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Abstract

Despite its global homogeneity and isotropy, the local matter distribution in the late
Universe is manifestly inhomogeneous. Understanding the various effects resulting from
these inhomogeneities is one of the most important tasks of modern cosmology. In this
thesis, we investigate two aspects of the influence of local structure: firstly, to what
extent do local structures modify the average expansion of spatial regions with a given
size, and secondly, how strongly does the presence of structure limit the possible accuracy
of measurements in our cosmic neighborhood.

To address these questions we first characterize the properties of the local inhomo-
geneities; we recall basic measures of fluctuations and go beyond them using the robust
morphological tool of the Minkowski functionals. In particular, we apply these measures
to the Sloan Digital Sky Survey data release seven. We find that the morphology of the
luminous red galaxy data is marginally consistent with the one derived from simulations
within the ΛCDM framework. In addition we illustrate, how the Minkowski functionals
provide a description of clustering properties, and why this description goes beyond the
standard two-point statistics. Minkowski functionals do therefore provide a measure for
the amount of non-Gaussianity that we find in the galaxy data.

With this information on the amount of structure in the observed Universe, we choose
to model these structures by employing the relativistic Zel’dovich approximation (RZA)
to find out, whether they can affect the average evolution. To this end, we use the Buchert
scheme of averaging and evaluate the magnitude of the kinematical backreaction term,
which is one modification with respect to the equations without structure. The other
modification is a change in evolution of the averaged curvature. We find that, within the
RZA, kinematical backreaction affects only the evolution on small scales, while curvature
may lead to effects on larger scales. More precisely, the contribution of backreaction
to the cosmic energy budget, is larger than 1% below 100 Mpc only. We show that our
results are consistent with the results obtained by other perturbative methods and also
with those of a toy model that tries to capture non-perturbative effects.

The observation of a significant curvature contribution on scales larger than the
homogeneity scale finally motivates the investigation of its effects on the accuracy of
local measurements. We derive the fluctuations of the cosmological parameters in recent
galaxy surveys, and find that domains as big as 540h−1Mpc may still have a curvature
contribution to the energy budget of 1%. This may limit our ability to measure the
dark energy equation of state. We find that the Hubble rate today can never be directly
measured with an accuracy better than 0.5% Finally we show how backreaction and
cosmic variance are linked to each other.
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1. Introduction

The question of how we may describe the global properties of our locally inhomogeneous
Universe within the geometrical framework of General Relativity (GR) is a longstanding
and lively discussed problem in cosmology. Since the first simple cosmological models by
Einstein [1], the prevailing opinion is, that this can be achieved by assuming that the
Universe is homogeneous and isotropic. Then, it is only the homogeneous background
energy density that determines the entire global evolution. This evolution is then
calculated under the assumption that the Einstein equations of GR give a meaningful
result for these large scales as well, as for the local motion of stars and planets. To be
able to also describe the inhomogeneous features, the structure ignored in the first step
is added in the form of small perturbations to the average density. The resulting theory
is then claimed to describe the Universe on large scales where the density perturbations
are small enough that this linear treatment holds.

Especially in the last decade, this prescription has been surprisingly successful in pro-
viding an effective fitting model to a growing number of cosmological data. In its present
form of the concordance Λ cold dark matter (ΛCDM) model, it has been established by
observations of the Wilkinson Microwave Anisotropy Probe (WMAP) [2] and the Nobel
Price awarded Supernova measurements [3, 4]. Since then, this newly created “standard
model of cosmology” has been found to be consistent with all experiments with which it
has been tested. These experiments include such complementary probes as gravitational
lensing, baryon acoustic oscillations (BAO) distance measurements, the integrated Sachs
Wolfe (ISW) effect and more.

Despite (or perhaps just as a consequence of) this remarkable success, the underlying
conceptual problems have still not been rigorously solved. At each step of the chain
of assumptions above, that leads to the standard model, open questions remain. The
assumed homogeneity on large scales is mainly a postulate even if recently there has been
experimental progress in testing this assumption [5]. Concerning the isotropy there are
hints of dipole features in several observations all pointing into the direction of an “axis
of evil” (like e.g. in the CMB [6]). But even for a statistically homogeneous and isotropic
Universe the question remains, if the same Einstein equations can be used at the global
level for an effective description of the average cosmological fluid, that are used at the
local level for the description of motions of stars and planets. In electrodynamics we
know, that the macroscopic Maxwell equations pick up effective terms that contain the
combined microscopic contributions. So what would be the corresponding prescription in
the GR case? This issue is known as the “averaging problem” and has probably most
clearly been discussed by George Ellis in [7].
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1. Introduction

The fact that this problem is very involved results from the tensor structure of GR.
To arrive at a theory for the global properties of our Universe that effectively takes into
account the local structure, we would have to find something like an average space-time
manifold. To this end, we would have to average tensors like the Ricci tensor, that
describe the geometry of the space-time. This, however, is not yet possible consistently,
even if there are several approaches on the market, for example the bi tensor approach of
Zalaletdinov [8, 9], or the Ricci flow approach [10].

So until this question is settled, the use of the standard model implies that we implicitly
assume that the average space-time manifold that we will find in the end is the FRW
space-time and that the average properties will be given by the single homogeneous
and isotropic solution to Einsteins equations. This means, that there is some implicit
averaging in this framework, but with the expectation that it will turn out to give the
same result as for a completely homogeneous Universe. As there is consensus on the fact
that there will be effective terms emerging in a thorough treatment, this expectation is
another way of saying that these effective terms are negligible. This belief is at the heart
of the current debate on the importance of the backreaction of inhomogeneities on the
global evolution: Is the common conviction correct that these corrections are at best a
10−5 effect?

The physical motivation for the opinion that the backreaction of inhomogeneities is
a 10−5 effect comes from results in perturbation theory averaged at the horizon scale.
Studies in Newtonian [11, 12, 13] and synchronous gauge [14, 15, 16, 17] consistently
come to this conclusion. However, they have to rely on the assumption that the standard
framework is correct and structure may be described by small perturbations about the
homogeneous background. Yet, the big observational success of this framework then
leads to the common conclusion that this proves that the effect is not important.

This however raises the question if this is conclusion is compulsory. If the effective
terms merely lead to a change in the background, the perturbations onto this effective
background may still describe the structure correctly, but the physical reasons for this
particular background would be different. As especially the motivation for the different
background components in the standard model is not very convincing at the moment,
with a cosmological constant of unmotivated size and a dark matter component of so far
unknown nature, there may still be surprises concerning their interpretation.

That such background changing components exist in perturbation theory has been
shown by Clarkson [18]. In this particular case they are small, but in a further work [19]
he showed that there are many formally diverging integrals in the higher order terms in
perturbation theory. With a reasonable cutoff they still would give sizable corrections to
the background.

Results of this kind have raised doubts that perturbation theory is still appropriate for
a description of the late Universe with high density contrasts. The standard argument is
that on larger scales the density fluctuations are still small so perturbation theory would
work on those scales. By speaking of the density distribution on large scales, however,
the argument implies again the use of implicit averaging. So any effective contribution of
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small scale inhomogeneities to the background is lost by definition. This is why as soon
as perturbation theory breaks down on small scales, all arguments based on the linearity
of large scales become questionable. Under which circumstances this breakdown occurs
has nicely been discussed by Räsänen [20].

At latest when this breakdown occurs, it is in addition questionable if the picture of
background and perturbations really describes the Universe correctly. Can the large
Voids that supposedly are completely empty, be described by small fluctuations from a
finite density background? Can an effective description be correct where light that travels
in vacuum is now treated as if it travels in a constant density homogeneous Universe?
Concerning this latter question Räsänen [21, 22] found that a correct treatment of the
background in terms of an explicit averaging is necessary to correctly interpret the
observations.

Due to all these issues, the expectation that the results from perturbation theory may
not be trustworthy at late times has led to the construction of a number of models
that try to avoid perturbation theory. However, they make either ad hoc assumptions
about the effective contribution of inhomogeneities [23, 24, 25, 26], or they are only toy
models that might oversimplify the problem [27]. Apart from that, there is an interesting
proposal by Wiltshire [28, 29], but it is unclear whether its technical issues have all been
addressed properly.

In summary one has therefore to conclude that the problem is still open. Even if there
is no model that would show a sizable effect without plugging it in by hand from the
beginning through the assumptions made, there is also no proof that perturbation theory
would give the correct answer.

Independently from the question if the higher order perturbative terms would give
a global contribution to the background, the local evolution of the Universe is clearly
affected by inhomogeneities. Especially the fluctuations in the cosmic parameters between
different locations in the Universe have been shown to be important locally [30, 16, 15, 17].
In the era of precision cosmology, these fluctuations present fundamental limits for the
precision with which we can principally know local quantities.

In this work we will contribute to both of these problems. Concerning the question if
the averaging renormalizes the background significantly, we explore a new perturbative
scheme, introduced in [31]. It has the advantage that it is easily generalizable to higher
orders and is therefore expected to help solving the question how trustworthy the
perturbative results actually are. As a first step we therefore explore the solutions that
this scheme provides at lowest order. We find that it leads to conclusions in agreement
with the perturbative studies mentioned above and show under which assumptions it is
also formally equivalent to the treatment of Li and Schwarz [15, 16, 17].

The second part treats the question on which scales the local contributions of the
inhomogeneities become important. We find that even above the assumed homogeneity
scale of 100 Mpc there are sizable contributions to the uncertainties that arise through
inhomogeneities. These limit the precision to which we will ultimately know local
parameters such as today’s Hubble rate.
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1. Introduction

If the assumed homogeneity is seen in the morphology of the cosmic structures, is
finally explored with the help of Minkowski functionals. These provide a robust measure
of the nonlinear structure and show significant deviations in the morphology from the
homogeneous ΛCDM case. When applied to the cosmic velocity field they would also
provide a non-perturbative description of the backreaction term, as it can be expressed
in terms of the velocity field Minkowski functionals, see [32].

All in all there are a number of new applications that become possible with the
techniques described and explored in this work. In the upcoming golden era of the big
structure characterizing surveys, with deep redshift surveys such as GOODS [33], GEMS
[34] or COSMOS [35], and even more with the giant surveys like the Baryonic Oscillation
Spectroscopic Survey (BOSS) [36], BigBoss [37] and finally Euclid [38] and the square
kilometre array (SKA)1, these techniques will be useful for deriving the real influence of
the structure that these surveys will reveal.

The thesis is organized as follows: Sec. 1.1 is used to collect the basic formulas of
homogeneous cosmology. Then we will turn to the basics of inhomogeneous cosmology in
Chapter 2. Both (perhaps with the exception of Sec. 2.1.2) will not be new to readers
working on large scale structure so they may be skipped and only used for reference for the
formulas relevant in the later sections. Then in Chapter 3 we present the observations that
are used for exploring the inhomogeneous Universe and complement the characterization
of structures by our analysis of the Sloan Digital Sky Survey (SDSS) luminous red galaxy
(LRG) sample. Chapter 4 addresses the “averaging problem” and presents the results for
the backreaction of inhomogeneities in the relativistic Zel’dovich approximation (RZA).
Chapter 5 then turns to the influence of inhomogeneities on local observations. While
Chapter 2 and Sections 3.1 and 4.1 present the necessary theoretical formalism, the rest
of Chapters 3, 4 and 5 mainly contains my own work as published in [39, 40] if not
otherwise stated.

1.1. The background evolution of the Universe

Before turning to the description of structures in the Universe in Chapter 2, we will first
have a look at the evolution of the overall Universe in this section. As we will ask the
question whether the cosmic evolution is modified through the influence of structure, this
part is mainly for reference. It allows to compare the results obtained in the context of
averaged inhomogeneous cosmologies, to the normally used Friedmann-Robertson-Walker
cosmologies.

1.1.1. The Friedmann equations

The Universe is believed to be governed mainly by gravity. This is because of the four
known forces it is the only one that acts on cosmologically relevant distance scales, when

1http://www.skatelescope.org
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1.1. The background evolution of the Universe

we assume that the Universe is electrically neutral. The description of the evolution of
our space-time is therefore based on the Einstein equations of general relativity

Rµν − 1

2
Rgµν + Λgµν = 8πGTµν . (1.1)

These equations relate the geometry of space-time encoded in the Ricci tensor Rµν and
the metric gµν to the matter content of the Universe encoded in the energy momentum
tensor Tµν . When we want to apply these equations to the Universe as a whole, we face
the problem that they depend on the characteristics at each position xµ of the manifold
that describes our Universe. To derive the overall properties of this space-time manifold
we would need to average over the solutions to these equations to get the global behavior.
As they consist of 10 independent differential equations of second order for the metric
components, obtaining a full inhomogeneous solution is impossible. In addition we would
not be able to specify the initial data for the energy momentum tensor in every point in
space.

The standard approach to avoid these technical difficulties is now to assume, that the
average evolution of the Universe would be given by the solution that is obtained if we
use a homogeneous matter source in the equations (1.1). The metric that describes such
a space-time with a homogeneous source is the homogeneous and isotropic Robertson
Walker (RW) metric

ds2 = −dt2 + a (t)2

[
dr2

1 − kr2
+ r2

(
dθ2 + sin (θ)2 dφ2

)]
. (1.2)

This ansatz for the metric drastically reduces the complexity of the equations (1.1).
Instead of ten functions of space and time, the metric components now depend only on
one function a (t) and one constant k. a (t) is the scale factor that describes how the
Universe expands and k is the constant spatial curvature. With this ansatz, the Einstein
equations (1.1) simplify to

H2 ≡
(
ȧ

a

)2

=
8πG

3
̺− k

a2
+

Λ

3
, (1.3a)

ä

a
= −4πG

3
(̺+ 3p) +

Λ

3
, (1.3b)

0 = ˙̺ + 3H (̺+ p) , (1.3c)

which are called the Friedmann equations with the Hubble rate H. After having specified
the curvature, the cosmological constant and the homogeneous fluid, they give the overall
evolution of the Universe. The specification which type of fluid one uses is done by
choosing a relation between its density ̺ and pressure p. In cosmology this relation is
always assumed to be of the form w = p/̺, where w is the equation of state parameter.
For most applications it is taken to be a constant, with the two important special cases
of w = 0 for non-relativistic matter and w = 1/3 for highly relativistic matter.
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1. Introduction

Figure 1.1. Sketch of the evolution history of the Universe. After the initial Big Bang
singularity and the era of trans-Planckian physics, cosmological inflation led to a rapid
growth of the scale factor. After a short epoch of reheating that created the matter
content of the Universe it was mainly radiation dominated and underwent several phase
transitions. When the temperature had dropped enough that atoms could form, the
Universe became transparent for radiation. From then on, the photons formerly trapped
in the hot plasma, streamed freely and gave rise to the radiation that we see today as
microwave radiation. Continually expanding, the Universe cooled down to 3K today.
Credit: Particle Data Group, LBNL 2008.
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1.1. The background evolution of the Universe

To characterize the importance of the different energy components one introduces the
dimensionless parameters

Ωi :=
8πG

3H2
̺i ; Ωk := − k

a2H2
; ΩΛ :=

Λ

3H2
, (1.4)

where i runs over the different fluid components and H is typically evaluated today.

1.1.2. The evolution history

Since the discovery of the expanding Universe, the only solutions of interest to Eq. (1.3a)
are those for which the scale factor a (t) is growing with cosmic time. Extrapolating
these solutions to early times, one finds that the scale-factor goes to zero at t = 0 for
most of them, more precisely iff ̺ + 3p > 0. There is an interesting solution due to
Eddington to Eq. (1.3a) that starts with a finite ai and then turns over to the standard
expansion, but in general only solutions with an initial singularity are considered. So in
the beginning the Universe was arbitrarily smaller and therefore denser and hotter than
today. This implies that the baryonic matter component (i.e. protons and electrons), that
is non-relativistic today, was in the form of a relativistic plasma in the early Universe.
So the Universe has undergone changes in the dominating energy component.

In the Friedmann equation these changes can be seen by looking at the scaling of
the different components. The energy conservation equation (1.3c) implies that non-
relativistic matter (w = 0) scales as ̺m ∝ a−3, whereas relativistic matter (w = 1/3)
scales as ̺r ∝ a−4. Inserting this into the Friedmann equation (1.3a),

H2 = H2
0

(
Ωr

(
a0

a

)4

+ Ωm

(
a0

a

)3

+ Ωk

(
a0

a

)2

+ ΩΛ

)
, (1.5)

we see that for small a (t) we find a radiation dominated era, followed by a matter
dominated era, followed by a cosmological constant dominated era (as Ωk seems to be
zero). With the measured values (see table 3.1 from [41]) of the Ω-parameters (assuming
Ωk = 0) of

Ωr = 4.15 × 10−5h−2 ; Ωm = 0.272 ± 0.015 ;

ΩΛ = 0.725 ± 0.016 ; H0 = 70.2 ± 1.4 km/s/Mpc , (1.6)

we find that matter radiation equality was at a−1
eq ≈ 3200 and that the equality of ΩΛ (t)

and Ωm (t) occurs at a−1
Λm ≈ 1.39.

Besides these transitions, in the very early Universe there have been a number of phase
transitions in the particle physics sector (see e.g. [42] for a review). The hot and dense
initial state allowed the creation of particles that are instable and therefore only appear
if they can be constantly reproduced by a thermal bath. Figure 1.1 shows a sketch of the
evolution of the Universe including these early stages.
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1. Introduction

Figure 1.2. Cosmic expansion history. Most of the time the evolution is well described
by taking into account the dominant energy contribution. These contributions were
the inflaton energy density, the primordial radiation density, the matter density of non-
relativistic matter and more recently the energy density of the cosmological constant.
The plot also illustrates that we seem to live at a very special instant in time, namely at
the transition from the matter dominated phase to the cosmological constant dominated
phase. Picture form [43].

Even before this epoch of high energy standard model particle physics, Figure 1.1
shows an era called cosmological inflation. In this era, a yet unknown mechanism is
believed to have led to an exponential growth of the scale factor a (t). This period of
exponential expansion has been introduced to solve a number of problems of Big Bang
cosmology like the horizon problem, the flatness problem or the monopole problem, but
provides also an explanation for the origin of structure as we will see in Sec. 2.3.

The complete picture of evolution of the scale-factor a (t) is therefore the following:
After an unknown pre-inflationary phase, it grew exponentially during inflation, then as
a ∝ t1/2 during another radiation dominated phase, switching to a ∝ t2/3 in the matter
dominated phase. Finally with the cosmological constant taking over, it seems that we
are heading towards another period of exponential growth of a (t). All epochs are shown
in Fig. 1.2. We will inspect below, how each of these epochs contributed to the formation
of the structures that we see today.
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2. The theory of structure formation

Sec. 1.1.2 described the standard picture of the homogeneous evolution of the matter
content of the Universe. In this chapter we turn to the more interesting task of charac-
terizing and explaining the formation of structures in the Universe. To this end, Sec. 2.1
and 2.2 collect the basic formalism that is frequently used in this domain. Sec. 2.3
derives with the cold dark matter (CDM) power spectrum the main ingredient for the
calculations in the following chapters. Sec. 2.1 is based on the chapters 2 and 3 of [44],
whereas sections 2.2 and 2.3 closely follow the presentation in chapters 5 and 6 of [45].

2.1. Methods for characterizing structure

In Sec. 1.1.2 the matter content of the Universe was assumed to be a homogeneous perfect
fluid characterized by one number only, its constant energy density ̺0. Even if in the
real Universe galaxies and stars are rather discrete objects than continuous fluids, at
least the expected underlying dark matter background should be well described by a
perfect fluid picture. In addition, on the large scales we are mostly considering, also the
distribution of galaxies may be treated as a dust fluid with the galaxies as individual
fluid particles. We will derive the equations governing the evolution of those fluids in
Sec. 2.2. Here, we will introduce the statistical tools used to describe the initial state
and to characterize the distribution today.

In this statistical picture, the matter density field of the Universe ̺ (x) is taken to be
one realization of a continuous stationary stochastic process (SSP) ˆ̺(x). Its properties
are determined by a probability density functional P [̺ (x)], which may be seen as the
joint probability function of the random variable ˆ̺(x). The condition of stationarity
of the process means that it is invariant under translations of the position x, i.e. the
statistical properties of ˆ̺(x) are independent of x. The assumption of stationarity is in
the cosmological context motivated by the Copernican Principle. There should not be a
preferred location in the Universe, so the statistical distribution of its matter content
should be translationally invariant.

The properties of the discrete galaxy samples can be modeled by a stochastic point
process (SPP). It can be seen as the discretization of the continuous distribution ̺ (x) by
partitioning the space into infinitesimal volumes dV . The mass density ̺ (xi) dV = mi

can then be modeled by a sum of delta functions

̺ (x) =
∑

i

miδ (x − xi) . (2.1)
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2. The theory of structure formation

To determine the statistical properties of ˆ̺(x) we need to take ensemble averages O
(also sometimes written as E [O] in the following). In the case of the Universe this is
unfortunately impossible as we have only one realization of the density field. Therefore we
have to assume that the underlying stationary process is ergodic. This means that for a
generic observable O = O (̺ (x1) , ̺ (x2) , . . . ) the ensemble average O may be calculated
by a volume average over the whole density field

O = lim
V →∞

1

V

ˆ

d3x0O (̺ (x1 + x0) , ̺ (x2 + x0) , . . . ) . (2.2)

In real observations we can of course not extend the volume to infinity, so Eq. (2.2) gives
only an estimator for the true ensemble average. Therefore we have to ensure that the
volume is large enough, if we want to make statements about the underlying stochastic
process. Otherwise finite volume effects occur that may lead to misinterpretations of the
data, as we will see in Sec. 3.1.

2.1.1. Correlation functions

The most important tool for the description of the statistical properties of the matter
distribution of the Universe is the two-point correlation function and its Fourier transform,
the power spectrum. The general complete ℓ-point correlation function is defined as the
ensemble average

ˆ̺(x1) ˆ̺(x2) . . . ˆ̺(xℓ) . (2.3)

For the stationary case that we are considering, these functions only depend on the
relative distances xij = xi − xj, but not on the absolute position.

More important than the complete correlation functions above are the reduced or
connected correlation functions

C2 (x12) = (ˆ̺(x1) − ̺0) (ˆ̺(x2) − ̺0) , (2.4)

C3 (x12,x13,x23) = (ˆ̺(x1) − ̺0) (ˆ̺(x2) − ̺0) (ˆ̺(x3) − ̺0) . (2.5)

For a nonzero average density ˆ̺(x) = ̺0 they are mainly used in dimensionless form

ξ̃ (x12) =
C2 (x12)

̺2
0

= δ̂ (x1) δ̂ (x2) , (2.6)

ζ̃ (x12,x13,x23) =
C3 (x12,x13,x23)

̺3
0

= δ̂ (x1) δ̂ (x2) δ̂ (x3) , (2.7)

where the dimensionless density contrast δ̂ (x) is defined as δ̂ (x1) = (ˆ̺(x1) − ̺0) /̺0.

Cumulants For higher order connected correlation functions the correspondence to the
central moments of the distribution is no longer so straightforward as in Eq. (2.4)-(2.5).
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2.1. Methods for characterizing structure

We rather have to introduce the joint cumulant generating function for the random
variables X1, . . . , Xn

g (t1, t2, . . . , tn) = log


E


exp




n∑

j=1

tjXj






 . (2.8)

To extract the cumulants from this generating function one has to evaluate their derivatives
at t = {t1, . . . , tn} = ~0

κn = ∂t1
. . . ∂tn

g (t1, t2, . . . , tn)|t=0 , (2.9)

which leads to the expression1

κ (X1, . . . , Xn) =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

E

[
∏

i∈B

Xi

]
(2.10)

for the joint cumulants in terms of the moments or complete correlation functions. Here,
π runs through all partitions of {1, . . . , n}, B runs through the list of all blocks of the
partition π and |π| is the number of parts in the partition. For the first three cumulants
we find again the values from above, if we take Xi = ˆ̺(xi) /̺0

κ (ˆ̺(x1)) = 0!(−1)0
E [ ˆ̺(x1)] = ̺0 ,

κ (X1, X2) = 1!(−1)1
E [X1]E [X2] + 0! (−1)0

E [X1X2] = ξ̃ (x12) ,

κ (X1, X2, X3) = ζ̃ (x12,x13,x23) , (2.11)

but for the fourth cumulant we find for example

κ (X1, X2, X3, X4) = δ̂ (x1) δ̂ (x2) δ̂ (x3) δ̂ (x4) − ξ̃ (x12) ξ̃ (x34)

−ξ̃ (x13) ξ̃ (x24) − ξ̃ (x14) ξ̃ (x23) . (2.12)

We will need these cumulants, also known as connected correlation functions, in Sec. 3.2.

Power spectrum A description of the clustering properties of over-densities that is
complementary to the one by its two-point correlation properties is given by the power
spectrum. It may be defined as the Fourier transformation of the two-point correlation
function

P (k) =

ˆ

d3rξ̃ (r) e−ik·r . (2.13)

By this definition it is directly related to the Fourier modes of the over-density field. If
δ̺ (r) = (̺ (r) − ̺0) /̺0 , these Fourier modes are

δ̺̃ (k, V ) =

ˆ

V

d3rδ̺ (r) e−ik·r . (2.14)

1See Wikipedia https://en.wikipedia.org/wiki/Cumulant in the version of 16.07.2012
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2. The theory of structure formation

The power spectrum (2.13) of the distribution of over-densities δ̺ (r) is then given by
the ensemble average

P (k) = lim
V →∞

E

[∣∣∣δ̺̃ (k, V )
∣∣∣
2
]

V
. (2.15)

The power spectrum is useful, because, as we will see in Sec. 2.3, it is this quantity that
theories of structure formation in the early Universe naturally work with.

Variance of the density field Another important quantity that is closely related to
the power spectrum and the correlation function are the matter fluctuations in a sphere
of radius R. They are defined as the variance of the density field by

σ2 (R) =
E

[
M (R)2

]
− E [M (R)]2

E [M (R)]2
, (2.16)

where M (R) is the mass contained in a sphere of radius R and therefore

E [M (R)] =

ˆ

B(R)

d3rE [ ˆ̺(r)] =
4π

3
̺0R

3 (2.17)

and

E

[
M (R)2

]
=

ˆ

B(R)

d3r1

ˆ

B(R)

d3r2E [ ˆ̺(r1) ˆ̺(r2)] , (2.18)

where B (R) is the boundary of a ball of radius R. This means that it is related to the
correlation function as

σ2 (R) =
1

(
4π
3
R3
)2

ˆ

B(R)

d3r1

ˆ

B(R)

d3r2ξ̃ (|r1 − r2|) . (2.19)

When passing to Fourier space we can also determine its expression in terms of the power
spectrum. The window function of a ball of radius R, also known as the top hat window
function,

WB(R) (r) =





(
4π
3
R3
)−1

R − |r| > 0

0 else
(2.20)

looks in Fourier space like

W̃B(R) (k) =

ˆ

d3rWB(R) (r) e−ik·r =
3 (sin kR − kR cos kR)

(kR)3 (2.21)

and with the relation (2.13) this means for σ

σ2 (R) =
1

(2π)3

ˆ

d3kP (k)
∣∣∣W̃B(R) (k)

∣∣∣
2
. (2.22)
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2.1. Methods for characterizing structure

The dependence of σ on the shape of the power spectrum may be found explicitly for
the simple class of models that where P (k) simply scales as P (k) ∝ kn. When non-
relativistic matter dominates the evolution, the power spectrum of perturbations grows
with the scale factor as ∝ a2. So for spectra of the form P (k) = A (a/a0)

2 kn one finds

σ2 (R) ∝ a2R−3−n (2.23)

in the range of −3 < n < 1. This leads to an interesting effect for the n = 1 spectrum for
the matter fluctuations on scales of the (particle) horizon. This horizon is in comoving
coordinates determined by

RH (t) = η (t) =

ˆ

dt

a (t)
∝ a1/2 , (2.24)

where the a1/2 behavior holds for the matter dominated era. Using this in Eq. (2.23)
gives

σ2 (RH (t)) ∝ a2− 3+n
2 , (2.25)

so in the limit of n → 1, the spectrum becomes scale invariant in the sense that

σ2 (R = RH (t)) = const. (2.26)

and therefore the perturbations on the horizon scale are independent of the actual size of
that scale.

Gaussian distribution Gaussian matter distributions are important in cosmology, be-
cause the initial fluctuations seem to have been Gaussian to a high degree of accuracy.
In the discretized picture where we describe the continuous field by its average value in
small cells ∆V

̺ (ri; ∆V ) =
1

∆V

ˆ

∆V (ri)

d3r ˆ̺(r) , (2.27)

we can think of the field being Gaussian if the probability of a realization {̺ (ri; ∆V )} is
given by the joint probability density function

p ({̺ (ri; ∆V )}) = Be− 1

2

∑
i,j

(̺(ri;∆V )−mi)Aij(̺(rj ;∆V )−mj) . (2.28)

The values mi give the average density in the i-th cell and the matrix A is related to the
two-point correlation function by A = C−1 with C defined as

Cij = ̺2
0ξ̃ (ri, rj) . (2.29)

The probability density functional for the continuous case is then obtained by formally
sending ∆V → 0. This gives

P [̺ (r)] ∝ e− 1

2

´

V

´

V
d3rd3r′(̺(r)−m(r))K(r,r′)(̺(r′)−m(r′)) , (2.30)
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2. The theory of structure formation

where the correlation kernel is

K (r, r′) = lim
∆V →0

Aij

∆V 2
. (2.31)

As the stochastic processes we consider are stationary K (r, r′) only depends on the
distance between the two points K (r, r′) = K (r − r′). This correlation kernel is then
directly related to the power spectrum of the Gaussian process. With the Fourier
transform K̃ (k) = FT [K (r)], P becomes

P (k) =
1

̺2
0K̃ (k)

. (2.32)

One important property of Gaussian fields is that all the cumulants defined by Eq. (2.10)
for n > 2 vanish. This leads to Wicks theorem saying that all the central moments of the
Gaussian distribution are given by products of the two-point correlation function. This
implies that all odd central moments vanish as well. So a Gaussian process is completely
characterized by the two-point correlations.

2.1.2. Minkowski functionals

Another tool for the characterization of structure are Minkowski functionals, introduced
into cosmology in [46]. They are important quantities of integral geometry and defined
as additive translational invariant functionals

Vν (A) ∝
ˆ

χ (A ∩ Eν) dµ (Eν) , (2.33)

Vd (A) = χ (A) , (2.34)

where A is a convex body. Eν is a ν-dimensional hypersurface in a d-dimensional
Euclidean space. χ is the Euler characteristic of A, defined as

χ (A) =





1 A convex A 6= ∅
0 A = ∅ . (2.35)

The definition (2.33) is strictly valid for a single convex body A only, but may be
generalized to a set of convex bodies by defining the additivity relation for the Euler
characteristic

χ (A ∪B) = χ (A) + χ (B) − χ (A ∩B) . (2.36)

It can then be shown [47], that the Minkowski functionals form a basis of all possible
additive, translation invariant measures in the sense that all these measures may be
written as a linear combination of the d+1 Minkowski functionals possible in d dimensions.

In the case of three dimensions, the integrals (2.33) have a simple interpretation: V0

is proportional to the volume V of the convex body, V1 is proportional to its surface
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2.1. Methods for characterizing structure

S, and V2 is proportional to the integrated mean curvature H. The fourth functional
V3 (Eq. (2.34)) is the Euler characteristic. In three dimensions, when applied to a set
of intersecting convex bodies using Eq. (2.36), it gives the sum of isolated components
K, plus the sum of cavities C, minus the holes R: χ = K + C − R. This means that
for a filled ball χ = 1, for a torus χ = 0 and for a double torus (having the form of the
number 8) χ = −1. More explicitly, the relations between the functionals Vν and their
more familiar geometric counterparts are

V0 = V ; V1 =
S

6
; V2 =

H

3π
; V3 = χ . (2.37)

Boolean Grain Model To use these Minkowski functionals for the characterization
of cosmic structure, one has to specify to which objects we want to apply the above
formulae. The data we have is mainly in the form of catalogs of point sources. The
integral geometric properties of a set of points, however, are trivial. We have to smooth
the points in a way that gives rise to extended bodies that have a well defined volume,
surface and curvature.

There are several possibilities to achieve this. One would be to smooth out the point
distribution on some given scale, to arrive at a smooth density field. Then, the structures
could be identified by connecting all those regions that have an average density higher
than a given threshold. Thus, these regions form an excursion set, that has a more
interesting morphology than the mere collection of points. This approach has been used
for SDSS data in the past in [48].

Here, we want to work with a different scheme, which is called the boolean grain model
and has been used for other surveys [49, 50]. To arrive at a set of convex bodies, we
decorate every object in a galaxy survey by a sphere of radius R. Then we can calculate
the Minkowski functionals of this set of spheres. The results are presented as a function
of the radius of the spheres. The Minkowski functionals of the spheres themselves are
quite simple. Using (2.37) gives

V0 =
4π

3
R3 ; V1 =

2

3
πR2 ; V2 =

4

3
R ; V3 = 1 . (2.38)

When combined to a set of balls around the galaxy positions, the R dependence becomes
more interesting. In this case one mainly considers the average Minkowski functional
densities vµ. These are the mean values of the functionals per unit volume. It has
been shown in [51], that these densities for the boolean grain model may be expressed
analytically as

v0 = 1 − e−̺0V 0

v1 = ̺0V 1e
−̺0V 0 ,

v2 =
(
̺0V 2 − 3π

8
̺2

0V
2
1

)
e−̺0V 0 ,

v3 =
(
̺0V 3 − 9

2
̺2

0V 1V 2 +
9π

16
̺3

0V
3
1

)
e−̺0V 0 , (2.39)
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where ̺0 is the average number density of the galaxy sample, and V 0 − V 3 are the
modified Minkowski functionals of the collection of balls given by

V µ = Vµ (B) +
∞∑

n=1

(−̺0)
n

(n+ 1)!

ˆ

D

d3x1 . . . d
3xnξn+1 (0,x1, . . .xn)Vµ (B ∩Bx1

∩ · · · ∩Bxn
) .

(2.40)
Here, ξn+1 (0,x1, . . .xn) is the connected n+ 1-point correlation function, i.e. the joint
cumulants (2.10) of the distribution of galaxies. For a Poisson distribution the non-
diagonal part of all connected n-point correlation functions κn with n ≥ 2 vanish. So
the V µ’s simply reduce to the standard Minkowski functionals Vµ of a ball (2.38). In
this case the Minkowski functional density of the galaxy distribution is therefore known
analytically.

The relations (2.39) and (2.40) are very interesting, because they connect the Minkowski
functional densities, that may be measured directly from the galaxy surveys, with a series
containing all higher order correlation functions. In this way the Minkowski functionals
represent a tool for the characterization of structure, that is complementary to the usual
methods of measuring only the low order statistics like the correlation function. In
Sec. 3.2 we will see what this allows us to learn about the galaxy distribution in the
Universe.

2.2. Cosmological perturbation theory

To describe structure in the Universe, the usual approach is to use perturbation theory.
It is starting from the assumption described in Sec. 1.1.1, that the average evolution is
obtained by using a homogeneous matter source in the Einstein equations (1.1). To add
structure to this homogeneous soup, we will assume that the deviations in the energy
density may be described by small perturbations of this average. We will see how this
produces, even at first order, a set of equations that is much more complicated than the
background evolution, described by the Friedmann equations (1.3a)–(1.3c). This section
follows closely chapter 5 of [45].

2.2.1. First order perturbations

The split of the metric into a homogeneous background and a position dependent
perturbation, may be written in the form

gµν = ḡµν + hµν , (2.41)

where ḡµν is the background metric and hµν the small perturbation. In this work, ḡµν

will always be the flat Robertson-Walker metric (1.2), i.e. ḡ00 = −1 and ḡij = a2 (t) δij.
The space-time perturbation tensor hµν may be decomposed into a scalar, a vectorial

24



2.2. Cosmological perturbation theory

and a tensorial component. These will be written as2

h00 = −E ; hi0 = a [∂iF +Gi] , (2.42)

hij = a2
[
Aδij + ∂i∂jB + 2∂(iCj) +Dij

]
. (2.43)

The components of the perturbations are therefore the four scalars functions A, B, E
and F , the two divergence free three-vectors Ci and Gi, and the traceless, divergence
free spatial tensor Dij.3

Analogously, also the energy-momentum tensor on the right hand side of (1.1) is
decomposed into the homogeneous background and a perturbation

T full
µν = Tµν + δTµν . (2.44)

The homogeneous part is again the perfect fluid energy momentum tensor

Tµν = p̄ḡµν + (¯̺ + p̄) ūµūν , (2.45)

where ūµūµ = −1 and ūi = 0. The perturbations are then

δT00 = − ¯̺h00 + δ̺ ; δTi0 = p̄hi0 − (¯̺ + p̄)
(
∂iδu+ δuV

i

)
; (2.46)

δTij = p̄hij + a2
[
δijδp+ ∂i∂jπ

S + 2∂(iπ
V
j) + πT

ij

]
, (2.47)

where these equations may be understood as the defining equations for the quantities δ̺,
δp, δui = ∂iu+ δuV

i , and the anisotropic stress terms πS, πV and πT that characterize
the departure from the perfect fluid form of the energy momentum tensor.

Plugging these formulas into the Einstein equations (1.1) and evaluating them con-
sistently at first order gives a set of nasty looking equations for the perturbations (and
the Friedmann equations for the background). As we will not need them in their full
generality we will only give them in a particular form, described in the next chapter.
The reader who is interested in their full form may find them for example in Weinberg’s
book on cosmology [45].

2.2.2. Gauges and evolution equations

The equations that result from the perturbative ansatz made in the previous section,
will not only contain physical degrees of freedom, but also some that are only related to
general coordinate transformations of the unperturbed RW metric. These coordinate
transformations may be described by four functions of xµ and we may, therefore, choose
our coordinates in a way that eliminates four components of the perturbations. Fixing
the coordinate system in this way is called “choosing a gauge”, because the coordinate

2The brackets in ∂(iCj) denote symmetrization, i.e. ∂(iCj) = 1
2 (∂iCj + ∂jCi).

3Formally these conditions are ∂iCi = ∂iGi = 0 and ∂iDij = δijDij = 0.
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transformations may be written in a form that resembles gauge transformations in particle
physics. The choice which gauge to use depends on the application. The desired physical
quantities may take a simpler form in one gauge than another. The physical content
however is the same as long as the perturbations are consistently truncated and there is
no residual gauge freedom left. We will discuss two popular choices below.

In addition to using these formal freedom we will also employ two physical restrictions.
Firstly, for our purpose it is sufficient to look at the scalar parts of the perturbations
(2.42)-(2.43) and (2.46)-(2.47). Secondly, we will only be interested in fluids for which
the anisotropic stress πS vanishes. With these restrictions we may finally write down the
sets of equations that determine the evolution of the structure in the Universe in the
form of a linear perturbation of the background.

Synchronous gauge In synchronous gauge the coordinate system is chosen such that
the scalar sector of the decomposition (2.42)-(2.43) is constrained by E = 0 and F = 0.
This means for the metric that

g00 = −1 , g0i = 0 , gij = a2 [(1 + A) δij + ∂i∂jB] . (2.48)

So the gauge choice has eliminated the mixed space time components of the metric and
the perturbation to the time component. This latter is the reason that the gauge is called
synchronous. To simplify the equations we may finally combine the perturbations A and
B in the quantity

Ψ :=
1

2

[
3Ȧ+ ∇2Ḃ

]
=

∂

∂t

(
hii

2a2

)
, (2.49)

because it will be this combination that will occur in the equations for the fluid perturba-
tions. Note that this potential is not completely gauge fixed by the conditions E = 0 and
F = 0. There is still a gauge transformation left that preserves E = 0 and F = 0, but
changes Ψ . In the late Universe, where we have the independently evolving dark matter
component, one may fix this degeneracy by imposing the coordinates to be comoving
with the dark matter fluid.

After these preparations the equation derived from (1.1) governing the evolution of
the potential Ψ reads

∂t

(
a2Ψ

)
= −4πGa2 (δ̺+ 3δp) . (2.50)

To have a complete system of equations we may either combine other components of the
Einstein equations (1.1) or replace them with the conservation equations of the fluid i.e.
evaluating the expression T µ

ν;µ = 0. This leads to

∂i

(
δp+ ∂t [( ¯̺ + p̄) δu] + 3

ȧ

a
(¯̺ + p̄) δu

)
= 0 , (2.51)

δ ˙̺ + 3
ȧ

a
(δ̺+ δp) + ∇2

[
a−2 (¯̺ + p̄) δu

]
+ (¯̺ + p̄)Ψ = 0 . (2.52)

After specification of an equation of state p (̺) = 0 for the fluid(s) these equations
(2.50)-(2.52) form a closed system for the three independent variables δ̺, δu and Ψ .

26



2.2. Cosmological perturbation theory

Conformal Newtonian gauge In this gauge we choose the coordinates such that B = 0
and F = 0 in the decomposition (2.42)-(2.43). This means for the metric if we call
A = −2Ψ and E = 2Φ

g00 = −1 − 2Φ , g0i = 0 , gij = a2δij (1 + 2Ψ) . (2.53)

As we have chosen πS to be zero some of the equations imply that Φ = Ψ. This only
remaining potential Ψ is in a certain limit similar to the Newtonian potential of classical
gravity, which explains the name of the gauge. The equation for this potential is then

∂i [4πG (¯̺ + p̄) δu+ ∂t (aΨ)] = 0 . (2.54)

Adding the energy momentum conservation equations for the perfect fluid to the system
of equations, i.e. T µ

ν;µ = 0, we find

∂i

(
δp+ ∂t [( ¯̺ + p̄) δu] + 3

ȧ

a
(¯̺ + p̄) δu+ (¯̺ + p̄) Ψ

)
= 0 , (2.55)

δ ˙̺ + 3
ȧ

a
(δ̺+ δp) + ∇2

[
a−2 (¯̺ + p̄) δu

]
− 3 (¯̺ + p̄) Ψ = 0 . (2.56)

Assuming an equation of state p (̺) = 0, these equations (2.54)-(2.56) again give the
evolution for the three independent variables δ̺, δu and Ψ, but this time the remaining
Einstein equations give an additional time independent constraint

a3δ̺− 3Ha3 (¯̺ + p̄) δu−
(

a

4πG

)
∇2Ψ = 0 . (2.57)

Gauge invariance and conservation The problem of the gauge dependence can also
be evaded by using gauge invariant variables. The concept has been introduced into
cosmological perturbation theory by Bardeen [52] and is besides gauge fixing the other
way of treating the problem of spurious degrees of freedom.

An important gauge invariant quantity is the curvature perturbation Rq that can be
expressed in terms of synchronous gauge quantities as

q2Rq = −a2HΨq + 4πGa2δ̺q + q2Hδuq , (2.58)

where we have introduced the Fourier components of the potential, the over-density field
and the velocity field. So the equation holds for all wavenumbers q.

In addition to being gauge invariant, Rq has the advantage to be conserved outside
the Hubble radius i.e. for modes for which q/a ≪ H. This property will prove useful in
Sec. 2.3.1 when we try to make contact to inflationary perturbations.
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2.2.3. Statistical nature of the perturbations

The equations for the perturbations of the cosmic fluid derived in the previous section
only give us their evolution with cosmic time. To arrive at the full solution we have
to specify appropriate initial conditions. This is a problem in cosmology as the initial
conditions are not known. But even if they were, for many applications we would not
be interested in all positions of over- or under-densities, but rather in the underlying
statistical distribution. To learn something about this distribution it is useful to go to
Fourier space. As the background with respect to which we defined the perturbations is
translationally invariant, we may expand the solutions for the perturbations into plane
waves. For two perturbations A and B this leads to

A (x, t) =
∑

n

ˆ

d3qαn (q)Anq (t) eiqx , (2.59)

B (x, t) =
∑

n

ˆ

d3qαn (q)Bnq (t) eiqx ,

where n runs over the number of independent solutions of the perturbative equations
presented in Sec. 2.2.2. The fact that these equations, if transformed to Fourier space,
only depend on q2, shows that their solutions are independent of direction. All directional
information is therefore encoded in the initial conditions αn (q). As the equations are
linear, the αn may be chosen to be the same for all perturbations.

Under the assumption that the perturbations are Gaussian, which will prove to be
a good approximation for the cosmological context we are considering, all statistical
information is contained in bilinear averages of the form

〈A (x, t)B (y, t)〉 =
∑

nm

ˆ

d3q

ˆ

d3q′Anq (t)B⋆
mq′ (t) 〈αn (q)α⋆

m (q′)〉 ei(qx−q′y) (2.60)

where the average 〈. . . 〉 is an ensemble average over all possible initial conditions.
When we assume that the underlying probability distribution of the initial conditions is
translationally invariant, 〈αn (q)α⋆

m (q′)〉 may depend on q−q′ only. If the distribution is
also rotationally invariant we have 〈αn (q)α⋆

m (q′)〉 = Mnm (q) δ3 (q − q′), with a matrix
M depending on |q| only. With the choice of the adapted basis of functions for αn and
Anq we can assure that M is simply δnm. Then we have

〈αn (q)α⋆
m (q′)〉 = δnmδ

3 (q − q′) , (2.61)

which means that in this basis, the different solutions for a particular mode q do not
couple. For the ensemble average we then have

〈A (x, t)B (y, t)〉 =
∑

n

ˆ

d3qAnq (t)B⋆
nq (t) eiq(x−y) . (2.62)

The assumption of a rotationally and translationally symmetric probability distribution
has simplified the equation considerably.
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2.3. The origin of today’s structure

A particularly important case is when we take A = B = δ̺. This results in

〈δ̺ (x, t) δ̺ (y, t)〉 =
∑

n

ˆ

d3q |δ̺nq (t)|2 eiq(x−y) . (2.63)

This is the correlation function (2.6) of the over-density field δ̺ and related via the
Fourier transformation to the power spectrum |δ̺nq (t)|2 of the statistical distribution
of the field. It is this power spectrum that we will be interested in in the following,
because it contains all the information about the density field under the well motivated
assumption that it is initially a Gaussian field.

2.3. The origin of today’s structure

After the introduction of the basic formalism to describe the evolution of structures in a
dynamic space-time background, we will see in this section where these structures come
from and how they were influenced by the various epochs of cosmic expansion described
in Sec. 1.1.2. The presentation is summarizing the information of interest for us from
chapters 10, 6 and 2.4 of [45].

2.3.1. The seeds of cosmic structure

The fundamental reason that we see structures in the Universe around us is nowadays
believed to be the quantum fluctuations in the early Universe. The mechanism that links
these random fluctuations on microscopic scales to the largest scales in the Universe is
inflation, i.e. the exponential growth of the scale factor in an early epoch of the Universe.
Although inflation was originally introduced to solve other problems like the horizon or
the flatness problem, its most remarkable achievement is, that it predicts the correct
form of the perturbation spectrum that we see in the CMB. Because this occurrence is
so impressive, we here want to have a closer look on the way that this result emerges.

The most popular models that are used to describe the inflationary phase are models
with a scalar field that is slowly rolling down its potential. The Lagrangian of such a
field in a general relativistic background, described by the metric gµν , is given by

L =

ˆ

d4x
√

− det (g)

[
−1

2
gµν ∂ϕ

∂xµ

∂ϕ

∂xν
− V (ϕ)

]
. (2.64)

This field consists of a homogeneous background and its perturbation

ϕ (x, t) = ϕ̄ (t) + δϕ (x, t) . (2.65)

Working in conformal Newtonian gauge the perturbed metric is

ds2 = (−1 − 2Ψ) dt2 + a2 (t) (1 − 2Ψ) δijdx
idxj . (2.66)
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2. The theory of structure formation

Plugging the scalar source and the perturbed metric in the Einstein equations (1.1) first
yields the Friedmann equations for the background

H2 =
8πG

3

(
1

2
˙̄ϕ2 + V (ϕ̄)

)
(2.67)

Ḣ = −4πG ˙̄ϕ2 (2.68)

and gives the equations for the perturbations

Ψ̇ +HΨ = 4πG ˙̄ϕδϕ , (2.69)

δϕ̈+ 3Hδϕ̇+
∂2V (ϕ̄)

∂ϕ̄2
δϕ−

(
∇2

a2

)
δϕ = −2Ψ

∂V (ϕ̄)

∂ϕ̄
+ 4Ψ̇ ˙̄ϕ , (2.70)

(
Ḣ − ∇2

a2

)
Ψ = 4πG

(
− ˙̄ϕδϕ̇+ ¨̄ϕδϕ

)
. (2.71)

Using the definitions (2.59) to pass to momentum space

δϕ (x, t) =

ˆ

d3q
[
δϕq (t)α (q) eiqx + δϕ⋆

q (t)α⋆ (q) e−iqx
]
, (2.72)

Ψ (x, t) =

ˆ

d3q
[
Ψq (t)α (q) eiqx + Ψ⋆

q (t)α⋆ (q) e−iqx
]
, (2.73)

we could solve the emerging equations for the time evolution of the perturbations δϕq (t),
Ψq (t). However, we are only interested in the quantity

R = −Ψ +Hδu , (2.74)

that is constant outside of the Hubble radius for the growing mode. It can be written in
terms of the creation and annihilation operators α (q) and α⋆ (q) as

R (x, t) =

ˆ

d3q
[
Rq (t)α (q) eiqx + R⋆

q (t)α⋆ (q) e−iqx
]
, (2.75)

where of course

Rq = −Ψq −H
δϕq

˙̄ϕ
. (2.76)

The operators α fulfill the canonical commutation relation
[
α, α†

]
= 1. The vacuum

expectation value of Rq, that represents the quantum fluctuations, is then

〈0| R (x, t) R (y, t) |0〉 =

ˆ

d3qeiq(x−y) |Rq (t)|2 . (2.77)

To characterize the curvature fluctuations R we therefore need to determine its power
spectrum |Rq (t)|2. Using the equations (2.69)-(2.71), introducing the definition (2.74)
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2.3. The origin of today’s structure

and rewriting the equation in terms of conformal time τ , we arrive at an equation for
Rq (t) also known as the Mukhanov-Sasaki equation:

d2Rq

dτ 2
+

2

z

dz

dτ

dRq

dτ
+ q2Rq = 0 . (2.78)

where

τ =

t
ˆ

t⋆

dt′

a (t′)
; z =

a ˙̄ϕ

H
. (2.79)

In the usual slow roll approximation where H is close to constant, the slow roll parameters

ǫ = − Ḣ

H2
; δ =

Ḧ

2HḢ
, (2.80)

are small (the background equation Ḣ = −4πG ˙̄ϕ2 illustrates why this phase is called
slow roll, because it means that the “speed” of the scalar field, ˙̄ϕ, is small). With the
identities

1

z

dz

dτ
= aH (1 + ǫ+ δ) ;

d

dτ

(
1

aH

)
= −1 + ǫ (2.81)

and assuming that ǫ̇ and δ̇ may be neglected we arrive at the simplified equation

d2Rq

dτ 2
+

2 (1 + 2ǫ+ δ)

τ

dRq

dτ
+ q2Rq = 0 , (2.82)

which has the two Hankel functions τ νH(1)
ν (−qτ) and τ νH(2)

ν (−qτ) as its solution with
ν = 3

2
+ 2ǫ + δ. The growing mode is H(1)

ν . As we need R only in the limit where
q/a ≪ H, i.e. for modes that are much larger than the Hubble radius, we find as
asymptotic behavior for the growing mode

Ro
q = i

√−τΓ (ν)

2
√
π (2π)3/2 z (τ)

eiπν/2+iπ/4
(−qτ

2

)−ν

, (2.83)

where the o indicates that it is the value of Rq outside the Hubble radius. This result
shows that the power spectrum of the curvature perturbations has the form

Ro
q ∝ q−3/2−2ǫ−δ , (2.84)

which, as we will see in Sec. 2.3.3, leads to the nearly scale invariant spectrum seen in
the CMB. As Ro

q is time independent (which may also be shown from the form (2.83)
by an explicit calculation), the prefactor in (2.83) can be evaluated at any convenient
time. A standard choice is to evaluate it at the time when the mode corresponding to
the wavenumber q is leaving the Hubble radius, i.e. when q/a (tq) = H (tq) where tq is
the time of crossing of the mode q. This leads to the expression

Ro
q = ∓i

√
16πG

8π3/2

H (tq)√
ǫ (tq)

q−3/2 , (2.85)
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Figure 2.1. Sketch of the evolution of the wavelength of a perturbation as compared
to the Hubble radius. As all the length scales, the wavelength grows linearly with the
scale-factor λ = aλ0. The Hubble scale 1/H grows differently, depending on the era. It
is constant during inflation, grows as a2 during radiation domination and as a3/2 during
matter domination. Therefore, a perturbation that is smaller than 1/H during inflation
may cross this scale, but will eventually reenter the Hubble radius in one of the later
eras. Only if the recent Λ-domination is for real, the perturbation might not reenter the
Hubble volume.

where the q-exponent has changed because tq is slightly q-dependent. The details of this
q-dependence related to the slow roll parameters ǫ and δ, has to be evaluated for the
specific slow roll potential under consideration. Generically however, as we have seen,
slow roll inflation leads to a nearly scale invariant power spectrum for the variable R,
at least for those modes that leave the Hubble radius during inflation. This concept is
explained in Fig. 2.1.

2.3.2. Evolution in the radiation dominated era

We have seen in the previous section how the quantum fluctuations of the inflaton field
would give rise to curvature perturbations, encoded in the variable R. But what has this
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2.3. The origin of today’s structure

variable to do with the density fluctuations of matter in our Universe today? To answer
this question we first of all have to find out, how this perturbation in R is transferred
to the usual matter. After inflation had ended, the Universe was completely empty as
the rapid growth of the scale factor diluted all possibly preexisting fluids. The matter
that makes up our Universe was only created in the reheating period after the end of
inflation. That the physical processes in this era did not erase all traces of inflation is
due to the constancy of R outside the Hubble radius. This is for example discussed in
[53] and later in a paper by Weinberg [54]. In his book4 this is formulated as a theorem:
“Whatever the contents of the Universe, there are two independent isentropic physical
scalar solutions of the Newtonian gauge field equations for which the quantity Rq is
time-independent in the limit q/a ≪ H”. The scalar metric components are then

Φq (t) = Ψq (t) = Rq


−1 +

H (t)

a (t)

t
ˆ

T

a (t′) dt′


 (2.86)

and the perturbation of any four scalar s (x) is

δsq (t) = −Rq
˙̄s (t)

a (t)

t
ˆ

T

a (t′) dt′ (2.87)

and the perturbation of the velocity potential is

δuq (t) = − Rq

a (t)

t
ˆ

T

a (t′) dt′ , (2.88)

where T is an arbitrary initial time.
This theorem transports the curvature perturbations induced by the inflaton to the

perturbations in the density of the fields that exist when the respective mode reenters
the Hubble radius. Of course, the mere existence of these solutions does not mean that
the Universe was in a state described by one of them in its early stage of evolution.
However, observations seem to indicate that the perturbations in the early Universe were
indeed of isentropic nature. At the moment there is no hint for isocurvature or entropy
perturbations. Therefore, these solutions seem to be close to what actually happened.

Fluid equations To describe the early phase of the hot plasma we will examine the fluid
equations for a perturbed FRW metric in synchronous gauge as introduced in Sec. 2.2.2.
The equations describing this case are Eq. (2.50) for the metric perturbation and the
conservation equations (2.51) and (2.52) for the different fluids that are important at

4See [45] page 247.
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2. The theory of structure formation

this time, i.e. dark matter, Baryons, photons and neutrinos. Writing down the equations
for these fluids and transforming them into Fourier space leads to

d

dt

(
a2Ψ

)
= −4πGa2 (δ̺Dq + δ̺Bq + 2δ̺γq + 2δ̺νq) (2.89a)

for the evolution of the metric perturbation,

δ ˙̺Dq + 3Hδ̺Dq = − ¯̺DΨq (2.89b)

δ ˙̺Bq + 3Hδ̺Bq −
(
q2/a2

)
¯̺BδuBq = − ¯̺BΨq (2.89c)

δ ˙̺γq + 4Hδ̺γq −
(
4q2/3a2

)
¯̺γδuγq = − (4/3) ¯̺γΨq (2.89d)

δ ˙̺νq + 4Hδ̺νq −
(
4q2/3a2

)
¯̺νδuνq = − (4/3) ¯̺νΨq (2.89e)

for the energy conservation and

1

3
δpγq + ∂t

[(
4

3
¯̺γ + ¯̺B

)
δuγq

]
+ 3H

(
4

3
¯̺γ + ¯̺B

)
δuγq = 0 (2.89f)

1

4
δpνq + ∂t [ ¯̺νδuνq] + 3H ¯̺νδuνq = 0 (2.89g)

for the momentum conservation. Here, the equations of state wγ = wν = 1/3 and the
plasma condition δuγq = δuBq is used. q is again the comoving wavenumber and the
q-sub-indices indicate that also the perturbations have been transformed to Fourier space.
The equations become simpler when we introduce fractional perturbations, i.e. divided
by the the average density and pressure:

δαq =
δ̺αq

¯̺α + p̄α

. (2.90)

Note that this definition slightly differs by a numerical factor taking into account the
equations of state from the usual definition δ̺αq/ ¯̺α. This definition allows to write the
equations (2.89a)–(2.89g) above in the compact form

d

dt

(
a2Ψq

)
= −4πGa2

(
¯̺DδDq + ¯̺BδBq +

8

3
¯̺γδγq +

8

3
¯̺νδνq

)
(2.91a)

for the evolution of the potential and

δ̇Dq = −Ψq (2.91b)

δ̇Bq −
(
q2/a2

)
δuBq = −Ψq (2.91c)

δ̇γq −
(
q2/a2

)
δuγq = −Ψq (2.91d)

δ̇νq −
(
q2/a2

)
δuνq = −Ψq (2.91e)

d

dt

(
(1 +R) δuγq

a

)
= − 1

3a
δγq (2.91f)

d

dt

(
δuνq

a

)
= − 1

3a
δνq (2.91g)
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2.3. The origin of today’s structure

for the fluid perturbations, where the definition R = 3¯̺B/4¯̺γ was used. Although they
look quite simple individually, the mutual coupling makes it impossible to solve them
analytically in the general case. There are, however, several limits in which they may be
simplified enough to arrive at an analytic solution that is not too far from the numerically
determined one.

Early matching One is the epoch shortly after inflation when all fractional perturbations
are assumed to be equal, an assumption made in view of the lack any signature of non-
adiabaticity. Setting

δγq = δBq = δDq = δνq =: δq (2.92)

and using the approximation that this early epoch was radiation dominated, i.e. that

¯̺R = ¯̺γ + ¯̺ν ≫ ¯̺M = ¯̺B + ¯̺D (2.93)

and for early enough time, such that q/aH ≪ 1, this leads to an equation for the density
contrasts

d

dt

(
a2δ̇q

)
=

32

3
πGa2 ¯̺Rδq . (2.94)

The radiation domination implies a (t) ∝
√
t and with the background Friedman equation

8πG/3¯̺R = 1/4t2 one has a simple second order differential equation for δq (t). This
equation has two solutions, a growing one with δq (t) ∝ t and a decaying one δq (t) ∝ 1/t.
For the growing mode the remaining equations give

δq (t) = At ; Ψq (t) = −A ; δuq (t) = −2t2

9
A , (2.95)

as leading growing contribution and we may now use Eq. (2.58) to relate the constant A
to the inflationary epoch. Eq. (2.58) results in

A =
1

2

q2

a2H
Rq , (2.96)

when neglecting δuq and so

δq = δγq = δBq = δDq = δνq =
1

4

q2

a2H2
Ro

q , (2.97)

ψq = −1

2

q2

a2H
Ro

q , (2.98)

δuq = δuγq = δuνq = − 1

36

q2

a2H3
Ro

q , (2.99)

which justifies neglecting δuq in (2.96) and in the derivation of (2.94), because the term
with δuq is one order higher in q/aH ≪ 1.
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2. The theory of structure formation

These solutions, even though very limited in their range of applicability for q outside
the horizon and early times, are still important as they fix the normalization of the future
evolution of the modes. By the constant gauge invariant variable Ro

q they are connected
to the inflationary era. This allows us to predict the primordial power spectrum of the
matter perturbations from the inflationary form (2.85).

Evolution until decoupling In its evolution from the early state discussed in the
previous section up to the time of decoupling, the Universe passes from the radiation
dominated era to a matter dominated one. For modes outside the Hubble radius during
the whole time, i.e. q/aH ≪ 1, there is a solution that covers the time evolution of the
perturbations in both eras. The difference to the result above is just that now ¯̺M is
no longer negligible and a (t) passes therefore from a (t) ∝

√
t to a (t) ∝ t2/3. So it is

convenient to express the result in terms of the scale factor

δq =
4q2Ro

q

5H2
EQa

2


16 + 8

a

aEQ

− 2

(
a

aEQ

)2

+

(
a

aEQ

)3

− 16

√
1 +

a

aEQ


 , (2.100)

where the prefactor has been chosen to match the solution (2.97) for t → 0. The
solution goes from a a2 (t) ∝ t evolution in the radiation dominated era to a a (t) ∝ t2/3

evolution in the matter dominated era. Therefore the super Hubble scale perturbations
in synchronous gauge grow more slowly in the matter era than in the radiation era.

To extend the result to smaller scales, we may consider modes that are still bigger
than the Hubble scale at matter radiation equality, but which enter the Hubble radius
during the matter dominated era. This translates into ¯̺R ≪ ¯̺M and with the simplifying
assumption that ¯̺B ≪ ¯̺D, (2.91a) and (2.91b) combine to

δ̈Dq + 2Hδ̇Dq − 4πG ¯̺DδDq = 0 . (2.101)

This equation (known as the Meszaros equation) will be important in all what follows
as it describes the evolution of the matter density perturbations on large scales up
to today. As above, there are again two solutions to this equations, a growing and a
decaying one. During matter domination, they go with the scale-factor and cosmic time
as δD (t) ∝ a (t) ∝ t2/3 and δD (t) ∝ a (t)−3/2 ∝ t−1 respectively.

To match (2.100) at scales around the Hubble radius we have to choose the propor-
tionality constant to give

δDq =
2

5
κ2 a

aEQ

Ro
q ⇒ Ψq = −2

5
κ2 HEQ√

a/aEQ

Ro
q , (2.102)

with κ =
√

2q/ (aEQHEQ). For the other perturbations things are more complicated,
as now, inside the Hubble radius, we cannot neglect (q2/a2) δuq terms any more. This
couples the equations and leads to oscillations in the baryon and photon component.
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2.3. The origin of today’s structure

They are linked before recombination and may, in the approximation of moderately long
wavelength, be written as

δγq = δBq =
3

5
Ro

q

(
1 + 3R − cos (ϕ (t))

(1 +R)1/4

)
, (2.103)

where R = 3¯̺B/4¯̺γ and the phase ϕ is a function of t. The important lesson from this
equation is, that the overall amplitude of the perturbation in the baryons is constant
in this era, i.e. up to the time of recombination, because the baryonic plasma sound
speed c2

SB 6= 0. In contrast to that, the dark matter perturbations that become smaller
than the Hubble radius during this epoch, when matter dominates but before decoupling,
continue to grow. This difference is one of the important cosmological arguments for the
existence of dark matter. Observations today show larger density fluctuations than there
could be in a Universe made of baryonic matter, as δBq has less time to grow. Fig. 2.2
illustrates this point.

After the discussion of super horizon modes and those that enter the Hubble radius in
the matter dominated era, we finally have to consider the modes that enter already in
the radiation dominated era. The equations for these modes are a mess (even though the
physics behind is simple) and so we will just discuss the result, being

δDq = 9Ro
q

a

aEQ

Tl (q) +
48πG ¯̺γ

q2/a2
Ro

q (2 +R) (1 +R)3/4 e−
´ t

0
Γdt cos (ϕ (t)) ,(2.104)

δBq = δγq =
a

aEQt2
(1 + 3R)

q2/a2
Ro

qTl (q) − 3Ro
q

(1 +R)1/4
e−
´ t

0
Γdt cos (ϕ (t)) , (2.105)

where Tl (q) =
(
−7/2 + γE + ln

(
4κ/

√
3
))

, κ =
√

2q/ (aEQHEQ) and Γ is Silk damping.
Here again we remark that the baryon perturbations are not growing during matter
domination. The dark matter perturbations create wells in the gravitational potential
that enhance the baryon density perturbation growth after decoupling (see Fig. 2.2).

The transfer function All the previous results were for specific limits. However, for
what follows we will need the spectrum of dark matter perturbations for the whole range
of scales, from large to small q. This can only be done numerically, because depending on
when the mode entered the Hubble radius the growth will be different. As we have seen,
the small scale modes in (2.104), that entered during the radiation dominated era, have a
different q dependence than those modes that entered during matter dominance (2.102).

The numerical calculation leads to fitting functions for what is called the transfer
function that take the different evolution of perturbations on different scales before
decoupling into account. After baryon decoupling, the matter component in dark matter
and baryons evolves independently from the other components as described by equation
(2.102). Until the onset of nonlinear evolution or dark energy domination, the perturbation
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2. The theory of structure formation

Figure 2.2. Comparison of the evolution of a dark matter perturbative mode with a
baryonic mode of the same wavenumber k. The wavelength of the mode corresponds to
≈ 4 Mpc today. When the mode enters the Hubble radius the dark matter perturbation,
shown as the dashed line, continues to grow. The baryon perturbation stops to grow and
starts to oscillate due to its coupling to the photon bath. After decoupling the baryons
fall into the potential wells prepared by the dark matter. Therefore, the perturbation
grows rapidly and ends up at the same level as the dark matter perturbation at this time.
Picture from Wikipedia.5

grows linearly with the scale factor on all scales. Therefore, we may write the evolution
in the matter dominated era after baryon decoupling in the form

δDq =
2

5
κ2 a

aEQ

Ro
qT (q) , (2.106)

and define the transfer function T (q) by this equation. We already saw two limits
of this transfer function. For small q, i.e. large scales, T (q) → 1 giving (2.102) and on
small scales for q ≫ 1, it goes to (2.104) T (q) → 45

2κ2

(
−7/2 + γE + ln

(
4κ/

√
3
))

. The
fitting formula that interpolates between these limits, which we will use in the following

5From http : //en.wikipedia.org/wiki/File : Structure_mode_history.svg in the version of 17.07.2012

38



2.3. The origin of today’s structure

has been given by Eisenstein and Hu [55] and reads

T (q) =
L0

L0 + C0q2
,

L0(q) = ln (2e+ 1.8q) , (2.107)

C0(q) = 14.2 +
731

1 + 62.5q
,

where their q is defined as

q =
k

hMpc−1 Θ2
2.7/Γ , (2.108)

with Γ = Ω0h and Ω0 = ΩC + ΩB. Θ2.7 is the deviation of the CMB temperature from
2.7K. In the case that we do not ignore the effect of baryons on the correlation function,
the shape is slightly different. This is encoded in a modification of the shape parameter
Γ which becomes

Γeff(k) = Ω0h

(
αΓ +

1 − αΓ

1 + (0.43ks)4

)
, (2.109)

where the new parameters are determined by a fit to numerical results of CMBfast to

s =
44.5 ln (9.83/Ω0h

2)√
1 + 10 (Ωbh2)3/4

Mpc , (2.110)

αΓ = 1 − 0.328 ln
(
431Ω0h

2
) Ωb

Ω0

+ 0.38 ln
(
22.3Ω0h

2
) (Ωb

Ω0

)2

. (2.111)

This fixes the transfer function over all scales and encodes the difference in the growth of
perturbations, that enter the Hubble radius at different times in the evolution.

With these relations we have reached the goal of this section: to follow the initial
perturbations created by inflation through the radiation dominated era up to the moment
of recombination. This gives the shape of the linear dark matter power spectrum, defined
in (2.15) and (2.63) by

P (q) = |δDq|2 =
4

25
κ4

(
a

aEQ

)2 ∣∣∣Ro
q

∣∣∣
2 T 2 (q) = A

(
a

aEQ

)2

qnS T 2 (q) , (2.112)

where we used the q-dependence of Ro
q, Eq. (2.84), that is Ro

q ∝ q−3/2−2ǫ−δ. A is a
normalization constant that can be either determined from the CMB as we will discuss in
Sec. 2.3.3, or fixed by normalizing the matter fluctuations in a sphere of radius 8h−1Mpc,
i.e. σ8, to a certain value. We will choose this latter possibility in most cases. nS is
nS = 1 − 4ǫ− 2δ. For slow roll inflation there is only a small deviation of nS from one.
This is also seen in the observations and is called scale invariant spectrum in the sense of
Eq. (2.26) and Eq. (2.123).
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Eq. (2.112) not only gives the initial spectrum at a specific instant in time, but over
the whole matter dominated era, because on small scales baryons and photons decouple.
Therefore, oscillations in the plasma, that were mediated by the baryons into the dark
matter sector, do not longer lead to the second term in (2.104). Consequently, on these
scales as on the large scales we have a simple growth of the overall amplitude with a,
described by the first term. On large scales (2.102) this is the case anyhow. As the
growth of modes outside the horizon (2.100) is the same as for the large scale modes
inside the horizon, the modes that enter later have the same amplitude. Therefore, they
do not change the shape of the transfer function any more and Eq. (2.112) describes the
linear power spectrum throughout the matter dominated era. The only modifications will
arise on small scales by nonlinear growth in the late Universe and by the onset of dark
energy domination. We will discuss the modifications due to dark energy in Sec. 2.3.4.

2.3.3. Normalization to the CMB

The easiest way to see how the amplitude of the power spectrum of the dark matter
distribution imprints itself on the CMB is by focusing on what is called the Sachs
Wolfe effect.6 It encodes the influence of the gravitational potential on the temperature
fluctuations in the CMB. This influence is twofold: First of all, the temperature at a
given point is redshifted by the local gravitational potential φ (x) as

∆T (n̂)

T0

= δφ (rLn̂) , (2.113)

where ∆T (n̂) = T (n̂)−T0, n̂ is the direction in the sky and rL is the comoving coordinate
distance of the surface of last scattering. The second effect of a local gravitational potential
is that it changes the rate of expansion. This modifies the time when the Universe has
cooled down to 3000K, the approximate temperature of decoupling. The time is affected
by δφ (rLn̂) = δt/t which is plausible when interpreting the gravitational potential in
the post Newtonian way of the Newtonian gauge (2.2.2) (which has a modified time
component). The temperature decays as T (t0) = Ti/a (t), so this gives rise to a density
perturbation in the matter dominated era around decoupling of

∆T (n̂)

T0

= −δa

a
= −2

3

δt

t
= −2

3
δφ (rLn̂) . (2.114)

The sum of the two contributions is therefore
(

∆T (n̂)

T0

)

SW

=
1

3
δφ (rLn̂) . (2.115)

6There are also intrinsic temperature fluctuations, fluctuations due to the Doppler effect and fluctuations
due to the late time integrated Sachs-Wolfe effect. All of those can be shown to be sub-dominant in a
certain part of the angular CMB power-spectrum for adiabatic initial perturbations. For a discussion
of these terms see e.g. [45].
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2.3. The origin of today’s structure

As this gravitational potential is to be interpreted in the Newtonian gauge we have to
relate it to the dark matter perturbations via the analogue of the Poisson equation

∇2δφ (x, t) = −4πGa (t)2 δ̺D (x, t) ⇒ δφ (q, t) = −4πG

(
a (t)

q

)2

¯̺DδDq (t) . (2.116)

Using the perturbation (2.102), the fluctuation of the potential is

δφ (q) = −3

5
α (q) Ro

q , (2.117)

where α (q) is a stochastic phase factor as introduced in Sec. 2.2.3.
From this, one could derive the power spectrum of the temperature fluctuations in

Fourier space. However, in the observation of the CMB it is more useful to use a
decomposition into spherical harmonics and not plane waves. This means

E [∆T (n̂) ∆T (n̂′)] =
∑

ℓ

Cℓ

(
2ℓ+ 1

4π

)
Pℓ (n̂ · n̂′) , (2.118)

where Pℓ are the Legendre polynomials. It is now common to give the coefficients Cℓ

instead of the normal power spectrum. They are determined by

Cℓ =
1

4π

ˆ

d2n̂d2n̂′Pℓ (n̂ · n̂′)E [∆T (n̂) ∆T (n̂′)] . (2.119)

With

δφ (x) =

ˆ

d3qeiq·xδφq =

ˆ

d3qδφq

∑

ℓ

(2ℓ+ 1) iℓPℓ (q̂ · n̂) jℓ (qr) , (2.120)

this gives for

E [∆T (n̂) ∆T (n̂′)]SW =
4π

9
T 2

0

∑

ℓ

(2ℓ+ 1)Pℓ (n̂ · n̂′)

∞̂

0

q2dqPφ (q) j2
ℓ (qr) , (2.121)

where Pφ (q) δ (q − q′) = E [δφqδφq′ ] and so the Sachs Wolfe Cℓ’s are

Cℓ,SW =
16π2

9
T 2

0

∞̂

0

q2dqPφ (q) j2
ℓ (qr) . (2.122)

As the spectrum Pφ (q) by (2.117) is proportional to
∣∣∣Ro

q

∣∣∣
2
, it is a power law Pφ (q) =

N2
φq

n−4 and thus (2.122) may be integrated to

Cℓ,SW =
16π32n−4Γ (3 − n) r1−n

L N2
φT

2
0

9Γ2
(

4−n
2

)
Γ
(
ℓ+ n−1

2

)

Γ
(
ℓ+ 2 − n−1

2

) , (2.123)

41



2. The theory of structure formation

where rL is the comoving coordinate distance to the surface of last scattering. For the
case that the spectrum goes just like q−3, i.e. for n = 1, the Cℓ’s do no longer depend on
the absolute scale rL. This is one reason why this spectrum is called scale invariant. It is
also known as Harrison Zel’dovich spectrum. In this n = 1 case the Cℓ’s further simplify
to

Cℓ,SW =
8π2N2

φT
2
0

9ℓ (ℓ+ 1)
. (2.124)

Therefore, if ℓ (ℓ+ 1)Cℓ is plotted, the spectrum should be approximately constant in
the range where the Sachs Wolfe effect is the dominant contribution. This is the case
for 10 . ℓ . 100. So the magnitude of the Cℓ’s in this range gives a first hint on the
absolute value of the density perturbations. By a fit of (2.123) to the Cosmic Background
Explorer (COBE) data in the range of 4 . ℓ . 40 one obtained the so called COBE
normalization of the spectrum which in terms of the Nφ used here gives Nφ = 8.7 × 10−6.

Via N2
φ = 9

25

∣∣∣Ro
q

∣∣∣
2

from Eq. (2.117), this connects observations and the theoretical
quantities above. More generally if written as

∣∣∣Ro
q

∣∣∣
2

= N2q−3

(
q/a0

kR

)nS−1

, (2.125)

the COBE normalization gives N2 = 2.1 × 10−10. When compared to the WMAP results

given in terms of ∆2
R (k), which is connected to

∣∣∣Ro
q

∣∣∣
2

by

∆2
R (k) =

k3

2π2
PR (k) ; PR (k) = (2π)3

∣∣∣Ro
q

∣∣∣
2

(2.126)

the measured value of ∆2
R (k0) = 2.42 × 10−9 gives N2 = 1.93 × 10−10. This leads in the

normalization of (2.112) to

A =
4

25
κ4
∣∣∣Ro

q

∣∣∣
2

=
4

25

(
19.3 (q/a0)

Ωmh2

)4

N2q−3

(
q/a0

kR

)nS−1

= 1.4 × 10−2 , (2.127)

for a0 = 1, Ωm = 0.27, h = 0.7 and nS ≈ 1.

2.3.4. The recent evolution

Finally, we want to continue the evolution of the perturbations beyond the matter
dominated era. In the recent Universe the takeover of the dark energy component leads
to a suppression of the growth in the matter perturbations. By assuming dark energy to
be a cosmological constant, the corresponding fluid equation (2.91a) is the same as there
are no dark energy perturbations in this case. This means that (2.101) still describes
the evolution of the dark matter perturbations in the Λ-dominated phase. The only
modification that has to be taken into account is the different evolution of the scale-factor
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2.3. The origin of today’s structure

and the Hubble rate with cosmic time. To this end, it is useful to rewrite the equation
(2.101) in terms of the scale factor

ȧ2

(
d2

da2
δDq

)
+

3

2
a
(
H2 +H2

0 ΩΛ

)( d

da
δDq

)
=

3

2
H2

0

Ωm

a3
δDq . (2.128)

The growing solution to this equation is then

D (a) =
a

a0
2F1

(
1,

1

3
;
11

6
; − ΩΛ

Ωm

(
a

a0

)3
)
, (2.129)

where we decomposed δDq = A (q)D (a). The function 2F1 is the Gauss hypergeometric
function. In the limit of ΩΛ → 0 it goes to 1. This recovers the correct behavior for matter

domination. Its expansion in terms of the scale-factor begins with D (a) → 1 − 2
11

(
a
a0

)3

for a ≪ a0, so for early times D (a) also asymptotically goes like a as expected. Using
the same normalization as before, we therefore have for the density perturbations

δDq =
2

5
κ2 D (a)

D (aEQ)
Ro

qT (q) , (2.130)

which means that the spectrum scales as D2 (a) /D2 (aEQ).
This concludes the journey on which we followed the perturbation from its birth in

the quantum fluctuations of the inflating primordial Universe up to the dark energy
domination today. Now we have reviewed all the knowledge about the linear perturbation
spectrum that will be crucial in the following. To visualize the results we collected,
Fig. 2.3 shows the form of the power spectrum (2.112) and the correlation function
and matter fluctuations in a sphere. The power spectrum is plotted as a function of
k = 2π/r. It shows the typical form of a CDM spectrum: a scale invariant part on large
scales where it grows as k and then a suppression for the modes that entered the horizon
already before decoupling. In this regime of large k, i.e. small scales, it decreases like
k−2.

The corresponding correlation function falls below one at a few h−1Mpc and then
decreases steeply. It falls below zero at a scale slightly above 100h−1Mpc and then goes
to zero as r−4. The same r−4 dependence is also the limiting behavior of σ2 whereas
on small scales where we find more structure, it flattens. σ itself goes from its value at
8h−1Mpc of 0.8 to 10−5 on horizon scales.

With the tools described in this and the previous sections, we can finally look at some
data.
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Figure 2.3. Dependence of the ΛCDM correlation function, power spectrum and matter
fluctuations on the scale r. The input is the fitting form of the power spectrum of
Eq. (2.112). The plot shows it as a function of k = 2π/r. On small scales it goes like k−2,
on large scales as k1. For σ2 this means by Eq. (2.23) a decay like r−1 in the beginning
and r−4 on large scales. The correlation function has a similar behavior but experiences
a zero crossing at a scale of around 100h−1Mpc (the sharp dip in this double logarithmic
plot).
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3. Structure in the observations

3.1. Recent observations

There are plenty of observations that measure aspects of the matter distribution of the
Universe directly or indirectly, like radio surveys, weak lensing measurements or cluster
searches. However, in this section we will only have a closer look on those observations
which are most important for the results of this work and whose techniques are most
developed: the measurements of the primordial inhomogeneities imprinted in the CMB,
and the large galaxy redshift surveys in the late Universe. Together with the supernova
data, those observations gave rise to the popular concordance model and are therefore
two pillars of today’s cosmology.

3.1.1. Cosmic microwave background inhomogeneities

As recalled in Sec. 1.1.2, the early Universe, after the period of accelerated expansion
during inflation, was dominated by radiation. After the Universe had heated up sufficiently,
the photons coupled to the charged particles and formed a hot plasma. The acoustic
waves that propagated in this plasma, left their imprint in the over and under-density of
the plasma. These density fluctuations influenced the photon temperature and led to
hotter and cooler regions in the plasma. When the temperature fell below approximately
3000K, the formerly free electrons combined with the protons to form neutral hydrogen.
The interaction rate of the photons therefore decreased drastically and enabled them to
propagate freely until today. In this way these photons, that redshifted to the microwave
region of the electromagnetic spectrum in the following evolution, carry information
about the over-density field of the Universe at the time of recombination. They provide
information about the initial conditions for cosmic structure formation.

Until the release of newer data from the Planck Satellite, the best measurement of the
cosmic microwave background at large scales is still from the Wilkinson Microwave and
Anisotropy Probe (WMAP) mission. The angular power spectrum of the temperature
field is shown in Fig. 3.1. As we have seen in Sec. 2.3.3, its overall normalization is
related to the matter power spectrum that we will be interested in in the following. The
data shows the approximate constancy for small ℓ that by Eq. (2.124) was the indication
of a scale invariant spectrum. Of course this constancy is not perfect as it is overlayed
by other effects that we neglected in the derivation of Eq. (2.124). Taking those into
account, however, the fit with the full model spectrum confirms the scale invariance.
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3. Structure in the observations

Figure 3.1. Angular power spectrum of the primordial fluctuations of the CMB tempera-
ture field. The angular power is given in terms of the magnitude of the coefficients Cℓ

in the expansion of the two-point correlation function into spherical harmonics. The
coefficients are multiplied by ℓ (ℓ+ 1) /2π to compensate for the overall decrease with this
factor of a scale invariant spectrum (see Sec. 2.3.3 for details). The figure was taken from
the WMAP7 paper [41]. ACBAR (Arcminute Cosmology Bolometer Array Receiver)
and QUaD (QUEST at DASI) are two South Pole based CMB experiments.

The wiggles on top of the spectrum that globally scales as 1/ℓ (ℓ+ 1) are the imprints
of the sound waves propagating in the plasma in the early Universe. They contain
information about the ratio of baryonic matter to dark matter, and about the angular
diameter distance to the surface of last scattering.

The excellent fit of the theoretical curve in Fig. 3.1 to the measured data and the
high accuracy of the measurement of the temperature correlations gave rise to what is
sometimes called precision cosmology. In combination with other measurements, the
precision for many of the basic cosmic parameters is better than 1% and summarized in
table 3.1.

3.1.2. Large scale structure surveys

In contrast to the measurement of the initial conditions of structure formation, by looking
at the CMB, large scale structure surveys determine the distribution of galaxies in the
late Universe. The largest surveys up to today are the 2dF survey [56], the Sloan Digital
Sky Survey (SDSS) [57] and the WiggleZ survey [58]. Especially the SDSS is particularly
useful, as it covers with an extension of approximately 8200 square degrees about 20% of
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Table 3.1. Summary of the currently best values of the cosmological parameters of the
ΛCDM model as published in [41].

Class Parameter WMAP 7-year Mean WMAP+BAO+H0 Mean

Primary 100Ωbh
2 2.249+0.056

−0.057 2.255 ± 0.054
Ωch

2 0.1120 ± 0.0056 0.1126 ± 0.0036
ΩΛ 0.727+0.030

−0.029 0.725 ± 0.016
ns 0.967 ± 0.014 0.968 ± 0.012
τ 0.088 ± 0.015 0.088 ± 0.014

∆2
R(k0)a (2.43 ± 0.11) × 10−9 (2.430 ± 0.091) × 10−9

Derived σ8 0.811+0.030
−0.031 0.816 ± 0.024

H0 70.4 ± 2.5 km/s/Mpc 70.2 ± 1.4 km/s/Mpc
Ωb 0.0455 ± 0.0028 0.0458 ± 0.0016
Ωc 0.228 ± 0.027 0.229 ± 0.015

Ωmh
2 0.1345+0.0056

−0.0055 0.1352 ± 0.0036
zreion

b 10.6 ± 1.2 10.6 ± 1.2
t0

c 13.77 ± 0.13 Gyr 13.76 ± 0.11 Gyr

a∆2
R(k) = k3PR(k)/(2π2) and k0 = 0.002 Mpc−1.

b“Redshift of reionization,” if the Universe was reionized instantaneously.

cThe present-day age of the Universe.

47



3. Structure in the observations

10
0

10
1

10
2

 r(Mpc/h)

10
-3

10
-2

10
-1

10
0

10
1

ξ
(r

)
DP

LS

LCDM

3.2e+01 6.4e+01 1.3e+02

 r(Mpc/h)

-0.1

0.0

0.1

ξ(
r)

Figure 3.2. Measurement of the correlation function (2.6) in the SDSS DR7 galaxy
sample. The analysis was performed by Sylos Labini et. al in [60]. They use two different
estimators for the correlation function. The Davis Peebles estimator (DP), which we will
describe in Eq. (3.11) and the Landy Szalay estimator (LS), Eq. (3.12).

the sky. In addition this area is, apart from 3 separated stripes, connected to one filled
region, whereas the 2dF and WiggleZ survey have a more stripe like geometry. This
allows to use more robust methods for the characterization of structures using full shell
estimators for the correlation function [44, 59] or Minkowski functionals like in [48] and
Sec. 3.2.

The result of an estimation of the two-point correlation function from the seventh data
release of the SDSS project is shown in Fig. 3.2. It decays like a power law with an
index of −1.3 on small scales turning over to −2 on larger scales. The comparison with
the ΛCDM model correlation function shows good agreement on small and intermediate
scales, but the sample size is not yet sufficient to definitely determine the position of the
zero crossing. In the data this seems to occur at smaller redshift than for the model, but
this may be related to finite size effects.

Complementary to the estimation of the correlation function, one may also determine
the power spectrum of the fluctuations from the data. This has been done in [61] with
the result shown in Fig. 3.3.

Also in this case the data agree quite well with the theoretical model power spectrum
on the scales where we expect linear theory to hold. For larger k, i.e. smaller scales
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Figure 3.3. First measurements of the BAO in the SDSS DR5 galaxy data. The left plot
shows the first detection of the BAO peak in the correlation function in [62]. For the
right plot, [61] used the estimation of the power spectrum to isolate the wiggles shown in
the inset. In addition, the overall shape nicely fits the theoretical linear power spectrum
in the range of scales where it is applicable.

there is a growing deviation from the linear theory power spectrum. This is due to
non-linear structure formation and can be modeled by better calculation techniques like
renormalized perturbation theory (RPT) [63, 64]. On large scales, i.e. for small k, there
is, analogously to the case of the correlation function, not yet enough data to detect the
turnover in the power spectrum. This will change with the completion of the third part
of the SDSS [36].

Baryon Acoustic Oscillations The inset in Fig. 3.3 shows the baryon acoustic oscil-
lations (BAO) in the data. BAO are the analogue to the wiggles in the CMB power
spectrum of Fig. 3.1. They form when the over-density in the baryons, left over from
the initial sound waves, are imprinted in the overall matter distribution. To clarify this,
Fig. 3.4 shows the evolution of the over-densities in the different energy components of
the Universe. For simplicity let us consider a single over-density peak sitting on top of a
homogeneous background Universe. This initial configuration is shown in the first graph
in Fig. 3.4. The radial dark matter profile is centered around zero, whereas the relativistic
components have already moved out due to the higher pressure in the over-density. The
plasma of baryons and electrons is coupled to the photons. The plasma over-density
continues to expand into the surrounding homogeneous Universe due to its pressure. At
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Figure 3.4. Simple model to explain the emergence of the baryon acoustic peak in the
correlation function. The sequence follows the evolution of an over-dense peak in an
otherwise homogeneous Universe. In the initial stage, the perturbation is the same for
all energy density components. In the subsequent evolution the pressure drives out the
relativistic components. When baryons and photons decouple, the baryons are left behind
and form the characteristic over-density at the distance the sound wave had traveled
before decoupling. In the later stages, the infall of matter on the over-density leads to a
growth of the overall over-density. During the infall the baryon peak also collects dark
matter and gets therefore imprinted in the overall matter density. Pictures from [65].

recombination photons and baryons decouple and only the photon over-density continues
to be driven outwards. In the baryon component, the surviving peak of the density wave
stays approximately at the scale that it had reached at the time of decoupling. In the
following, gravitational instability leads to a spherically symmetric inflow of cold dark
matter and baryons from the surrounding homogeneous Universe. This inflow feeds the
overall growth of the over-density. As the homogeneous part is supposed to have the
average decomposition of 4/5 dark matter and 1/5 baryons, in the end the peak that was
mainly baryonic in the beginning has nearly the same ratio of dark to baryonic matter
as the average Universe. Therefore the peak should be visible in all observations that
probe the matter density profile.

Leaving this idealized situation, one can imagine the inhomogeneous primordial Uni-
verse to be made up of many such over-dense peaks. The result should therefore be
an enhancement in the correlation function at the scale that corresponds to the radius
that the sound wave had traveled outwards until the time of decoupling. This peak in
the correlation function is then equivalent to wiggles in the power spectrum, because
a localized feature in real space becomes an oscillatory feature in Fourier space. The
existence of these BAO has first been detected in real space in [62] and the corresponding
data is shown in Fig. 3.3. Besides the presentation in [61] from which Fig. 3.3 is taken,
the oscillations in the power spectrum have been analyzed more recently for the entire
SDSS sample in [66]. Also in the WiggleZ data, these BAO have been found [67].

The big advantage of these BAO is, that they specify a sharp scale in the otherwise
smooth power spectrum/correlation function. As we can determine the primordial sound
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speed with the CMB, the scale is known quite precisely. This makes BAO to a standard
ruler for the determination of the angular diameter distance. In addition they can be
probed in all eras of the Universe by measuring the matter correlation function at the
respective time. This allowed [67] to put strong constraints on deviations of the distance
redshift relation from the ΛCDM prediction.

We will examine in Sec. 5.4.2 how this determination could potentially be affected
by inhomogeneities in the Universe, but find out that, on the scales probed by today’s
surveys, there seems to be no influence from inhomogeneously varying evolution histories.

3.2. Characterization of the structure in the SDSS

After the description of the methods that are used to characterize structure in the
Universe and the short digression in the evolution history of matter perturbations, we
will turn in this section to an analysis of the SDSS (luminous red galaxy (LRG)) data on
large scale structure. There have been many studies with this data concentrating on the
correlation function [62, 68, 60], the power spectrum [61], BAO [62, 69, 66], redshift space
distortions [70, 71] and Minkowski functionals [48]. These latter approaches, however,
mainly focused on the excursion set method and did not work with the boolean grain
model. As this model works directly with the point distribution and does not pre-average
the galaxy distribution to give smooth density contours, it is more directly related to
the intrinsic properties of the distribution of the individual galaxies. Also the exact
theoretical understanding of the behavior of the Minkowski functionals in the boolean
grain model, expressed by Eqs. (2.39)–(2.40), demonstrates the usefulness of this model
in addition to the previous approaches.

3.2.1. The luminous red galaxy data

The data that is used for the determination of the Minkowski functionals is provided by
Kazin1 [69]. It contains preprocessed SDSS data, selected with the following requirements:
the galaxy has a SDSS spectrum, is not in an area around bright stars, has a sector
completeness of at least 60%, a redshift in the range 0.16 − 0.47 and a color- and k-
corrected magnitude between −21.2 and −23.1. The details of the selection can be found
in [69]. After this pre-selection, the sample contains 105, 831 LRGs. The distribution in
the sky is shown in Fig. 3.5. Beside the main region with right ascension (ra) between
120◦ and 260◦ and a declination (dec) between −5◦ and 70◦, there are three additional
stripes in the southern hemisphere (in the opposite direction) and a small displaced patch
in the northern sky. As we need a large connected volume for the analysis, we can only
use the bulk. In order to have well defined angular boundaries we furthermore cut out
a region with ra ∈ [132◦, 235◦] and dec ∈ [−1◦, 60◦]. The resulting patch of the angular
window is shown in Fig. 3.5. In addition to these selection processes we have to assure

1http://cosmo.nyu.edu/~eak306/SDSS-LRG.html
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Figure 3.5. SDSS DR7 LRG sample analyzed using the Minkowski functionals. On the
left hand side a projection on the full sample. We only use the connected left part. This
part is shown on the right hand side. The red square shows the boundaries of the angular
cut used.

that the sample is volume limited. As mentioned in [69], this is the case for galaxies that
have a redshift below 0.35. The magnitude redshift distribution is shown in Fig. 3.6.

With these selections we arrive at a volume limited sample of 41, 375 LRGs in a redshift
range of z ∈ [0.16, 0.35]. Unfortunately, the quality of the sample seems not to be very
good as is shown in Fig. 3.6. For an ideal volume limited sample one would expect the
average number density of galaxies to be constant with redshift. This is not the case
here, where the density fluctuations in different shells vary by nearly 30%. This has
already been demonstrated in the original use of this sample for [69]. However, as there
is no way of a selection that would lead to a consistent homogeneous sample we will have
to use the data as they are.

For comparison to the ΛCDM model the LasDamas project [72, 73] conducted a
number of large scale structure N -body simulations2 trying to model the distribution
of the luminous red galaxies. We will use their mock samples in the next section for
comparison and the estimation of errors.

To find the Minkowski functionals in position space, we finally convert the redshifts
into comoving distances using the distance redshift relation of a ΛCDM model with
ΩΛ ≈ 0.73. This is done for the SDSS data as well as the mocks in the same way. Of
course it would also be possible to consider the redshift space Minkowski functionals.

2Available at http://lss.phy.vanderbilt.edu/lasdamas/overview.html
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Figure 3.6. Number density in shells of constant thickness centered on the indicated
redshifts. This shows, that the number density in the sample is not constant as would be
expected from a perfect volume limited sample. Right: Magnitude redshift distribution
of the galaxies in the sample. The sample is volume limited up to a redshift of 0.35.

3.2.2. The Minkowski functionals of luminous red galaxies

For the calculation of Minkowski functionals from the sample described in the previous
section, we use a code written by Jens Schmalzing and Matthias Ostermann, advertised in
[74]. The code was adapted to the problem regarding computational speed and inclusion
of the boundaries chosen above. It uses the approximation described in [46] to efficiently
calculate the Minkowski functionals of the boolean grain model. We normalize the results
such that the maximal value of the theoretical functionals for a Poisson distribution
corresponding to the measured sample density, is 1.

The result when applied to the selected 41, 375 LRGs is shown in Fig. 3.7. The data
points from the SDSS volume are clearly deviating from the Poisson case of a sample
without structure. The Minkowski functionals for this case have been calculated using
the formulae (2.39)–(2.40) and the sample density of n = 9.59 × 10−5h3Mpc−3. The blue
band (consisting of three lines, the average and lines for ± the error) shows the result
for the functionals averaged over 40 mocks. The fact that the band nature is nearly
not visible signifies that the fluctuation in the Minkowski functionals of the simulated
samples do not vary much. For the volume functionals the results of their determination
from the data are marginally consistent with the ΛCDM mocks within the errors. In view
of the small error bars, the deviations for the other Minkowski functionals are significant.
As the functionals are very robust tracers of the morphology, the observed deviations
would imply a very different morphology in the simulations and in the data. If this is
due to a slightly different average densities in the mock samples as compared to the data
sample, or if the simulations have other, more severe, problems remains to be seen.
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Figure 3.7. Minkowski functionals for the full volume limited region within our angular
and redshift cuts. The green solid line gives the values of a pure Poisson point distribution
for comparison. The blue solid bands are the Minkowski functionals for the ΛCDM
model, as derived from the LasDamas simulation data [72, 73, 75]. The smallness of the
band shows that the fluctuations between different realizations are not very large. The
red data points derived from the observed sample are at best marginally consistent with
the ΛCDM mocks.

Sample homogeneity To check for variations of the Minkowski functionals in different
parts of the sample, which occur for example for the estimation of the correlation
function [76, 60], we divide the sample into two mainly independent parts and calculate
the resulting Minkowski functionals. The two regions are shown in Fig. 3.8. They are
the maximal cubes that fit into the sample. The overlap of the two cubes is less than
20%. The choice is a compromise between sample size and independence. The number of
points in each cube is approximately 10, 000. The surrounding spherical shells give the
boundaries of the volume limited region we selected.

For the comparison of the two cubes, we first calculate the Minkowski functionals in
the two cubes. From the result we subtract the average of the functionals determined
from the mocks to emphasize deviations from this average, which consequently forms
the zero line. The fluctuations of the functionals in the 40 simulated samples is taken to
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Figure 3.8. Position of the two maximal cubes used to separate the sample into two
subsamples with a clear length scale. The ”sails” give the z = 0.16 and z = 0.35
boundaries of our cut sample.

be a measure of the error. Therefore, it is attached to the data points to indicate their
possible fluctuation. The result is shown in Fig. 3.9. It indicates that the ΛCDM model,
which is the zero line, is consistent with the Minkowski functional data for both boxes.
Also, the two boxes are consistent with each other, even if in some cases the other data
points lie in the two sigma region of the errors rather than the one sigma region.

To see whether this conclusion holds true also for smaller sample size, we shrink the
size of the cubes. For this test it is helpful to compare boxes, as we can attribute a
certain scale to the sample size for which we determine the functionals. If we had divided
the sample just in two equal wedges this correspondence would not be that clear.

Inspecting the distribution in the left cube, we arrive at the Minkowski functionals
shown in Fig. 3.10. Again, the green solid line is the Poisson case. The blue band gives
the average mock Minkowski functionals and the variance for 40 mocks. The lines are
the connected data points for the cubes of the respective scale. The fact that the band
nature of the blue line is clearer here shows, that the error has significantly increased by
decreasing the sample size from 40, 000 to 10, 000 points.

As the density fluctuates more for the smaller sample we tried to account for this by

renormalizing the functionals by a shift of scale R → R
(

̺m

̺i

)1/3
. Here ̺m is the global

mean density and ̺i the density of the respective smaller cube. This removes the main
effect of a modified density, namely the change in scale of the position at which the
deviation from the Poisson case occurs. The problem however is, that it induces a small
deviation in the scale of the correlation function that is probed. This may be seen in the
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Figure 3.9. Check for consistency of the two cubic subsamples of Fig. 3.8. The data
points show the value of the Minkowski functionals of the right and left cube respectively
from which we have subtracted the average Minkowski functionals derived from the mock
samples for the same cubes. The error bars are determined from the fluctuations between
the 40 mock samples. The data of the two cubes are consistent with each other (within
the errors) and with the ΛCDM model, represented by the zero line.

theoretical formula (2.40). Evaluating it for the volume Minkowski functional gives

̺iV 0 (R) =
4π

3
̺iR

3 +
∞∑

n=1

(−̺i)
n+1

(n+ 1)!
× (3.1)

×
ˆ

D

d3x1 . . . d
3xnd3xξn+1 (x1, x12, . . . ) θ (R − |x|) θ (R − |x − x1|) . . . .

The volume of the intersection of the several balls has been expressed here by an
integration over the θ-function θ (x) which is 0 for x < 0 and 1 for x > 0. The shift in

56



3.2. Characterization of the structure in the SDSS

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

radius inh-1Mpc

v 0
-

vo
lu

m
e

Poisson

p =100%

p = 90%

p = 80%

p = 70%

p = 60%

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

radius inh-1Mpc

v 1
-

ar
ea

Poisson

p =100%

p = 90%

p = 80%

p = 70%

p = 60%

0 10 20 30 40
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

radius inh-1Mpc

v 2
-

m
ea

n
cu

rv
at

ur
e

Poisson

p =100%

p = 90%

p = 80%

p = 70%

p = 60%

0 10 20 30 40
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

radius inh-1Mpc

v 3
-

eu
le

r
ch

ar
ac

te
ris

tic

Poisson

p =100%

p = 90%

p = 80%

p = 70%

p = 60%

Figure 3.10. Comparison of the Minkowski functionals of the left cube for different
scales. The dashed and dotted lines show the functionals for cubes that were obtained by
shrinking all sides of the original cube with the factor indicated. In addition the Poisson
case is shown in green and the band corresponding to the 100% cube is shown for 40
mocks. The fluctuation occurring for the smallest scales indicate that the precision is no
longer very high when shrinking the box that much. However, all the smaller cubes lead
to a very similar shape.

scale changes now the ̺i, but also induces a stretching in the correlation functions

̺iV 0 (R) =
4π

3
̺mR

3

+
∞∑

n=1

(−̺m)n+1

(n+ 1)!

ˆ

D

d3x1 . . . d
3xnd3xξn+1



(
̺m

̺i

) 1

3

x1,

(
̺m

̺i

) 1

3

x12 . . .




×θ


(
̺m

̺i

) 1

3

(R − |x|)

 θ



(
̺m

̺i

) 1

3

(R − |x − x1|)

 . . . . (3.2)

For the distributions we are looking at, the shift induced in the correlation functions
has a smaller effect on the value than the shift in scale. Therefore the transformation
increases the comparability.
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Indeed, if we look at Fig. 3.10, the results of the smaller boxes are quite similar to the
global one. As also the error bars for the smaller boxes are larger than for the global box,
the result looks quite consistent with the ΛCDM simulation for all the scales considered.

3.2.3. Deviations from Gaussianity

The Minkowski functionals for the boolean grain model may also be used as an indication
for the non-Gaussianity of a point distribution. In the Gaussian case the expansion of
Eq. (2.40) already ends at n = 1, because for a Gaussian distribution, all the cumulants
(2.10) for n > 2 are zero. The only non-vanishing connected correlation function is
therefore the two-point function, which means for the expansion (2.40) that it reduces to

V µ = Vµ (B) − ̺0

2

ˆ

D

d3x1ξ2 (|x1|)Vµ (B ∩Bx1
) . (3.3)

Therefore the Minkowski functionals of a Gaussian distribution are easy to determine
when we know the functionals for the intersection of two balls. The intersection being a
spherical lens, it is not very hard to find volume and surface. The integral mean curvature
is given in [77] and so the corresponding functionals are

V0 =
1

12
π (2R − r)2 (r + 4R) , (3.4)

V1 =
1

3
πR (2R − r) , (3.5)

V2 =
1

6

√
4R2 − r2


π − 2 arccos

(
r

2R

)
+ 4

√
2R − r

2R + r


 , (3.6)

V3 = 1 , (3.7)

where R is the radius of the balls and r is the integration variable corresponding to their
distance. For r > 2R all four Minkowski functionals are zero, as then the balls do no
longer intersect. With this information, the integration (3.3) can be carried out if we
know the correlation function of the sample.

It is interesting to note, that for the volume functional the first and only correction to
the Poisson term simply consists of the matter fluctuations in a sphere σ (R) as defined
in (2.16). This can be seen if we express the volume functional of the intersection of
spheres in Eq. (3.3) by an integration over two θ-functions like in the previous section.
Eq. (3.3) becomes

V 0 =
4π

3
R3 − ̺0

2

ˆ

D

d3x1

ˆ

D

d3xξ2 (|x1|) θ (R − |x|) θ (R − |x − x1|) . (3.8)

With a change of variables from x1 = x − x2 and assuming that D is large enough, this
leads to

V 0 =
4π

3
R3


1 −

4π
3
R3̺0

2

1
(

4π
3
R3
)2

ˆ

D

d3x2

ˆ

D

d3xξ2 (|x2 − x|)WR (x2)WR (x)
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=
4π

3
R3

(
1 −

4π
3
R3̺0

2
σ2 (R)

)
, (3.9)

by the definition (2.19). Here, WR (x) is again the window function for a ball of radius
R, i.e. θ (R − |x|). This shows how the volume Minkowski functional is directly related
to the fluctuations in the density field. For the higher functionals there is no such direct
correspondence to other quantities, but they are also quite simple. V 3 for example is just

V 3 = 1 − 2π̺0

2R
ˆ

0

ξ2 (r) r2dr . (3.10)

We want to compare these theoretical functionals to the data for a distribution that
is still close to a Gaussian distribution. To this end, we use a slice of the very large
simulation (VLS) of the Virgo consortium [78] at a redshift of z = 5. This simulation
contains 5123 dark matter points in a cube of side-length 479h−1Mpc. We randomly
select 100, 000 of these points. For these we estimate the correlation function and the
density fluctuations in spheres σ.

For the estimation of the correlation function we use two different estimators: The
Davis-Peebles (DP) estimator and the Landy-Szalay (LS) estimator as described in
[79, 80, 44, 60]. Both estimators are based on counting neighbours at certain distances.
Besides the data points D they also need a random sample with the same survey geometry.
In this case we just create a cube of Poisson points. The correlation function is estimated
by

ξDP
E (r) =

2NR

ND − 1

DD (r)

DR (r)
− 1 (3.11)

where DD (r) is the number of data-data distances in the interval [r − ∆/2, r + ∆/2].
DR (r) are the data-random distances in the same interval and ND and NR are the total
number of data and random points respectively. The more refined LS estimator is based
on the same principle of pair counting, and uses the prescription

ξLS
E (r) =

NR (NR − 1)

ND (ND − 1)

DD (r)

DR (r)
− 2

NR − 1

ND

DR (r)

RR (r)
+ 1 (3.12)

where RR (r) obviously is the number of random-random distances that lie in the
[r − ∆/2, r + ∆/2] interval. As discussed in [60], the fact that this estimator is the
minimal variance estimator for a Poisson distribution (as shown in [80]), does not mean
that it is necessarily also more efficient when applied to other distributions (see also [44]).
Therefore we will show the results for both estimators.

To find an estimate of σ, we simply apply the defining formula (2.16), i.e. we count for
10, 000 random locations in the sample how many points N lie in a sphere of a certain
radius R. Then we calculate the fluctuations in the number of points for each radius by
the formula

σ2
SP P (R) =

N2 (R) −N (R)
2

N (R)
2 , (3.13)
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Figure 3.11. Estimation of the correlation function and the matter fluctuations from the
analyzed samples. On the left hand side the result of an estimation of the correlation
function of the LRG sample and a slice of the VLS at z = 5. The estimation is done using
the DP and LS estimator that yield consistent results on the relevant scales. On the
right hand side an estimation of σ2 from the same samples. The deviation for large scales
is spurious and due to finite size effects. The lines give the best fit two both samples
using the shape of the ΛCDM power spectrum as given in Eq. (2.112).

where the ensemble average O is over the sample of 10, 000 random locations. As we are
in the discrete case of a stochastic point process (SPP), σ2 has an additional shot noise
term. We have to subtract this term before we find the continuous σ2 we need. The shot
noise contribution to σ2 is just 1/ (̺VR) where VR is the volume of the sphere of radius
R. More explicitly

σ2
SP P (R) − 1

̺0VR

=
1

V 2
R

ˆ

D

d3x1

ˆ

D

d3x2ξ2 (|x1 − x2|)WR (x1)WR (x2) = σ2 (R) (3.14)

as given by Eq. (2.19).
The results for the estimation of both quantities, σ and ξ, for the VLS [78] are shown

in Fig. 3.11 as the points around the blue dotted curve. The curve is determined using
the ΛCDM power spectrum given in Eq. (2.112). From this spectrum we calculate the
correlation function and the density fluctuations and adjust the overall normalization such
that it fits the data. For the case of the simulation data, the result for the normalization
corresponds to a σ8 today of σ8 (a = 1) = 0.9, which is what was plugged into the
simulation. As Fig. 3.11 shows, this gives an acceptable fit for both, ξ and σ. Note, that
for ξ the two estimators give the same result for nearly all points in the range of interest.
For σ we have extended the plot range to larger values of R to demonstrate from which
scale on the results become limited by the size of the sample. That this effect occurs
is due to the fact that for larger and larger radius there are less and less independent
spheres in the sample. At around 100h−1Mpc, which corresponds roughly to spheres
with a diameter of 41% of the sample, the mutual dependence of the points of different
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Figure 3.12. Comparison of the Minkowski functionals of the z = 5 slice of the VLS with
the ones derived from (2.39), (2.40) under the assumption of a Gaussian distribution,
i.e. Eq. (3.3). In all cases we subtracted the functionals from the Poisson Minkowski
functionals (corresponding to the green solid line in Fig. 3.7), to emphasize the effect.
For the volume functional we also added the higher order results for a Log-Normal
distribution. The data show already for this small redshift a clear deviation from the
Gaussian case. It is most prominent in the higher functionals v1 and v2.

spheres tends to equalize their number. Therefore, the fluctuation from sphere to sphere
is suppressed with respect to the true value. Supposedly this true value is given by the
dotted line determined using the theoretical power spectrum.

With this properly normalized spectrum we calculate the theoretical expectations for
the Minkowski functionals in the case of a Gaussian distribution. Fig. 3.12 shows them
together with the data determined from the same sample of 100, 000 points for which we
estimated ξ and σ above. The plot shows the deviation of the Minkowski functionals from
the corresponding case of a Poisson distribution. It is interesting to see, that even at this
early stage, the distribution deviates significantly from a Gaussian one. As we have only
one sample we cannot estimate the errors like above using mock catalogs. However, the
values for the 40, 000 points in the previous section indicate that for the larger sample of
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100, 000 and for a smaller absolute magnitude of the correlation function, the deviation
observed is not due to a statistical fluctuation.

To demonstrate that this is the case and that we can explain the deviation by a
theoretical model we calculated the effect of higher orders in the series expansion (2.40).
To be able to do this we chose a log-normal distribution as hypothesis, which will be
justified in 4.5.2. It resembles the Gaussian distribution described in Sec. 2.1.1, but has
as probability distribution in the discrete case (2.28) the form

p ({̺ (ri; ∆V ) /̺0}) = B (̺ (ri; ∆V ) /̺0) e
− 1

2

∑
i,j

(log(̺(ri;∆V )/̺0)−µi)Aij(log(̺(rj ;∆V )/̺0)−µj) .
(3.15)

For a single cell, without the correlation to other cells encoded in Aij, the distribution is

p (̺/̺0) =
1

(̺/̺0)
√

2πσ2
e− 1

2σ2
(log(̺/̺0)−µ)2

, (3.16)

with mean
E [̺/̺0] = eµ+ σ2

2 (3.17)

and variance
E

[
(̺/̺0)

2
]

− E [̺/̺0]
2 =

(
eσ2 − 1

)
e2µ+σ2

. (3.18)

As we need the cumulants (2.10) we have to determine the joint expectation values of
several variables. This gives

E

[
∏

i∈B

Xi

]
= e

∑
i

µi+
1

2

∑
ij

A−1

ij , (3.19)

where the Xi are again the distributions of the i-th cell, Xi = ˆ̺(xi) /̺0 and A−1
ij are the

elements of the inverse matrix to the matrix A. The sums in the exponents run over the
indices corresponding to the Xi in the product

∏
i∈B Xi. For the first two expectation

values this means
E [X1] = eµ1+ 1

2
A−1

11 , (3.20)

E [X1X2] = eµ1+µ2+ 1

2
A−1

11
+A−1

12
+ 1

2
A−1

22 . (3.21)

With (2.10), this leads to the second cumulant

κ (X1, X2) = eµ1+µ2+ 1

2
A−1

11
+ 1

2
A−1

22

(
−1 + eA−1

12

)
= ξ̃ (x12) . (3.22)

This means that unlike in the Gaussian case, the relation of the matrix elements A−1
ij to

the correlation function of the density field is no longer given by (2.29), but rather by

A−1
ij = log

(
1 + ξ̃ (ri, rj)

)
. (3.23)

This modified dependence on ξ̃ comes from the fact that the over-density field Xi =
ˆ̺(xi) /̺0 has as its average the value 1. So E [X1] = 1 and (3.20) fix the parameter
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µi in the distribution (3.15) to be µi = −1
2
A−1

ii . This directly leads to (3.23) for the
components of A−1

ij .
With these two conditions all parameters of the distribution (3.15) are fixed. Using

(3.19) and (2.10) we can now calculate in principle all higher connected correlation
functions for a multivariate log normal distribution having a given two-point correlation
function. In practice however this quickly leads to long expressions, because of the rapid
increase of the combinatorial component, the number of partitions B needed in Eq. (2.10).
Therefore we are limited to the connected correlation functions up to ξ5.

Using the ξ’s constructed in this way we can evaluate the series (2.40) up to an index
n = 4. However, this is not possible for all four Minkowski functionals. For V1 and V2 the
problem is to determine the values of the intersection of three balls Vµ (B ∩Bx1

∩Bx2
).

While this is straightforward for V0 and V3 for the other two functionals this would
imply the search for suitable parametrizations of the body resulting from the intersection.
Especially for V3 this would be hard in view of the complicated expression (3.6) for V2

for two balls. This is why we restrict ourselves to the calculation of the higher order
terms for V0.

The result of the inclusion of these higher order terms for the sample drawn from the
VLS is shown in the first plot of Fig. 3.12. In addition to the Gaussian component (3.9)
the other three lines show the result for v0 when including terms in the sum (2.40) up to
n = 4. The first correction to the Gaussian result by n = 2 is still quite large, whereas
the following corrections are small enough that they do not lead to a visible shift in the
curve.

To investigate a case where also the higher corrections make a difference, we apply
the whole procedure to another slice of the VLS, one with z = 2. The estimation of the
correlation function gives a normalization to σ8 (a = 1) = 0.87. With this correlation
function measured from the particular sample under consideration, we find the curves
shown in Fig. 3.13. They show a big first correction to the Gaussian result and smaller
corrections for the n = 3 and n = 4 terms. The correlation function amplitude seems to
be small enough to still lead to a rapid convergence.

This is no longer the case for the Universe today. For the SDSS LRG sample one of the
necessary conditions for having a Gaussian point process, i.e. ̺

´

A
dyξ2 (|y|) ≤ 1, is no

longer satisfied (see [81] for a discussion of these conditions). Therefore it is clear that we
will need higher order correlation functions. Under the assumption that the distribution
is not a Gaussian, but a log normal one, we arrive at the corrections shown in Fig. 3.14.
For this plot we use again the SDSS LRG sample and in particular the left one of the
boxes of Fig. 3.8. From the 10, 000 galaxies contained in this sample we determine v0,
which was already shown in Fig. 3.10. We subtract the Poisson values and arrive at the
points in Fig. 3.14. The determination of the normalization of the correlation function
needed for the calculation of the theoretical functionals gives a σ8 (a = 1) = 1.5. The
result of the fit is shown in Fig. 3.11. Compared with the dark matter particles in the
VLS, this means that the luminous red galaxies have a strong bias of b = 1.7. Using
the fitting formula (2.112) of the power spectrum to derive the connected correlation

63



3. Structure in the observations

Gaussian
2. order
3. order
4. order
Simdata

0 5 10 15 20
0

1

2

3

4

radius inh-1Mpc

10
0́
∆

v 0
-

vo
lu

m
e

Figure 3.13. Comparison of the volume
Minkowski functional of the VLS at z = 2
with the ones derived under the assump-
tion of a Log normal distribution. We sub-
tracted the Poisson case to make the de-
viations more visible. Unlike in Fig. 3.12,
the higher order terms now produce sizable
corrections.
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Figure 3.14. Same as Fig. 3.13 but for the
SDSS LRG sample, i.e. the actual structure
at a redshift of z = 0. The corrections stem-
ming from the log normal distribution are
now too large to give convergence already
for a small number of terms.

functions up to ξ5 we finally find the curves in Fig. 3.14.
This shows that the distribution of LRGs is not only strongly non-Gaussian, but also

that the higher order terms in (2.40) are too large to give the convergence value already
by an expansion that uses only the first terms of the series. Like for the series of the
exponential function it resembles, one would have to calculate the terms until the factor
(n+ 1)! is important enough to lead to a converging behavior. Unfortunately this is
beyond the computational capacities at hand and therefore we will not know if the late
Universe would also have been describable by the assumed log normal distribution.

In any case the examples in this section demonstrate the usefulness of Minkowski
functionals for today’s Universe as they contain all of the higher order correlation
functions.
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4. Backreaction of structure on the

expansion of the Universe

So far, we discussed the standard picture of structure formation in the Universe. It is
based on the assumption that the Einstein equations (1.1) would be valid on average, i.e.
if we use them for a homogeneous and isotropic matter source and an “average metric” in
form of the FRW metric (1.2). That this is not necessarily true was perhaps most clearly
discussed by Ellis in 1983 [7]. There, he investigated the different possibilities for the
scales at which the Einstein equations would be valid. He concluded, that the reasonable
assumption that they are local equations for the full inhomogeneous metric would lead to
the emergence of effective terms. They would arise from the smoothing procedure that
allows the description of the larger scales. Since then, and especially after being related
to the dark energy problem by [14], there has been a lively debate on whether those
corrections would be important or not. The debate has led to a Focus issue of Classical and
Quantum Gravity with the interesting contributions [82, 83, 84, 85, 86, 87, 88, 89, 19, 90].

The problem is known under the name of “cosmological backreaction” and has been
analyzed mainly within cosmic perturbation theory as introduced in Sec. 2.2. The main
result in this perturbative framework was of course that the corrections are perturbatively
small and of the order of a 10−5 contribution to the cosmic energy budget at the Hubble
scale. Some of these perturbative approaches may be found in [11, 14, 15, 16, 17, 12, 13].
However, there have also been doubts concerning the validity of perturbation theory in
the late Universe [20]. Once standard perturbation theory breaks down at first order, all
other orders become important as well. So there is no indication on the final result from
the low order terms. Recently, people have tried to overcome this problem by using a
gradient expansion technique that breaks down order by order [91].

All of these perturbative approaches, however, assume that the Universe is describable
by the split into a background that is independent of the inhomogeneities and small
perturbations to this background. This can only be true on large scales, where, following
Ellis, we do not know the precise form of the Einstein equations due to the correction
terms arising from the smoothing. This indicates that perturbation theory might not
be the best tool for a proof that the corrections when going to the large, homogeneous
scales, are negligible. Therefore, there have been attempts to address the problem in
non-perturbative frameworks [92, 23, 28, 27, 29, 25, 26]. However, this is in most cases
highly speculative, as the complexity of the problem requires simplifying assumptions
that may be even less justified than the assumption of the split into background and
small perturbation. This means that they can at best be regarded as toy models.
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4. Backreaction of structure on the expansion of the Universe

In the present chapter we want to contribute a new analysis to the discussion both
in the perturbative and non-perturbative case. The perturbative analysis will have
advantages over the standard framework, because for a given perturbative order it may
describe systems with a higher degree of nonlinearity. The non-perturbative model will
shed some light on one of the toy models discussed previously in the literature. We start
by introducing in Sec. 4.1 the specific averaging framework that we will use. Sec. 4.2
discusses the technical realization of the perturbative approximation we employ. Sec. 4.3
gives the results of the calculation of the effects of inhomogeneities in this approximation
and Sec. 4.4 presents the quantitative results. Finally Sec. 4.5 discusses connections
to other calculations in the literature. Sections 4.2 to 4.4 contain parts that will be
published in [40].

4.1. Averaging in an inhomogeneous Universe

As mentioned above, there is at present no consensus on the question whether or not
effective terms that arise from a smoothing of small scale inhomogeneities, would be large
enough to make a significant contribution to the overall evolution history of the Universe.
Analogously, there is also no consensus on what smoothing technique would be the right
one to address this question. The complete solution to the problem would involve the
construction of a sort of “average tensor” on an average space-time manifold, giving an
explicit meaning to the FRW background that is postulated to describe this smoothed
out state. The main difficulty in doing this is, that two tensors cannot be compared if
they are given at two separate space-time positions. So to average them, they have to be
transported to the same location. This is difficult to describe unambiguously.

In this line there have been several attempts to the averaging of tensors on general
space-times, e.g. by Zalaletdinov [8, 9] or Carfora [10, 93]. Unfortunately, due to
the difficulty of the problem, they all have conceptual problems and often introduce
complications that make it hard to derive reliable predictions for the effects under
consideration here. Therefore, we will constrain ourselves to the conceptually easiest way
of capturing the departure from homogeneity in these emerging correction terms. For
the sake of definiteness, we will also neglect a number of influences that contribute to
the correction terms, but that are to hard to implement in this context. This means that
the idealized situation here may be altered by future more refined treatments, but it will
describe effects that are definitely part of the problem. It may therefore be seen as a
first step in the resolution of the full problem.

4.1.1. The Buchert Equations

The simplified framework that we are working in is sometimes called the Buchert
framework of averaging [94, 95, 32]. It circumvents the problems of the more general
tensor averaging frameworks by concentrating on scalar quantities. They have the
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4.1. Averaging in an inhomogeneous Universe

Figure 4.1. Split of the space-time into time
orthogonal hypersurfaces Σ. The “distance”
between the surfaces can be scaled by the
lapse N . The coordinate grid on two differ-
ent surfaces may be displaced by the shift
vector ~β. For comoving dust one can choose
N = 1 and ~β = 0. Picture from [96].

Figure 4.2. Sketch of relativistic structure
formation. As the coordinate grid is comov-
ing, there is no motion of particles within
the spatial hypersurfaces. Over- and under-
densities are therefore only created by curv-
ing these hypersurfaces. When passing to
the Friedmannian picture, we assume that
the internal curvature averages to zero and
the external curvature averages to K = ȧ/a.
Picture from [97].

advantage that they can be compared at different positions. Therefore, defining an
averaging process for them is straightforward. As they are a special case of the more
general tensors, all more refined theories will have to include them in the same way as
presented here, at least in the limit of the approximations made. Luckily, it is also the
scalar part that is most interesting for cosmology, so we can go quite far despite this
restriction.

To define the scalar quantities that we want to average, the Buchert approach uses a
specific form of the Arnowitt-Deser-Misner (ADM) formalism to split the four metric
into a temporal and a spatial component

4g = −dt2 + 3g ; 3g = gab dX
a ⊗ dXb . (4.1)

This split is adapted to the situation in cosmology where we want to describe a “time
evolution” from the “beginning” until “today”. The time that is used here is the proper
time of the observer. To be able to perform this split we have to assume that the
cosmic fluid is rotation-less, because any rotation would prevent us from finding an
unambiguous foliation of space-time. Of course this is a strong restriction and it is
questionable, if the late Universe may still be described by such an approximation. In
addition to the restriction to a non-rotating fluid, we will also only consider the effect
of the non-relativistic matter component that is pressureless and therefore often called
“dust”. As dark matter seems to make up a large fraction of the matter in the Universe,
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4. Backreaction of structure on the expansion of the Universe

this should capture the main effect.
With these restrictions, (4.1) is a foliation into spatial hypersurfaces of constant cosmic

time, where cosmic time is now defined in the restframe of the dust fluid that makes up the
Universe. This is sketched in Fig. 4.1. t is a label for a given spatial three hypersurfaces
of constant cosmic time. So, the time direction is orthogonal to the hypersurfaces. The
coordinate system in the three hypersurfaces is attached to the cosmic fluid and therefore
called comoving. In this description galaxies do not have peculiar velocities, because the
whole effect of structure formation is described by matter curving the spatial manifold.
The two types of curvature that arise during this process are extrinsic curvature K and
intrinsic Ricci curvature R. The situation is sketched in Fig. 4.2.

The extrinsic curvature is defined as1

Kij := −uµ;νh
µ

ih
ν

j , (4.2)

where uµ is the four velocity of the fluid and hµν is a projector into the three hypersurface
of constant cosmic time. As we are only considering dust and our spatial coordinates are
comoving, nµ = uµ = (−1, 0, 0, 0) where nµ is the direction perpendicular to the spatial
hypersurface. The projectors are hµν := gµν + nµnν .

Written in these coordinates and for a dust fluid, Einstein’s equations (1.1) simplify to
a set of evolution equations for the dynamical quantities

˙̺ (X, t) = K̺ (X, t) , (4.3a)

∂tgij = −2gikK
k

j , (4.3b)

∂tK
i
j = KKi

j + Ri
j − (4πG̺ (X, t) + Λ) δi

j , (4.3c)

supplied by a set of constraint equations

1

2

(
R +K2 −Ki

jK
j
i

)
= 8πG̺ (X, t) + Λ , (4.3d)

Ki
j‖i −K|j = 0 . (4.3e)

R is the Ricci curvature of the spatial hypersurface and ‖i and |j denote the covariant
and the partial three derivative respectively.

To switch from the geometrical description to a maybe more familiar one in terms of
kinematical quantities, one can express the extrinsic curvature tensor in terms of the
expansion tensor of the fluid by

Kij := −uµ;νh
µ

ih
ν

j → −Kij = Θij = σij +
1

3
θgij . (4.4)

In this form, the expansion tensor Θij only captures the symmetric part of the decom-
position of the fluid velocity gradient into its symmetric and antisymmetric component

1As usual Latin indices denote coordinates in three space, Greek indices those of the four dimensional
space-time. The semicolon ; denotes the covariant four derivative.
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4.1. Averaging in an inhomogeneous Universe

uµ;ν = u(µ;ν) + u[µ;ν]. However, Θij contains the whole evolution of the fluid, because we
do not allow for rotations and so u[µ;ν]h

µ
ih

ν
j = 0. In its decomposition (4.4), Θij divides

into the local expansion rate θ = θ (X, t) and the traceless shear σij of the fluid. From
σij one constructs the shear scalar σ2 = 1

2
σijσij.

With these replacements, the system of ADM equations in terms of the kinematical
quantities reads,

1

2
R +

1

3
θ2 − σ2 = 8πG̺+ Λ , (4.5a)

σi
j‖i =

2

3
θ|j , (4.5b)

˙̺ = −θ̺ , (4.5c)

∂tgij = 2gikσ
k

j +
2

3
θgij , (4.5d)

∂tσ
i
j = −θσi

j − Ri
j +

(
4πG̺− 1

3
θ2 − 1

3
θ̇ + Λ

)
δi

j , (4.5e)

which still is completely equivalent to the Einstein equations for irrotational dust. It is
therefore valid for arbitrary densities ̺ and so still describes the fully inhomogeneous
evolution. Therefore, these equations are a good starting point for the derivation of an
average cosmology. So the next step will be to define the average we use.

The averaging procedure As mentioned above, the process of averaging is in this
restricted case much simpler than in the general tensorial case. For a three scalar f (t,X)
we define it as

〈f〉D (t) :=

´

D
f (t,X) dµg
´

D
dµg

; dµg :=
√

(3)g (t,X)d3X , (4.6)

where D is a comoving domain on the spatial hypersurfaces with the volume VD =
´

D
dµg.

Unlike in the usual case, where a volume average is defined with respect to a fixed
background, the introduction of the Riemannian volume element dµg implies that in this
case, the dynamical background evolution plays a role. A direct consequence is that the
volume expansion rate, related to the metric by

θ (t,X) =
√

(3)g (t,X)
−1

∂t

(√
(3)g (t,X)

)
, (4.7)

is also position dependent for a general inhomogeneous metric (3)g (t,X). When we take
the time derivative of Eq. (4.6)

∂t 〈f〉D = 〈∂t f〉D + 〈f θ〉D − 〈f〉D 〈θ〉D , (4.8)

we immediately find that this influences the average. The time evolution of the average
is no longer the same as the average of the time evolved quantity f . Or to put it short:

69



4. Backreaction of structure on the expansion of the Universe

t
D

t
D

D

t
D

D

averaging

FRW

procedure
more genera

l p
ro

ce
du

re

homogeneous FRW model averaged inhomogeneous model

evolution

averagingevolution

perturbed initial metric

homogeneous RW metric

full inhomogenoeus metric

Figure 4.3. Sketch of the difference of the averaging framework to the standard picture.
Instead of pre-averaging and then evolving the average patch one should only average
after having taken the full inhomogeneous evolution into account. The resulting averages
will differ as we see from Eq. (4.8). The question by how much they differ is one aspect
of the averaging problem.

Time evolution and averaging do not commute. Note, that for a homogeneous expansion
rate this would be the case, as one could simply factor θ out of the spatial average 〈. . .〉D.
This non-commutation is one source for the emergence of effective terms in an average
description. The difference to the standard case with an assumed average metric is
sketched in Fig. 4.3.

One of the most interesting cases where the time evolution of the average of a scalar
quantity differs from the full time evolution is the expansion rate itself. Inserting θ (X, t)
into Eq. (4.8) gives

∂t 〈θ〉D = 〈∂t θ〉D +
〈
θ2
〉

D
− 〈θ〉2

D . (4.9)

This has the unexpected property, that the change in the average expansion rate, that
is the acceleration of the average expansion, may be positive even if locally at every
point ∂t θ < 0. This can occur, because the variance of expansion rates 〈θ2〉D − 〈θ〉2

D is
positive and may, in some cases, outweigh the first term. This means that the average
expansion of the domain D may accelerate even in the case of a dust Universe that we
are considering.

This acceleration of the average expansion rate is simply due to the definition of the
average. It weights regions according to their volume. Regions that are expanding faster,
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4.1. Averaging in an inhomogeneous Universe

however, will also increase their volume faster than regions that are expanding more
slowly. If we start from a situation where fast and slowly expanding regions have similar
volume, the average expansion rate in the beginning is unaffected by the weighting. In
the following however, the faster expanding regions will systematically also gain in the
weighting as their faster expansion leads to a bigger volume. If this gain is rapid enough,
the average expansion rate of the domain D may even rise instead of decline. Eventually
however, the volume average will be dominated by the fastest expanding region and
therefore the amount of time during which average acceleration may occur is limited.
This final state with the fastest expanding region dominating the whole Universe is then
again a fairly homogeneous situation. In the end, the decrease of the expansion rate of
the one homogeneous expanding region will be equal to the decrease of the average.

The question if such a situation can arise, or if Eq. (4.9) is of no practical use for
the Universe that we are living in, is one of the currently unsolved puzzles. For a
matter dominated Universe, the question may be related to the equations that govern
the emergence of different expansion rates in different regions when given the initial
density fluctuation in the matter fluid. These are the fluid equations (4.5a)–(4.5e). The
equations for the three scalars that we are interested in are the scalar parts of these
equations. They read

1

3
θ2 = 8πG̺− 1

2
R + σ2 + Λ , (4.10a)

θ̇ +
1

3
θ2 = −4πG̺− 2σ2 + Λ , (4.10b)

0 = ˙̺ + θ̺ . (4.10c)

Not surprisingly this is not a complete set of equations for the time evolution of the four
unknown quantities θ, σ2, R and ̺. To close this system of equations one would also have
to include the evolution equation for the shear, which is not a scalar equation any more.
Therefore we cannot use it in the present context of a scalar averaging scheme. Without
using spatial averaging one could attempt to solve the local equations. However, this
would be equivalent to solving the full Einstein equations for a generally inhomogeneous
dust Universe. This is not possible. Already the specification of realistic initial conditions
in the matter density ̺ would be too complicated. We therefore have to live with the
restriction that the system of equations no longer closes and we will sketch below possible
ways that have been used to circumvent the problem.
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4. Backreaction of structure on the expansion of the Universe

4.1.2. Average evolution of inhomogeneous Universes

Averaging Eqs. (4.10a)–(4.10c) finally yields the equations that we will be exploring in
the following

3H2
D = 8πG 〈̺〉D − 1

2
〈R〉D − 1

2
QD + Λ , (4.11a)

3
äD

aD

= −4πG 〈̺〉D + QD + Λ , (4.11b)

0 = ∂t 〈̺〉D + 3HD 〈̺〉D . (4.11c)

They are evolution equations for the average scale factor or equivalently the average
Hubble rate

aD (t) :=

(
VD

VDi

) 1

3

; HD :=
ȧD

aD

=
1

3
〈θ〉D . (4.12)

This means that the scale factor is defined via the Riemannian volume of a domain and
not directly from a quantity in the inhomogeneous metric. The quantity QD that occurs
here is called kinematical backreaction. It is one of several types of backreaction the
importance of which is not yet settled. It is defined by

QD :=
2

3

(〈
θ2
〉

D
− 〈θ〉2

D

)
− 2

〈
σ2
〉

D
=
〈
K2 −KijK

ij
〉

D
− 2

3
〈K〉2

D (4.13)

and therefore encodes the difference of the variance of the expansion rates and the
“variance” of the shear. As the two variances themselves are inherently positive, the result
may have either sign. This leads to the unexpected effect mentioned above that also in a
dust Universe we may have an accelerated expansion, but this time of the kinematically
defined average scale-factor aD. The condition reads

4πG 〈̺〉D < QD , (4.14)

so the fluctuation in the expansion rate within the averaging domain D has to be large
enough to overcome the shear and the average matter density of the Universe.

Another interesting consequence of the set of equations (4.11a)–(4.11c) is, that it leads
to a nontrivial curvature evolution. This can be seen by determining the integrability
condition connecting (4.11a) and (4.11b). With the help of (4.11c) this yields

a−2
D ∂t

(
a2

D〈R〉D

)
= −a−6

D ∂t

(
a6

DQD

)
. (4.15)

This means that only for QD = 0 or QD ∝ a−6
D the inhomogeneities and the intrinsic

curvature decouple and we recover the standard FRW curvature evolution as 〈R〉D ∝ a−2
D

like in Eq. (1.3a). In all other cases the curvature evolution will be modified. We will see
this explicitly in the evaluation of the model that we will examine below.

As already mentioned, there is no explicit solution to the above equations as the system
does not close. This is the same situation as in the Friedmannian case where one first has
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4.1. Averaging in an inhomogeneous Universe

to impose an equation of state for the fluid. In the average case considered here, however,
the fluid is an effective one. Therefore, there is no natural choice for an equation of state.
The energy density and pressure of the effective fluid may be expressed as

̺D
eff = 〈̺〉D − 1

16πG
QD − 1

16πG
〈R〉D ;

pD
eff = − 1

16πG
QD +

1

48πG
〈R〉D . (4.16)

Using these definitions in Eqs. (4.11a)–(4.11c), the resulting equations

3H2
D = 8πG̺D

eff − 3kDi

a2
D

+ Λ ; (4.17a)

3
äD

aD

= −4πG(̺D
eff + 3pD

eff) + Λ ; (4.17b)

0 = ˙̺D
eff + 3HD

(
̺D

eff + pD
eff

)
. (4.17c)

underline this formal correspondence to the homogeneous case of Eq. (1.3a).
This correspondence is remarkable by itself. In the whole derivation we did not assume

homogeneity and isotropy, but the final result can be written in the same form as the
Friedmann equations derived under exactly these assumptions. This means that the
Friedmann equations indeed capture the average evolution of the Universe, but the fluids
that govern those equations are effective ones. They will not only contain the ordinary
fluids with their microscopic equations of state, but an effective fluid with an unknown
one pD

eff = β
(
̺D

eff , aD

)
. This cosmic equation of state, that would close the system of

average equations, is therefore not easily determined by known microscopic physics [98].
To probe the space of possible solutions to the equations (4.11a)–(4.11c), or equivalently

(4.17c), one may use constant equations of state like in the Friedmannian case. By
Eq. (4.11c), the matter component already has an equation of state, which is pD

eff = 0.
For the effective component of QD and 〈R〉D, which we will call X-matter, a constant
equation of state parameter means

wX =
pD

eff

̺D
eff − 〈̺〉D

⇒ QD = 〈R〉D

wX + 1
3

1 − wX

, (4.18)

and with the integrability (4.15) this implies

QD ∝ 〈R〉D ∝ a
−3(1+wX)
D , (4.19)

or by calling n = −3 (1 + wX)

QD = rD〈R〉D = rDRDi
an

D , with rD = −n+ 2

n+ 6
. (4.20)

This means that apart from the case where the two components decouple, i.e. for
QD ∝ a−6

D and 〈R〉D ∝ a−2
D , the scaling laws have the same exponent. The space probed
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Figure 4.4. “Phase space” for the solutions
of the averaged equations. Scaling solu-
tions with QD ∝ an

D with n = −21+3r
1+r

form
straight lines. The solutions for different r
are shown. The arrows in the different sec-
tors represent the directions of instability.
Picture from [23].

Figure 4.5. Enlargement of the solution space
in the case of the average cosmology. The
known “cosmic triangle” Ωm = 8πG

3H2̺, ΩΛ =
Λ

3H2
D

and Ωk := − k
a2H2 is complemented by

the backreaction QD to form a “cosmic quar-
tet”. There is a priori no reason why the solu-
tions in this larger solution space should co-
incide with the plane of the standard model
solutions. (Picture: Buchert, priv. comm.)

by these scaling solutions is shown in Fig. 4.4. With the definition of dimensionless
cosmic parameters from (4.11a)–(4.11c) of the form

ΩD
m :=

8πG

3H2
D

〈̺〉D , ΩD
Λ :=

Λ

3H2
D

,

ΩD
R := −〈R〉D

6H2
D

, ΩD
Q := − QD

6H2
D

, (4.21)

and a deceleration parameter

qD := − äD

aD

1

H2
D

=
1

2
ΩD

m + 2ΩD
Q − ΩD

Λ , (4.22)

one may show that for Λ = 0 the scaling solutions are straight lines in the
(
ΩD

m, q
D
)
-plane

of Fig. 4.4. As we find from Eqs. (4.11a)–(4.11c), these lines are given by

qD =
2rD

1 + rD
+

1

2

(
1 − 3rD

1 + rD

)
ΩD

m −
(

1 + 3rD

1 + rD

)
ΩD

Λ . (4.23)
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They are shown in Fig. 4.4 for ΩD
Λ = 0 and different values of rD. The EdS model

with ΩD
m = 1 and qD = 0.5 sits in the middle of the diagram. The diagram is useful to

visualize the results of the dynamical analysis in [23] and the refined one in [99]. They
have shown that the standard Friedmann model solutions are unstable. The EdS model
is a saddle point and in some cases the Friedmannian solutions are even repellors. This is
not surprising, as the activation of the inhomogeneity degree of freedom that led to the
fourth cosmic parameter in (4.21), also yields an enlargement of the solution space as
sketched in Fig. 4.5. It is at least plausible that the activation of this degree of freedom
reduces the stability of the Friedmann background solutions.

The “Morphon” Field To close this introductory section on the Buchert model of
averaging, we write the X-matter energy component in form of a scalar field. This is a
nice way to make contact to work that has been done in quintessence scenarios for the
late time evolution of the Universe. The correspondence is made via the effective energy
density (4.16) by defining the scalar field density and pressure as

̺D
eff =: 〈̺〉D + ̺D

Φ ; pD
eff =: pD

Φ . (4.24)

They obey the scalar field equations

̺D
Φ = ǫ

1

2
Φ̇2

D + UD ; pD
Φ = ǫ

1

2
Φ̇2

D − UD , (4.25)

where ǫ = ±1 is used to switch between a standard and a phantom scalar field. The
kinetic and potential energy are then related to backreaction and curvature by

UD = − 〈R〉D

24πG
; − 1

8πG
QD = ǫΦ̇2

D − UD . (4.26)

So the curvature plays the role of the potential for the structure of the Universe and a
transfer of energy to the kinetic part enlarges the amount of backreaction that might in
principle contribute to the effect of dark energy.

It is also interesting to see that the integrability condition (4.15) gives for Φ the
equation

Φ̈D + 3HDΦ̇D + ǫ
∂

∂ΦD

U(ΦD, 〈̺〉D) = 0 , (4.27)

which can be recognized as the classical Klein Gordon equation of a homogeneous scalar
field. For the class of scaling solutions introduced above, one may determine the potential
needed to arrive at these solutions. It reads

U(ΦD) =
2

3

(
(1 + r)

ΩDi

R

ΩDi
m

) 3

n+3

〈̺〉Di
sinh

2n
n+3

(
(n+ 3)√−ǫn

√
2πGΦD

)
, (4.28)

and belongs to a class of models in quintessence scenarios that have already been shown
to lead to accelerated expansion to the Universe.
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4.2. Lagrangian form of the Einstein equations

As mentioned in the introduction to this chapter, we want to set up a perturbative
framework that is more adapted to the mildly nonlinear situation than the standard
perturbation theory of Sec. 2.2. To achieve this we use a relativistic extension of the
famous Zel’dovich approximation (used in the present context in [30]), recently formulated
in [31]. The special formulation will allow to have a close correspondence to the Newtonian
version of the approximation, which will give some insight into the relevance of genuine
relativistic terms. The fundamental building blocks of the approximation are the coframes
arising from a decomposition of the metric. Thus, we will first formulate the equations
discussed above in terms of these coframes and then show how they are used for the
relativistic Zel’dovich approximation (RZA).

4.2.1. Coframe decomposition of Einsteins Equations

Following the derivation in [31], we decompose the three metric of the spatial hypersurfaces
of the foliation of Sec. 4.1.1 into coframes

(3)g = δabη
a ⊗ ηb =⇒ gij = δabη

a
iη

b
j . (4.29)

The non-coordinate indices a, b label the coframes. This choice of the non-coordinate
basis, in which the coframes are connected by δab, implies, that in general they have a
non-trivial initial value ηa

i (t0) = η̊a
i. This initial value contains the initial perturbations

to the three metric. We will see below that δab is not the only possible choice and decide
for another, more convenient possibility.

As we saw in Sec. 4.1.1, for the kind of backreaction that we want to quantify, the
Riemannian volume element and therefore the metric determinant J =

√
g plays an

important role. In terms of coframes it reads

J =
1

6
ǫabcǫ

iklηa
iη

b
kη

c
l . (4.30)

The coframe fields are accompanied by their inverses, the frames e i
a defined by

e i
a η

a
j = δi

j =⇒ e i
a =

1

2J
ǫabcǫ

iklηb
kη

c
l . (4.31)

This allows to express the expansion tensor, defined in (4.4), in terms of the coframes
via the relation (4.3b)

Θi
j = η̇a

je
i

a =
1

2J
ǫabcǫ

iklη̇a
jη

b
kη

c
l , (4.32)

and of course also the rest of the equations (4.3a)–(4.3e) may be written explicitly in

76



4.2. Lagrangian form of the Einstein equations

terms of coframes, giving rise to what [31] call the Lagrange Einstein system:

δabη̈
a
[iη

b
j] = 0 (4.33a)

1

2
ǫabcǫ

iklη̈a
iη

b
kη

c
l = ΛJ − 4πGJ̊˚̺ (4.33b)

(
ǫabcǫ

iklη̇a
jη

b
kη

c
l

)
‖i

=
(
ǫabcǫ

iklη̇a
iη

b
kη

c
l

)
‖j

(4.33c)

ǫabcǫ
mklη̇a

mη̇
b
kη

c
l = 16πGJ̊˚̺+ 2ΛJ − JR (4.33d)

1

2

(
ǫabcǫ

iklη̈a
jη

b
kη

c
l − 1

3
ǫabcǫ

mklη̈a
mη

b
kη

c
lδ

i
j

)

+
(
ǫabcǫ

iklη̇a
j η̇

b
kη

c
l − 1

3
ǫabcǫ

mklη̇a
mη̇

b
kη

c
lδ

i
j

)

= −Jτ i
j , (4.33e)

where J̊ and ˚̺are the initial values of J and ̺. τ i
j is the tracefree part of the Ricci tensor

Ri
j = δab

(
η

a ‖k‖i
k − η

a ‖i‖k
k

)
ηb

j . (4.34)

This gives the explicit dependence of the fluid equations (4.3a)–(4.3e) on the coframes
which are now the only dynamical variables. For more details see [31].

4.2.2. The relativistic Zel’dovich approximation

The coframe split of the metric is useful, because it allows to generalize the Newtonian
Zel’dovich approximation [30] in a straight forward way. This approximation is most
easily expressed in a Lagrangian formulation of the fluid equations. The central element is
the time dependent mapping f(·, t) : X 7→ x that takes the time independent Lagrangian
coordinates X to the Eulerian fluid coordinates x. For details see [30] and references
therein. The Newtonian Zel’dovich approximation then consists in perturbing this
mapping by

x = fZ (X, t) = a(t)
(

X + ξ (t) ∇0ψ (X)
)
, (4.35)

where ∇0ψ(X) is the gradient of the initial Newtonian potential.
This Newtonian form may be generalized to GR using the coframes. The definition

that [31] gives for the relativistic Zel’dovich approximation (RZA) is:

Definition: “Relativistic Zel’dovich Approximation”

We consider the 9 functions in the co-frame coefficients as the only variables in the full

set of ADM equations for the matter model “irrotational dust” within a flow-orthogonal

foliation of space-time. We then consider the general linearized solution for these

coefficients. The approximation “RZA” consists in exactly evaluating any other field as

a functional of the linearized solution, without performing further approximations or

truncations.
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4. Backreaction of structure on the expansion of the Universe

The fact that the linearized solution is used to full extent in the expressions will lead
to a better precision of the approximation especially for the kinematical backreaction
variable as we will discuss below. The perturbation theory is set up in the same way as
in the Newtonian case by splitting the coframes into background and perturbation

η a
H = η a

H i dX i := a(t)η a
H (ti) , η a

H i := a(t)δ a
i , (4.36)

where a(t) is a background solution of the standard Friedmann equations (1.3a). The
RZA is then defined in analogy to (4.35) by

η a = a(t) (η a
H (ti) + P a) , (4.37)

so each of the three coframes is perturbed with inhomogeneous deformation one-forms
P a(t,Xk). They may be further specified by

P a = ξ(t)Ṗ a
i dX i , (4.38)

which means in explicit coordinate form

RZAηa
i

(
t,Xk

)
:= a (t)

(
Na

i + ξ(t)Ṗ a
i

)
, (4.39)

where Na
i := RZAη

a
i

(
ti, X

k
)

and Ṗ a
i = Ṗ a

i

(
ti, X

k
)
. The time evolution ξ (t) is given by

ξ(t) := (q(t) − q(ti))/q̇(ti) . (4.40)

Plugging this form of the perturbation into the Einstein equations in coframe form
(4.33a)–(4.33e) gives an evolution equation for the q (t) that reads

q̈(t) + 2
ȧ(t)

a(t)
q̇(t) +

(
3
ä(t)

a(t)
− Λ

)
q(t) = 0 . (4.41)

It is interesting to see that we recover here the equation for the time evolution of a dark
matter perturbation that we already encountered in standard perturbation theory in
Eq. (2.101). This is already indicates that the two approaches are quite comparable. We
will elaborate on this correspondence in Sec. 4.5.

There are two solutions of interest to this equation: First, the solution for matter
domination that gives q (t) ∝ a (t) and led to Eq. (2.102). Second, the solution for ΛCDM
domination as given in Eq. (2.129).

Before we use this expression to determine the backreaction term, let us elaborate on a
subtlety in the choice of initial conditions. The expression of the metric tensor in terms
of non-integrable co-frames:

gij := Gabη
a
iη

b
j , (4.42)

allows two different treatments of the initial displacements. One can either include them
into Gab which means that the non-coordinate basis is orthogonal, but not orthonormal.
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Or one can choose Gab to be orthonormal (being the standard assumption), but then one
has to deal with the initial values of the co-frames. To have both at a time, i.e. Na

i = δa
i

and Gab = δab, is not possible as this would mean that the RZA initial metric would be
Euclidean. This would disable any time-evolution of this metric as pointed out in [100].
As a nontrivial time-evolution of the metric is what we are interested in, there are only
two options:

• O1: if Ña
i = δa

i + P a
i, with P a

i := P a
i(ti, X

k) and P a
i 6= 0, then G can

be restricted to δ, and the co-frames and the metric read RZAη̃a
i

(
t,Xk

)
:=

a (t)
(
δa

i + P a
i + ξ(t)Ṗ a

i

)
gij := δabη̃

a
iη̃

b
j.

• O2: by appropriate coordinate transformations, one may set Na
i in Eq. (4.39)

to δa
i; the transformation then sends Ṗ a

i → Ṗa
i = δa

j
RZAẽj

b

(
ti, X

k
)
Ṗ b

i , and all
informations about the initial geometrical inhomogeneities are contained in G . The
co-frames become RZAηa

i

(
t,Xk

)
:= a (t)

(
δa

i + ξ(t)Ṗa
i

)
the metric gij := Gabη

a
iη

b
j

and Gab = δcdÑ
c
aÑ

d
b.

The utility of a non-orthonormal basis in some situations has already been pointed out
by Chandrasekhar [101]. As we are facing such a situation, we will choose O2 in the
following. This leads to more concise formulas.

4.3. Backreaction in the RZA

With the technical tools described in the previous section we are now in the position to
evaluate the kinematical backreaction (4.13) in this approximation.

4.3.1. Backreaction and curvature in terms of coframes

To arrive at a concise expression we first of all define a new average

〈A〉CD
=

1

VDi

ˆ

D

d3XA , (4.43)

where VDi
=
´

Di

d3X =
´

Di

J(X i, ti)d3X is the volume of the initial domain Di for

J(X i, ti) = 1. It is related to the definition (4.6) by

〈A〉D =
〈AJ〉CD

〈J〉CD

, (4.44)

because J defined in (4.30), is just the metric determinant. It is related to the average
scale factor aD of equation (4.12) by

a3
D (t) =

VD (t)

VDi

= 〈J〉CD
. (4.45)
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Using (4.13), Kij = −Θij and (4.32) we may easily express QD in terms of coframes as

QD =
1

〈J〉CD

〈
ǫabcǫ

iklη̇a
iη̇

b
kη

c
l

〉
CD

− 2

3




〈
J̇
〉

CD

〈J〉CD




2

, (4.46)

where J is

J =
1

6
ǫabcǫ

iklηa
iη

b
kη

c
l . (4.47)

In our case, the coframes ηa
i are restricted to the RZA

RZAηa
i

(
t,Xk

)
:= a(t)

(
δa

i + ξ(t)Ṗa
i

)
. (4.48)

It is interesting to remark, that the expression (4.46), which in the present form contains
the full coframes (4.48), actually only depends on the reduced coframes RZAη̃a

i

(
t,Xk

)
=

RZAηa
i

(
t,Xk

)
/a (t). The reason for this simplification is that the backreaction term

does not depend on the full expansion tensor Θi
j, but only on the peculiar expansion

tensor θi
j := Θi

j −H(t)δi
j. To see this, we write (4.13) in terms of the invariants of the

expansion tensor Kij = −Θij as

QD = 2
〈
II(Θi

j)
〉

D
− 2

3

〈
I(Θi

j)
〉2

D
. (4.49)

Using the separation into Hubble flow and peculiar expansion θi
j := Θi

j − H(t)δi
j the

invariants become

I(Θi
j) = 3H + I(θi

j) ,

II(Θi
j) = 3H2 + 2H I(θi

j) + II(θi
j) ,

III(Θi
j) = H3 +H2I(θi

j) +HII(θi
j) + III(θi

j) . (4.50)

Inserting Eqs. (4.50) into Eq. (4.49), we find that backreaction only depends on the
invariants of the peculiar-expansion tensor:

QD = 2
〈
II
(
θi

j

)〉
D

− 2

3

〈
I
(
θi

j

)〉2

D
. (4.51)

This non-trivial result demonstrates that the backreaction effects do not depend on the
Hubble flow: backreaction is only due to peculiar-expansion.

For the evaluation of (4.46) we use (4.48) in (4.47) to find for J

RZAJ = a3(t)J , (4.52)

Beside the background scaling a3 there is the peculiar-volume deformation

J(t,Xk) := 1 + ξ(t)Ii + ξ2(t)IIi + ξ3(t)IIIi , (4.53)
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that contains the principal scalar invariants of the perturbation coframe

Ii := I
(
Ṗ

a
i

)
; IIi := II

(
Ṗ

a
i

)
; IIIi := III

(
Ṗ

a
i

)
. (4.54)

These invariants of the matrix Ṗa
i are given by

I
(
Ṗ

a
i

)
:=

1

2
ǫabcǫ

ijk
Ṗ

a
iδ

b
jδ

c
k ,

II
(
Ṗ

a
i

)
:=

1

2
ǫabcǫ

ijk
Ṗ

a
iṖ

b
jδ

c
k ,

III
(
Ṗ

a
i

)
:=

1

6
ǫabcǫ

ijk
Ṗ

a
iṖ

b
jṖ

c
k . (4.55)

The first term of (4.46) is also easily evaluated for the coframes (4.48), and so

RZAQD =
ξ̇2 (γ1 + ξγ2 + ξ2γ3)(

1 + ξ 〈Ii〉CD
+ ξ2 〈IIi〉CD

+ ξ3 〈IIIi〉CD

)2 , (4.56)

with




γ1 := 2 〈IIi〉CD
− 2

3
〈Ii〉2

CD
,

γ2 := 6 〈IIIi〉CD
− 2

3
〈IIi〉CD

〈Ii〉CD
,

γ3 := 2 〈Ii〉CD
〈IIIi〉CD

− 2
3

〈IIi〉2
CD

.

(4.57)

The need for all these definitions shows that the result is quite ugly for a simple first order
treatment. This complication occurs, because we do not truncate the final expression
consistently at first order. We will examine the shortcomings of this approach in section
4.3.2.

If we did a consistent truncation to first order in (4.56), we would find zero, because the
leading order term γ1 is already of second order. This agrees with the result in [15, 16, 17].
There, they also find that first-order perturbations give already the correct second-order
term for backreaction. The reason for this is that, by (4.51), QD only depends on the
peculiar expansion field θi

j. This latter does not have a zeroth order term, so the second
order of θ2 consists of the squared first order terms only and has no genuine second-order
contribution. This means that (4.56) contains the correct second-order result as we will
show explicitly in Sec. 4.5.1. This leading order contribution decays in an EdS Universe
with the background scale-factor as 1/a, because ξ̇2 = ȧ2 ∝ 1/a.

Curvature To calculate the curvature in the RZA we have to express it as a functional
of the perturbed coframes. To this end we combine (4.10a) and (4.10b) to eliminate the
density and use the definition of the expansion rate (4.4) to find

3R = 6II(Θi
j) − 4I2(Θi

j) − 4İ(Θi
j) + 6Λ , (4.58)
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where the invariants are defined in (4.55). Averaging this we arrive at

RZA 〈R〉D = −





〈
J̈
〉

CD

〈J〉CD

+ 3

(
ξ̈

ξ̇
+ 4

ȧ

a

) 〈
J̇
〉

CD

〈J〉CD





+ 6
k

a2
, (4.59)

which is now written in terms of the Jacobian J (4.52). For the EdS background that we
are looking at, this means

RZA 〈R〉D =
−10Hiξ̇

2

a

〈Ii〉CD
+ 2 〈IIi〉CD

ξ + 3 〈IIIi〉CD
ξ2

1 + ξ 〈Ii〉CD
+ ξ2 〈IIi〉CD

+ ξ3 〈IIIi〉CD

+ξ̇2
2 〈IIi〉CD

+ 6 〈IIIi〉CD
ξ

1 + ξ 〈Ii〉CD
+ ξ2 〈IIi〉CD

+ ξ3 〈IIIi〉CD

(4.60)

in terms of the invariants (4.54). We see that the curvature term has a first-order
contribution, whereas the leading order of the backreaction term (4.56) was a second-
order contribution. In addition, for the EdS background the time evolution of the leading
contribution is ∝ a−2 because ξ̇2 ∝ a−1. With the correspondence procedure that we
will describe in more detail in Sec. 4.5.1, we recover the same term as Li and Schwarz
[15, 16, 17].

4.3.2. Newtonian limit and self consistency

The final expression of the backreaction term in the RZA, Eq. (4.56), has an interesting
counterpart in the Newtonian framework. In [30] it was shown that in the Newtonian
setting the backreaction can be expressed by

NZAQD =
ξ̇2 (Υ1 + ξΥ2 + ξ2Υ3)(

1 + ξ 〈Ii〉Di
+ ξ2 〈IIi〉Di

+ ξ3 〈IIIi〉Di

)2 , (4.61)

with

Υ1 := 2 〈IIi〉Di
− 2

3
〈Ii〉2

Di
, (4.62)

Υ2 := 6 〈IIIi〉Di
− 2

3
〈Ii〉Di

〈IIi〉Di
, (4.63)

Υ3 := 2 〈Ii〉Di
〈IIIi〉Di

− 2

3
〈IIi〉2

Di
. (4.64)

Here, the invariants are related to the gradient of the Newtonian potential ψ that figures
in definition (4.35)

Ii := I
(
ψ

|i
|j

)
, IIi = II

(
ψ

|i
|j

)
, IIIi := III

(
ψ

|i
|j

)
. (4.65)
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The definition of the invariants is given in (4.55). In addition to the different meaning of
the invariants there is only one other modification with respect to the RZA result: The
average over the initial domain Di is now in flat Newtonian space.

The correspondence to the Newtonian result is of course not surprising as the con-
struction used was chosen analogously to the Newtonian case. It was shown in [31] that
in the limit where we send the non-integrable coframes ηa

i to integrable ones via

ηa
i → Nηa

i = fa
|i , (4.66)

the resulting equations reduce to the Newtonian fluid equations in their Lagrangian form.
f is the Lagrangian mapping of (4.35) and so the Newtonian perturbation one-forms
correspond then directly the gradients of the Newtonian potential

N Ṗ a
i = ψ

|a
|i . (4.67)

This explains the close correspondence of the results.

Consistency checks To test to which extent the expressions derived above are self
consistent, we can plug the results for the backreaction term (4.56) and the curvature
(4.60) into the integrability condition (4.15). The result in the case of the EdS model is

− 6H0Ωm

a2 (t) 〈J〉CD

ξ̇
d2

dξ2
〈J〉CD

= 0 . (4.68)

So the integrability condition is satisfied if d2

dξ2 〈J〉CD
= 0, because all other terms are

intrinsically non-zero. This means however that 2 〈IIi〉CD
+ 3ξ 〈IIIi〉CD

= 0 and so the
expressions for the curvature and the backreaction term are strictly speaking only
consistent if




a3

D = 1 + ξ(t) 〈Ii〉CD
,

〈IIi〉CD
= 0 = 〈IIIi〉CD

.
(4.69)

This encodes the fact that the RZA is only a first-order scheme. As we will see below
in Sec. 4.5.1, the backreaction expression is correct to second order, so it is QD that
is “more correct”. We will use this in 4.4 and derive the curvature directly from the
backreaction term by integrating (4.15) and not from its expression (4.60).

The same problem arises when we compare the expression from (4.56) with an alterna-
tive expression of QD in terms of the average scale factor. For the EdS background that
we use here, Eq. (4.11b)

QD = 3
äD

aD

+ 4πG 〈̺〉D (4.70)

is a direct expression of QD in terms of aD and 〈̺〉Di
. This allows us to use (4.45) and

(4.52) to determine QD. The result is that the two expressions for QD disagree. They
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again differ by a genuine second-order term proportional to 〈IIi〉CD
. We circumvent this

problem by integrating (4.70) to obtain aD from QD directly.
Both problems do not arise if we use a consistent second-order treatment. So far,

however, this is only possible in the Newtonian limit described above as we have the
full form of the perturbations to the coframes (or the displacements in that case) only
for the Newtonian Lagrangian perturbation theory. The generalization to a relativistic
perturbation theory is work in progress [102].

4.4. The average evolution

After deriving the general expression for the backreaction term in the previous section,
we will now proceed with the evaluation of the results. It has been shown in [30] that the
Newtonian Zel’dovich approximation (NZA) of [30] gives the same result as the exact
calculation in the case of a plane symmetric collapse as well as in the case of a spherical
collapse. This surprising result for two kinematically orthogonal exact solutions has been
used by [30] to stress the power of the NZA. If the approximation is correct in those
limits it might also do well for the intermediate regime of a mixture of the two forms of
collapse. As the NZA and the RZA are closely related by (4.66), we will check in the
following section if these results remain valid in the RZA.

4.4.1. RZA results in highly symmetric Universes

The exact solutions of the equations of general relativity that correspond to the limiting
cases discussed in the NZA [30], are the anisotropic plane collapse model and the
spherically symmetric Lemaître-Tolman-Bondi model.

Plane collapse The metric ansatz we use for the study of the plane-symmetric case
reads

ds2 = −dt2 + a (t)2
(
dx2 + dy2 + (1 + P (z, t))2 dz2

)
, (4.71)

In the case of the NZA, plane symmetry is imposed by using initial conditions with
II (θij) = 0 = III (θij) . It is therefore important that for this metric ansatz we also find
vanishing higher invariants of the peculiar expansion tensor: II (θij) = 0 = III (θij). The
first invariant is non-trivial and reads

I
(
θ

i

j

)
=

Ṗ (z, t)

1 + P (z, t)
. (4.72)

The equation determining the time-evolution of P (z, t) was in the Newtonian case simply

Θ̇ + Θk
l Θl

k = −4πG̺+ Λ , (4.73)
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which gave

P̈ (z, t) + 2
ȧ

a
Ṗ (z, t) = 4πG̺HP (z, t) . (4.74)

Hence, the Newtonian plane collapse had two solutions,

P (z, t) = aC1 (z) +
C2 (z)

a3/2
, (4.75)

a growing and a decaying one. In the relativistic case, however, there are more constraints.
In the Lagrange-Einstein-System (4.33a)–(4.33e), also a link to the scalar curvature comes
in:

Θ̇i
j + ΘΘi

j = (4πG̺+ Λ) δi
j − Ri

j ; (4.76)

Θ2 − Θk
l Θl

k = 16πG̺+ 2Λ − R . (4.77)

These two equations combined also give Eq. (4.73) for the relativistic case. Additionally,
however, they have to be satisfied individually. As the plane-symmetric metric ansatz
Eq. (4.71) implies that Ri

j = 0, the relativistic solution space is not the same as the
Newtonian one. For the Hamilton constraint Eq. (4.77) we find

ȧ

a
Ṗ (z, t) = −4πG̺HP (z, t) , (4.78)

which is now, for R = 0, only a differential equation of first order with the solution

P (z, t) =
C (z)

a3/2
. (4.79)

This P (z, t) also satisfies Eq. (4.76), but one of the solutions of the Newtonian case has
disappeared.

Taking P (z, t) =: ξ (t) Ṗa
i (z, ti), with ξ (t) = (q (t) − q (0)) /q̇ (0) and using the

expression of Eq. (4.51), we find for the backreaction term

Q plane
D = −2

3

〈
I
(
θ

i

j

)〉2

D
= −2

3


 ξ̇ 〈Ii〉CD

1 + ξ 〈Ii〉CD




2

, (4.80)

where Ii = I
(
θ

i

j

)∣∣∣
ti

= I
(
Ṗa

i (z, ti)
)
. This shows that the plane-symmetric metric is, as

in the Newtonian case, a particular exact solution that is contained in the solutions of
the RZA. Note again, however, that this solution in the RZA as well as for the plane-
symmetric metric does not have the growing mode that was present in the Newtonian
solution. This is due to the vanishing scalar curvature for cylindrical symmetry and the
relation to the Hamilton constraint that did not exist in the Newtonian case. (Note that
the integrability condition (4.15) is satisfied by this solution.) This is another interesting
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4. Backreaction of structure on the expansion of the Universe

example of a case in which a class of Newtonian solutions may not automatically provide
a solution of general relativity.

For negative 〈Ii〉Di
, corresponding to over-dense regions, Q plane

D is diverging at some
time when 1 + ξ(t) 〈Ii〉Di

approaches zero, even though the solution is decaying. Our
special initial conditions imply a one-dimensional symmetry of inhomogeneities on a three-
dimensional background (cylindrical symmetry), and the diverging Q plane

D is supposed to
mimic the highly anisotropic pancake collapse in the three-dimensional situation.

Spherical collapse The metric ansatz that describes the spherical collapse in the
relativistic setting is of course the Lemaître-Tolman-Bondi (LTB) model. The ansatz for
the line element is

ds2 = −dt2 +
R′2(t, r)

1 + 2E(r)
dr2 +R2(t, r)dΩ2 , (4.81)

where E is a free function of r satisfying E(r) > −1/2; the prime denotes partial
differentiation with respect to r.
In this metric, the scalar parts of Einstein’s field equations read:

4π̺(t, r) =
M ′(r)

R′(t, r)R2(t, r)
, (4.82)

and
1

2
Ṙ2(t, r) − GM(r)

R(t, r)
= E(r) , (4.83)

with M being another free function of r; the dot denotes partial time-derivative. Using
the relation between the expansion tensor and the metric tensor,

Θi
j :=

1

2
gikġkj , (4.84)

the averaged scalar invariants of the expansion tensor can be calculated:

〈
I(Θi

j)
〉

LT B
=

4π

VLT B

ˆ rD

0

∂r

(
ṘR2

)

√
1 + 2E

dr ; (4.85)

〈
II(Θi

j)
〉

LT B
=

4π

VLT B

ˆ rD

0

∂r

(
Ṙ2R

)

√
1 + 2E

dr ;

〈
III(Θi

j)
〉

LT B
=

4π

3VLT B

ˆ rD

0

∂r

(
Ṙ3
)

√
1 + 2E

dr , (4.86)

where the Riemannian volume of an LTB-domain is given by

VLT B =
4π

3

ˆ rD

0

∂r (R3)√
1 + 2E

dr . (4.87)
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The average curvature on the LTB domain is

〈R〉LT B = − 16π

VLT B

ˆ rD

0

∂r (ER)√
1 + 2E

dr . (4.88)

As was shown already in [103], there are two cases for which we find relations between
the invariants without having to solve the system (4.82) and (4.83) explicitly: the first
one is a separable solution R (t, r) of the form

R (t, r) = f (t) · g (r) . (4.89)

The second case is an LTB domain with E(r) = E. The restriction E = cst. corresponds
to self-similar LTB solutions if we require at the same time that the function M(r) ∝ r
[104].

In both cases, one can show for R (t, 0) = 0:

〈
II(Θi

j)
〉

LT B
=

1

3

〈
I(Θi

j)
〉2

LT B
,

〈
III(Θi

j)
〉

LT B
=

1

27

〈
I(Θi

j)
〉3

LT B
. (4.90)

Combining these terms in the backreaction QLT B given by Eq. (4.49), we get for a
spherically symmetric E = cst.–domain or a separable R (t, r):

QLT B = 0 . (4.91)

In the case E = cst., Eq. (4.88) gives

〈R〉LT B = − 12E

R2 (rD)
. (4.92)

This implies that 〈R〉LT B decreases when we increase the size of the averaging domain,
because R is a growing function of rD.

These results show, that also for the spherical symmetric configuration the GR version of
the Zel’dovich approximation is less accurate than the Newtonian one. In the Newtonian
case the approximation was still reproducing the exact result for all possible spherical
distributions of matter. In the GR case this is no longer the case. Only in two very
special cases the correspondence still holds. This shows again that the curvature that
comes in in the GR case and the additional constraint equations lead to a bigger variety
of solutions. These are no longer summarized by the simple approximation.

4.4.2. Amount of backreaction on different scales

After the comparison to exact GR results in the previous section, we now turn to
the evaluation of the magnitude of QD in the cosmological context. The result (4.56)
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4. Backreaction of structure on the expansion of the Universe

describing the backreaction term in the RZA implies that at leading order it decays with
the scale-factor like 1/a. However, to quantify its importance it is not the absolute, but
the relative magnitude compared to other cosmic parameters that counts. The dominant
contribution in the late Universe, the matter density, goes like 1/a3. Therefore, the
influence of the backreaction contribution grows like a2. We evaluate the importance of
this growth in the standard cosmological picture, starting with a nearly homogeneous
and isotropic initial state. To this end we only need to determine the magnitude of the
three invariants of the perturbation one-forms Ṗa

i and use them in (4.56). The context
of the standard scenario implies that the calculation of the initial values is performed in a
Universe model that is close to spatially flat. If we additionally neglect tensor modes, we
are in the limit described in Sec. 4.3.2. We therefore assume that our initial conditions for
the invariants of Ṗa

i are given by the values of 〈Ii〉Di
, 〈IIi〉Di

and 〈IIIi〉Di
from [30]. By

the formal analogy of Eq. (4.56) to the one of [30], this means that most of the results of
[30] are still valid in the RZA context. There are however also some new phenomena that
emerge due to the fact that, unlike in the NZA of [30], the RZA develops non-vanishing
scalar curvature. In this section, we will therefore comment on which results of [30]
remain valid and discuss where the GR description brings in new phenomena.

Determination of initial conditions In [30] it was shown, that the averaged initial
invariants that we will use also here, have vanishing ensemble expectation values

E

[
〈Ii〉Di

]
= E

[
〈IIi〉Di

]
= E

[
〈IIIi〉Di

]
= 0 . (4.93)

However, for a specific domain, any of the volume-averaged invariants may be positive
or negative. These invariants fluctuate with a certain variance variance, e.g., σ2

I (R) =
E

[
〈Ii〉2

BR

]
. In our calculation of the time-evolution of aD(t), we consider one-σ fluctuations

of the averaged invariants for spherical domains of radius R, e.g. 〈Ii〉BR
= ±σI (R). [30]

showed how these fluctuations are linked to the matter power spectrum. As indicated,
σI(R) will explicitly depend on the radius of the initial domain, but implicitly also on
the shape of the power spectrum. [30] used a standard CDM power spectrum normalized
to σ8 = 1 and h = 0.5. In addition to the EdS model considered there, we also present
some values for a standard ΛCDM background with ΩΛ ≈ 0.73, h = 0.7 and σ8 = 0.8.

It is important to stress that we choose to use one-σ fluctuations in the invariants.
This means that, when we use them to construct other parameters the values obtained
will not correspond to one-σ fluctuations of this parameter. For the initial value of QD

for example a one-σ fluctuation of the invariants is related to a one-σ fluctuation of QD

by

σ2
[

RZAQDi

]
= 4σ2

II (R) − 8

3
Cov

(
〈Ii〉2

Di
, 〈IIi〉Di

)
+

8

9
σ4

I (R) . (4.94)

where the the covariance of 〈Ii〉2
Di

and 〈IIi〉Di
is non-zero (in contrast to the covariance

of 〈Ii〉Di
and 〈IIi〉Di

for example). On the other hand, calculating RZAQDi
with one-σ
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fluctuations for the invariants yields

RZAQDi
= 2σII (R) − 2

3
σ2

I (R) . (4.95)

In an abuse of language we will nevertheless speak of one-σ fluctuations in the following,
but one should keep in mind that we mean those of the initial invariants (except for
Fig. 4.6). In the case of RZAQDi

, for large values of R, the two prescriptions coincide as
σ2

I (R) drops off faster than σII (R).

Scale-dependence of initial conditions From the very definition of the averaged pa-
rameters it seems natural that all averaged quantities would be scale-dependent and drop
off with growing domain D. That this is not necessarily the case shows the example of
the initial expansion- and shear-fluctuations. In the RZA they are given by

〈
θ2
〉

D
− 〈θ〉2

D =
〈

I
(
Ṗ

a
i

)2
〉

D
−
〈
I
(
Ṗ

a
i

)〉2

D
,

〈
σ2
〉

D
=

1

3

〈
I
(
Ṗ

a
i

)2
〉

D
−
〈
II
(
Ṗ

a
i

)〉
D
. (4.96)

Using the acceleration equation in terms of co-frames (4.33b), one can show that for
the RZA I

(
Ṗa

i

)
= −δ, where δ is the local density contrast. This means that also in

the RZA, as already in the Newtonian case, the expectation values of expansion- and
shear-fluctuations are no longer scale-dependent. They are rather given by

E

[〈
θ2
〉

D
− 〈θ〉2

D

]
= H2

i

(
ˆ

R3

d3kPi (k) − σ2
I (R)

)
,

E

[〈
σ2
〉

D

]
=

1

3
H2

i

ˆ

R3

d3kPi (k) , (4.97)

where we again made use of the assumed approximate flatness of the initial Universe
model, necessary to use the Fourier transformation. Interestingly, only part of the
expected expansion fluctuations still contains information about the domain D. The
other part and the shear is domain-independent. Calculating the value of this integral
may be used to estimate the importance of backreaction, if the shear fluctuations were
negligible. To this end we calculate

E

[
RZAΩD0

Q,trunc

]
= − 1

9H2
D0

E

[〈
θ2
〉

D0

− 〈θ〉2
D0

]
, (4.98)

where 0 stands for today and we did the time-evolution from the initial time up to
today with the leading a−1 mode of Eq. (4.56) only. A quantitative estimate with
an exponential IR cut-off at the Hubble scale and UV cut-off at 1 kpc then yields
E

[
RZAΩD0

Q,trunc

]
≈ 0.73. This illustrates the well-known fact that the expansion- and
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Figure 4.6. One-σ fluctuations of ΩD0

Q as a function of scale for (i) an EdS model (h = 0.5,
σ8 = 1) and (ii) a ΛCDM model (ΩΛ ≈ 0.73, h = 0.7, σ8 = 0.8).

shear-fluctuations by themselves are important even in a perturbative framework. In the
backreaction term, however, they combine in a way that leaves only the domain-dependent
contribution in the second term of the expansion fluctuations. In the Newtonian framework
this is expected by the fact that QD can be written as a surface term. In GR it is not
a necessity, but in the linear RZA the cancellation is still effective. For higher orders,
however, this is no longer true and [18] reported the survival of a domain-independent
contribution to QD at second order.

To close this section we calculate, as an illustration of the scale-dependence of the
parameters, the backreaction term QD. It will imprint its scale-dependence on the other
parameters and is therefore particularly interesting. To get a feeling for the magnitude
of the values, we evolve it again with the a−1 mode until today and normalize it with
H2

D0
to get ΩD0

Q . The result is shown in Fig. 4.6. We plot the one-σ fluctuation of ΩD0

Q

with the correct sigma interpretation of Eq. (4.94). The result shows that only below
the assumed homogeneity scale of about 150 Mpc the backreaction term is at least a
per-cent contribution. For larger scales it becomes negligible. This explains that in the
following all parameters converge to their background values for large D.

Evolution of the scale factor aD Having specified our initial conditions we can now
calculate the average scale factor RZAaD directly by integrating Eq. (4.11b). The input is
the average density

〈̺〉D =
a3

a3
D

̺H

(
1 + 〈δ (ti)〉Di

)
=
a3

a3
D

̺H

(
1 − 〈Ii〉Di

)
, (4.99)
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Figure 4.7. Evolution of the volume scale factor, normalized by the background scale
factor, on typical under-dense domains of 25 and 100 Mpc, and on a domain that is a
2−sigma under-density fluctuation in the initial conditions on 100 Mpc. On the left the
evolution for an EdS background with Ωm = 1 (h = 0.5, σ8 = 1) and on the right for a
ΛCDM background with Ωm = 0.27 (h = 0.7, σ8 = 0.8).

and the RZA of the backreaction term Eq. (4.56). The initial conditions for RZAaD are
aDi

= 1 and

ȧD (ti) = ȧ (ti)
(

1 +
1

3
〈Ii〉Di

)
. (4.100)

As mentioned, the evolution of the dynamical quantities aD, HD = ȧD/aD and qD =
−(äD/aD)/H2

D turns out to coincide with those of [30] for our choice of initial conditions.
This means that the large deviations from the background values for some of these
quantities, that have been found in [30], also occur in the RZA. In the case of the volume
deceleration parameter qD for one-σ fluctuations this leads to deviations of 30% on a
scale of 100 Mpc.

The effects on aD and HD are smaller, but may also become important for special
regions, more than one σ away from the background. In the relativistic framework the
deviations of the volume scale factor aD from the background scale factor a(t) can also be
interpreted as giving the strength of perturbations to the metric, since the calculation of
the volume just involves the metric determinant, and not higher derivatives of the metric.
Taking the cube of this deviation gives us a typical strength for the volume fluctuation,
e.g. for one-sigma fluctuations on the scale of 100 Mpc we find a 12 percent effect, see
Figure 4.7 for the evolution of the scale factors.

Evolution of the density parameters With the results obtained for the scale-factor
we may now also inspect the time evolution of the cosmic parameters (4.21). We show
them for scales of 25, 50 and 100 Mpc. From (4.100) we see, that a negative sign of
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Figure 4.8. Evolution of the domain-dependent cosmological parameters of Eq. (4.21)
with cosmic time. One background is the EdS model with Ωm = 1 (h = 0.5, σ8 = 1)
(left), the other one the ΛCDM model with Ωm = 0.27 (h = 0.7, σ8 = 0.8) (right; the
background density parameter is plotted here as the upper curve). The figure shows
values for an expanding domain of 100 Mpc radius with one-σ fluctuations of the initial
invariants of the perturbation one-form.
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Figure 4.9. Evolution of the domain-dependent cosmological parameters of Eq. (4.21)
with cosmic time. On the left the background is an EdS model with Ωm = 1 (h = 0.5,
σ8 = 1), on the right a ΛCDM model with Ωm = 0.27 (h = 0.7, σ8 = 0.8). The figure
shows values for a collapsing domain of 50 Mpc radius with one-σ fluctuations of the
initial invariants of the perturbation one-form.

92



4.4. The average evolution

0 2 4 6 8 10 12

-5

0

5

10

time t in Gyrs

W

0 2 4 6 8 10 12 14

-5

0

5

time t in Gyrs

W

Figure 4.10. This figure corresponds to Fig. 4.9, but shows the corresponding values
for a collapsing domain of one-σ fluctuations on the scale of 25 Mpc. On this scale we
appreciate a singular pancake collapse; it illustrates that the backreaction term now
becomes not only qualitatively but also quantitatively significant. To demonstrate that
this is due to an increasing ΩD

Q, we additionally plot the ratios ΩD
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m in

Fig. 4.11.
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Figure 4.11. Ratios of ΩD
Q/Ω

D
m, ΩD

R/Ω
D
m and ΩD

Λ/Ω
D
m for the EdS model (left) and the

ΛCDM model (right) for a scale of 25 Mpc. Around the time when the collapse begins
(from Fig. 4.10 this is around 11 Gyrs), i.e. where HD goes to zero and changes sign,
backreaction and curvature become the dominant contributions.
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〈Ii〉Di
leads to a collapsing domain, a positive sign to an expanding domain. This is the

result of the relation of the first invariant to the density contrast which is I
(
Ṗa

i

)
= −δ

and was shown below (4.96). So a negative 〈Ii〉Di
leads to a positive over-density and

collapses and inversely.
The results for an over-density of a radius of 50 and an under-density of a radius of

100 Mpc respectively, are shown in Fig. 4.9 and Fig. 4.8. It is interesting to see that
even on scales of 100 Mpc, where the modification to the scale-factor is only ≈ 4%, the
deviation of the cosmic parameters from their background values Ωk = 0 and Ωm = 1
may be as big as ≈ 20%. Locally, on domains of a radius of 50 Mpc, the deviations are
even bigger than 100%. We will investigate in Sec. 5.4 how these strong fluctuations
fundamentally limit our ability to measure important cosmic parameters.

For the ΛCDM background the matter density parameter is also reduced with respect
to the background value and again we have curvature emerging from a flat background.
Today, however, it is not as big as in the EdS case, since the cosmological constant
dominates.

The figures also show, that even for a small value of ΩD
Q, the fluctuations in the

curvature are sizable. This contributes to the cosmic energy budget locally. Observations
that derive the existence of a low matter content ΩD

m < 1 from local observations, have
to take into account that on these scales the value of ΩD

m is not necessarily representative
for the background Universe. Cosmic curvature and backreaction may reduce or enhance
the value of ΩD

m according to the existence of a local under- or over-density.
For the smallest scales shown in Fig. 4.10, we encounter the collapse of the domain.

During the collapse, backreaction is not only qualitatively a new contribution, but also
quantitatively important as can be seen from Fig. 4.11. This might modify the dynamics
of the collapse with respect to the standard description.

4.5. Comparison to other quantitative estimations

We have investigated in the last sections how the amount of backreaction may be
determined in the perturbative RZA. This naturally leads to two questions: a) How
do the results obtained in the RZA compare to other results from cosmic perturbation
theory, and b) do these results remain valid when we try to go to nonlinear models.
Regarding a), there are quite a lot of papers that do this calculation in different flavors
of cosmological perturbation theory. The Newtonian gauge results of [11, 12, 13] and
the synchronous gauge results of [14, 15, 16, 17] are hereby relatively consistent. We
will choose in Sec. 4.5.1 the work of Li and Schwarz [15, 16, 17] for comparison. This is
because it is closest to the RZA in that it uses synchronous comoving gauge and treats
all interesting quantities systematically.

For the task b) the situation is not as comfortable. There are some papers that try to
build toy models to extend the validity of the estimations to the non-linear regime. But
either they are ad hoc, by postulating an equation of state [23, 25, 26], or they are very

94



4.5. Comparison to other quantitative estimations

idealized [27]. We will choose the second possibility and discuss the model of Räsänen
[27]. In Sec. 4.5.2 we will determine the amount of kinematical backreaction it delivers
and see how this compares to the RZA results.

4.5.1. Perturbative models

Comparison to the results of Li and Schwarz The limit of Sec. 4.3.2, in which we
reduce the non-integrable coframes to integrable ones, is also the one in which we may
compare our results to those obtained by Li and Schwarz [15, 16, 17] in the standard
perturbation theory framework. They decompose the line element as

ds2 = a2(η)
{
−dη2 +

[(
1 − 2ψ(1)

)
δij +Dijχ

(1)
]

dxidxj
}
, (4.101)

with Dij = ∂i∂j − 1
3
∆δij, and solve the perturbation equations to find for the first order

scalar metric perturbations

ψ(1) =
η2

18
∆ϕ(x) +

5

3
ϕ(x) , (4.102)

χ(1) = −η2

3
ϕ(x) , (4.103)

where the peculiar gravitational potential ϕ (x) is given by the cosmological Poisson
equation

∆ϕ(x) = 4πG̺Ha
2δ (x, t) . (4.104)

The equation relates the potential to the density perturbation ̺ (x, t) = ̺H (t) (1 + δ (x, t)).
With the results (4.102) and (4.103) their line element is given by

ds2 = −dt2 + a2(t)
[(

1 − 10

3
ϕ(x)

)
δij − 3t2i

a

ai

∂i∂jϕ(x)
]

dxidxj . (4.105)

This form emerges by fixing an ambiguity in the definition of ψ(1) and χ(1) such that χ(1)

has no constant part independent of a. With any other choice there would be additional
constant terms proportional to ∂i∂jϕ(x) in the metric. We will see that our choice in the
RZA case was a different one.

To come to a direct comparison, we first rewrite the Eqs. (4.33b) and (4.33d) for the
first-order ansatz (4.37) in the form

ηa
i = a(t) [δa

i + P a
i (X, t)] . (4.106)

Eq. (4.33b) is to first order

P̈ (X, t) + 2HṖ (X, t)=−4πG̺H

(
P̊ − P + δi

)
, (4.107)
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where P = P i
i (X, t), P̊ = P i

i (X, t0) and δi is defined as

̺ = ˚̺
J̊

J
=
(
ai

a

)3

(˚̺0 + ˚̺1)
1 + P̊

1 + P
=
(
ai

a

)3

˚̺0

(
1 + δi − P + P̊

)
. (4.108)

Eq. (4.33d) becomes

HṖ (X, t) = 4πG̺H (t)
(
−P + P̊ + δi

)
− 1

4
(1)R , (4.109)

where the first order Ricci curvature is given by

(1)R = − 4

a2
P̊

k |l
[k |l] . (4.110)

We may solve these equations for the coframe perturbations in the limit discussed in
Sec. 4.3.2. Sending them to integrable ones

P i
j (X, t) = Ψ (X) δi

j + ξ (t)ψ|i
|j (X) (4.111)

and using the EdS model to be specific, we find from (4.107) that

⇒ δi = −ψ|i
|i (X) , (4.112)

which is the analogue of Eq. (4.104). From (4.109) Ψ is determined to be 5
2
ψ = Ψ . As we

work with the same coordinate system in both cases, we may compare the normalization
of the potentials by equating the initial density contrasts in the two Poisson equations
(4.104) and (4.112). This reveals

ϕ = −2

3

1

t2i
ψ , (4.113)

where ti is the initial cosmic time. Combining the above expressions shows, that the
metric RZAgij(t,Xk) = δabη

a
iη

b
j is

RZAgij(t,X
k) = a2(t) (δij + Pij (X, t)) = a2(t)

(
δij − 10

3
ϕδij − 3t2i ξ(t)∂i∂jϕ

)
. (4.114)

For the EdS model used by Li and Schwarz in the derivation of (4.105), the RZA variable
ξ (t) is ξ (t) = a (t) − 1. This completes the analogy of the first order RZA metric (4.114)
with the standard perturbation theory metric (4.105).

Backreaction The RZA as defined in Sec. 4.2.2, however, is not merely a first order
scheme. It comes with the prescription not to do a consistent truncation to a given order,
but to evaluate the kinematical quantities in their exact form in terms of coframes, using
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the first-order perturbed coframes. This approximation has proven to be useful in the
Newtonian case and this is also the case in the determination of the backreaction term.

In the strict interpretation of a first order scheme and with a consistent truncation,
backreaction would be zero. From Eq. (4.56) we immediately see that the leading order
term is of second order. This second order contribution is

(2)QD = ξ̇2
(

2
〈
II
(
Ṗ

a
i

)〉
CD

− 2

3

〈
I
(
Ṗ

a
i

)〉2

CD

)
. (4.115)

In the limit discussed in Sec. 4.3.2, in which we can make the comparison to the Li
Schwarz results [15, 16, 17], it becomes

(2)QD = ξ̇2
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)〉
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This is the same as in the standard perturbation theory results of Li and Schwarz
[15, 16, 17], which reads

QD =
t2i
a

(
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(
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)〉2
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(4.117)
As discussed below Eq. (4.41), in the EdS case ξ = a− 1 and therefore ξ̇2 = ȧ2 = 4

9
a−1t−2

i .
By taking into account Eq. (4.113) one may figure out that the prefactor is also the same.

The fact that the first-order perturbative expansion is sufficient for the backreaction
term comes from Eq. (4.51). There, we have shown that the backreaction term does
not depend on the complete expansion tensor, but merely on the peculiar one θi

j :=
Θi

j − H(t)δi
j. This subtracts the zeroth order term, so the second order backreaction

stems from the square of the first order. The intrinsic second-order term is relevant at
third order only. This is different for the curvature term, which explains why we did not
find consistent results to second order in Sec. 4.3.2.

Finally, we want to go one order higher in the comparison. This is of course no longer
possible with the approximation discussed above, which is only a first order scheme. This
is not a problem, as the comparison is anyway possible in the limit of integrable coframes
only. In this limit however, as we saw in Sec. 4.3.2, we are back to the Newtonian
perturbation theory. So we may use the Newtownian results of Lagrangian perturbation
theory. A summary of the third order results is given in [105]. From there, we take the
displacement (4.35) to be

~f = a ~X + qz(a) ∇0S(1)( ~X) + qzz(a) ∇0S(2)( ~X) (4.118)

+ qa
zzz(a) ∇0S(3a)( ~X) + qb

zzz(a) ∇0S(3b)( ~X) − qc
zzz(a) ∇0 × ~S(3c)( ~X) ,
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4. Backreaction of structure on the expansion of the Universe

where the time dependence of the different orders is given by

qz =
(

3

2

) (
a2 − a

)
, (4.119a)

qzz =
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)
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and the different orders of S may be determined from the equations

∆0S(1) = I (S,i,k) t0 , (4.120a)

∆0S(2) = 2II
(
S(1)

,i,k

)
, (4.120b)

∆0S(3a) = 3III
(
S(1)

,i,k

)
, (4.120c)

∆0S(3b) =
∑

a,b,c

ǫabc

∂
(
S(2)

,a ,S(1)
,b , Xc

)

∂ (X1, X2, X3)
, (4.120d)

(
∆0

~S(3c)
)

k = ǫpq[j

∂
(
S(2)

,i] ,S(1)
,p , Xq

)

∂ (X1, X2, X3)
. (4.120e)

Using the prescription (4.66), we may evaluate (4.47) for the volume deformation. With
(4.45) this gives the average scale factor

aD (t) = a (t)

(
1 +

qz

a
〈Ii〉Di

+

(
2
qzz

a
+
(
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a

)2
)

〈IIi〉Di
+ (4.121)

+
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a
+
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i

〉
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)1/3

.

Here we use the Newtownian potential of the correspondence as well as the Newtonian
average 〈O〉Di

. This means that these invariants are the invariants (4.65) of the gradients
of the potential ψ = 3

2t2
i

S

Ii := I
(
ψ

|i
|j

)
, IIi = II

(
ψ

|i
|j

)
, IIIi := III

(
ψ

|i
|j

)
, (4.122)

defined analogously to (4.55). The new invariant II
(1,2)
i is related to ψ(2) =

(
3
2

)2 S(2) by

II
(1,2)
i =

1

2

(
ψ

|j
|jψ

|k(2)
|k − ψ

|k
|jψ

|j(2)
|k

)
. (4.123)
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4.5. Comparison to other quantitative estimations

With this volume scale factor we can determine the third order backreaction term from
(4.11b) which is

QD = 3
äD

aD

+ 4πG
a3

a3
D

̺H

(
1 − 〈Ii〉Di

)
, (4.124)

where ̺H (t) is the background density and we have seen in (4.112) that the density
perturbation δi is related to the first invariant of the potential by δi = −Ii. In the scheme
used in the derivation of (4.118), the choice was made to put all matter perturbations
into the first-order density perturbation, so ̺ = a3

a3
D

̺H

(
1 − 〈Ii〉Di

)
is the complete

inhomogeneous density to all orders.
With these definitions and equations we can finally derive the third-order contribution

to the backreaction term. It has several components, two of them decaying and one of
them constant in time. This constant part reads

(3)QD =
4

3
〈Ii〉3
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− 74

21
〈I〉Di

〈IIi〉Di
− 12

7

〈
II

(1,2)
i

〉
Di

+ 6 〈IIIi〉Di
. (4.125)

This can be compared to the result obtained by Li and Schwarz [17] which reads2
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 . (4.126)

Of course this has first to be written in the same form to be comparable. Converting the
potentials with the correspondence (4.113), being ϕ = −2

3
1
t2
i

ψ, and using the definitions

(4.122) and (4.123), we arrive at exactly the same expression as the one in the Newtonian
limit, i.e. (4.125). This is also the case for the next order. This allows us to give the
expression for the fourth order backreaction term in appendix B.

One could object that this result was obvious as we are solving the equations for the
same dust fluid. However, it is not a priori clear that the Newtonian fluid equations
should give the same result as standard cosmological perturbation theory in the GR
case. The result implies that the contributions calculated by Li and Schwarz [15, 16, 17],
that were calculated by keeping only the fastest growing terms, are the Newtonian
ones. For those there is the theorem that they are boundary terms decaying with a
spherical enlargement of the averaging domain. So the fastest growing contributions

2Note that we have reestablished the version of Q0 in terms of the background scale factor a. The
conversion from the aD to a dependence leads to the inclusion of the first line.
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4. Backreaction of structure on the expansion of the Universe

to the perturbative expression of the backreaction term are all boundary terms (in the
sense that they decay when we increase the domain of averaging and in contrast to the
constant domain independent 10−5 terms derived e.g. in [18]). This has already been
mentioned by Räsänen [20] and is important when considering the large scale effects of
cosmological backreaction. The question whether the inhomogeneities would renormalize
the background with an effective cosmological constant will therefore not be decided
by the terms presented here, but rather the sub-leading contributions (see [20] for a
discussion). For the small scale results that we discuss in Sec. 4.4.2, however, these are
the most important contributions.

4.5.2. Non-perturbative models

The results obtained in the RZA are not only consistent with other perturbative treatments
as discussed in the previous section. They also provide a nice description of the properties
of a model that was constructed to describe non-perturbative features. This model
was introduced by Räsänen in [27]. There, he investigated the average evolution of an
ensemble of regions that are over- or under-dense respectively. For the distribution of
peaks and under-densities he used the statistics for a Gaussian random field given by
the BBKS paper [106]. The evolution of the individual regions was described by the
spherical collapse model that treats the peaks as “small Universes” with positive or
negative curvature. In this model he evaluated the expansion rate and the acceleration
parameter.

In a similar way as Räsänen we want to ask the question what the backreaction and
structure evolution in such a model looks like. Unlike him, however, we do not only want
to treat the extreme peaks and troughs, but describe the complete Universe systematically
also for not very over- or under-dense regions in the spirit of [26]. As we have seen in
Sec. 2.1.1, the density field smoothed over regions of a certain size by the prescription
(2.27) is, for a Gaussian random field, approximately given by a Gaussian distribution.
The variance of this Gaussian distribution is related to the correlation function of the
underlying Gaussian field by Eq. (2.29). This enables us to create our test Universes
in a simple way: We calculate from the ΛCDM power spectrum (2.112) the density
fluctuations σ by (2.23) in boxes that correspond to the density smoothing (2.27). We
will refer to this model as MultiDomain model. For each of the boxes we determine an
initial over-density 1 + δDj

by generating Gaussian random numbers with mean 1 and
variance σ. Then we let each individual region j evolve like a FRW Universe with
curvature by the equation

(
ȧj

aj

)2

= H2
i


Ωm,i

(
1 + δDj

)(ai

aj

)3

+
(
1 − Ωm,i

(
1 + δDj

)
− ΩΛ,i

)(ai

aj

)2

+ ΩΛ,i


 ,

(4.127)
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Figure 4.12. The growth of the matter fluctuations in a sphere of radius 100h−1Mpc.
The dashed lines represent the linear growth function D (a) which is equal to a in the
EdS case. The dots are the result of the MultiDomain model. The inset zooms into the
evolution today, i.e. around a scale-factor of a0 = 1. For better distinction the curves are
normalized such that they are the same today.

where an i denotes the initial value of the respective quantity and j indexes the domain
(we choose the same initial value for the scale-factors of all domains so aj,i =: ai). To
determine the initial values Hi, ΩΛ,i and Ωm,i we use the values that we find from a
ΛCDM (H0 = 70 km

sMpc
, Ωm,0 = 0.27) or an EdS (H0 = 50 km

sMpc
, Ωm,0 = 1) model with

δDj
= 0. This means ΩΛ,i = 1 − Ωm,i and so

(
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 . (4.128)

With the evolution of the individual scale factors, we may then calculate the over-density
of the regions at later times, because we assume that they are independent. So the
matter content is conserved and the over-density evolution for a given domain is

δDj
(t) =

(
a

aj

)3 (
1 + δDj

(ti)
)

− 1 . (4.129)

We calculate this evolution for 10, 000 domains starting with our Gaussian initial con-
ditions and the ΛCDM power spectrum (2.112) at a redshift of z = 1100. At several
intermediate time (= redshift) steps we calculate the variance of the emerging over-
density distribution. We consider the increased volume of the under-dense domains, by
calculating an effective number of domains of the given scale. So a domain that ends up
with a volume two times larger than the average counts twice. The results are shown in
Fig. 4.12. At early times the points do not quite agree with the linear growth function
that describes the growth of the clustering strength related to an increasing σ. However,
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Figure 4.13. Density distribution for boxes of 7.5h−1Mpc and 15h−1Mpc side-length at
a redshift of z = 3. The blue histogram contains the results of the evolution of the
sub-volumes in the MultiDomain model. The red histogram is the result of an analysis
of the VLS data [78]. The curves are the best fit log-normal distributions.

this is only due to the choice of a common expansion rate Hi for all domains. This choice
hinders the initial growth and leads to lower values of σ. For simplicity we corrected
for this by dividing the points by a factor of 0.6 to have the late normalization correct.
We will also do this for all plots that follow. Of course, one could also use more refined
initial conditions that also provide a correct value for the perturbed expansion rate. By
choosing not to do this we demonstrate nicely how the growth of σ comes about by the
different Hubble expansion on different domains, which emerges due to the perturbation
in the density after the necessary relaxation time.

The interesting consequence of Fig. 4.12 now is, that once the initial phase is over,
the growth in σ follows exactly the result from linear theory. Also the scale dependence
follows the linear result for scales where linear theory is supposed to be applicable. For a
more detailed picture, the full distribution of over-densities in the different regions at
a redshift of z = 3 is shown in Fig. 4.13. It has already evolved away from a Gaussian
distribution and is now approximately described by a Log-Normal distribution. For
comparison to possible effects of nonlinear structure, we determined the over-density
distribution for boxes of the same size from of the Very Large Simulation project data
(VLS) [78]. We see, that the shape of the distribution is also in the simulation of Log-
Normal type. In addition the shapes of distributions for the model and the simulation
are quite close, even if for small scales they begin to deviate. This may be due to the
unclear treatment of regions that have collapsed to zero volume at the time of evaluation.
This happens earlier on small scales, so the deviation occurs there first.

Finally, we want to compare the result of the growth of the average scale factor to the
predictions from the calculation above. The average scale factor for the overall domain is
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Figure 4.14. Values of Omega-backreaction as determined from the MultiDomain model
for ΛCDM and EdS (dots). The lines represent the ensemble expectation value of ΩD

Q

as determined from perturbation theory. Left: Scale dependence today. Right: Time
evolution on a scale of 20h−1Mpc.
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This allows us again to calculate ΩD
Q from (4.11b) by

QD = 3
äD

aD

+ 4πG
a3

a3
D

̺H (1 + δi) , (4.131)

which is in the MultiDomain model and for today
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To compare this to the perturbative result, we use equation (4.116). So the ensemble
expectation value for the backreaction on the domain, that is formed by the union of the
different sub-domains j, becomes in the EdS case

E [QD] = −2

3
ȧ2
E

[
〈Ii〉2

Di

]
, (4.133)

and in the ΛCDM case

E [QD] = −2

3
Ḋ (a)2

E

[
〈Ii〉2

Di

]
, (4.134)

where the function D (a) is given by (2.129). In Fig. 4.14 we compare these theoretical
predictions to the outcome (4.132) of our calculation for the Gaussian distributed
domains.We find that the scale dependence as well as the time evolution of the expectation
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4. Backreaction of structure on the expansion of the Universe

value of the kinematical backreaction term is well described by our theoretical model.
Of course, this was anticipated from the result of Fig. 4.12, namely that the matter
fluctuations grow as in linear theory. But it is not completely evident that the more
complicated expression (4.132) gives the linear theory result. In addition, it is interesting
to see what order of magnitude the effect has. The fact that it is only a few per-cent
effect on small scales and rapidly decreases on large scales shows, that it is unlikely to
have a big effect within the standard cosmological framework. If there is not something
drastically happening in the interaction of the different regions, kinematical backreaction
remains at the 10−5 level on the Hubble scale.
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5. The influence of structure on

observations

In the previous chapter we saw, that even the inhomogeneous Universe may on average
be described by equations that look like the standard Friedmann equations, derived
under the assumption of homogeneity and isotropy. These average equations however
contain effective terms that will modify the dynamics of the expansion of the Universe.
The evaluation of these terms in the framework of Lagrangian perturbation theory in the
previous section showed that there are no global effects to be expected if the standard
perturbative result is correct. However, Fig. 4.6 made clear that local fluctuations are
there and may be important even in a perturbative treatment and even in Newtonian
theory. Of course, the fluctuations are not limited to the backreaction parameter, but also
occur in the other cosmic parameters. There, as we have seen in Sec. 4.4.2, the curvature
is systematically more important than the backreaction component. In addition, as we
will see, its fluctuations stay important up to much larger scales than the fluctuations in
the backreaction term. In this chapter we will, therefore, investigate the question, how
big these fluctuations actually are and to what extent they influence the measurement
of important cosmological observables that are determined in the local Universe. Why
these local observables are important is discussed in Sec. 5.1. After this short motivation
we will complete the picture begun in Sec. 4.4.2 to study in more detail the actual
scale dependence of the fluctuations in the cosmic parameters rather than their time
dependence. This will lead to concise formulae for the perturbations in Sec. 5.2. Their
evaluation for realistic surveys makes use of suitable window functions corresponding to
real observations. Their implementation is discussed in Sec. 5.3. Sec. 5.4 then presents
the variations that occur in observables of the local cosmic structure. We will see that
they present fundamental limitations to the accuracy of a measurement of especially the
Hubble flow. From Sec. 5.2 on, the text is basically the one that we published in [39].

5.1. Cosmic variance

The theoretical limitation of the precision with which we are in principle able to infer
global cosmic parameters from observations is often called cosmic variance. Especially
for the CMB this limitation is well studied. It is most important for the measurement of
the Cℓ’s on large scales, but has also to be taken into account in the determination of
the errors on higher order multipoles if the instrumental uncertainties are small enough.
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5. The influence of structure on observations

For the Planck mission this means for example that cosmic variance is the dominant
error up to multipoles of ℓ ≈ 2500. This fundamental limitation comes from the fact that
with the CMB we observe only one realization of the stochastic process that led to these
temperature fluctuations. So the number of independent realizations is limited especially
for large scales, because we only have one Universe in which we can observe the CMB.

In the case of the late time structure inhomogeneities, the situation is a bit better
because we have three dimensional information on the matter distribution. Ultimately
however, the situation is similar, as we can only observe one representation of the Universe
when we go to large scales, i.e. the one centered on the position of our Milky Way. The
situation is even worse if we are interested in the properties of the Universe at a given
cosmic time. As all of the cosmologically interesting measurements are based on radiation
that travels with the speed of light, we can only observe our past light cone. So when
we look at larger and larger scales, we also look further back in time. Therefore, the
information that we have about today’s Universe is strictly speaking limited to a small
volume around us. We will see in the following section that measurements which are
local in this sense, play an important role for our current understanding of our Universe.
The way this understanding is approached by a theorist and an observer is shown in
Fig. 5.1.

5.1.1. The importance of local measurements

The only global measurement that we have is the CMB. All other measurements are more
or less local. Current galaxy surveys convincingly probe the Universe up to a redshift of
0.2 (with more sparse recent data up to 0.4-0.5). The supernova measurements reach
out to larger redshifts, but they have to be normalized with the measured value of the
Hubble expansion today. This quantity is by definition constrained to be measured in our
cosmic neighborhood and therefore subject to the biggest uncertainty. This dependence
of our conclusions on the correct result of local measurements is nicely visualized by the
plot of the WMAP results in Fig. 5.2. It shows the allowed region of parameter space for
the curvature and dark energy parameter. The figure nicely illustrates the well known
degeneracy in these two parameters, if only data from the WMAP mission is used. The
degeneracy emerges, because the oscillatory features in the CMB only fix the distance to
the surface of last scattering. This distance, however, may be generated by late time
cosmic curvature on the one hand, or a cosmological constant on the other hand. It is
only by adding local information that we exclude the large portion of the parameter space
that corresponds to a vanishing or small cosmological constant but nonzero curvature.
As discussed, this local information partly depends on H0. Fig. 5.2 demonstrates that
its value depends on data that is collected within the nearest 200 Mpc, corresponding
to a redshift smaller than 0.1. This is not likely to be a region representable for the
whole present day Universe, so we will calculate the fluctuations that we expect between
different regions of this size.

A still more radical idea in this line that explores the consequences of our local
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5.1. Cosmic variance

Figure 5.1. Comparison of the theorist’s and observer’s view on the Universe. Our
calculation in comoving synchronous gauge facilitates the description of the boundaries
of the experimentally investigated regions in our Universe. Note, that recently there
have been attempts by [107] to directly relate the two upper circles. This was done
by calculating the predictions for the quantities in redshift space explicitly from the
perturbed ΛCDM model.
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5. The influence of structure on observations

Figure 5.2. Left: Illustration of the importance of local information for the determination
of cosmic curvature. As the WMAP results only fix the distance to the surface of last
scattering, there is an ambiguity concerning the reason for this distance. It could either
be due to curvature or due to Λ. The local structure information then fixes it to be Λ.
Graph from [109]. Right: Measurement of the Hubble constant H0 by different methods.
Most of them, except for certain supernovae, are within a region of 200 Mpc around us.
Graph from [110].

environment not being a typical region of the Universe, is the idea that we live close to
the center of a giant under-density. If this under-density has the right properties it might
be able to explain the observations without having to introduce a cosmological constant.
However, the isotropy of the CMB places severe constraints on our allowed displacement
from the center of the under-density, rendering these models highly non-Copernican (see
e.g. [108] for a test of the void model with observations).

5.1.2. Ensemble variance of averaged observables

As already mentioned above, we will be interested in the following to what extent cosmic
parameters (4.21) for a given domain-size D may change from position to position in
the Universe solely by the influence of the observed cosmic inhomogeneities. To this
end, we formally would have to calculate the variance for the parameters evaluated on
domains equivalent to D, but placed at different locations in our spatial slice. For an
ergodic process, however, this is the same as the variance of an ensemble average over
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5.2. Fluctuations in the cosmic parameters

many realizations of the Universe keeping the domain D fixed, but changing the initial
conditions of the matter distribution. This is the quantity that we calculate in theory
and therefore we have to rely on the assumption of ergodicity when comparing our results
with the observation. In our case this ensemble average is taken over quantities that are
volume averages. This means that for any observable O there are two different averages
involved. The domain averaging, 〈O〉D, and the ensemble average, O. We assume that
both averaging procedures commute.

The fluctuations are then characterized by the variance with respect to the ensemble
averaging process,

σ (〈O〉D) :=
(
〈O〉2

D − 〈O〉D

2) 1

2

. (5.1)

An example for a common observable calculated in this manner would be σ8 as the
ensemble r.m.s. fluctuation of the matter density field. Other observables that we will
concentrate on are the matter parameter ΩD

m and the curvature parameter ΩD
R as well as

the Hubble rate HD. To evaluate their fluctuations we use the results of Li and Schwarz
[15, 16, 17] who determined the inhomogeneous corrections to the average background
value in standard cosmic perturbation theory. Even though they determine the correction
up to second order, we will only need the linear result. This is because the fluctuations
(5.1) in an observable that has a first order perturbation are of first order, but the second
term in the expansion of the fluctuations is already of third order. Formally this has
been shown in [17] by decomposing O into successive orders O = O(0) +O(1) +O(2) + · · · .
For a Gaussian distribution we may then express (5.1) as

σ (O) =

√
(O(1))2


1 +

(O(2))2 −
(
O(2)

)2
+ 2O(1)O(3)

2(O(1))2


 , (5.2)

This shows, that the second order term vanishes. This is of course not the case for
observables as ΩD

Q, that do not have a first order contribution as we have seen in Sec. 4.3.1.
Their lowest order contribution to σ (O) is then of second order. We have seen in Fig. 4.6
that the fluctuations rapidly decay and are already at 100 Mpc of the order of a per-cent
only. As the galaxy surveys that we will calculate our results for, already probe volumes
that are much larger than that, we will not be interested in the variance for ΩD

Q in this
chapter.

5.2. Fluctuations in the cosmic parameters

We now turn to the calculation of the fluctuations in the cosmic parameters. We use
results from standard perturbation theory in synchronous comoving gauge, as obtained
by [15, 16, 17]. We will connect these results to the matter density fluctuations σ as
the fundamental quantity. This will allow an easy evaluation of the importance of the
fluctuations in the next section.
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5. The influence of structure on observations

5.2.1. Inhomogeneous cosmic parameters

Using the notation of [15, 16, 17], the perturbed line element

ds2 = a2 (η)
{
−dη2 +

[(
1 − 2ψ(1)

)
δij +Dijχ

(1)
]

dxidxj
}

(5.3)

defines the metric potentials ψ(1)(η,x) and χ(1)(η,x), where η denotes conformal time
and Dij = ∂i∂j − 1

3
δij∆. By writing the perturbed metric in this form, we constrain

ourselves to a flat background. In contrast to chapter 4, we will use here a0 = 1 for
today’s scale factor. The quantities that we are mainly interested in are the expansion
rate and the spatial curvature. The former follows from the expansion tensor and reads

θ =
3

a

(
a′

a
− ψ(1)′

)
, (5.4)

where ()′ stands for the derivative with respect to conformal time. Calculating the spatial
Ricci curvature from the above metric yields

R =
12

a2

(
2
a′

a
ψ(1)′

+ ψ(1)′′
)
. (5.5)

By the covariant conservation of the energy momentum tensor, ψ(1) is related to the
matter density contrast δ (η,x) by

ψ(1) =
1

3
δ − ζ̄ (x) δ (η,x) :=

̺(1)

̺(0)
. (5.6)

ζ̄ (x) is a constant of integration that plays no role in the following, because θ and R
involve only time derivatives of ψ(1).

As we are using conformal time, the evolution equation of the density perturbations
(2.101) is of the slightly modified form

δ′′ +
a′

a
δ′ =

4πG̺(0)
0

a
δ , (5.7)

but the solution in terms of a for a ΛCDM Universe is of course still the same as in
(2.129) namely

δ (a,x) =
D (a)

D (1)
δ0(x), with D (a) = a 2F1

(
1,

1

3
;
11

6
; −ca3

)
, and c ≡ ΩΛ

Ωm

. (5.8)

Here, δ0 (x) is the density perturbation today, D (a) is the growth factor and 2F1 is a
hypergeometric function. In the following we denote today’s value of the growth factor
by D0 ≡ D (1).
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5.2. Fluctuations in the cosmic parameters

Plugging this solution into (5.4) and using (5.6), we find the local expansion rate

1

3
θ(a,x) = H0

√
Ωm

a3

√
1 + ca3

(
1 − 1

3
f (a) δ (a,x)

)
, (5.9)

expressed in terms of the growth rate

f (a) :=
d lnD (a)

d ln a
=

5 a
D(a)

− 3

2 (1 + ca3)
. (5.10)

From (5.5) we find the local spatial curvature

R(a,x) = 10
1

a2
H2

0 Ωm
δ0(x)

D0

. (5.11)

From these quantities we can define local Ω functions,

Ωm (a,x) =
1

1 + ca3

[
1 +

(
1 +

2

3
f (a)

)
δ (a,x)

]
, (5.12a)

ΩR (a,x) = −
[

1

1 + ca3
+

2

3
f (a)

]
δ (a,x) , (5.12b)

ΩΛ (a,x) =
ca3

(1 + ca3)

[
1 +

2

3
f (a) δ (a,x)

]
, (5.12c)

ΩQ (a,x) = 0 , (5.12d)

demonstrating that the importance of curvature effects grows proportional to the forma-
tion of structures. A remarkable property is that

∑
Ωi(a,x) = 1 holds not only for the

FLRW background, but also at the level of perturbations. For linear perturbations the
kinematic backreaction term does not play any role, but becomes important as soon as
quadratic terms are considered.

Let us now compare these local quantities with the domain-averaged expansion rate
and the spatial curvature [16]. From the definition of the average 〈〉D in (4.6) we find
that, in principle, fluctuations in the volume element dµg have to be taken into account.

Writing dµg = Jd3x with the functional determinant J = a3
(
1 − 3ψ(1)

)
, the average

over the perturbed hypersurface agrees with an average over an unperturbed Euclidean
domain

〈
O(1)

〉
D

=

´

D
O(1)Jdx
´

D
Jdx

≃
´

D
O(1)dx
´

D
dx

=:
〈
O(1)

〉
, (5.13)

if we restrict our attention to linear perturbations.
We express domain-averaged quantities in terms of the volume scale factor aD, because

we assume that the measured redshift in an inhomogeneous Universe is related to the
average scale factor. This has been advocated by [21], where the relation

(1 + z) ≈ a−1
D (5.14)
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5. The influence of structure on observations

has been established. Note that in principle one would have to introduce averaging on
some larger scale than D to connect this background average on some domain B to the
redshift. For the sake of simplicity, and because we content ourselves with small redshifts,
we use the same domain D. This limits the validity of the result to small redshifts.

In order to relate a and aD, we start from

HD =
1

3
〈θ〉D =

ȧD

aD

=
1

a

a′
D

aD

=
1

a

(
a′

a
−
〈
ψ(1)′〉

)
. (5.15)

To first order this relation gives

aD = a
(

1 − 1

3
(〈δ (a)〉D − 〈δ (1)〉D)

)
. (5.16)

We finally obtain the averaged Hubble rate

HD = H0

√
Ωm

a3
D

√
1 + ca3

D


1 −

5 aD

D(aD)
− 3 D0

D(aD)

6(1 + ca3
D)

D(aD)

D0

〈δ0〉D


 (5.17)

and the averaged spatial curvature

〈R〉D = 10 Ωm
H2

0

a2
D

〈δ0〉D

D0

. (5.18)

For later convenience we also define the function

fD (aD) :=
5aD

D0
− 3

2(1 + ca3
D)
, (5.19)

which is our modified version of the growth rate of Eq. (5.10), multiplied by D (a) /D0.
It basically encodes the deviation of the time evolution of the Hubble perturbation from
the time evolution of the ensemble averaged Hubble rate

HD (aD) = H0

√
Ωm

a3
D

√
1 + ca3

D , (5.20)

as may be seen from the resulting expression

HD = HD (aD)
(

1 − 1

3
fD (aD) 〈δ0〉D

)
. (5.21)

In the Einstein-de Sitter limit (c → 0 and Ωm → 1) we arrive at

HD =
H0

a
3/2
D

(
1 − 1

3
aD 〈δ0〉D

)
,

〈R〉D = 10
H2

0

a2
D

〈δ0〉D .
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5.2. Fluctuations in the cosmic parameters

In order to compare this with the results of [15, 16], we define the peculiar gravitational
potential ϕ (x) via

∆ϕ (x) ≡ 4πG̺(1)a2 =
3

2
H2

0

δ

a
=

2

3

1

t20

δ

a
(5.22)

and obtain

HD =
2

3t0
a

−3/2
D

[
1 − 1

2
aDt

2
0 〈∆ϕ〉

]
, (5.23)

〈R〉D =
20

3
a−2

D 〈∆ϕ〉 .

While our results agree for the spatial curvature, HD is different from the result in [16],
because there the assumption a ≪ 1 was made when applying (5.16).

Let us now turn to the dimensionless ΩD-parameters. To first order, they may be
expressed as

ΩD
m (aD) =

1

1 + c a3
D

[
1 +

(
1 +

2

3
fD (aD)

)
〈δ0〉D

]
, (5.24a)

ΩD
R (aD) = −

[
1

1 + c a3
D

+
2

3
fD (aD)

]
〈δ0〉D , (5.24b)

ΩD
Λ (aD) =

c a3
D

1 + ca3
D

[
1 +

2

3
fD (aD) 〈δ0〉D

]
, (5.24c)

ΩD
Q (aD) = 0. (5.24d)

When taking the limit D → 0 in Eqs. (5.24a) – (5.24d), we recover the point-wise defined
Ω-parameters of Eqs. (5.12a) – (5.12d). This provides a self-consistency check of the
averaging framework.

From the expressions for the ΩD-parameters one can easily calculate the ensemble
averages and the ensemble variance. 〈δ0〉D = 0, since the domain-averaged over-density
of D, in general non-zero, averages out when we consider a large number of domains of
given size and local density fluctuations drawn from the same (Gaussian) distribution.

Here we adopt the common view that linear theory is a good description of the present
Universe at the largest observable scales (which has been questioned recently in [20]).
We then find the ensemble average of the curvature parameter ΩD

R to vanish. For the
matter density parameter Eq. (5.24a) yields

ΩD
m (aD) =

(
1 + c a3

D

)−1
. (5.25)

This may be used to verify that the relation ΩD
m +ΩD

Λ = 1 holds. In addition, this relation
implies that ΩD

m (aD0
) corresponds to today’s background matter density parameter:

ΩD
m (aD0

) = Ωm + O
(
〈δ2

0〉D

)
. (5.26)

However, this is true at first order in the density contrast only, because in this case
ensemble averages agree with background quantities. At higher orders, the ensemble
averages differ from the background quantities.
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5. The influence of structure on observations

5.2.2. Relating cosmic parameter- and matter-fluctuations

After having convinced ourself that the expectations of the averaged ΩD-parameters are
identical to their ΛCDM background values up to second-order corrections, we now turn
to the study of their ensemble variances.

All variances of domain averaged cosmological parameters can be related to the variance
of the over-density of the matter distribution, σ (〈δ0〉D).

In order to specify 〈δ0〉D, we introduce the normalized window function WD (X) and
write

〈δ0〉D =

ˆ

R3

δ0 (x)WD (x) d3x

=

ˆ

R3

δ̃0 (k) W̃D (k) d3k, (5.27)

A tilde denotes a Fourier-transformed quantity. With the definition of the matter power
spectrum

δ̃0 (k) δ̃0 (k′) = δDirac (k + k′) P0 (k) , (5.28)

where δDirac denotes Dirac’s delta function, the ensemble variance of the matter over-
density becomes

(σD0
)2 := σ2 (〈δ0〉D) =

ˆ

R3

P0 (k) W̃D (k) W̃D (−k) d3k. (5.29)

For a spherical top hat window function, this expression is the well-known matter
variation in a sphere Eq. (2.16), often used to normalize the matter power spectrum by
fixing its value for a sphere with a radius of 8h−1Mpc (σ8). To calculate this variance,
we use the standard ΛCDM power spectrum (2.112). Knowing σD at a particular epoch
of interest, we can calculate all the fluctuations in the cosmic parameters. They read:

δHD =
1

3
HD (aD) fD (aD)σD0

, (5.30a)

δΩD
m = ΩD

m (aD)
(

1 +
2

3
fD (aD)

)
σD0

, (5.30b)

δΩD
R = ΩD

m (aD)

(
1 +

2

3

fD (aD)

ΩD
m (aD)

)
σD0

, (5.30c)

δΩD
Λ = ΩD

Λ (aD)
2

3
fD (aD)σD0

, (5.30d)

δΩD
Q = O

(
(σD0

)2
)
, (5.30e)

where e.g. δΩD
Λ denotes the square root of the variance, δΩD

Λ := σ
(
ΩD

Λ

)
. ΩD

m, HD and

fD (aD) were defined in Eq. (5.25), (5.20) and (5.19) and ΩD
Λ = 1 − ΩD

m.
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5.2. Fluctuations in the cosmic parameters

Figure 5.3. The two survey geometries considered (separately). A simple cone with one
single opening angle α and a slice given by two angles β and γ.

These variances are the minimum ones that one can hope to obtain by measurements
of regions of the Universe of size D. They do not include any observational uncertainties,
nor biasing or sampling issues. They are intrinsic to the inhomogeneous dark matter
distribution that governs the evolution of the Universe.

Equations (5.30a) to (5.30e) are interesting in two respects: Firstly, our expression
for δHD is simpler than the one in [111], nevertheless, both results agree. Secondly,
Eqs. (5.30a) to (5.30e) quantify the connection between fluctuations in cosmological
parameters and inhomogeneities in the distribution of matter. If we choose "today" as
our reference value, Eqs. (5.30a) to (5.30d) allow us to predict the domain averaged
cosmological parameters:

HD = H0 ± 1
3
H0 fD0

σD0

ΩD
m = Ωm ± Ωm

(
1 + 2

3
fD0

)
σD0

ΩD
R = 0 ±

(
Ωm + 2

3
fD0

)
σD0

ΩD
Λ = ΩΛ ± 2

3
ΩΛ fD0

σD0

(5.31)

with

fD0
≡ fD (aD0

) =
Ωm

2

(
5D−1

0 − 3
)

≈
{

0.5 ΛCDM
1.0 EdS

, (5.32)

where we assumed Ωm = 0.3 for ΛCDM. More generally, for Ωm > 0.1, fD0
may be

approximated by [112, 55]

fD0
≈ 1

140

(
2 + 140 Ω4/7

m − Ωm − Ω2
m

)
. (5.33)

From the knowledge of σD0
we may therefore easily derive the variation of cosmological

parameters. To relate our calculations to real surveys, we elaborate in the next section
on how to calculate σD0

for several survey geometries.
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Figure 5.4. Variance of the matter density, σD, as a function of the observed domain
volume. Data were derived from the SDSS main sample by [113]. The dashed (red) line
shows the fit of [113] to the data, the solid (green) line is our result including the sample
variance [solid (blue) line at the bottom].

5.3. Matter and curvature fluctuations

5.3.1. Influence of the survey geometry

Observations of the Universe are rarely full-sky measurements and typically sample
domains much smaller than the Hubble volume. We therefore must address the problem
of the survey geometry. Effects from a limited survey size are in particular important for
deep fields, as studied for example in [114]. While in their case, for small angles and deep
surveys, approximating the observed volume by a rectangular geometry is appropriate, it
probably is not appropriate for the bigger survey volumes that we have in mind.

We therefore chose two different geometries that resemble observationally relevant ones.
Firstly, we used a simple cone with a single opening angle α. The second geometry is
a slice described by two angles β and γ for the size in right ascension and declination
respectively. In the radial direction we assumed a top hat window, whose cut-off value
corresponds to the depth of the survey. Both shapes are shown in Fig. 5.3.

To calculate σD0
for both geometries, we used a decomposition into spherical harmonics.

This allowed us to derive an expression for the expansion coefficients in terms of a series
in cos (2nα) for the cone and a similar one for the slice, depending on trigonometric
functions of β and γ. The radial coefficients were calculated numerically from the ΛCDM
power spectrum (2.112). It includes the effect of baryons on the overall shape and

116



5.3. Matter and curvature fluctuations

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.5
1.0

5.0
10

50

redshift z

Σ
Hz
L

in
%

2dF

SDSS

Full sky

Figure 5.5. Variance of the matter density, σD, for survey geometries resembling the
2dFGRS, the SDSS and a hypothetical full sky survey as a function of maximum redshift
considered. We find that the determination of the local σD below redshifts of 0.1
(corresponding to ∼ 400 Mpc) is fundamentally limited by cosmic variance to the 1%
level.

amplitude of the matter power spectrum, but does not model baryon acoustic oscillations.
The calculation of the coefficients is explained in appendix A.

All plots use best-fit ΛCDM values from WMAP 7yr as summarized in table 3.1;
Ωb = 0.0456, Ωcdm = 0.227 and ns = 0.963. The power spectrum is normalized to
σ8 = 0.809.

To ensure that the result of our calculation for the slice-like geometry and a standard
ΛCDM power spectrum is reasonable, we compared it with an analysis of SDSS data by
[113]. In Fig. 5.4 we show this comparison of their r.m.s. matter over-density σD obtained
from the SDSS main galaxy sample, in terms of its angular extension (and hence the
volume). The dashed line going through the points shows their empirical fit to the data.
The solid green line shows our result for the cosmic variance of a slice with respective
angular extension (for β = γ), plus their sample variance. Note that our result is not a fit
to SDSS data, but is a prediction based on the WMAP 7yr data analysis. Additionally,
the real SDSS window function is slightly more complicated than our simplistic window,
thus perfect agreement is not to be expected.

For the full SDSS volume, σD0
is shown in Fig. 5.5. For comparison we also added the

smaller, southern hemisphere 2dF survey and a hypothetical full sky survey. For the
two surveys, we assumed an approximate angular extension of 120°×60° for SDSS and
for the two fields of the 2dF survey 80°×15° and 75°×10°. The ongoing BOSS survey
corresponds to the plot for the SDSS geometry, because it will basically have the same
angular extension. Because it will target higher redshifts, it is not in the range of our
calculation, however. As a rough statement (the precise value depends on the redshift),
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one may say that the 2dF survey is a factor of 5 and the SDSS survey a factor of 2.5
above the variance of a full sky survey. This is interesting because the SDSS survey
covers approximately only 1/6 of the full sky and the 2dF survey only 1/20. This is due
to the angular dependence of σD. We find that fluctuations drop quickly as we increase
small angles and flattens at large angles.

From Fig. (5.5) we see that the cosmic variance of the matter density for the SDSS
geometry is 5% at a depth of z ≈ 0.08 and still 1% out to z ≈ 0.23. Note, however, that
the extension of the domain of (spatial) averaging to a redshift of 0.35 is clearly not very
realistic because lightcone effects will become relevant with increasing extension of the
domain. The assumption that this domain would be representative for a part of the
hypersurface of constant cosmic time becomes questionable. We expect, however, that in
this range evolution effects will only be a minor correction to the result presented here
because of the following estimation:

The main effect we miss by approximating the lightcone by a fixed spatial hypersurface
is evolution in the matter density distribution. To specify what "region that is not too
extended spatially" means, one should therefore estimate the maximum evolution in a
given sample. This can be done by determining the growth of the density contrast in the
outermost (and therefore oldest) regions of the sample. In the linear regime considered
here, the evolution of the density contrast is given by δ (z) = δ0D (0) /D (z). Therefore,
lightcone corrections should be smaller than ǫl = 1 −D (z) /D (0) which is ǫl ≈ 5% for
z = 0.1 and ǫl ≈ 14% for z = 0.3. Therefore, the order of magnitude of our results should
be correct on a wider range of scales, but on scales above z = 0.3 the corrections to our
calculation are expected to pass beyond 15%.

These effects can be taken into account with the new method of light cone averaging
developed by [115].

Finally, it should be noted that for large volumes the actual shape of the survey
geometry is not very important. As long as all dimensions are bigger than the scale of
the turnover of the power spectrum, the deviation of the cosmic variance for our shapes,
compared to those of a box of equal volume, is at the percent level. To reach this result,
we compared σD0

for the slice-like geometry to its value for a rectangular box of the
same volume. We used a slice for which β = γ. The box was constructed to have a
quadratic basis and the same depth as the slice in radial direction. Therefore the base
square of the box is smaller than the square given by the two angles of the slice. The
result of this comparison is that the deviation of σrect

D0
from the value for the slice is at

most 6% for angles above β ≈ 10°. For smaller angles the deviation becomes bigger and
redshift-dependent. This is caused by the changing shape of the power spectrum at small
scales. The large angle behavior confirms an observation of [113]. They found that the
cosmic variance in the SDSS dataset was the same for both of the two geometries they
considered.
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Figure 5.6. Modified power spectra (left panel) and their corresponding matter fluctuations
σ (right panel). The red dashed line is the standard ΛCDM spectrum. The blue dotted
line corresponds to a spectrum where the turnover in the spectrum has just been shifted
to larger scales. The green solid line is a spectrum with a flat large scale behavior and
the purple dashed dotted line is a spectrum with a modified power law. In the two latter
cases there is no zero crossing of the correlation function at all. The right hand side
clearly shows that if the zero crossing is not there or at larger scales, our results would
be underestimating the large scale fluctuations.

Non-standard Power spectra All of the results above assume the standard shape of
the power spectrum (2.112). However, there has been some discussion on whether the
ΛCDM correlation function really fits the data on large scales. In [60] the authors claim
that the transition of the correlation function to negative values seems to be at larger
values than expected. In order to explore what order of magnitude the corrections would
be if the correlation function was different, we show in Fig. 5.6 the values of σ for different
possibilities: A simple shift of the zero crossing to larger scales, but with the same form,
a flat spectrum on large scales and a modified power law. All three possibilities would
lead to an enhancement of the fluctuations due to cosmic structure. In the case of the
modified power law even by a factor of 20. If this confusion remains will become clear
with the availability of the BOSS galaxy data, as they allow to probe the scales of the
zero crossing of the correlation function more reliably.

5.3.2. Importance of curvature fluctuations

After the general study of the effect of the shape of the observational domain D on σD0
,

one may ask for which parameter the fluctuations are most important.
The three lowest lines in the plot of Fig. 5.7 show that this is the case for the curvature

fluctuations. The two lowest lines, showing the fluctuations δΩm and δHD0
/HD0

for
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Figure 5.7. Top three lines: the expected r.m.s. fluctuation of the curvature parameter,
δΩD

R, for geometries resembling the 2dFGRS, the SDSS, and a full sky. The two lowest
lines are the expected r.m.s. fluctuations of the parameters ΩD0

m and HD0
for a full-sky

survey extending to the respective redshift. The curvature fluctuations turn out to be
higher than all other fluctuations.

the full sphere, lie a factor of 1.6 and 3.8, respectively, below the respective curvature
fluctuations δΩD

R. Therefore the fluctuations of Ωm play a smaller role for all Universes
with Ωm < 1. The uncertainty in HD0

, which has been in the focus of the investigations
so far [116, 16, 111], contributes even less to the distortion of the geometry, as we shall
discuss in Section 5.4.2.

What this means for real surveys, such as the 2dF or the SDSS survey, is shown by the
three upper lines in Fig. 5.7. They compare δΩD

R for the slices observed by these surveys
to that of a full sky measurement. δΩD

R is bigger than one percent up to a redshift of 0.18
for the SDSS and 0.28 for the 2dF survey and it does not drop below 0.001 for values
of z as high as 0.5. This may seem very low, but it has been shown that getting the
curvature of the Universe wrong by 1h already affects our ability to measure the dark
energy equation of state w (z) [117]. Of course one has to keep in mind that for high
redshifts one has to be careful with the values presented here because they are based on
the assumption that the observed region lies on one single spatial hypersurface. Because
this approximation worsens beyond a redshift of 0.1, there may be additional corrections
to the size of the fluctuations stemming from lightcone effects.

To investigate the curvature fluctuations for more general geometries, we show in
Fig. 5.8 the angular and radial dependence of the curvature fluctuation δΩD

R (α) for the
cone-like window of Fig. 5.3.

On the l.h.s. of Fig. 5.8 we evaluate the angular dependence. For a survey that only
reaches a redshift of 0.1, the fluctuations are still higher than 0.01 for a half-sky survey.
It is interesting to note that for a deeper survey, δΩD

R (α) grows much faster when α is
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Figure 5.8. Cosmic variance of the curvature parameter. Left panel: Dependence of δΩD
R

on the opening angle of the cone-like survey geometry of Fig. 5.3 for different top hat
depths of the survey. Right panel: Dependence of δΩD

R on the depth of the survey. For a
small cone of 6° opening angle we expect curvature fluctuations of 10% up to 450h−1Mpc.

reduced than for a shallow survey. This is because σD0
(R) changes from a relatively

weak R−1 decay to a R−2 decay on larger scales. For z = 0.35, this behavior dominates
and a decrease in α increases σD0

(R,α) stronger than in the R−1 regime.

On the r.h.s. of Fig. 5.8 we show the dependence of δΩD
R on the survey depth for some

opening angles of the cone-like window. For narrow windows the fluctuation in ΩD
R stays

high, even beyond the expected homogeneity scale of 100h−1Mpc. For R = 200h−1Mpc
and a 6° window, for example, it is still at δΩD

R ≈ 0.2. For smaller beams these fluctuations
persist even out to much longer distances. Therefore they play an important role for
deep field galaxy surveys, as shown in [114, 113] for the matter density fluctuations. But
even for wider angles, fluctuations in curvature persist on sizable domains. If one recalls
that the distance given for the full sphere of 360° is its radius, this means that regions in
the Universe as big as 540h−1Mpc have typical curvature fluctuations on the order of 1%.
This is not that small because the last scattering surface at z ≈ 1100 is only 9600h−1Mpc
away. One of these regions therefore fills more than 5% of the way to that surface.

To put these values into perspective, we compare the WMAP 5yr confidence contours
[109] on the curvature parameter with those that may in principle be derived from the
2dF or the SDSS survey in Fig. 5.9. Because they only sample a finite size of the
Universe, one cannot be sure that this value is indeed the background value and not only
a local fluctuation. The cosmic variance induced by this finite size effect is, for the 2dF
survey volume up to z ≈ 0.2, shown by the two second-largest (red) ellipses. The two
innermost (blue) ones depict the minimum possible error using the SDSS survey volume
up to z ≈ 0.3. Clearly, the determination of ΩD

R may perhaps be improved by a factor of
two if one were to eliminate all other sources of uncertainty. This may be less if lightcone
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Figure 5.9. Minimum confidence contours in ΩD
Λ and ΩD

R achievable in different volumes
through fluctuations of matter. The green (outermost) ellipses are the 95% and 68%
contours for the volume from which the HST data are drawn. The next inner (red) ones
are for a survey of the size of the 2dF survey up to z = 0.2. In the middle there is a
small double ellipse in blue, showing the values for the SDSS volume up to z = 0.3. The
background image depicts the results from WMAP 5 [109]. They give the experimental
values and uncertainties on these parameters for a combination of various experimental
probes.

effects play a non-negligible role already for z ≈ 0.3.

Fig. 5.10 shows the dependence of the curvature fluctuation on the considered cosmology.
For this study we fixed the spectral index and the normalization of the spectrum to
ns = 0.963 and σ8 = 0.809, respectively. We varied each of the other parameters one
after another, while keeping the remaining ones fixed to the concordance values. We
used the SDSS geometry out to a redshift of z = 0.09 as a reference value at which we
conducted this investigation, because the concordance values lead to a δΩD

R of 0.01 for
this configuration. Interestingly enough, the dependence on the Ωm parameter is very
weak. This means that the value does not differ much for the flat ΛCDM model and the
EdS model. This is surprising, because the prefactor of σD0

in (5.30c) changes by a factor
of 3 from about 5/11 for ΛCDM to 5/3 for EdS. This rise, however, is compensated for
by a drop of the value of σD0

. The reason for this drop is that a higher Ωm leads to more
power on small scales. Because we kept the integrated normalization fixed at a given
value of σ8, this means less power on large scales, i.e. at z = 0.09. Moreover, a variation
of the Hubble constant h and the baryon fraction fb has only a small effect around the
concordance value. δΩD

R changes significantly only for more extreme values of fb and h.
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5.4. Hubble and geometry fluctuations

5.4.1. Inhomogeneity uncertainties in the Hubble scale

Local fluctuations of the Hubble expansion rate have already been considered in the
literature [118, 119, 116, 111]. Here we wish to add two new aspects.

The first one is on the measurement of H(z) itself. Experiments that try to measure H
as a function of z, like the WiggleZ survey [120], do this by measuring a “local” average
H(zm) in a region around the redshift zm. These regions should not be too small to keep
the effects of local fluctuations small. On the other hand they cannot be enlarged in an
arbitrary way because then the redshift zm becomes less and less characteristic for the
averaging domain. In other words, for an increasingly thicker shell ∆z, the evolution
of H(z) begins to play a role. Therefore, one may find the optimal thickness of the
averaging shells over which the variation in the expansion rate

Var [H(z)] =
1

VD

ˆ

H[z(r)]2WD (r) d3r −
(

1

VD

ˆ

H[(z(r)]WD (r) d3r

)2

(5.34)

equals the variance imposed by the inhomogeneous matter distribution. The correspond-
ing shells are shown in Fig. 5.11. It should be noted that the error for the first bin is
certainly underestimated in our treatment, which rests on linear perturbation theory.
Taking into account higher orders, which become dominant at small scales, will certainly
increase it. Of course, in these measurements the survey geometries will not necessarily
be close to the SDSS or the 2dF geometry, but they are shown to illustrate survey
geometries that do not cover the full sky.

Secondly, we wish to note that the relation between fluctuations in the Hubble expansion
rate and fluctuations in the matter density offers the interesting possibility to determine
the evolution of the growth function for matter perturbations from the variances of the
Hubble rate measured at different redshifts. A direct measurement of the growth function
by a determination of σ8 at different epochs is difficult, because one never examines the
underlying dark matter distribution. Therefore one has to assume that the observed
objects represent the same clustering pattern as the underlying dark matter (this is the
problem of bias). It is well known that there is bias and its modeling typically has to
rely on assumptions.

An interesting bypass is to look at the variation of local expansion rates at different
redshifts. The assumption that the luminous objects follow the local flow is more likely
and the assumption that this local flow is generated by the inhomogeneities of the
underlying dark matter distribution is also reasonable. A similar idea leads to the
attempt to use redshift-space distortions to do so [66]. The fact that one considers
fluctuations means that we would not have to know the actual value of H (z), but only
the local variation at different redshifts.
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Figure 5.10. Dependence of δΩD
R on some cosmological parameters for a spherical domain

extending to z = 0.09. The basis is the ΛCDM model with Ωb = 0.0456, Ωcdm = 0.227,
h = 0.7, ns = 0.963 and σ8 = 0.809. For this model and for the chosen redshift,
δΩD

R ≈ 0.01. We then varied Ωm = Ωb + Ωcdm, fb = Ωb/Ωm and h between 0 and 1,
holding the other parameters fixed at their aforementioned values. Because σ8 is fixed,
the fluctuation in ΩD

R is nearly independent on Ωm.

This variation, defined as

δH =
HD −HD(aD)

HD(aD)
, (5.35)

has the fluctuations of Eq. (5.30a)

σ (δH) =
1

3
HD (aD) fD (aD)σD0

. (5.36)

If we were to measure this quantity at different redshifts, we could, without knowledge
of the absolute normalization of HD (z), determine fD (aD) only from the variance and
therefore the constant c = ΩΛ/Ωm.

Note that in the standard case, where the background redshift is identified with
the observed one, fD (aD) is simply replaced by the growth rate f (a) = d ln D(a)

d ln a
, and

measuring the Hubble fluctuations would yield a direct measurement of f . In the real
world, where the redshift captures the structure on the way from the source to us, it is
not directly the background redshift. One would rather measure the modified "growth
rate" fD (aD). The difference between these two quantities is small in our range of validity
for fD (aD), however (corrections of linear order in the perturbations).
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5.4.2. Fluctuations of the acoustic scale

Let us now turn to the effect of fluctuations caused by inhomogeneities on the local
distance estimates. An important distance measure, recently used in BAO experiments,
is DV . It was introduced in [62] and mixes the angular diameter distance and the
comoving coordinate distance to the BAO ring. It is measured through the BAO radius
perpendicular to the line of sight r⊥ and the comoving radius parallel to the line of sight
r‖.

rbao :=
(
r‖r

2
⊥

) 1

3 = DV (z) ∆θ2 ∆z

z
(5.37)

One can, therefore, determine the distance DV to the corresponding redshift, if the
comoving radius of the baryon ring rbao is known. This may be achieved by a measurement
of the angle of the BAO ring on the sky ∆θ and its longitudinal extension ∆z/z. The
precise definition of DV is derived from the expressions of the comoving distances r‖ and
r⊥:

r‖ =

z+∆z
ˆ

z

c

H(z′)
dz′ ≈ c∆z

H(z)
=

cz

H(z)

∆z

z
, (5.38)

r⊥ = (1 + z)DA(z)∆θ, (5.39)

from which we find

DV (z) =

(
cz

H(z)
D2

M(z)

) 1

3

, (5.40)

where DM is the comoving angular distance

DM(z) = c
(√

ΩkH0

)−1

sinh
(√

ΩkI (z)
)
, (5.41)

with

I(z) =

z
ˆ

0

H0

H(z′)
dz′. (5.42)

As already mentioned above, the term ΩD
Q vanishes in our first-order treatment and

the curvature contribution scales as a−2
D . Therefore we may express the Hubble rate as

HD(z)

HD0

=
[
(1 + z)3ΩD0

m + (1 + z)2ΩD0

R + (1 − ΩD0

m − ΩD0

R )
] 1

2 , (5.43)

where we assumed the relation between redshift and average scale factor of Eq. (5.14).
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We may now calculate the fluctuation of DV ,

δr‖

r‖

=
δHD0

HD0

+

∣∣∣∣∣
1 − (1 + z)2

2

H2
D0

HD(z)2

∣∣∣∣∣ δΩ
D0

R +

∣∣∣∣∣
1 − (1 + z)3

2

H2
D0

HD(z)2

∣∣∣∣∣ δΩ
D0

m , (5.44)

δr⊥

r⊥

=
δDM

DM0

=
δHD0

HD0

+

∣∣∣∣∣
I(z)2

6
+
I ′(z)

I(z)

∣∣∣∣∣ δΩ
D0

R +

∣∣∣∣∣
I ′(z)

I(z)

∣∣∣∣∣ δΩ
D0

m , (5.45)

δDV

DV

=
1

3

δr‖

r‖

+
2

3

δr⊥

r⊥

, (5.46)

where I ′(z) denotes a partial derivation with respect to the respective parameter, i.e. ΩD0

R

or ΩD0

m . Note that I ′(z) and I(z) are evaluated on the background (ΩD0

R = 0 and
ΩD0

m = Ωm).
We evaluated the magnitude of the fluctuations in DV , based on the cosmological

parameters of the concordance model, as presented in Fig. 5.12. Fluctuations as low as
one per cent are reached for much smaller domains than for the cosmic variance of the
Ω-parameters. Thus, at first sight it might seem that the BAO measurement of DV could
essentially overcome the cosmic variance limit. Closer inspection of this result reveals
that this is not the case. Indeed, the much smaller variation of the distance DV means
that a precise knowledge of the distance measure DV does not lead to an equivalently
good estimate of the cosmic parameters.

Clearly, the systematic uncertainty that we calculated is only a minor effect compared
with the errors intrinsic to the actual measurement of the acoustic scale, as a comparison
of the three solid (green) lines in Fig. 5.12 shows. The lowest one is the fluctuation of the
scale DV for full spheres of the corresponding size at different places in the Universe. It
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Figure 5.12. Errors on the distance DV for various survey geometries as a function of
maximum redshift. For comparison the error induced by the finite number of BAO modes
in the corresponding full sphere volume, calculated with the fitting formula of [121], is
shown (insufficient volume). This error is about a factor of 10 bigger than the error from
the local volume distortion caused by inhomogeneities that we calculated. Adding a shot
noise term, corresponding to a galaxy density of n = 3 × 10−4h3Mpc−3 typical for SDSS
and BOSS, we find that the cosmic variance of DV is a sub-dominant contribution to the
error budget.

is therefore the possible local deformation caused by statistical over- or under-densities.
The possible precision of a measurement of DV by BAOs, however, also depends on the
number of observable modes. This induces an error if the volume is too small, and in
particular when it is smaller than the BAO scale a reasonable measurement is no longer
possible. Accordingly, even for a perfect sampling of the observed volume, the error will
not be smaller than the solid (green) lines in the middle. If one adds shot noise caused
by imperfect sampling by a galaxy density of n = 3 × 10−4h3Mpc−3, typical for SDSS
and BOSS, the error increases even more. This means that for the realistic situation
where we do not have a sufficiently small perfect ruler to allow for large statistics already
for the small volumes considered here, the deformation uncertainty that we calculated
remains completely sub-dominant.
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To conclude, let us review what we learned about the influence of structure.
Our analysis of the SDSS LRG data in chapter 3 showed, that Minkowski functionals are

a useful tool to characterize cosmic structure. Especially to describe the deviations of the
galaxy distributions from a Gaussian distribution, the boolean grain model for Minkowski
functionals was found to be helpful. This is, because for the Gaussian case, the exact
shape of the Minkowski functional density is known analytically and so every deviation
from this shape is a clear indication for non-Gaussianity. This could be demonstrated by
a comparison of the functionals of a ΛCDM dark matter simulation [78] at redshift of
z = 5 and the LRGs today. The simulated z = 5 data was still close to the Gaussian
form of its initial conditions, but showed already clear deviations. For the late time
LRGs, the Gaussian model was way off the actual shape of the functionals, indicating
the strong non-Gaussianity of their distribution.

Comparing the Minkowski functionals of the LRGs to those from the mock simulations
performed by [73, 75] in the context of the ΛCDM model, that are constructed to
reproduce the LRGs with the correct window function of the observed region, we found
significant deviations. If this is due to problems of the simulations, or if the effect really
points to a discrepancy of the morphology between the LRGs and the underlying ΛCDM
dark matter distribution is still under investigation.

After the test of the real cosmic structure in observational galaxy data, we investigate
to what extent inhomogeneities of this magnitude influence the average evolution of the
Universe on different scales. To this end we use a new form of a relativistic Lagrangian
perturbation theory [31], that has the advantage of being conceptually close to the
Newtonian theory. Therefore, it is expected that the general solution scheme for higher-
order perturbations in Newtonian theory [122] may be generalized to the GR case. We
perform a first test and find that the correspondence at lowest order is even a one to
one correspondence. Furthermore, we show the equivalence of the first-order solution of
the scheme to results of standard perturbation theory from [15, 16, 17]. This shows that
the growing mode of their second-order result occurs in the same form in the Newtonian
theory. Therefore this contributes only to the surface terms as already remarked by Li in
[17].

The close correspondence of the GR result is probably due to the fact that the electric
part of the Weyl tensor and the Newtonian tidal tensor are formally closely related [31].
By showing the equivalence of the Newtonian and GR perturbative solution we give an
explicit example that this correspondence actually holds.

By a comparison of the Relativistic Zel’dovich approximation (RZA) to exact GR
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results we find, that the solutions are more restricted than in the Newtonian case. This
demonstrates that there is more to the full general relativistic solutions than what comes
directly from the correspondence. So at some point the magnetic part of the Weyl tensor
will also play a role in the GR case. From which order on this is the case is also work in
progress [102].

Finally, the perturbative scheme allows us to determine quantitatively the influence of
the backreaction term and we find it to be scale-dependent and of the order of 1% at
100Mpc. However, the curvature contribution may be as big as 20% on these scales giving
rise to a 12% change in the comoving volume of a 100 Mpc sphere. For the ensemble
averages, the results are less impressive. However, we could show that the RZA gives the
same result as a partitioning model where each of the components evolves individually
as an over- or under-dense Friedmann model.

The fact that the fluctuations especially in the curvature are still that large at scales
of 100 Mpc motivated the exploration of the backreaction effects for even bigger domains.
In the era of precision cosmology, it is crucial to know at which scale the effects are
important and when they drop below the measurement precision. We evaluated this
question taking into account the real size of the galaxy surveys, i.e. the fact that they
are never full sky surveys. We derived useful formulae (5.30a)–(5.30e) that relate the
fluctuation in the matter density to the fluctuations in the cosmic parameters.

Especially cosmic curvature was found to fluctuate at the percent level on scales as
large as 540h−1Mpc in diameter. Only a volume-limited sample up to a redshift of 0.5
would be able to constrain the local curvature to 0.1 per cent. This is interesting in view
of the BOSS [36] data to appear soon, that should provide such a sample.

For the determination of cosmic distances we found that fluctuations in the local
geometry due to inhomogeneities do not limit the precision with which the BAO distance
scale can be measured. This is good news for surveys like WiggleZ [58] or BOSS [36] that
will constrain the ΛCDM model with the help of BAO measurements, or have already
done so [67].

Finally we derived limits on how precisely we will ever know the Hubble rate today.
Especially for this quantity local fluctuations are crucial: by looking at larger distances
we look in the past and so the volume for the determination of H0 is limited to a small
area around us by definition. We find that this radius is z ≈ 0.06 and that the uncertainty
in H0 will therefore be bigger than 0.5%.

Outlook There are many interesting lines of research that are opened up by these
results. To adapt the determination of the cosmic variance due to local fluctuations to
the new galaxy data, one could use the results on light cone averaging as derived by
[115]. In this way the evolution effects of the galaxy distribution could be taken into
account, which is not done here. One could also extend the analysis to other interesting
quantities like the luminosity distance as done by [107]. With new supernova data the
fluctuations in the Hubble rate could also be compared to the fluctuations calculated
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here, as begun by [123].
In the case of the Lagrangian theory results, the generalization of the perturbative

scheme to higher order will allow a new approach to the question up to which point in
the evolution the perturbative results are still trustworthy. This is complementary to the
gradient expansion approach advocated in [91]. It will be interesting to see up to which
order the Newtonian correspondence will hold or at which point GR corrections occur.
That this correspondence can never hold for all observables, however, but only for some
of them, has recently been shown in [124].

Finally for the deviations of the LRG Minkowski functionals from the ΛCDM simulation
data could point to an insufficient understanding of the LRGs as tracers of cosmic
structures. It will turn out what kind of new insights we will gain from there.
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A. Window function calculation

In this appendix we write out the window functions explicitly, which were used to find
the results in Sec. 5.3 and 5.4. The principal quantity we need is the matter variance
today as defined in Eq. (5.29) being

(σD0
)2 := σ2 (〈δ0〉D) =

ˆ

R3

P0 (k) W̃D (k) W̃D (−k) d3k . (A.1)

For a ball, the Fourier transformed window function is still simple and was already given
in Sec. 2.1.1. The real space window Eq. (2.20)

WB(R) (r) =





1 R − |r| > 0

0 else ,
(A.2)

is transformed to give Eq. (2.21)

W̃B(R) (k) =
1

4π
3
R3

ˆ

d3rWB(R) (r) e−ik·r =
3 (sin kR − kR cos kR)

(kR)3 . (A.3)

If the integral is not over the full sphere the expressions are unfortunately more com-
plicated. For a general window function given in terms of spherical coordinates we
have

W̃D (k) =
1

VD

ˆ

d3rWD (r, θ, ϕ) e−ik·r . (A.4)

We will be interested in top hat windows, so radial and angular part may be separated as

WD (r, θ, ϕ) = WD (r) fD (θ, ϕ) (A.5)

and fD (θ, ϕ) can in general be decomposed as

fD (θ, ϕ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

ˆ

cℓmYℓm (θ, ϕ) , (A.6)

with coefficients given by

cD
ℓm =

ˆ

fD (θ, ϕ) [Y m
ℓ (θ, ϕ)]⋆ dΩ . (A.7)
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A. Window function calculation

This means for W̃D (k) in terms of spherical harmonics

W̃D (k) =
1

VD

∞∑

ℓ=0

ℓ∑

m=−ℓ

ˆ

WD (r) cD
ℓmYℓm (θ, ϕ) e−ik·rd3r . (A.8)

Using the identity

ei~k~r = 4π
∞∑

l=0

l∑

m=−l

iljl (kr) [Y m
l (θk, ϕk)]⋆ · Y m

l (θr, ϕr) , (A.9)

we find after some simplification

(σD0
)2 =

ˆ

R3

P0 (k) W̃D (k) W̃D (−k) d3k = 4πV −2
D

∞∑

ℓ=0

(2ℓ+ 1)Rℓ (r)Aℓ (α, β) , (A.10)

where the radial coefficients are

Rℓ (r) = V 2
D

ˆ ˆ ˆ

P (k) k2WD (r1)WD (r2) r
2
1jℓ (kr1) r

2
2jℓ (kr2) dk dr1 dr2

=

ˆ ∞

0

k2P (k) (Sℓ(k,R))2 dk . (A.11)

For a sharp window in real space WD (r) = Θ (R − r) /VD the coefficients Sℓ are given by

Sℓ (R) =

ˆ

Θ (R − r) jℓ (kr) r2dr

=
√
π2−ℓ−2R3Γ

(
ℓ+ 3

2

)
(kR)ℓ

1F̃2

(
ℓ+ 3

2
; ℓ+

3

2
,
ℓ+ 5

2
; −1

4
k2R2

)
,(A.12)

where 1F̃2 is a regularized hypergeometric function. Only the first two coefficients can
be expressed by trigonometric functions

S0 (R) = −kR cos(kR) − sin(kR)

k3
, (A.13)

S1 (R) = −kR sin(kR) + 2 cos(kR) − 2

k3
. (A.14)

Comparing S0 with (A.3) we find that the monopole (the full sphere) comes out correctly.
The angular coefficients in (A.10) read

Aℓ (α, β) =

ˆ ˆ

Pℓ (cos (θr1
) cos (θr2

) + cos (ϕr1
− ϕr2

) sin (θr1
) sin (θr2

))

×fD (θr1
, ϕr1

) fD (θr2
, ϕr2

) dΩr1
dΩr2

, (A.15)
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where dΩr1
= sin (θr1

) dθr1
dϕr1

. We calculate these integrals for the two angular windows
of Fig. 5.3. The slice like geometry has ϕ ∈ [0, α] and θ ∈

[
π
2

− β, π
2

+ β
]

so the windows

Aℓ (α, β) =

α
ˆ

0

α
ˆ

0

π
2

+β
ˆ

π
2

−β

π
2

+β
ˆ

π
2

−β

Pℓ (cos (θr1
) cos (θr2

) + cos (ϕr1
− ϕr2

) sin (θr1
) sin (θr2

))

× sin (θr1
) sin (θr2

) dϕr1
dϕr2

dθr1
dθr2

(A.16)

may be written as

Aℓ (α, β) =
⌊ ℓ

2⌋∑
k=0

ℓ−2k∑

i=0

(−1)i+k+ℓ
(

1
2

)3ℓ−4k+i
(2ℓ− 2k)!

(
∑i

k=0

(
i
k

)
sin2(α( i

2
−k))

( i
2

−k)
2

)

i!k!(ℓ− k)!(−i− 2k + ℓ)!

×



i+1∑

m=0

−i−2k+ℓ∑

j=0

(−1)j

(
i+ 1
m

)(
ℓ− i− 2k

j

)
sin(β(2j + 2k + 2m− ℓ− 1))

2j + 2k + 2m− ℓ− 1




2

.(A.17)

This looks quite ugly, but for our purpose of not too small angular scales this is sufficient.
The first few coefficients read

A0 (α, β) = 4α2 sin2(β) , (A.18)

A1 (α, β) = sin2
(
α

2

)
(2β + sin(2β))2 , (A.19)

A2 (α, β) =
2

3
α2
(
sin6(β) − 3 sin2(β)

)
+

1

48

(
α2 + sin2(α)

)
(9 sin(β) + sin(3β))2 .(A.20)

Finally when we take the volume into account we find

σ2 (R,α, β) =

(
2

3
R3α sin

(
β

2

))−2 (
4π

∞∑

ℓ=0

(2ℓ+ 1)Rℓ (R)Aℓ (α, β)

)
. (A.21)

The geometry of the cone is defined by the angular window function ϕ ∈ [0, 2π] and
θ ∈ [0, β]. Note the different meaning of β in this case. The coefficients read

Aℓ (β) =
⌊ ℓ

2⌋∑
k=0

⌊ 1

2
(ℓ−2k)⌋∑

i=0

π2(−1)k2−2i−ℓ(2ℓ− 2k)!

k!(ℓ− k)!(−2i− 2k + ℓ)!
(A.22)

×



Γ
(

1
2
(−2i− 2k + ℓ+ 1)

)

Γ
(

1
2
(−2k + ℓ+ 3)

) − cos−2i−2k+ℓ+1(β)
i∑

j=0

(−1)j cos2j(β)

j!(i− j)!
(

1
2
(−2i− 2k + ℓ+ 1) + j

)




2

.

Now that there is only one angle involved, they are simpler

A0 (β) = 4π2(cos(β) − 1)2 , (A.23)

A1 (β) = π2 sin4(β) , (A.24)

A2 (β) = π2 sin4(β) cos2(β) , (A.25)

A3 (β) =
1

64
π2 sin4(β)(5 cos(2β) + 3)2 , (A.26)
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which also indicates that Eq. (A.22) is not yet the most compact form. But it is good
enough for our purpose. The matter fluctuations for the cone are therefore

σ2 (R, β) =
(

2

3
R3 (cos(β) − 1)

)−2
(

4π
∞∑

ℓ=0

(2ℓ+ 1)Rℓ (R)Aℓ (β)

)
. (A.27)

For more general geometries the formulae will become even more involved than Eq. (A.17),
but there is no conceptual problem to calculate them.
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B. Fourth order backreaction

The correspondence discussed in section 4.5.1 allows us to derive the form of the leading
order backreaction mode at fourth order. To this end we use the metric

ds2 = a2(η)
[
−dη2 +

(
δij + γ

(1)
ij + γ

(2)
ij + γ

(3)
ij

)
dxidxj

]
, (B.1)

where η is the conformal time. The decomposition chosen in [125] is

γ
(1)
ij = −2ψ(1)δij + χ

(1)
ij , (B.2)

γ
(2)
ij = −ψ(2)δij +

1

2
χ

(2)
ij , (B.3)

γ
(3)
ij = −1

3
ψ(3)δij +

1

6
χ

(3)
ij . (B.4)

The solution to second order is also given in [125] and was used in [17] for the third order
expression of the backreaction term. The fastest growing terms are at first order

ψ(1) =
η2

18
∆ϕ(x) , (B.5)

χ
(1)
ij =

η2

9
∆ϕ(x)δij − η2

3
∂i∂jϕ(x) (B.6)

and at second order

ψ(2) =
η4

252

[
(∆ϕ)2 − 10

3
∂i∂jϕ∂

j∂iϕ
]
, (B.7)

χ
(2)
ij =

η4

126

[(
(∆ϕ)2 − 10

3
∂k∂mϕ∂

m∂kϕ
)
δij + 7∂i∂kϕ∂

k∂jϕ+ 6∂i∂jψ0

]
. (B.8)

Solving the Einstein equations (1.1) at third order with the metric ansatz (B.1), we now
find that

ψ(3) =
η6

162

[
∂abψ0∂abϕ+

2

21
∂a

aϕ∂
b
bϕ∂

c
cϕ+

1

14
∂a

aϕ∂
bcϕ∂bcϕ− 1

6
∂abϕ∂c

aϕ∂bcϕ
]
, (B.9)

χ
(3)
ij =

η6

9


1

9
δij

(
∂abψ0∂abϕ+

2

21
∂a

aϕ∂
b
bϕ∂

c
cϕ+

1

14
∂a

aϕ∂
bcϕ∂bcϕ− 1

6
∂abϕ∂c

aϕ∂bcϕ
)

− 3

14
∂(i

aψ0 ∂ j)aϕ +
1

6
∂ijΨ

(3a) − 5

7
∂ijΨ

(3b) +
1

14
∂(i

aǫj)akT
(3c)k


 , (B.10)
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where ∂b
a is a short form for ∂a∂

b. This again is only the fastest growing term of the third
order solution to the Einstein equations. The new potentials used here are the solutions
to the defining equations

∆ψ0 := −1

2

[
(∆ϕ)2 − ∂i∂jϕ∂

j∂iϕ
]

(B.11)

∆Ψ(3a) :=
1

6
ǫabcǫ

mnk∂m
aϕ∂n

bϕ∂k
cϕ (B.12)

∆Ψ(3b) := −1

2

[
∆ϕ∆ψ0 − ∂i∂jϕ∂

j∂iψ0

]
(B.13)

∆T (3c)k := ǫijkǫabcǫ
pnlδpi∂j

aψ0 ∂n
bϕ δl

c . (B.14)

The complete metric to third order containing the fastest growing terms is then

gij = a2 (η)
[
δij − 1

3
∂i∂jϕη

2 +
1

36

(
6

7
∂i∂jψ0 + ∂i

bϕ∂jbϕ
)
η4 (B.15)

− 1

216

(
6

7
∂(i

bψ0 ∂j)bϕ− 2

3
∂i∂jΨ

(3a) +
20

21
∂i∂jΨ

(3b) − 2

7
ǫak(i∂

a
j)T

(3c)k
)
η6
]
.

Using the correspondence (4.66) we find that in the Newtonian case the metric is given
by

gij = δabf
|a
|i f

|b
|j , (B.16)

where the third order solutions of the Lagrangian mapping f have been given in equation
(4.118). The potentials S(2), S(3a), S(3b) and S(3c) defined in Eqs. (4.120a)–(4.120e) are
up to a factor the same as the ψ0, Ψ(3a), Ψ(3b) and T (3c) used here. If we plug (4.118)
into (B.16), we find also in the Newtonian case (B.15), as expected.

With the metric (B.15), we can then calculate the corresponding expansion tensor

Θj
i =

a′

a
δj

i − 1

3
η∂j

iϕ+
1

18

(
6

7
∂j

i Ψ(2) − ∂jaϕ∂iaϕ
)
η3 +

1

504

[
5∂a

i Ψ(2)∂j
aϕ+ ∂jaΨ(2)∂iaϕ

−14

3
∂abϕ∂

jaϕ∂b
iϕ+

14

3
∂j

i Ψ(3a) − 20

3
∂j

iS
(3b) − ∂jaT

(3c)
b ǫb

aiη
5 − ∂a

i T
(3c)
b ǫjb

a

]
η5 . (B.17)

With this expression we are finally able to give the fourth order backreaction term. QD

in terms of the extrinsic curvature is given in Eq. (4.13) by

QD =
〈
K2 −KijK

ij
〉

D
− 2

3
〈K〉2

D (B.18)

and with the relation between extrinsic curvature and expansion rate −Kij = Θij we find

(4)Q.
D ∝ a

(
72

49

〈
II

(2,2)
i

〉
Di

− 4
〈
II

(1,3a)
i

〉
Di

+
40

7

〈
II

(1,3b)
i

〉
Di

+
6

7

〈
II

(1,3c)
i

〉
Di

− 90

7

〈
III

(1,1,2)
i

〉
Di

104

21

〈
II

(1,2)
i

〉
Di

〈Ii〉Di
− 26

3
〈IIIi〉Di

〈Ii〉Di
− 296

147
〈IIi〉2

Di
+

122

21
〈IIi〉Di

〈Ii〉2
Di

− 2 〈Ii〉4
Di

)
.

(B.19)
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Here we again converted the potentials ϕ → ψ via ϕ = −2
3

1
t2
i

ψ and we write the

combinations of these ψ potentials in terms of its invariants as

Ii :=
1

2
ǫabcǫ

ijkψ
|a
|i δ

b
jδ

c
k , (B.20)

IIi :=
1

2
ǫabcǫ

ijkψ
|a
|i ψ

|b
|jδ

c
k , (B.21)

IIIi :=
1

6
ǫabcǫ

ijkψ
|a
|i ψ

|b
|jψ

|c
|k , (B.22)

II
(x,y)
i :=

1

2
ǫabcǫ

ijkΨx|a
|i Ψy|b

|j δ
c
k , (B.23)

III
(1,1,2)
i :=

1

6
ǫabcǫ

ijkψ
|a
|i ψ

|b
|jψ

|c
0|k , (B.24)

II
(1,3c)
i := ǫabc∂d

aT
(3c)
b ∂cdϕ . (B.25)

Here, O|a denotes the partial derivative ∂aO and Ψx may be ψ0, Ψ(3a) or Ψ(3b). The
same expression emerges in the Newtownian case. To show this, we use the fourth order
solution of [126] and the same procedure as described in section 4.5.1. We start by
writing down the volume scale factor at fourth order

a3
D = a3

[
1 + 〈Ii〉Di

a+
4

7
〈IIi〉Di

a2 +
(

2

3
〈IIIi〉Di

− 8

21

〈
II

(1,2)
i

〉
Di

)
a3+ (B.26)

(
48

539

〈
II

(2,2)
i

〉
Di

− 8

33

〈
II

(1,3a)
i

〉
Di

+
80

231

〈
II

(1,3b)
i

〉
Di

+
4

77

〈
II

(1,3c)
i

〉
Di

− 60

77

〈
III

(1,1,2)
i

〉
Di

)
a4
]

and use Eq. (4.124) to derive the expression of the corresponding backreaction term.
The result is again (B.19). This confirms that the fastest growing GR mode corresponds
to the Newtonian mode.
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C. List of abbreviations

Abbreviation Use Meaning
2dFGRS 3.1.2 Two degree field giant redshift survey: [56]
ADM 4.1.1 Arnowitt-Deser-Misner
BAO 3.1.2 baryon acoustic oscillations
BigBoss 1 Extension of BOSS [37]
BOSS 1 Baryonic Oscillation Spectroscopic Survey
CDM 1 cold dark matter
CMB 3.1.1 cosmic microwave background
COBE 2.3.3 Cosmic Background Explorer
DP 3.2.3 Davis Peebles correlation function estimator [79]
EdS 4.3.1 Einstein-de Sitter
Euclid 1 A European galaxy survey satellite mission [38]
FRW 1 Friedmann-Robertson-Walker
GR 1 general relativity
ISW 1 Integrated Sachs Wolfe Effect
ΛCDM 1 Λ cold dark matter
LTB 4.4.1 Lemaître-Tolman-Bondi
LRG 3.2 luminous red galaxy
LS 3.2.3 Landy Szalay correlation function estimator [80]
NZA 4.3.2 Newtonian Zel’dovich Approximation[30]
RW 1.1.1 Robertson Walker
RZA 4.2 Relativistic Zel’dovich Approximation [31]
SDSS 3.1.2 Sloan Digital Sky Survey
SDSS DR7 3.1.2 Seventh data release Sloan Digital Sky Survey [57]
SDSS-III 3.1.2 Third phase of the Sloan Digital Sky Survey [36]
SPP 2.1 stochastic point process
SSP 2.1 stationary stochastic process
VLS 3.2.3 very large simulation [78]
WiggleZ 3.1.2 An Australian Galaxy survey [58]
WMAP 3.1.1 Wilkinson Microwave Anisotropy Probe [2]
WMAP5 5.3.2 WMAP 5-year data release [109]
WMAP7 3.1.1 WMAP 7-year data release [41]
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D. List of symbols and list of figures

D. List of symbols and list of figures

Symbol Definition Use Meaning
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Ṗa

i

)
= 1

2ǫabcǫ
ijkṖa
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