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Abstract. We study various aspects of the dynamics induced by integer ma-

trices on the invariant rational lattices of the torus in dimension 2 and greater.

Firstly, we investigate the orbit structure when the toral endomorphism is not
invertible on the lattice, characterising the pretails of eventually periodic or-

bits. Next we study the nature of the symmetries and reversing symmetries

of toral automorphisms on a given lattice, which has particular relevance to
(quantum) cat maps.

1. Introduction. Toral automorphisms or cat maps, by which we mean the action
of matrices M ∈ GL(d,Z) on the d-torus Td, are a widely used and versatile class
of dynamical systems, see [45, 28] for some classic results in the context of ergodic
theory. Of particular interest are the hyperbolic and quasi-hyperbolic ones, which
are characterised by having no root of unity among their eigenvalues. All periodic
orbits of such automorphisms lie on the rational (or finite) invariant lattices Ln =
{x ∈ Td | nx = 0 mod 1}, which are also known as the n-division points. One can
encode the possible periods of a toral automorphism M on Td via the dynamical
zeta function in a systematic way, which is always a rational function [8, 18]. The
literature on classifying periodic orbits of toral automorphisms when d = 2 is vast
(compare [21, 25, 37] and references therein). An extension beyond d = 2 is difficult
due to the fact that the conjugacy problem between integer matrices is then much
harder because (unlike d = 2) no complete set of conjugacy invariants mod n is
known. Therefore, our focus will also be on d = 2, with occasional extensions to
higher dimensions.

The larger ring Mat(d,Z) of toral endomorphisms (which includes integer matri-
ces without integer inverses) has received far less attention [2, 14, 8], particularly
those in the complement of GL(d,Z). Note that the resulting dynamics induced by
M ∈ Mat(d,Z) \ GL(d,Z) on a finite lattice Ln may or may not be invertible. In
the latter case, beyond periodic orbits, there exist eventually periodic orbits which
possess points that lead into a periodic orbit. We call these points and the periodic
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point to which they attach the ‘pretails’ to the periodic orbit (see Eq. (15) for a
formal definition). The action of M induces a directed graph on Ln (e.g. see our
three figures below). Alternatively, the pretails can be combined to form a rooted
tree which is a characteristic attribute to any pair (M,Ln).

As well as their interest from a mathematical viewpoint, toral automorphisms
also have been well-studied from a physics perspective, in particular as quantum cat
maps (see [30, 19, 32] and references therein). Here, the action of the integer matrix
on a rational lattice Ln, for some n, is all-important as quantum cat maps and their
perturbations are built from (classical) cat maps and their perturbations restricted
to a particular rational lattice (called the Wigner lattice in this instance). There
has been recent interest in dealing with so-called pseudo-symmetries of quantum
cat maps that are manifestations of local symmetries of cat maps restricted to some
rational lattice [30, 19, 32]. Although, in the context of quantisation, matrices from
the group Sp(2d,Z) play the key role, we prefer to work with the larger group of
unimodular integer matrices and consider the former as a special case.

The main aims of this paper are twofold: (i) to elucidate the orbit structure of
toral endomorphisms on rational lattices, equivalently the periodic orbits together
with the related pretail tree structure; (ii) to further characterise the nature of
symmetries or (time) reversing symmetries of toral automorphisms, these being
automorphisms of the torus (or of a rational lattice) that commute with the cat
map, respectively conjugate it into its inverse.

We expand a little on our results, where we refer to the actual formulation below
in the paper. The results are readable without the surrounding notational details.

With respect to aim (i), Section 3 characterises the splitting of Ln into periodic
and eventually periodic points under a toral endomorphism M . Every periodic
point has a pretail graph isomorphic to that of the fixed point 0 (Corollary 1),
which is trivial if and only if M is invertible on Ln. In general, the pretail tree
codes important information on the action of M . One question in this context
is whether all maximal pretails have the same length, for which we give a partial
answer via a sufficient condition on ker(M) in Proposition 3. Given M , the lattice
Ln can be decomposed into two invariant submodules, one of which captures the
invertible part of M and the other the nilpotent part. This way, we are able to
characterise the dynamics that is induced by M on Ln in the case of n = pr with p
prime, in Corollary 3 and Lemma 3.

Our contribution towards aim (ii) continues the investigations from [9, 10, 12].
The key quantity for integer matrices of dimension 2 is the mgcd (see Eq. 13 below),
and one consequence of [12, Thm. 2] is that M ∈ SL(2,Z) is always conjugate to
its inverse on Ln, for each n ∈ N. The conjugating element – called a reversing
symmetry or reversor – is an integer matrix that has an integer matrix inverse on
Ln, which typically depends on n. In this way, any SL(2,Z) matrix that fails to
be conjugate to its inverse on the torus (e.g. M = ( 4 9

7 16 ) from [9, Ex. 2]) is still
conjugate to its inverse on every rational lattice. In [12], we did not consider the
nature of the reversor on the lattice. Theorem 1 of Section 4 establishes that it is
an orientation-reversing involution, what is called an anticanonical (time-reversal)
symmetry in the language of [30]. Section 4.2 uses normal forms of GL(2,Fp) to
characterise the symmetries and possible reversing symmetries of such matrices;
the underlying structure of the conjugacy classes of GL(2,Fp) is summarised in Ta-
ble 4.2. The symmetry structure has some extensions to higher dimensions (Section
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4.3) and to general modulus n (Section 4.4). Section 4.5 presents some results for
the case when M ∈ GL(d,Fp) has a root in the same group.

The structure of the paper is as follows. Section 2 summarises some properties
of integer matrices that we use later in the paper, with some reformulations or
slight generalisations that we find useful. In particular, throughout the paper, we
formulate the results for arbitrary dimension whenever it is possible without extra
complications, though this is not our main focus. As described, Section 3 addresses
aim (i) above, while Section 4 deals with aim (ii). In the Appendix, we briefly
discuss two classic examples of toral automorphisms for d = 2 and some aspects of
their dynamics.

2. Preliminaries and powers of integer matrices. The purpose of this section
is to summarise important properties of and around integer matrices that are needed
later on, with focus on those that are not standard textbook material. At the same
time, we introduce our notation. For general background on integer matrices and
their connections to algebraic number theory, we refer to the classic text by Taussky
[43].

2.1. Lattices, rings and groups. The most important lattices on the d-torus
Td = Rd/Zd, which is a compact Abelian group, consist of the n-division points

Ln := {x ∈ Td | nx = 0 (mod 1)}

=
{(

k1
n , . . . ,

kd
n

)
| 0 ≤ ki < n for all 1 ≤ i ≤ d

}
,

(1)

with n ∈ N. Clearly, the Ln are invariant under toral endomorphisms (with the
action of the representing matrices taken mod 1). It is sometimes easier to replace

Ln by the set L̃n := {(k1, . . . , kd) | 0 ≤ ki < n}, with the equivalent action of M
defined mod n. This also applies to various theoretical arguments involving modular
arithmetic. Consequently, we use Ln (with action of M mod 1) and L̃n (with action
mod n) in parallel.

Our discussion will revolve around the residue class ring Z/nZ with n ∈ N, which
is a principal ideal ring, but not a domain, unless n = p is a prime. In the latter
case, Z/pZ = Fp is the finite field with p elements, while the ring has zero divisors
otherwise. For general n, the unit group

(Z/nZ)× = {1 ≤ m ≤ n | gcd(m,n) = 1}

is an Abelian group (under multiplication) of order φ(n), where φ is Euler’s totient
function from elementary number theory [26]. In general, it is not a cyclic group.

The integer matrices mod n form the finite ring Mat(d,Z/nZ) of order nd
2

. The
invertible elements in this finite ring form the general linear group GL(d,Z/nZ) =
{M ∈ Mat(d,Z/nZ) | det(M) ∈ (Z/nZ)×}. If n = p

r1
1 · · · p

r`
` is the standard prime

decomposition, one finds∣∣GL(d,Z/nZ)
∣∣ = nd

2 ∏̀
j=1

∣∣GL(d,Fpj )
∣∣

pd
2

j

, (2)

where ∣∣GL(d,Fp)
∣∣ = (pd − 1)(pd − p) · . . . · (pd − pd−1) (3)

is well-known from the standard literature [33, 34]. Formula (2) follows from the
corresponding one for n = pr via the Chinese remainder theorem, while the simpler
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prime power case is a consequence of the observation that each element of a non-
singular matrix M over Z/psZ can be covered (independently of all other matrix
elements) by p elements in Z/ps+1Z without affecting its non-singularity.

Let us finally mention that SL(n,Z/nZ), the subgroup of matrices with determi-
nant 1, is a normal subgroup (it is the kernel of det : GL(n,Z/nZ) −→ (Z/nZ)×).
The factor group is

GL(n,Z/nZ)/ SL(n,Z/nZ) ' (Z/nZ)×

and thus has order φ(n).

2.2. Orbit counts and generating functions. The orbit statistics of the action
of a matrix M ∈ Mat(d,Z) on the lattice Ln is encapsulated in the polynomial

Zn(t) =
∏
m∈N

(1− tm)c
(n)
m , (4)

where c
(n)
m denotes the number of m-cycles of M on Ln. Recall that, if am and cm

denote the fixed point and orbit count numbers of M (dropping the upper index
for a moment), they are related by

am =
∑
d|m

d cd and cm =
1

m

∑
d|m

µ
(
m
d

)
ad , (5)

where µ(k) is the Möbius function from elementary number theory [26].
Despite the way it is written, Zn is a finite product and defines a polynomial of

degree at most nd. Note that the degree of Zn can be smaller than nd (as the matrix
M need not be invertible on Ln), but Zn(t) is always divisible by (1 − t), because
0 is a fixed point of every M . The polynomials Zn are closely related [12, 36] to
the zeta function of toral endomorphisms, which can be calculated systematically;
compare [8] and references therein. Dynamical zeta functions give access to the
distribution and various asymptotic properties of periodic orbits [18, 40], and also
relate to topological questions; compare [23] for a systematic exposition of the latter
aspect in a more general setting. Further aspects on the asymptotic distribution of
orbit lengths on prime lattices can be found in [29].

2.3. Matrix order on lattices and plateau phenomenon. Assume that M is
invertible on Ln (hence also on L̃n). Then, its order is given by

ord(M,n) := gcd{m ∈ N0 |Mm ≡ 1 mod n}. (6)

Clearly, ord(M, 1) = 1 in this setting. WhenM is not invertible on Ln, the definition
results in ord(M,n) = 0; otherwise, ord(M,n) is the smallest m ∈ N with Mm = 1

mod n.
Let M ∈ GL(d,Z) be arbitrary, but fixed. To determine ord(M,n) for all n ≥ 2,

it suffices to do so for n an arbitrary prime power, since the Chinese remainder
theorem [26] gives

ord(M,n) = lcm
(
ord(M,p

r1
1 ), . . . , ord(M,p

r̀
` )
)

(7)

when n = p
r1
1 · · · p

r̀
` is the prime decomposition of n. It is clear that ord(M,pr)

divides ord(M,pr+1) for all r ∈ N, see also [14, Lemma 5.2].
Let us now assume that M ∈ Mat(d,Z) is not of finite order, meaning that

Mk 6= 1 for all k ∈ N, which excludes the finite order elements of GL(d,Z). If p is
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a prime, we then obtain the unique representation

Mord(M,p) = 1 + psB (8)

with s ∈ N and an integer matrix B 6≡ 0 mod p. Starting from this representation,
an application of the binomial theorem for powers of it, in conjunction with the
properties of the binomial coefficients mod p, gives the following well-known result.

Proposition 1. Let M ∈ Mat(d,Z) be a matrix that is not of finite order. Fix a
prime p that does not divide det(M), and let s be defined as in Eq. (8).

When p is odd or when s ≥ 2, one has ord(M,pi) = ord(M,p) for 1 ≤ i ≤ s,
together with ord(M,ps+i) = pi ord(M,ps) for all i ∈ N.

In the remaining case, p = 2 and s = 1, either ord(M, 2r) = 2r−1 ord(M, 2) for
all r ∈ N, or there is an integer t ≥ 2 so that ord(M, 2i) = 2 ord(M, 2) for 2 ≤ i ≤ t
together with ord(M, 2t+i) = 2i ord(M, 4) for all i ∈ N.

In what follows, we will refer to the structure described in Proposition 1 as the
plateau phenomenon. Such a plateau can be absent (p odd with s = 1, or the first
case for p = 2), it can be at the beginning (p odd with s ≥ 2), or it can occur after
one step (p = 2 when t ≥ 2 exists as described), but it cannot occur later on.

Proposition 1 is a reformulation of [14, Thms. 5.3 and 5.4], which are originally
stated for M ∈ GL(2,Z). As one can easily check, the proofs do not depend on
the dimension. Similar versions or special cases were also given in [13] and [41]
(with focus on SL(2,Z)-matrices), in [37] (for the order of algebraic integers), in
[44] (for the Fibonacci sequence), in [15] (for linear quadratic recursions) and in
[22] and [46] (for general linear recursions). Let us also mention that, based on the
generalised Riemann hypothesis, Kurlberg has determined a lower bound on the
order of unimodular matrices mod N for a density 1 subset of integers N in [31].

2.4. Powers of integer matrices. Consider a matrix M ∈ Mat(d,Z) with d ≥ 2
and characteristic polynomial PM (z) = det(z1−M), which (following [46]) we write
as

PM (z) = zd − c1zd−1 − c2zd−2 − . . .− cd−1z − cd ,

so that cd = (−1)d+1 det(M). Let us define a recursion by u0 = u1 = . . . = ud−2 = 0
and ud−1 = 1 together with

um =

d∑
i=1

cium−i = c1um−1 + c2um−2 + . . .+ cdum−d (9)

for m ≥ d. This results in an integer sequence. Moreover, when cd 6= 0, we also
define

um = c−1d (um+d − c1um+d−1 − . . .− cd−1um+1)

for m ≤ −1. In particular, since d ≥ 2, one always has u−1 = 1/cd and u−2 =
−cd−1/c2d, while the explicit form of um with m < −2 depends on d. Note that the
coefficients with negative index are rational numbers in general, unless |cd| = 1.

The Cayley-Hamilton theorem together with (9) can be used to write down an
explicit expansion of powers of the matrix M in terms of Mk with 0 ≤ k ≤ d− 1,

Mm =

d−1∑
`=0

γ
(m)
` M `, (10)
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where the coefficients satisfy γ
(m)
` = δm,` (for 0 ≤ `,m ≤ d − 1) together with the

recursion

γ
(n+1)
` = cd−` γ

(n)
d−1 + γ

(n)
`−1, (11)

for n ≥ d − 1 and 0 ≤ ` ≤ d − 1, where γ
(n)
−1 := 0. In particular, γ

(d)
` = cd−`. The

coefficients are explicitly given as

γ
(m)
` =

∑̀
i=0

cd−ium−`−1+i = um+d−`−1 −
d−`−1∑
i=1

cd−`−ium−1+i , (12)

where m ≥ d and the second expression follows from the first by (9). Formulas (10)
and (12) can be proved by induction fromMd = c1M

d−1+c2M
d−2+. . . cd−1M+cd1.

Eq. (10) holds for all m ≥ 0 in this formulation.
When det(M) 6= 0, the representation (12) also holds for m < d, as follows from

checking the cases 0 ≤ m < d together with a separate induction argument for
m < 0. In particular, one then has

M−1 = cdu−21 + (cd−1u−2 + cdu−3)M + (cd−2u−2 + cd−1u−3 + cdu−4)M2

+ . . .+ (c2u−2 + c3u−3 + . . .+ cdu−d)M
d−2 + u−1M

d−1,

which is again an integer matrix when |cd| = 1.

2.5. Results for d = 2. Let us look at matrices from Mat(2,Z) more closely,
and derive one important result by elementary means. Consider M =

(
a b
c d

)
, set

D := det(M), T := tr(M) and define the matrix gcd (or mgcd for short) as

mgcd(M) := gcd(b, c, d− a), (13)

which is another invariant under GL(2,Z) conjugation. Its special role becomes clear
from the following result, which is a reformulation of [12, Lemma 2 and Thm. 2].
This will lead to Corollary 2 below.

Lemma 1. Two matrices M,M ′ ∈ Mat(2,Z) that are GL(2,Z)-conjugate possess
the same mgcd, as defined in Eq. (13). More generally, the reductions modulo n of
M and M ′ are GL(2,Z/nZ)-conjugate for all n ≥ 2 if and only if the two matrices
share the same trace, determinant and mgcd.

Returning to matrix powers, formula (10) simplifies to

Mm = umM −Dum−11, (14)

where now u0 = 0, u1 = 1 and um+1 = Tum −Dum−1 for m ∈ N; see [12, Sec. 2.3]
for details. Let n ∈ N and assume gcd(n,D) = 1. This allows us to introduce

κ(n) := period of (um)m≥0 mod n

which is well-defined, as the sequence mod n is then indeed periodic without ‘pre-
tail’. Recall that (um)m≥0 mod n must be periodic from a certain index on, as a
result of Dirichlet’s pigeon hole principle. Since D is a unit in Z/nZ, the recursion
(14) can be reversed, and (um)m≥0 mod n must thus be periodic, with κ(n) being
the smallest positive integer k such that uk = 0 and uk+1 = 1 mod n.

One can now relate κ(n) and ord(M,n) as follows, which provides an efficient
way to calculate ord(M,n).
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Proposition 2. Let M ∈ Mat(2,Z) be fixed and let (um)m≥0 be the corresponding
recursive sequence from (9). If n ≥ 2 is an integer with gcd(n,D) = 1, ord(M,n)
divides κ(n). Moreover, with Nn := n/ gcd

(
n,mgcd(M)

)
, one has

ord(M,n) = κ(Nn)

whenever Nn > 1. In particular, this gives ord(M,n) = κ(n) whenever n and
mgcd(M) are coprime.

In the remaining case, Nn = 1, the matrix satisfies M ≡ α1 mod n with some
α ∈ (Z/nZ)×, so that ord(M,n) is the order of α modulo n.

Proof. If M =
(
a b
c d

)
, the iteration formula (14) implies that Mm ≡ 1 mod n if and

only if

uma−Dum−1 ≡ 1 , umb ≡ 0 , umc ≡ 0 , and umd−Dum−1 ≡ 1 mod n,

so that also um(a−d) ≡ 0 mod n. Consequently, n divides umb, umc and um(a−d).
This implies that um is divisible by n

gcd(n,b) ,
n

gcd(n,c) and n
gcd(n,a−d) , hence also by

the least common multiple of these three numbers, which is the integer

Nn =
n

gcd
(
n, gcd(b, c, a− d)

) =
n

gcd
(
n,mgcd(M)

) .
Since Nn|n, we now also have uma−Dum−1 ≡ 1 mod Nn. When um ≡ 0 mod Nn,
the recursion now gives um+1 ≡ Tum−Dum−1 ≡ −Dum−1 ≡ 1−una ≡ 1 mod Nn.
Consequently, Mm ≡ 1 mod n is equivalent to um ≡ 0 and um+1 ≡ 1 mod Nn. So,
for Nn > 1, one has

ord(M,n) = κ(Nn),

which is the period of the sequence (um)m≥0 modulo Nn. Since κ(Nn) clearly
divides κ(n), one finds ord(M,n)|κ(n).

Finally, when Nn = 1, one has n|mgcd(M), which implies M ≡ α1 mod n, where
we have α2 ∈ (Z/nZ)× due to gcd(n,D) = 1. Since this also implies α ∈ (Z/nZ)×,
the last claim is clear.

Remark 1. Instead of the characteristic polynomial PM , any other monic polyno-
mial that annihilatesM can be employed to derive a recursive sequence whose period
is a multiple of the matrix order modulo n. For n = p a prime, the unique minimal
polynomial QM of M suggests itself to be chosen. For d = 2, QM has smaller de-
gree than PM precisely when M = α1, whence mgcd(M) = 0 and QM (z) = z − α.
Consequently, ord(M,p) is then always equal to the order of α modulo p. ♦

3. Orbit pretail structure of toral endomorphisms. In this section, we look
at the action of M ∈ Mat(d,Z) on a lattice Ln, with special emphasis on the
structure of general endomorphisms. When M is not invertible, this manifests itself
in the existence of non-trivial ‘pretails’ to periodic orbits, with rather characteristic
properties. More precisely, given a periodic point y of M , a finite set of iterates (or
suborbit)

O = {x,Mx,M2x, . . . ,Mnx = y} (15)

is called a pretail (of y) if y is the only periodic point of M in O.
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3.1. General structure. LetM and n be fixed, and define R = Z/nZ. Let per(M)

denote the set of periodic points on the lattice L̃n, under the action of M mod n.
Due to the linear structure of M , per(M) is an M -invariant submodule of L̃n. It
is the maximal submodule on which the restriction of M acts as an invertible map.
The kernel ker(Mk) ⊂ L̃n denotes the set of points that are mapped to 0 under
Mk. One has ker(Mk) ⊂ ker(Mk+1) for all k ≥ 0, and this chain stabilises, so that⋃
k≥0 ker(Mk) is another well-defined and M -invariant submodule of L̃n. This is

then the maximal submodule on which the restriction of M acts as a nilpotent map.
Note that per(M) ∩ ker(Mk) = {0} for all k ≥ 0.

Consider an arbitrary x ∈ L̃n and its iteration under M . Since |L̃n| = nd is
finite, Dirichlet’s pigeon hole principle implies that this orbit must return to one of
its points. Consequently, every orbit is a cycle or turns into one after finitely many
steps, i.e. it is eventually periodic. By elementary arguments, one then finds the
following result.

Fact 1. There are minimal integers m ≥ 0 and k ≥ 1 such that Mk+m ≡Mm mod
n. The number k is the least common multiple of all cycle lengths on L̃n, while m
is the maximum of all pretail lengths. Clearly, per(M) = Fix(Mk).

The lattice L̃n = Rd is a free R-module. The modules per(M) as well as Fix(M j)
and ker(M j) for j ≥ 1 are submodules of it, with Fix(M i) ∩ ker(M j) = {0} for all
i ≥ 1 and j ≥ 0. Recalling some results on modules from [33, Ch. III] now leads to
the following consequences.

Fact 2. Let m and k be the integers from Fact 1. If m ≥ 1, one has

{0} ( ker(M) ( ker(M2) ( . . . ( ker(Mm) ⊆ L̃n,
while ker(Mm+j) = ker(Mm) for all j ≥ 0. Moreover, one has

L̃n = Fix(Mk)⊕ ker(Mm),

which is the direct sum of two M -invariant submodules. Hence, per(M) and ker(Mm)
are finite projective R-modules.

In general, the projective summands need not be free. As a simple example, let
us consider L̃6 with d = 1 and M = 2. Here, per(M) = {0, 2, 4} covers the fixed
point 0 and a 2-cycle, while ker(M) = {0, 3}. Both are modules (and also principal
ideals, hence generated by a single element) over Z/6Z, but do not have a basis,
hence are not free. Nevertheless, one has Z/6Z = per(M)⊕ker(M). We will return
to this question below.

3.2. The pretail tree. Consider the equation M `x = y, with ` ∈ N, for some
arbitrary, but fixed y in L̃n. In general, this equation need not have any solution
x ∈ L̃n. On the other hand, when there is a solution x ∈ L̃n, the set of all solutions
is precisely x + ker(M `), which has cardinality |ker(M `)|. If y is a periodic point,
the first case can never occur, as there is then at least one predecessor of y. Due
to the linearity of M , the structure of the set of pretails of a periodic point y must
be the same for all y ∈ per(M) (note that there is precisely one predecessor of y in
the periodic orbit, which might be y itself, while all points of the pretail except y
are from the complement of the periodic orbit).

Consequently, we can study the pretail structure for y = 0. Let us thus combine
all pretails of the fixed point 0 into a (directed) graph, called the pretail graph from
now on; see [47] for general background on graph theory. A single pretail is called
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Figure 1. The directed graph for the action of M = ( 4 0
1 4 ) on

the lattice L̃6. The matrix has three fixed points and two 3-cycles
(shown once each), while each periodic point has the same binary
tree of height 2 as pretail tree.

maximal when it is not contained in any longer one. By construction, there can be
no cycle in the pretail graph, while y = 0 plays a special role. Viewing each maximal
pretail of 0 as an ‘ancestral line’, we see that this approach defines a rooted tree
with root 0. Note that an isomorphic tree also ‘sits’ at every periodic point y.

Corollary 1. Every periodic point of M on L̃n has a directed pretail graph that is
isomorphic to that of the fixed point 0. Up to graph isomorphism, it thus suffices to
analyse the latter. By reversing the direction, it is a rooted tree with root 0. This
tree is trivial if and only if M is invertible on L̃n.

Two illustrative examples are shown in Figures 1 and 2. Each M defines a
unique (rooted) pretail tree on a given lattice. If vi denotes the number of nodes
(or vertices) of this tree with graph distance i from the root, we have v0 = 1 and∣∣ ker(M j)

∣∣ = v0 + v1 + · · ·+ vj (16)

for all j ≥ 0, where vi = 0 for all i larger than the maximal pretail length. Also,
one has

vj =
∣∣ ker(M j) \ ker(M j−1)

∣∣ =
∣∣ ker(M j)

∣∣− ∣∣ ker(M j−1)
∣∣ (17)

for j ≥ 1, where the second equality follows from the submodule property. Recall
that terminal nodes of a rooted tree (excluding the root in the trivial tree) are called

leaves. With this definition, the total number of leaves on L̃n is |L̃n \ML̃n|. For
i ∈ N, define wi to be the number of nodes with graph distance i from the root
that fail to be leaves, and complete this with w0 = 0 for the trivial tree and w0 = 1
otherwise. It is clear that this leads to

vi+1 = w0

(
wi
∣∣ ker(M)

∣∣− δi,0), (18)

via the number of solutions to Mx = 0 and the special role of the root, and induc-
tively to ∣∣ ker(M i+1)

∣∣ = (w0 + w1 + · · ·+ wi)
∣∣ ker(M)

∣∣ (19)

whenever w0 = 1, with both relations being valid for all i ≥ 0.

Lemma 2. If M acts on L̃n, its uniquely defined pretail tree of the fixed point 0
has height m ≥ 0, and the following properties are equivalent.
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Figure 2. The directed graph for the action of M = ( 0 12
1 6 ) on

the lattice L̃15. The only fixed point of M is 0, while it has two
2-cycles and five 4-cycles (shown once each only). All pretail trees
have the same height.

(i) All maximal pretails have the same length m;
(ii) One has vi = wi 6= 0 for all 0 ≤ i < m and wi = 0 for i ≥ m;

(iii) One has |ker(M i+1)| = |ker(M)| |ker(M i)| = |ker(M)|i+1 for all 0 ≤ i < m,
together with |ker(Mm+j)| = |ker(Mm)| for all j ≥ 0.

In particular, m is the integer from Fact 1.

Proof. By Corollary 1, the pretail tree is trivial (hence w0 = m = 0) if and only if

M is invertible on L̃n. Since all claims are clear for this case, let us now assume
that M is not invertible on L̃n.

All maximal pretails have the same length if and only if all leaves of the pretail
tree of 0 have the same graph distance from the root 0. Clearly, the latter must be
the height m of the tree. When M is not invertible on L̃n, the tree is not the trivial
one, so m ≥ 1. The equivalence of (i) and (ii) is then clear, since both conditions
characterise the fact that all leaves have distance m from the root.

The implication (ii) ⇒ (iii) can be seen as follows. The first claim is trivial for
i = 0, as ker(M0) = ker(1) = {0}. Assuming (ii), Eqns. (17) – (19) yield∣∣ ker(M i+1)

∣∣ =
∣∣ ker(M i)

∣∣+ wi
∣∣ ker(M)

∣∣
=
∣∣ ker(M i)

∣∣+
(
|kerM i| − |kerM i−1|

)∣∣ kerM
∣∣

for 1 ≤ i < m, which (inductively) reduces to the first condition of (iii), while the
second is clear from the meaning of m.

Conversely, the second condition of (iii) means wm+j = 0 for all j ≥ 0, while the
first condition, together with Eqns. (18) and (19), successively gives vi = wi for all
0 ≤ i < m.

On the lattice L̃pr , when |ker(M)| = p, one can say more.

Proposition 3. Consider the action of M on the lattice L̃pr . When |ker(M)| = p,

one has |ker(M i)| = pmin(i,m) for all i ≥ 0, where m is the integer from Fact 1 for
n = pr. This means vi = pi−1(p− 1) for 1 ≤ i ≤ m, and all maximal pretails share
the same length m.

Proof. By assumption, M is not invertible, and the last claim is obvious from
Lemma 2 in conjunction with Eq. (16). We thus need to prove the formula for
the cardinality of ker(M i) for arbitrary i ≥ 0.
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Figure 3. The pretail graph for Example 1, with coordinates for
the action of the matrix M on L̃8, where it is nilpotent with nil-
degree 4.

Since 0 is a fixed point of M , we clearly have v0 = 1 and v1 = p − 1, together
with the inequality 0 ≤ w1 ≤ p − 1. If w1 = 0, we have m = 1 and we are done.
Otherwise, ker(M) ( ker(M2), hence |ker(M2)| = pj for some j ≥ 2, as the kernel
is a subgroup of our lattice (which has cardinality prd). This forces w1 = p− 1 and
j = 2. More generally, when |ker(M i)| = pi for some 1 ≤ i < m, one cannot have
wi = 0, so that |ker(M i+1)| = pi+j for some j ≥ 1. Since now 0 ≤ wi ≤ pi−1(p−1),
the only possibility is j = 1 together with wi = pi−1(p− 1). This argument can be
repeated inductively until i = m is reached, with |ker(Mm+j)| = |ker(Mm)| for all
j ≥ 0.

In general, the maximal pretails need not share the same length, which means
that we still have to extend our point of view.

Example 1. Consider the matrix M = ( 4 4
1 4 ) on L̃8, where it is nilpotent (mod

8) with nil-degree 4. Since card(ker(M)) = 4, Proposition 3 does not apply. The
(directed) pretail graph spans the entire lattice and is shown in Figure 3, together



538 MICHAEL BAAKE, NATASCHA NEUMÄRKER AND JOHN A. G. ROBERTS

with the loop at 0 that marks this point as the root of the tree (which emerges from
the figure by removing this loop and reversing all arrows). ♦

So far, we have looked at a single lattice L̃n. However, any given matrix M
immediately defines a sequence of trees via L̃n with n ∈ N. When d = 2, the result
of [12, Thm. 2] implies the following result.

Corollary 2. Let M,M ′ ∈ Mat(2,Z) be two matrices with the same trace, deter-
minant and mgcd. Then, they have the same sequence of pretail trees on the lattices
L̃n.

3.3. Decomposition on L̃pr . When the integers u, v are coprime, one has Luv '
Lu ⊕ Lv, wherefore the action on Ln with n ∈ N is completely determined by that
on Lpr , for all pr||n. In particular, the pretail orbit structure on an arbitrary Ln
can be derived from that on the sublattices associated with the factors in the prime
factorisation of n.

Define Rr = Z/prZ, which is a local ring, with unique maximal ideal (p) = pRr.
The latter contains all zero divisors. By [33, Thm. X.4.4], we then know that
the two projective modules per(M) and ker(Mk) of Fact 2 are free, so each has a

basis. Consequently, one knows that the linear map on L̃pr defined by M induces

unique linear maps on Fix(Mk(r)) and ker(Mm(r)), and M is conjugate to the
direct sum of these maps, compare [1, Prop. 4.3.28]. Each of the latter, in turn,
admits a matrix representation with respect to any chosen basis of the corresponding
submodule. Different choices of bases lead to conjugate matrices, by an application
of [1, Prop. 4.3.23].

Corollary 3. On L̃pr , M is similar to a block diagonal matrix (A 0
0 B ) over Rr,

where A is invertible and B is nilpotent, the latter of nil-degree n(B) say. The block
matrices A and B are unique up to similarity. The direct sum from Fact 2 now
reads

L̃pr = Fix(Mord(A,pr))⊕ ker(Mn(B)),

where the concrete form of the exponents k and m of Fact 2 follows from the block
diagonal structure of M chosen. Here, Fix(Mord(A,pr)) ' Rd

′

r and ker(Mn(B)) '
Rd−d

′

r , where one has d′ = rank (per(M)) ≤ d.
Furthermore, d′ is independent of r. When comparing the above objects as mod-

ules over the ring Rs for different s, one has

rank1(per1(M)) = rankr(perr(M)) = d′ and

rank1(ker1(Mm(1))) = rankr(kerr(M
m(r))) = d− d′,

where an index s at per, ker or rank refers to Rs as the underlying ring.

Proof. The diagonal block-matrix structure is clear from [1, Props. 4.3.28 and
4.3.23], while the isomorphism claim follows from [33, Cor. III.4.3].

For the last claim, observe that A and B can be viewed as integer matrices
acting on Rd

′

r and Rd−d
′

r , respectively. Here, Bs = 0 mod pr for some s ∈ N and
gcd(det(A), p) = 1, because A is invertible mod pr and det(A) must be a unit in Rr.
But this means that the reduction of A mod p is also invertible over R1 = Z/pZ,
while the reduction of B mod p is still nilpotent. Consequently, these reductions
provide the blocks for the direct sum over L̃p, and the claim is obvious.

Since two free modules of the same rank are isomorphic [33, Cor. III.4.3], we also
have the following consequence.
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Corollary 4. One has the following isomorphisms of R1-modules (as Fp-vector
spaces),

perr(M)/p perr(M) ' per1(M) and kerr(M
m(r))/p kerr(M

m(r)) ' ker
(d)
1 (Mm(1)).

This implies∣∣perr(M)
∣∣ = prd

′
=
∣∣ per1(M)

∣∣r and
∣∣ kerr(M

m(r))
∣∣ = pr(d−d

′) =
∣∣ ker1(Mm(1))

∣∣r
for the cardinalities of the finite modules.

At this point, it is reasonable to link the properties of M on L̃pr to its minimal
polynomial over Fp.

Lemma 3. If M is similar mod p to the block diagonal matrix of Corollary 3, its
minimal polynomial over Fp is µM (x) = xsf(x), where f is a monic polynomial
of order k over Fp with f(0) 6= 0. When M is invertible, one has s = 0 and
k = gcd{` ∈ N | M ` ≡ 1 mod p}. When M is nilpotent, one has f = 1 together
with s = gcd{t ∈ N | M t ≡ 0 mod p}. In all remaining cases, s and k are the
smallest positive integers such that Bs ≡ 0 and Ak ≡ 1 mod p.

Proof. Recall from [34, Def. 3.3.2] that the order of a polynomial f ∈ Fp[x] with
f(0) 6= 0, denoted by ord(f, p), is the smallest integer ` > 0 such that f(x)|(x`−1).
When M is invertible and k as claimed, the polynomial xk−1 annihilates M . Since
µM (0) 6= 0 in our case, we have µM = f with f(x)|(xk−1), so that ord(f, p)|k by
[34, Lemma 3.3.6]. By construction, k is also the minimal positive integer such that
xk−1 annihilates M , hence k = ord(f, p).

When M is nilpotent, the claim is obvious, because 0 is then the only possible
root of the minimal polynomial over Fp, as all other elements of the splitting field
of f are units.

In all remaining cases, M is similar to A⊕B with A invertible and B nilpotent,
by Corollary 3. We thus know that µM (x)|xs(xk−1) with s and k as claimed,
since the latter annihilates both A and B. Observe that Bs(Bk−1) ≡ 0 mod p
means Bk+s ≡ Bs mod p. Since B is nilpotent, its powers cannot return to a
non-zero matrix, hence Bs ≡ 0 mod p. Similarly, As+k ≡ As mod p is equivalent
with Ak ≡ 1 mod p, as A is invertible. This shows that we must indeed have
µM (x) = xsf(x) with ord(f, p) = k.

3.4. Classification on L̃p. When we consider n = p, we can go one step further,
because Fp is a field and one can classify nilpotent matrices via their Jordan normal
form. This follows from the observation that 0 is the only possible eigenvalue.
Recall that an elementary shift matrix is an upper triangular matrix with entries
1 on the upper super-diagonal and 0 everywhere else (this includes the 0-matrix in
one dimension). An elementary shift matrix is nilpotent, with nil-degree equal to
its dimension. The following result is now a standard consequence of the Jordan
normal form over fields [27, 33].

Fact 3. The nilpotent matrices in Mat(d,Fp) are conjugate to block-diagonal ma-
trices, where each block is an elementary shift matrix.

Some of this structure survives also for general n. For instance, the 0-matrix in
dimension d ≥ 1 leads to the regular (nd − 1)-star as its pretail tree on L̃n. When

d ≥ 2, the d-dimensional elementary shift matrix, on L̃n, results in a semi-regular
tree with w0 = 1, w1 = n − 1 and wi = n for 2 ≤ i ≤ d − 1, while wj = 0
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for all j ≥ d. These trees have the property that all maximal pretails share the
same length, which is the nil-degree of the matrix. One can now go through all
possible block-diagonal combinations of such elementary shift matrices. This is a
combinatorial problem and gives the possible pretail trees over Fp.

As already suggested by Proposition 3, the structure of ker(M) plays an impor-
tant role for the structure of the pretail tree. Together with the linearity of M , it
constrains the class of trees that are isomorphic to the pretail tree of some integer
matrix. A more detailed analysis is contained in [36].

4. Symmetry and reversibility. Reversibility is an important concept in dy-
namics, compare [39] and references therein for background, and [20] for an early
study in continuous dynamics. Here, we focus on discrete dynamics, as induced by
toral auto- and endomorphisms.

A matrix M is called reversible, within a given or specified matrix group G, if it
is conjugate to its inverse within G. Clearly, this is only of interest when M2 6= 1.
To put this into perspective, one usually defines

S(M) = {G ∈ G | GMG−1 = M} and R(M) = {G ∈ G | GMG−1 = M±1}

as the symmetry and reversing symmetry groups of M ; see [11] and references
therein for background and [9, 10] for examples in our present context. In particular,
one always has R(M) = S(M) when M2 = 1 or when M is not reversible, while
R(M) is an extension of S(M) of index 2 otherwise.

Note that a nilpotent matrix M (or a matrix with nilpotent summand, as in
Corollary 3) cannot be reversible in this sense. However, they can still possess
interesting and revealing symmetry groups, although it is more natural to look at
the ring of matrices that commute with M in this case.

Example 2. Reconsider the matrix M = ( 4 4
1 4 ) from Example 1, and its action on

L̃8. Clearly, M commutes with every element of the ring Z/8Z [M ], which contains
64 elements. This follows from the existence of a cyclic vector, but can also be
checked by a simple direct calculation. Consequently, the symmetry group (in our
above sense) is the intersection of this ring with GL(8,Z/8Z), which results in

S(M) =
〈

( 1 4
1 1 ) , 3·1, 5·1

〉
' C8 × C2 × C2 ,

which is an Abelian group of order 32. The matrices in S(M) have either determi-
nant 1 or 5, with {A ∈ S(M) | det(A) = 1} ' C4 × C2 × C2.

One can now study the action of S(M) on the pretail graph of Figure 3, which
actually explains all its symmetries. ♦

In what follows, we derive certain general properties, where we focus on the
reversing symmetry group, with invertible matrices M in mind.

4.1. Reversibility of SL(2,Z)-matrices mod n. Recall the matrix mgcd from
Eq. (13), which is a conjugation invariant. It can be used to solve the reversibility
at hand as follows.

Theorem 1. Let M ∈ SL(2,Z) and n ∈ N be arbitrary. Then, the reduction of M
mod n is conjugate to its inverse within the group GL(2,Z/nZ). The action mod 1
of any M ∈ SL(2,Z) on Ln is thus reversible for all n ∈ N.

Moreover, if M ∈ SL(2,Z) has mgcd(M) = r 6= 0, its reduction mod n, for every
n ∈ N, possesses an involutory reversor.
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Proof. When M ∈ SL(2,Z), also its inverse is in SL(2,Z), and M and M−1 share
the same determinant and trace. Moreover, they also have the same mgcd, so that
the first claim follows from [12, Thm. 2] (or from Lemma 1). This immediately

implies, for all n ∈ N, the reversibility of the action mod n of M on the lattice L̃n,
so that the statement on the equivalent action of M mod 1 on Ln is clear.

Now, let M =
(
a b
c d

)
∈ SL(2,Z), so that M−1 =

(
d −b
−c a

)
, and M and M−1 share

the same determinant (1), trace (a+ d) and mgcd (r). Assume r 6= 0, let n ≥ 2 be
fixed and consider the matrices mod n. Recall the normal forms

N(M) =

(
a bc

r
r d

)
and N(M−1) =

(
d bc

r
r a

)
,

as defined in the proof of [12, Prop. 6], and note that they are not inverses of each
other. However, by [12, Prop. 5], there is some matrix Pn ∈ GL(2,Z/nZ) with

M = PnN(M)P−1n , hence we also have M−1 = Pn
(
N(M)

)−1
P−1n . Observe next

that (
N(M)

)−1
=

(
d − bc

r
−r a

)
= C

(
d bc

r
r a

)
C−1 = CN(M−1)C−1,

where C =
(
1 0
0 −1

)
is an involution. On the other hand, N(M) and N(M−1) satisfy

the assumptions of [12, Prop. 6], so that

N(M−1) = AN(M)A−1 with A =

(
1 d−a

r
0 1

)
,

where we globally have A =
(
1 0
0 −1

)
whenever d = a in the original matrix M . To-

gether with the previous observation, this implies
(
N(M)

)−1
= (CA)N(M)(CA)−1

where

CA =

(
1 d−a

r
0 −1

)
is an involution. Putting everything together, we have

M−1 =
(
Pn(CA)P−1n

)
M
(
Pn(CA)P−1n

)−1
,

which is the claimed conjugacy by an involution (which depends on n in general).

Note that the matrix M in Theorem 1 need not be reversible in GL(2,Z), as the
example M = ( 4 9

7 16 ) from [9, Ex. 2] shows. Nevertheless, for any M ∈ SL(2,Z)
with mgcd(M) 6= 0 and n ≥ 2, the (finite) reversing symmetry group of M within
GL(2,Z/nZ) is always of the form R(M) = S(M) o C2, with C2 being generated
by the involutory reversor. The structure of S(M) remains to be determined.

In the formulation of Theorem 1, we have focused on matrices M ∈ SL(2,Z)
because the condition tr(M) = tr(M−1) for a matrix M with det(M) = −1 forces
tr(M) = 0, which means that M is itself an involution (and thus trivially reversible
in GL(2,Z)). More interesting (beyond Theorem 1) is the question which matri-
ces M ∈ Mat(2,Z), when considered mod n for some n ∈ N, are reversible in
GL(2,Z/nZ). Let us begin with n = p being a prime, where Z/pZ ' Fp is the finite
field with p elements.

4.2. Reversibility in GL(2,Fp). Let us consider the symmetry and reversing sym-
metry group of an element of GL(2,Fp) with p prime, the latter being a group of
order

|GL(2,Fp)| = (p2 − 1)(p2 − p) = p(p− 1)2(p+ 1),
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compare Eq. (3). For our further discussion, it is better to distinguish p = 2 from
the odd primes. For convenience, we summarise the findings also in Table 4.2.

Example 3. For p = 2, one has GL(2,F2) = SL(2,F2) ' D3, the latter denoting the
dihedral group of order 6. There are now three conjugacy classes to consider, which
may be represented by the matrices 1, the involution R = ( 0 1

1 0 ), and the matrix
M = ( 1 1

1 0 ) of order 3. The corresponding cycle structure on L2 is encapsulated in
the generating polynomials Z2(t). They read

(1− t)4 , (1− t)2(1− t2) and (1− t)(1− t3),

respectively, and apply to entire conjugacy classes of matrices.
For the (reversing) symmetry groups, one clearly has R(1) = S(1) = GL(2,F2),

while R(R) = S(R) = 〈R〉 ' C2. The only nontrivial reversing symmetry group
occurs in the third case, where S(M) = 〈M 〉 ' C3. Since RMR = M2 = M−1,
one has R(M) = GL(2,F2) ' C3 oC2. So, all elements of GL(2,F2) are reversible,
though only M and M2 are nontrivial in this respect. ♦

For p an odd prime, one can use the normal forms for GL(2,Fp), see [33,
Ch. XVIII.12], to formulate the results; compare Table 4.2. We summarise the
reversibility and orbit structure here, but omit proofs whenever they emerge from
straight-forward calculations.

I. The first type of conjugacy class is represented by matrices M = a1 with
a ∈ F×p ' Cp−1. The order of M coincides with the order of a mod p, ord(a, p),
which divides p − 1. One clearly has R(M) = S(M) = GL(2,Fp) in this case,
either because a2 = 1 (so that M = M−1) or because a2 6= 1 (so that no reversors
are possible). The corresponding orbit structure on Lp comprises one fixed point

(x = 0) together with p2−1
ord(a,p) orbits of length ord(a, p). The non-trivial orbits

starting from some x 6= 0 must all be of this form, as x gets multiplied by a under
the action of M and returns to itself precisely when ak = 1, which first happens for
k = ord(a, p).

II. The next type of conjugacy class is represented by matrices M = ( a 1
0 a ) with

a ∈ F×p . Its symmetry group is given by

S(M) =
{(

α β
0 α

) ∣∣α ∈ F×p , β ∈ Fp
}
' Cp × Cp−1 ,

which is Abelian. As generators of the cyclic groups, one can choose ( 1 1
0 1 ), which

has order p in GL(2,Fp), and γ1, with γ a generating element of F×p . The reversible

cases are precisely the ones with a2 = 1 in Fp, hence with det(M) = 1. Here,
R = diag(1,−1) is a possible choice for the (involutory) reversor, so that we obtain
R(M) = S(M) o 〈R〉 ' (Cp × Cp−1) o C2.

A matrix M of type II (in its normal form as in Table 4.2) satisfies

Mk =

(
ak kak−1

0 ak

)
for k ≥ 0 ,

whence a point (x, 0) with x 6= 0 is fixed by Mk if and only if k = ord(a, p), and a
point (x, y) with xy 6= 0 if and only if p|k and ord(a, p)|k. Since ord(a, p)|(p − 1),
one has lcm(p, ord(a, p)) = 1, wherefore this gives p−1

ord(a,p) orbits of length p− 1 and
p·(p−1)
p·ord(a,p) = p−1

ord(a,p) orbits of length p ord(a, p) in total.

III. The third type of conjugacy class is represented by M = diag(a, b) with
a, b ∈ F×p and a 6= b. This results in S(M) = {diag(α, β) | α, β ∈ F×p } ' C2

p−1.
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Table 1. Summary of conjugacy structure for GL(2,Fp) via nor-
mal forms. Note that class III is absent for p = 2. The second
possibility for R(M) always applies when det(M) = 1. Only non-
trivial orbits are counted.

class I II III IV

normal form a1 ( a 1
0 a ) ( a 0

0 b )
(
0 −D
1 T

)
of matrix class a ∈ F×p a ∈ F×p a 6= b ∈ F×p z2 − Tz +D irred.

min. polynomial (z − a) (z − a)2 (z − a)(z − b) z2 − Tz +D

size of class 1 p2 − 1 p2 + p p2 − p
no. of classes p− 1 p− 1 1

2 (p− 1)(p− 2) 1
2 p(p− 1)

S(M) GL(2,Fp) Cp × Cp−1 Cp−1 × Cp−1 Cp2−1

R(M) S(M) S(M) or S(M) or S(M) or

S(M) o C2 S(M) o C2 S(M) o C2

orbit length ord(a, p) see text see text ord(χM , p)

orbit count p2−1
ord(a,p) see text see text p2−1

ord(χM ,p)

The condition for reversibility leads either to a2 = b2 = 1, hence to b = −a, or to
ab = 1. In the former case, M itself is an involution, so that R(M) = S(M) is once
again the trivial case, while det(M) = ab = 1 leads to genuine reversibility, with
involutory reversor R = ( 0 1

1 0 ) and hence to R(M) = S(M) o C2.
For a type III matrix, one has Mk(x, y)t = (akx, bky)t, so each of the p−1

non-zero points (x, 0)t is fixed by Mord(a,p); analogously, each of the p−1 non-
zero points (0, y)t is fixed by Mord(b,p). The remaining points that are non-zero in
both coordinates have period lcm(ord(a, p), ord(b, p)). In summary, this gives one
fixed point, p−1

ord(a,p) orbits of length ord(a, p), p−1
ord(b,p) orbits of length ord(b, p), and

(p−1)2
lcm(ord(a,p),ord(b,p)) orbits of length lcm(ord(a, p), ord(b, p)).

IV. Finally, the last type of conjugacy class can be represented by companion
matrices of the form

(
0 −D
1 T

)
with the condition that the characteristic polynomial

z2 − Tz +D is irreducible over Fp. The determinant and the trace satisfy D = ηη ′

and T = η+ η ′, where η and η ′ are not in Fp, but distinct elements of the splitting
field of the polynomial, which can be identified with Fp2 . One consequence is that
1 +D ± T = (1± η)(1± η ′) 6= 0.

The symmetry group is S(M) = {α1+γM | α, γ ∈ Fp, not both 0}, which is an
Abelian group with p2 − 1 elements. The order follows from the observation that
det(α1+γM) = (α+γη)(α+γη ′) vanishes only for α = γ = 0 in this case. In fact,

one has S(M) ' Cp2−1, as any matrix
(

0 −ηη ′
1 η+η ′

)
∈ GL(2,Fp) with η ∈ Fp2 \ Fp has

order p2 − 1 or possesses a root in GL(2,Fp) of that order. This relies on the facts
that we can always write η = λm, where λ is a generating element of F×p2 ' Cp2−1,

and that λλ′ and λ + λ′ are in Fp. This is a special case of Fact 9 below and of a
statement on the existence of roots in GL(d,Z); see Lemma 6 below.
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The condition for reversibility, in view of the above restriction on D and T , can
only be satisfied when D = 1, in which case R = ( 0 1

1 0 ) turns out to be an involutory
reversor, so that again R(M) = S(M) o C2 in this case.

Matrices with irreducible characteristic polynomial χM produce orbits of one
length r only, where r is the smallest integer such that χM (z)|(zr − 1), or, equiva-
lently, the order of its roots in the extension field Fp2 .

Putting these little exercises together gives the following result.

Theorem 2. A matrix M ∈ GL(2,Fp) is reversible within this group if and only
if M2 = 1 or det(M) = 1. Whenever M2 = 1, one has R(M) = S(M). If
det(M) = 1 with M2 6= 1, there exists an involutory reversor, and one has the
group R(M) = S(M) o C2.

Remark 2. Since Fp is a field, we can use the following dichotomy to understand the
structure of S(M), independently of the chosen normal forms. A GL(2,Fp)-matrix
M is either a multiple of the identity (which then commutes with every element of
Mat(2,Fp)) or it possesses a cyclic vector (meaning an element v ∈ F2

p such that

v and Mv form a basis of F2
p). In the latter case, M commutes precisely with the

matrices of the ring Fp[M ], and we have S(M) = Fp[M ]× = Fp[M ] ∩ GL(2,Fp).
This systematic approach provides an alternative (but equivalent) parametrisation
of the above results for the normal forms. ♦

The question for reversibility in GL(2,Z/nZ) with general n is more complicated.
The matrix M =

(
0 −4
1 0

)
is reversible over Z/3Z (where it is an example of type

IV), but fails to be reversible over Z/9Z, as one can check by a direct computation.
Here, zero divisors show up via non-zero matrices A with AM = M−1A, but all of
them satisfy det(A) ≡ 0 mod 9. In fact, one always has A(L9) ⊂ L3 here.

In general, the relation AMA−1 = M−1 with A,M ∈ GL(2,Z/nZ) implies
MAM = A and hence det(M)2 = 1, because det(A) ∈ (Z/nZ)×. Over Fp, this gives
det(M) = ±1, with reversibility precisely for det(M) = 1 according to Theorem 2.
In general, one has further solutions of the congruence m2 ≡ 1 mod n, such as
m = 3 for n = 8 or m = 4 for n = 15.

In any such case, M =
(
0 −m
1 0

)
is a matrix with M2 = −m1. Whenever one

has m 6≡ −1 mod n, M is of order 4 in GL(2,Z/nZ). It is easy to check that
RMR = M−1 =

(
0 1
−m 0

)
in GL(2,Z/nZ), with the involution R = ( 0 1

1 0 ). This
establishes reversibility with R(M) = S(M) o C2.

4.3. Some extensions to higher dimensions. In principle, a similar reasoning,
based on a normal form approach, can be applied to arbitrary dimensions. Over
the finite field Fp, normal forms are given by the rational canonical form and the
elementary divisor normal form (‘First’ and ‘Second natural normal form’ in the
terminology of [24, §6]), which are block diagonal matrices with companion matrices
on the diagonal.

The advantage of dealing with companion matrices is that one can employ the
theory of linear recursions: there is a one-to-one correspondence between the cycle
lengths modulo n ∈ N of a certain initial condition u = (u0, . . . , ud−1) under the
recursion induced by the polynomial f , and the period of the corresponding point ut

under the matrix iteration of Cf ; compare the final remark in [48], and Section 2.4.
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Working with a block diagonal matrix of this shape, the analysis can be done
block-wise; in particular, the symmetry groups are the direct product of the symme-
try groups of the component matrices on the diagonal, augmented by all additional
symmetries that emerge from equal blocks, which can be permuted.

Determining the period lengths associated with irreducible polynomials amounts
to finding their orders in the sense of [34, Def. 3.3.2]. The periods and their mul-
tiplicities arising from the powers of irreducible polynomials that show up in the
factorisation of the invariant factors (the elementary divisors) are then given by [48,
Thm. 4].

Extending the analysis to matrices over the local rings Z/prZ is more difficult.
In general, it seems hard to write down an exhaustive system of normal forms for
the similarity classes, and to decide whether given matrices are similar. However,
a solution for a large subclass of square matrices over the p-adic integers Zp and
the residue class rings Z/prZ is presented in [17]. For a polynomial f ∈ Zp[x]
whose reduction modulo p has no multiple factors, a complete system of d× d
matrix representatives X with respect to similarity that satisfy f(X) ≡ 0 mod pr

is given by all direct sums of companion matrices which are in agreement with the
factorisation of f mod p. For instance, if the reduction of the common characteristic
polynomial modulo p of two matrices does not have any quadratic factors, the
matrices are conjugate mod pr if and only if they are conjugate mod p [17, Thm. 3
and Corollary].

An exhaustive treatment of conjugacy classes of 3×3 matrices over an arbitrary
local principal ideal ring can be found in [4].

Remark 3. In [4], it is pointed out that 2 × 2 matrices over a local ring can be
decomposed into a scalar and a cyclic part. Over Z/prZ, this decomposition reads

M = d1 + p`C,

where p` = gcd(mgcd(M), pr) = pvp(mgcd(M)) with vp denoting the standard p-adic

valuation, unique d ∈ {
∑`−1
j=0 ajp

j | p - aj} and cyclic C ∈ Mat(2,Z/pr−`Z), which
is unique up to similarity. Moreover, C can be chosen as a companion matrix with
the appropriate trace and determinant.

Since d1 and C commute, powers of M can be expanded via the binomial the-
orem. Using that the binomials satisfy n

gcd(n,k) |
(
n
k

)
, the period per(x, pr) of all

x ∈ Lpr is bounded by

per(x, pr) ≤ ord(d, pr) · pr−`,
provided that 1 ≤ ` ≤ r. Let Πj : Z/prZ→ Z/pjZ denote the canonical projection,
and let Sj(A) be the symmetry group of an integer matrix A, viewed as a matrix

over Z/pjZ. Then, for p 6= 2 and ` ≥ 1, one obtains Sr(M) = Π−1` (S`(C)) from the
symmetry equations. ♦

4.4. Reversibility mod n. In this section, let M be a general integer matrix, with
determinant D.

Fact 4. If M ∈ Mat(d,Z) is reversible mod n, one has D2 ≡ 1 mod n. Moreover,
reversibility for infinitely many n implies D = 1 or D = −1.

Proof. The reversibility equation yields detM ≡ detM−1, hence D2 ≡ 1 mod n.
If D2−1 has infinitely many divisors, one has D2 = 1, hence D = 1 or D = −1.

Before we continue with some general result, let us pause to see what Fact 4
specifically implies for d = 2.
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Fact 5. If M ∈ Mat(2,Z) with D ≡ −1 mod n is reversible mod n, one has
2 tr(M) ≡ 0 mod n. In particular, tr(M) ≡ 0 mod n holds whenever n is odd.

Proof. The trace is a conjugacy invariant, so reversibility mod n implies the re-
lation tr(M) ≡ tr(M−1) mod n. The inversion formula for 2 × 2 matrices yields

tr(M−1) ≡ tr(M)
D ≡ − tr(M) mod n, and thus 2 tr(M) ≡ 0 mod n.

Fact 6. Consider M ∈ Mat(2,Z) with D ≡ −1 mod n. Then, M is an involution
mod n if and only if tr(M) ≡ 0 mod n.

Proof. Let M =
(
a b
c d

)
. With D ≡ −1, the inversion formula for M shows that

M ≡M−1 is equivalent to d ≡ −a. Thus, M2 ≡ 1 if and only if tr(M) ≡ 0.

The previous two facts imply

Corollary 5. Let M ∈ Mat(2,Z) be reversible mod n > 2 with D ≡ −1 mod n.
Then, M2 ≡ 1 mod n for n odd, and M2 ≡ 1 mod n/2 for n even.

Let us continue with the general arguments and formulate a necessary condition
for local reversibility.

Lemma 4. Let p 6= 2 be a prime. If M ∈ Mat(d,Z) is reversible mod pr, one has
D ≡ ±1 mod pr. If d = 2, M is reversible mod pr if and only if D ≡ 1 or M2 ≡ 1

mod pr.
If M ∈ Mat(d,Z) is reversible mod 2r, then D ≡ ±1 mod 2r−1. When d = 2

and M is reversible with D ≡ −1 mod 2r−1, one has M2 ≡ 1 mod 2r−2.

Proof. For p 6= 2, Fact 4 implies D2 ≡ 1 mod pr. Since p cannot divide both D− 1
and D + 1, one has pr|(D − 1) or pr|(D + 1), which gives the first claim. When
2r|(D− 1)(D+ 1), 2 divides one of the factors and 2r−1 the other one, so D ≡ 1 or
D ≡ −1 mod 2r−1. If D ≡ −1 mod 2r−1, Fact 5 gives 2 tr(M) ≡ 0 mod 2r−1 and
thus M2 ≡ 1 mod 2r−2 by Fact 6.

One immediate consequence for d = 2 is the following.

Corollary 6. If M ∈ GL(2,Z) with D = −1 is reversible for infinitely many
n ∈ N, one has M2 = 1.

Fact 7. Let A be an integer matrix whose determinant is coprime with n ∈ N. The
reduction of the inverse of A over Z/nZ, taken modulo k|n, is then the inverse of
A over Z/kZ.

Lemma 5. Let n = pr11 . . . prss be the prime decomposition of n ∈ N. Then, two
matrices M,M ′ ∈ Mat(d,Z) are conjugate mod n if and only if they are conjugate
mod prii for all 1 ≤ i ≤ s.

Proof. M ∼M ′ mod n means M ′ = AMA−1 for some A ∈ GL(n,Z), which implies
conjugacy mod k for all k|n.

For the converse, let Ai ∈ GL(d,Z/prii Z) denote the conjugating matrix mod
prii . The Chinese remainder theorem, applied to each component of the matrices Ai
and A−1i , respectively, gives matrices A and B that reduce to Ai and A−1i modulo
prii , respectively. By construction, AB ≡ 1 mod prii for all i, hence also AB ≡ 1

mod n and thus B = A−1 in GL(d,Z/nZ).

Proposition 4. With n as in Lemma 5, a matrix M ∈ Mat(d,Z) is reversible mod
n if and only if M is reversible mod prii for all 1 ≤ i ≤ s.
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Proof. The claim is a statement about the conjugacy of M and M−1 in the group
GL(d,Z/nZ), which is thus a consequence of Lemma 5. We just have to add that,
by Fact 7, the inverse of M mod n reduces to the inverse mod prii , so MR ≡ RM−1
mod prii for all i.

Corollary 7. Consider a matrix M ∈ Mat(2,Z) with D = det(M) and write
n = pr11 p

r2
2 . . . prss . When n is not divisible by 4, M is reversible mod n if and only

if, for each 1 ≤ i ≤ s, D ≡ 1 or M2 ≡ 1 mod prii . When n = 2r1pr22 . . . prss with
r1 ≥ 2, M is reversible mod n if and only if it is reversible mod 2r1 and, for all
i > 1, D ≡ 1 or M2 ≡ 1 mod prii .

Proof. According to Lemma 5, the matrix M is reversible mod n if and only if it is
reversible mod prii for all 1 ≤ i ≤ s. By Lemma 4, this is equivalent with D ≡ 1 or
M2 ≡ 1 mod prii for all i with 4 - prii .

Remark 4. To see that reversibility mod p for all primes p which divide n is not
sufficient for reversibility mod n, one can consider a locally reversible matrix M
with detM 6= 1: according to Fact 4, only finitely many n exist such that M is
reversible mod n, so for each prime p there must be a maximum r for which M is
reversible mod pr. Recalling an example from above, M =

(
0 −4
1 0

)
is reversible mod

3 but not mod 9 as can be verified by explicit calculation. It is an involution mod
5, hence also reversible mod 15, but not mod 45. ♦

Reversibility can be viewed as a structural property that reflects additional ‘reg-
ularity’ in the dynamics, in the sense that it typically reduces the spread in the
period distribution. For 2 × 2-matrices, the normal form approach shows that re-
versibility implies the existence of only one non-trivial period length on Lp; compare
our comments in Section 4.5.

4.5. Matrix order and symmetries over Fp. Let us now discuss the order of a
matrix M ∈ GL(d,Fp), with p a prime, in conjunction with the existence of roots
of M in that group. We begin by recalling the following result from [34, Thm. 2.14,
Cor. 2.15 and Cor. 2.16].

Fact 8. If f is an irreducible polynomial of degree d over Fp, its splitting field is

isomorphic with Fpd . There, it has the d distinct roots α, αp, . . . , αp
d−1

that are
conjugates and share the same order in (Fpd)×.

In particular, two irreducible polynomials over Fp of the same degree have iso-
morphic splitting fields.

From now on, we will identify isomorphic fields with each other. In particular,
we write Fpd for the splitting field of an irreducible polynomial of degree d over Fp.

Next, let K be an arbitrary finite field, consider an irreducible, monic polynomial
f ∈ K[x] of degree d, and let L be the splitting field of f . When λ1, λ2, . . . , λd are
the roots of f in L, one has the well-known factorisation

f(x) =

d∏
j=1

(x− λj) = xd − e1(λ1, . . . , λd) + . . .+ (−1)ded(λ1, . . . , λd), (20)

where the ei denote the elementary symmetric polynomials,

e1(x1, . . . , xd) = x1 + x2 + . . .+ xd , . . . , ed(x1, . . . , xd) = x1 · x2 · . . . · xd .
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The elementary symmetric polynomials, when evaluated at the roots of f , are fixed
under all Galois automorphisms of the field extension L/K, so that the following
property is clear.

Fact 9. An irreducible, monic polynomial f ∈ K[x] satisfies (20) over its splitting
field L. In particular, the elementary symmetric polynomials e1, . . . , ed, evaluated
at the d roots of f in L, are elements of K.

Let M be a d × d integer matrix with irreducible characteristic polynomial χM
over Fp. Let α be a root of χM in Fpd and λ a generating element of the unit group
(Fpd)×. Clearly, there is an n ∈ N with α = λn. By Fact 8, one has Fp(α) = Fpd =
Fp(λ), where the degree of the extension field over Fp equals d. Consequently, the
minimal polynomial of λ over Fp is an irreducible monic polynomial of degree d over
Fp, and the conjugates of α are powers of the conjugates of λ. Let α1, . . . , αd and
λ1, . . . , λd denote the respective collections of conjugates. Thus, over Fpd , one has
the matrix conjugacy

M ∼ diag(α1, . . . , αd) = diag(λ1, . . . , λd)
n ∼ C(f)n,

with f(x) ∈ Fp[x] as in (20) and C(f) denoting the companion matrix of f . Here, it
was exploited that a d× d matrix whose characteristic polynomial f has d distinct
roots is always similar to the companion matrix of f . Note that C(f) ∈ GL(d,Fp)
by Fact 9.

Now, M and C(f) are matrices over Fp that are conjugate over Fpd , so (by a
standard result in algebra, see [1, Thm. 5.3.15]) they are also conjugate over Fp,
which means that we have the relation

M = A−1C(f)nA = (A−1C(f)A)n =: Wn (21)

with some A ∈ GL(d,Fp). By similarity, one obtains ord(W ) = ord(C(f)) =
ord(diag(λ1, . . . , λd)) = pd − 1. This gives the following result.

Lemma 6. A matrix M ∈ GL(d,Fp) with irreducible characteristic polynomial has
either the maximally possible order pd−1, or admits an n-th root W ∈ GL(d,Fp) as

in (21). Here, n can be chosen as n = pd−1
ord(M) , so that the root has order pd−1.

Fact 10. Let A be a matrix over Fp with minimal polynomial of degree d. Then,
the ring

Fp[A] = {ξ11 + . . .+ ξdA
d−1 | ξj ∈ Fp}

has precisely pd elements, which correspond to the different d-tuples (ξ1, . . . , ξd).

Proof. Two distinct d-tuples producing the same matrix would give rise to a non-
trivial linear combination that vanishes, involving powers of A of degree d − 1 at
most, which contradicts the minimal polynomial having degree d.

Lemma 7. Let W,M ∈ GL(d,Fp) satisfy Wn = M and ord(W ) = pd − 1. Then,
Fp[M ] = Fp[W ] and

Fp[M ]× = Fp[M ] \ {0} = 〈W 〉 ' Cpd−1 ,

where 〈W 〉 denotes the cyclic group generated by W .

Proof. Clearly, Fp[M ] = Fp[Wn] ⊂ Fp[W ], while Fact 10 implies the relation
|Fp[M ]| = |Fp[W ]| = pd, whence we have equality. Further,

〈W 〉 ⊂ Fp[W ]× ⊂ Fp[W ] \ {0} = Fp[M ] \ {0},
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and again, comparing cardinalities, one finds |〈W 〉| = pd − 1 = |Fp[M ] \ {0}|, from
which the claim follows.

Let us summarise and extend the above arguments as follows.

Corollary 8. A d×d integer matrix M with irreducible characteristic polynomial
over the field Fp has a primitive root W ∈ GL(d,Fp) with ord(W ) = pd − 1.
Moreover, one then has Fp[M ]× = Fp[M ] \ {0} = 〈W 〉 ' Cpd−1. In particular,
S(M) ' Cpd−1 in this case.

More generally, we have S(M) = Fp[M ]× whenever the minimal polynomial has
degree d.

Proof. Since we work over the field Fp, the irreducibility of the characteristic poly-
nomial of M means that the minimal polynomial agrees with the characteristic
polynomial and has thus maximal degree d. This situation is equivalent with M
being cyclic [27, Thm. III.2]. By Thm. 17 of [27] and the Corollary following it,
we know that any matrix which commutes with M is a polynomial in M , so that
S(M) = Fp[M ]× is clear.

The claim for matrices M with an irreducible characteristic polynomial follows
by Lemmas 6 and 7.

When a matrix M ∈ Mat(d,Fp) fails to be cyclic, there are always commuting
matrices that are not elements of Fp[M ], see Thm. 19 of [27] and the following
Corollary. In such a case, S(M) is a true group extension of Fp[M ]×. The situation
is thus particularly simple for matrices M ∈ Mat(2,Fp): Either they are of the form
M = a1 (then with S(M) = GL(2,Fp)), or they are cyclic (then with the group
S(M) = Fp[M ]×).

Appendix: Two classic examples. If one reads through the literature, two
matrices are omnipresent as examples, the Arnold and the Fibonacci cat map. Still,
several aspects of them are unclear or conjectural, despite the effort of many. Let
us sum up some aspects, with focus on properties in line with our above reasoning.

A.1. Arnold’s cat map. Here, we collect some results for the classic matrix MA =
( 2 1
1 1 ) ∈ SL(2,Z) in an informal manner. This case was studied in [37, 21, 25] and

appeared in many other articles as main example. It was introduced in [3, Example
1.16] as a paradigm of (discrete) hyperbolic dynamics.

The integer matrix MA is reversible within the group GL(2,Z), with a reversor of
order 4, but none of order 2. One has S(MA) ' C2×C∞, where C2 = {±1} and the
infinite cyclic group is generated by the unique square root of MA in GL(2,Z) (see
below), while R(MA) = S(MA) o C4; see [9] for more. In particular, MA inherits
local reversibility in GL(2,Z/pZ) for all primes p from its ‘global’ reversibility within
GL(2,Z).

It was shown in [25] that MA, except for the trivial fixed point 0, has orbits of
only one period length on each prime lattice Lp with p 6= 5. In view of the normal
forms, this is clear whenever the characteristic polynomial is irreducible. However, a
matrix of type III from Table 4.2 has reducible characteristic polynomial and occurs
for primes with

(
5
p

)
= −1. Here, different orbit lengths would still be possible in

general, but reversibility forces the two roots to be multiplicative inverses of one
another and thus to have the same order modulo p.
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The iteration numbers are um = f2m, where the fk are the Fibonacci numbers,
defined by the recursion fk+1 = fk + fk−1 for k ∈ N with initial conditions f0 = 0
and f1 = 1. Since mgcd(MA) = 1, Proposition 2 implies

ord(MA, n) = κA(n) = period
{

(f2m)m≥0 mod n
}
,

where the periods for prime powers (with r ∈ N) are given by

κA(2r) = 3 · 2max{0,r−2} and κA(5r) = 10 · 5r−1

together with
κA(pr) = pr−1 κA(p)

for all remaining plateau-free primes. It has been conjectured that this covers all
primes [44]. No exception is known to date; the conjecture was tested for all p < 108

in [5]. Note that each individual prime can be analysed on the basis of Proposition 1.
The periods mod p are κA(2) = 3, κA(5) = 10, together with

κA(p) =
p−

(
5
p

)
2mp − 1

2

(
1−

(
5
p

))
for odd primes p 6= 5, where

(
5
p

)
denotes the Legendre symbol and mp ∈ N is

a characteristic integer that covers the possible order reduction. It is 1 in ‘most’
cases (in the sense of a density definition), but there are infinitely many cases with
mp > 1; this integer is tabulated to some extent in [44, 25].

Let us write down the generating polynomials for the distribution of cycles on
the lattices Ln. Once again, this is only necessary for n a prime power. We use a
formulation with a factorisation that shows the structure of orbits on Lpr \ Lpr−1 .
In the notation of [12], one finds Z1(t) = (1− t) and

Z2r (t) = (1− t)(1− t3)

r−2∏
`=0

(
1− t3·2

`)4·2`
with r ≥ 1 for the prime p = 2, as well as

Z5r (t) = (1− t)
r−1∏
`=0

(
(1− t2·5

`

)(1− t10·5
`

)
)2·5`

with r ≥ 1 for p = 5. As usual, we adopt the convention to treat an empty product
as 1. The remaining polynomials read

Zpr (t) = (1− t)
r−1∏
`=0

(
1− tκA(p)p

`) p2−1
κ
A
(p)

p`

,

as long as the plateau phenomenon is absent (see above).

A.2. Fibonacci cat map. Closely related is the matrix MF = ( 1 1
1 0 ) ∈ GL(2,Z),

which is the unique square root of the Arnold cat map MA in GL(2,Z). It appears
in numerous applications; see [38, 6, 7, 16] and references therein for some of them.
Here, the iteration numbers are the Fibonacci numbers themselves, and the periods
are the so-called Pisano periods; compare [42, A001175] and references given there,
or [44].

The matrix MF is not reversible in GL(2,Z) (while its square MA is, see above),
and has the same symmetry group as MA. In fact, ±MF are the only roots of MA in
GL(2,Z). This situation implies that the orbit structure for MF must be such that
the iteration of its square gives back the counts we saw in the previous example.



ORBIT STRUCTURE AND SYMMETRIES OF TORAL ENDOMORPHISMS 551

For prime powers pr, with r ∈ N, one finds κF(5r) = 20 · 5r−1 together with

κF(pr) = pr−1 κF(p)

for all remaining primes, with the same proviso as for the Arnold cat map. The
periods κF(p) are given by κF(2) = κA(2) = 3 together with

κF(p) = 2 κA(p)

for all odd primes, which is not surprising in view of the relation between the two
matrices MF and MA.

The orbit distribution is more complicated in this case, as usually orbits of two
possible lengths arise in each step. One finds

Z2r (t) = (1− t)
r−1∏
`=0

(
1− t3·2

`)2`
and

Z5r (t) = (1− t)
r−1∏
`=0

(
(1− t4·5

`

)(1− t20·5
`

)
)5`

for the primes 2 and 5 (with r ∈ N0 as before), as well as

Zpr (t) = (1− t)
r−1∏
`=0

(
1− t 1

2 κF(p)p
`)2np(1− tκF(p)p

`) p2−1
κ
F
(p)

p`−np

for all remaining primes that are free of the plateau phenomenon (which possibly
means all, see above). Here, np ∈ N0 is a characteristic integer which often takes
the values 1 or 0, but does not seem to be bounded.
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