Technical Implementation





“Divide each difficulty into as many parts

as is feasible and necessary to resolve it.”

René Descartes

Chapter 4

System Overview

Having provided background information from psycholinguistic (Chapter 2) and

computational (Chapter 3) perspectives in the first part of the thesis, this chapter

sets out to introduce the technical work of the present research. To endow a

humanoid robot with communicative co-verbal gestures, a large degree of flexible

control with regards to shape properties of the gesture is required. At the same

time, adequate timing and natural appearance of these body movements are

essential to add to the impression of the robot’s liveliness. The challenges of

generating flexible communicative robot gesture are highlighted by providing a

general technical overview of the designated system.

First, in Section 4.1 inspiration is drawn from a neurobiological point of

view according to which gesture generation can be viewed as a motor control

problem to be solved by a hierarchical control scheme. This notion is readopted in

Section 4.2 in which the existing modules, which constitute the starting points and

the foundation for the technical implementation of the present work, are presented.

Initially, the concept underlying gesture motor control in the multimodal behavior

realizer ACE is reviewed. This is followed by a description of the Whole Body

Motion (WBM) controller which provides a flexible kinematic framework to control

upper body movement of the Honda humanoid robot. Finally, Section 4.3 provides

an outline of the solution sought and a discussion of the main challenges faced

when attempting to bridge the gap between ACE, the action generation framework

for virtual agents, and WBM, the software controlling the humanoid robot. This

way, the transition to the implementation work described in the subsequent two

chapters is established.
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4.1 Gesture Generation as a Motor Control

Problem

From a neurobiological point of view, the generation of hand and arm gestures can

be viewed as a specific, i.e., conceptual and communicative, form of movement of

the upper limbs, serving a special purpose. At a more general level, human body

movements can be classified into three distinct categories: reflexive, rhythmic,

and voluntary (Ghez and Krakauer, 2000). Reflexive movements are involuntary,

coordinated patterns of muscle contraction and relaxation in response to peripheral

stimuli. Rhythmic motor movements are produced by repetitive patterns of muscle

contraction and include swallowing, chewing, locomotion, and, of more relevance

to the present research topic, beat gestures. Finally, and most importantly with

regard to the work of this thesis, voluntary movements are goal-directed motions,

i.e., they are initiated and performed to accomplish a specific task or goal. They

are often referred to as ‘motor skills’ or just ‘skills’ and improve with practice as

a result of feedback and feedforward mechanisms (Ghez and Krakauer, 2000).

Given the inherent communicative functions as well as the semantic and con-

ceptual features that constrain their execution, gestural movements as considered

in this thesis fall into this third category of voluntary movements. Indeed, from

a more general point of view, gestures are comparable to other voluntary hand

and arm motions in that they underly similar processes at the motor planning and

control level. As a starting point for a technical analysis of gesture generation,

this biologically focused viewpoint is borrowed and further elucidated in this

section. Two core problems or challenges regarding human motor control have

been identified as relevant to the present work, each addressing a central question:

• Degrees of freedom problem. How do particular forms of motor activity

emerge when a multitude of movements potentially allow for the completion of

the same task?

• Hierarchical organization. How can multiple limbs be centrally controlled

and yet be simultaneously synchronized?

Focusing on the first of these two questions, the degrees of freedom problem

which represents a central challenge of both human and artificial motor control is

described and illustrated in Section 4.1.1. Subsequently, the hierarchical organiza-

tion of motor control is highlighted and discussed in Section 4.1.2, thus addressing
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the second question as outlined above. Similar to the degrees of freedom problem,

it has relevance in both biological and artificial kinematic systems. Although the

following review is by no means exhaustive, it provides the basic understanding

required to place the technical challenges of the implementation into a suitable

context.

4.1.1 Degrees of Freedom Problem

Humanoid robots comprise a large number of degrees of freedom (DOF). Although

this leads to an abundance of possible body movements for the robot, such

increased flexibility results in a control problem. For example, when pointing

to an object, many different postures can be adopted at the beginning, but in

addition, each step on the way to the final posture and indeed the final posture

itself may vary. Given a plethora of feasible motions for the same task, which

particular movement should be chosen and performed by which motors and body

parts? Equipped with even more DOF, the human body or, more specifically, the

human central nervous system (CNS), is frequently faced with a similar problem.

Consequently, the following question arises: which strategies does the human CNS

use to select one specific movement from the infinite pool of possible solutions to

solve the task at hand?

Although the underlying mechanisms have not yet been fully identified (Latash

et al., 2007), research in fields such as Neuroscience and Neurobiology has provided

a number of theories attempting to account for the human motor control problem.

This problem belongs to the class of “ill-posed” problems because its solution is

not uniquely determined (Kawato et al., 1990). This means, it cannot be solved

without some additional information about the constraints imposed on the system.

Since Bernstein (1967) was the first to draw attention to this kind of problem,

it is often referred to as the Bernstein problem (e.g., Latash, 1993). It has also

been named the degrees of freedom problem or the problem of motor redundancy

(Saltzman, 1979; Turvey, 1990; Latash, 1996).

In setting out to solve the problem, the research field of robotics provides

a suitable environment to develop sophisticated testbeds on which biologically

inspired theories and hypotheses can be implemented and tested. The concepts

that are most relevant to the technical work of this thesis are briefly described in

the following.
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Kinematics

Whenever goal-directed movements are generated, the degrees of freedom problem

is encountered and must be solved. In the case of human motor control, the CNS

has to convert spatio-temporal information about the target location into patterns

of arm muscle activity in order to be able to move the arm towards the target

(Stein, 2010). For example, for a pointing gesture towards an object, the target

location of the tip of the index finger can be described with a three-dimensional

vector XT in external coordinates, while the start position of the finger tip can be

described with another 3D vector XS.

Even for this simple task of moving the hand from XS to XT , there are infinitely

many possible paths along which the finger could move, and for each of these

paths, there are infinitely many velocity profiles (i.e., trajectories) which the hand

could follow. And even if the hand path and velocity have been specified, each

point along the path can be accomplished by a magnitude of combinations of joint

angles and arm configurations respectively. These, in turn, can be achieved by

many different muscle activations (Jordan and Wolpert, 1999).

The problem of the motor control system is therefore to select one out of an

infinite number of possible trajectories and to generate the chosen movement of

the arm which moves the tip of the index finger from XS to XT . A schematic

illustration of the problem is shown in Figure 4.1. Generally, such trajectory

can be specified in two different ways according to how the configuration of the

arm is represented for each point along the trajectory:

XS

XT

!T

!S

Figure 4.1: Schematic illustration of the degrees of freedom problem: to generate a

movement from the initial location XS to the target location XT , the control system

must determine a specific trajectory; three possible end-point trajectories are illustrated.
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1) Joint space. At a non-dynamic level, the posture, or configuration, of the

arm can be described by internal coordinates as a joint level representation

Θ. Given the above mentioned example (see Figure 4.1), the space of joint

angles for the start configuration of the arm and hand is described by the

vector ΘS which directly corresponds to the 3D point XS. Establishing the

configuration of the end-effector (in this example the finger tip) based on the

relative configuration of each joint is referred to as forward kinematics.

2) Task space. Alternatively, a task level representation of the desired end-

effector location, e.g., based on the external coordinates of XT , can be used to

determine a corresponding target joint angle configuration ΘT . However, since

there is no unique solution, it constitutes an ill-posed problem. Establishing

the configuration of each joint based on the position of the end-effector is

referred to as inverse kinematics.

Given these two different representation formats, coordinate transformations

between intrinsic joint space and extrinsic task space are an essential part of motor

control, closing the sensorimotor loop (Jordan and Wolpert, 1999; Stein, 2010).

4.1.2 Hierarchical Model of Motor Control

Empirical evidence suggests that the human CNS plans goal-directed movements

in extrinsic task space coordinates rather than in joint space (e.g., Wolpert et al.,

1995; Flanagan and Rao, 1995). This assumption is based on the principle of

smaller complexity of the representation (Morasso, 1986), since the task-level

representation of a target position XT is lower-dimensional than the corresponding

joint space description ΘT . This view has been further supported by studies

demonstrating that trajectories of a large class of unconstrained movements are

characterized by several invariant spatio-temporal features at the task level, which

cannot be found at the joint level (e.g., Morasso, 1981; Abend et al., 1982; Flash

and Hogan, 1985; Gordon et al., 1994; Haggard et al., 1995). For example, a

wide range of movements show a tendency towards roughly straight hand paths

in external space with single-peak, bell-shaped velocity profiles.

These invariant properties have been partially explained by so-called Gener-

alized Motor Programs (GMP; Schmidt, 1982) which refer to a set of general

schemes associated with specific motion classes, e.g., for pointing movements.

By suggesting that one motor program can be executed in a variety of different
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ways, thus comprising an entire class of movements, this notion has replaced the

traditional motor program concept (Keele and Posner, 1968) which assumes a

different motor program to be memorized for each movement.

Given an extrinsic task goal, the CNS needs to translate the target location

XT into neural commands that activate the muscles required to move the arm

from its initial position to the final position. The computational process of motor

planning is concerned with the selection of a single solution at each level of the

motor control hierarchy from the many alternatives that comply with the task.

As illustrated in Figure 4.2, at any level, one pattern of behavior corresponds

to many patterns at the level below (one-to-many), but directly and uniquely

specifies the pattern at the level above (many-to-one).

Extrinsic 
Task Goal

Hand 
Path

Hand 
Trajectory

Joint 
Kinematics
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Figure 4.2: Hierarchical model of motor control adapted from Jordan and Wolpert

(1999); specifying a pattern of behavior at any level complies with many patterns at the

level below (one-to-many), but directly corresponds to the pattern at the level above

(many-to-one).
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Assuming that a target joint angle configuration ΘT has been found and that

the starting vector of the joint angles ΘS is known, the next step in solving the

control problem is to find patterns of joint torques that move the arm from ΘS to

ΘT (Latash, 2008). This task is referred to as the problem of inverse dynamics

(Hollerbach and Atkeson, 1987). Since the start and end configurations of the

arm do not uniquely define the arm’s trajectory, i.e., there are infinitely many

time functions Θ(t) that can move the fingertip from XS to XT , the problem of

inverse dynamics is another ill-posed problem. Once such patterns of joint torques

T (t) have been computed, the next task for the motor controller is to compute

patterns of muscle force FM (t) that can produce T (t). The CNS actively controls

muscle forces by changing the levels of muscle activation AM(t). Finally, the last

step of the problem is to compute physiological command signals C(t) which the

CNS will send to neurons in the spinal cord to activate α-motoneurons. These, in

turn, activate the involved muscles and, as a result, the movement is generated

(Latash, 2008). In a simplified way, the whole process of computing the movement

can be represented as:

{XT} → {ΘT} → {T (t)} → {FM(t)} → {AM(t)} → {C(t)} (4.1)

Once the computation is completed, control signals C(t) are sent to spinal neurons

which modify the activation levels AM(t) of according muscles. As a result, the

muscles produce the force patterns FM(t) required to rotate the joints from their

initial to their final configuration by means of joint torque patterns T (t). Finally,

the target configuration ΘT and location XT respectively will be achieved, and

the task will be accomplished:

{C(t)} → {AM(t)} → {FM(t)} → {T (t)} → {ΘT} → {XT} (4.2)

In reality, this process underlies several non-trivial computational steps. There

is an ongoing debate as to how the CNS computes a transformation of the

motor plan into actual motor commands. Several models have been proposed in

the literature, with the force-control approach and the equilibrium point

hypothesis forming the two most prominent concepts (Latash, 2008; Stein, 2010).

In line with the above mentioned concept of Generalized Motor Programs, the

force-control approach assumes that the CNS generates command signals based

on pre-computed patterns of muscle forces that are appropriate to accomplish

the given task. This view further supports the notion of internal models which
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mimic or simulate the behavior of the controlled motor system within the CNS

(Wolpert, 1997; Jordan and Wolpert, 1999). According to this view, it is assumed

that the CNS incorporates two types of models. First, inverse models compute

neural commands that are required to achieve the desired mechanical effect, i.e.,

they model sensory-to-motor transformations (Equation 4.1). Second, direct or

forward models predict the mechanical effects of current neural commands on

the (next) state of the system, i.e., they model motor-to-sensory transformations

(Equation 4.2).

An alternative view based on the equilibrium point hypothesis, which was first

introduced by Feldman (1986), suggests that the use of innate reflex patterns

can significantly contribute to the solution of the degrees of freedom problem.

According to this hypothesis, movements are not explicitly programmed, but

result from dynamical properties of the musculoskeletal system itself, i.e., from

shifts in the equilibrium position of the muscles. More specifically, thresholds

for muscle stretch reflexes are centrally modified, causing the limb to be out of

equilibrium until the CNS establishes the new equilibrium position (Rosenbaum,

2002). Based on these mechanisms, posture stabilization is turned into movement

production (Latash, 2008).

In an attempt to reconcile the two above described approaches, Latash (1993)

proposed a hierarchical motor control scheme as illustrated in Figure 4.3. It

comprises three major steps of motor control:

1) Internal simulation. The movement is first planned in terms of its extrinsic

end-point trajectory leading from the initial hand location XS to the target

position XT . To this end, an internal simulation of the planned movement

is performed, which accounts for predictable changes in the conditions of

movement execution and results in a function reflecting the kinematic properties

of the desired trajectory.

2) Generation of motor command. The simulated trajectory is translated

into motor command variables which can be interpreted by the lower-level

structures of the system.

3) Execution. The specified motor commands are executed, resulting in altered

activation levels of the relevant muscles and, finally, to the generation of a

movement that ideally matches the simulated trajectory.
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Figure 4.3: General scheme of motor control adapted from Latash (1993) comprising

three major steps: internal simulation, generation of motor command, and execution.

4.2 Existing Modules

One of the main characteristics of the present approach to the technical realization

of communicative robot gesture is the reuse of an existing solution from the domain

of virtual agents. This approach is not only beneficial in that it circumvents the

need to build a new framework for robot gesture from scratch; it also serves as

a proof of concept showing that within the scope of gesture realization, transfer

from virtual character animation to robot behavior generation is indeed feasible.

Two major modules have been available for use prior to the technical realization

of the present project: first, the multimodal behavior generation framework of the

Articulated Communicator Engine (ACE) which has been previously employed

only for the animation of embodied conversational agents; second, the Whole

Body Motion (WBM) controller which provides a flexible kinematic framework for

controlling upper body movement of the humanoid robot. Together, ACE and the
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robot’s WBM software represent the pre-existing modules that form the starting

point and foundation for the technical implementation of the present work. They

are briefly described in Sections 4.2.1 and 4.2.2 respectively, with a special focus

on those aspects of motor control that are relevant to co-verbal gesture generation.

4.2.1 Articulated Communicator Engine (ACE)

Some general technical features of the ACE framework, especially with regard to

its synchronization mechanism, have already been highlighted in Section 3.1.1.

This section sets out to elucidate the system from a motor control point of view by

illustrating how arm gestures are generated in ACE for virtual character animation.

Generally, gesture production in ACE comprises three main stages as visualized

in Figure 4.4 and described in the following.

Gesture Planning

Motor Planning

Execution

Gesture Plan

Controller

Joint Angles

Figure 4.4: Gesture production stages in ACE (adapted from Kopp, 2003).

First, during high-level gesture planning the expressive phase of a gesture,

i.e., the stroke, is defined by a set of movement constraints as formulated in the

XML-based Multimodal Utterance Representation Markup Language (MURML;

Kranstedt et al., 2002). At this stage, the corresponding body parts are allocated

and the timing of the stroke phase is determined. Second, at the lower-level motor

planning stage, a solution to the motor control problem posed by the previously

resolved specification and the resulting movement constraints is sought. Based on
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a kinematic model of human hand and arm movement, a motion sequence which

satisfies the given spatio-temporal movement constraints is determined. Finally,

at the execution stage, the selected movement sequence is translated into action,

i.e., the planned behaviors are executed by the animated character.

In light of the present work, aspects and features of the ACE system which

are relevant to the first two above described gesture production stages are briefly

explained in the following. A more detailed description of the intricacies of

the original ACE implementation can be found in Kopp (2003) and Kopp and

Wachsmuth (2004).

Behavior Description in MURML: Basic Elements and Attributes

As shown in Figure 3.5 of the previous chapter, any behavior execution in ACE

is initiated by an utterance description specified in MURML. Accordingly, a

feature-based MURML file as illustrated in Figure 3.6 contains all the relevant

information and constraints specifying the spatio-temporal characteristics of the

utterance to be generated. It can thus be considered the description of an extrinsic

task goal forming the beginning of a motor control task (cf. Figures 4.2 and 4.3).

In the following, an explanation of how the task goal is encoded in MURML and

how the given elements and attributes are interpreted by the ACE system is given;

it is based on a selection of basic components.

As illustrated by the example file shown in Figure 4.5, every MURML

description specifies exactly one utterance. Each utterance contains a maximum

of one locution and one gesture unit as described in Section 2.2.1 and illustrated

in Figure 2.5. Each utterance description begins and ends with the definition

root tag element (<definition> ... </definition>) within which a nested

tag element defines the beginning and end of the utterance (<utterance> ...

</utterance>). A spoken utterance is defined using the <specification>

tag and can be further annotated with time identifier tags to allow for the

allocation of affiliated gestures. If the utterance contains more than one chunk,

the transition between each two chunks is marked by the additional attribute

chunkborder="true" within the <time/> tag.

In the case of a multimodal utterance, the speech specification is followed by the

description of non-verbal behaviors marked by at least one <behaviorspec> tag

which is assigned a unique identifier attribute (e.g., “gesture 1” and “gesture 2” in

the example file of Figure 4.5). Within this behavior specification tag, a gesture is
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Figure 4.5: A feature-based MURML specification for a multimodal utterance.

defined by the <gesture> tag which, in turn, contains further elements describing

the properties of the gesture. First, the speech affiliate of the gesture is referenced

within the <affiliate> tag by stating the according time identifiers to define

the onset and end of the affiliate. Thus, it encodes the time constraints imposed on

the gesture to allow for the desired multimodal synchronization (cf. Section 3.1.1).

Second, the form features of the gesture are specified within the<constraints>

element node. Generally, a gesture can be performed either with one hand (by

default; see “gesture 1”) or with two hands (see “gesture 2”). Two-handed ges-

tures are specified by an additional <symmetrical> tag with further attributes

determining the dominant arm and the symmetrical relationship between the

two arms. Furthermore, movement constraints can be specified in a way that

they either apply simultaneously (marked by a <parallel> tag) or successively

(alternatively marked by a <sequence> tag).
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Finally, a gesture can either have a static stroke, i.e., forming a stroke hold (cf.

Section 2.1.3; see “gesture 1”), or a dynamic stroke, e.g., by moving the hand from

a start position to an end location (see “gesture 2”). A static gesture is annotated

by <static> tags including attributes about the according features (slot) and

their assigned values (value). In contrast, a dynamic gesture contains at least one

feature (slot) that is embedded in a <dynamic> tag. This, in turn, comprises a

<dynamicElement> tag with two value attributes specifying the start (<value

type="start"...>) and end (<value type="end"...>) configurations respec-

tively of the according hand feature. There are four slot types to specify the overt

form of the designated gesture stroke in a conceptual fashion:

1) "HandShape" describes the shape of the gesturing hand, which can either be

an open flat hand (BSflat), a clenched fist (BSfist), or a flat hand with

splayed fingers (BSffinger). Additional values can be used to further specify

the configuration of individual fingers and the thumb respectively.

2) "ExtFingerOrientation" specifies the extended finger orientation along the

back of the hand, which can either be directed to the front (DirA), to the back

(DirT), to the left (DirL) or right side (DirR), or upwards (DirU) or downwards

(DirD). Combined values are possible, e.g., DirAL for front left.

3) "PalmOrientation" determines the orientation of the palm which can be

defined by the same absolute values as used for the extended finger orientation.

Together with the ExtFingerOrientation slot, PalmOrientation specifies

the wrist orientation of the hand.

4) "HandLocation" defines the relative location of the wrist based on the division

of human gesture space as proposed by McNeill (1992), which is illustrated in

Figure 4.6. Three positional dimensions can be specified: the longitudinal

position (e.g., LocAboveHead, LocChest, or LocAbdomen), the transversal po-

sition (LocCCenter by default or, e.g., LocRight or LocPeripheryLeft), and

the sagittal position (LocNorm by default or, e.g., LocNear or LocFar).

These abstract symbols specifying the gesture form are translated into a formal

movement plan by the gesture planner and, eventually, into concrete command

values by the motor planner of the ACE system (see Figure 4.4). A detailed

description of elements, attributes, and possible values for gesture description in

MURML can be found in Kranstedt et al. (2002) and Kopp (2003).
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Figure 4.6: Division of human gesture space according to McNeill (1992, p. 89).

Kinematic Body Model

As one of the first demonstration applications developed for the ACE behavior

generation toolkit, the virtual agent MAX (cf. Section 3.1.1) is used as an example

implementation in this thesis to illustrate the capabilities of the underlying system.

To allow for the interpretation and appropriate execution of the spatio-temporal

features encoded in a given MURML specification, ACE is tightly coupled with the

kinematic body model of the embodied agent to be animated. An anthropomorphic

kinematic skeleton was thus defined for MAX (see Figure 4.7a), with a total of

68 segments and 103 degrees of freedom (DOF) in 57 joints. These include 53

DOF in 25 joints for the body (see Figure 4.7b) and 25 DOF in 16 joints for

the fingers of each hand (see Figure 4.7c). The kinematic skeleton has a height

of 182 cm and is subject to realistic joint limits based on the Standard Humanoid

Animation (H-Anim) body model1; all properties are specified in an XML file.

The MAX body model represents the initial skeleton definition included in the

ACE system used, serving as a pre-configured starting point for the transfer of

the system to a robotic platform as intended by the present work. The model and

its complete kinematic properties are described in more detail in Kopp (2003).

1Version 1.1; http://h-anim.org/Specifications/H-Anim1.1/ – accessed February 2012
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Figure 4.7: Kinematic body and hand models of the virtual agent MAX (reprinted

from Kopp, 2003, p. 100ff.): a) dimensions (in cm) of the kinematic body model; b)

segments, DOF, and joints of the kinematic skeleton; c) segments, DOF, and joints of

the kinematic hand.

Motor Control in ACE

Inspired by biological models as described in Section 4.1, gesture motor control in

ACE is realized hierarchically. During higher-level planning, the motor planner

is provided with timed form features of the required gesture as annotated in the

MURML specification. To solve the given motor control problem, this information

is then passed on to independent motor control modules. The idea behind this

functional-anatomical decomposition of motor control is to break down the complex

control problem into solvable sub-problems (Zeltzer, 1982).

Accordingly, the motor planner in ACE provides specific modules, among

others, for the arms, the wrists, and the hands (see Figure 4.8). These modules,

in turn, instantiate local motor programs (LMPs) which are used to animate

required sub-movements. LMPs operate within a limited set of DOFs and over a

designated period of time, e.g., during the preparation, stroke, or retraction phase
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Figure 4.8: Composition of the ACE motor planner (adapted from Kopp and

Wachsmuth, 2004).

of the gesture (see Figure 4.9). For the motion of each limb, an abstract motor

control program (MCP) coordinates and synchronizes the concurrently running

LMPs, gearing towards an overall solution to the control problem. The top-level

control of the ACE system, however, does not attend to how such sub-movements

are controlled.

To ensure an effective interplay of the LMPs involved in a MCP, the planning

modules arrange them into a controller network which defines their potential

interdependencies for mutual (de-)activation. LMPs are able to transfer activation

between themselves and their predecessors or successors to allow for context-

dependent gesture transitions. Thus, they can activate or deactivate themselves

at run-time depending on feedback information on current movement conditions.

Once activated, LMPs are continuously applied to the kinematic skeleton in a

feedforward manner; this process is coordinated by their respective MCPs.

Since gesture generation is based on external form features as given in the

MURML description, arm movement trajectories are specified directly in task

space. For each animation frame, externally formulated LMPs for wrist position,

preparation and stroke of wrist flexion, and swivel movement are invoked first.
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Figure 4.9: Composition of motion control in Local Motor Programs (LMPs) for a

hand-arm gesture (adapted from Kopp and Wachsmuth, 2002).

Subsequently, the inverse kinematics of the 7-DOF anthropomorphic arm is solved

using an analytical algorithm from the IKAN package2, which offers a complete

set of real-time inverse kinematics algorithms suitable for anthropomorphic limbs

such as arms or legs (Tolani et al., 2000). Details of the exact algorithms used for

trajectory formation and to solve redundancies of the arm can be found in Kopp

(2003) and Kopp and Wachsmuth (2004).

To account for temporal constraints imposed by the concurrent speech modality,

on-line timing of gestures is accomplished as follows. As highlighted in Section 3.1.1,

synchrony within a chunk is generally achieved by adapting the gesture to structure

and timing of speech. To do this, the ACE scheduler retrieves timing information

about the synthetic speech at the millisecond level and defines the start and the

end of the gesture stroke accordingly. Such temporal constraints, e.g., specifying

how long the hand has to form a certain shape, are automatically propagated

down to each single gesture component. The motor planner then creates the LMPs

that meet the specified temporal constraints in addition to the form constraints

of the gesture.

The second aspect of scheduling, namely the decision to skip preparation or

retraction phases, results from the interplay of motor programs at run-time. Motor

programs monitor the current movement state of the body and are autonomously

activated to realize the planned gesture stroke as scheduled. Whenever the motor

program of the following gesture takes over the control of the effectors from the

preceding program, the retraction phase turns into a transition into the next

2http://cg.cis.upenn.edu/hms/software/ikan/ikan.html/ – accessed February 2012
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gesture. Such on-line scheduling is made possible by the interleaved production of

successive chunks and leads to fluent and continuous multimodal behaviors.

4.2.2 Whole Body Motion (WBM)

Humanoid robots have a complex structure, many DOF and multiple end-effectors.

Controlling the whole body of the robot is a complex task due to the high

dimensionality and redundancy of the system. Thus, the specification of motions

based on lower-dimensional end-effector tasks is desirable for controlling the robot.

Besides the ACE system, the second pre-existing module available for the

technical implementation of the present work is the Whole Body Motion (WBM)

controller of the humanoid robot. This provides a kinematic framework which

allows for flexible real-time control and generation of upper body movements of a

redundant robot. Specifically, the WBM module aims at controlling all DOF of

the humanoid robot by given end-effector targets. Relevant aspects and features

of the framework are briefly described in the following. More detailed information

on the WBM system can be found in Gienger et al. (2005, 2006).

Kinematic Body Model

The humanoid robot used for the work of this thesis has a height of 120 cm

and a weight of 52 kg;3 the kinematic model underlying the WBM controller is

illustrated in Figure 4.10 (Gienger et al., 2005). In the initial configuration, the

x-axis points forward, the y-axis points to the left, and the z-axis points upward.

Roll, tilt, and pan specify a rotation about the x-, y-, and z-axis respectively.

The first link corresponds to the heel coordinate system which is centered

between the feet and aligned with the heel edge. It comprises 3DOF in the form

of translations in the x- and y-direction, and a rotation about the z-axis. The

following links correspond to the body segments of the robot. The pelvis is subject

to three translations and rotations with respect to the heel frame. The head

is connected to the upper body and comprises 2DOF composed of pan and tilt

joints. The kinematic model further includes two arms comprising 5DOF each,

with 3DOF in the shoulder, 1DOF in the elbow, and 1DOF in the wrist allowing

3http://asimo.honda.com/downloads/pdf/honda-asimo-robot-fact-sheet.pdf – accessed Febru-

ary 2012
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Figure 4.10: Kinematic body model of the Honda humanoid robot (reprinted from

Gienger et al., 2005).

for a rotation of the hand with respect to the forearm. Each hand is represented

by an additional coordinate system defining a hand reference point for a 1DOF

grasp axis. In total, the model comprises 21 DOF.

Shifting and rotating the pelvis results in a one-to-one mapping onto the leg

joints, which is implemented within a separate leg and balance controller as an

independent process. As a result, the leg joints are not explicitly included in the

model, but are accounted for by the DOF of the upper body instead. The state

vector consists of the DOF that can be directly or indirectly controlled and thus

comprises

q =



(Ixhl Iyhl Iϕz,hl)
T

(hlxub hlyub hlzub)
T

(hlϕx,ub hlϕy,ub hlϕz,ub)
T

ϕT
arm,L

ϕT
arm,R

(ϕpanϕtilt)
T


(4.3)

with indices I, hl, and ub denoting the inertial, heel, and upper body frames

respectively (Gienger et al., 2006).
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Motion Control with WBM

The WBM system allows for flexible kinematic motion control of a redundant

robot by employing a control scheme that solves the redundant inverse kinematics

problem on the velocity level. The underlying control algorithm is based on a

tree-like kinematic description of the robot as illustrated in Figure 4.11, in which

each leg and arm as well as the head are represented by a kinematic chain rooted in

the upper body. The individual links within this hierarchy are either connected via

joints and their respective DOF or via fixed rigid body transformations (Gienger

et al., 2010). It is further possible to specify additional information for the DOF,

such as a range or velocity limits.

For the calculation of forward kinematics, the transformations of all tree nodes

are computed based on the current configuration of the robot (i.e., its joint angles),

which corresponds to a descending tree traversal starting from the root node.

For the computation of inverse kinematics, the “redundancy resolution” method

first introduced by Liégeois (1977) is applied. This divides the control objective

into a task and null space: the task space trajectory is projected into the joint

space using a weighted generalized pseudo-inverse of the task Jacobian, while

the null space is exploited to account for joint limit avoidance. More specifically,

Figure 4.11: Kinematic tree structure underlying the motion controller of the humanoid

robot; the kinematic chain of each limb is rooted in the upper body (adapted from

Gienger et al., 2010).
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redundancies are resolved by mapping the gradient of a given joint limit avoidance

criterion into the null space of the motion (Gienger et al., 2010).

In addition, this process is optimized in compliance with a real-time collision

avoidance algorithm as described in Sugiura et al. (2006, 2007) which protects

the robot from self-collisions. For this, avoidance movements are blended with

the WBM control by changing the priority between target reaching and collision

avoidance depending on the current configuration of the robot. The WBM

controller is further coupled with a separate walking and balancing controller which

stabilizes the motion (Hirose et al., 2001). Since WBM may lead to displacements

of the center of gravity, the balance controller can react by generating an upper

body shift. This, in turn, is tracked by and incorporated into the WBM system

without the need for active control.

As a major advantage of WBM control, motion targets may be specified

selectively, e.g., joint angles of particular joints may be specified in addition to

the desired task space trajectory. Furthermore, the task space trajectory may be

defined so as to include displacement intervals which allow for the specification of

a valid region around the target trajectory for smoother motion generation. Either

way, remaining redundancies are solved based on the above described optimization

criteria, resulting in flexible and robust motion control.

The formalized mathematical model and a more detailed description of the

velocity-based WBM algorithm can be found in Gienger et al. (2005, 2006, 2010).

The incorporated collision avoidance algorithm is further described and formalized

in Sugiura et al. (2006, 2007).

4.3 Bridging the Gap - the Solution Sought

Given the pre-existing software modules ACE and WBM control, an important

research question centers on the main challenges faced when attempting to bridge

the gap between these two systems from different application domains (see RQ3).

In order to endow the humanoid robot with co-verbal gestures while standing

to benefit from the speech-gesture production model in ACE, an exploration

and evaluation of the reusability of the existing features is necessary. In the

following, an outline of the desired system architecture is presented and discussed

and the challenges faced at different levels of the behavior generation process are

elucidated.
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4.3.1 Outline of the System Architecture

The development of an ACE-based action generation framework for the WBM

controlled humanoid robot as intended by the present work targets a maximum

exploitation of the already existing systems. On the one hand, ACE provides

modules for the on-demand planning and synthesis of gestural motor actions

and verbal utterances. These are coupled with an incremental process model

to schedule the output behaviors into synchronized fluent utterances. On the

other hand, the humanoid robot is equipped with the previously described WBM

controller, which allows for the selective specification of motion targets both

based on forward and inverse kinematics. Based on the features of the two

underlying modules, the system architecture for a multimodal ACE-based action

generation framework for the humanoid robot is outlined in Figure 4.12 and

further described in the following.
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Figure 4.12: Outline of the system architecture for an ACE-based multimodal action

generation framework for the humanoid robot; the required interface between the ACE

system and the WBM controller is framed in red.
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The overall system forms a generation pipeline integrating ACE with a body

model specification at the beginning of the process and the WBM controller with

the robot at the end of it. In between the two systems, a bi-directional interface –

using both efferent control signals and afferent sensory feedback – connects the

behavior planning and scheduling layer on the one side with the robot motor

control layer on the other side. The interface is situated at the original animation

level of the ACE framework, thus replacing the animation of the virtual agent with

the behavior mapping to the robot and the coupling with the WBM controller.

The WBM controller, in turn, subsequently translates the issued commands into

motor actions for execution on the robot. For this purpose, the ACE-to-robot

interface has to convert motor commands for speech and gesture generated for the

virtual agent into control variables that can be applied to the robot at run-time.

This process is explored and discussed in the following parts of this thesis.

More specifically, the challenges faced at this stage of the generation process

are first introduced in the next two sections. Generally, to enable the humanoid

robot to flexibly produce speech and co-verbal gesture at run-time using the ACE

framework, challenges are encountered at two different levels: first, at the motion

generation level, and second, at the speech-gesture synchronization level. These

are discussed in Sections 4.3.2 and 4.3.3 respectively. The actual implementation

details and decisions made at both levels are presented in Chapters 5 and 6.

4.3.2 Challenges at the Gesture Generation Level

The generation of communicative gesture for an artificial agent such as a virtual

human or humanoid robot represents a specific type of movement generation. Due

to timing constraints imposed by accompanying speech, motion generation for

gesture is more restricted than for arbitrary movements. Apart from such timing

constraints, requirements with respect to defined form features of the gesture

further restrict the desired movement: if conceptual information is to be expressed,

for example, as conveyed by iconic gestures, the hand trajectory and potentially

specific finger movements are essential in conveying the meaning of the gesture. In

contrast, other goal-directed movements such as grasping typically provide more

flexibility: the end-effector trajectory towards the target position can often be

selected from a broader range of valid paths, all of which may ensure the successful

accomplishment of the task.

At a more basic level, however, beyond the above mentioned timing and form
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feature issues, the generation of robot gesture as intended by the present work

can be considered as a motion retargeting problem (Gleicher, 1998). That is,

movements generated by or for one body with certain kinematic properties are

to be transferred to another body with different kinematic characteristics. This

problem is typically encountered in imitation learning scenarios in which a human

demonstrator performs a motor action that is to be replicated and learnt by an

embodied artificial agent (Billard, 2001; Schaal et al., 2003). In the present case,

the original motion stems from the body model of an animated character with

human-like kinematic properties (see Section 4.2.1), while the target body is that

of a kinematically and physically more constrained humanoid robot.

The motion retargeting problem is associated with the so-called correspon-

dence problem which refers to the mismatch between the different embodiments

of the demonstrator and the imitator (Nehaniv and Dautenhahn, 2001, 2002).

For example, a human tutor and an imitating humanoid robot may differ in

arm length and in the range of motion provided by each joint. The required

correspondence can be established at different levels, depending on the objectives

of the imitation process and the task respectively. In general, two approaches to

solving the correspondence problem can be distinguished (Schaal et al., 2003):

1) Correspondence in external task space. This approach represents a

simplified solution to the problem, since external or task coordinates are mostly

independent of the kinematic and dynamic properties of the demonstrator’s

body. The only transformation required for this process is a mapping from the

demonstrator’s body-centered external space to the imitator’s body-centered

external space, which is a linear transformation. If imitation is only required at

task-level, i.e., if only the end-effector trajectory of the imitated movement is

important to fulfill the given task, then this approach offers a straightforward

and sufficient solution. For example, if the task is to draw a circle with the

finger in the air, then a mapping of the task space trajectory will suffice to

successfully accomplish the task.

2) Correspondence in internal joint space. Solving the problem in internal

space is a more complex endeavor. If the demonstrator and the imitator have

dissimilar bodies, joint angle trajectories of the demonstrator need to be shifted

and scaled to match the segment lengths and range of motion provided by the

imitator’s body. Therefore, the movement can only be imitated approximately

by reproducing only the most important sub-states of the motion. Under these
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circumstances, the correspondence problem consists of the identification and

definition of the movement features that need to be reproduced to fulfill the

given task. Despite its complexity, this approach typically leads to a more

accurate imitation. For example, if the task is to pantomime the wing flapping

movement of a chicken by moving the bent elbows up and down, matching the

end-effector position alone would not convey the correct meaning of the gesture;

instead, shoulder and elbow joint angles represent important sub-states of this

motion which need to be included in the mapping process.

Given these two options, the pros and cons of each approach have to be considered

in view of the research objective of the present work. The decision made and

reasons for the chosen approach with regard to the implementation of an ACE-

based generation framework for robot gesture are discussed in Chapter 5.

Besides the motion retargeting and correspondence problem which result from

the general difficulty of mapping motions from one body to another with less DOF,

further aspects of the present approach add to the given challenge. For example,

the body of the robot is subject to additional physical constraints which are not

imposed on a virtual animated character. To illustrate, the robot is controlled

by actual motors with various motor states, its motion underlies fixed velocity

limits, and it must strictly avoid collisions with its own body or entities in the

environment. However, in light of ACE being originally designed for a virtual

rather than physical platform, it fails to adequately account for such physical

properties and limitations. For this reason, these challenges must be explicitly

addressed when transferring the ACE framework to the humanoid robot.

Another issue demanding consideration during implementation is how to choose

an adequate transfer and mapping rate between the virtual agent framework and

the robotic platform. For successful integration of the two existing systems

into one combined framework, the required interface needs to synchronize the

two competing sample rates of the ACE framework and of the WBM software

controlling the robot. This issue is further elucidated in Chapter 5.

Finally, on a less technical level, a desired degree of smoothness as well as

perceived naturalness of the generated robot gesture constitutes another challenge.

Since the WBM controller is coupled with a balance controller, upper body motion

of the robot can lead to compensating shifts and movements around the joint

connecting the upper body with the legs. Such motion may be perceived as “hip”

movements which are not typically performed by humans when gesturing. If it is
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perceived to significantly distort the appearance of the generated gestures, ways

to limit these incidental movements may have to be found.

4.3.3 Challenges at the Speech Synchronization Level

As highlighted at the beginning of Section 4.3.2, the generation of co-verbal

gesture movements is particularly constrained by the need for adequate temporal

synchronization with speech. To ensure the desired co-expressive synchrony

between the two modalities, the gesture stroke onset must precede or, at the latest,

begin right at the onset of the nucleus of the speech affiliate (cf. Section 2.2.1).

Given the physical limitations imposed by the robot’s body as highlighted in

the previous section, movement adaptation to the temporal constraints of speech

is more difficult to realize with a robot than with an animated virtual character.

For example, due to physical joint velocity limits, the robot may not be able to

perform the designated arm trajectory in the time scheduled and proposed by the

ACE framework. This may potentially result in mistimed synchronization with

the speech affiliate, e.g., if the gesture stroke is performed after the affiliate.

In contrast, when animating embodied computer characters, motion speed

is not subject to such “hard” restrictions, since the velocity profiles applied for

animation are much more flexible. For this reason, it is possible to realize speech-

gesture synchronization for virtual agents merely based on gesture adapting to the

timing of speech within a chunk. However, using a robotic platform characterized

by the above mentioned limitations, this approach to cross-modal adaptation

proves problematic. Synchronizing robot gesture with speech poses challenges at

a completely different level than speech-gesture coordination in virtual agents.

These challenges can be broken down into two problems as expressed by the

following questions. First, if planning and scheduling of gesture movement as

done by ACE do not result in successful synchronization of the robot’s speech and

gesture, how can a more reliable prediction of gesture execution time be obtained?

Second, how can planning and scheduling errors be accounted for during execution,

e.g., if the actual motion time exceeds the predicted value and would thus lead to

speech-gesture mistiming?

To tackle these challenges arising at the speech-gesture synchronization level,

the present work will provide a solution which accounts for the robot-specific limi-

tations in order to achieve cross-modal synchrony in a customized and optimized

way.
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4.4 Summary and Discussion

This chapter introduced the first major objective of the present work, i.e., the

technical implementation of an ACE-based behavior generation framework for a

humanoid robot. To contribute to a general understanding of the challenges of

producing flexible communicative robot gesture at run-time, an overview of the

intended technical system was given.

Initially, in Section 4.1, a neurobiological perspective was adopted, showing

how gesture generation can be viewed as a motor control problem. This notion

was illustrated with the degrees of freedom problem in Section 4.1.1, which

investigates how particular forms of motor activity emerge from a multitude of

movements all of which allow for the completion of the same task. In this context,

basic concepts of motion generation were introduced: first, forward kinematics

which can be employed to establish the position of an end-effector based on its

configuration description in joint space, and second, inverse kinematics which

refers to the derivation of a joint configuration based on the end-effector location

specified in task space.

In Section 4.1.2 the hierarchical organization of motor control was high-

lighted, suggesting that the human CNS plans goal-directed movements in the

lower-dimensional task space rather than in intrinsic joint space coordinates. The

CNS thus needs to translate the target location into neural commands that acti-

vate the muscles required to move the arm from its current position to the final

position. Selecting a single solution at each level of the motor control hierarchy

from the many alternatives that comply with the task is referred to as motor

planning.

The notion of biologically inspired motor control was readopted in Section 4.2

to present the pre-existing modules which constitute the starting points and

the foundation for the technical implementation of the present work. First,

gesture motor control in the multimodal behavior realizer ACE was illustrated

in Section 4.2.1. For this, basic elements and attributes which can be used to

specify multimodal behaviors in MURML were summarized, and an outline of

the kinematic body model of the virtual agent MAX was provided. Furthermore,

hierarchically organized motor control in ACE was depicted to introduce the

concepts of local motor programs (LMPs) and motor control programs

(MCP) as sub-components of the motor planner.
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This was followed by a description of the Whole Body Motion (WBM) controller,

i.e., the software that controls the humanoid robot, and of the kinematic properties

of the robot’s body in Section 4.2.2. The WBM software provides a flexible method

to control upper body movement by only specifying relevant task dimensions

selectively in real-time. Redundancies are solved on the velocity level and are

optimized with regard to joint limit avoidance and self-collision avoidance, resulting

in smooth and natural movement.

Finally, Section 4.3 provided an overview of how the gap can be closed between

behavior planning and scheduling in ACE on the one hand and generation of these

behaviors on the robot via WBM on the other. The designated system needs to

combine conceptual representation and planning provided by ACE with motor

control primitives for speech and arm movements for the robot. The architecture

proposed in Section 4.3.1 forms a generation pipeline connecting ACE with the

WBM controller via a bi-directional interface for efferent and afferent signaling.

This approach was further elucidated with special focus on the challenges faced

at different levels of the behavior generation process. First, difficulties encountered

at the gesture generation level were highlighted in Section 4.3.2. In this regard, the

correspondence problem was introduced, relating to the mismatch between

the different embodiments of the virtual agent and the physical robot. Second, in

Section 4.3.3 issues that may arise at the speech synchronization level were briefly

highlighted and discussed. In particular, due to stricter velocity limits imposed

on the robot’s body, the potential of mistimed synchronization between gesture

stroke and speech affiliate was pointed out. These challenges have to be tackled

for successful realization of the technical objective at hand.

The presented outline of the solution sought and envisaged challenges of robot

gesture generation provides a preview on the actual realization of the designated

framework. Thus, this chapter forms a transition from the technical foundation

to the implementation work described in Chapters 5 and 6.
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“Usually, a discovery is not made in

the easiest but on a complicated way;

the simple cases show up only later.”

Otto Hahn

Chapter 5

Generation of Robot Gesture

The realization of an ACE-based gesture generation framework for the humanoid

robot required implementations at two different levels (cf. Figure 4.12): first,

preparative adjustments were made with regard to the original ACE module, and

second, the complete ACE-to-robot interface connecting ACE with the WBM

controller had to be implemented. These accomplishments are described in the

following Sections 5.1 and 5.2 respectively. In light of the challenges faced when

generating conceptual motion as required by robot gesture, specific implementation

choices are highlighted (see RQ4). Finally, technical results obtained using the

implemented framework for robot gesture generation are presented and discussed

in Section 5.3.

5.1 Adjustments at the ACE Level

Prior to connecting ACE to the robot’s WBM controller, a couple of preparative

modifications were made to the ACE module. These adjustments account for

the replacement of the original output platform in the form of the virtual agent

MAX with the targeted robotic platform. For this purpose, components of the

ACE system with inherent connections or dependencies to the body model of the

originally animated agent MAX were identified and tailored to conform to the

humanoid robot. Specifically, the skeleton description of the body model provided

for motion planning in ACE as well as the specification of gesture space had to be

redefined and adjusted as further described in Sections 5.1.1 and 5.1.2 respectively.

Figure 5.1 highlights the two adjusted components of the ACE module.

These modifications aimed at facilitating the implementation of the required

ACE-to-robot interface by pre-adjusting motion planning within the higher-level

module ACE. Alternatively, disregarding the mismatch between the different

embodiments at the ACE level would result in the complete allocation of the
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Figure 5.1: Adjusted components of the ACE module (framed in red): the skeleton

description of the body model for motor planning in ACE (Section 5.1.1) as well as the

specification of gesture space (Section 5.1.2) had to be redefined.

correspondence problem as illustrated in Section 4.3.2 to the lower-level interface.

However, a realization at this level is more challenging. Therefore, adopting the

chosen approach means that the motion retargeting problem can be encountered

both at the preliminary planning level within ACE and, to a greater extent, at

the execution level by the ACE-to-robot interface.

5.1.1 Skeleton Definition of ACE Body Model

As highlighted in Section 4.2.1 and illustrated in Figure 5.1, the ACE system is

closely coupled with the kinematic body model of the embodied agent. Properties

of the agent’s kinematic skeleton are specified in a configuration file defining the

limbs of the body as well as their associated body segments and joints. These,

in turn, are further specified with regard to their respective types, rotations and

translations, as well as their associated joint ranges and default joint angle values.

The skeleton definition file is specified in XML format and is read into the

ACE system at start-up to build the corresponding body model for use at run-

time. During program execution, the current joint configuration of the kinematic

skeleton is constantly mapped onto the body model which is integrated into the

visualization of the character animation. Conversely, the model provides ACE

with a representation of the agent’s body state and, based on differential quotients

of the configurations of two successive animation frames, with a means to derive

the joint velocities at any point in time. This proprioceptive feedback is used

by the ACE motor planner for the state-dependent (de-)activation of respective
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motor control programs (MCPs) and local motor programs (LMPs) as described

in Section 4.2.1 and illustrated in Figure 4.8.

In summary, the ACE body model plays an important role in motor planning

and should thus depict the skeleton of the output platform as accurately as

possible. However, in contrast to the animation of a virtual agent which is based

on and directly linked to the state of the ACE body model, the current state of the

robot cannot be as precisely reflected, since the robot is a physically independent

platform. As such, the robot’s state is further subject to other control primitives

which are not accounted for by the ACE system, e.g., those instantiated by the

collision avoidance as part of WBM control. Similarly, joint velocities derived

from the ACE body model do not depict actual values of the physical robot.

Nevertheless, adjusting the model to match the dimensions and characteristics of

the robot’s body is worthwhile, if only to conform with trajectory formation and

motor planning so as to better fit with the robot’s physical properties.

Accordingly, as part of the present work the XML file specifying the ACE body

model was modified to encompass the robot’s body segments and joints as well

as their respective dimensions and motion ranges. Besides the general decrease

in size and change of proportions, a number of joints originally modeled in the

anthropomorphic body of the virtual agent were eliminated in the robot-specific

model, since the latter comprises fewer DOF. The reduction in joints as well as

the adjustment of segment dimensions for the definition of the robot’s body model

is visualized in Figure 5.2. Specifically, several joints including their connecting

links in the spinal section of the virtual agent’s skeleton were replaced with a

single segment representing the robot’s spine which comprises no additional DOF

(vl5 to vc7). Moreover, since the robot has no separate neck segment between

its head and torso (cf. Figure 4.10), a single segment specifying the height of the

head (vc4 to vc2) was defined as a substitute for the neck and head specified in

the original MAX model.

Joint limits and DOF were further adjusted in the XML file by defining joint

ranges which specify the lower and upper limit (in degrees) for each axis of every

joint. For joints with fewer DOF in the robot model than in the virtual agent

model lower and upper joint limits of the inflexible axes were each set to zero.

For example, the wrist joint of the virtual agent comprises 3DOF, hence motion

ranges were originally specified for the x-, y-, and z-axis respectively in the virtual

agent’s skeleton description. The robot, however, has only 1DOF in its wrist joint;
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Figure 5.2: Reduction of joints and adjustment of segment lengths: the body model

of the virtual agent MAX (left) was modified to account for the smaller number of DOF

and kinematic dimensions provided by the robot (right).

this was accounted for by setting the lower and upper limits of the motion ranges

for both the x- and y-axis to zero and by specifying a broader range of rotation

about the z-axis.

The finger joints of the virtual agent’s kinematic hand model (see Figure 4.7c)

were not adjusted in the robot-specific model, as the robot only comprises 1DOF

in the hand which inherently prohibits the control of single fingers. The robot’s

hand instead provides a grasp axis, allowing for the specification of an open or

closed hand, or any intermediate configuration between the two. This limitation of

the robot’s hands, however, is difficult if not impossible to model in an adequate

way within the XML definition of the ACE body model, since the definition can

only specify general joint motion ranges but not additional interdependencies

between the joints. As a result, attempting to provide an accurate hand model
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at the ACE level would needlessly complicate matters while still not solving

the correspondence problem at the execution level. Therefore, the mismatch of

embodiment with regard to feasible finger movements is accounted for by the

ACE-to-robot interface as described in Section 5.2.2.

5.1.2 Rescaling of Gesture Space Definition

The second aspect of adjusting the ACE module for use with a robotic output

platform concerned the definition of robot-specific gesture space dimensions. As

described in Section 4.2.1, the attributes of the "HandLocation" slot in a MURML

specification (see Figure 4.5) define the relative location of the wrist based on the

division of human gesture space as proposed by McNeill (1992, see Figure 4.6).

This abstract representation format allows for the specification of the designated

gesture stroke location based on the linguistic description of spatial features

rather than concrete position vectors. The given combination of abstract location

symbols as specified in a MURML file (e.g., LocShoulder LocRight LocFar) are

then translated into numeric values by the ACE system at run-time.

In the original ACE framework used for the virtual agent MAX, the values

assigned to the location symbols are based on gesture space dimensions of a

human adult, which correspond to the characteristics of the agent’s body model.

Given the smaller scale of the humanoid robot, however, these values had to

be adjusted to conform to the gesture space of the robot. For example, the

longitudinal position symbol LocShoulder as specified for MAX defines a target

at the shoulder height of the agent, i.e., at a height of 1.48 m. This value, however,

would be located above the robot’s head if directly applied and, in fact, could not

even be reached by the robot’s hand; it was therefore adjusted to correspond to

the robot’s shoulders at a target height of 0.95 m. Accordingly, all attributes and

values of the "HandLocation" slot were rescaled and modified in the configuration

file such that they specify the corresponding values in compliance with the robot’s

dimensions. These values were subject to testing and evaluation based on which

further adjustments were made. This eventually led to the final configuration of a

robot-specific gesture space definition.
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5.2 Implementation of ACE-to-Robot Interface

Besides the adjustments made at the ACE level, the main work required for the

proposed robot gesture generation framework involved the implementation of

an interface that connects ACE to the humanoid robot via WBM control (cf.

Figure 4.12). To combine these two systems, several aspects had to be taken into

consideration, which are highlighted and elaborated in the following sections.

5.2.1 Control Strategy for Trajectory Formation

The present work on robot gesture control using the ACE system offers two

different control strategies for driving the robot using motor commands derived

from the virtual agent framework: by establishing correspondence between the

ACE body model and the body of the physical robot either in joint space or in

task space. The first method involves an extraction of the joint angles from the

kinematic body model of ACE which are then mapped onto the robot body model

controlled by the WBM system. The second method amounts to using ACE to

formulate a trajectory in terms of end-effector targets in task space, based on

which a joint space description can be derived by the inverse kinematics (IK)

module of the robot’s WBM controller.

For several reasons elaborated in the following, the choice was made in favor

of the second approach, namely task space control. Since ACE was originally

designed for a virtual agent application, it does not entirely account for certain

physical restrictions such as collision avoidance which, however, are crucial in the

control of a physical robot. For example, while it is possible and acceptable for

the virtual agent’s arms to rest against its body, any form of self-touch is not

admissible for the robot. Consequently, joint angle configurations – especially

those of the shoulder – as specified for the virtual body model in ACE frequently

lead to joint states that are not feasible on the robot, since they would result in

self-collisions. In fact, whenever such infeasible joint angle commands are sent to

the robot, the real-time collision avoidance algorithm integrated into the WBM

software overwrites the given target configuration with an optimized solution. This

motivates the necessity of adopting the task space approach, since such automatic

modification of joint angles, as implied by the first method, would be difficult to

control and regulate externally by the ACE-to-robot interface; in the worst case,

this may result in a deviation of the desired end-effector trajectory. In contrast,
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when employing the second method, i.e., controlling the robot via end-point

trajectories based on which IK is solved using the robot’s WBM controller, feasible

and thus safer robot postures are ensured.

The above mentioned drawbacks with regard to a joint space approach lead

to the following question: which features of gestural movement are essential

in conveying the correct meaning of a gesture? And more specifically in this

context: what information has higher priority - precise joint configurations or

accurate end-effector positions? Findings from human perception studies suggest

that humans largely track the hand or end-points of one another’s movement,

even if the movement is performed with the entire arm (Mataric and Pomplun,

1998). This was found to be true even in observational learning scenarios, i.e.,

when the task was not only to observe but also to imitate the perceived motor

action. These and other findings supporting the goal-directed theory of imitation

(Wohlschläger et al., 2003) suggest that observing end-point information is sufficient

to successfully imitate goal-directed movements (Maslovat et al., 2010). In effect,

during movement observation, such prioritization of task level information is in

line with empirical evidence showing that humans generally plan goal-directed

motion in the lower-dimensional task space rather than in joint space.

Given these biologically as well as empirically motivated arguments, the reasons

for choosing task space over joint space control can be summarized as follows.

• From an intuitive, biologically inspired gesture generation point of view, trajec-

tory formation in task space complies with the human approach to high-level

planning of goal-directed movements (e.g., gestures) in external coordinates.

• From a gesture perception point of view, empirical evidence as discussed above

suggests that even with a deviation of joint angles the form and meaning of

a gesture can typically still be conveyed. To humans observing goal-directed

movements such as gesture, the end-points of the arms are more important than

the individual joints. Those rare cases in which a communicative gesture may

demand an exact joint configuration do not justify the complexity involved in

realizing such a system. In addition, given the robotic platform used, such an

approach does not guarantee completely natural and lifelike gesture appearance.

• From a technical realization point of view, choosing task over joint space

control facilitates the implementation of the designated gesture generation

framework, since it enables a straightforward solving of the correspondence
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problem. Furthermore, joint space control may result in the robot’s self-collision

avoidance mechanism by autonomously altering the joint angle value originally

assigned; task space control mitigates this issue by instead prioritizing the

accuracy of the end-effector position. The WBM controller can then be used to

solve IK autonomously while finding the most suitable and feasible collision-free

joint configuration for the robot.

Consequently, the proposed ACE-to-robot interface was implemented to extract

the wrist position and respective hand orientation of the virtual agent’s

gesturing arm in external coordinates from the ACE body model. These coordi-

nates are then transformed from the body-centered external space of the ACE

body model to that of the robot. Despite the adjustments made at the ACE level

(see Section 5.1), this transformation is necessary, as the two platforms specify

different origins for their world coordinate systems. In ACE, world coordinates

originate in the hip of the agent’s body (see HumanoidRoot joint in Figure 5.2),

whereas in the kinematic body model of the robot’s WBM controller, the origin is

defined in the heel coordinate system (see Figure 4.10). During the transformation,

an appropriate offset along the z-axis is therefore used to account for the height of

the robot’s legs. In contrast, the hand orientation of the virtual model is directly

mapped onto the wrist angle of the robot.

5.2.2 Mapping of Hand Shapes

With only 1DOF in each hand, the humanoid robot is more limited in performing

single finger movements than the virtual character originally animated by ACE.

As illustrated in Figure 4.10 and described in Section 5.1.1, the DOF in the robot’s

hand provides a grasp axis which allows for the specification of a closed or open

hand as well as any intermediate configuration between the two. To this end,

the designated hand configuration is defined by means of a single joint value, for

example, specifying a grasp angle of zero results in an open hand.

Such limited expressiveness with regard to the robot’s hands makes it difficult

to model and realize a wide range of different hand gestures and finger postures.

This limitation was countered by specifying three basic hand shapes as depicted

in Figure 5.3 which can all be performed by the robot: open hand, pointing with

the index finger, and closed hand. These finger constellations are assigned to the

three basic symbols available to the "HandShape" slot in a MURML specification
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Figure 5.3: Different hand shapes specified for hand gesture generation on the hu-

manoid robot: open hand, pointing with the index finger, and closed hand (reprinted

from Salem et al., 2010c).

(cf. Figure 4.5), namely BSflat, BSffinger, and BSfist respectively.

Any hand gesture derived from the ACE body model that deviates from these

three basic symbols, e.g., by defining specific finger constellations not feasible

on the robot, are realized on the robot by using an open hand shape. This way,

MURML files originally specified for the virtual agent can still be interpreted

and executed when utilized in the transferred framework. Ideally, however, when

specifying MURML descriptions for behavior generation in the robot-specific

gesture generation framework, only the three above hand shape symbols should

be explicitly used, as these can be directly mapped onto the robot.

5.2.3 Sampling Rate

The ACE-to-robot interface connects behavior planning and scheduling in ACE

with the WBM controller of the robot (cf. Figure 4.12). For this purpose, the

interface extracts task space commands from ACE (as specified in Section 5.2.1),

transforms them into the robot’s world coordinate system, and issues them to the

WBM controller which sets the robot into motion. In addition to these efferent

control signals, afferent feedback is integrated into the control architecture to

monitor possible deviations of actual robot motor states from the kinematic body

model provided by ACE.

The required bi-directional interface is realized by a feedback-based closed

loop in which motor commands are transmitted on the condition that at least one

local motor program (LMP) for gesture generation is active in ACE. The interface

updates the kinematic body model coupled to ACE as well as the internal model

of the robot in the WBM controller at a sample rate r. This process synchronizes
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two competing sample rates to ensure successful interoperability: firstly, that of

the ACE system, and secondly, that of the WBM software controlling the robot.

For this purpose, any of the following mapping rates can be employed:

1) Sampling at target positions. ACE sends only the final positions and

orientations of movement segments and delegates the trajectory formation and

respective movement generation entirely to the robot’s WBM controller.

2) Sampling at each n-th frame. ACE sends control parameters regarding

the current wrist position and hand orientation of the agent’s body at a fixed

rate to the robot’s WBM controller.

3) Adaptive sampling rate. ACE tethers the WBM controller using different

sampling rates, ranging from one sample per frame to taking only the end

positions, depending on the complexity of the trajectory.

To illustrate, if the trajectory is linear, strategy 1 above can be expected to serve

as the best mechanism, since only distance information would likely be required.

If, on the other hand, the trajectory is complex, strategy 2 can be expected to be

optimal, since a sequence of small movement vectors would likely be required to

guide the robot controller. If, however, the gesture is formed from different types

of sub-movement, e.g., a linear trajectory for gesture preparation and a curved

trajectory for the stroke, the combined approach of strategy 3 using an adaptive

sampling rate can be considered the most advantageous.

With regard to the present implementation, the first method was discarded as

it fails to adequately account for non-linear (e.g., curved) trajectories. For example,

if a circular gesture is to be performed, it can be defined by four key-points to

be connected by four curved sub-trajectories. However, sending these key-points

to the WBM controller using the first mapping strategy would result in a square

rather than round gesture trajectory.

For successful handling of such cases, in the realized framework the second

method was implemented with a maximal sampling rate in which each succes-

sive frame of the movement trajectory is sampled and transmitted to the robot

controller (n = 1). Given a frame rate of 20 frames per second, which is flexibly

adjustable with ACE and compliant with the update rate of 5 ms on the part

of the robot controller, this results in a large number of sample points. These,

in turn, ensure that the robot closely follows the potentially complex trajectory
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planned by ACE. Based on the technical results presented in this thesis, this

method was shown to be a viable approach which meets the technical requirements

of the present work. Given the real-time planning and generation capacities of

ACE as well as its potential to produce complex gesture trajectories, such tight

coupling with the robot controller was considered a favorable solution, as it allows

for maximal controllability of the robot.

Alternatively, using the third strategy would allow for adjusting the sampling

rate depending on the trajectory’s complexity, which may vary from simple straight

movements, e.g., for gesture preparation or retraction, to complex curved shapes

for the gesture stroke phase. Whether or not this strategy would lead to improved

results for the generation of robot gesture in combination with ACE remains a

point of future investigation.

5.2.4 Outline of the Control Architecture

Figure 5.4 illustrates the control architecture for robot gesture generation based

on the previously described implementation choices. The hierarchically organized

framework combines conceptual behavior representation and planning in ACE

with motor control primitives for hand and arm movements of the physical robot

body.

As depicted in the figure, the generation process of the efferent control pipeline

is initiated by a MURML specification defining a timed gesture plan. Based on

the given movement constraints and the current state of the ACE body model,

the motor planner in ACE determines a suitable movement trajectory. Once a

LMP has been activated, the transfer of motor commands to the ACE-to-robot

interface is triggered. At each time step t, which corresponds to the sample

rate r, the interface receives the current wrist position as well as the hand shape

and orientation of the ACE body model (~xace). The interface is coupled to the

kinematic body model of the robot via a simulation environment of the WBM

controller which reflects the current state of the robot. The ACE-specific vector

~xace is transformed into the robot’s world coordinate system, while the specified

hand configuration from ACE is mapped onto one of the three robot hand shapes

depicted in Figure 5.3, together yielding the robot-specific vector ~xrob. This task

space target is forwarded to the WBM controller which solves the IK problem

of the arm on the velocity level. The resulting joint space description ~θrob of the

designated trajectory point is then applied to the real robot for execution.
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Figure 5.4: Control architecture for the realization of robot gesture: the framework

combines conceptual behavior representation and planning in ACE with motor control

primitives for hand and arm movements of the physical robot body.
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The afferent feedback pipeline emanating from the robot transmits the actual

current wrist position and complete joint configuration of the robot’s arm to the

WBM controller (~x′rob,
~θ′rob). The robot-specific vector ~x′rob is then passed on to

the ACE-to-robot interface which transforms the actual wrist position and hand

orientation of the real robot into the ACE world coordinate system. The resulting

vector ~x′ace is finally sent back to the ACE module, in order to monitor potential

deviations of the actual position and orientation of the robot’s hand from the

motor states of the kinematic body model associated with ACE.

The realized bi-directional behavior generation pipeline couples the ACE

framework with the perceptuo-motor system of the humanoid robot, thus enabling

the robot to flexibly produce communicative gestures at run-time. Technical

results presented and discussed in the following section were produced using the

outlined robot gesture generation framework.

5.3 Technical Results and Discussion

To evaluate the general performance of the implemented gesture generation

framework and the appearance of the produced robot gestures, preliminary results

were produced in a feedforward manner. That is, although sensory feedback

was available to the system, it was not used to modify the generated movement

behavior at run-time. This way, the original functioning as well as potential

limitations of the framework could be best identified before envisaging gesture

synchronization with the more constraining modality of speech.

To obtain the results presented in this section, commands indicating the wrist

position as well as the hand orientation and hand shape of the ACE body model

were transmitted to the robot in real-time at a sample rate of 20 frames per second.

A wide range of gesture types, one-handed as well as two-handed, with both

static and dynamic gesture strokes were generated based on dedicated MURML

specifications. In the following, two representative examples are illustrated and

discussed in more detail, providing an insight into the overall performance of the

system. Specifically, in Section 5.3.1 technical results derived from a feature-based

MURML description of a one-handed gesture with a static gesture stroke are

discussed. Additionally, an example of a two-handed gesture with a dynamic

gesture stroke is presented in Section 5.3.2.
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5.3.1 One-handed Gesture with Static Stroke

As outlined in Section 2.1.3, a gesture can either have a dynamic or a static

gesture stroke which expresses the meaning of the gesture. In the case of the first,

the hand moves dynamically from a designated stroke start position to a different

target position. In contrast, in the case of a static stroke, the gesturing hand

remains motionless at the gesture target position, typically for the duration of the

affiliate. Such stroke hold, for example, is often observed in deictic gestures.

To evaluate the performance of the robot when generating a one-handed static

gesture, the MURML specification depicted in Figure 5.5 was used as input for

the robot control architecture outlined in Section 5.2.4. The resulting gesture

output is presented in Figure 5.6 in which the robot is shown next to a panel

displaying the current state of the internal WBM robot body model and the ACE

kinematic body model respectively at each time step. The screenshot sequence

reveals that the physical robot is able to perform the designated gesture fairly

accurately but with some inertial delay compared to the internal ACE model.

This observation is supported by Figure 5.7a in which each dimension of the

wrist trajectories of the ACE body model and the robot are plotted against time.

The depicted delay results from the step response during motion acceleration as

well as the more restrictive velocity limits imposed on the physical robot platform.

Specifically, the plot of the z-axis of the robot’s trajectory (blue dotted line), which

represents the vertical rising of the arm and thus the most prominent dimension

of this gesture, indicates that the robot needs ∼2.3 seconds to reach the stroke

target. In contrast, the plotted trajectory of the ACE body model (red solid line)

reveals a much faster acceleration toward the stroke position, reaching the target

Figure 5.5: MURML specification used to generate the one-handed static gesture

depicted in Figure 5.6.
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Figure 5.6: One-handed static robot gesture realized with the proposed framework;

for comparison, the physical robot, WBM robot body model, and the kinematic ACE

body model are shown (left to right, top-down, sampled every four frames (0.16 sec)).

a)

b)

Figure 5.7: a) Plots of x-, y-, and z-axis respectively (in robot world coordinates) of

the right wrist positions of the ACE body model (red, solid) and the robot (blue, dotted)

during gesture execution; b) Euclidean distance between the current wrist positions of

the ACE body model and the robot over time.
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within just ∼0.5 seconds, while the robot’s wrist is still moving toward it. The

last two pictures of the first screenshot row displayed in Figure 5.6 visualize this

discrepancy. Consequently, the wrist position of the robot only ‘catches up’ with

the ACE body model at the end of the stroke hold when, in fact, the retraction

phase has already begun, resulting in a shorter stroke phase for the robot.

Figure 5.7b further emphasizes this observation with a graph of the Euclidean

distance between the current wrist position of the robot and its corresponding

target position as specified by the ACE body model plotted against gesture

execution time. It indicates that the greatest discrepancies between the actual

and the target position occur in the gesture preparation and retraction phases

during which the ACE model exhibits greater movement speed.

Despite the general limitation in speed, these findings substantiate the feasi-

bility of the proposed approach. The presented gesture example shows that the

implemented method of task space control of the robot, i.e., disregarding the joint

angles as generated in ACE, does not impair the overall shape and meaning of the

gesture. Moreover, the output example of the one-handed gesture as depicted in

Figure 5.6 demonstrates the effect of the balance controller that is integrated into

the WBM system: the one-sided motion of the upper body toward the gesture

target position leads to a displacement of the overall center of gravity. This

displacement is compensated by the balance controller, resulting in an upper body

shift and a compensating movement of the legs which can be observed particularly

in the third and fourth row of the screenshot sequence. Most importantly, however,

the images show that the balancing movement of the lower part of the robot’s

body does not significantly affect the appearance of the gesturing robot. Since a

human observer typically focuses on the end-point of the effector (cf. Section 5.2.1;

Mataric and Pomplun, 1998), these secondary movements of the legs are not

expected to distort the communicative intent of the gesture.

5.3.2 Two-handed Gesture with Dynamic Stroke

In contrast to gestures with a static stroke, the meaning-bearing phase of dynamic

gestures consists of a stroke movement which begins at one hand location and

terminates at another. In order to evaluate the performance of the robot when

generating a two-handed gesture with a dynamic stroke, the MURML description

illustrated in Figure 5.8 was used as input for the implemented robot control

architecture. It specifies a gesture in which both hands are simultaneously moved
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Figure 5.8: MURML specification used to generate the two-handed dynamic gesture

depicted in Figure 5.9.

downwards from shoulder height to the level of the abdomen during the dynamic

stroke phase.

The resulting gesture output is presented in Figure 5.9. Again, the screenshot

sequence reveals that the performance of the robot lags behind that of the internal

ACE body model. In particular, the last picture of the first row illustrates how

the ACE model reaches the start position of the dynamic gesture stroke, while

the robot is still in the early preparation phase. In this case, however, due to

the dynamic properties of the gesture stroke, the inertial delay of the robot not

only results in a shortened stroke phase, but notably, it also alters the path of

the dynamic stroke trajectory. As the target position transmitted to the robot

is updated every 500 ms, the stroke start position has already been overwritten

by the time the robot has completed its gesture preparation phase. This means,

once the robot is ready for the gesture stroke onset, the updated target position,

as issued to the robot based on the current position of the ACE body model, is

already that of the final stroke position. As a result, the gesture stroke performed

by the robot does not begin at shoulder height as specified by the MURML

description, but slightly above the abdominal area.

This process is visualized in Figure 5.10a. With particular reference to the

plot of the z-coordinate, which depicts the vertical movement of the wrist of the

robot’s right arm, the plotted trajectory of the ACE body model (red solid line)

distinctly marks the stroke onset at the ∼2.5 seconds time mark, followed by the

stroke movement (∼2.5 sec to ∼3.1 sec) and a subsequent post-stroke hold (∼3.1
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Figure 5.9: Two-handed dynamic robot gesture realized with the proposed framework;

for comparison, the physical robot, WBM robot body model, and the kinematic ACE

body model are shown (left to right, top-down, sampled every four frames (0.16 sec)).

Figure 5.10: a) Plots of x-, y-, and z-axis respectively (in robot world coordinates) of

the right wrist positions of the ACE body model (red, solid) and the robot (blue, dotted)

during gesture execution; b) Euclidean distance between the current wrist positions of

the ACE body model and the robot over time.
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sec to ∼4.0 sec). In contrast, the robot’s trajectory (blue dotted line) bears a

simple bell-shape which is characterized by an overshoot around the time the

robot ‘catches up’ with the ACE body model at the post-stroke hold phase. This

overshoot is likely caused by the sudden shift in movement direction as transmitted

by the ACE body model during execution of the dynamic gesture stroke.

Figure 5.10b depicts this discrepancy in the two trajectories by plotting

the Euclidean distance between the robot’s actual wrist position and the target

position as dictated by the ACE model over time. As with the one-handed gesture

(Section 5.3.1), the greatest mismatch between the robot’s actual and target

position occurs in the gesture preparation and retraction phase respectively. As

seen in the plotted ACE trajectory, these phases are characterized by significant

acceleration of movement speed at motion onset and abrupt shifts in direction.

Problematically, in the present example of a dynamic gesture, this leads to a

distortion of the gesture stroke, since the first part of the dynamic movement

is missed by the robot. The main source of the problem lies in the extreme

acceleration capacity of the ACE model at gesture preparation and retraction;

this is exemplified by all ACE graphs in Figure 5.10a in which steeply rising and

sloping curve progressions are evidenced.

Generally, in ACE the arm movement toward the stroke onset position in

the preparation phase as well as the movement from the stoke end position

back to the default position during the retraction phase are generated as linear

trajectories. As such, their movement duration is estimated based on Fitts’ Law

(Fitts, 1954), a psychological model of human motor behavior. It describes the

time required for a rapid goal-directed movement to a target location as a function

of the distance to the target and the size of the target. Fitts’ Law has been

formulated mathematically in a number of different ways; in the ACE system, it

was implemented according to the Shannon formulation proposed by MacKenzie

(1992), which defines the predicted movement time (MT ) as follows:

MT = a+ b log2

(
A

W
+ 1

)
(5.1)

whereby coefficient a denotes the intercept and b the slope (both to be empirically

determined), A represents the amplitude (i.e., the distance to the target), and

W the width of the target. In the original ACE implementation, the intercept

coefficient a is set to zero, the slope coefficient b has the value 0.12, while the
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target width W is set to 1 (i.e., W is neglected).

Since Fitts’ Law is based on the study of human movement trajectories, it

may be suitable for the modeling of motor behaviors of computer animated

virtual agents which are not physically restricted in movement speed. But in

view of the present results, when applied to a robotic platform, the predefined

values as specified in ACE do not appear to comply with the existing physical

constraints. To account for the discrepancy in movement speed with regard to

the robotic output platform, the time estimation applied to plan and generate

gesture trajectories in ACE requires adjustment for use with the robot.

In an initial attempt to address this issue, the time estimation function in ACE

was experimentally fitted to decrease the speed of the generated target trajectories.

Figure 5.11 illustrates a selection of results based on the execution of the dynamic

gesture depicted in Figure 5.9 with altered gesture speed; corresponding to the

third graph in Figure 5.10a, the trajectory along the z-axis is plotted against time.

Specifically, Fitts’ Law (Equation 5.1) was adjusted by setting the slope coefficient

b to values 18, 20, and 22 respectively (Figure 5.11a). In an alternative approach,

Fitts’ Law was replaced with a simple time estimation function specifying the

average velocity for gesture execution on the robot as 350 mm/sec, 300 mm/sec,

and 250 mm/sec respectively (Figure 5.11b). In comparison to the observations
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Figure 5.11: Experimental fitting of estimated gesture execution time: plots of the

right wrist trajectory along the z-axis (cf. Fig. 5.10a) of the ACE body model (red

shades, ‘ace’ label) and of the robot (blue shades, ‘rob’ label) by a) adjusting Fitts’

Law coefficient b with values 18, 20, and 22 respectively; b) using a simple time

estimation based on average velocity values 350 mm/sec, 300 mm/sec, and 250 mm/sec

respectively.
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made in Figure 5.10a, the plots indicate that decreasing gesture speed in ACE

results in the robot’s trajectory being more closely aligned to the target trajectory.

Crucially, although still disclosing deviations, the gesture phases and the dynamic

stroke are better preserved than with the initial configuration. Interestingly, with

regard to the plotted example and as far as it is visible to the naked eye, the

simple time estimation approach appears to be just as suitable if not better than

the adjusted Fitts’ Law approach.

On a more general note, it should be kept in mind that ultimately, the goal of

the present work is not to implement a robotic ‘clone’ of the virtual agent MAX

by aiming at almost identical behavior. Rather, the objective is to employ ACE as

a sophisticated tool to generate multimodal robot behavior for a humanoid robot.

That is, the aim is to customize the virtual agent framework into a re-engineered

software platform for co-verbal robot gesture generation, potentially by altering

central ACE functionalities. Thus, even if the robot’s gesture trajectory does not

exactly match the ACE trajectory, it matters little, since the crucial demand is to

convey the intended meaning. As the behaviors generated by the robot will not

be ultimately benchmarked in comparison to the ACE model, it is crucial that a

given robot gesture is perceived as meaningful in ‘stand-alone’ execution.

Moreover, given the ultimate technical goal of the present work, namely the

coordination of the generated gestures with concurrent speech, such adjustments

also greatly concern the aspired synchronization of the two modalities. There-

fore, this aspect of movement planning and timing should not be analyzed in

isolation and is thus addressed in more detail in the context of speech-gesture

synchronization in Chapter 6.

The results presented in this section demonstrate the potential as well as the

limitations of the implemented solution. The resulting framework allows for the

generation of robot gesture from arbitrary MURML-based gesture specifications.

Importantly, they show that neglecting joint angle information as generated in

ACE does not impair the overall shape of the gesture generated by the robot.

Thus, controlling the robot via task space commands provides an adequate and

safe way to generate arm movements for the robot. While the outlined limitations

require careful consideration especially in view of gesture synchronization with

speech, the overall appearance of the gesturing robot reveals promising potential

for lifelike gestural behaviors.
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5.4 Summary

The focus of this chapter was on the realization of a control architecture for the

generation of robot gesture based on the ACE system. The implementation of the

designated framework was shown to comprise two conceptual components: first,

adjustments made at the ACE level, and second, the realization of an interface

connecting ACE with the WBM controller of the robot.

Initially, in Section 5.1 modications of the ACE module and the corresponding

body model were described. These changes aimed to account for the replacement

of the original output platform, the virtual agent MAX, with the targeted robotic

platform. For this purpose, the skeleton definition originally specified for the

virtual agent was modified to match the kinematic dimensions and properties of

the humanoid robot (Section 5.1.1). In addition, the gesture space definition in

ACE, which was originally specified with regard to the skeleton of the agent MAX,

was rescaled and adjusted to match the robot’s dimensions (Section 5.1.2).

Section 5.2 provided detailed information on the implementation of the

ACE-to-robot interface, the core component of the technical framework for robot

gesture generation. In this context, a number of implementation alternatives and

decisions made in the realization process were outlined and discussed (see RQ4).

In particular consideration of various aspects of the correspondence problem,

task space control was identified as an appropriate control strategy for trajectory

formation of the robot’s gestures (Section 5.2.1). Consequently, it was explained

how the ACE-to-robot interface was implemented to extract wrist positions and

respective hand orientations in external coordinates from the ACE body model to

then map them onto the robot. In addition, given the smaller number of DOF in

the robot’s hands compared to the agent’s hands, specifications of hand and finger

configurations were introduced, detailing how they were modeled to match one of

three basic hand shapes feasible on the robot (Section 5.2.2). These extracted

movement features were highlighted as being subject to an adequate transfer

and mapping rate between the virtual agent framework and the robotic platform

(Section 5.2.3). A constant sampling rate was indicated as the chosen method

for implementation, meaning that control parameters and feedback regarding the

current wrist position, hand orientation, and hand shape of both the agent and

the robot are updated at every frame. Based on these implementation choices,

the resulting hierarchical control architecture for robot gesture generation based
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on ACE was illustrated and explained (Section 5.2.4).

Finally, in Section 5.3 preliminary technical results produced using the

implemented framework were presented based on two representative examples.

Specifically, results derived from MURML descriptions of a one-handed gesture

with a static gesture stroke (Section 5.3.1) as well as of a two-handed gesture with

a dynamic gesture stroke (Section 5.3.2) were depicted and discussed. The outlined

results demonstrated not only the capacities but also the limitations of the system,

thus highlighting potential challenges with regard to successful synchronization of

the generated gestures with speech. In this way, the implementation work and

results described in this chapter provide a conceptual basis and grounding for the

technical aspects addressed in the following chapter.
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“Timing is everything.”

William Shakespeare

Chapter 6

Synchronization of Robot Gesture

with Speech

While the previous chapter focused on the generation of robot gestures alone, this

chapter centers on the synchronization of produced gestures with speech. Given

the limitations identified at the gesture generation level, movement synchronization

with another constraining modality is particularly challenging: in addition to form

feature constraints inherent in the gesture itself, timing constraints imposed by

accompanying speech further influence the execution of the desired movement.

In view of these specific requirements and further challenges highlighted in

Section 4.3.3, the concept of a multimodal scheduler that ensures fine synchro-

nization of robot gesture with speech is introduced in Section 6.1 of this chapter.

The presented scheduler extends the original ACE component with two essential

functionalities. Firstly, as further described in Section 6.2, it provides a predictive

forward model which has been tailored to the requirements of the robotic platform

at hand. Secondly, as specified in Section 6.3, it incorporates a feedback-based

adaptation mechanism which allows for an on-line adjustment of the synchro-

nization of the two modalities at run-time. Finally, results of the two extended

features are presented and discussed in the respective sections.

6.1 Concept of Extended Multimodal Scheduler

Findings from human gesture research reveal that the onset of the co-verbal gesture

stroke generally precedes or, at the latest, begins at the onset of the nucleus of

the conceptual affiliate in speech (cf. Section 2.2.1). Ensuring this empirically

validated requirement for co-expressive synchrony between the two modalities

poses a major challenge for artificial communicators such as virtual agents or social

robots. As reviewed in Chapter 3, up to the present time most technical systems

127



6. SYNCHRONIZATION OF ROBOT GESTURE WITH SPEECH

dedicated to co-verbal gesture generation achieve synchronization by means of

gesture adaptation to the structure and timing of running speech.

While this may represent an acceptable solution to realize multimodal behavior

for virtual agents, such unidirectional adaptation may yield mistimed synchro-

nization on a physically more constrained robotic platform. Although the ACE

system is more sophisticated than other virtual agent frameworks in that it also

allows for speech adaptation to gesture timing between two successive chunks (see

Section 3.1.1), it is still similarly restricted at the intra-chunk level. Moreover,

both gesture and speech generation are performed ballistically in a feedforward

manner, that is, once the behaviors have been planned and scheduled, they cannot

be re-adjusted during execution. This is particularly true of all existing robotic

applications proposing technical models for speech-gesture generation, as they

currently lack the potential for closed-loop control (see Section 3.2.1).

In an attempt to overcome some of the issues identified in other systems – but

also in the ACE framework – the scheduler proposed in this chapter represents

an extended and improved version of the ACE scheduler originally developed

for application with virtual agents. Details on the conceptual realization and on

implementation decisions made are provided in the following.

6.1.1 Speech Synthesis

For the generation of speech output, the open source text-to-speech synthesis

system MARY (Modular Architecture for Research on speech sYnthesis; Schröder

and Trouvain, 2003) Version 3.6.0 was used. It features a modular design and an

XML-based internal data representation and is currently utilized as the standard

text-to-speech (TTS) system for the ACE framework. Several languages including

English and German are supported, thus providing the option to flexibly switch

between different languages for speech output.

Furthermore, the TTS system supports various speech synthesis technologies

including unit selection and HMM-based synthesis (Pammi et al., 2010). Unit

selection builds on a large speech database out of which units of variable size which

best correspond to the target utterance are selected (Schröder, 2004). Alternatively,

for HMM-based synthesis, Hidden Markov Models are trained a priori with a

data set in order to derive the characteristics of a specific voice (Tokuda et al.,

2004). A major advantage of this method over concatenative approaches lies in

its flexibility, since HMM-based synthesis does not require a speech database and
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further allows for the modification of voice characteristics by adjusting a number

of HMM parameters. For the realization of both German and English speech

output within the scope of the present work, predefined HMM-based voices from

the MARY software package were employed.

Generally, four processing steps of the TTS system can be distinguished1: pre-

processing, natural language processing (NLP), calculation of acoustic parameters,

and synthesis. Most relevant to the present work are the last two of these steps,

namely the calculation of parameters, during which every phoneme is assigned

a duration in milliseconds, as well as the actual synthesis of the speech output,

which transforms the derived acoustic parameters into an audio file.

Speech synthesis and multimodal scheduling of the ACE framework are tightly

coupled with these two final processing stages of the MARY system. Once the

<specification> tag defining the spoken utterance of a given MURML file has

gone through the preprocessing and NLP stages, the TTS system provides ACE

with a complete list of phonemes and their respective durations before generating

the speech output file at the final processing stage. The phoneme duration values

determined by the MARY system provide the ACE scheduler with speech-related

timing information based on which the complete multimodal utterance is planned

and the accompanying gesture is scheduled. The audio file generated by the

TTS module is finally replayed by command of the ACE scheduler at run-time,

ideally in temporal synchrony with the accompanying gesture. The underlying

synchronization mechanism is further described in the following sections. For more

details on the MARY text-to-speech system see Schröder and Trouvain (2003),

Schröder (2004), and Pammi et al. (2010).

6.1.2 Limitations of Original ACE Scheduler

As part of the present work, the first step toward multimodal behavior generation

for a robot based on ACE consisted of the use of the original scheduler provided

by the framework to assess its initial performance and then decide whether it

would require further modification. Given the examples of technical results of

generated robot gestures presented in Section 5.3 of the previous chapter, the

predefined movement speed of target trajectories was already identified as requiring

1http://mary.dfki.de/documentation/overview/ – accessed March 2012
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adjustment. Therefore, initially the function estimating the gesture execution

time in ACE was experimentally fitted in a similar fashion as described at the

end of Section 5.3.2 and as illustrated in Figure 5.11, however, this time while

generating accompanying speech output.

Although providing closer approximations to the original ACE trajectory,

slowing down the robot’s movement speed too much was found to result in

‘lethargic’-looking gesture behavior. Thus, a compromise between accurate trajec-

tory replication and lively appearing gesture behavior was to be found which, in

addition, would synchronize well with accompanying speech. Exploratory tests

with a large variety of multimodal MURML utterances yielded an acceptable

approximation of co-verbal gesture execution time with slope coefficient b of

the Fitts’ Law equation (5.1) set to the value 18.2 Alternatively, a simple time

estimation assuming 300 mm/sec as average motion velocity for robot gesture

generation was identified as another viable setting for initial use.

Despite yielding acceptable temporal synchrony between robot gesture and

speech in a wide range of tested utterances, tests using distant gesture targets or

sentences that start with the affiliate revealed that synchronization was not always

optimal. That is, in some cases the gesture stroke was only performed after the

affiliate. Therefore, a more flexible multimodal utterance scheduler was required

in order to allow for a finer cross-modal adaptation between robot gesture and

speech. Essentially, the ACE scheduler originally developed for application with

virtual agents was identified as lacking the two following major functionalities,

particularly when used on a robotic platform:

1) Accurate prediction function for movement timing. Being designed

for an animated virtual character, the predictive model implemented in ACE

employs Fitts’ Law as a basic estimation function to anticipate the time needed

for the agent to perform a body movement. In this regard, the value used

for the slope coefficient b has not been empirically determined, since it was

sufficient in the virtual agent environment to set an arbitrary value based on

which the animation can be generated. However, given real physical constraints

and limited joint velocities, such approximation to estimate gesture motion

time has proven inadequate for action generation with a humanoid robot.

2Although this value was first merely assessed with the naked eye, it was subsequently further

evaluated within the scope of the experimental studies described in Part III of this thesis.
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2) Feedback-based, cross-modal adaptation mechanisms at intra-chunk

level. In the original ACE scheduler, within a chunk of multimodal behavior

production, gesture execution is scheduled to match the timing of speech. Once

the multimodal behaviors have been planned and scheduled, no further adjust-

ments can be made based on feedback during execution. However, this lack of

cross-modal adaptability within a chunk and the ballistic generation of com-

plete gesture and intonation phrases conflict with psychological findings from

gesture research that suggests such cross-modal interactions (e.g., de Ruiter,

1998; Kendon, 2004). While nevertheless a feasible approach in a virtual agent

application which does not typically face any unforeseen physical limitations or

critical deviations in the animation of body movements in predetermined speed,

it proves problematic when applied to a robot. Given the physical platform,

the robot’s gesture execution times are difficult to predict accurately and

may deviate from the scheduled time during execution. Therefore, to prevent

mistimed synchronization, it is not sufficient to adapt only one modality (i.e.,

gesture) to the other (i.e., speech) within a chunk, especially if execution of

arm and hand gestures cannot be performed with arbitrary speed.

The technical requirements and extended features of an improved multimodal

scheduler arising from the above described limitations of the original ACE scheduler

are elucidated in the following sections.

6.1.3 Extended Features

As visualized in Figure 3.7, the incremental multimodal scheduler provided by the

original ACE framework augments the classical two-phase ‘planning-execution’

procedure with additional phases of the speech-gesture production process. For the

sake of simplicity, however, the traditional breakdown into planning and execution

phase is used to illustrate the extended features of the improved scheduler proposed

in this chapter. Such simplified distinction is further supported by the fact that

each of the two major limitations of the old scheduler listed in Section 6.1.2 refers

to one of these two phases.

In view of the above described limitations, an improved multimodal sched-

uler needs to address the following two questions previously highlighted as ex-

pected challenges at the speech-gesture synchronization level (see Section 4.3.3).

First, with regard to the planning phase, how can a more reliable prediction of
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robot-specific gesture execution time be obtained to allow for better multimodal

scheduling? Second, with regard to the execution phase, how can planning and

scheduling errors be accounted for during execution if they were to cause mistimed

synchrony otherwise?

Addressing the first issue, the proposed extended scheduler was realized to

incorporate an empirically verified forward model that predicts an estimate of

the gesture preparation time required by the robot prior to actual execution.

For this, several approaches were implemented and evaluated as described in the

following. Addressing the second issue, an on-line adjustment mechanism was

integrated into the synchronization process for cross-modal adaptation within a

chunk based on afferent sensory feedback. As before, scheduling, generation, and

continuous synchronization of gesture and speech are flexibly conducted at run-

time. Figure 6.1 illustrates the ‘planning-execution’ procedure of the proposed

improved scheduler; revised or extended features of the model are framed in red.

The complete multimodal generation process within a multimodal chunk can be

summarized as follows.

Phase 1: Planning

• Speech preparation. The planning phase begins with the phonological encod-

ing of the designated speech output contained in the <specification> tag of

a given MURML file. As described in Section 6.1.1, the MARY text-to-speech

system establishes a complete list of phonemes and their respective durations

during this process. Based on this list of phoneme durations, relevant speech

timing information such as the onset time of the affiliate is determined. Speech

output is subsequently generated in an audio file which is further processed

in dependence on the position of the affiliate: if the affiliate is located at the

beginning of the utterance, the audio file remains as it is; if the affiliate is

located in the middle or at the end of the utterance, the sound file is split into

two parts as follows. The first part contains the speech output to be uttered

before the affiliate onset; the second part contains the speech affiliate and, if

applicable, any subsequent remaining parts of speech.

• Gesture preparation. Based on the overt gesture form features specified in

the <gesture> tag of the given MURML file, a suitable trajectory for the

ACE body model is calculated, resulting in a movement plan. Meanwhile,

the predictive forward model further described in Section 6.2 computes the
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Figure 6.1: Model of the ‘planning-execution’ procedure of the extended scheduler;

additions or changes in the model compared to the original scheduler are framed in red.

estimated execution time required by the robot for the gesture preparation

phase before the stroke onset.

Based on a comparison of timing information for both modalities, start times for

speech and gesture are determined so that temporal synchrony is achieved at the

affiliate-stroke level. That is, if the duration of speech before the affiliate onset is

longer than the estimated gesture preparation time before the stroke onset, then

speech output starts first, otherwise gesture execution starts first.

Phase 2: Execution

• Before the affiliate onset. Speech-gesture production is initiated as scheduled

in the final step of the planning phase. If there is speech output scheduled to

precede the affiliate, the first sound file containing this part of speech is replayed.
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While the robot performs the gesture preparation movement, variance between

the target and its actual wrist position is constantly monitored utilizing afferent

feedback from the WBM controller of the robot.

• Ensuring synchrony between affiliate and stroke onset. Once the robot’s

wrist has reached a position within a predefined range of the target location

for the stroke onset, playback of the sound file containing the speech affiliate

is triggered. If the predicted time was accurate, there should be no noticeable

interruption in speech flow. If gesture preparation takes longer than scheduled,

the feedback-based adaptation mechanism described in Section 6.3 becomes

effective such that a pause is inserted before the speech affiliate.

In the following sections the implementation of the two major features extending

the original ACE scheduler, namely the predictive forward model and the feedback-

based adaptation mechanism, are described in more detail (see RQ5). Results

obtained with these extensions are presented in each respective section.

6.2 Predictive Forward Model

Neurophysiological findings suggest that human motor control relies more on

sensory predictions than on sensory feedback, as such feedback loops are considered

too slow for efficient trajectory control given their inherent delay (Desmurget and

Grafton, 2000; Wolpert and Flanagan, 2001). According to this view, the CNS

performs predictions using an internal forward model that captures the causal

relationship between motor commands and their sensory consequences (Kawato,

1999). Based on such model, the outcome of a rapid goal-directed movement

is anticipated in real time using a so-called efference copy of the current motor

commands (Von Holst and Mittelstaedt, 1950). For this, neural mechanisms of

the CNS simulate the response of the motor system so that the outcome of a given

motor command can be estimated prior to movement onset.

Drawing inspiration from this neurobiological perspective in light of the present

research objective, the concept of internal forward models is of particular interest

to the realization of the proposed scheduler for multimodal robot behaviors. Given

the physical properties of the robot and its inability to move the arms with

arbitrary speed, precise movement times of gesture execution are difficult to

determine a priori. Importantly though, to successfully synchronize the robot’s

134



6. SYNCHRONIZATION OF ROBOT GESTURE WITH SPEECH

gesture with concurrent speech, the gesture preparation phase must be completed

before the onset of the speech affiliate. Therefore, the execution time of this

gesture phase in particular needs to be estimated as accurately as possible so that

the behavior onset times of the two modalities can be adequately scheduled.

6.2.1 Overview of Possible Realization Approaches

As described in Section 5.3.2, the arm movement toward the stroke onset position

in the preparation phase is generated as a linear trajectory in ACE. In the original

framework, the according movement duration is estimated and modeled based on

Fitts’ Law (see Equation 5.1) which, however, was found to be inappropriate in

the initial setup. To account for the modified motion generation constraints of the

robotic platform and to achieve more accurate predictions of gesture execution

time required for the preparation phase, the following three approaches were

realized and evaluated:

1) Fitting Fitts’ Law. In view of the original ACE implementation, the most

straightforward approach aims at empirically determining a suitable value for

the slope coefficient b of the Fitts’ Law equation using a set of training data.

2) Simple time estimation. In an alternative but similarly straightforward

approach a simple time estimation function representing the average velocity

of the robot’s arm is empirically approximated based on a set of training data.

3) WBM-based trajectory simulation. A more sophisticated approach com-

prises the internal simulation of the designated target trajectory for gesture

preparation by using the robot-specific WBM controller.

Further potential approaches were identified, such as implementing a machine

learning method (e.g., using neural networks) or integrating a look-up table

containing previously collected timing information for a comprehensive set of

trajectories. However, due to the limited time available for the present work,

only the three approaches outlined above were realized, leaving these additional

options for future investigation. Since the first two listed approaches are fairly

straightforward and have already been illustrated in the previous chapter and in

Figure 5.11, only the implementation of the third option is described in more detail

in the next Section 6.2.2. Results assessing all three implemented approaches are

subsequently reported and discussed in Section 6.2.3.
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6.2.2 WBM-based Trajectory Simulation

The WBM software controlling the humanoid robot, as described in more detail

in Section 4.2.2, provides the possibility for accelerated internal simulations

of designated trajectories prior to the actual movement (Gienger et al., 2007).

Although the identical WBM controller is used for both internal simulation and

real robot control, the two processes are temporally decoupled. To simulate the

robot’s future state, the internal predictor iterates the robot model, however,

ten times faster than real-time control. For this speed-up, longer sampling time

intervals and less DOF than applied during real robot control are employed for

the iterations (Sugiura et al., 2009). This way, the internal predictor model can

simulate the desired trajectory much faster, requiring only negligible computation

time. As a result, it offers a considerable option for the estimation of movement

time required for the linear trajectory of the gesture preparation phase. The

implementation of a forward model for ACE using the internal predictor model of

the WBM controller is based on Algorithm 1.

Given the current position of the robot’s arm (xcurrent) and the target position

of the gesture stroke onset (xtarget), the internal simulation iterates over the target

trajectory x(t) which is illustrated in Figure 6.2a. As long as the distance

between current and target position is greater than a defined threshold value ε,

in each iteration step 5 ms are added to the estimated trajectory time. Finally,

the calculated time estimation value testimate is returned to the ACE scheduler for

multimodal utterance planning as depicted in Figure 6.1.

The outcome of the predicted trajectory time testimate is influenced by a

number of parameters for which appropriate values were to be determined as part

of the present implementation and evaluation process. First, the threshold value ε

providing the exit condition of the iteration loop needs to be specified so as to allow

for an adequate number of iterations. Second, the speed of the simulated target

Algorithm 1 Trajectory time estimation

while |xtarget - xcurrent| > ε do

iterate trajectory();

testimate += 0.005;

end while

return testimate;
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Figure 6.2: Step response of the WBM controller (adapted from Gienger et al.,

2010): a) given two points xcurrent and xtarget, the attractor point for the controller is

continuously shifted from the first to the latter as expressed by a(t), resulting in the

generation of the target trajectory x(t); b) the velocity profile of x(t) depends on the

specified maximum velocity value vmax and on the relaxation time constant tmc which

denotes the speed response of the controller and characterizes the slope of ẋ(t).

trajectory depends on the preset maximum velocity value vmax (see Figure 6.2b):

the greater the determined speed limit within the feasible range, the shorter

the estimated execution time. Third, the relaxation time constant tmc affects

the slope of the velocity profile of the trajectory so that a greater predefined

speed response results in slower acceleration and thus a longer overall predicted

trajectory time. Note that for real robot control, vmax and tmc are assigned the

recommended values 0.8 m/sec and 0.2 sec respectively, resulting in smooth and

non-overshooting trajectories; however, given the simplified iteration process of

the internal simulation, these values may vary in the predictive model to allow for

more accurate estimations.

Generally, due to the coarse nature of the simulation as well as the fact that

the internal predictor model does not account for the robot’s collision avoidance

module, resulting predictions are potentially imprecise. Therefore, and in view of

the three variable parameters listed above, the implemented model should also

be fitted in a way that is similar to the other implemented options outlined in

Section 6.2.1. The process that was undertaken to approximate the WBM-based

forward model as well as the other two realized approaches is described in the

following section together with a presentation and discussion of the results.
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6.2.3 Technical Results and Discussion

To obtain an empirically validated forward model for the extended ACE scheduler,

three approaches – WBM-based trajectory simulation, Fitts’ Law, and simple time

estimation – were implemented and fitted using a set of experimental training

data. The data set comprised 60 trajectories of the right arm, each starting from

the robot’s default arm position and reaching to different targets within a selected

range of typical gesture space. Each test trajectory was specified in a MURML

utterance file in which the three positional values of the "HandLocation" slot (cf.

Figure 4.5) were modified according to the combinations illustrated in Figure 6.3.

The resulting set of targets specified a diverse range of both short-distance and

long-distance trajectories; some of them (e.g., utterance no. 1) involved the

potential to trigger the self-collision avoidance mechanism of the real-time robot

controller, while others (e.g., utterance no. 60) were inherently self-collision-free.

Evaluation was based on comparisons with actual trajectory time values derived

from the robot’s performance of each test trajectory. Actual time values were

measured using a threshold of 0.03 meters Euclidean distance between the robot’s

wrist and the target wrist position for the gesture stroke onset. That is, movement

time for each trajectory was recorded until the robot’s wrist entered the specified

range around the target location. In order to assess the fitness and suitability of

the three outlined forward models and to identify optimal values for the required

parameters, each model was tested with a variety of parameter values as follows.

WBM-based Trajectory Simulation

• Approximation threshold ε. The following ten values were tested (in meters):

ε = {0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05}

• Maximum velocity parameter vmax. The following twelve values were tested

(in meters per second; recommended: ≤ 0.8):

vmax = {0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8}

• Relaxation time constant tmc. The following eight values were tested (in

seconds; recommended: ≥ 0.1):

tmc = {0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

The 960 resulting combinations were tested by comparing the predicted trajectory

time value of each combination with the actual execution time required by the
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Table 6.1: Test utterances used for fitting of the implemented forward models.
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Figure 6.3: Test utterances used for the fitting of the implemented forward models.
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real robot for each of the 60 test trajectories. Based on the smallest mean error

across all 60 trajectories, the following values were identified as yielding the best

combination: ε = 0.015, vmax = 0.8, tmc = 0.2. For the given training data, the

mean prediction error was 0.1458 seconds with a minimum deviation of 0.0024

seconds for the best predicted trajectory time, and a maximum deviation of 0.6180

seconds for the poorest trajectory time prediction.

Fitts’ Law

The forward model based on Fitt’s Law was tested with the following 20 values

for the slope coefficient b = {0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3,

0.32, 0.34, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5}. Comparisons of mean error values

for each of the 20 values across the 60 test trajectories promoted the coefficient

value b = 0.2 as best choice. With a mean error of 0.1385 seconds, the Fitts’ Law

approach was found to perform slightly better than the WBM-based predictive

model with the given values on the tested data set. The best trajectory time

prediction yielded a minimum deviation of 0.0059 seconds, while the worst time

prediction resulted in a maximum deviation of 0.5545 seconds.

Simple Time Estimation

The predictive model using a simple time estimation based on the assumed average

velocity of the robot’s arm movement was tested with the following 16 values (in

meters per second): avgV elocity = {0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22,

0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30}. The value avgV elocity = 0.28 was

identified as the best match for the given data set, resulting in a mean error of

0.2446 seconds which is substantially greater than in the other two approaches.

With a minimum deviation of 0.0002 seconds more accurate prediction performance

was found for the best case, while the maximum deviation value of 0.8942 seconds

exceeded the worst case performances of the other two implemented approaches.

Discussion

The performances of the three realized approaches of predictive models using

the best respective parameters as highlighted above are depicted in Figures 6.4,

6.5, and 6.6. The figures illustrate the gesture preparation times for each test

utterance as predicted by the three forward models in comparison to the actual
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Figure 6.4: Comparison of performance of the three realized forward models for the

test utterances no. 1–20.
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Figure 6.5: Comparison of performance of the three realized forward models for the

test utterances no. 21–40.
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Figure 6.6: Comparison of performance of the three realized forward models for the

test utterances no. 41–60.
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trajectory time required by the real robot. In the left plot of each figure, the

deviation between predicted and actual execution time of each test trajectory is

visualized for the three strategies. The deviation bars confirm what the calculated

mean error values listed above suggest: the simple time estimation approach

performs worst, especially when trajectory targets are located at a greater distance

(e.g., utterances no. 3, 4, 23, 24). Moreover, with the selected average velocity

parameter, the simple time estimation tends to overestimate the required gesture

time more than the other two models (e.g., utterances no. 2, 3, 4, 23, 24, 43, 44).

Both the WBM-based simulation and the Fitts’ Law approach show a general

tendency to underestimate the actual trajectory time in most test cases.

Furthermore, prediction errors and thereby deviations from actual trajectory

time increase with greater distance to the target, regardless of the direction. For

example, on average deviations are smaller for utterances no. 41 to 60 – all

targeting the height of the hip which is located at a similar vertical level as the

default position of the robot’s arm – than for the other 40 test trajectories.

Generally, the prediction model based on the WBM controller and the forward

model using Fitts’ Law provide fairly similar performance qualities. Since other

robotic platforms do not allow for the internal simulation of trajectories prior

to execution, Fitts’ Law therefore offers a viable alternative to the implemented

WBM-based approach. This would facilitate a potential future transfer of the

system onto other humanoid robots. With regard to the present work, however,

the WBM-based forward model was utilized for the realization of the extended

ACE scheduler. Since the simulation employs the same controller as used for

subsequent generation, the WBM-based prediction model can better account for

the actual path of the simulated trajectory with regard to the robot’s physical

properties, e.g., joint limits. In contrast, predictions using Fitts’ Law are merely

based on the calculated distance between start and target position, independent

from their relative locations in the robot’s gesture space.

As the trajectories used to identify suitable parameters for the tested models

are not exhaustive, the WBM-based forward model may actually result in a smaller

mean error value compared to the Fitts’ Law approach if evaluated using a greater

data set. Generally, given the number of adjustable parameters as well as their

range of possible values, out of which only few were tested, there is ample room

for improvement and further fine-tuning of the outlined models. Potentially, the

incorporation of machine learning algorithms, e.g., by using neural networks as
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proposed in the list of possible approaches in Section 6.2.1, may lead to even more

accurate forward models. These propositions, however, go beyond what could be

realized in the time frame available for the present work and therefore remain

points of future investigation.

Despite its limitations, the realized WBM-based forward model provides a

more advanced – and with a mean error below 0.15 seconds generally acceptable –

approach to gesture time planning compared to the original ACE scheduler. At

the same time, the results suggest that a completely accurate prediction model

is virtually impossible to achieve, thus emphasizing the lasting need for reactive

feedback-based adaptation mechanisms during the gesture execution phase.

6.3 Feedback-Based Adaptation Mechanism

Despite the improved accuracy of timing estimation for the gesture preparation

phase based on the implemented forward model, the actual timing of multimodal

utterances might still deviate from the prediction during execution. Therefore,

the second feature realized in the extended version of the ACE scheduler provides

a feedback-based adaptation mechanism which allows for reactive cross-modal

adjustment during the execution phase.

Generally, two types of real-time deviation from scheduled timing plans are

possible: first, the forward model may overestimate the time required for gesture

preparation, resulting in a premature gesture stroke onset; second, the predictive

model may underestimate the time required for the gesture preparation phase,

resulting in a delayed stroke onset. According to findings from human gesture

research stating that the gesture stroke may precede but never follow the speech

affiliate (e.g., McNeill, 1992), the first type of deviation appears less problematic

than the second. Since the benchmark results of the WBM-based predictive model

(visualized in Figures 6.4 to 6.6) document a maximal overestimation error of only

0.276 seconds for the tested data set, such cases may well be tolerated. In general,

the implemented forward model was found to overestimate gesture preparation

time by more than 0.1 seconds only in very rare instances (7 out of 60 cases), which

further supports the decision to leave this type of prediction error unattended.

In contrast, if the model exposed a pattern of frequent overestimation of gesture

preparation time, the implementation of a pre-stroke hold phase would appear

reasonable. However, given its inherent tendency to rather underestimate the
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time required by the robot, the present approach focuses on the more problematic

type of prediction error with regard to gesture preparation time.

6.3.1 Implementation of Cross-Modal Adjustment

In his work, Kendon (2004) demonstrated that human speech may pause before

the affiliate onset if the gesture preparation movement has not yet been completed,

suggesting that the inserted pause ensures temporal synchrony of the gesture

stroke with speech. Similarly, experiments conducted by Levelt et al. (1985) and

de Ruiter (1998) showed that synchronization between the two modalities can

indeed be achieved by the timing of speech adapting to the timing of gesture.

As mentioned in Section 3.1.1, the original ACE scheduler does not account

for such speech adaptation to gesture within a multimodal chunk, since the

underlying processing model operates fully ballistically at intra-chunk level during

the execution phase. When used on a robotic platform, this lacking adaptability is

particularly problematic if gesture preparation time is significantly underestimated,

in which case the delay of the gesture stroke onset may cause speech-gesture

mistiming.

To account for the human ability to align speech to gesture also within a chunk,

the ACE scheduler was modified to replace its open-loop execution mechanism

with a more flexible, closed-loop approach. This is achieved by utilizing afferent

feedback from the robot’s WBM controller (cf. Figure 5.4) for reactive on-line

adjustment of the multimodal synchronization process. Specifically, as outlined in

the description of the remodeled execution phase in Section 6.1.3, cross-modal

intra-chunk adaptation is achieved as follows. The sensory feedback received from

the WBM controller provides information about the current wrist position of the

robot’s arm at each time step, which enables the scheduler to constantly check for

variance between the target and actual position. This information is used as a

‘triggering’ mechanism, so that the speech affiliate is only uttered once the robot’s

hand has reached a position within the range of the stroke onset position.

If gesture preparation time is overestimated or correctly predicted, feedback

about successful completion of the preparation phase is transmitted to the speech

processing module before or at the very latest at the scheduled affiliate onset

time. As a result, speech output is uttered according to the previously established

generation plan without any audible disruption. If, however, gesture preparation

time is underestimated, the described cross-modal processing dependency results
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in a deviation of the actual multimodal production process compared to the

scheduled behavior plan. That is, if the robot’s hand has not yet reached the

stroke onset location by the predicted time, the reactive feedback mechanism

intervenes in the speech production process: if the affiliate is located at the

beginning of the utterance, it causes a delayed speech onset; if the affiliate is

situated in the middle or at the end of speech, it results in an inserted speech

pause right before the affiliate. To re-establish speech-gesture synchrony in the

latter case, speech is paused until sensory feedback confirming the completion

of the gesture preparation phase triggers its continuation. Such anticipation

and reactive adaptation of the flow of speech to gesture timing complies with

psycholinguistic models from the gesture literature promoting an interactive view

of the relationship between speech and gesture (cf. Section 2.2.3).

Thus, the implemented feedback-based adaptation mechanism extends the

ACE scheduler with a powerful means to achieve speech-gesture synchrony even

on a more demanding robotic platform. This way, the extended scheduler allows

for cross-modal adjustments not only between, but also within chunks.

6.3.2 Technical Results and Discussion

The following results were generated using the complete extended version of the

ACE scheduler which incorporates both the empirically validated WBM-based

predictive model and the reactive adaptation mechanism. In the ideal case, the

movement time required for gesture preparation is estimated precisely enough

during the planning phase to result in actual execution that is consistent with

the scheduled multimodal plan. In such instance, the feedback-based adaptation

mechanism would trigger the production of the speech affiliate just on time so

that speech production is not notably interrupted. However, to demonstrate

the cross-modal adjustment capability of the improved scheduler, examples were

deliberately generated in which sensory feedback induced the insertion of pauses

into the flow of speech. Such cases typically emerge when the gesture preparation

time is considerably underestimated by the predictive model during planning.

As highlighted in Section 6.2.3, the forward model was found to produce

the most prominent prediction errors of this type with increasing length of the

anticipated gesture trajectory. Therefore, particularly distant locations were

specified as targets for the gesture stroke onset in the following examples of

multimodal robot behavior which were generated with the extended ACE scheduler.
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Two scenarios are demonstrated and discussed in the following: first, a multimodal

utterance in which the speech affiliate is located at the beginning of the chunk,

and second, one in which the affiliate is situated in the middle of the utterance.

Affiliate at Beginning of Chunk

Figure 6.7 depicts an example of a multimodal utterance generated with the ex-

tended ACE scheduler which illustrates the feedback-based adaptation mechanism

effective at the beginning of the utterance. The upper plotted graph visualizes

the velocity profile of the robot’s right wrist during gesture execution; the lower

graph plots the z-axis of the robot’s wrist trajectory over time. Speech output is

transcribed in temporal alignment to the generated gesture trajectory with words

of the affiliate highlighted in red. The figure illustrates the underestimation of

gesture preparation time by ∼0.4 seconds which results in a feedback-induced

delay of the speech affiliate onset until the stroke onset position has been reached.

In this way, despite the initially mistimed gesture preparation onset, temporal

synchrony between the speech affiliate and the gesture stroke is ensured.
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Figure 6.7: Multimodal utterance generated with the extended ACE scheduler demon-

strating a feedback-induced speech delay prior to speech onset.
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Affiliate in the Middle of Chunk

Figure 6.8 shows an example of a multimodal utterance generated with the

extended ACE scheduler to illustrate the feedback-based adaptation mechanism

effective in the middle of the chunk. As described in Section 6.1.3, the position

of the affiliate yields the generation of two separate speech output files. Initially,

speech and gesture commence according to their assigned onset times as scheduled

in the planning phase. In this case, speech onset precedes the beginning of the

gesture preparation phase, i.e., playback of the first audio file containing speech to

be uttered before the affiliate onset is initiated first and is accompanied by gesture

movements after ∼0.72 seconds. As in the previous example, gesture preparation

time is underestimated, resulting in a feedback-induced speech pause immediately

preceding the affiliate onset. Once the preparation phase of the gesture has been

completed, the feedback mechanism triggers the continuation of speech so that

the affiliate and remaining speech output are replayed from the second audio file.

The two presented examples illustrate the functionality of the reactive cross-

modal adaptation mechanism provided by the new ACE scheduler at the intra-

chunk level. In this way, the extended scheduler not only provides cross-modal
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 [ The ][       television     ][  is  ][     about     ][ -------------- ][  this  ][ big ][  and  ][  they  ][  have  ][ it ][ on ][  sale.  ]

Figure 6.8: Multimodal utterance generated with the extended ACE scheduler demon-

strating a feedback-induced speech pause within a chunk.
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alignment between two successive chunks, but also within a single chunk. As a

result, synchrony between robot gesture and speech can be ensured during the

execution phase in spite of previous prediction errors made during the behavior

planning and scheduling phase. This increased generation flexibility is a novelty

in robotic platforms that aim at synchronized speech-gesture production and thus

constitutes another major contribution of the present work.

6.4 Summary

This chapter focused on the synchronization of generated robot gestures with

accompanying speech. In light of the special requirements and constraints imposed

by the physical properties of the robot, the functionality of the original ACE

scheduler was found to be insufficient for successful multimodal synchronization.

Specifically, due to potentially mistimed behavior scheduling in the planning phase

and the subsequent ballistic execution of single utterance chunks, the co-verbal

gesture stroke onset was occasionally generated so that it followed the affiliate

onset. This, however, conflicts with findings from human gesture research stating

that the stroke generally precedes or, at the latest, begins at the onset of the

affiliate in speech. Human gesturing behavior was further shown to allow for

an adaptation of speech to gesture even within an intonation phrase if gesture

preparation has not yet been completed prior to the affiliate onset (Kendon, 2004).

To optimize the synchronization of robot gesture and speech as envisaged

by the present work, in Section 6.1 the concept of an extended multimodal

scheduler overcoming these conceptual shortcomings of the original ACE scheduler

was presented. The proposed scheduler comprises two features that improve the

synchronization process on the given robotic platform.

First, as described in Section 6.2, it was realized by incorporating an em-

pirically verified forward model that predicts a more accurate estimate of the

gesture preparation time required by the robot prior to actual execution. For this,

three approaches – WBM-based trajectory simulation, based on Fitts’ Law, and

a simple time estimation – were implemented, fitted, and evaluated using a set

of experimental test data. Eventually, the WBM-based approach was integrated

into the final model, as it can better account for the robot’s joint limits and the

actual path of the simulated trajectory than the other two models.

The second feature of the extended scheduler was described in Section 6.3.
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It incorporates an on-line adjustment mechanism into the synchronization process

for cross-modal adaptation within a chunk based on sensory feedback from the

robot. Specifically, information about its current wrist position is used to trigger

the speech affiliate once the robot’s hand has reached a position within the range

of the stroke onset position, thereby ensuring temporal synchrony.

As a major contribution of the present work, the implementation of the

proposed extended scheduler enables the humanoid robot to plan, generate, and

continuously synchronize gesture and speech at run-time. With its empirically

validated forward model and the possibility of cross-modal adaptation within

a chunk, the extended scheduler represents the first closed-loop approach to

speech-gesture generation for humanoid robots. Although there is certainly room

for improvement with regard to both extended features, the presented scheduler

already provides a more flexible and natural way to realize multimodal behavior

for robots and other artificial communicators.
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Part III: Empirical Evaluation





“The true delight is in the finding out

rather than in the knowing.”

Isaac Asimov

Chapter 7

Empirical Evaluation - Study 1

Building on the technical work presented in the previous part of the thesis, this

chapter introduces the empirical evaluation of speech and gesture generation with

the humanoid robot. Note, as highlighted in Section 1.4 of the introduction, the

primary purpose of the studies presented in the following was not a technical

evaluation in the sense of testing or benchmarking different implementations of

the framework. Rather, the aim was to utilize the realized system as a tool

to investigate more general research questions regarding the acceptance and

evaluation of robot gestures in human-robot interaction (HRI).

As outlined in the review of related gesture-based HRI studies in Section 3.2.2,

the evaluation of co-verbal robot gesture, especially with regard to effects, percep-

tion, and acceptance thereof, is still in the early stages. With only few empirical

studies and results reported in the relevant literature so far, there is still ample

scope for further research. The second major objective of the present work is thus

to contribute a set of new empirical findings about the effects that communicative

robot gesture may have on human interaction partners. For this purpose, two

between-subjects experimental studies were conducted using the humanoid robot

and the realized multimodal action generation framework.

The first study is presented in this chapter, which is organized as follows.

In Section 7.1 the methodology of the conducted study is described, including

the experimental design and procedure, the proposed hypotheses, the dependent

measures used, and information on the participants of the study. Section 7.2 then

provides exploratory results based on the participants’ evaluation of the behavior

displayed by the robot as well as based on their own performance during and after

the interaction.
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7.1 Method

To gain a deeper understanding of how communicative robot gesture may impact

and shape human experience in HRI, a suitable interaction scenario was designed

and benchmarks for the evaluation were identified. The study scenario comprised

a joint task that was to be performed by a human participant in collaboration with

the humanoid robot. The main motivation for choosing a task-based interaction

was to realize a largely controllable yet meaningful interaction which would allow

for a measurable comparison of participants’ reported experiences. In the given

task, the robot referred to various objects by utilizing either unimodal (speech only)

or multimodal (speech and gesture) utterances, based on which the participant

was expected to perceive, interpret, and perform an according action.

7.1.1 Experimental Design

The experiment was set in a simulated kitchen environment within the robot

lab as depicted in Figure 7.1a. The humanoid robot served as a household

assistant. Participants were told that they were helping a friend who was moving

house. They were tasked with emptying a cardboard box with kitchen items, each

of which had to be placed in its designated location. The box contained nine

kitchen items whose storage placement is not typically known a priori (unlike

plates, for example, which are usually piled on top of each other).1 Specifically,

they comprised a thermos flask, a sieve, a ladle, a vase, an eggcup, two differently

shaped chopping boards and two differently sized bowls. The cardboard box

containing the kitchen items used in the experiment is displayed in Figure 7.2.

The objects were to be removed from the box and arranged in a pair of kitchen

cupboards (upper and lower cupboard with two drawers, see Figure 7.1a). For

this, the participant was allowed to move freely in the area in front of the robot,

typically walking between the cardboard box with items and the kitchen cupboards.

Given the participant’s non-familiarity with the friend’s kitchen environment, the

robot was made to assist with the task by providing information on where to put

the respective kitchenware. For the case that the participant did not understand

1This design choice was made to prevent participants from deducing the location of the item

from common conventions rather than by strictly following the robot’s instructions.
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Figure 7.1: The experimental setting in the lab (adapted from Salem et al., 2011a):

a) participant of Study 1 interacting with the robot in a simulated kitchen environment;

b) sketch of the experimental area in the lab.

Figure 7.2: Cardboard box containing kitchen items used in the experimental study

(reprinted from Salem et al., 2012).
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where the item had to be stored, a table situated beside the kitchen cupboard

was provided for alternative placement.2 The entire interaction was filmed by

three video cameras from different angles of the experimental area. A sketch of

the experimental setting is illustrated in Figure 7.1b.

Conditions

The non-verbal behaviors that were displayed by the humanoid robot were manip-

ulated in three experimental conditions:

1) In the unimodal (speech-only) condition, the robot presented the participant

with a set of nine verbal instructions to explain where each object should be

placed. The robot did not move its body during the whole interaction; no

gesture or gaze behaviors were performed.

2) In the congruent multimodal (speech-gesture) condition, the robot presented

the participant with the identical set of nine verbal instructions used in the

unimodal condition. In addition, they were accompanied by a total of 21

corresponding gestures explaining where each object should be placed. Speech

and gesture were semantically matching (e.g., the robot said “upper cupboard”

and pointed up). Simple gaze behavior supporting the hand and arm gestures

(e.g., looking right when pointing right) was displayed during the interaction.

3) In the incongruent multimodal (speech-gesture) condition, the robot pre-

sented the participant with the identical set of nine verbal instructions used in

the unimodal condition. Again, in addition, they were accompanied by a total

of 21 gestures. However, out of these only ten gestures (47.6 %) semantically

matched the respective verbal instruction, while the remaining eleven gestures

(52.4 %) were semantically non-matching (e.g., the robot occasionally said “up-

per cupboard” but pointed downwards). Simple gaze behavior supporting the

hand and arm gestures (e.g., looking right when pointing right) was displayed

during the interaction.

The incongruent multimodal condition was designed to decrease the reliability

and task-related usefulness of the robot’s gestures. In other words, participants in

2Participants were explicitly advised not to guess the location of the item in such case so

that their performance could be correctly evaluated afterwards.
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this group were unlikely to evaluate the use of the additional gesture modality

solely based on its helpfulness in solving the given task. In this way, the third

condition provided a means to investigate whether the mere existence of non-verbal

behavior, even if not particularly appropriate, would still positively affect the

evaluation of the robot compared to the speech-only condition. The choice to

combine semantically non-matching gestures with matching ones in this condition

was made to avoid a complete loss of the robot’s credibility after a few utterances.

Verbal Utterances

In order to keep the task solvable under all three conditions, the spoken utterances

delivered by the robot were designed in a self-sufficient way. That is, the gestures

used in the multimodal conditions contained additional illustrative information

which was not indispensable to solving the task. Each instruction presented by

the robot typically consisted of two or three continuously connected unimodal

or multimodal chunks (see Definition 2 in Section 2.2.1). The verbal utterance

chunks were based on the following syntax:

• Two-chunk utterance:

<Please take the [object]>

<and place it [position + location].>

Example: Please take the thermos flask and place it on the right side of the

upper cupboard.

• Three-chunk utterance:

<Please take the [object],>

<then open the [location]>

<and place it [position].>

Example: Please take the eggcup, then open the right drawer and place it inside.

Gestures

In the multimodal conditions, the robot used three different types of gesture along

with speech to indicate the designated placement of each item:

• Iconic gestures, e.g., to illustrate the shape or size of objects
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Iconic gesture Pantomimic gesture Deictic gesture

Figure 7.3: Examples of the three types of gesture performed by the robot during

interaction in the multimodal conditions (left to right; blue arrows indicating the

movement trajectory and direction of dynamic gestures): iconic gesture illustrating the

shape of the vase; pantomimic gesture conveying the act of opening the lower cupboard;

deictic gesture pointing at the designated location (adapted from Salem et al., 2011c).

• Pantomimic gestures, e.g., hand movement performed when opening cup-

board doors or using a ladle

• Deictic gestures, e.g., to indicate positions and locations

Examples of the three gesture types are illustrated in Figure 7.3. A complete

list of instructions presented by the robot in the different experimental conditions

during interaction is provided by Table 7.1.

Robot Control and Behavior

For the control of the robot during the experimental study the realized speech-

gesture generation framework described in Part II of this thesis was used. Since

the implementation of the extended multimodal scheduler had not been completed

by the time this study was conducted, the original ACE scheduler was employed

for the generation of multimodal behavior. Besides the preliminary adjustment of

the function estimating gesture execution time as described in Section 6.1.2, the

utterances used for the experiment were specifically designed to provide reasonable

synchrony between the two modalities. Speech output produced by the robot was

identical across conditions and was generated using the text-to-speech synthesis

system MARY (see Section 6.1.1) set to a neutral German voice.

To ensure minimal variability in the experimental procedure, the robot was

partly controlled using a Wizard-of-Oz technique during the study. The experiment
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Table 7.1: Instructions presented by the robot during interaction: the respective item

being referred to in the verbal utterance (translated into English) is printed in bold

letters; gestures performed by the robot are depicted for each condition, with blue arrows

indicating the movement trajectory and direction of dynamic gestures; non-matching

gestures of the incongruent multimodal condition are framed in red.

(no gesture)

Speech
GestureGestureGesture

Speech
Unimodal Congruent Multimodal Incongruent Multimodal

Please take the thermos flask 

and place it on the right side 

of the upper cupboard. 

Please take the rectangular 

chopping board, then open the lower 

cupboard and place it in the middle.

Please take the large bowl 

and place it on the left side 

of the upper cupboard.

Please take the egg cup, 

then open the right drawer 

and place it inside.

Please take the vase 

and place it on the left side 

of the lower cupboard.

Please take the sieve, 

then open the upper cupboard 

and place it in the middle.

Please take the small bowl 

and place it inside the left drawer.

Please take the soup ladle 

and place it on the right side 

of the lower cupboard.

Please take the round chopping 

board and place it in the middle 

onto the lower cupboard.
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room was partitioned with a curtain such that the robot and kitchen environment

were located at one end and the wizard operating the control computer was located

at the other end, outside the participant’s field of view. The experimenter initiated

the robot’s interaction behavior from a fixed sequence of predetermined utterances.

Once triggered, a given utterance was generated autonomously at run-time using

the implemented ACE-based action generation framework. The ordering of the

utterance sequence remained identical across conditions and experimental runs.

The robot delivered each two-chunk or three-chunk instructional utterance

as a singular one-shot expression without any significant breaks in the delivery

process. Successive chunks indicating object, position and location were delivered

contiguously in the manner of natural speech. Moreover, in the two co-verbal

gesture conditions, spoken utterances were accompanied by respective gestures.

Participants were instructed to indicate when they had finished placing an item

and were ready for the subsequent instruction by saying “next”.

7.1.2 Experimental Procedure

Participants were tested individually. First, they received a description of the

scenario as well as experimental instructions in written form to read outside

the experiment room. They were then brought into the robot lab where the

experimenter verbally reiterated the task instructions to ensure the participants’

familiarity. Subsequently, participants were given the opportunity to ask any

clarifying questions before the experimenter left the participant to begin the

interaction with the robot.

At the beginning of the experiment, the robot greeted the participant and

introduced the task before commencing with the actual instruction part. The

robot then presented the participant with individual utterances as described in the

experimental design, each of which was triggered by the experimenter observing

and controlling the interaction from the adjacent room. The participant then

followed the uttered instruction and, ideally, placed each item into its correct

location. As explained in the briefing prior to the experimental task, participants

were requested to place the object on a table adjacent to the kitchen cupboard if

unsure about the designated location of the item, rather than trying to guess its

final position. At the end of the interaction, the robot thanked the participant

for helping and bid them farewell. Participants interacted with the robot for

approximately five minutes. In the unimodal (speech-only) condition, all utterances
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including the greeting and farewell were presented verbally; in the multimodal

(speech-gesture) conditions, all utterances including the greeting and farewell were

accompanied by co-verbal gestures.

After interacting with the robot, participants were led out of the lab where

they were asked to complete a post-experiment questionnaire to evaluate the

robot and the interaction experience. Upon completion of the questionnaire,

participants were carefully debriefed about the purpose of the experiment and

received a chocolate bar as a thank-you before being dismissed.

7.1.3 Hypotheses

Based on findings from gesture research in human-human as well as human-agent

interaction, the following hypotheses for gesture-based human-robot interaction

were developed:

H1: Participants who receive multimodal instructions from the robot (i.e., using

speech and either congruent or incongruent gesture) will evaluate the robot

more positively than those who receive unimodal information from the robot

(i.e., using only speech).

H2: Participants who are presented with congruent multimodal instructions by

the robot will perform better at the task than those who are presented with

unimodal or incongruent multimodal information by the robot.

H3: Participants who receive multimodal instructions from the robot will take

up more information about the objects handled during the interaction than

those who are presented with unimodal information only.

7.1.4 Dependent Measures

Participants were asked to report their interaction experience with the robot and

rate its perceived behavior based on several items in the post-experimental ques-

tionnaire. In addition, collected video data was analyzed to evaluate participants’

performance during the task. Data analysis focused on four main aspects.

• Quality of presentation was measured using six questionnaire items based on

five-point Likert scales as listed in Table 7.2.
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• Perception of the robot was assessed using seven questionnaire items based on

five-point Likert scales as presented in Table 7.3

• Task-related performance of participants was derived from the error rate, i.e.,

the number of objects that were not correctly placed by each participant during

the experimental task, and using a questionnaire item based on a five-point

Likert scale as shown in Table 7.4.

• Information uptake was derived from participants’ recall rate of the first and last

object which they had moved during the experimental task and was evaluated

using the two open-ended questions from the questionnaire listed in Table 7.5.

Table 7.2: Dependent measures, respective questionnaire items and scales used to

evaluate the quality of presentation:

Measure: Questionnaire Item: Scale:

Gesture Quantity “The amount of gestures performed

by the robot were...”

1 = too few,

5 = too many

Gesture Speed “The execution of gestures was...” 1 = too slow,

5 = too fast

Gesture Fluidity “The execution of hand and arm

movements was fluid.”

1 = disagree,

5 = strongly agree

Speech-Gesture Content “The robot’s speech and gesture

were semantically matching.”

1 = disagree,

5 = strongly agree

Speech-Gesture Timing “The robot’s speech and gesture

were well synchronized.”

1 = disagree,

5 = strongly agree

Naturalness “The combined use of speech and

gesture appeared...”

1 = artificial,

5 = natural
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Table 7.3: Dependent measures, respective questionnaire items and scales used to

evaluate the perception of the robot :

Measure: Questionnaire Item: Scale:

sympathetic

“Please assess to which extent

the following characteristics

apply to the robot: [measure]”

1 = disagree,

5 = strongly agree

lively

active

engaged

friendly

communicative

fun-loving

Table 7.4: Dependent measure, respective questionnaire item and scale used to evaluate

the task-related performance of participants:

Measure: Questionnaire Item: Scale:

Competence Self-Rating “How competent were you in

solving the task?”

1 = not at all,

5 = very

Table 7.5: Dependent measures and corresponding questionnaire item used to evaluate

the information uptake:

Measure: Questionnaire Item:

First Object Recall “Which was the first item you had to put away?”

Last Object Recall “Which was the last item you had to put away?”
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7.1.5 Participation

A total of 60 people (30 female, 30 male) participated in the experiment, ranging

in age from 20 to 62 years (M = 31.12, SD = 10.21). All participants were

native German speakers who were recruited at Bielefeld University and had never

before participated in a study involving robots. Based on five-point Likert scale

ratings (1 = very little, 5 = very much), participants were identified as having

negligible experience with robots (M = 1.22, SD = 0.45), while their computer

and technology know-how was moderate (M = 3.72, SD = 0.90). Participants

were randomly assigned to one of the three experimental conditions (i.e., between-

subjects design with 20 participants per condition), while maintaining gender-

and age-balanced distributions.

7.2 Results

7.2.1 Quality of Presentation

The perceived quality of the instructions presented by the robot was investigated

with regard to gesture and its combined use with speech. Mean values and

standard deviations are summarized in Table 7.6. Note that for the unimodal

condition only gesture quantity was measured, as participants in this experimental

group were not presented with any non-verbal behavior by the robot and thus

could not rate the quality of the robot’s gestures.

With regard to gesture quantity, the overall mean value for the two gesture

conditions was M = 2.90 (SD = 0.59). This means, on average participants were

quite satisfied with the gesture rate. For the unimodal condition, participants rated

gesture quantity as rather low (M = 1.90, SD = 0.99), which can be attributed

to the lack of non-verbal behavior displayed by the robot. Analysis of variance

(ANOVA) comparing the three experimental groups with regard to ratings of

gesture quantity showed a significant effect of condition (F (2,47) = 8.93, p = .001).

Pairwise comparisons with Tukey’s post-hoc test confirmed significantly higher

ratings in both the congruent and incongruent multimodal groups when compared

to the unimodal group with p = .004 and p < .001 respectively. No significant

differences were found between the two gesture conditions. When combining the

results of the two multimodal conditions, the remaining five attributes measuring

presentation quality were found to have the following overall mean values (standard
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Table 7.6: Mean values of dependent measures rating the quality of presentation in

the three conditions (standard deviations in parentheses).

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

Gesture Quantity 1.90 (0.99) 2.80 (0.62) 3.00 (0.56)

Gesture Speed 2.85 (0.37) 2.95 (0.22)

Gesture Fluidity 3.25 (0.97) 3.95 (1.05)

Speech-Gesture Content 3.65 (1.04) 3.30 (1.26)

Speech-Gesture Timing 3.90 (0.79) 4.05 (1.10)

Naturalness 3.20 (1.06) 3.30 (1.13)

deviation in parentheses). Ratings of gesture speed yielded M = 2.90 (SD =

0.30), indicating suitable speed which was neither considered too slow nor too

fast. Gesture fluidity yielded M = 3.60 (SD = 1.06) across the two multimodal

conditions, that is, smoothness of the robot’s gestures was perceived as acceptable

but not completely fluid. Semantic matching of speech and gesture (speech-gesture

content) yielded M = 3.48 (SD = 1.14), with higher ratings in the congruent

than in the incongruent multimodal condition. Temporal matching of speech and

gesture (speech-gesture timing) was perceived as fairly appropriate with M = 3.97

(SD = 0.95). Finally, perceived naturalness of the robot’s combined use of speech

and gesture was predominantly rated with values in the middle range of the scale,

yielding M = 3.25 (SD = 1.08).

Additional comparisons of the two multimodal groups using independent-

samples t-tests with 95 % confidence intervals showed a significant effect only for

the gesture fluidity measure (t(38) = -2.19, p = .034). That is, gestures were

perceived as significantly more fluid in the incongruent multimodal condition than

in the congruent multimodal condition.

To summarize, the results indicate that participants were generally satisfied

with the quality of co-verbal gestures performed by the robot with mean values

above average on the ‘disagree – strongly agree’ scales.
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7.2.2 Perception of the Robot

Participants’ perception of the humanoid robot was measured using the seven

characteristics listed in Table 7.3. To test the first hypothesis (H1), independent-

samples t-tests with 95 % confidence intervals were conducted as follows. First,

questionnaire data from the unimodal condition were compared with data from the

congruent multimodal condition. Second, data from the unimodal condition were

compared with data from the incongruent multimodal condition. Mean values

of the dependent measures reflecting participants’ perception of the robot in the

three different conditions are listed together with their standard deviation values

in Table 7.7 and are visualized in Figure 7.4. Items resulting in statistically

significant effects when comparing the respective multimodal gesture condition

with the unimodal speech-only condition are marked by asterisks (*).

Comparing the unimodal condition with the congruent multimodal condition,

the four characteristics sympathetic (t(38) = -1.90, p = .033), lively (t(38) = -2.09,

p = .022), active (t(38) = -2.70, p = .005), and fun-loving (t(38) = -2.12, p = .021)

were found to be rated significantly higher in the congruent gesture condition

than in the unimodal condition using speech only.

Table 7.7: Mean values of the dependent measures reflecting participants’ perception of

the robot (standard deviations in parentheses); + = p < .10, * = p < .05, ** = p < .01,

*** = p < .001.

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

sympathetic 3.60 (1.05) 4.20 (0.95)* 4.15 (1.09)+

lively 2.52 (0.84) 3.12 (0.97)* 3.32 (0.76)**

active 2.35 (0.88) 3.20 (1.11)** 3.45 (0.76)***

engaged 3.25 (1.29) 3.60 (1.35) 4.15 (0.88)**

friendly 4.15 (1.04) 4.35 (1.31) 4.60 (0.68)+

communicative 3.00 (1.08) 3.15 (1.31) 3.60 (1.05)*

fun-loving 1.95 (0.83) 2.65 (1.23)* 2.70 (1.30)*
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Figure 7.4: Bar chart visualizing the mean ratings and significant effects for the

dependent variables measuring participants’ perception of the robot ; + = p < .10,

* = p < .05, ** = p < .01, *** = p < .001.

When comparing the unimodal condition with the incongruent multimodal

condition, the five characteristics lively (t(38) = -3.17, p = .002), active (t(38) =

-4.25, p < .001), engaged (t(38) = -2.58, p = .007), communicative (t(38) = -1.79,

p = .041), and fun-loving (t(32.16) = -2.18, p = .019) were found to be rated

significantly higher in the multimodal condition. In addition, comparing the

ratings for the characteristics sympathetic (t(38) = -1.63, p = .056) and friendly

(t(38) = -1.62, p = .057) yielded a marginally significant effect, with higher mean

values in the incongruent multimodal condition.

On average, in comparison to the the unimodal condition, all qualities were

rated higher, i.e., more positively, in the two multimodal gesture conditions. These
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results support hypothesis H1 and suggest that the inclusion of gestural behavior

casts the robot in a more positive light than in the speech-only condition.

An additional comparison of the two multimodal conditions, i.e., congruent vs.

incongruent multimodal, showed no significant effect of experimental condition.

However, with the exception of the measure sympathetic, analyses indicated a

general trend towards higher mean values in the incongruent multimodal condition.

7.2.3 Task-Related Performance of Participants

Participants’ task-related performance was measured in two ways: first, subjective

assessment was measured using a questionnaire item asking participants to assess

their own performance (see Table 7.4); second, objective assessment was derived

from the task-related error rate, i.e., the number of objects that were not correctly

placed during the experimental HRI task. This objective measure was also used

to test the second hypothesis (H2).

Results of subjective assessment ratings are presented in Table 7.8. Generally,

participants rated their own competence as rather high, with mean values between

4.55 and 4.60 in all three groups. No effect of experimental condition was found.

Results of objective assessment ratings are listed in Table 7.9 and are illus-

trated in Figure 7.5. With an average error rate of 5.56 % across all nine kitchen

objects, participants in the unimodal group made more task-related errors than

participants in the two multimodal groups. The average error rate was further

found to be slightly higher in the incongruent multimodal condition (1.11 %)

than in the congruent multimodal condition (0.56 %). Although not yielding a

significant effect, this overall trend is in line with hypothesis H2.

Finally, Spearman’s correlation analysis showed a significant negative correla-

tion between objective and subjective assessment measures (r = -.31, p = .017).

Table 7.8: Mean values of the measure indicating participants’ subjective assessment

(standard deviations in parentheses).

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

Competence Self-Rating 4.55 (0.69) 4.60 (0.60) 4.60 (0.50)
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Table 7.9: Average error rates per object and group used to measure participants’

objective assessment ; asterisks (*) indicate items which were described in utterances

with non-matching gestures in the incongruent multimodal condition.

Condition

Object Unimodal Congr. Multimodal Incongr. Multimodal

Thermos Flask 5.0 % 0 % 0 %

Rect. Chopping Board* 15.0 % 0 % 0 %

Large Bowl* 15.0 % 0 % 0 %

Egg Cup* 0 % 0 % 5.0 %

Vase 0 % 0 % 0 %

Sieve* 10.0 % 0 % 0 %

Small Bowl* 0 % 0 % 0 %

Soup Ladle* 0 % 0 % 0 %

Round Chopping Board 5.0 % 5.0 % 5.0 %

Average Error per Group 5.56 % 0.56 % 1.11 %
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Figure 7.5: Bar chart visualizing participants’ objective assessment based on the

average error rate per group across all nine objects handled in the experimental task.
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That is, the more errors participants made in the experimental task, the lower

they actually rated their own competence afterwards.

7.2.4 Information Uptake

To test the third hypothesis (H3), participants’ information uptake was measured

based on two open-ended questions from the post-experimental questionnaire (see

Table 7.5). Specifically, participants were asked to recall the first and last object

which they had to move during the experimental task. As the respective questions

were located at the end of the questionnaire which, for consistency, had to be

filled out in the given order, participants could typically only answer them after

more than ten minutes had elapsed since actually completing the experimental

task. Note that in the incongruent multimodal condition, both the first and last

object were accompanied by matching gestures, i.e., instructions delivered by the

robot with respect to these two items were identical in both multimodal groups

(see Table 7.1).

Average recall rates for each experimental group regarding the first and

last object are presented in Table 7.10 and are visualized in Figure 7.6. As

predicted, recall rates were higher in the two multimodal conditions compared to

the unimodal condition. To evaluate the observed differences, a Kruskal-Wallis

test was conducted. Despite the clear trend, no statistically significant differences

between the experimental groups were found when comparing the recall rates

for either the first object or the second object alone. However, when comparing

the percentage of participants in each group who were able to recall both, a

significant effect of condition was found, χ2(2) = 7.01, p = .030. To follow up

on this finding, pairwise comparisons of the three groups were conducted using

Mann-Whitney tests with a Bonferroni correction resulting in a cut-off significance

level of p = .0167 (i.e., .05 / 3). The post-hoc test showed a significant difference

between the unimodal group and the congruent multimodal group (U = 120.00,

p = .006, r = -.40). That is, participants who received instructions with congruent

co-verbal gestures from the robot were significantly better at recalling both the

first and last object handled during the HRI task. These results as well as the

overall observed trend support hypothesis H3.
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Table 7.10: Participants’ information uptake per group based on the average recall

rate regarding the first and last object moved during the experimental task.

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

First Object Recall 50 % 75 % 70 %

Last Object Recall 65 % 85 % 85 %

First & Last Object Recall 35 % 75 % 64 %
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Figure 7.6: Bar chart visualizing participants’ information uptake per group based on

the average recall rate regarding the first and last object moved during the experiment.
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7.3 Summary and Discussion

In this chapter, the first of two experimental studies investigating the effect

of robot gesture was presented. To assess how representational hand gestures

performed by the humanoid robot may impact human interaction partners, a

task-related HRI scenario was designed based on the methodology described

in Section 7.1. Participants were allocated the task to empty a cardboard

box with kitchenware, while the robot assisted them by providing information

about the storage location of each item. The non-verbal behavior of the robot

was manipulated in three experimental conditions: (1) unimodal (only speech,

no gesture), (2) congruent multimodal (speech and matching gesture), and (3)

incongruent multimodal (speech and partly non-matching gesture). Hypotheses

proposed in Section 7.1.3 predicted a positive effect of robot gesture on dependent

variables measuring participants’ perception of the robot and information uptake.

In addition, a positive effect of congruent gesture was hypothesized with regard

to participants’ task-related performance.

Empirical results were reported in Section 7.2. Main findings supporting the

hypotheses are interpreted and discussed in more detail in the following.

Perception of the Robot

In a first exploratory investigation of participants’ perception and evaluation

of the robot with a dependence on its non-verbal behavior, seven questionnaire

items were analyzed to measure the attribution of various characteristics to the

robot. The results support the first hypothesis (H1) which predicted a more

positive assessment of the robot in the two multimodal conditions compared to

the unimodal condition.

The significantly higher ratings of the characteristics lively and active in the

two multimodal conditions can possibly be attributed to the robot’s gestural

movements, since the robot appeared comparatively stiff in the speech-only condi-

tion. The ratings of the characteristics sympathetic, engaged, communicative, and

fun-loving further suggest that human-like non-verbal behaviors including gesture

actually trigger a more positive response within the human participant. This

was also found to be true for hand and arm gestures that did not semantically

match the information content conveyed via speech. These findings imply that a

humanoid robot that generates gestures – even if in part they are semantically
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‘incorrect’ – is still more favorable than one that performs no gestures at all.

Interestingly, on average the robot was evaluated as more lively, active, engaged,

friendly, communicative, and fun-loving in the incongruent multimodal condition

than in the congruent condition. This suggests that a robot’s non-verbal com-

municative behavior can potentially trigger a more positive response within the

human participant when it is not ‘perfect’. Since this finding is rather surprising

and exceeds the original hypothesis, implications from this study were further

elucidated in the subsequent study to test whether this observation was replicable.

Overall, the results demonstrate that co-verbal gestures performed by a hu-

manoid robot lead to an enhanced HRI experience, i.e., the robot is generally

rated more positively when it displays non-verbal behaviors (see RQ6). These find-

ings support the present approach of endowing social robots with communicative

gestural behavior.

Task-Related Performance of Participants

Analysis of objective data measuring participants’ performance in the experimental

task, i.e., the number of objects that were not correctly placed, revealed a trend

in favor of the second hypothesis (H2), but no significant effect was found.

On average, participants in the unimodal group made more mistakes during

the task than participants in either of the multimodal groups. Surprisingly though,

despite the partly contradictory information conveyed in the two modalities,

participants in the incongruent multimodal group made a lot less – and generally

only very few (1.11 %) – errors than participants in the speech-only condition.

This observation gives reason to believe that participants in this group paid less

attention to the robot’s gestural behavior, perhaps even failing to notice any

incongruity. In fact, this theory may explain the relatively high mean value of

the speech-gesture content measure (see Table 7.6) which reflects the extent to

which the participants perceived the robot’s speech and gesture to be semantically

matching. In terms of this measure, no significant difference was found between

the participant ratings of the two multimodal groups. In addition, the above

assumption may further account for why the characteristics measuring participants’

perception of the robot were rated higher in the incongruent condition than in

the congruent condition.

Generally, participants in all three experimental groups were often observed to

focus more on solving the given task than on the robot giving the instructions. That
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is, once the robot had named the next object to be put away, many participants

immediately walked towards the box of items in an attempt to retrieve it. During

this period, the robot would still be delivering the following utterance chunk(s)

stating the designated location of the object. This part of the utterance, however,

comprised the majority of non-matching information in the incongruent condition.

The behavior displayed by the participants of this study is actually in line with

findings from human gesture research showing that addressees rarely gaze directly

at the speaker’s gesture; instead, they typically spend as much as 90 to 95 % of the

total viewing time fixating on the speaker’s face (Gullberg and Holmqvist, 1999).

Generally, participants’ attentional behavior during human-robot interaction in

this study can be viewed as a positive finding, as it indicates that they interacted

in a fairly natural way. However, it is believed that it may have lessened their

ability to consciously assess the robot’s behavior. This issue was addressed in the

second study which is described in Chapter 8.

Information Uptake

The third hypothesis (H3) tested in this study predicted higher recall rates from

participants in the multimodal conditions regarding the first and last object

handled during the experimental task. Inspiration for this hypothesis was drawn

from studies in Cognitive Psychology showing that participants who are presented

with a list of items generally tend to recall the first and last items better than

those that are in the middle of the list. This is referred to as the serial position

effect (Murdock, 1962); the tendency to recall earlier items has been termed the

primacy effect, the tendency to recall later items is called the recency effect.

H3 was further based on the assumption that the recall of the two requested

objects would be facilitated if the verbal stimulus produced by the robot was

complemented by gesture-based imagery.3 Such imagery was provided by the

robot in the form of a pantomimic gesture illustrating the use of the first item

(i.e., the thermos flask) and an iconic gesture depicting the shape of the last item

(i.e., the round chopping board).

Results from the study were in line with this hypothesis, showing that partici-

pants in both multimodal conditions were better at recalling the first or last object

3Shams and Seitz (2008) provide a review on studies showing that humans learn and remember

information better when experienced multimodally as opposed to unimodally.
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than participants in the unimodal speech-only condition. The difference between

experimental groups was particularly pronounced when participants’ recall of both

the first and the last item was considered, yielding a significant effect of condition.

In view of the previously mentioned concerns regarding participants’ potentially

limited attention to the robot while solving the task, note that the information

requested for recall was conveyed in the first utterance chunk of the instruction.

This means, while the robot was describing the object that was next to be moved,

participants were still paying full attention to the delivery of the instruction.

Generally, the results support the view that providing information via multiple

modalities, especially by adding imagery through the use of gesture, may aid

cognitive processes such as information processing and recall in human observers.

These findings are in line with human gesture research which suggests that

the use of gesture can be beneficial to human listeners when retrieving priorly

communicated information (e.g., Kelly et al., 1999; Galati and Samuel, 2011).

The fact that a similar effect was found to apply for robot gesture in the present

study suggests that humans are able to naturally process and benefit from such

non-verbal behavior even when it is conveyed by an artificial communicator.
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“Errare humanum est.”

Seneca

Chapter 8

Empirical Evaluation - Study 2

Based on the experiences gained from the first exploratory study described in

the previous chapter, the second experimental study aimed at a more focused

investigation. Findings from Study 1 led to a number of questions with regard

to the generalizability of the results. First, was the trend towards higher ratings

regarding the perception of the robot in the incongruent multimodal condition

compared to the congruent condition only a ‘coincidence’ because participants were

not focusing on the robot? Second, was this also the reason for the comparatively

good task-related performance of participants in the incongruent condition, despite

the partly contradictory information conveyed in the two modalities?1 Third, if

the robot’s use of co-verbal gesture already improved participants’ information

uptake with only little attention paid to the robot, would this effect be even more

pronounced with their increased focus on the robot’s non-verbal behavior?

In view of these questions emerging from the initial study, the second experi-

ment described in this chapter was intended to complement the previous findings

based on a modified experimental design and a more specific data analysis. In

addition, it aimed at shedding light on how communicative non-verbal behaviors

affect social perceptions of the robot and the HRI experience. Therefore, a central

purpose of the present study was to investigate how robot gesture would affect

anthropomorphic inferences about the humanoid robot. Specifically, data analysis

regarding the perception of the robot focused on the attribution of typically human

traits to the robot, evaluation of its likability, participants’ perceived shared

reality, and their future contact intentions after interacting with the robot. The

methodology of Study 2 is described in Section 8.1; results are subsequently

presented in Section 8.2.

1Notably, none of the participants of the first study made use of the table provided for the

case that a participant did not fully understand the robot’s instruction.
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8.1 Method

In Study 1, it was often observed that participants immediately turned to the

object being referred to by the robot within the first chunk of the utterance. In

such cases the participant’s attention typically shifted from the robot to the named

object while the robot was still delivering the following chunk(s) of the instructional

utterance. This behavior was reflected in the fact that participants of Study 1

often reported difficulties in assessing the robot’s behavior after completing the

task, since they had not consciously paid attention to the robot. As a consequence,

the experimental design of the first study was modified so that the participants’

attention would be directed towards the robot for a longer period of time during

the interaction.

8.1.1 Experimental Design

The general set-up, scenario, and experimental conditions in Study 2 were similar

to the design of Study 1. However, in order to increase the participants’ attention

towards the robot, each utterance was delivered by the robot in two parts. The

first part referred to the object (e.g., “Please take the thermos flask”), which

corresponds to the first chunk of a two-chunk or three-chunk utterance (cf. Sec-

tion 7.1.1). The second part comprised the designated location and position of

the item (e.g., “...and place it on the right side of the upper cupboard.”), which

corresponds to the second chunk of a two-chunk utterance or the second and third

chunk of a three-chunk utterance. In the multimodal conditions, the gestures

maintained their synchronization with the verbal chunks, thus gestural behavior

was effectively paused whenever there was a break in the delivery of the utterance.

Figure 8.1 illustrates the modified experimental design.

Although potentially a less natural form of interaction, the primary motivation

in splitting the utterances was to increase the participants’ attention directed

towards the robot. The second part of the utterance was only triggered once the

participant had picked up the object from the box and had returned to stand in

front of the robot, while directing their gaze at the robot in anticipation of the

next instruction. This way, it was assured that participants observed the complete

set of chunks delivered by the robot.
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"Please take the thermos flask" [ robot pauses while participant retrieves object ] "and place it on the right side of the upper cupboard."

Figure 8.1: Modified experimental design with split utterances: the robot’s utterance

delivery is paused after the first chunk until the participant has retrieved the object.

8.1.2 Experimental Procedure

The experimental procedure in Study 2 was almost identical to Study 1, with

the only difference being the modified delivery of utterance chunks. Moreover,

in Study 1, participants’ verbal interaction with the robot was observed to be

minimal, typically limited to the word “next”. It was consequently assumed that

participants had interpreted the experimental instructions to imply that the robot

only understood this one word, and thus they avoided any other form of verbal

interaction. Therefore, to circumvent this perceived limitation in the interaction,

participants in Study 2 were not required to verbally indicate when they were

ready for the robot to proceed with the next piece of information; instead, they

were asked to stand in front of the robot to receive the next piece of information.

That is, whenever the participant resumed a standing position in front of the

robot to signal readiness to proceed with the next instruction, the experimenter

sitting at a control terminal triggered the robot’s subsequent behavior. Finally, in

contrast to Study 1 in which a more subtle and natural perception of the robot

was achieved, in Study 2 the experimenter explicitly instructed the participants

to dedicate their attention towards the robot while solving the given task.

8.1.3 Hypotheses

Based on the findings from Study 1 and in consideration of participants’ increased

focus on the robot, the following hypotheses were established for the utilization of

split utterances in Study 2:

H4: Participants who receive multimodal instructions from the robot (either
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congruent or incongruent) will evaluate the robot more positively and an-

thropomorphize it more than those who receive unimodal information (i.e.,

speech-only). Moreover, similar to the findings from Study 1, a robot that

occasionally performs non-matching gestures will be preferred over one that

performs no gestures at all.

H5: With a greater focus on the robot’s behavior, participants who are presented

with incongruent multimodal instructions by the robot will perform worse at

the task than those who are presented with unimodal or congruent multimodal

information by the robot.

H6: Participants who receive multimodal instructions from the robot will take up

more information about the objects handled during the interaction than those

who are presented with unimodal information by the robot. Trends observed

in Study 1 should be more pronounced in Study 2 due to the participants’

increased attention to the robot’s behavior.

8.1.4 Dependent Measures

As in Study 1, participants were asked to report their interaction experience with

the robot and rate their perception of its behavior based on a post-experimental

questionnaire. Video data was analyzed to evaluate participants’ performance

during the task. Data analysis for Study 2 focused on the same four main aspects

as in the first study, namely quality of presentation, perception of the robot, task-

related performance of participants, and information uptake (see Section 7.1.4).

However, with regard to participants’ perception of the robot, a different set

of measures was used for a more specific analysis based on social psychological

research. Specifically, the degree of anthropomorphism attributed to the robot was

assessed using measures from research on the (de-)humanization of social groups

(Haslam et al., 2008). To illustrate, Haslam et al. have proposed two distinct

senses of humanness at the trait level by differentiating between ‘uniquely human’

and ‘human nature’ traits. While ‘uniquely human’ traits imply higher cognition,

civility, and refinement, traits indicating ‘human nature’ involve emotionality,

warmth, desire, and openness. Since the human nature dimension is typically used

to measure ‘mechanistic dehumanization’1, this measure was conversely employed

1According to Haslam et al. (2008), when people are denied human nature, they are implicitly

or explicitly objectified or likened to machines rather than to animals or humans.
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to assess the extent of the robot’s perceived human-likeness. Haslam et al.’s

list of human nature traits comprises ten characteristics which are presented in

Table 8.1 together with other measures used to evaluate participants’ perception

of the robot in Study 2. In particular, participants’ perception of the robot’s

likability was assessed using three questionnaire items. Their degree of shared

reality with the robot was evaluated based on three further items which tap

perceptions of similarity and experienced psychological closeness to the robot

(Echterhoff et al., 2009). The shared reality index also covers aspects of human-

robot acceptance, as participants had to indicate how much they enjoyed the

interaction with the robot. Finally, participants’ future contact intentions

with regard to the robot were measured using a single item. All indices and

measures together with the respective questionnaire items and scales used to

evaluate participants’ perception of the robot in the second study are summarized

in Table 8.1.

Dependent measures used for the evaluation of the quality of presentation,

task-related performance of participants, and information uptake were identical to

the measures applied in Study 1 (see Tables 7.2, 7.4, and 7.5 respectively).

Table 8.1: Dependent measures, respective questionnaire items and scales used to

evaluate the perception of the robot in Study 2:

Index / Measure: Items: Scale:

Human-Likeness curious, friendly, fun-loving, sociable,

trusting, aggressive, distractible,

impatient, jealous, nervous

1 = disagree,

5 = strongly agree

Likability polite, sympathetic, humble 1 = disagree,

5 = strongly agree

Shared Reality “How close do you feel to the robot?”

“How pleasant was the interaction with

the robot for you?”

“How much fun did you have interacting

with the robot?”

1 = not at all,

5 = very much

Future Contact

Intentions

“Would you like to live with the robot?” 1 = not at all,

5 = very much
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8.1.5 Participation

A total of 62 participants (32 female, 30 male) took part in the experiment, ranging

in age from 20 to 61 years (M = 30.90 years, SD = 9.82). All participants were

German native speakers recruited at Bielefeld University, Germany. Based on

five-point Likert scale ratings, participants were identified as having negligible

experience with robots (M = 1.35, SD = 0.66) and moderate skills regarding

technology and computer use (M = 3.74, SD = 0.97). Participants were randomly

assigned to one of the three experimental conditions that manipulated the robot’s

non-verbal behaviors, while maintaining gender- and age-balanced distributions.

8.2 Results

8.2.1 Quality of Presentation

Similar to the analyses conducted for the first study, the quality of presentation was

assessed based on participants’ ratings with regard to gesture and speech generated

by the robot. As before, for the unimodal condition only gesture quantity was

measured. Mean values and standard deviations are listed in Table 8.2.

Table 8.2: Mean values of dependent measures rating the quality of presentation in

the three conditions of Study 2 (standard deviations in parentheses).

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

Gesture Quantity 1.22 (0.65) 3.35 (0.67) 3.38 (0.59)

Gesture Speed 2.95 (0.39) 2.86 (0.36)

Gesture Fluidity 3.95 (1.10) 3.95 (0.81)

Speech-Gesture Content 4.10 (0.85) 2.48 (1.29)

Speech-Gesture Timing 4.05 (0.83) 4.05 (0.81)

Naturalness 3.14 (0.96) 3.67 (1.11)
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With regard to gesture quantity, the absence of the robot’s non-verbal be-

haviors resulted in very low mean ratings from participants in the unimodal

condition (M = 1.22, SD = 0.65). In contrast, the overall mean value for the

two gesture conditions was M = 3.37 (SD = 0.62), indicating that participants

in the multimodal groups were generally satisfied with the gesture rate. When

comparing the three experimental groups, an analysis of variance (ANOVA) in-

dicated a significant effect of condition regarding the gesture quantity ratings

(F (2,56) = 71.18, p < .001). Pairwise comparisons with Tukey’s post-hoc test

confirmed significantly higher ratings in both the congruent multimodal group

when compared to the unimodal group, p < .001, and the incongruent multimodal

group when compared to the unimodal group, p < .001. A comparison of the two

multimodal conditions was not found to yield significant differences.

When combining the results of the two multimodal conditions, the remaining

five attributes measuring presentation quality resulted in the following overall mean

values (standard deviation in parentheses). Evaluations of gesture speed yielded

M = 2.90 (SD = 0.37), which is consistent with the results from Study 1. That

is, on average the generated gestures were considered to be of appropriate speed.

Gesture fluidity was rated at M = 3.95 (SD = 0.95) across the two multimodal

conditions with identical mean values in each condition. This implies that the

robot’s gestures were perceived as fairly smooth and fluid, which reflects a more

positive mean rating in comparison to Study 1. Semantic matching of speech and

gesture (speech-gesture content) was rated at M = 3.27 (SD = 1.36). This time,

however, a comparison of the two multimodal groups using an independent-samples

t-test showed a highly significant effect (t(34,84) = 4.78, p < .001) with higher

ratings in the congruent compared to the incongruent multimodal condition. This

difference suggests that in Study 2, participants in the incongruent multimodal

group took more notice of the partly non-matching gestures, potentially due to

their increased attention directed toward the robot. Temporal matching of speech

and gesture (speech-gesture timing) was again perceived as fairly appropriate with

M = 4.05 (SD = 0.81) and identical mean values in both gesture conditions.

Finally, perceived naturalness of the robot’s combined use of speech and gesture

was rated slightly better than in Study 1, with an overall mean value of M = 3.40

(SD = 1.06) for the two gesture conditions. Interestingly, ratings of perceived

naturalness were notably higher in the incongruent condition than in the congruent

gesture condition, although this difference was not found to be significant.
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In summary, as with Study 1, the results suggest that participants were

generally satisfied with the presentation quality of the gestures performed by the

robot. Furthermore, the modification of the study design appears to have affected

ratings regarding the semantic matching of speech and gesture, indicating that

participants in the third experimental group recognized the partial incongruity

regarding the robot’s utterances.

8.2.2 Perception of the Robot

First, reliability analyses (Cronbach’s α) were conducted to assess the internal

consistencies of the dependent measures where applicable. The proposed indices

proved sufficiently reliable, given a Cronbach’s α of .78 for the human-likeness

index, α = .73 for the likability index, and α = .78 for the shared reality index.

Consequently, participants’ responses to the corresponding questionnaire items

were averaged to form the three outlined indices. To test the effect of experi-

mental condition on the dependent measures, analyses of variance (ANOVA) and

Tukey’s post-hoc tests were conducted with a 95% confidence interval for pairwise

comparisons between condition means. Mean values and standard deviations are

summarized in Table 8.3 and are visualized in Figure 8.2.

Results show a significant effect of condition on all dependent measures.

Specifically, they confirm that the manipulation of the robot’s gestural behavior

had a significant effect on participants’ ratings of the human-likeness index which

reflects their attribution of human nature traits to the robot (F (2,58) = 4.63,

p = .014). It also had a significant effect on their assessment of the robot’s likability

(F (2,59) = 3.65, p = .032). Furthermore, analyses indicate that the manipulation

of the robot’s non-verbal behavior had a significant effect on participants’ ratings

of the shared reality measure (F (2,59) = 4.06, p = .022) as well as on their future

contact intentions (F (2,58) = 5.43, p = .007).

Tukey post-hoc comparisons of the three groups indicate that participants

in the incongruent multimodal condition (M = 2.55, SD = 0.68) rated the

perceived human-likeness of the robot significantly higher than participants in the

unimodal condition (M = 1.98, SD = 0.58), p = .007. That is, when the robot

performed gestures that were to some extent incongruent with speech, participants

anthropomorphized it significantly more than when it did not gesture at all.

Moreover, participants reported significantly greater perceived likability when

interacting with the robot whose verbal utterances were accompanied by partly non-
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Table 8.3: Mean values of the dependent measures reflecting participants’ perception

of the robot (standard deviations in parentheses).

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

Human-Likeness 1.98 (0.58) 2.15 (0.58) 2.55 (0.68)

Likability 3.69 (0.97) 3.92 (0.81) 4.36 (0.59)

Shared Reality 3.23 (0.93) 3.75 (0.76) 3.92 (0.70)

Future Contact Intentions 2.63 (1.30) 2.95 (1.40) 3.90 (1.14)

Dependent Measures

Future Contact IntentionsShared RealityLikabilityHuman-Likeness
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Figure 8.2: Bar chart visualizing the mean ratings and significant effects for the

dependent variables measuring participants’ perception of the robot ; + = p < .10,

* = p < .05, ** = p < .01.
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matching gestures in the incongruent multimodal condition (M = 4.36, SD = 0.59)

than when it was only using speech (M = 3.69, SD = 0.97), p = .014.

Participants also experienced greater shared reality with the robot when it used

either congruent (M = 3.75, SD = 0.76) or incongruent (M = 3.92, SD = 0.70)

multimodal behaviors than when it relied on unimodal communication only

(M = 3.23, SD = 0.93); this effect was marginally significant for the comparison of

unimodal versus congruent multimodal behavior, p = .055, and significant when

comparing the unimodal with the incongruent multimodal condition, p = .011.

Finally, participants’ assessment of future contact intentions with regard to

the robot was also significantly higher in the condition with partially incongruent

speech-accompanying gesture behavior (M = 3.90, SD = 1.14) than in the

unimodal condition (M = 2.63, SD = 1.30), p = .004. Remarkably, average

ratings of whether participants would like to live with the robot were much

higher in the incongruent multimodal condition than in the congruent multimodal

condition group (M = 2.95, SD = 1.40), just missing significance with p = .050.

Although comparisons between the unimodal and the congruent multimodal

condition were not statistically significant at the 5 % level, they indicate a

trend towards higher mean ratings for all dependent measures in the congruent

multimodal condition. Similarly, comparisons between the congruent multimodal

and the incongruent multimodal groups were not statistically significant at p

< 0.05, however, the results throughout indicate a trend towards higher mean

ratings in favor of the incongruent multimodal group. These observed trends with

regard to participants’ perception of the robot are in line with the results from

Study 1. Furthermore, they support hypothesis H4 which predicted higher ratings

on all dependent measures in the two multimodal groups when compared to the

unimodal group.

8.2.3 Task-Related Performance of Participants

As with Study 1, participants’ task-related performance was measured subjectively

based on self-ratings using the questionnaire item displayed in Table 7.4 as well

as objectively based on the task-related error rate. The objective measure was

used to test the respective hypothesis (H5).

Results of participants’ subjective assessment ratings are shown in Table 8.4.

In line with the results from Study 1, participants generally rated their own compe-

tence as high, with mean values between 4.05 and 4.60 in all three groups. However,
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Table 8.4: Mean values of the measure indicating participants’ subjective assessment

(standard deviations in parentheses).

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

Competence Self-Rating 4.60 (0.50) 4.67 (0.58) 4.05 (0.81)

a one-way ANOVA indicated a significant effect of experimental condition on

participants’ self-ratings regarding their task-related competence, F (2,59) = 5.83,

p = .005. Pairwise comparisons with Tukey’s post-hoc test further revealed that

participants in the incongruent multimodal group (M = 4.05, SD = 0.81) rated

their own performance significantly worse than participants both in the unimodal

group (M = 4.60, SD = 0.50), p = .021, and in the congruent multimodal group

(M = 4.67, SD = 0.58), p = .008.

Results of objective assessment ratings are summarized in Table 8.5 and are

illustrated in Figure 8.3. In contrast to the results from Study 1, the average

error rate across all nine kitchen objects handled in the experiment was found

to be highest for the incongruent multimodal condition with a total average

error rate of 11.12 %. This comprises an error rate of 9.53 % with regard to

misplaced objects and an additional mean error of 1.59 % with regard to objects

that were placed on the adjacent table, indicating that the participant had failed

to understand the robot’s instruction. In comparison, average error rates were

much lower in the other two conditions with a combined error rate of 2.78 %

(2.22 % misplaced objects) in the unimodal condition and a combined error rate

of 2.65 % (2.12 % misplaced objects) in the congruent multimodal condition. In

fact, a Kruskal-Wallis test showed a significant effect of condition, χ2(2) = 9.06,

p = .011. Mann-Whitney tests were conducted with a Bonferroni correction

to follow up on this finding, yielding a significant difference both between the

unimodal and the incongruent multimodal groups (U = 127.50, p = .008, r = -.38)

and between the congruent and incongruent multimodal groups (U = 132.00,

p = .006, r = -.39). That is, in accordance with hypothesis H5, participants who

received partly incongruent instructions from the robot performed significantly

worse than participants who received either unimodal or congruent multimodal

instructions from the robot. These results indicate that, with an increased focus

189



8. EMPIRICAL EVALUATION - STUDY 2

Table 8.5: Average error rates per object and group used to measure participants’

objective assessment ; values in brackets refer to objects placed on the adjacent table;

asterisks (*) indicate items which were described in utterances with non-matching

gestures in the incongruent multimodal condition.

Condition

Object Unimodal Congr. Multimodal Incongr. Multimodal

Thermos Flask 0 % 4.8 % 9.5 %

Rect. Chopping Board* 10.0 % 0 % 9.5 %

Large Bowl* 0 % 0 % 42.9 %

Egg Cup* 0 % 0 % 4.8 % (14.3 %)

Vase 0 % (5.0 %) 0 % 0 %

Sieve* 0 % 0 % 0 %

Small Bowl* 0 % 0 % 0 %

Soup Ladle* 0 % 0 % 4.8 %

Round Chopping Board 10.0 % 14.3 % (4.8 %) 14.3 %

Average Error 2.22 % (0.56 %) 2.12 % (0.53 %) 9.53 % (1.59 %)
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Figure 8.3: Bar chart visualizing participants’ objective assessment based on the

average error rate per group across all nine objects handled in the experimental task.
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on the robot’s behavior in Study 2, the partly non-matching gestures affected the

participants’ perception of the robot’s instructions and, ultimately, had a negative

impact on their performance.

Finally, as observed in Study 1, Spearman’s correlation analysis showed a

significant negative correlation between objective and subjective assessment mea-

sures (r = -.41, p = .001). That is, participants’ self-ratings were generally in

line with their objective assessments: the more mistakes participants made in the

experimental task, the lower they rated their own competence in the questionnaire.

8.2.4 Information Uptake

Participants’ information uptake was measured based on the same two questions

as used in Study 1 (see Table 7.5), namely asking participants to recall the first

and last object they had to move during the experimental task. These results were

designated for testing hypothesis H6 which, in view of the participants’ increased

focus on the robot during interaction, predicted a similar trend as observed in

Study 1, however, with a more pronounced effect.

Participants’ average recall rates for each experimental group regarding the

first and last object are summarized in Table 8.6 and illustrated in Figure 8.4.

Across all three measures (i.e., correct recall of the first object, the last object, and

both the first and last object) recall rates in the incongruent multimodal group

were lower than in the unimodal and congruent multimodal groups. This trend

is particularly pronounced with regard to the recall of the first object and the

recall of both the first and the last object. Although not yielding a statistically

significant effect, this trend opposes the findings from Study 1 and contradicts the

prediction of H6. Furthermore, differences between the recall rate of the unimodal

and the congruent multimodal condition were less pronounced than in the first

study, but still show slightly higher recall rates in the congruent multimodal

condition. Remarkably, recall rates of the last item were quite similar across all

experimental conditions, yielding 85 % recall in the unimodal group versus 85.7 %

in the congruent multimodal and 81 % in the incongruent multimodal group.

Generally, results regarding participants’ information uptake indicate that

an increased focus on the robot during interaction did not promote the effect of

higher recall rates in the two multimodal groups as observed in the first study.

Hence, the hypothesized predictions of H6 were rejected.
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Table 8.6: Participants’ information uptake per group based on the average recall rate

regarding the first and last object moved during the experimental task.

Condition

Measure Unimodal Congr. Multimodal Incongr. Multimodal

First Object Recall 50 % 61.9 % 33.3 %

Last Object Recall 85 % 85.7 % 81 %

First & Last Object Recall 50 % 57.1 % 28.6 %
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Figure 8.4: Bar chart visualizing participants’ information uptake per group based on

the average recall rate regarding the first and last object moved during the experiment.
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8.3 Summary and Discussion

This chapter overviewed a second experimental study designed to complement and

validate the findings from Study 1. Slight modifications of the experimental design

and procedure were described in Section 8.1. Crucially, the study was modified to

increase the participants’ attention directed towards the robot during interaction by

splitting the robot’s utterance delivery into two parts. That is, the first utterance

chunk was followed by a pause until the participant had retrieved the object being

referred to. In addition, participants were explicitly instructed to direct their

attention to the robot while solving the task. In this way, it was ensured that

participants observed the complete set of chunks delivered by the robot. Remaining

aspects of the experimental method, especially with regard to the design (i.e.,

general set-up, scenario, and experimental conditions) and the procedure, were

similar to those of Study 1. Hypotheses proposed in Section 8.1.3 predicted a

positive effect of robot gesture on dependent variables measuring participants’

perception of the robot and information uptake. In addition, a negative effect of

incongruent gesture was hypothesized with regard to participants’ task-related

performance. Detailed empirical results were reported in Section 8.2. The main

findings with regard to the proposed hypotheses are interpreted and discussed in

the following.

Perception of the Robot

In a more focused approach to investigating the effect that non-verbal behavior

may have on participants’ perception and evaluation of the robot, responses to 17

questionnaire items, distributed over three indices and a single item measure, were

analyzed. These were used to evaluate participants’ attribution of human-likeness

to the robot, its perceived likability, as well as shared reality and future contact

intentions with regard to the robot.

The results support the respective hypothesis H4 by showing that the robot’s

gestural behavior tends to result in a more positive subsequent evaluation of

all dependent measures by the human participants. Intriguingly though, this

observation was only statistically significant at the 5 % level when the incongruent

multimodal condition was compared to the unimodal condition. That is, when

the robot performed partly non-matching gestures, it was perceived and rated

more positively than when it only used speech or when it performed congruent
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multimodal behavior (see RQ6). Specifically, with regard to the robot, this means

that partly incongruent multimodal behavior resulted in greater perceived human-

likeness, likability, shared reality, and future contact intentions. Despite the

modification of the experimental design in Study 2, which increased participants’

attention to the robot, these findings show similar trends to those of Study 1,

suggesting that they were unlikely to be a coincidence.

Indeed, the results actually exceed the hypothetical expectations: not only do

they indicate that a robot with occasional incorrect gestures is more favorable

than a non-gesturing robot; they surprisingly suggest that human interaction

partners even favor such partly incongruent multimodal behavior over completely

matching multimodal behavior. At first, this finding appears counterintuitive –

how can it therefore be interpreted?

The present analyses particularly focused on participants’ attribution of typi-

cally human traits to the robot and resulting anthropomorphic inferences. The

results may be better understood if the robot’s partly incongruent co-verbal

gestures are not just considered as non-matching utterances, but as unpredictable

behavior. From this perspective, the present findings are actually in line with

previous research on anthropomorphism and social robots suggesting that imple-

menting some form of unpredictability in a robot’s behavior can create an illusion

of the robot being ‘alive’ (Duffy, 2003). Thus, participants in this group may

have attributed intentions to the robot based on its unpredictable behavior, e.g.,

by assuming that it deliberately tried to confuse them; indeed, several partici-

pants in the incongruent multimodal group approached the experimenter after the

interaction, reporting that the robot was “cheeky” or was “trying to fool” them.

An alternative interpretation of the results is that participants perceived the

robot’s incongruent gestures as errors or ‘imperfections’ which made the robot

appear more human-like and less machine-like, and as a result, generally more

likable (see RQ7). These interpretations of the results suggest that a certain level of

unpredictability or ‘imperfection’ in a humanoid robot, as given in the incongruent

gesture condition, can actually lead to a greater attribution of human traits to the

robot and a more positive HRI experience. Although this observation certainly

depends on the given context and task, e.g., whether or not the correctness and

reliability of the robot’s behavior are vital, it could potentially lead to a paradigm

shift in the design of the ‘perfect’ social robot or artificial companion. Therefore,

a clear need exists to further elucidate this finding in future HRI research.
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Task-Related Performance of Participants

Based on the number of objects that were not correctly placed at their designated

locations, the analysis of participants’ task-related performance revealed a signifi-

cant effect of condition in favor of hypothesis H5. That is, with an increased focus

on the robot’s behavior, participants who received partly incongruent instructions

from the robot performed significantly worse in the task than participants who

were presented with either unimodal or congruent multimodal instructions.

Remarkably, the greatest error rate of a single object, namely the “large bowl”

(42.9 %), was found in the incongruent multimodal group. To find out a possible

reason for this, it is useful to look at how the robot described the storage location

of the object. As such, the robot verbally referred to the upper cupboard, but

pointed to the top of the lower cupboard. In German, the words for ‘upper’

(oberen) and ‘lower’ (unteren) sound remotely similar, which may have led to a

sensory fusion of the verbal and visual input so that the incongruity remained

unnoticed by participants who followed the gestural instruction. Moreover, in

contrast to Study 1, participants in this study also made use of the table which

was provided for those instances in which a participant failed to understand the

robot’s instruction.

These results suggest that in Study 2, the partly non-matching gestures affected

the participants’ perception of the robot’s instructions and had a negative impact

on their performance. This interpretation is further supported by the fact that

participants in the incongruent multimodal group rated their own competence at

solving the task significantly lower than participants in the other two groups. The

observed correlation between subjective and objective assessment measures thus

indicates good self-assessment on the part of the participants.

In view of this finding, it appears even more surprising that the mean ratings

of the dependent variables measuring participants’ perception of the robot were

highest in the incongruent condition. That is, although the robot’s behavior

negatively affected the participants’ task-related performance, they still rated the

robot as being more likable, reported greater shared reality with the robot, and

expressed a greater desire to live with it than participants in the other groups.

These findings therefore emphasize the positive impact of the incongruent gesture

condition on participants’ evaluation of the robot and should be systematically

investigated in future studies.
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Information Uptake

The last hypothesis (H6) of Study 2 predicted a similar trend as observed in Study

1, i.e., higher recall rates from participants in the two multimodal conditions

regarding the first and last object handled during the experimental task. In view

of the participants’ increased focus on the robot during interaction, the effect was

expected to be even more pronounced in Study 2.

However, recall rates from participants of the incongruent multimodal group

were lower than for the unimodal and congruent multimodal groups across all

three measures. This trend was found to be particularly pronounced with regard

to the recall of the first object and the recall of both the first and the last object,

although the difference did not reach significance. Thus, the results are not in line

with findings from the first study and contradict the hypothesized predictions of

H6. How can this observation be accounted for?

A possible interpretation is that, given the participants’ increased focus on

the robot’s incongruent multimodal behavior and the accordingly higher task-

related error rate, the task was cognitively more demanding for participants in this

group. Therefore, the contradictory information delivered by the robot may have

especially affected their memory of the first object – but not so much of the second

object – to be moved during the interaction: by the time participants filled out

the respective questionnaire item, more time had elapsed since the robot’s delivery

of the first instruction compared to the instruction regarding the last object. In

addition, a set of incongruent instructions that followed the first object had to be

processed during interaction, whereas no further instructions were received after

the last object.

Furthermore, average recall for the unimodal condition was found to be only

slightly lower than for the congruent multimodal condition and higher than for the

incongruent multimodal condition. It is possible that, in contrast to the findings

of Study 1, the delivery of split utterances in this study may have caused the

increased recall rate in the speech-only condition, as participants generally spent

more time moving each object. To illustrate, in the first study participants picked

up each object and immediately stored it in the cupboard; in Study 2, participants

had to pause in front of the robot while holding the object and awaiting the

following instruction. This suggests that the advantage of multimodal versus

unimodal representation decreases when participants are exposed to the objects

for a longer period of time.
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In summary, results regarding participants’ information uptake show that

increasing the focus on the robot’s gestural behavior during interaction does

not result in higher recall rates in the two multimodal groups compared to the

unimodal condition. Instead, the results suggest that gestures may have a more

supportive effect on information uptake in a more natural interaction scenario as

provided by the robot’s ‘one-shot’ utterance delivery of the first study.
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“We can only see a short distance ahead, but

we can see plenty there that needs to be done.”

Alan Turing

Chapter 9

Conclusion

The work described in this thesis focused on the challenges of generating and

evaluating communicative gesture for a humanoid robot. It was motivated from

both a technically and a psychologically inspired perspective: firstly, it was

explained how only few scientific approaches had so far addressed the design and

flexible generation of finely synchronized speech and gesture for robots; secondly,

an examination of prior research in social human-robot interaction suggested

a lack of systematic evaluation of the impact of such non-verbal behaviors on

people’s perception of the robot and on their general HRI experience.

This thesis therefore set out to contribute to and complement existing work

by setting the precedent for a more rigorous and systematic study of conceptual

motorics research. The adopted interdisciplinary approach spanned several sub-

fields including psycholinguistics, computer science, neurobiology, engineering, and

social psychology. The major contributions and findings of the present work are

summarized in Section 9.1. Concluding this thesis, the scope for future research

direction is outlined and desirable extensions to the contributed work are discussed

in Section 9.2.

9.1 Summary of Contributions and Findings

Two major objectives addressing both technically and psychologically inspired

research questions were outlined in this thesis. Working towards these objectives

has resulted in the following contributions and findings in each respective field.

9.1.1 Technical Contributions and Implications

With regard to the technical implementation realized within the scope of the

present work, the contributions are twofold:
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1) Speech-gesture generation framework for humanoid robots. Building

on one of the most sophisticated virtual agent frameworks, this work provides

a novel multimodal action generation framework that is specifically tailored to

the requirements of speech and gesture synthesis for a humanoid robot. To

date, most gesture generation models in social robotics have only featured a

predefined repertoire of motor actions; the implemented system advances the

field by contributing a more flexible framework for the real-time production

of speech-accompanying robot gesture which is not restricted to a set of pre-

scripted motor primitives. Although the presented solution was designed and

realized for a specific robotic platform, it represents a proof of concept by

demonstrating the feasibility of the chosen approach. As a result, the work of

this thesis paves the way for similar approaches to employing a virtual agent

framework for behavior realization in arbitrary physical humanoid robots.

2) Novel multimodal scheduler for closed-loop control. All pre-existing

approaches to the generation of multimodal robot behaviors are based on

unidirectional synchronization mechanisms, in which gesture timing typically

adapts to the timing of speech, and open-loop control. That is, they do

not consider any sensory feedback to re-adjust the pre-planned behaviors at

run-time should adaptation be necessary, potentially resulting in asynchrony.

Besides the limited flexibility of those systems, previous approaches have

therefore failed to accurately model and account for the human ability to

mutually adapt speech and gesture to one another during the utterance process

(see de Ruiter, 1998, and Kendon, 2004, for empirical evidence). Representing a

technical novelty in social robotics research, the present system contributes the

first closed-loop approach to speech-gesture generation for humanoid robots. It

integrates two major features: first, the planning of multimodal behaviors was

optimized based on an empirically validated forward model which provides a

more accurate estimation of the robot’s gesture preparation time; second, the

execution of behaviors was improved based on a reactive feedback mechanism

which enables the adaptation of running speech to generated gesture not only

at inter-chunk, but also at intra-chunk level, i.e., within a single multimodal

utterance chunk. The unprecedented quality of synchronized robot gesture

and speech as achieved by the proposed multimodal scheduler thus advances

the state of the art by providing a more flexible and natural way to realize

multimodal behavior for robots and other artificial communicators.
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9.1.2 Empirical Findings and Implications

Based on the implemented technical framework, the psychologically motivated

part of the present work set out to exploit the achieved flexibility in robot gesture

generation for controlled experimental HRI studies. Involving a total of 122

participants in what to date represents two of the most comprehensive gesture-

based interaction studies in social robotics, the empirical findings presented in

this thesis substantially complement existing work in the field. Main findings and

implications of each of the two studies are summarized in the following.

Conclusion and Main Findings of Study 1

To shed light on the impact of communicative robot gesture on human experience

in HRI, a first exploratory study was conducted, inviting participants to interact

with the robot in a joint task scenario. The robot’s communicative behavior was

manipulated in three experimental conditions to either include only speech without

gesture, congruent gesture and speech, or partly incongruent gesture and speech.

The results provide insights into how humans perceive and interpret the robot’s

utterances in relation to different communication modalities. Crucially, the use of

gesture in addition to speech was found to enhance people’s performance in the

experimental task as well as their ability to take up and later recall information

provided by the robot.

Besides emphasizing the task-related helpfulness and cognitive support of

representational gesture in communication beyond human-human interaction, the

results revealed a positive effect of multimodal behavior on human evaluation of

the robot. In particular, they suggest that the inclusion of social cues in the form

of co-verbal gesture casts the robot in a more positive light than when it is limited

to a single communication modality, namely speech. Surprisingly, the robot was

found to be evaluated as even more lively, active, engaged, friendly, communicative,

and fun-loving when performing partly non-matching rather than fully congruent

gestures. These findings indicate that a robot’s non-verbal communicative behavior

can trigger a more positive response within humans when it is not ‘flawless’.

Representing a novel observation with regard to gesture-based HRI, these

findings thus contribute to an advancement in social robotics and point out the

direction for future HRI research dedicated to the design of acceptable artificial

communicators.
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Conclusion and Main Findings of Study 2

The second study complemented and partly supported the findings resulting from

the initial study. Based on a modified experimental design to increase participants’

attention to the robot and by applying a wide range of dependent measures,

the experiment investigated how communicative gesture affects people’s social

perceptions and anthropomorphic inferences with regard to the robot.

The results revealed that with an increased focus on the robot’s non-verbal

behavior, incongruent robot gestures negatively affected participants’ task-related

performance and, potentially due to the cognitively more demanding task, their

ability to memorize information presented to them. Importantly though, the

main finding of Study 1 was replicated: when the robot performed hand gestures

that were partly incongruent with accompanying speech, it was again rated more

positively than when it only used speech or even when it performed congruent

multimodal behavior. That is, although participants in this experimental group

made more mistakes during the HRI task, the robot was anthropomorphized more

and rated as more likable when it displayed incongruent multimodal behavior

than when it performed congruent or no gesture. Furthermore, participants who

were presented with partly non-matching gesture behavior felt closer to the robot

and reported a significantly greater desire to live with it than participants in the

other two experimental groups.

By reaffirming the positive impact of the incongruent gesture condition on

participants’ evaluation of the robot, these novel findings contribute to an ad-

vancement in HRI by encouraging a paradigm shift regarding the design of the

‘perfect’ social robot or artificial companion: not only may a certain degree of

unpredictability be desirable in designing social agents (cf. Duffy, 2003); in addi-

tion, integrating occasional ‘errors’ into the agent’s behavioral routine may in fact

increase its perceived human-likeness and likability.

The pursued theory-driven approach was characterized by the application

of social psychological theories of (de-)humanization to HRI (Haslam et al.,

2008). By adapting these measures of anthropomorphism from research on human

nature traits, the findings of this study complement existing work on the issue of

measurement of anthropomorphism in social robotics. Thus, they also contribute

to a deeper understanding of determinants and consequences of anthropomorphism.
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General Implications of the Studies

In summary, the findings of the two experimental studies provide new insights

into human perception and understanding of communicative gesture in robotic

agents. They highlight the importance of displaying such non-verbal behaviors

in social robots as significant factors that facilitate smooth and pleasant HRI.

Since this robot prototype lacks visible facial features that could potentially enrich

the interaction with human users, e.g., by conveying emotional states of the

system, this further emphasizes the necessity to rely on additional communication

channels such as gestural behaviors. Finally, by revealing the positive effect of the

non-matching gesture condition, the studies provide a set of new empirical findings

about the effects that co-verbal robot gesture may have on human interaction

partners. In this way, the presented studies fundamentally contribute to the field

of social robotics and pave the way towards novel approaches in designing and

building better artificial communicators.

9.2 Outlook

The contributions of this thesis have unveiled a plenitude of potential research

avenues to follow up on. Future work should extend the scope of this research

both in technical and empirical aspects as elucidated in the following.

9.2.1 Desirable Technical Extensions

In view of the limited time frame that was provided for the realization of the

present research, several potential extensions of the technical framework were

outlined throughout the thesis and are summarized as follows.

• Extending the generation pipeline. As highlighted at the beginning of this

thesis (Section 1.4), the present work focused on the production of multimodal

robot behavior at the realization level of the behavior generation pipeline (see

Figure 1.3). The technical contributions of this work thereby laid the cornerstone

for an action generation framework that combines the implemented lower level

functionalities with a high level ‘cognitive architecture’. The realized approach

provides on-line scheduling and generation of multimodal behavior that is not

limited to a predefined action repertoire. Future work should further exploit

203



9. CONCLUSION

this flexibility by extending the framework with content and behavior planning

modules to allow for autonomous robot behavior based on conceptual motorics.

• Improvement of forward model. Section 6.2.1 provided an overview of

possible approaches for the implementation of a forward model that can be

employed to achieve more accurate predictions of gesture execution time required

by the preparation phase. Three approaches, namely WBM-based trajectory

simulation, Fitts’ Law, and simple time estimation, were realized and evaluated.

So far, none of these forward models provides a means for the robot to ‘learn’

the timing of its motor behavior or to improve future predictions based on past

motor experiences as it is typical of biological systems. A desirable extension of

the improved multimodal scheduler would thus incorporate machine learning

algorithms, e.g., based on neural networks, to realize a more accurate forward

model which would also be more plausible from a neurobiological point of view.

• Transfer to other robotic platforms. One of the main objectives of the

present work was to provide a proof of concept to demonstrate that the utilization

of a virtual agent framework represents a feasible approach to multimodal

behavior realization in physical humanoid robots. In view of this objective, the

proposed system was specifically designed and implemented to account for the

demand of future generalizability. Accordingly, a future aim is to transfer the

developed system to other arbitrary platforms, either robotic or virtual, with

humanoid embodiment to further validate the presented approach.

9.2.2 Future Avenues of Empirical Research

The studies conducted as part of the present work revealed some interesting

and unexpected findings which should be systematically investigated in future

experiments. Potential scope for future research direction includes but is not

limited to the following aspects.

• Analysis of video data from the studies. The conducted experiments

yielded a huge amount of video data documenting the interaction between each

participant and the robot. Given a total of 122 participants, the annotation

and analysis of the complete video corpus would have exceeded the scope of

the present work. Nevertheless, the collected video data represents a promising

source of experimental information and should thus be exploited for further
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investigations. These should concentrate on a targeted analysis of participants’

interaction experience, for example, to examine whether the use of gesture

affected participants’ attention or their interactive behavior toward the robot.

• Replicability of main findings and investigation of long-term effects.

Future research should investigate the generalizability of the present findings

regarding anthropomorphic inferences and incongruent modalities with other

robotic and virtual platforms, ideally with different levels of embodiment (e.g.,

humanoid versus non-humanoid). For example, it may be possible that par-

ticipants in the studies rated incongruent speech and gesture positively when

presented by this specific robot, but may disapprove of such behavior when

displayed by a robot with less anthropomorphic design. Importantly, studies

replicating this work should try to shed light on the role of the given HRI task

and context, as well as the extent to which incongruent behaviors result in

similar effects. In this regard, future work should also investigate the validity of

these findings in long-term interaction studies in order to examine if this novel

effect may ‘wear off’ after some time or, in contrast, whether it may even keep

the human-robot relationship more appealing.

• Isolated analysis of different aspects of non-verbal behavior. In the

studies presented, the robot’s gaze behavior in the multimodal conditions was

modeled in a simplistic way. This design choice was made on purpose to direct

the participants’ attention rather to the hand and arm movements performed

by the robot. As a consequence, however, the robot’s gazing behavior did

not appear fully natural during the interaction, as the robot did not follow

the human interaction partner with its gaze. In future studies, it will be

desirable to examine the impact of gaze behavior displayed by the robot in

an isolated experimental set-up without hand and arm gesture. In this way,

it can be investigated to what extent anthropomorphic inferences, likability,

shared reality, and future contact intentions are determined by the robot’s arm

gesture versus by gaze alone. Another characteristic of the present studies was

the use of self-sufficient speech to keep the verbal utterances consistent and

the task solvable also in the unimodal condition. As emphasized by Hostetter

(2011), however, representational gestures have the greatest impact on human

listeners when they convey non-redundant information that is not contained

in speech but is crucial for comprehension. For example, the utterance “put it
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there” is ambiguous without a spatial reference, e.g., as provided by a deictic

gesture. In contrast, in the present studies the robot’s gestures conveyed

additional illustrative information which was not indispensable to solving the

task. Therefore, to increase the measurable effect of robot gesture in a more

focused study, the robot’s non-verbal behaviors should be designed to contain

complementary information necessary for successful interaction but which is

not conveyed via speech.

In conclusion, the realized technical framework provides a suitable testbed for

studying the effects of different gestural patterns in a highly controllable social

interaction. By employing the robot as a tool to systematically investigate human

perception of gesture for future research, the present work will not only advance

the field of social robotics but also that of human gesture research. In view of the

wide scope for future work, it is hoped that these research avenues will be tackled

to further consolidate the contributions of the present work.
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