
Density and Copula Estimation using Penalized Spline
Smoothing

Dissertation

zur Erlangung des Grades eines Doktors

der Wirtschaftswissenschaften (Dr. rer. pol.)

der Fakultät für Wirtschaftswissenschaften

der Universität Bielefeld

vorgelegt von

Dipl.-Wirt. Math. Christian Schellhase

Bielefeld, im Mai 2012



Dekan: Prof. Dr. Herbert Dawid
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ÂICkernel − AICtrue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii
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4 and d = 4, D = 8, respectively, ÂICbernstein − AICtrue and finally
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1 Introduction

Estimating the unknown probability distribution and density functions of univariate

or multivariate data is a demanding task in sciences, e.g. statistics or biometrics,

for many years. Of course, observed data appear without providing their theoretical

distributions. Starting with univariate observed data, it is the aim of density estimation

to find any continuous density function f(·), such that

∫
f(x) d(x) = 1 (1.1)

with f(x) ≥ 0. Hence, a non-negative probability mass is assigned to each observed x.

There are parametric and non-parametric approaches to model the density function.

Fitting the parameters of any known distribution function to the observed data, using

e.g. maximum likelihood theory, is possible, but may be misleading as data usually

appear different to any theoretical parametric distribution function, e.g. normal distri-

bution. That is, these approaches estimate the optimal distribution parameters, e.g.

mean and variance in this case of the normal distribution. It is the idea of nonparamet-

ric estimation approaches to describe the empirical distribution of data without any a

priori knowledge of the theoretical distribution. A famous nonparametric estimation

method is the kernel density estimation approach, which will also be considered in this

thesis.

Usually a univariate analysis of real world phenomena is not satisfying as one is also

interested in dependence structures and causal relationships. A first step towards

this direction is the extension of univariate density estimation to multivariate density

estimation. For a p-variate random variable, the multivariate density is given by

∫
. . .

∫
f(x1, . . . , xp) d(x1) . . . d(xp) = 1.

Even though this formula is a straightforward extension of (1.1), the statistical implica-

tions are much more complex. Especially, due to the increasing amount of huge datasets

becoming available during the last decades, e.g. from financial markets, population de-

velopment or biological experiments, many applications in the multivariate case focus

on discovering interactions and dependencies between marginal observations. In this
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1 Introduction

thesis penalized smoothing splines, also denoted as P-splines or penalized splines, are

the main tool for non-parametric density estimation, as they allow for flexible and

smooth estimation of univariate and multivariate density and distribution functions.

1.1 Motivation

Penalized smoothing splines have developed rapidly in scientific literature during the

past decades. A major benefit of penalized smoothing splines is, that the estima-

tion approaches can be constructed without any a priori assumptions on distribution

functions and thus without any restriction with respect to the latter, although some

regularity conditions (e.g. smoothness) have to be fulfilled. This is also valid for other

non-parametric approaches, e.g. kernel density estimation. Hence, the investigated ap-

proaches in this thesis do not estimate any parameters of given distribution functions,

but estimate a univariate density by maximizing a constructed likelihood function in

combination with a penalization approach.

This thesis also covers an extension of the univariate case by investigation of copula

distribution and copula density, which are used to analyse dependencies of observed

data. The established estimation approaches of multivariate copula distributions es-

timate parameters using maximum likelihood theory, that are correlation parameters

and e.g. degrees of freedom in the case of a multivariate t-distribution. Additionally,

the margins of copula distributions are often estimated parametrically in a foregoing

separated estimation step. In the approach of this thesis, the marginal distributions

and the joint copula distribution can be estimated in one step using penalized smooth-

ing splines in combination with quadratic programming with respect to some side

constraints. Multivariate densities can be decomposed into a product of marginal and

conditional densities as

f(x1, . . . , xp) = f(xp|x1, . . . , xp−1)·f(x1, . . . , xp−1) = · · · =

p∏

i=2

f(xi|x1, . . . , xi−1)·f(x1).

Sklar (1959) provided a theorem, that allows for a decomposition of this joint p-variate

density into bivariate copula density functions, which are often denoted as pair-copula

densities. This idea is the foundation for dependence vines, that is each bivariate

density function has to be specified to describe the joint (copula) density function,

following a given decomposition. In common literature, parametric procedures, based

on maximum likelihood theory are used to estimate the optimal parameter(s) for each

possible copula family, where also the determination of the optimal copula family is

not negligible. Each pair-copula density can be determined using penalized smoothing

2



1 Introduction

splines without restrictions on any theoretical copula distribution function.

Especially, the combination of nonparametric univariate density estimators with non-

parametric copula density estimators is investigated, whereas the approaches are based

on penalized smoothing splines. That is, the marginal distributions are estimated sep-

arately in a foregoing step and the copula density is estimated using the latter results.

To the best of my knowledge, this combined application of penalized spline smoothing

techniques is new to literature.

1.2 Outline

Beside the introduction, this thesis consists of six chapters. The second chapter covers

the statistical methods and concepts used in the following chapters. Penalized spline

smoothing is explained. This part focuses on using B-splines as basis functions for pe-

nalized smoothing splines as well as on presenting penalized splines as a linear mixed

model. Additionally, an overview of kernel density estimation and the underlying ideas

in the univariate and multivariate case, is given. The degree of smoothness of kernel

density functions is determined by a smoothing parameter. The smoothing parameter

selecting by cross validation is also exemplified in this thesis. All these techniques are

used in the simulation studies in Chapter 3 and Chapter 4 to compare the performance

of the penalized smoothing splines density estimation approach. Moreover, Chapter 2

describes the concept and idea of copula theory, presenting the best known copula fam-

ilies and their parametric estimation approach. The last part of the chapter introduces

dependence vines and the corresponding parametric estimation, required for Chapter

5.

Chapter 3 introduces an application of penalized splines to estimate univariate density

functions, representing the unknown density by a convex mixture of basis densities.

The weights of the basis functions are estimated in a penalized form. The considered

approach is compared with classical kernel density estimation and further estimation

approaches. Penalized smoothing splines provide by an integration of the basic func-

tions also the estimated distribution of the corresponding estimated density. Moreover,

the approach is extended to grouped data depending on categorical covariates. This

allows for a test of equality of the grouped densities as an alternative to the classi-

cal Kolmogorov-Smirnov test. Simulations compare the investigated approach with

existing univariate approaches and show promising results.

Chapter 4 discusses an approach to estimate multivariate copula density functions using

penalized smoothing splines. The estimate of high-dimensional density functions using

full tensor products of B-spline basis functions is introduced. The concept of sparse

3



1 Introduction

grids (see Zenger 1991) is applied, which equals to a reduced tensor product. The spline

coefficients are accordingly penalized to achieve a smooth fit. It is the innovative

aspect of the presented approach to estimate the marginal and joint density in one

step, using quadratic programming with linear constraints for the spline coefficients.

Simulation studies for samples from Archimedean and elliptical copula families compare

the introduced approach with the classical multivariate kernel density estimator. The

results of the penalized splines outperform the competitor.

In Chapter 5, dependence vines are investigated, especially D-vines which follow a spe-

cial decomposition of the joint density. In this chapter a modification of the penalized

high-dimensional copula estimator, presented in Chapter 4, is used in the bivariate

case. That is the joint density is estimated by estimating the pair-copula densities,

due to the recursive dependence structure given by a D-vine. Additionally, simulations

compare the parametric estimation of D-vines with the presented approach and show

an equivalent behaviour.

Chapter 6 presents an extension, combining the univariate density estimation approach

from Chapter 3 and the copula density estimator investigated in Chapter 4 for ex-

change rate data, which are also used in Chapter 4. This application outperforms the

approaches considered in Chapter 4.

This thesis uses the software R (see R Development Core Team 2011) for the simulation

studies. Furthermore, the investigated approaches using penalized spline smoothing in

Chapter 3, 4 and 5 are implemented in R packages.
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2 Theoretical Background

The main focus within this thesis is the estimation of densities or distributions of

univariate and multivariate data using the technique of penalized splines. First, the

idea and principle of penalized splines are presented in Section 2.1. Then, density and

copula estimation in general are described in Section 2.2 and Section 2.3. Finally the

idea of dependence vines, especially D-vines are, discussed in Section 2.4.

2.1 Penalized Splines

This chapter presents the principle of penalized splines, following Green and Silverman

(1994), Ruppert, Wand, and Carroll (2003), Fahrmeir, Kneib, and Lang (2007) and

Krivobokova (2006). The underlying idea is explained by starting with a response

y = (y1, . . . , yn) and a single covariate x = (x1, . . . , xn). This concept is easily extended

to a multivariate setup, which is often called (generalized) additive model (see Wood

2006). The extension to a generalized model is not mentioned in this introduction,

because the applications in the following chapters of this thesis do not use any specific

distributional assumptions.

In the context of classical linear models, the regression model yi = β0 + β1xi + ǫi

describes a linear relationship between x and y. Penalized splines offer a technique to

model a more flexible smooth function f(x), such that

yi = f(xi) + ǫi (2.1)

with ǫi ∼ N(0, σ2) for i = 1, . . . , n. A function f is usually called smooth, when it is

at least twice continuously differentiable. The main idea is to separate the observed

range of data x ∈ [a, b], into sections, fitting a twice continuously differentiable spline

function in each section. The intersecting points of these sections are called knots,

noted as a=µ1 < · · · < µm = b. Their number m determines the amount of flexibility,

allowed in the functional relationship. In addition, a spline of degree l consists of

polynomials of degree l or less, that means l determines the degree of differentiability

of f . That is, polynomial splines φk, k = 1, . . . , m, fulfilling these constraints are used

for the estimation. Usually, quadratic or cubic polynomial splines are used in many

5



2 Theoretical Background

applications.

Within this framework, f in (2.1) can be written as weighted sum of basis functions

φk, k = 1, . . . , m, that is

f(x) =

m∑

k=1

ckφk(x), (2.2)

where ck, k = 1, . . . , m are called basis coefficients. The model equation (2.1) can be

rewritten as

y = f(x) + ǫ = Φ(x)c + ǫ (2.3)

with c = (c1, . . . , cm)T as vector of the coefficients, the design matrix Φ(x) = (φ1(x),

. . . , φm(x)) and vector of the residuals ǫ = (ǫ1, . . . , ǫn). The model (2.3) is a parametric

model, that is optimal weights ck can be estimated using the ordinary least-squares

estimator. Hence, the optimal weights results as

ĉ = (Φ(x)TΦ(x))−1Φ(x)T y.

Assuming a normal distribution of the response y, we use the following model

y ∼ N(Φ(x)c, σ2
ǫ In)

with the n× n identity matrix In and a constant σ2
ǫ .

2.1.1 Spline Bases

There are several possibilities to choose a type of basis functions for φk in (2.2). Penal-

ized splines as referred to Eilers and Marx (1996) are based on B-splines basis functions,

introduced by de Boor (1978) and described later on. B-spline bases are constructed

easily and have numerical and practical advantages compared with other basis func-

tions as e.g. truncated polynomials. Wood (2006) gives an introduction to so called

thin plate splines, which have some advantages when estimating high dimensional func-

tions, but will not be discussed in detail in this thesis. Moreover, there exist radial

basis functions or natural cubic splines (see Ruppert, Wand, and Carroll 2003), which

are also not considered in detail in this thesis.

The easiest extension of a parametric linear model is done using the basis of truncated

polynomials. That is, the model using truncated polynomials of degree l for m knots,

separating the support [a,b] of x, such that a = µ1 < · · · < µm = b is given by

yi = c0 + c1xi + · · ·+ cl+1x
l
i + cl+2(xi − µ2)

l
+ + · · ·+ cl+m−1(xi − µm−1)

l
+ + ǫi (2.4)
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Figure 2.1: Truncated polynomials basis of degree l = 1 with equidistant knots.

with the truncated polynomials

(x− µj)
l
+ =





(x− µj)
l x ≥ µj

0 else
.

So, the model consists of l + 1 polynomials and m − 2 truncated polynomials, such

that d = l + m − 1 basis functions exist. Analogously to the linear model, the basis

functions are noted as design matrix

Φ(x) =




1 x1 . . . xl1 (x1 − µ2)
l
+ . . . (x1 − µm−1)

l
+

...
...

1 xn . . . xln (xn − µ2)
l
+ . . . (xn − µm−1)

l
+




of dimension n× d with corresponding coefficient vector c = (c1, . . . , cd). Within this

framework, the truncated polynomials are easily implemented, but they are not always

numerically stable, when penalization concepts are introduced later. Figure 2.1 shows

an example of linear truncated polynomials with equidistant knots.

An alternative to truncated polynomials are B-splines. Following de Boor (1978), the

j-th B-spline basis of degree l + 1 is defined as

Bl
j(x) =

x− µj
µj+1 − µj

Bl−1
j (x) +

µj+l+1 − u

µj+l+1 − µj+1

Bl−1
j+1(x),

with B0
j (x) = 1[µj ,µj+1)(x) and knots µj, j = 1, . . . , m. Eilers and Marx (2010) show,

that B-splines can be computed by differencing of corresponding truncated polynomials.
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Figure 2.2: B-spline basis of degree l = 2 with equidistant knots.

B-splines are considered, because they have many desirable attributes (see de Boor

1978 or Eilers and Marx 1996). First for a B-spline of degree l, only l + 2 knots

build the support of a single B-spline. That is, the support is bounded, in contrast to

e.g. truncated polynomials. The polynomial pieces join at q knots and at the joining

points, derivatives up to order l − 1 are continuous. Moreover, B-splines create a

partition of 1 and each B-spline overlaps only with 2l + 2 neighbouring B-splines. So,

for the construction of a B-spline basis of degree l, there are m+ 2l + 1 knots needed.

Furthermore, the co-domain of B-splines is limited and derivatives of the j-th B-spline

are easily calculated as

∂

∂x
Bl
j(x) = l ·

(
1

µj+l − µj
Bl−1
j (x) − 1

µj+l+1 − µj+1

Bl−1
j+1(x)

)
.

B-splines are constructed, such that the piecewise polynomials are fitted smoothly in

the knots. That is, a B-spline basis consists of l+ 1 polynomials of degree l, which are

l − 1 times continuously differentiable, see Eilers and Marx (1996).

These facts have numerical and therefore computational advantages compared with

other types of basis functions. The location and the amount of knots mu for a B-spline

basis have to be chosen adequately. In the context of penalized splines, Ruppert,

Wand, and Carroll (2003) suggest to set 20 up to 40 knots. This amount of knots

assures enough flexibility to describe the data. For the number of knots Ruppert,

Wand, and Carroll (2003) suggest to use the rule

m = min

(
1

4
× number of unique xi, 35

)

8



2 Theoretical Background

and recommend to place the knots µ by

µk =

(
k + 1

m+ 2

)
th sample quantile of the unique xi,

for k = 1, . . . , m. These rules suggest choosing the knots depending on the data x.

The amount of the knots steers the estimation, so that the fit is flexible enough to

describe the structure of data x, whereas a sparse amount of knots may not be flexible

enough. Of course, the placement of knots can be done in different ways. In many

applications, the locations are chosen equidistantly, what allows numerical inferences

in further applications. The presented approaches in the further chapter of this thesis

use equidistant knots, too. Figure 2.2 shows an example of B-splines with degree 2

with equidistant knots.

The corresponding design matrix for B-spline basis functions Bl
j is given by

Φ(x) =




Bl
1(x1) . . . Bl

d(x1)
...

...

Bl
1(xn) . . . Bl

d(xn)


 ,

which consists of d = l + m − 1 basis functions. To show the construction principle

of B-splines by differencing corresponding truncated polynomials, we have to add 2l

truncated polynomials. We need 2l additional knots outside the support of y, due

to the recursive definition for the construction of a complete B-spline basis. Further

details are available in Ruppert, Wand, and Carroll (2003) and Eilers and Marx (2010).

Bernstein polynomials are another possible class of basis functions for spline smoothing.

The Bernstein polynomial of degree K is defined as

φ̃Kk(u) =

(
K

k

)
uk(1 − u)K−k (2.5)

for k = 0, . . . , K and u ∈ [0, 1]. Considering the K + 1 Bernstein polynomials (2.5) of

degree K for k = 0, . . . , K, they form a partition of unity, that is they sum to one for

all values of u. Any Bernstein polynomial of degree K can be written in the terms of

the power basis {1, u, u2, u3, . . . , uK}, that is (see Doha, Bhrawy, and Saker 2011)

φ̃Kk(u) =

K∑

i=k

(−1)i−k
(
K

i

)(
i

k

)
ui.

Especially, the B-spline basis function BK
j (u) coincides with Bernstein polynomial

φ̃Kk(u) for j = 0, . . . , K and u ∈ [0, 1], if the B-spline basis is constructed with 2n

9
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Figure 2.3: Standardized Bernstein polynomials with K = 7.

knots µ1 = · · · = µn = 0 and µn+1 = · · · = µ2n = 1 (see Prautzsch, Boehm, and

Paluszny 2002). The integration in the range of [0, 1] of Bernstein polynomial (2.5) of

order K results in the definite integral, that is (see Doha, Bhrawy, and Saker 2011)

∫ 1

0

φ̃Kk(u) =
1

K + 1
for k = 0, . . . , K.

Normalization of (2.5) with factor (K + 1) leads to the basis φK(u) = (φK0(u),

. . . , φKK(u)) of standardized Bernstein polynomials, defined as

φKk(u) = (K + 1)

(
K

k

)
uk(1 − u)K−k. (2.6)

That is φKk(u) is non-negative and normalized to be a density. Moreover, it follows

that (2.6) is a Beta distribution and
∫ 1

0
φKk(u) du = 1. Figure 2.3 shows normalized

Bernstein polynomials of degree K = 7.

2.1.2 Penalization

The fit of (2.2) may be wiggly, due to a large number of basis functions. To ensure

a smooth and nice fit of the data in (2.2), a roughness penalty is introduced. The

penalty for the truncated polynomials (2.4) is defined as
∑d

j=l+2 c
2
j , that is penalizing

too much variability of the truncated polynomials. Adding this penalty term into (2.2),

10



2 Theoretical Background

the penalized least squares function minimizes

n∑

i=1

{yi −
d∑

k=1

φk(xi)ck}2 + λ
d∑

j=l+2

c2j ,

for penalty parameter λ, controlling the amount of smoothing. The penalty term is

usually noted as

λ
d∑

j=l+2

c2j = λcTDc

with penalty matrix D = blockdiag(0(l+1)×(l+1), I(m−2)) . Commonly, the integrated

squared second order derivative of f is used as penalty for B-splines basis functions,

because the second order derivative is a suitable measure for the curvature of a f , that

is the penalty term results as

λ

∫
(f ′′(z))2 dz.

This idea of penalized spline smoothing traces back to O’Sullivan (1986). A penaliza-

tion concept for B-splines, based on penalizing differences of the basis coefficients, is

presented in Eilers and Marx (1996). They proposed to base the penalty on second

order differences of the coefficients. The difference operator of order a, is defined as

∆1ck = ck − ck−1

∆2ck = ∆1∆1ck = ∆1(ck − ck−1) = ck − 2ck−1 + ck−2

... =
...

∆ack = ∆a−1ck − ∆a−1ck−1.

For a = 2, the second order difference matrix L2 for a B-spline basis with d basis

functions equals

L2 =




1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1



, (2.7)

with L2 is (d − 2) × d dimensional. The penalty term for second order differences is

given by

λ

d∑

k=l+1

(∆2ck)
2 = λcTDc (2.8)

11
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with d× d dimensional penalty matrix

D = (L2)TL2. (2.9)

Adding the penalty term (2.8) to (2.2), the penalized least squares function results as

n∑

i=1

{yi −
d∑

k=1

φk(xi)ck}2 + λcTDc.

In summary, the corresponding penalized least squares function for truncated polyno-

mials and B-splines arise identically. That is, the estimator for the optimal coefficients

ĉ using truncated polynomials or B-splines results in

ĉ = (Φ(x)TΦ(x) + λD)−1Φ(x)T y. (2.10)

Penalized splines are often titled as non-parametric models to highlight the flexibility

of the approach in contrast to the classical linear model. Comparing the B-splines

with the truncated polynomials, the locally bounded support of the B-spline functions

may be advantageous, e.g. for numerical implementations. Additionally, for a large

number of knots and a smoothing parameter close to zero (Φ(x)TΦ(x) +λD)−1 can be

incomputable, see Ruppert, Wand, and Carroll (2003) for an algorithm, tackling this

problem.

For further considerations, the concept of the hat matrix from the linear model is

extended to penalized smoothing splines. The smoother matrix Sλ due to (2.10) results

as

Sλ = Φ(x)(Φ(x)−1Φ(x) + λD)−1Φ(x)T . (2.11)

The fitted values f̂ result by using (2.11) as

f̂ = Sλy = Φ(x)(Φ(x)−1Φ(x) + λD)−1Φ(x)T y (2.12)

with penalized log-likelihood function

l(c) = log

{
n∑

i=1

{yi −
d∑

k=1

φk(xi)ck}2 + λcTDc

}
. (2.13)

Maximizing of (2.13) results in the optimal coefficients c of the penalized spline for

a given penalty parameter λ. The selection of an optimal λ is discussed in the next

subsection. The definition of the degrees of freedom is adopted to describe the effective

number of fitted parameters. For penalized splines, the following relation can be shown

12
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(see Fahrmeir, Kneib, and Lang 2007)

dffit(Sλ) = tr(Sλ) = tr
(
Φ(x)TΦ(x)(Φ(x)TΦ(x) + λD)−1

)
. (2.14)

For a penalized spline with λ = 0, m knots and splines of degree l, it follows tr(S0) =

l + 1 + m, whereas tr(Sλ) → l + 1 as λ → ∞. So, l + 1 ≤ dffit(Sλ) ≤ l + 1 + m (see

Ruppert, Wand, and Carroll (2003)). Alternatively, the residual degrees of freedom

are defined as

dfres = n− 2tr(Sλ) + tr(SλSλ
T )

which is equivalently transformed to

n− dfres = 2tr(Sλ) − tr(SλSλ
T ). (2.15)

Both measures (2.14) and (2.15) coincide for parametric regression models fitted by or-

dinary least squares, because SλSλ
T = Sλ. But these measures differ for nonparametric

models for ’mid-size’ smoothing, whereas for low or high penalization both definitions

tend to coincide. In the case of none penalization and infinite penalization, the fits

incline to parametric regression fits.

2.1.3 Smoothing Parameter Selection

The quality and preciseness of the estimation (2.12) depends considerably on the

penalty term λ. Therefore, the selection of the optimal smoothing parameter λ is dis-

cussed in this subsection. Intuitively, the mean squared error (MSE) is a well-known

measure for the goodness of an estimated function f̂(x), that is the MSE is defined as

MSE(f̂(x)) =
(
E(f̂(x) − f(x))

)2

+ var
(
f̂(x)

)
. (2.16)

In (2.16), the first term reflects the squared bias and the second the variance of f̂(x).

But squared bias and variance in (2.16) can not be simultaneously minimized, reflecting

the bias-variance trade-off for penalized spline smoothing. Choosing larger values of

λ leads to a smaller variance, but increased bias. Reducing the value of λ results in

the converse, so a greater variance and smaller bias. Therefore, approaches for the

optimal selection of the smoothing parameter λ are discussed. First, minimizing the

residual sum of squares (RSS) of f̂(x), that is 1
n

∑n
i=1(yi− f̂(xi))

2 results in the trivial

interpolate estimator for ck. Therefore, minimizing the cross-validation criterion

CV =
1

n

n∑

i=1

(yi − f̂ (−i)(xi))
2

13
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is used for selection of λ, where f̂ (−1)(xi) notes the fit omitting the ith observation.

Using the smoother matrix Sλ (2.11), the cross validation criterion can be approximated

(see Ruppert, Wand, and Carroll 2003) as

CV =
1

n

n∑

i=1

(
yi − f̂(xi)

1 − sii

)2

(2.17)

with sii is the ith element of the diagonal of Sλ. Craven and Wahba 1979 replace sii by

their average 1
n

∑n
i=1 sii = 1

n
tr(Sλ). This replacement in (2.17) is known as generalized

cross-validation criterion (GCV) given by

GCV =
1

n

n∑

i=1

(
yi − f̂(xi)

1 − tr(Sλ)/n

)2

. (2.18)

Both measures (2.17) and (2.18) imply a grid search, selecting that λ with minimal fit

criterion, that is with minimal CV or rather GCV. Another approach to select optimal

parameters is minimizing the Kullback-Leibler information (see Kullback and Leibler

1951)

I(f, g) =

∫
f(x) log

(
f(x)

g(x)

)
dx (2.19)

between the true density f(x) and estimated density g(x), which are both continuous

functions. The interpretation of I(f, g) is the distance from g to f . In the case of

discrete distributions pi and qi for i = 1, . . . , n, (2.19) is defined as

I(f, g) =
n∑

i=1

pi log

(
pi
qi

)
.

The Kullback-Leibler information is only computable with full knowledge about f and

g, but that is unrealistic. Akaike (1974) described the information loss, based on the

empirical log-likelihood function at its maximum point. Akaike (1974) defined the

Akaike information criterion (AIC) as

AIC = log(RSS(λ)) + 2 ·K/n (2.20)

with RSS is the residual sum of squares RSS =
∑n

i=1(yi − ŷi)
2 of the estimated model

and K is the number of used parameters in the model, see (2.14) for a possible choice

of K. Hurvich and Tsai (1989) presented an improved AIC with respect to the sample

size n, called corrected AIC, which is given by

AICc = AIC +
2K(K + 1)

n−K − 1
. (2.21)
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The number of parameters K in (2.20) and (2.21) can be approximated by the trace

of the smoothing matrix Sλ, depending on the selected penalty parameter λ, that is

K = df(λ) = tr(Sλ). At this point, a grid search is useful to find the optimal smoothing

parameter λ, minimizing AIC or rather AICc. In the case of different candidate models,

the difference

∆(AIC)i = AICi − AICmin (2.22)

estimate the relative expected Kullback-Leibler difference between the candidate model

i and the model with minimal AIC or rather AICc (see Burnham and Anderson 2010).

These relative values allow an easy ranking and comparison of candidate models, the

absolute value is not the main important detail. Selecting the optimal model using the

AIC measures (2.20), (2.21) and (2.22), implies a grid search fitting different models

with different penalty parameters λ.

A direct calculation of an optimal penalty parameter λ is possible, representing the

penalized smoothing spline as linear mixed model (see e.g. Wand 2003).

2.1.4 Link to Linear Mixed Models

This subsection discusses linear mixed models, following Ruppert, Wand, and Carroll

(2003) and Fahrmeir, Kneib, and Lang (2007). The classical linear mixed model is

given by

y = Xβ + Uγ + ǫ (2.23)

with X and U are the model matrices, β is called vector of fixed effects and γ is the

vector of individual- or cluster-specific random effects in the model and ǫ the usual

vector of residuals. The assumptions for β and γ are

(
γ

ǫ

)
∼ N

((
0

0

)
,

(
G 0

0 R

))
(2.24)

with G and R are block diagonal covariance matrices. The underlying distribution of

y given γ following from (2.23) and (2.24) is

y|γ ∼ N(Xβ + Uγ,R), γ ∼ N(0, G). (2.25)

Estimating of the fixed effects is easily done, solving

y = Xβ + ǫ∗, ǫ∗ = Uγ + ǫ.
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This yields the classical linear model y ∼ N(Xβ,R+UGUT ). Defining V = R+UGUT ,

using the least squares estimator for the fixed effects β for known matrix V results in

the best linear unbiased predictor (BLUP) given by

β̂ = (XTV −1X)−1XTV −1y. (2.26)

The BLUP for γ, based on β results as

γ̂ = GUTV −1(y −Xβ̂). (2.27)

The proof for γ̂ is given in McCulloch and Searle (2001). If R and G are known, the

estimator (2.27) results as the best linear unbiased predictor (BLUP) (see Robinson

1991). Henderson (1950) uses the assumptions y|γ ∼ N(Xβ + Uγ,R), u ∼ N(0, G) to

maximize the likelihood of (y, γ) over the unknowns β and γ, using the joint density

of y and γ. This results in the penalized least squares criterion

(y −Xβ − Uγ)TR−1(y −Xβ − Uγ) + γTG−1γ. (2.28)

It is easy to prove from (2.28) that the BLUP of (β, γ) can be formulated such that

(
β̂

γ̂

)
= (CTR−1C +B)−1CTR−1y

with C = [X U ] and B =

(
0 0

0 G−1

)
. The fitted values are given by

ŷ = Xβ̂ + Uγ̂ = C(CTR−1C +B)−1CTR−1y. (2.29)

Usually, R and G in (2.24) are unknown, such that a maximum likelihood (ML) esti-

mator and in an extension a restricted maximum likelihood estimator are used for the

prediction of R and G. First, the unknown parameters are named with ϑ, such that

V (ϑ) = UG(ϑ)UT +R(ϑ). (2.25) changes to

y ∼ N(Xβ, V (ϑ))

and the corresponding log-likelihood equals except some additive constants

l(β, ϑ) = −1

2
{log(|V (ϑ)| + (y −Xβ)TV (ϑ)(y −Xβ)}. (2.30)
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Maximizing (2.30) with respect to β yields the estimator for fixed effects, that is

β̂ = (XTV (ϑ)−1X)−1XTV (ϑ)−1y. (2.31)

Inserting (2.31) into (2.29) yields the profile-log-likelihood given by

lP (ϑ) = −1

2
{log(|V (ϑ)| + (y −Xβ(ϑ))TV (ϑ)(y −Xβ(ϑ))}. (2.32)

Analogously, the restricted log-likelihood lR is achieved, integrating out β in the

marginal log-likelihood lR(ϑ) = log
(∫

L(β, ϑ) dβ
)

(see Searle, Casella, and McCul-

loch 1992), that is

lR(ϑ) = lP (ϑ) − 1

2
log |XTV (ϑ)−1X|. (2.33)

Maximizing of (2.33) yields the estimator ϑ̂REML, which minimizes the bias compared

to ϑ̂ML, achieved from maximizing of (2.32) with respect to ϑ. Computation of ϑ̂REML

is done iteratively, using e.g. Newton-Raphson-algorithm or Fisher-Scoring-algorithm.

Replacing the estimated covariance matrices Ĝ and V̂ in the BLUPs (2.26) and (2.27)

results in the estimated best linear unbiased predictors (EBLUP)

β̃ = (XT V̂ −1X)−1XT V̂ −1y and

γ̃ = ĜUT V̂ −1(y −Xβ̂).

2.1.5 Linear Mixed Model Representation of Penalized Splines

The fitted penalized spline (2.12) can be formulated as linear mixed model (2.29) (see

Wand 2003, Kauermann 2005 or recent work by Reiss and Ogden 2009 and Wood 2011).

Assuming the coefficient γ in (2.12) to be random and define X as matrix containing

the polynomials and U as matrix containing the truncated polynomial basis functions,

the following model results

y|γ ∼ N(Xβ + Uγ, σ2
ǫ In), γ ∼ N(0, σ2

γId).

With respect to (2.29), with R = σ2
ǫ In and G = σ2

γId the fitted values ŷ results as

ŷ = C(CTC +
σ2
ǫ

σ2
γ

D)−1CTy, (2.34)

with D = blockdiag(0(l+1)×(l+1), I
−1
d ). The ratio σ2

ǫ /σ
2
γ in (2.34) represents the smooth-

ing parameter λ in the context of penalized splines. The inverse of penalty matrix D in

(2.34) has to be symmetric and positive definite, which is the case for truncated poly-
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nomials. Other basis functions have to be adapted to reach a symmetric and positive

definite penalty matrix D. Green (1987) and Fahrmeir, Kneib, and Lang (2004) discuss

this topic in detail. At this point, the changes in the case of B-splines are summarized,

following Krivobokova (2006).

Considering the difference matrix (2.7) for B-splines of degree l, based on difference

penalty of order a andm knots, D has the dimension (m+1+l)×(m+1+l−a). That is,

the corresponding penalty matrix, defined by (La)TLa (see (2.9)), is singular with rank

m+ 1 + l− a. Using a singular value decomposition results in (La)TLa = Zdiag(z)ZT

with Z are the eigenvectors and z are the eigenvalues in decreasing order, such that

the first m+ 1 + l − a eigenvalues are non negative and the remaining a equals zero.

The matrix Z and the eigenvalues z can be decomposed into Z = [Z+ Z0] and z =

(z+, z0), such that

Φ(x)c = Φ(x)ZZT c = Φ(x)[Z0Z0
T c+ Z+diag(z

−1/2
+ )diag(z

1/2
+ )Z+

T c]

= Φ(x)[Z0β + Z+diag(z
−1/2
+ )c]

= Xβ + UΦγ. (2.35)

However, it yields

cT (La)TLac = cTZdiag(z)ZT c = cTZ0diag(0a)Z
T
0 c+ cTZ+diag(z+)ZT

+c = γTγ.

That is, only the coefficients γ are penalized, using the penalty matrix Im+1+l−a and a

mixed model presentation is possible. The mixed model results as

y|γ ∼ N(Xβ + UΦγ, σ
2
ǫ In), u ∼ N(0, σ2

γIm+1+l−a).

The singularity of (La)TLa causes, that the representation (2.35) is not unique. Ma-

trices Bβ and Bγ of dimensions (m+ 1 + l) × a and (m+ 1 + l) × (m+ 1 + l − a) do

any one-to-one transformations, such that Φ(x)c = Φ(x)[Bββ +Bγγ].

Therefore, Bβ and Bγ are selected, such that

• [Bβ Bγ ] has full rank (uniqueness of transformation);

• BT
βBγ = BT

γ Bβ = 0 ;

• BT
β (La)TLaBβ = 0 and

• BT
γ (La)TLaBγ = Im+1+l−a.

The last three conditions ensure, that only γ is penalized with identity matrix (for

more information see Green 1987 and Fahrmeir, Kneib, and Lang 2004). Using Bβ =
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[1, b, . . . , ba−1] with b = (1, 2, . . . , m+ l + 1) and Wγ = (La)T (La(La)T )−1 have become

a common choice (see Krivobokova 2006). The final transformation is given by

Φ(x)c = Φ(x)[Bββ + (La)T (La(La)T )−1γ] =: Xβ + UΦγ,

whereas X results in a polynomial of degree a.

2.1.6 Bivariate Penalized Splines

This section discusses the extension of the univariate penalized spline approach into the

bivariate case. This is done as contribution to the investigations presented in Chapter

4 and 5. The estimation of bivariate smooth functions f , with respect to two marginal

variables x1 and x2 is motivated by using penalized B-splines. That is, we define a

tensor products of univariate B-spline bases Φ(1)(x1) and Φ(2)(x2) as

Φjk(x1, x2) = Φ
(1)
j (x1) · Φ(2)

k (x2), j = 1, . . . , d1, k = 1, . . . , d2,

with d1 and d2 are the dimensions of the univariate B-spline bases Φ(1)(x1) and Φ(2)(x2).

The smooth function f results as weighted sum, that is

f(x1, x2) =

d1∑

j=1

d2∑

k=1

cjkΦjk(x1, x2), (2.36)

with cjk, j = 1, . . . , d1 and k = 1, . . . , d2 are the corresponding basis coefficients. Defin-

ing the design matrix M with rows as

mT
i = (Φ11(xi1, xi2), . . . ,Φd11(xi1, xi2), . . . ,Φ1d2(xi1, xi2), . . . ,Φd1d2(xi1, xi2))

and the vector of the corresponding coefficients as

c = (c11, . . . , cd11, . . . , c1d2 , . . . , cd1d2)
T ,

resulting the equation

y = Mc + ǫ.

Analogously to the univariate case, a penalty is introduced in (2.36) to achieve a smooth

fit for a suitable amount of basis functions. First, we define marginal first difference

matrices L1 and L2 as in the univariate case (see (2.7)) in the direction of x1 and

x2. These matrices are extended line by line and column by column, using Kronecker
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products, that is the line by line penalty term is constructed as

cT (Id2 ⊗ L1)
T (Id2 ⊗ L1)c =

d2∑

k=1

d1∑

j=2

(cjk − cj−1,k)
2,

whereas the column by column penalty term is given by

cT (L2 ⊗ Id1)
T (L2 ⊗ Id1)c =

d1∑

j=1

d2∑

k=2

(cjk − cj,k−1)
2.

The whole penalty term results as

λcTDc = λcT [(Id2 ⊗ L1)
T (Id2 ⊗ L1) + (L2 ⊗ Id1)

T (L2 ⊗ Id1)]c,

which can reformulated using rules for Kronecker products as quadratic penalty term

λcTDc = λcT [Id2 ⊗D1 +D2 ⊗ Id1 ]c

with D1 = LT1L1 and D2 = LT2 L2. Due to this fact, the selection procedures for the

optimal penalty parameter λ discussed for the univariate case in Section 2.1.3 can be

applied.

In Chapter 4 and 5 of this thesis, the concept of univariate penalized splines is ex-

tended to higher dimensions, using tensor products of univariate B-spline bases and

the difference penalty as described in foregoing parts of this chapter. But the full ten-

sor product is neglected, due to the curse of dimensionality for an extensive amount of

basis functions and the so called sparse grids are introduced in Chapter 4. Bivariate

estimations based on the full tensor product are done in Chapter 5.

2.2 Kernel Density Estimation

Observed data never disclose their probability distribution, neither their probability

density. Scientists have been looking for methods to explain behaviour and attributes

of observations of any noticed statistics. Since the last century, density estimation

has been one of the most challenging and ambitious tasks in theoretical and applied

statistics. This section presents techniques of kernel density estimation, which will be

used in further chapters of this thesis.
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2.2.1 Univariate Kernel Density Estimation

The topic of univariate kernel density estimation is introduced, following Silverman

(1986). From the beginning we assume, that the n observations x1, . . . , xn are inde-

pendent, identically distributed observations from a continuous univariate distribution

with probability density function f , see (1.1).

Estimates of the unknown density are denoted as f̂ . The main ideas of kernel den-

sity estimation go back to Nadaraya (1964) and Watson (1964), see also Nadaraya

(1974), which is probably one of the best known approaches estimating unknown den-

sity functions. Silverman (1986), Scott (1992) and Li and Racine (2007) give overviews

about the development and motivation of kernel density estimation. Pearson (1938)

mentioned how to describe data by graphical tools, e.g. by using histograms. Until

today, the histogram is of one the easiest and best known statistical tools estimating

distribution of data. Usually, it is done by separating the observed range of data x

into classes [µ0, µ1), [µ1, µ2), [µ2, µ3), . . . , [µk−1, µk). The area under the histogram on

each class shall reflect the number of elements, defined as fj , in each class. Since the

total area of the histogram equals 1, the histogram corresponds to the total number of

elements n in the dataset. Defining the width of each class as wj = cj − cj−1, the area

of each class of the histogram is equal to the proportion of elements in class cj, that

is the height of each class is defined as fj/wj. Obviously, the classes cj determine the

accuracy and the form of the histogram, but there is no general optimal rule how to

choose them. Of course, histograms are not continuous, because jump discontinuities

appear at each point cj. The histogram does not fulfill the conditions of (1.1), obvi-

ously. Furthermore, the existence of many or less points in neighbouring bins does not

effect the current bin.

Histograms with sliding widths of the classes cj are the first step to improve the his-

togram, defining a range h, that provides points on both sides of points xi affecting

the current bin of the histogram. The idea is to move the interval [xi − h, xi + h)

over the range of x. Then the estimate of the density f̂(xi) is given with f̂(xi) =
number of events in [xi−h,xi+h)

n·2h . Based on this idea, the kernel density estimator for any

kernel function K(·) is defined as

f̂(x) =
1

nh

n∑

i=1

K

(
x− xi
h

)
, (2.37)

with h is called bandwidth or smoothing parameter. Histograms with sliding widths

are still discontinuous, so different continuous kernel functions K(·) have been explored

in the literature. Some famous kernel functions are presented in Table 2.1.

Fundamentally, h in (2.37) has to been chosen adequately. If h becomes very large,
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Kernel K(u)

Epanechnikov
3

4
√

5
(1 − u2

5
) for − 1 ≤ u < 1

0 else

Biweight
15
16

(1 − u2)2 for |u| < 1
0 else

Gaussian 1√
2π

exp
(
−1

2
u2
)
, u ∈ R

Rectangular
1
2

for − 1 ≤ u < 1
0 else

Table 2.1: Kernel functions

all details of the density disappear, while for a very small h, the density estimation

function f̂(·) jumps turbulently at each observation xi. Now, the optimal h should be

chosen, depending on some criteria. The difference between the unknown true density

f(·) and the estimated density f̂(·) should be minimal. A possible measure, considering

this question, is the (MSE) (2.16). But the MSE is not applicative, due to the trade-

off between reducing the bias with increasing variance or vice versa when choosing the

optimal h. Moreover the MSE is depending on the investigated bandwidth h. The

expectation, variance and the following results are given by (see Silverman 1986)

E(f̂(x)) =

∫
1

h
K

(
x− u

h

)
f(u) dx

var(f̂(x)) =
1

n

∫
1

h2
K

(
x− u

h

)2

f(u) d(u) −
{

1

h

∫
K

(
x− u

h

)
f(u) d(u)

}2

Using a Taylor-series expansion of E(f̂(x)), the bias at any point x results as (see

Silverman 1986)

bias{f̂(x)} =
1

2
σ2
Kh

2f ′′(x) +O(h4).

Moreover, the expectation of f̂(x) equals f(x) to order O(h2), if the kernel function K

in (2.37) satisfies the following three conditions

∫
K(u) du = 1

∫
uK(u) du = 0

∫
u2K(u) du ≡ σ2

K > 0 for any constant σ2
K .
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The Epanechnikov kernel minimizes the MSE (2.16) optimally, compared with other

common kernel functions (see Epanechnikov 1969). Rosenblatt (1956) has introduced

the mean integrated squared error (MISE), an improved uniform measure of the accu-

racy of the whole estimation f̂(·), whereas the MSE (2.16) is a point measure of the

estimation f̂(·), evaluated in a point x. The MISE is given by

MISE(f̂) = E

∫
{f̂(x) − f(x)}2 dx. (2.38)

Silverman (1986, p. 35) mentions, that ’the MISE is by far the most tractable global

measure’. In the literature exists also the integrated mean squared error (IMSE), which

coincides with the MISE (see Scott 1992).

Estimating the optimal bandwidth h can be done with minimizing an approximate

integrated squared error (AMISE), because the exact integral in (2.38) can be solved

only numerically. Based on (2.38), the AMISE of (2.37) is calculated as sum of the in-

tegrated squared bias
∫

bias{f̂(x)}2dx and the approximated integral of the estimated

variance
∫

varf̂(x)dx. The approximated AMISE is given by

AMISE(h) =
1

4
h4σ4

KR(f ′′) +
R(K)

nh
(2.39)

with R(g) =
∫
g(x)2dx and σ2

g =
∫
x2g(x)dx for any function g(·). The optimal band-

width h with respect to (2.39) results as h =
[

R(K)

σ4
K
R(f ′′)

](1/5)
n−1/5. The sole unknown

component in (2.39) is R(f ′′), so rewriting (2.39) depending on an kernel-based esti-

mate S(α) of R(f ′′) results in

ÂMISE(h) =
1

4
h4σ4

KS(α) +
R(K)

nh
.

Minimizing (2.39) gives an equation for an optimal bandwidth h. For the Gaussian

kernel, it follows (see Scott 1992)

h =
4

3

(1/5)

σn−1/5 ≈ 1.06σ̂n−1/5

with σ̂2 as estimated variance σ2 of the normal distribution. Choosing the optimal

bandwidth h for any kernel function K(·) is often done automatically e.g. using a cross-

validation approach. Therefore Scott and Terrell (1987) present the general formula

for an unbiased cross-validation scheme, that is

UCV(h) =
R(K)

nh
+

2

n2h

∑

i<j

γ(∆ij) (2.40)
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with γ(∆) =
∫
K(u)K(u + δ)du and ∆ij = (xi − xj)/h. Park and Marron (1990)

present an estimator Ŝ(α), that results in a consistently good simulation performance

for the selection of h. Sheather and Jones (1991) improve this selection criteria using

an improved estimator of R(f ′′), called ŜD(α), contributing a positive amount to the

bias in estimating R(f ′′). Further details are presented in Sheather and Jones (1991).

Another method to estimate the optimal bandwidth h is likelihood cross-validation,

introduced by Duin (1976), that is maximizing

logL =

n∑

i=1

log f̂−i(xi) (2.41)

with respect to h, where f̂−i(xi) is the leave-one-out kernel estimator of f(xi) defined

as

f̂−i(xi) =
1

(n− 1)/h

n∑

j=1,j 6=i
K

(
xi − xj
h

)
.

In Chapter 3 of this thesis, univariate kernel density estimations with bandwidth selec-

tion based on (2.40) and based on the improved version of Sheather and Jones (1991)

are done.

2.2.2 Multivariate Kernel Density Estimation

In this section, the univariate kernel density estimation is extended to the multivariate

case, following Li and Racine (2007). The kernel density estimator for multivariate

data of dimension p is a natural extension of (2.37) and given by

f̂(x) =
1

nh1 . . . hp

n∑

i=1

K

(
xi − x

h

)
, (2.42)

with K
(
xi−x
h

)
= k

(
xi1−x1

h1

)
× · · · × k

(
xip−xp

hp

)
and k(·) is an univariate kernel func-

tion (see examples in Table 2.1). As in the univariate case, it can be shown, that

limn→∞ MSE(f̂(x)) = 0. The bias of (2.42) results as (see Li and Racine 2007)

bias(f̂(x)) =
σK
2

p∑

i=1

h2
i

∂2f(x)

∂x∂x
+O

(
p∑

i=1

h3
i

)

with σK =
∫
u2k(u) du. Li and Racine (2007) present the variance of f̂(x) as follows

var(f̂(x)) =
1

nh1 . . . hp

[
κpf(x) +O

(
p∑

i=1

h2
i

)]
= O

(
1

h1 . . . hp

)
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with κ =
∫
u2(u) d(u). Combining the results above, the order of MSE(f̂(x)) results

as

MSE(f̂(x)) = O



(

p∑

i=1

h2
i

)2

+ (nh1 . . . hp)
−1


 .

For n → ∞,max1≤i≤p hi → 0 and nh1 . . . hp → ∞, it follows f̂(x) → f(x) in MSE,

that is f̂(x) → f(x) in probability. Analogously to the univariate case, the optimal

parameters hi should balance bias and variance terms, i.e. h4
i = O((nh1 . . . hp)

−1) and

the optimal parameters result as hi = cin
−1/(p+4) for positive constant ci, i = 1, . . . , p.

Least squares cross-validation in the multivariate case can optimally determine the hi,

Li and Racine (2007) determine the leading term of the cross-validation criterion as

follows

CV(h1, . . . , hp) =

∫ [ p∑

i=1

Bi(u)h
2
i

]
d(u) +

κp

nh1 . . . hp
, (2.43)

where Bi(u) = (σK/2)fii(u). One can show, that the values, minimizing (2.43) are

optimal smoothing parameters also minimize the leading term of the IMSE.

In Chapter 4, an application of multivariate kernel density estimation is done and the

bandwidths h = (h1, . . . , hp) are selected following the multivariate analogon of (2.41).

2.3 Copulae

Copula modelling and estimation have become extremely popular over the last decade

for modelling the dependence of random variables and their interrelation. This sec-

tion follows Rank (2007), Nelsen (2006) and Durante and Sempi (2010) introducing

the concept and parametric estimation approaches of copulae. At the very beginning,

Hoeffding (1940) studied multivariate distributions under ’arbitrary changes of scale’,

but he did not introduce copulas. Originally introduced by Sklar (1959), the idea of

a copula is attractive since it allows to decompose a multivariate distribution into its

univariate margins and its interaction structure, expressed through the copula. Assum-

ing the p-dimensional random vector (x1, . . . , xp) with univariate marginal distribution

Fj(xj) for j = 1, . . . , p, Sklar’s theorem states that the joint distribution equals

F (x1, . . . , xp) = C
(
F1(x1), . . . , Fp(xp)

)
, (2.44)

where C(·, ·) is the copula which is a p-dimensional distribution function C : [0, 1]p →
[0, 1] with uniform univariate margins. While C(·, ·) is a distribution function, further-

more C(·, ·) is monotone increasing in each component uj . The marginal component

i is obtained with uj = 1 for all j 6= i, that is C(1, . . . , 1, ui, 1, . . . , 1) = ui. Due to
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(2.44), we obtain for continuous Fi and u = (u1, . . . , up) the copula function, that is

C(u) = F (F−1
1 (u1), . . . , F

−1
p (up)) (2.45)

with F−1
i (ui) is the pseudo inverse of Fi(ui). According to the fact, that (2.45) is a

cumulative distribution function, the copula density c(u) can be computed for sufficient

differentiable copulas, that is

c(u) =
∂pC(u1, . . . , up)

∂u1 · · ·∂up
. (2.46)

Using the chain rule yields

c(u) =
f(F−1(u1), . . . , F

−1
p (up))

f1(F
−1
1 (u1)) · · ·fp(F−1

p (up))

with f is the joint density and fi are the marginal densities, for i = 1, . . . , p. Describing

dependencies, thus analyzing conditional distributions between random variables with

known copula C(·, ·), is easily done, because the conditional cumulative distribution

function may be derived directly from the copula itself. For two random variables

U1 and U2 and known copula C(·, ·), assuming sufficient regularity, the cumulative

distribution function results as

P (U2 ≤ u2|U1 = u1) = lim
δ→0

P (U2 ≤ u2, U1 ∈ (u1 − δ, u1 + δ])

P (U1 ∈ (u1 − δ, u1 + δ])

= lim
δ→0

C(u1 + δ, u2) − C(u1 − δ, u2)

2δ

=
∂

∂u1

C(u1, u2).

Each copula C(·, ·) lies between certain bounds, named Fréchet-Hoeffding bounds. Ho-

effding (1940) and Fréchet (1951) showed, that

max

{
p∑

i=1

ui + 1 − p, 0

}
≤ C(u) ≤ min{u1, . . . , up}.

The Fréchet-Hoeffding bounds are related to copulas. The comonotonicity copula is

given by

M(u) = min{u1, . . . , up} (2.47)

and refers the case of perfect positive dependence. Increasing transformations T2, . . . , Tp

are defined as Ui = Ti(Ui) for i = 2, . . . , p. Using (2.44), these random variables follows

the comonotonicity copula. The countermonotonicity copula describes the opposite
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extreme. It is defined for two random variables U1 and U2 as

W (u) = max{u1 + u2 − 1, 0}. (2.48)

This copula describes negative dependence, as U2 = T (U1) with strictly increasing

function T . Both copulas (2.47) and (2.48) are not differentiable, thus they do not

have densities.

2.3.1 Copula Families

Copulas are used to describe various dependencies for building stochastic models.

Therefore, different copula families are investigated in the literature, beyond the

comonotonicity and countermonotonicity copula families. Joe (1997) gave some in-

spirations about properties of a ’good’ copula family. He mentioned interpretability, a

flexible and wide range of dependence and an easy handling. First of all, the indepen-

dence copula

Π(u) =

p∏

i=1

ui (2.49)

describes the case of no dependence beyond the considered data. Using (2.44), random

variables are independent, if and only if, their copula is the independence copula, thus

the associated copula density is constant. Further copula families are investigated in the

literature. The so called elliptical copulas are derived from multivariate distributions.

U = (U1, . . . , Up) is said to have an elliptical distribution with mean µ ∈ Rp, covariance

matrix Σ and generator g : [0,+∞[→ [0,+∞[, if U can be expressed in the form U =

µ+RAW , with AAT is the Cholesky decomposition of Σ = (σij), W is a p-dimensional

random vector uniformly distributed on the sphere Sp−1 = {w ∈ Rp : w2
1+· · ·+w2

p = 1}
and R is a positive random variable independent of W with density, given for every

r > 0, by

fg(r) =
2πp/2

Γ(p/2)
rp−1g(r2).

The first class of copula distribution, considered later in this thesis follows an elliptical

distribution. The multivariate Gaussian and multivariate t-distribution contain to this

class. If the density of an elliptical copulas distribution exists, it is given for x ∈ Rp by

hg(x) = |Σ|−1/2g((x− µ)T (x− µ)). (2.50)

Using the generator function g(t) = (2π)−p/2 exp(−t/2) in (2.50), U has a multivariate

Gaussian distribution. U follows a multivariate t-distribution with ν degrees of freedom,

if g(t) = c(1 + t/ν)−1(p+ν)/2 is used in (2.50) for a suitable constant c. Considering p
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normally distributed random variables U1, . . . , Up, the multivariate Gaussian copula is

defined as

CGa
Σ (u) = ΦΣ(Φ−1(u1), . . . ,Φ

−1(up)) (2.51)

with Φ as the cumulative distribution function of a standard normal distribution, while

ΦΣ is the cumulative distribution function for a p-variate normal distribution with zero

mean and covariance matrix Σ. Analogously, the t-copula describes the multivariate

case for p random variables, following a t-distribution. The t-copula is given by

Ct
ν,Σ(u) = tν,Σ(t−1

ν (u1), . . . , t
−1
ν (up)), (2.52)

with Σ is a correlation matrix, tν is the cumulative distribution function of the one-

dimensional tν distribution with ν degrees of freedom and tν,Σ is the cumulative distri-

bution function of the multivariate tν,Σ distribution with ν degrees of freedom.

The second class of copula distribution, considered later in this thesis, are the

Archimedean copulas, introduced following McNeil and Neslehová (2009). The

Archimedean generator is any decreasing and continuous function ψ : [0,∞[→ [0, 1] and

satisfying ψ(0) = 1, limt→∞ ψ(t) = 0, which is strictly decreasing on [0, inf{t|ψ(t) = 0}[.
Moreover, by definition ψ(+∞) = 0 and ψ−1(0) = inf{t ≥ 0|ψ(t) = 0}, denoting with

ψ(t)−1 the pseudo-inverse of ψ(t). So, a p-dimensional copula C is called Archimedean

copula, if

C(u) = ψ(ψ−1(u1) + · · · + ψ−1(up)) (2.53)

for some Archimedean generator ψ. McNeil and Neslehová (2009) stated for an Archi-

medean generator ψ and for Cψ given in (2.53), that Cψ is a p-dimensional copula, if

and only if, the restriction of ψ to ]0,∞[ is p-monotone, i.e. it satisfy

a) ψ is differentiable up to the order p − 2 in ]0,∞[ and the derivatives satisfy

(−1)kψ(k)(t) ≥ 0 for k ∈ 0, . . . , d− 2 for every t > 0

b) (−1)p−2ψ(p−2) is decreasing and convex in ]0,+∞[.

Well known Archimedean copulas are the Gumbel, Frank and Clayton copula. Orig-

inally, the Gumbel-Hougaard copula is considered in Gumbel (1960) and extended in

Hougaard (1986). Very often this copula family is named Gumbel copula and is given

by

CGH
θ (u) = exp


−

(
p∑

i=1

(− log(ui))
θ

)1/θ

 (2.54)

with θ ≥ 1. The corresponding generator function is ψ(t) = exp(−t1/θ). For θ = 1 in

(2.54), the independence copula (2.49) is obtained as special case. For θ → +∞, the
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limit of (2.54) is the comonotonicity copula (2.47) (see Durante and Sempi 2010). The

Mardia-Takahasi-Clayton copula is defined as

CMTC
θ (u) = max





(
p∑

i=1

u−θi − (p− 1)

)−1/θ

, 0



 (2.55)

with θ ≥ −1
p−1

, θ 6= 0. For θ → 0, (2.55) coincide with (2.49), that is the independence

copula. The generator for (2.55) is given by ψθ(t) = (max{1 + θt, 0})−1/θ. McNeil

and Neslehová (2009) proved, that for every p-dimensional Archimedean copula C and

for every u ∈ Rp CMTC
θL

(u) ≤ C(u) for θL = −1
p−1

. (2.55) can be derived from the

pareto distribution by Mardia (1962). Also the Burr distribution by Takahasi (1965) is

associated with the Clayton’s model (see Clayton 1978). So, the copula family is often

named Clayton copula.

Another Archimedean copula family is the Frank copula (see Frank 1979), given by

CFr
θ (u) = −1

θ
log

(
1 +

∏p
i=1(exp(−θui) − 1)

(exp(−θ) − 1)p−1

)
, (2.56)

where θ > 0. For θ → 0 (2.56) equals (2.49), that is the independence copula and

for p = 2, θ can also be selected as θ < 0. The Archimedean generator for (2.56) is

ψθ(t) = −1
θ
log(1 − (1 − exp(−θ)) exp(−t)).

Tail dependence measures the correlation between the variables in the upper-right

quadrant and in the lower-left quadrant of [0, 1]2. These correlations are of special

interest in many applications, analyzing dependencies in the extreme cases. For two

random variables U1 and U2 with cumulative distribution functions Fi, i = 1, 2, the

coefficient of upper tail dependence is defined as

λu = lim
w→1

P (U2 > F−1
2 (w)|U1 > F−1

1 (w)) = lim
w→1

1 − 2w + C(w,w)

1 − w
,

if the limit exists and λu ∈ [0, 1]. Intuitively, for large values of U1, also large values of

U2 are expected. The coefficient of lower tail dependence is defined as

λl = lim
w→0

P (U2 ≤ F−1
2 (w)|U1 ≤ F−1

1 (w)) = lim
w→0

C(w,w)

w
.

Similarly, for small values of U1, small values of U2 are also expected. Nelsen (2006)

calculates λu and λl for the families of Archimedean copulas. Rank (2007) calculates

the tail dependence coefficients for the bivariate t-copula (2.52) with Σ = ρ in the

bivariate case. Some of these results are listed in Table 2.2. The Gumbel copula (2.54)

has no lower tail dependence, but upper tail dependence. In contrast, the Clayton

29



2 Theoretical Background

copula family λl λu
Gumbel 0 2 − 21/θ

Clayton 2−1/θ 0
Frank 0 0

t-copula tν,ρ 2tν+1

(
−
√

(ν+1)(1−ρ)
1+ρ

)
2tν+1

(
−
√

(ν+1)(1−ρ)
1+ρ

)

Table 2.2: Tail dependence for various copula families.

copula (2.55) has lower tail dependence, but no upper tail dependence. The Frank

copula has no tail dependences. Joe (1997) and Nelsen (2006) give overviews about

further classes of copula families which are not mentioned in this thesis.

Exemplary plots of some copula families are presented in Figure 2.4, observing different

characteristics for each copula family. Beginning with a) Gumbel copula in Figure 2.4,

we observe upper tail dependence, thus a peak around (1, 1). The Clayton copula b)

shows lower tail dependence, thus a peak around (0, 0). McNeil, Frey, and Embrechts

(2005) computed the tail dependence for the Gaussian copula with the result of asymp-

totical independence in upper and lower tails. Therefore, the Gaussian copula do not

have any tail dependence, independent of its correlation parameter. Correlation of cop-

ulas is often described using Kendell’s tau and Spearman’s rho. For random variables

U = {U1, . . . , Up} with marginals F1, . . . , Fp, respectively, Spearman’s rho matrix is

defined by

ρS(U) = Corr(F1(U1), . . . , Fp(Up)),

with ρS(U)i,j = Corr(Fi(Ui), Fj(Uj)). Alternatively, Kendell’s tau for two random vari-

ables U1 and U2 and two random variables Ũ1 and Ũ2 with the same joint distribution,

but independent of U1 and U2, is defined as

ρτ (U1, U2) = E[sign((U1 − Ũ1) · (U2 − Ũ2))].

That is, if we plot two points from these random variables on a graph, connecting them

by a line, the line is increasing for positive dependence and decreasing otherwise. For

(U1 − Ũ1) · (U2 − Ũ2) a positive sign indicates an increase, while a negative sign would

denote a decrease. If both probabilities are equal, that is upward and downward slopes

are expected with the same probability, Kendell’s tau is ρτ = 0. If ρτ > 0, a higher

probability of upward slope is expected, for a negative value of ρτ a downward slope. In

the p-dimensional case, for a random variable U and an independent copy Ũ , Kendell’s

tau is defined as

ρτ (X) = Cov[sign(U − (̃U)].
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Figure 2.4: Exemplary copula plots: a) Gumbel copula with θ = 1.33, b) Clayton
copula with θ = 2/3, c) Frank copula with θ = 2.39 and d) Gaussian copula with
θ = 0.5.

2.3.2 Copula Estimation

Estimation methods for copula models, using maximum likelihood estimation (MLE),

are considered in this paragraph, following Choros, Ibragimov, and Permiakova (2010)

and Joe (1997). This parametric estimation approach is used in the simulation stud-

ies in Chapter 4 and 5. Due to Sklar’s theorem (2.44), the likelihood function of
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a p-dimensional copula density (2.46) is given by

l =
n∑

j=1

log f(x
(j)
1 , . . . , x(j)

p ) (2.57)

for an (i.i.d.) random sample x(j) = (x
(j)
1 , . . . , x

(j)
p ), j = 1, . . . , n with density f . For

random samples with dependent margins, decomposing the log-likelihood, with respect

to the dependence structure represented by copula C, that is

lC =
n∑

j=1

log c(F1(x
(j)
1 ), . . . , Fp(x

(j)
p ))

and the marginal log-likelihoods

li =

n∑

j=1

log f(x
(j)
i )

results in l = lC +
∑p

i=1 li. The copula C depends on a (vector) parameter θ and

each margin fi on (vector) parameters αi, that is maximum likelihood estimators

(α̂MLE
1 , α̂MLE

2 , . . . , α̂MLE
p , θ̂MLE

d ) result simultaneously by maximization of (2.57):

(α̂MLE
1 , α̂MLE

2 , . . . , α̂MLE
p , θ̂MLE

d ) =

arg max
α1,...,αp,θ

lC(α1, . . . , αp, θ) +

p∑

i=1

li(αi) =

arg max
α1,...,αp,θ

n∑

j=1

log c(F1(x
(j)
1 ;α1), F2(x

(j)
2 ;α2), . . . , Fp(x

(j)
p , αp); θ)+

p∑

i=1

n∑

j=1

log fi(x
(j)
i ;αi) .

Alternatively, Joe (1997) discusses the method of inference functions for margins (IFM).

In a first step, the marginal coefficients αi are estimated from the log-likelihood li

of each margin, that is α̂IFMi = arg maxαi
li(αi). Replacing α by their estimations

α̂IFMi in the copula likelihood lC , the estimator θ̂IFM is computed by maximizing

lC(α̂IFM1 , . . . , α̂IFMp , θ). The MLE estimator solves, under regularity conditions,

(∂l/∂α1, ∂l/∂α2, . . . , ∂l/∂ap, ∂l/∂θ) = 0,
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while the IFM estimator solves

(∂l1/∂α1, ∂l2/∂α2, . . . , ∂lp/∂ap, ∂l/∂θ) = 0.

Joe (1997) shows, that MLE and IFM estimations are equivalent in the special cases of

multivariate normal distribution functions. Moreover, Choros, Ibragimov, and Permi-

akova (2010) mention, that the IFM estimator is consistent and asymptotically normal

under the usual regularity conditions and that the IFM estimator provides a highly

efficient alternative to the MLE estimator.

Genest, Ghoudi, and Rivest (1995) discuss the semi-parametric estimation as an al-

ternative to the inference discussed above, estimating the univariate margins Fi non-

parametrically, e.g. by the empirical distribution functions F̂i in the first step. Given

F̂i, the copula parameter θ are estimated as

θ̂ = arg max
θ
LC(θ) = arg max

θ

n∑

j=1

log c(F̂1(x
(j)
1 ), . . . , F̂p(x

(j)
p ); θ).

Genest, Ghoudi, and Rivest (1995) show, that the estimated parameters θ̂ of θ are

consistent and asymptotically normal under suitable regularity conditions. Further-

more, the authors assume same regularity assumptions for bivariate copulas, which are

fulfilled by many copula families, and show, that the estimator θ̂ is fully efficient at

independence.

Alternatively, nonparametric inference for copula estimation is applied (see Choros,

Ibragimov, and Permiakova 2010), while an estimator Ĉ(u1, . . . , up) of a p-dimensional

copula C(u1, . . . , up) is usually an empirical inversion, that is

Ĉ(u1, . . . , up) = F̂ (F̂−1
1 (u1), . . . , F̂

−1
p (up))

with F̂ is a nonparametric estimator of the distribution function F and F̂−1
1 , . . . , F̂−1

p

are nonparametric estimators of the pseudo-invers F−1
i (s) = {t|Fi(t) ≥ s} of the uni-

variate margins. F̂ is usually taken to be the empirical univariate distribution function

and F̂−1
i (s) is estimated by the pseudo-invers of the empirical distribution function.

This empirical process is consistent and asymptotic normal for general copulas C with

continuous partial derivatives (see Fermanian, Radulovic, and Wegkamp 2004 and Fer-

manian and Scaillet 2003). Fermanian, Radulovic, and Wegkamp (2004) show also,

that smoothed copula processes like Ĉ(u1, u2) = F̂ (F̂−1
1 (u1), F̂

−1
2 (u2)) are also asymp-

totic normal under regularity conditions. Fermanian, Radulovic, and Wegkamp (2004)

use nonparametric kernel estimators F̂ (x1, x2) =
∑T

t=1 K
(
x−Xt

hT
, y−Yt

hT

)
of the joint dis-

tributions functions for some bivariate kernel function K for bandwidths hT , satisfying
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hT → 0 as T → ∞.

2.4 Dependence Vines

Dependence vines, especially D-vines are investigated in Chapter 5. In this subsection,

the concept and estimation of D-vines is introduced. The principle of dependence vines

is modelling flexible multivariate distributions as discussed in this section, following

Kurowicka and Cooke (2006) and Czado (2010). As recent overview about this topic

is also given by Kurowicka and Joe (2010). Both references focus on the analysis of

dependence structures in multivariate data, introducing vines. Let x = (x1, . . . , xp) be

a p-dimensional continuous random vector with continuously differentiable marginal

distribution functions Fj(xj), j = 1, . . . , p. Let f(x1, . . . , xp) be the corresponding

multivariate density, which with Sklar’s (1959) theorem can be written as

f(x1, . . . , xp) = c{F1(x1), . . . , Fp(xp)}
p∏

j=1

fj(xj), (2.58)

where c(.) is the copula density. To simplify notation, we denote with uj = Fj(xj) so

that the copula density is written as c(u1, . . . , up). For dimension p = 2, the conditional

density of X1 given X2, using (2.58) yields

f(x1|x2) = c12(F1(x1), F2(x2))f(x1), (2.59)

where c12 is a bivariate copula, which is often called pair-copula. Extending (2.59) to

the multivariate case with distinct indices i, j, i1, . . . , ip with i < j and i1 < · · · < ip,

the conditional density ci,j|i1,...,ip is defined as

ci,j|i1,...,ip = ci,j|i1,...,ip(F (xi|xi1 , . . . , xik , F (xj|xi1 , . . . , xip)).

The density f(xt|x1, . . . , xt−1) results recursively, using (2.59) for the conditional dis-

tribution of (X1, Xt) given X2, . . . , Xt−1, is given as

f(xt|x1, . . . , xt−1) =

[
t−2∏

s=1

cs,t|s+1,...,t−1

]
c(t−1),tft(xt). (2.60)

That is, the conditional density f(xt|x1, . . . , xt−1) is constructed by different pair-

copulas ci,j|i1,...,ip. Bedford and Cooke (2002) introduced the class of regular vines.

To describe dependences structures in high-dimensional distributions, a dependence

tree as an acyclic undirected graph is used. Each tree consists of nodes N = 1, . . . , n
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and edges E, where E is an unordered subset of N with no cycle. Each regular vine on

n variables consists of nested trees, where the edges of tree j are the nodes of the tree

j + 1 and each tree exhibits the maximum number of nodes. In a regular vine V on n

variables, each pair of two edges in tree j are connected by an edge in tree j+1, if these

edges assign a common node. V is called vine on n elements, if V = (T1, . . . , Tn−1) and

T1 is a connected tree with nodes N1 = 1, . . . , n and edges E1 and for i = 2, . . . , n− 1,

Ti is tree with nodes Ni = Ei−1. V is called regular vine, if additionally the proximity

condition is fulfilled, that is if c and d are nodes of Ti connected by an edge in Ti, where

c = {c1, c2} and d = {d1, d2}, then exactly one of the ai equals one of the bi.

A regular vine is called a D-vine, if the number of edges attached to a node equals at

most 2. Figure 5.1 shows a D-vine for p = 5. Fitting (2.60) in (2.58) with s = i, t = i+j,

the multivariate density f results as

f(x1, . . . , xp) =

[
p∏

t=2

t−2∏

s=1

cs,t|s+1,...,t−1

][
p∏

t=2

c(t−1),t

][
p∏

k=1

fk(xk)

]
. (2.61)

(2.61) consists of pair-copula densities ci,j|i1,...,ip and marginal densities fk and (2.61)

is the distribution of a D-vine. This principle is called the pair-copula construction

principle. A regular vine is called a canonical or C-vine, if each tree Ti has a unique

node with n−i number of edges attached to the node. The node with maximal number

of edges attached to the node in T1 is the root, that is the node with p−1 edges in tree

T1. If one applies (2.59) to the conditional distribution of (Xt−1, Xt) given X1, . . . , Xt−2

to express f(xt|x1, . . . , xt−1) recursively, we get

f(xt|x1, . . . , xt−1) = ct−1,t|1,...,t−2f(xt|x1, . . . , xt−2). (2.62)

Fitting (2.62) into (2.58) for j = t− k, j + 1 = t yields

f(x1, . . . , xp) =

[
p−1∏

j=1

d−j∏

i=1

cj,j+1|1,...,j−1

]
p∏

k=1

fk(xk), (2.63)

which is the distribution of a canonical vine. Denoting the edges in tree Ti by jk|D
where j < k and D is the conditioning set, the notation of the edges e in tree Ti

depends on the two edges in tree Ti−1, which have a common node in tree Ti−1.

The edges are noted by a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b) with V (a) =

{j(a), k(a), D(a)} and V (b) = {j(b), k(b), D(b)}. Therefore, nodes a and b are joined
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by edge e = j(e), k(e)|D(e), where

j(e) = min{i : i ∈ (V (a) ∪ V (b)) \D(e)}
k(e) = max{i : i ∈ (V (a) ∪ V (b)) \D(e)}
D(e) = V (a) ∩ V (b).

Fitting a regular vine with node set N = {N1, . . . , Np−1} and edge set

E = {E1, . . . , Ed−1}, each edge e = j(e), k(e)|D(e) in Ei is associated with a bivariate

copula density cj(e),k(e)|D(e). XD(e) denotes the sub random vector of X = (X1, . . . , Xp)

indicated by indices D(e). A vine distribution of the random vector X with marginal

densities fk, k = 1, . . . , p and the conditional density of (Xj(e), Xk(e)) given xD(e) is de-

fined as cj(e),k(e)|D(e) for the regular vine tree with node set N and edge set E . Kurowicka

and Cooke (2006) proved, that the joint density of X is uniquely determined and given

by

f(x1, . . . , xp) =

p∏

j=1

f(xj)

p−1∏

i=1

∏

e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

with xD(e) denotes the sub-vector of x indicated by D(e). Exemplarily, the vine distri-

bution of the D-vine in Figure 5.1 has the joint density given by

f(x1, . . . , x5) =

5∏

k=1

fk(xk) · c12 · c23 · c34 · c45 · c13|2 · c24|3 · c35|4 · ·c14|23 · c25|34 · c15|234.

Using the pair-copula construction principle, any bivariate copula family (see Section

2.3.1) may be optimal any node of the dependence vines. Due to the bivariate case,

the parameter of each possible copula family are easily estimated using e.g. maximum

likelihood theory (see Section 2.3.2).

2.4.1 Estimation of Regular Vine Copulas

Aas, Czado, Frigessi, and Bakken (2009) talk firstly about stepwise estimation and

maximum likelihood estimation for the vine copula parameters. The joint density for

a C-vine (2.63) or D-vine (2.61) is explicitly given, so the likelihood is easily derived.

The main task is to consider the involved conditional distribution functions. Joe (1996)

shows for v ∈ D and D−v = D \ v

F (xj |xD) =
∂Cxj ,xv|D−v(F (xj|xD−v

), F (xv|xD−v
))

∂F (xv|xD−v
)

. (2.64)
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If D consists only of one element, that is D = {v}, it follows that

F (xj|xv) =
∂Cxj ,xv

(F (xj), F (xv))

∂F (xv)
.

For uniform margins, using a parameterized copula conditional distribution function

Cjv(xj , xv) = Cjv(xj , xv|θjv) one can write

h(xj |xv, θjv) =
∂Cj,v(xj , xv|θjv)

∂xv
. (2.65)

Conditional distribution functions where D contains more than one element can be

expressed using (2.64). Czado (2010) presents the recursive relation

F (xj |xD) = h(F (xj |xD−v
)|F (xv|xD−v

), θjv|D−v
). (2.66)

So, the conditional distribution functions with conditioning set D can be calculated

recursively using the h-function, following from lower dimensional conditional set as

given by (2.66). Thereby, the number of parameters of a pair-copula construction to

be estimated grow quadratically in the dimension p, p · (p− 1)/2 different pair-copulas

have to be parameterized. Therefore, the parameters corresponding to the pair-copulas

should be estimated sub-sequentially from the first tree to the last tree.

It exists p!/2 distinct C-vines or D-vines for a decomposition on p nodes (see Aas,

Czado, Frigessi, and Bakken 2009). Therefore, additional information are needed to

select suitable vine trees. In the case of a D-vine Aas, Czado, Frigessi, and Bakken

(2009) order the first level of the D-vine due to the strongest bivariate dependencies,

which might be measured by Kendell’s τ or tail dependencies (see Section 2.3). If

the order of the first level has been chosen, the parameters are selected, applying a

goodness-of-fit test for each pair, varying the copula families and selecting the copula

family with the best fit. If the first tree is fitted, using the recursive formula (2.65)

allows to calculate the next tree of the vine. If there are M possible copula families,

there are M ·p · (p−1)/2 different pair-copulas to be selected and compared during the

estimation of the vine. Applying goodness-of-fit tests on the full p dimensional sample,

would involve fitting Mp·(p−1)/2 models, but the computational effort would increases

excessively even for small M and small p. Alternatively, Bayesian approaches with

applications of Markov chain Monte Carlo method (MCMC) exist (see Smith, Min,

Almeida, and Czado 2010 or Min and Czado 2011), which are not considered in this

thesis in detail.
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2.4.2 Sampling from D-vines

Once the optimal D-vine has been completely estimated, sampling is interesting for

further uses of fitted models. Sampling from a fitted D-vine is done with the standard

sampling algorithm for D-vines (see Kurowicka and Cooke 2006 or Aas, Czado, Frigessi,

and Bakken 2009). We illustrate the algorithm of Kurowicka and Cooke (2006) for four

variables in Figure 2.5. At the beginning, we sample four independent uniform (0,1)

variables u1, . . . , u4. Within the algorithm, the values of the conditional distribution

functions F̂ (·) are determined, using equation (2.65) with the estimated coefficients v̂ of

the corresponding D-vine. In the following, the inverse of each conditional distribution

function F̂−1(·) is numerically approximated. At the start x1 is given and x2 is easily

calculated by inverting the conditional distribution function of F (u2|x1). If x2 has

been calculated, F (x1|x2), F̂
−1(u3|F̂ (x1|x2)) and then F̂−1(F̂−1(u3|F̂ (x1|x2))|x2) must

be evaluated to obtain an estimate of x3. Of course, this is easily done in higher di-

mensions. So, computational demand for sampling of a D-vine increases with extended

dimension of the D-vine.

Sample w1, . . . , w4 independent uniform on [0, 1].
x1 = w1

x2 = u−1
2|1 = F̂−1(w2|x1)

x3 = u−1
3|2(u

−1
3|12) = F̂−1(F̂−1(w3|F̂ (x1|x2))|x2)

x4 = u−1
4|3(u

−1
4|23(u

−1
4|123)) = F̂−1(F̂−1(F̂−1(w4|F̂ (x1|x2, x3)|F̂ (x2|x3)|x3)))

Figure 2.5: Sampling algorithm for D-vine
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3 Density Estimation and Comparison

with a Penalized Mixture Approach

This chapter is joint work with Göran Kauermann (LMU Munich). It is forthcoming

in Computational Statistics, compare Schellhase and Kauermann (2012).

The focus of Chapter 3 is an application of penalized smoothing splines to estimate

univariate density functions. The idea is to represent the unknown density by a convex

mixture of basis densities, where the weights are estimated in a penalized form. The

proposed method extends the work of Komárek and Lesaffre (2008) and allows for

general density estimation. Simulations show that the proposed approach outperforms

existing density estimation approaches. The idea is extended to allow the density to

depend on some (factorial) covariate. Additionally, we can test on equality of the

densities in the groups, assuming a binary group indicator. This provides a smooth

alternative to the classical Kolmogorov-Smirnov test or an Analysis of Variance and it

shows stable behaviour.

3.1 Introduction

Density estimation has a long standing tradition in statistics and the different routines

can be roughly categorized in four partly overlapping approaches.

(a) First and most prominent there is kernel density estimation which traces back to

ideas of Nadaraya (1964) and Watson (1964), see also Nadaraya (1974). The method is

well established and extensively discussed in e.g. Wand and Jones (1995) or Simonoff

(1996). (b) A second approach results by writing the unknown density as

f̂(y) = exp {η(y)} /
∫

exp {η(z)} dz (3.1)

with η(·) unknown but smooth function which is estimated using spline technology.

This approach traces back to Good and Gaskins (1971), see also Silverman (1982) and

the idea has been further developed by Gu (1993) or Dias (1998), see also Gu and

Wang (2003). (c) A third approach results by extending and smoothing the classical
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histogram as originally suggested by Boneva, Kendall, and Stefanov (1971). Following

this idea Lindsey (1974a, 1974b) suggests density estimation by transferring the density

estimation problem to a regression estimation scenario, with the number of observations

per bin in the histogram as Poisson count, see also Efron and Tibshirani (1996). Eilers

and Marx (1996) make use of the idea using penalized spline smoothing, see also

Ruppert, Wand, and Carroll (2003). The spline approach and the Poisson approach

(c) are thereby closely related which results by approximating the integral in (3.1) with

a rectangular method. (d) A fourth line of density estimation has been suggested by

using a mixture approach. In this case, the unknown density results by finite mixture

of densities components. These mixture components are usually built from known

distributions (e.g. normal) with unknown parameters. This yields the classical mixture

models discussed extensively in McLachlan and Peel (2000), see also Young, Hunter,

Chauveau, and Benaglia (2009), Li and Barron (1999) or Fraley and Raftery (2002).

(e) Another approach to estimate the unknown density is the log-spline approach (see

Koo, Kooperberg, and Park 1999), modelling the log-density function by (almost cubic)

splines using maximum likelihood estimation and Newton-Raphson method to compute

optimal coefficients. (f) A sixth idea to estimate densities is tackled using wavelets,

expanding the unknown density in terms of a wavelet expansion (see e.g. Hall and

Patil 1995, Nason and Silverman 1999 or Nason 2008). Our approach (g) presented in

this paper distinguishes from the classical mixture model in two ways. First, we take

completely specified mixture components, that is not only the distribution type, but

also the parameters are fixed. Secondly, the number of mixture components is chosen

in a lavish way and we impose a penalty to achieve smooth density fits. Ghidey,

Lesaffre, and Eilers (2004) have proposed to use a finite but penalized mixture of

Gaussian densities for the estimation of a random effect distribution in a linear mixed

model. The idea has been extended and further developed in a number of papers

which include Komárek, Lesaffre, and Hilton (2005), Komárek (2006) and Komárek

and Lesaffre (2008). The idea of Komárek (2006) shows also similarities to the approach

of Babu, Canty, and Chaubey (2002), who approximate the density with a mixture of

Bernstein polynomials. In this paper we generalize the original idea of Komárek and

Lesaffre (2008) to univariate density estimation. Extending the mixture to a continuous

mixture has recently been proposed by Liu, Levine, and Zhu (2009).

In this paper we follow (g) using finite mixture densities for the smooth estimation of

an unknown density. The collection of the densities used in the mixture in fact plays

the role of a basis and the weights correspond to basis coefficients. The weights itself

can be fitted with penalized techniques to obtain a smooth density fit. In principle,

any type of mixture density can be used and there is no requirement for Gaussian
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mixtures. In this paper we make use of a mixture of B-spline basis functions normed

to be densities. This allows to theoretically investigate the properties of the fit and

also guarantees stable numerical performance. To achieve smoothness we make use of

penalized spline smoothing in the style of Ruppert, Wand, and Carroll (2003), see also

O’Sullivan (1986) and Eilers and Marx (1996). With the link between penalized spline

smoothing and mixed models (see Wand 2003) the method shows its full flexibility and

versatility as demonstrated in the commendable survey recently composed by Ruppert,

Wand, and Carroll (2009).

A general question in penalized spline smoothing concerns the number of splines used

for fitting. A rule of thumb has been suggested in Ruppert (2002) who shows that

the number of splines does not affect the fit once sufficient splines have been chosen,

which is usually a small number compared to the sample size regardless of the form

of the function to be fitted. The same conclusion is drawn in Kauermann and Op-

somer (2011) who make use of the link between mixed models and penalized spline

smoothing. Allowing the spline dimension to depend on the sample size provides an

asymptotic framework which has been investigated in Li and Ruppert (2008), Kauer-

mann, Krivobokova, and Fahrmeir (2009) and Claeskens, Krivobokova, and Opsomer

(2009). Though these results shed some light on the theoretical properties of penal-

ized spline estimation, there is hardly any practical impact and the rule of thumb for

choosing the spline dimension (see Ruppert 2002) is still recommendable.

We also extend the classical density estimation problem by allowing the density to

depend on some covariates x, say. That is to say we let the mixture weight depend

on exogenous quantities. We restrict this modelling exercise to factorial quantities x,

which allows us to compare densities in two (or more) groups. As example we look

at the return of stocks of different companies and different years. The idea may be

seen as nonparametric Analysis of Variance (ANOVA) and follows closely the testing

framework for the Kolmogorov-Smirnov test.

The scientific contributions of the paper are twofold. First, we show how a density

can be estimated with a penalized mixture of basis densities. The novel routine is

contrasted in simulations to the various competitors described above, that is (a) ker-

nel density estimation, (b) spline based density estimation, (c) Poisson approximated

density estimation and (d) classical mixture density estimation, (e) log-spline density

estimation and (f) wavelet density estimation. As will be seen, the performance of

the available routines is quite diverse and the penalized mixture approach performs

promising. The second contribution of the paper is to explore penalized mixture den-

sity estimation in testing scenarios when comparing distributions in two (or more)

groups.
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This paper is organized as follows. In Section 2 we introduce the idea of density

estimation with penalized splines. Section 3 demonstrates the fitting in simulations

and an example. In Section 4 we extend the idea by allowing the density to depend

on covariate x, which is demonstrated in a simulation and an example in Section 5.

Section 6 concludes the paper.

3.2 Penalized Density

3.2.1 Mixture Modelling and Penalized Estimation

We are interested in nonparametric estimation of the density of the univariate random

variable y. We therefore approximate the density of y as a mixture of densities

fK(y) =
K∑

k=−K
ckφk(y), (3.2)

where φk(y) are subsequently called basis densities. The weights ck in (3.2) are pa-

rameterized as

ck(β) =
exp(βk)∑K

k=−K exp(βk)
(3.3)

with β0 ≡ 0 for identifiability and β = (β−K , . . . , β−1, β1, . . . , βK) so that∫
fK(y)dy = 1. The basis densities are thereby known and fixed density functions

with specified parameters. We assume that φk(y) is continuous on its support and

converges to zero at the boundary of the support. A possible choice for the basis den-

sities is to take φk(y) as Gaussian density with fixed mean µk and variance σ2
k, where

the mean values µk may be called the knots of the basis. Numerically more stable

and theoretically more appealing are B-spline densities which are standard B-splines

(see de Boor 1978) normed to be densities. We will subsequently notate the knots at

which the basis densities are located as µk with k running from −K to K for con-

venience. We assume, that the knots µk cover the range of observed values of y and

their location is fixed. A typical and simple setting is to have equidistant knots which

will be assumed subsequently. Apparently, the number of knots plays an important

role in terms of bias and variance and a small number K will lead to biased estimates

while for large values of K the estimates will be wiggled. We will therefore utilize the

idea of penalized spline smoothing by choosing the number of knots K in a lavish and

generous way and impose a penalty to achieve smoothness. The penalty is put on the

basis coefficients βk by penalizing the variation of ck over k. Assuming independent
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observations yi, i = 1, ..., n , the log likelihood takes the form

l(β) =
n∑

i=1

[
log

K∑

k=−K
ck(β)φk(yi)

]
. (3.4)

The log likelihood is now supplemented by adding a quadratic penalty term to the

likelihood which yields the penalized log likelihood

lp(β, λ) = l(β) − 1

2
λβTDmβ (3.5)

where the penalty matrix Dm induces smoothness and λ is the penalty parameter.

With respect to the choice of Dm we follow the idea of penalized splines (see Eilers and

Marx 1996) and we want the variation of weights ck to be penalized. This holds if βk

does not differ abruptly from βk−1 or βk+1, respectively. We therefore penalize m-th

order differences. Let L̃m denote the m-th order difference matrix, where e.g. L̃1 is

L̃1 =




1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1



.

Note that L̃m is (K̃ − m) × K̃ dimensional with K̃ = 2K + 1. Since β0 ≡ 0

by definition, we can omit the linear combination with β0. Let therefore Lm =

L̃m[, {−K, . . . ,−1, 1, . . . , K}] denote the matrix by omitting the redundant middle

column in Lm corresponding to β0, where the notation [, A] refers to extracting the

columns given by the index set A. The penalty Dm now results as LTmLm.

Finally we sketch how to maximize (3.5) with respect to β using a Newton-Raphson

approach. Denote with C(β) the (2K + 1) × (2K) matrix with elements

∂ck(β)

∂βj
, k = −K, ..., K, j = −K, . . . ,−1, 1, . . . , K

which results as

C(β) =
(
diag(c̃) − c̃c̃T

)
[, {−K, ...,−1, 1, ..., K}] ,

where c̃ = (c−K(β), . . . , c0(β), . . . , cK(β))T . The derivative of (3.5) with respect to β

now equals

sp(β;λ) =
∂l(β)

∂β
− λDmβ =

n∑

i=1

CT (β)φ̃i

f(yi)
− λDmβ (3.6)
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with φ̃i = (φ−K(yi), . . . , φ0(yi), . . . , φK(yi))
Tand f(y) as defined in (3.2). The negative

second order derivative of (3.5) with respect to β may be approximated by

Jp(β;λ) = − ∂2l(β)

∂β ∂β
+ λDm ≈

n∑

i=1

CT (β)φ̃iφ̃
T

i C(β)

f(yi)
2 + λDm. (3.7)

Newton-scoring is done for estimating β, using a fixed λ.

3.2.2 Selecting the Penalty Parameter

The penalty parameter λ steers the amount of smoothness of the fitted density and it

needs to be selected data driven. A straight forward approach is the Akaike Information

Criterion (AIC) (see Akaike 1974) selecting λ by minimizing

AIC(λ) = −l(β̂) + df(λ) (3.8)

where

df(λ) = tr
(
J−1
p (β̂;λ) Jp(β̂;λ = 0)

)
(3.9)

approximate the degree of the fit. Note that df(λ = 0) = 2K is giving the number

of parameters. Alternatively one may apply Generalized Cross Validation (GCV).

Apparently, selecting λ by minimizing (3.8) requires a grid search and fitting the density

for a set of λ values, which is usually quite time consuming. Alternatively, in penalized

spline smoothing it has been shown useful to make use of the link to mixed models

(see Wand 2003, Kauermann 2005 or recent work by Reiss and Ogden 2009 and Wood

2011). To do so, we adopt a Bayesian viewpoint and comprehend the penalty as a

priori distribution in the sense that the coefficient vector is assumed to be random

with

β ∼ N(0, λ−1D−
m) (3.10)

where D−
m denotes the generalized inverse of Dm. The prior (3.10) is degenerated,

which needs to be corrected as follows. We decompose β into the two components β∼

and β⊥, respectively, such that β∼ is a normally distributed random vector with non

degenerated variance and β⊥ are the remaining components treated as parameters, see

also Wand and Ormerod (2008). In fact based on a singular value decomposition we

have

Dm = U∼Λ∼U∼T

with Λ∼ as diagonal matrix with positive eigenvalues and U∼ ∈ Rp×h with correspond-

ing eigenvectors where p = 2K is the number of elements in β and h = p−m is the rank
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of Dm with m as degree of the difference matrix L̃m. Extending U∼ to an orthogonal

basis by U⊥ gives β∼ = U∼Tβ with the a priori assumption β∼ ∼ N(0, λ−1Λ∼−1) and

with U = (U∼, U⊥) as orthogonal basis, we get β⊥ = U⊥Tβ. Conditioning on β∼, we

have y being distributed according to (3.2) and with (3.10) we get the mixed model

log likelihood

lm(λ,β⊥) = log

∫
|λΛ∼| 12 exp {lp(β, λ)}dβ∼. (3.11)

The integral can be approximated by a Laplace approximation (see also Rue, Martino,

and Chopin 2009)

lm(λ, β̂
⊥
) ≈ 1

2
log |λΛ∼| + lp(β̂, λ) − 1

2
log |U∼TJp(β̂;λ)U∼|. (3.12)

where β̂ denotes the penalized maximum likelihood estimate. We can now differentiate

(3.12) with respect to λ which gives

∂lm(λ, β̂⊥)

∂λ
= −1

2
β̂
T
Dmβ̂ (3.13)

+
1

2λ
tr
{

(U∼TJp(β̂;λ = 0)U∼ + λΛ∼)−1U∼TJp(β̂;λ = 0)U∼
}

For practical implementation we approximate the trace component in (3.13) by df(λ)−
(m − 1) with df(λ) as in (3.9). In fact with this simplification, we can construct an

estimating equation from (3.13) via

λ̂−1 =
β̂
T
Dmβ̂

df(λ̂) − (m− 1)
. (3.14)

Apparently, both sides of equation (3.14) depend on λ. An iterative solution is possible

by fixing λ on the right hand side in (3.14), update λ on the left hand side and

iterate this step by updating the right hand side of (3.14). This estimation scheme has

been suggested in generalized linear mixed models by Schall (1991), see also Searle,

Casella, and McCulloch (1992). For penalized spline smoothing Wood (2011) shows

that the selection of smoothing parameter λ based in the mixed model approach behaves

superior compared to AIC selected values, see also Reiss and Ogden (2009).

We can also use the marginal likelihood (3.12) to check or select the number of knots

used in the basis. In fact the maximized lm(λ, β̂
⊥
) depends on K which may be

denoted as lm(λ, β̂
⊥
;K). Considering K itself as a parameter we can maximize the

marginal likelihood. In simulations we well see later that the actual choice of K has

little influence on the performance which exactly mirror Ruppert’s (2002) findings in

standard smooth regression models.
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3.2.3 Properties of the Estimate

We show further theoretical properties, (i) that the estimated density has minimal

Kullback-Leibler distance to the unknown true density and (ii) the asymptotic nor-

mality of the estimated coefficients β. Moreover, we present results about bias and

variance of the estimation.

Looking at theoretical properties of the estimation we focus on two questions. First,

how well can the mixture density (3.2) approximate an unknown true density and sec-

ondly, what are the estimation properties of the penalized estimate. Let fK(y, β̂) denote

the mixture density (3.2) with weights ck(β̂) defined through (3.3). Moreover, let f0(y)

denote the true continuous unknown density. We define β(0) = (β
(0)
−K , . . . , β

(0)
K ) as the

true parameter in the sense that fK(y,β(0)) and f0(y) have minimal Kullback-Leibler

distance based on the true density. So, we intent to minimize Ef0(y)

{
log
(
fK(y,β̂)
f0(y)

)}

with respect to β̂, which is equivalent to 0 = Ef0(y)(
∂

∂β̂
log fK(y, β̂)). This means that

β(0) is implicitly defined through

0 = Ef0(y)

{
C(β(0))T φ̃(y)

fK(y,β(0))

}
(3.15)

where φ̃(y) =
(
φ−K(y), . . . , φ0(y), . . . , φK(y)

)T
. Note that β(0) depends on K, the

number of knots, which is suppressed in our notation for simplification. Let r(y,β) =

f0(y)/fK(y,β) be the ratio of the true and approximate density and define Hk =

Hk(β) =
∫
φk(y) r(y,β) dy. Note that

∑K
k=−K ck(β

(0))Hk = 1. Based on (3.15) and

reflecting the definition of matrix C(β) we derive Hk = 1 for k = −K, . . . , K. This

allows with the well-known mean value theorem for integration to show the existence

of ξk ∈ [µk, µk+1] with f0(ξk) = fK(ξk,β
(0)) for k = −K, . . . , K − 1. It follows with the

mean value theorem for integration
∫
φk(y)r(y)dy = 1 =

∫
φk(y)dy r(ξk). So, there

exists ξk, such that r(ξk) = 1. Assuming now that the knots are placed densely in the

sense µk−µk+1 = O(K−1), k = −K, . . . , K−1 we obtain for δk(y) = f0(y)−fK(y,β(0))

with simple Taylor series expansion the order δk(y) = O(K−1) for µ−K ≤ y ≤ µK . We

will call δk(y) subsequently the approximation bias. Using B-splines as basis densities

allows us to obtain an even smaller asymptotic order for the approximation bias. In

fact, if f0(y) is q-times differentiable and φk(y) is a B-spline density of degree q, we

obtain for q ≥ 1 the order δ(y) = O (K−q). A proof is given later, Section 3.2.4. It is

therefore practically as well as theoretically advisable to set φk as B-splines. To this

end we have derived the approximation bias, so that we have answered the question

how well the mixture density (3.2) can approximate the true unknown density f0(y).

The next step is to investigate the properties of the penalized estimate of parameter
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β(0). In principle this boils down to standard penalized likelihood estimation so that

simple and standard expansions yield (see Kauermann, Krivobokova, and Fahrmeir

2009) the necessary results. In fact we obtain

β̂ − β(0) ≈ J−1
p (β(0);λ) sp(β

(0);λ)

which allows to formulate the asymptotic normality

β̂
a∼ N

(
β(0) + bias(β(0), λ), V (β(0), λ)

)
(3.16)

with

bias(β(0), λ) = −λI−1
p (β(0), λ)Dmβ(0) (3.17)

V (β(0), λ0) = I−1
p (β(0), λ)Ip(β

(0), λ = 0)I−1
p (β(0), λ) (3.18)

where Ip(β
(0), λ) = Ef0(y)

{
Jp(β

(0);λ)
}
. In Section 2.3, we will use the above-mentioned

well known link between penalized spline smoothing and mixed models. In the context

of mixed models (3.18) is justified by Kass and Steffey (1989) and extended by Searle,

Casella, and McCulloch (1992). The final step is now to transfer (3.16) to properties

of the density estimate fK(y, β̂) =
∑
ck(β̂) φk(y) = φ̃

T
(y) c̃(β̂). We get

f0(y) − fK(y, β̂)
a∼ N

(
bias

(
fK(y, β̂)

)
,Var

(
fK(y, β̂)

))

with

bias
(
fK(y, β̂)

)
= φ̃

T
(y) C(β(0)) bias(β(0), λ0)

Var
(
fK(y, β̂)

)
= φ̃

T
(y) C(β(0)) V (β(0), λ0) CT (β(0))φ̃

T
(y)

Since the penalized Fisher information Ip(β
(0), λ) is difficult to calculate we replace it

by its observed version Jp(β
(0);λ) to calculate confidence intervals. Komárek, Lesaffre,

and Hilton (2005) argue, that there is no guarantee that the middle matrix of (3.18),

Jp(β
(0);λ = 0) is positive semidefinite. In this case one may use J−1

p (β(0);λ) instead

of (3.18) for calculating confidence intervals. The latter can also be justified following

the mixed model framework discussed subsequently, as derived in Ruppert, Wand, and

Carroll (2003, page 140).
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3.2.4 Asymptotic Behaviour of B-spline Densities

Let φk(y) = bq,k(y) be a normed B-spline basis of order q defined on the support

[µk, µk+q+1] such that
∫
bq,k(y)dy = 1. Let fK,q(y,β) =

∑
k ck(β)bq,k(y) be the mix-

ture B-spline density and let rq(y) = rq(y,β) = f0(y)/fK,q(y,β) be the ratio of the

true and mixture density. Let µ−K , . . . , µ0, . . . , µK , . . . , µK+q+1 be the knots located

equidistantly with order µk − µk−1 = O(K−1). Note that our B-spline basis is q times

differentiable within each interval [µk, µk+1] and in particular, boundary splines are

continuous. With (3.15) we get

∫ µk+q+1

µk

bq,k(y)rq(y)dy = 1 (3.19)

so that there exists a ξk ∈ (µk, µk+q+1) with rq(ξk) = 1 for k = −K, . . . , K. With the

recursive formula for derivatives of B-splines (see Butterfield 1976) we get for q ≥ 2

with partial integration and making use of (3.19) for k = −K, . . . , K − 1

∫ µk+q+2

µk

bq+1,k(y)r
′
q(y) dy = bq+1,k(y)rq(y)

∣∣∣
µk

µk+q+2

+ K

{∫ µk+q+1

µk

bq,k(y)rq(y) dy

−
∫ µk+q+1

µk+1

bq,k+1(y)rq(y) dy

}

= 0

This in turn shows with the mean value theorem that there exists a ξ
(1)
k ∈ [µk, µk+q+2]

with r′q(ξ
(1)
k ) = 0. Considering the derivative of rq(y) it is easily derived that f ′

K,q(ξ
(1)
k ) =

f ′
0(ξ

(1)
k ) + O(K−1). With the same arguments as above we can show that there exists

ξ
(l)
k with 1 ≤ l ≤ q−1 and k = −K, . . . , K− l such that f (l)(ξ

(l)
k ) = f

(l)
K,q(ξ

(l)
k )+O(K−1).

This allows to conclude with iterative arguments that for q ≥ 1 and for l ≤ q − 1

f
(l)
K,q(y) = f (l)(y) +O(K−q+l)

so that for l = 0 we get the approximation error

fK,q(y) = f(y) +O(K−q).
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3.2.5 Practical Settings, Numerical Implementation and

Extensions

The fitting requires a number of practical settings which are implemented in the R pack-

age pendensity (see Schellhase 2010). First, we need to allocate the basis density given

a set of observations y1, . . . , yn. We suggest to use B-splines allocated at equidistant

knots µk with the most left knot µL, fulfilling µL ≤ min(yi) and the most right knot

µR ≥ max(yi). The performance of the estimations can be improved using additional

equidistant knots beyond [µL, µR]. Therefore, the used penalization of neighbouring

weights ck in interaction with additional knots can achieve a better fit of the densities

at the boundaries. In our simulations (see Section 3.3) we run estimations with one

additional knot placed with the same distance used for the knots in the support at

each end of [µL, µR] and observe an improved result for several distributions.

As starting value we found that assuming a uniform distribution is useful, i.e. we set

βk = 0 to start the Newton procedure. We also experimented with different starting

values but observed that the uniform start is preferable in terms of iteration steps to

reach the maximum of the penalized likelihood. To avoid terminating the algorithm

in a local instead of global maximum, it is advisable to fit the density for a number

of different starting values and take the fit with the maximum value of the likelihood.

It should be noted, however, that the problem of local maxima occurs if the penalty

is not strong enough, since the penalty in (3.5) works towards the concavity of the

penalized likelihood. It is therefore recommendable to start the Newton procedure

with a large λ. Finally, the number of knots, i.e. the dimension of the density basis

needs to be selected. Generally, we suggest to use a large K, where we have decided

upon the default setting K = 20, which corresponds to a 41 dimensional basis. This

mirrors the rule of thumb suggested in Ruppert (2002). Increasing K ≫ 20 does not

lead to an improved performance of the fit. But K should not be selected too small,

due to the appearance of an approximation bias of not ignorable size (see Kauermann,

Krivobokova, and Fahrmeir 2009). We show the influence of K on the fit in the next

section and we confirm the impression of Ruppert (2002) in that the actual choice of

K has little influence on the fit.

Conceptually, the approach is easily extended to multivariate density estimation. In

this case we replace basis densities φk(·) in (3.2) by Tensor products of univariate fixed

basis densities. The index k is then running over a grid and the penalty should be

formulated in each direction of the grid, that is row- and columnwise for two dimensions.
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3.3 Simulations and Example

3.3.1 Simulations

Univariate Density Estimation

To demonstrate the performance of the penalized density estimate we run a number of

simulations. We use (i) a normal distribution F0(y) ∼ N(0, 1), a mixture of normals

(ii) F0(y) ∼ 1
2
N(−1

2
, 1

4
)+ 1

2
N(1

2
, 1

4
), two bimodal mixtures (iii) as F0(y) ∼ 1

2
N(−3

2
, 1)+

1
2
N(3

2
, 1) and (iv) with F0(y) = 3

4
N(−3

2
, 1)+ 1

4
N(3

2
, 1), mixture of five normal densities

(v) as F0(y) ∼ 13
20
N(−1, 1

2
)+ 2

20
N(−1

2
, 1

2
)+ 1

20
N(0, 1)+ 3

20
N(1

2
, 1

2
)+ 1

20
N(1, 1

2
), a normal

variance mixture as (vi) with F0(y) ∼ 1
2
N(0, 1)+ 1

2
N(0, 10), (vii) a gamma distribution

Γ(3, 1) and (viii) a beta distribution Beta(10, 10). To compare our results labelled

with f̂K(·) with alternative routines we use, (a) classical kernel density estimates (see

Wand and Jones 1995), (b) the density estimation proposal of Gu and Wang (2003),

(c) the approach of density estimation of Eilers and Marx (1996), (d) a mixture density

approach, (e) the log-spline routine and (f) a wavelet approach, respectively. For the

traditional kernel density estimate (a) labelled as f̂kernel(·), we utilize two approaches

for selecting the bandwidth. First we use cross validation (bw=ucv) and secondly we

choose the bandwidth by the approach of Sheather and Jones (1991) (bw=SJ). Both

kernel routines are implemented in the density() routine in R. For (b) one estimates

the unknown density f(·) by the logistic density transform (3.1) with a roughness

penalty imposed on η(y) which penalizes integrated squared order derivatives. This

routine is implemented in R in the gss package (see Gu 2009) and we label the resulting

estimated density with f̂spline(·). For the third approach (c) we divide the support of

the data points in a large number of bins. Following Ruppert, Wand, and Carroll

(2003) we use B = 200 equidistant subintervals (bins) and notate with bj the number

of observations in the j-th bin, j = 1, . . . , 200. With mj as bin center and dj as bin

width we fit the Poisson model bj ∼ Poisson(f(mj)ndj). One can now fit the density

function f(·) using for instance the gam() procedure in R, see Wood (2006). For the

fourth approach (d) we make use of the R package mixtools (see Young, Hunter,

Chauveau, and Benaglia 2009) and select the number of mixture components using a

Bayesian Information Criterion (BIC) and the entropy criterion suggested in Celeux

and Soromenho (1996). We thereby increased K successively starting from K = 1

until the criterion reaches its optimum. The fifth approach, the log-spline density

estimation (e) is implemented in R package logspline (see Kooperberg 2009). Finally,

the wavelet density estimation (f) is done with R package wavethresh (see Nason 2010),

with finest resolution level equal to one and Daubechies least asymmetric wavelets. For

comparison with our penalized density estimate (g) we use 2K + 1 bins with K = 20

50
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and K = 30, respectively and label the resulting density estimate with f̂bin,K(·). We

also select K data driven to maximize the likelihood derived in Section 3.2.2.

To evaluate the performance of the fit we run N = 500 replicates of the simulation for

different sample sizes n and different K and calculate the integrated Mean Squared

error. Therefore we first calculate the Mean Squared Error

MSE(f̂(ỹk)) =
1

N

N∑

j=1

{
f̂(j)(ỹk) − f0(ỹk)

}2

,

where the calculated estimated densities f̂(j), j = 1, . . . , N and the true densities f0 are

evaluated at fixed and equidistant values ỹk, k = 1, . . . , 1000, say. The IMSE results

as follows

ÎMSE(f̂(ỹ)) =
1

1000

1000∑

k=1

{
MSE(f̂(ỹk))

}
.

Accordingly the results of the competing density estimations f̂K(·), f̂kernel(·),
f̂spline(·), f̂bin,K(·), f̂mixture(·), f̂log(·) and f̂wave(·)are shown in Table 3.2. Note that

for simulation scenario i) we used for the mixture (d) the true one component normal

distribution with fitted parameters which maybe considered as artificial benchmark in

this case. In general it appears that the approach with a penalized mixture performs

promisingly well in comparison with the six competitors, even though no method is

uniformly superior. In general, however, in scenarios where the penalized mixture ap-

proach is not optimal its optimal IMSE is not more than 62% larger than the IMSE

of the best density estimate, while this number is larger for all other competitors. For

small n but even more for large n we observe the well established fact that the quality

of the fit remains the same and K does not influence the performance of the fit. We

notice an improved performance in some examples, if one adds one additional knot at

each end outside of the support. In Table 3.2, the results of the penalized mixture ap-

proach are done with one additional knot at each end. Overall, the density estimation

with a penalized mixture appears as reasonable competitor for density estimation.

3.3.2 Example: Daily Returns

We give a short example which will be picked up again in the next section. We look at

the return of the two Germans stocks Deutsche Bank AG and Allianz AG in 2006. The

corresponding density estimates of the penalized mixture approach are given in Figure

3.1 and Figure 3.2. We show the penalized mixture estimate and the difference in the

density estimates to competitors (a) kernel density estimate, (b) spline based approach,

(c) the binning based approach, (d) the finite mixture estimation, (e) the log-spline
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3 Density Estimation and Comparison with a Penalized Mixture Approach

approach and (f) the wavelet estimate. Apparently, the kernel density estimate, the

Eilers & Marx estimate and as well as the mixture estimation show for the Deutsche

Bank data some peak structure in the center and additional structure for values around

−1, while the result of the spline approach is nearly similar to the penalized mixture

estimation. Again for the Allianz data, the kernel density estimate and the mixture

estimate show some peak structure in the center and additional structure for values

around 2 and −2, while the result of the spline approach is nearly similar to the

penalized mixture estimation. Clearly, in both scenarios, the true function is unknown,

but in the simulations the penalized density estimate performs comparable to the spline

approach so that the structure shown by the other five estimates might be spurious.

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

daily return

de
ns

ity

pen. mixture, K=20
confidence intervals

−4 −2 0 2

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

daily return

di
ffe

re
nc

e 
in

 d
en

si
ty

kernel, bw=SJ (a)
spline, α = 1.4 (b)
binning, K=20 (c)
mixture (d)
log−spline (e)
wavelet (f)

Figure 3.1: Top: Penalized mixture density f̂ of the return of Deutsche Bank AG
in 2006. Bottom: Difference in density estimates of penalized mixture to alternative
density estimation routines, (a) kernel density estimation, (b) spline estimation, (c)
binning estimation, (d) mixtures, (e) log-spline estimation and (f) wavelet estimation.
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Figure 3.2: Top: Penalized mixture density f̂ of the return of Allianz AG in 2006.
Bottom: Difference in density estimates of penalized mixture to alternative density
estimation routines, (a) kernel density estimation, (b) spline estimation, (c) binning
estimation, (d) mixtures, (e) log-spline estimation and (f) wavelet estimation.
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3.4 Nonparametric Comparison of Densities

3.4.1 Covariate Dependent Density

We can extend the above density estimation by allowing the density to depend on

some covariates x, say. We intend to estimate the conditional density f(y|x). Let yi|xi
denote a random sample (with xi either random or fixed) and xi = (xi1, . . . , xis) is a

vector of covariates. We now assume that the weights ck depend on x which is modelled

as

ck(x,β) =
exp(Z(x)βk)∑K

j=−K exp(Z(x)βj)
(3.20)

where Z(x) is a design matrix, e.g. Z(xi) = (1, xi1, . . . , xis). Let β = (βT−K , . . . ,

βT−1, β
T
1 , . . . , β

T
K)T be the parameter vector and β0 ≡ 0 for identifiability reasons. The

approach can be compared to finite mixture models with mixture weights depending

on covariates, see e.g. Bishop 2006, Chapter 14.5 or Müller, Quintana, and Rosner

(2009). In contrast to the finite mixture, however, we again assume that K is large

and will impose penalties on the weights. Let p be the dimension of Z(x), i.e. the

number of columns. In principle, we could have a different design for the different

knots, but it is convenient and practical to assume that Z(x) does not depend on k

and let Z(x) = I2K⊗Z(x), where I2K is the 2K-dimensional unit matrix and ⊗ denotes

the tensor product. The log likelihood then becomes

l(β) =
n∑

i=1

[
log{

K∑

k=−K
ck(xi,β)φk(yi)}

]
(3.21)

with ck(x, β) as in (3.20). Similar to (3.5) we add a quadratic penalty term to (3.21)

so that the penalized likelihood results as follows. Looking for instance at first order

differences, i.e. m = 1, we have αk(x)−αk−1(x) = Z(x)(βk−βk−1), k = −K+1, . . . , K.

Utilizing matrix notation we can write the m-th order difference as ∆mβ := (1K̃−m ⊗
Z(x))(L̃m ⊗ Ip)β with Ip as p dimensional identity matrix. This yields the penalty as

squared m-th order difference through βT∆T
m∆mβ. Note that the penalty depends on

the particular values of the covariates x. Taking the average over the observed values

we obtain the final penalty βT
Dmβ where

Dm = (LTm ⊗ ITp )(IK̃−m ⊗ ZTZ

n
)(Lm ⊗ Ip)

with Z = (ZT (x1), ..., Z
T (xn))

T ∈ Rn×p. The penalized likelihood results now as

lp(β, λ) = l(β) − 1
2
λβT

Dmβ. Based on (3.6) the penalized first derivative equals
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sp(β;λ) = ∂l(β)/∂β =
∑n

i=1 si(β;λ) where

si(β;λ) = ZT (xi)CT (xi,β)
φ̃i

f̂(yi|xi)
− λDmβ

with obvious definition for C(xi, β). Analogously to (3.7) we approximate the negative

penalized second order derivative through

Jp(β;λ) = −∂
2lp(β, λ)

∂β ∂βT
≈

n∑

i=1

si(β;λ)si
T (β;λ) + λDm.

Estimation can now be carried out in the same way as done in the previous sections.

This also applies to the estimation of the penalty parameter λ. Assuming the prior

distribution (3.10) allows with the same arguments used in Section (3.2.2) to calculate

the penalty parameter from the mixed model resulting as

λ̂−1 =
β̂
T
Dmβ̂

df(λ̂) − p(m− 1)
.

Moreover, all other results concerning the asymptotic distribution of the estimate ex-

tend from the previous section so that we do not explicitly list them here for the sake

of space.

3.4.2 Testing Densities on Equality

We can employ the idea above now to test the hypotheses on equality of densities. We

formulate this by testing

H0 : f(y|x(1)) = f(y|x(0)), y ∈ R (3.22)

for two specific values of x(1) = (x(1)1, . . . , x(1)s) and x(0) = (x(0)1, . . . , x(0)s). For

instance, if s = 1 and xi1 ∈ {0, 1} indicates two groups, we may test with (3.22) whether

the distribution of yi is the same in the two groups instead of comparing densities. We

look at differences in the distribution functions and define the test statistics

Tmax = max{|T (τk)| , k = −K, . . . , K}

with

T (y) = F̂ (y|x1) − F̂ (y|x0) =
K∑

k=−K
(ck(x1, β̂) − ck(x0, β̂))Φk(y),
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and τ−K , . . . , τ0, . . . , τK are denoting the knots of the basis functions and Φk(y) are

distribution functions to basis densities φk(y). Under H0 we have E {T (y)} = 0 for

all y and based on the asymptotic arguments used before we can show that T̃ =

(T (τ−K), . . . , T (τ0), . . . , T (τK))T follows the asymptotic distribution

T̃
a∼ N(0,W) (3.23)

with

W = Φ̃[C1 − C0]V (β(0), λ)[C1 − C0]
T Φ̃T

where Cj = C(xj , β̂)Z(xj) for j = 0, 1 and Φ̃ ∈ R(2K+1)×(2K+1) as matrix with entries

Φk(τl) where (row) index k and (column) index l with l, k = −K, . . . , K. Finally matrix

V (β(0), λ) is the variance matrix (3.18) extended to the case of covariate dependent

densities. Note that matrix W is easily calculated which allows to simulate the dis-

tribution of Tmax in a straight forward way by sampling T̃ from (3.23). This can be

done relatively fast after some spectral decomposition of W so that any approximate

calculation of the distribution of Tmax is numerically easy.

3.5 Simulation and Example

3.5.1 Simulation

We run a small simulation to check the performance of the fit, particularly of the

testing idea based on Tmax. To do so we simulate n = 100 and n = 400 data points

from the following distributions. We assume a univariate covariate (group indicator)

with xi = 0 for n/2 and xi = 1 for the remaining n/2 observations. We simulate y

given x from the following scenarios. First, (i) we draw y from a standard normal

for both x = 0 and x = 1, i.e. y|x ∼ N(0, 1), (ii) we draw y|x = 0 ∼ N(0, 1)

and y|x = 1 ∼ N(1
5
, 1) that is we shift the mean by 1

5
for x = 1, and finally (iii)

y|x = 0 ∼ N(0, 1) and y|x = 1 ∼ 1
2
N(−1

2
, 1

4
) + 1

2
N(1

2
, 1

4
). For all three scenarios we

calculate for each simulation the p-value resulting for Tmax. We repeat the simulation

1000 times and give in Table 3.1 the number of p-values smaller than a nominal level

α. Bear in mind that for scenario (i) the null hypothesis is true so that the p-value

should be uniformly distributed on [0, 1]. As reference we also calculate both, the

p-value resulting for a Kolmogorov-Smirnov test based on comparing the sample for

x = 0 against x = 1 as well as the p-value resulting from the linear model y = β0 +xβx

and a t-test on H0 : βx = 0. As can be seen from the simulated numbers the test on

the equalities of densities works convincingly well which supports the idea of density

estimation with a penalized mixture.
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Kolmogorov- Test on βx = 0
level simulation Test on Tmax Smirnov Test in Linear Model

α = 0.01 (i) n = 100 0.010 0.011 0.009
n = 400 0.009 0.011 0.007

(ii) n = 100 0.063 0.042 0.057
n = 400 0.288 0.182 0.288

(iii) n = 100 0.031 0.005 0.003
n = 400 0.377 0.080 0.003

α = 0.05 (i) n = 100 0.058 0.041 0.058
n = 400 0.052 0.049 0.053

(ii) n = 100 0.163 0.116 0.155
n = 400 0.504 0.397 0.526

(iii) n = 100 0.134 0.051 0.030
n = 400 0.735 0.313 0.036

Table 3.1: Proportion of p-values smaller than α, based on 1000 simulations. Optimal
performance is set in bold.

3.5.2 Example

As example we look again at the daily returns for the two stocks considered in Section

3.3.2. We look at data from 2006 and 2007, and our focus of interest is to test the

hypothesis that the distribution of the returns is the same in the two years. The

corresponding plot is shown in Figure 3.3. Applying the test based on Tmax to this

example yields the p-values of 0.048 for Deutsche Bank AG and 0.019 for Allianz AG.

Hence, there is indication that the returns in the two years differ in distribution.
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Figure 3.3: Density of the return of Deutsche Bank AG and Allianz AG in 2006 and
2007.
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3.6 Conclusion

In this paper we tackled the classical problem of density estimation. Our approach

picked up the idea of Komárek and Lesaffre (2008) and extended this to regular as well

as covariate dependent density estimation. We examined density estimation scheme

based on penalized B-spline bases using the direct link from penalized smoothing splines

to mixed models. Simulations showed promising results when comparing our density

estimation to competitors. First, in simple density estimation it appears that the pe-

nalized mixture approach proposed here behaves better or at least similarly compared

to the common alternatives (a) kernel density estimation, (b) spline based density

estimation (c) binning based estimation, (d) mixture densities, (e) log-spline density

estimation and (f) wavelet density estimation. Moreover, our density estimation ap-

proach performed almost as the best, regarding the IMSE, while the classical approach

(c) binning did not operate optimally in any considered density case. Secondly, extend-

ing the procedure towards covariate dependent density estimation allows for testing on

the equality of densities in different groups. The approach showed superior behaviour

in our simulations when compared to the classical Kolmogorov-Smirnov test. This test

on equality of densities in different groups carries some omnibus power, which is seen

especially in cases, where the standard tests do not announce inequality of the groups

(see Table 3.1).

The approach is in principle easy to extend to multivariate density estimation. In

the multivariate case, though, the numerical requirements of the penalized mixture

approach do however exponentially increase due to the increasing number of B-spline

basis functions. Because of this curse of dimensionality multivariate density estimation

remains a difficult task.
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density approach (g) penalized mixture (a) kernel (b) spline (c) binning (d) mixture (e) log-spline (f) wavelet

rel. IMSE f̂K(y) f̂K(y) f̂K(y) f̂kernel(y) f̂kernel(y) f̂spline(y) f̂bin,K(y) f̂bin,K(y) f̂mixture(y) f̂mixture(y) f̂log(y) f̂wave(y)
best absolute IMSE

K = 20 K = 30 Kopt bw=ucv bw=SJ Gu EM K = 20 EM K = 30 BIC entropy Koo Nason
(i) n = 100 1.000 1.040 1.149 2.485 2.056 1.472 2.124 2.247 3.374 4.515 4.677 6.449 0.396

n = 400 1.000 1.042 1.069 3.986 3.208 1.694 2.444 2.514 3.583 3.264 6.181 6.722 0.072
(ii) n = 100 1.186 1.002 1.000 1.637 1.292 1.128 1.599 1.615 2.527 2.445 4.027 4.561 1.074

n = 400 1.429 1.397 1.492 1.532 1.169 1.032 1.238 1.241 1.399 1.354 2.799 1.000 0.378
(iii) n = 100 1.000 1.176 1.136 1.434 1.156 1.358 1.601 1.624 1.526 3.220 2.358 4.965 0.346

n = 400 1.097 1.009 1.035 1.478 1.212 1.000 1.124 1.124 1.000 1.327 2.159 3.381 0.113
(iv) n = 100 1.052 1.085 1.076 1.291 1.000 1.061 1.231 1.247 1.238 3.007 2.110 3.939 0.446

n = 400 1.061 1.111 1.091 1.889 1.495 1.131 1.323 1.333 1.000 1.808 2.475 3.818 0.099
(v) n = 100 1.000 1.088 1.138 1.433 1.148 1.090 1.227 1.253 1.387 2.440 2.353 4.339 0.980

n = 400 1.025 1.062 1.062 1.864 1.574 1.124 1.326 1.322 1.000 1.483 2.657 2.541 0.242
(vi) n = 100 1.145 1.079 1.150 1.053 1.020 1.000 1.007 1.015 1.170 1.192 1.167 1.987 0.454

n = 400 1.000 1.017 1.000 1.030 1.006 1.000 1.003 1.003 1.058 1.030 1.141 1.288 0.361
(vii) n = 100 1.000 1.371 1.142 1.364 1.056 1.023 1.381 1.427 2.238 2.907 2.358 3.871 0.302

n = 400 1.664 1.626 1.785 1.224 1.000 1.159 1.196 1.196 2.841 2.841 1.748 2.542 0.107
(viii) n = 100 1.097 1.039 1.142 1.685 1.360 1.000 1.354 1.446 2.632 2.525 3.444 10.612 44.197

n = 400 1.199 1.123 1.000 2.676 2.073 1.344 2.197 2.243 2.575 2.255 4.631 51.972 9.012

Table 3.2: Relative Integrated Mean Squared Error. Optimal performance is set equal to one and in bold. The best absolute IMSE
is times 103.

59



4 Flexible Copula Density Estimation

with Penalized Hierarchical

B-Splines

This essay is joint work with Göran Kauermann (LMU Munich) and David Ruppert

(Cornell University). It is submitted to Scandinavian Journal of Statistics, compare

Kauermann, Schellhase, and Ruppert (2012).

Chapter 4 investigates an approach to estimate multivariate copula density functions

using penalized smoothing splines. In the chapter a new method for flexible spline fit-

ting for copula density estimation is introduced, that is spline coefficients are penalized

to achieve a smooth fit. To weaken the curse of dimensionality, instead of a full tensor

spline basis, a reduced tensor product based on sparse grids (see Zenger 1991) is used.

To achieve uniform margins of the copula density, linear constraints are placed on the

spline coefficients and quadratic programming is used to fit the model. Simulations

and practical examples accompany the presentation.

4.1 Introduction

Copulas allow for stochastic modelling of multivariate distributions beyond the classi-

cal normal distribution. The idea traces back to Sklar (1959), though Hoeffding (1940)

might be consulted as earlier reference, see Nelsen (2006). Copulas have experienced

general interest in the last years, primarily in the area of finance, see for instance Mc-

Neil, Frey, and Embrechts (2005), though the idea has been applied in other contexts as

well, see for example Bogaerts and Lesaffre (2008) or Song, Mingyao, and Yuan (2009)

for bio-statistical applications or Danaher and Smith (2011) for the use of copulas in

marketing. A general overview and survey of recent contributions in copula modelling

is found e.g. in Härdle and Okhrin (2009) or, from a more personal viewpoint, in Em-

brechts (2009); see also Kolev, Anjos, and Mendes (2006). A comprehensive collection

of new approaches in copula estimation is provided in Jaworski, Durante, Härdle, and

60



4 Flexible Copula Density Estimation with Penalized Hierarchical B-Splines

Rychlik (2010). This includes, inter alia, hierarchical modelling of Archimedean cop-

ulas as suggested in Okhrin, Okhrin, and Schmid (2009) and Savu and Trede (2010).

Lambert (2007) uses Bayesian spline smoothing for estimating the generator function

of a Archimedean copula. Joe (1996) pursues the use of so called pair-copulas, where

multiple interaction is reduced to bivariate copula modelling, see also Bedford and

Cooke (2002) or Czado (2010).

While the above literature on copula estimation is vast and extensive, this does not

apply to non- and semi-parametric routines for copula estimation which is tackled in

this chapter. This is surprising at a first glance but can in our opinion be explained with

the following two reasons. First, a copula has the property that its univariate margins

are uniform. Such side constraints are however difficult to accommodate in available

non-parametric estimation routines. Secondly, copulas have the potential to work in

high dimensional problems, while classical non-parametric techniques suffer from the

so called curse of dimensionality if the dimension exceeds two (or three). Our approach

presented in this part solves the first problem by directly including constraints on the

margins in the optimization routine. It turns out that the requirement of uniform

margins can be easily formulated as linear constraints on spline coefficients. Moreover,

we tackle the second problem, the curse of dimensionality, by making use of so-called

sparse grids. This means instead of a full tensor product of splines as basis, a reduced

form is used to achieve numerical feasibility in dimensions beyond two (or three).

Considering the literature on non-parametric copula estimation we refer to kernel den-

sity methods proposed in Gijbels and Mielniczuk (1990) which are further discussed in

Fermanian and Scaillet (2003), Fermanian, Radulovic, and Wegkamp (2004) and Chen

and Huang (2007). In these papers, the copula itself is fitted using a smoothed version

of the empirical copula. Omelka, Gijbels, and Veraverbeke (2009) modify the estimate

by correcting the “corner” bias of the kernel density estimates. More recently the

use of wavelet based estimation has been suggested by Morettin, Toloi, Chiann, and

Miranda (2010) for copula estimation or Genest, Masiello, and Tribouley (2009) for

copula density estimation, see also for a more theoretical investigation Autin, Pennec,

and Tribouley (2010). As an alternative to wavelets, the use of Bernstein polynomials

has been proposed in Sancetta and Satchell (2004); see also Qu, Qian, and Xie (2009)

and Pfeifer, Straßburger, and Philipps (2009). Instead of Bernstein polynomials one

may also use linear B-splines, as pursued in this chapter, see also Shen, Zhu, and Song

(2008). Replacing the copula density itself by a piecewise constant function has been

pursued by Qu, Qian, and Xie (2009) or in Qu and Yin (2012). The use of Wavelets,

piecewise constraints, Bernstein polynomials and B-splines allows to accommodate the

constraint that univariate marginal distributions are uniform. In practice, however,
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none of these methods do directly extend to higher dimensions due to the above-

mentioned curse of dimensionality. That is to say, numerically it is hardly feasible to

apply the routines to more than two (or three) dimensions, so that the major focus in

all cited papers lies on the bivariate case. In our approach, we make use of B-splines

to model the copula density itself. To do so, we replace the copula density by a (lin-

ear) combination of tensor products of univariate B-splines on [0, 1]. This idea builds

upon Marx and Eilers (2005); see also Koo (1996). With simple linear constraints on

the spline coefficients we can guarantee that the univariate margins of the copula are

uniform, that is the spline estimate itself is a copula density. To achieve smoothness of

the fitted copula, we impose a penalty on the spline coefficients as suggested by Eilers

and Marx (1996), see also Ruppert, Wand and Carroll (2003, 2009).

With the spline approach suggested, we are, however, still faced with the problem of

the curse of dimensionality. This implies that the dimensionality of the spline basis

increases exponentially with the dimension of the variables and, in fact, can reach the

order of a million even for 4 or 5 dimensional random vectors. To adapt the spline

approach to higher dimensions, we make use of so called “sparse grids”. The idea

traces back to Zenger (1991) and is extensively discussed and motivated in Bungartz

and Griebel (2004); see also Garcke (2006). Sparse grids make use of hierarchical

B-splines as discussed, for instance, in Forsey and Bartels (1988). The idea is to

represent a B-splines basis by B-splines of lower dimension, that is, built upon fewer

knots. Figure 4.1 shows how a linear B-spline [plot (a)] can be represented by B-splines

constructed at fewer knots [plots (b) to (d)]. More details are provided in the following

parts. The idea of sparse grids is now to replace the full tensor product by a reduced

form including only products of hierarchical splines up to a limited hierarchy order.

This reduces the numerical effort tremendously and allows us to weaken the curse of

dimensionality. Practically it means we are able to fit 4 (or even 5) dimensional copulas

with a fully semi-parametric approach.

The novel contributions of the chapter are (a) copula density estimation which guar-

antees uniform margins and allows for fast numerical fitting by imposing simple linear

constraints on the parameters and (b) proposing the use of sparse grids in the field of

nonparametric copula estimation which allows to weaken the curse of dimensionality

to fit models in 3, 4 or 5 dimensions. The following sections are organized as follows.

In Section 2 we introduce the estimation routine with hierarchical B-splines and sparse

grids. At the end of Section 2, we discuss the numerical implementation including the

incorporation of constraints on the marginal densities. In Section 3, we investigate the

performance of our copula estimator using simulations and two examples.
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4.2 Penalized B-Spline Estimation of a Copula Density

4.2.1 B-Spline Density Basis

Following Sklar’s (1959) theorem, we can write the distribution of the p dimensional

random vector X = (X1, . . . , Xp) as

F (x1, . . . , xp) = C{F1(x1), . . . , Fp(xp)}, (4.1)

where C(., . . . , .) is the copula corresponding to F (·). We assume that copula C(., . . . , .)

is a distribution function on the p-dimensional cube [0, 1]p, with uniform marginal

distributions and copula density c(., . . . , .) which is related to the density f(x1, . . . , xp)

through

f(x1, . . . , xp) = c {F1(x1), . . . , Fp(xp)}
p∏

j=1

fj(xj). (4.2)

Our intention is to estimate the copula density c(.) itself, either assuming the marginal

distribution Fj(xj) to be known or being estimated separately. Let therefore uj = F (xj)

so that c(u1, . . . , up) is a density on [0, 1]p with the p margin-constraints

∫
p×

i6=j

[0,1]

c(u1, . . . , up)

p∏

i6=j
dui = 1, for j = 1, . . . , p. (4.3)

(a) B−spline d=2
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(b) hierarchy h=0
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(c) hierarchy h=1
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(d) hierarchy h=2
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Figure 4.1: (a) B-spline density basis and corresponding hierarchical B-spline density
basis ((b),(c),(d)) with different hierarchy levels.
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We estimate c(·) in a flexible semi-parametric way by taking the p constraints (4.3)

into account. To do this, we will approximate c(·) by a mixture of basis densities.

Let therefore φk(u) be a regular linear univariate B-spline normalized to be a density,

i.e.,
∫
φk(u) du = 1 with u ∈ [0, 1] and denote with Φ(·) = {φl(·), l = 1, . . . , K} the

univariate B-spline density basis of dimension K, see Figure 4.1 (a). We construct

the full tensor product as Φ(u1, . . . , up) =
⊗p

j=1 Φ(uj) and reexpress Φ(·) by letting

k = (k1, . . . , kp) be a p-tuple with k ∈ K = {1, . . . , K}p. The components of Φ(·) are

then

φk(u1, . . . , up) = φk1,...,kp
(u1, . . . , up) =

p∏

j=1

φkj
(uj),

where kj ∈ {1, . . . , K} for j = 1, . . . , p. The idea is now to approximate the copula

density through the B-splines such that

c(u1, . . . , up) ≈
∑

k∈K
bkφk(u1, . . . , up) =: c(u1, . . . , up;b). (4.4)

The goodness of the approximation depends thereby on the richness of the basis, that

is, on the number of elements in K. We discuss this point later. The elements of

b = (bk,k ∈ K) are subsequently called the spline basis coefficients and with each

single basis spline being a density itself we obtain with conditions

∑

k∈K
bk = 1, c(u;b) ≥ 0 (4.5)

that c(u;b) in (4.4) is a density. For simplicity we ignore at this point that c(·;b) is

not guaranteed to be copula density in that univariate margins are not guaranteed to

be uniform. We will come back to this condition later.

To construct the likelihood for spline coefficients b, assume we have a random sample

xi = (xi1, . . . , xip) with i = 1, . . . , n from which we construct ui = (ui1, . . . , uip) through

uij = F̂j(xij). Here, F̂j(.) is a
√
n consistent estimate of the marginal distribution

function, which in the simplest case is just the empirical distribution function and

hence nuij are the ranks. Based on ui, i = 1, . . . , n, the log likelihood for b is then

l(b) =

n∑

i=1

log

{∑

k∈K
bkφk(ui1, . . . , uip)

}
, (4.6)

which needs to be maximized subject to the constraints (4.5). The accuracy of the

spline approximation in (4.4) improves for large K, but the corresponding fit will suffer

from estimation variability due to over-parameterization of the data. Entertaining the

ideas of penalized splines (see also Ruppert, Wand, and Carroll 2003), we impose a
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penalty on spline coefficients bk to achieve a smooth fit for c(·). Eilers and Marx

(1996) suggest to penalize r-th order differences for the B-spline coefficients. This

easily extends to the multivariate setting as shown in Marx and Eilers (2005). Let

L ∈ R(K−r)×K be a difference matrix of order r, e.g. for r = 1 we get

L =




1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 1 −1



,

and let W = diag(w1, . . . , wK) be the weight matrix linking a regular B-spline basis to

a B-spline density basis, i.e. wl is the integral from 0 to 1 of the l-th regular B-spline.

With matrix L we can now penalize differences in neighbouring spline coefficients and

define the penalty matrix P = WLTLW ; see also Wand and Ormerod (2008) and

Ruppert, Wand, and Carroll (2003). This penalty applies only to a single dimension. To

achieve smoothness of the fitted copula density for all variables, we use the Kronecker

product yielding the entire penalty matrix

P(λ) =

p∑

j=1

λjPj .

with Pj =
(⊗j−1

l=1 IK

)
⊗ P ⊗

(⊗p
l=j+1 IK

)
and λ = (λ1, . . . , λp) where IK is the K

dimensional identity matrix and
⊗j−1

l=1 denotes component-by-component tensor prod-

ucts (where
⊗0

l=1 IK = 1 =
⊗p

l=p+1 IK). The coefficient λj is the penalty parameter for

the j-th variable which needs to be selected in a data driven manner, as discussed later.

Incorporating the penalty into the log likelihood gives the penalized log likelihood

lp(b,λ) = l(b) − 1

2
bTP(λ)b, (4.7)

which is maximized for given λ with respect to b. Note that λ determines the amount

of smoothness for the fitted coefficients and setting λ = 0 gives the unpenalized ML

estimate.

4.2.2 Hierarchical B-splines and Sparse Grids

The modelling approach proposed above becomes numerically infeasible if the dimen-

sion p exceeds 2 or 3, since the dimension of the tensor product basis grows exponen-

tially in p. To illustrate this curse of dimensionality, Table 4.1 gives the dimension

of a full tensor product based on a linear B-spline basis of dimension K = 2d + 1 for
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d = D basis p = 2 p = 3 p = 4 p = 5

3 (K = 9) tensor prod. (D = dp) 81 729 6,561 59,049
sparse (D = d) 37 123 368 1,032

4 (K = 17) tensor prod. (D = dp) 289 4,913 83,521 1,419,857
sparse (D = d) 81 297 961 2,882

5 (K = 33) tensor prod. (D = dp) 1,089 35,937 1,185,921 39,135,393
sparse (D = d) 177 705 2,441 7,763

Table 4.1: Dimension of tensor product basis Φ̃(d)(u1, . . . , up) (full tensor product) and

reduced sparse hierarchical basis Φ̃
(D)
(d) (u1, . . . , up) with D set equal to d for q = 1, i.e.,

linear B-splines.

different dimensions of u ranging from p = 2 to p = 5. Even for a p = 3 dimensional

vector u and K = 17, one ends up with nearly 5000 parameters, which is at the limit of

numerical feasibility. We therefore suggest reducing the spline dimension for numerical

purposes by not taking a full tensor product but, instead, using a reduced form to

guarantee numerical feasibility. Our approach makes use of Zenger’s (1991) so called

‘sparse grids’. To apply the idea we first transform the univariate B-spline density into

its hierarchical form. Let the linear univariate B-spline density basis be built upon

2d + 1 equidistant knots τk = k2−d, k = 0, . . . , 2d. The basis has dimension K = 2d + 1

and is denoted subsequently as Φ(d)(u) =
{
φ(d)l(u), l = 1, . . . , K

}
. We can reexpress

this basis in hierarchical terms as derived in Forsey and Bartels (1988, 1995); see also

Garcke (2006). Let I0 = {1, 2} and Ih = {2j, for 1 ≤ j ≤ 2h−1} for h = 1, . . . , d

denote hierarchical index sets. The hierarchical B-spline basis linearly equivalent to

Φ(d)(u) is then defined through

Φ̃(d)(u) =
{
φ(h)l(u), l ∈ Ih, h = 0, . . . , d

}
=
{
Φ(h)Ih

, h = 0, . . . , d
}
. (4.8)

Figure 4.1 illustrates the hierarchical spline in plots (b) to (d) with B-spline basis

φ(0)1(.), φ(0)2(.) for (b), φ(1)2(.) for (c) and φ(2)2(.), φ(2)4(.) for (d). It is not difficult to

show that both bases, (a) and (b) to (d), span the same space so that Φ(d)(u) = Φ̃(d)(u)Ã

for some invertible K×K matrix Ã. We now reformulate the penalized likelihood (4.7)

by replacing the B-spline bases in (4.4) with their hierarchical form. To do this, let

the complete tensor product based on the hierarchical B-spline basis Φ̃(d)(·) be denoted

with

Φ̃(d)(u1, . . . , up) =

p⊗

j=1

Φ̃(d)(uj) = Φ(u)Ã−1

and Ã−1 =
p⊗
j=1

Ã−1. Let b̃ = Ã−1b denote the corresponding spline coefficient vector

for basis Φ̃(d)(·). The penalized likelihood (4.7) can then be rewritten in terms of b̃
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taking the form

l̃p(b̃,λ) = l̃(b̃) − 1

2
b̃T P̃(λ)b̃

with l̃(b̃) =
∑n

i=1 log
{
Φ̃(d)(ui)b̃

}
and P̃(λ) =

∑p
j=1 λjP̃j where

P̃j =

(
j−1⊗

l=1

Ĩ(d)

)
⊗ {(Ã−1)TPÃ−1} ⊗

(
p⊗

l=j+1

Ĩ(d)

)

and Ĩ(d) = (WÃ−1)T (WÃ−1).

The parameterization with hierarchical B-splines allows us to tackle the curse of di-

mensionality by making use of a so-called sparse grid approach. The underlying idea

is to consider spline tensor products up to a cumulated hierarchy order D only. Figure

4.2 illustrates the idea for dimension p = 2 and D = 2 using a linear B-spline basis.

To be specific, we define the sparse grid tensor product as

Φ̃
(D)
(d) (u1, . . . , up) =

(
p⊗

j=1

Φ(hj)Ihj
(uj),

p∑

j=1

hj ≤ D

)
. (4.9)

The upper index D refers to the maximum hierarchy level and the lower index d is

the hierarchy level of the marginal hierarchical B-spline basis. Note that d ≤ D ≤ pd

is a useful range for D and Φ̃
(pd)
(d) (·) = Φ̃(d)(·). The reduction of the basis reduces

the numerical effort tremendously as can be seen from Table 4.1 where we show the

dimension of Φ̃(d) and Φ̃
(D)
(d) for various values of d and D. For p = 3 and d = D = 4

(i.e. K = 2d + 1) we get a 297 dimensional basis instead of 4913 dimensional. Note

that the reduced basis is created by extracting columns of the complete tensor product

basis. This means we can write

Φ(0)I0
(u1) Φ(1)I1

(u1) Φ(2)I2
(u1)

Φ(0)I0
(u2) Φ(0)I0

(u1) ⊗ Φ(0)I0
(u2) Φ(1)I1

(u1) ⊗ Φ(0)I0
(u2) Φ(2)I2

(u1) ⊗ Φ(0)I0
(u2)

Φ(1)I1
(u2) Φ(0)I0

(u1) ⊗ Φ(1)I1
(u2) Φ(1)I1

(u1) ⊗ Φ(1)I1
(u2) omitted

Φ(2)I2
(u2) Φ(0)I0

(u1) ⊗ Φ(2)I2
(u2) omitted omitted

Figure 4.2: Representation of Φ̃
(2)
(2)(u1, u2) for two dimensions (p = 2).

Φ̃
(D)
(d) (u1, . . . , up) = Φ̃(d)(u1, . . . , up)J

(D)
(d)
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where J
(D)
(d) is an indicator matrix with entries 0 and a single entry 1 per column for

extracting the matching columns of Φ̃(d). Note that with this definition J
(pd)
(d) is the iden-

tity matrix. Let b̃(D) denote the basis coefficients corresponding to the sparse splines

basis. We define the sparse penalized log likelihood by extracting the corresponding

elements from the complete penalty matrix, that is

l̃(D)
p (b̃(D),λ) = l̃(D)(b̃(D)) − 1

2
b̃(D)T

P̃(D)(λ)b̃(D) (4.10)

with obvious definition for l̃(D)(b̃(D)) and P̃(D)(λ) = J
(D)T

(d) P̃(λ)J
(D)
(d) . Note that since

b̃(pd) = b̃ we have l̃(pd)(·) = l̃(·).
Now that we have reduced the basis dimension to make copula density estimation

feasible even beyond the bivariate case, it remains to tackle the question of how well

we can approximate an arbitrary copula density c(u) by a sparse grid representation

c(u,b(D)) = Φ
(D)
(d) (u)b(D).

4.2.3 Approximation Error

Let c(D)(u;b) = Φ̃
(D)
(d) (u)b̃(D) denote the sparse grid B-spline representation of the

true copula density c(u). We assume that c(u) is continuously differentiable, and we

denote with b̃
(D)
0 the true parameter in the sense that c(D)(u; b̃

(D)
0 ) and c(u) have

smallest Kullback-Leibler distance with b̃
(D)
0 fulfilling constraint (4.22). This implies

that vector b̃
(D)
0 minimizes the Lagrange function

E
{

log
(
c(D)(u; b̃(D))

)}
+ ρ(1T b̃(D) − 1) (4.11)

with ρ as the Lagrange multiplier. Differentiation of (4.11) with respect to b̃(D) yields

∫
Φ̃T (u)

c(u)

c(D)(u; ˜̃
b(D))

du = ρ1 (4.12)

where ρ = 1 results from multiplying (4.12) from the left hand side with b̃
(D)T

0 . Using

definition (4.9), we find the components of Φ̃(u) to have the form
∏p

j=1 φ(hj)lj (uj) with

lj ∈ I(hj) and
∑p

j=1 hj ≤ D where hj ≥ 0. We naturally assume that D ≥ d and

define with r(u) = c(u)/c(D)(u; b̃
(D)
0 ) the ratio of the true and the approximate copula

68



4 Flexible Copula Density Estimation with Penalized Hierarchical B-Splines

density. With (4.12) we get for a single component in Φ̃(u)

1 =

∫ 1

0

φ(h1)l1(u1)

{∫

×p
j=2[0,1]

p∏

j=2

φ(hj)lj (uj)r(u1, . . . , up)du2 . . .dup

}
du1

=

∫

U(h1)l1

φ(h1)l1(u1)r1(u1)du1 (4.13)

where r1(u1) denotes the bracketed term in (4.13) and U(hj)l1 is the support of basis

φ(h1)l1 . Following the mean value theorem for integration we find a value ũ(h1)l1 ∈ U(h1)l1

so that r1(ũ(h1)l1) = 1. This allows to recursively apply the same argument to the

bracketed term in (4.13). Let h
(D)
1 = D −∑p

j=2 hj , then condition (4.13) holds for all

h1 ≤ h
(D)
1 . Since

{
φ(h1)Ih1

(u1), h1 ≤ h
(D)
1

}
spans the linear space of Φ“

h
(D)
1

”(u1) of the

non hierarchical B-spline basis of order h1 we obtain that for all u1 ∈ [0, 1] there exists

a ũ1 with |u1 − ũ1| ≤ 2−h
(D)
1 and r1(ũ1) = 1. Applying the same argument recursively

we get the final result that for all u ∈ [0, 1]p there exists a ũ with ||u− ũ|| ≤ 2−D and

c(u) = c(D)(ũ;b(D)). With simple Taylor approximation we therefore obtain

c(u) = c(D)(ũ;b(D)) +O(2−D). (4.14)

Thus, the cumulated hierarchy D determines the order of the approximation error, so,

not surprisingly, accuracy and numerical feasibility are in competition.

4.2.4 Statistical Properties of the Estimate

We discuss the statistical properties of the estimate. Let
ˆ̃
b denote the penalized Max-

imum Likelihood estimate based on (4.10) and let s̃
(D)
p (b̃(D),λ) and H̃

(D)
p (b̃(D),λ) be

the first and second order derivatives of l̃
(D)
p (b̃(D),λ), respectively, i.e.,

s̃(D)
p (b̃(D),λ) =

n∑

i=1

Φ
(D)
(d) (ui)

c(D)(ui, b̃(D))
− P̃(D)(λ)b̃(D) (4.15)

H̃(D)
p (b̃(D),λ) = −

n∑

i=1

Φ
(D)
(d) (ui)Φ

(D)
(d)

T
(ui)

c(D)(ui, b̃(D))
− P̃(D)(λ) (4.16)

where c(D)(ui, b̃
(D)) = Φ

(D)
(d) (ui)b̃

(D). Denote with b̃
(D)
0 the ‘true’ spline coefficient

vector, in the sense that the true copula density c(u) and c(D)(u, b̃
(D)
0 ) have smallest

Kullback-Leibler distance. This defines b̃
(D)
0 implicitly through E

{
s̃p(b̃

(D)
0 ,λ = 0)

}
=

0. For the solution of s̃
(D)
p (ˆ̃b(D),λ) = 0, we get with simple regular expansion techniques
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(see e.g., Kauermann, Krivobokova, and Fahrmeir 2009)

ˆ̃
b(D) − b̃

(D)
0 = −H (D)

p

−1
(b̃

(D)
0 ,λ)s(D)

p (b̃
(D)
0 ,λ) + . . .

which allows us to derive asymptotic statements about the estimates for n→ ∞ and D

fixed. In fact, applying the central limit theorem we can derive asymptotic normality

of ˆ̃
b(D) with mean and variance asymptotically equal to

E(ˆ̃b(D)) = b̃
(D)
0 +

{
H(D)
p (b̃

(D)
0 ,λ)

}−1

P̃(D)(λ)b̃
(D)
0 (4.17)

Var(ˆ̃b(D)) =
{
H(D)
p (b̃

(D)
0 ,λ)

}−1

H(D)
p

(
b̃

(D)
0 ,λ = 0

){
H(D)
p (b̃

(D)
0 ,λ)

}−1

.(4.18)

4.2.5 Constraints on the Parameters and Penalization

Until now we have not incorporated the constraints that univariate margins of the

copula density c(u) are uniform. To have the estimate c(u,
ˆ̃
b(D)) be a proper copula

density we need to impose uniform, univariate margins. First, we need to calculate

the marginal density from Φ̃
(D)
(d) (u1, . . . , up)b̃

(D). Looking for example at Figure 4.2

we can appreciate that the univariate margins are represented with the univariate

spline basis Φ̃
(D)
(d) (uj) and the corresponding marginal basis coefficient vector b̃

(D)
(j) , say,

with elements being calculated as the sum over a set of elements of b̃(D). In the

bivariate case this results from summing up row-wise (for u2) or column-wise (for u1)

the corresponding spline coefficients in the basis representation shown in Figure 4.2.

Let the marginal hierarchical basis Φ̃(d)(u) in (4.8) be indexed by {φ̃(d)l(·), l = 1, . . . , K},
and let h̃ = (h̃l, l = 1, . . . , K) denote the hierarchy level of φ̃(d)l(u), that is, φ̃(d)l(u) is

element of Φ̃(h̃l)Ih̃l

. For instance, looking at Figure 4.1 (or 4.2), the hierarchy levels

for the hierarchical bases built from (b), (c), and (d) are 0, 1, and 2, respectively. The

sparse grid basis Φ̃
(D)
(d) (u) in (4.9) can now be indexed as

{
p∏

j=1

φ̃(d)lj (uj),

p∑

j=1

h̃lj ≤ D, lj = 1, . . . , K

}

and accordingly we index the spline coefficient vector with b̃(D) = (b̃
(D)
l1,...,lp

;
∑p

j=1 h̃lj ≤
D). As a result, the marginal density for uj is as follows. Let du−j denote the integral

measure
∏

m6=j dum, then

∫
p×

i6=j

[0,1]

Φ̃
(D)
(d) (u1, . . . , up)b̃

(D)du−j =
K∑

lj=1

φ̃(d)lj (uj)b̃
(D)
(j)lj

=: Φ̃(d)(uj)b̃
(D)
(j) (4.19)
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with Φ̃(d)(·) as hierarchical marginal basis defined in (4.8). The elements of coefficient

vector b̃
(d)
(j) result from the p− 1 dimensional sum

b
(D)
(j)lj

=
∑

l−j :
P

m6=j lm≤D
b̃
(D)
l1,...,lp

(4.20)

where l−j denote the sum over all lm with m 6= j. Note that (4.20) is a simple linear

calculation. Note that this is a simple linear calculation and hence fast and straight

forward, so that the marginal density is numerically easy to obtain. To guarantee

that the marginal density is uniform, we now simply impose the constraints on the

coefficients evaluated at the knots τk

Φ̃(d)(τk)
ˆ̃b
(D)
(j) = 1, k = 1, . . . , K, j = 1, . . . , p. (4.21)

We need two further constraints to have c(u, b̃(D)) being a density. First, the fitted

curve c(u;
ˆ̃
b(D)) := Φ̃

(D)
(d) (u1, . . . , up)

ˆ̃
b(D) is required to be a density. Since all columns

in the hierarchical basis Φ̃
(D)

(d) are B-spline densities over u1 . . . , up we therefore need to

guarantee that the sum of the components of ˆ̃
b(D) equals 1, i.e.,

1T
ˆ̃
b(D) = 1. (4.22)

We also need that the fitted density is nonnegative which yields the additional con-

straint

c(u1, . . . , up;
ˆ̃
b(D)) ≥ 0, uj ∈ [0, 1], j = 1, . . . , p. (4.23)

The constraints (4.21), (4.22) and (4.23) can be accommodated as side conditions in

a quadratic programming tool to maximize the likelihood (4.10). We made use of the

implemented version in R in the quadprog package. As a starting value for b̃, we

use a uniform distribution on the the cube [0, 1]p. This is easily obtained with the

hierarchical B-spline basis. The knots are placed equidistantly. The entire procedure

is implemented in the R package pencopula (see Schellhase 2012) available on the CRAN

server (see http://cran.r-project.org/ ).

Note that (4.21) and (4.22) are simple equations. To satisfy constraint (4.23), we

require the condition to hold at the (2d + 1)p equidistant knots locations of the tensor

product B-spline density basis. If p and d increase, the number of conditions and

hence the computational effect of the quadratic program increase enormously, e.g. a

full tensor product for p = 4 and d = 4 contains 83521 entries. With the following trick,

we can reduce the calculation time without any loss of accuracy. The idea is, when

calculating the constraints, to omit knot locations of the full tensor product where
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the density itself is high. This is incorporated in the algorithm in two ways. First,

in the initial step we omit knot locations for the calculation of the constraint (4.23)

which are close to the observations. In the subsequent steps, when density estimates

in the iteration are available, we omit knot locations with a high value of the fitted

density. Such reduction of the constraints accelerates the computation of the quadratic

programming step.

The final thing to adjust is the amount of penalization. In practice, we need to choose

λ in a data-driven manner and in principle we need to select a separate λj for each

dimension. To limit the numerical effort, however, we let λ1 = λ2 = · · · = λp and

minimize the corrected Akaike information criterion (Hurvich and Tsai 1989, see also

Burnham and Anderson 2010) defined as

AICc(λ) = −2l̃(
ˆ̃
b(D),λ) + 2df(λ) +

2df(λ)(df(λ) + 1)

n− df(λ) − 1
(4.24)

where df(λ) is the degree of the model defined through

df(λ) = tr

[{
H̃(D)
p (

ˆ̃
b(D),λ)

}−1

H̃(D)
p

(
ˆ̃
b(D),λ = 0

)]
.

where H̃
(D)
p (.) is the second order derivative of the likelihood, see formula (4.16) for

details.

4.3 Simulations and Examples

4.3.1 Simulation

To get an impression of the performance of the routine, we simulated data from a given

copula c0(·), say, using the copula package in R; see Yan (2007). We thereby simulate

data from different copulas in two correlation scenarios with Kendall’s tau τ = 0.25

and with τ = 0.5, respectively. With respect to the copulas, we simulate data from (i) a

Clayton copula, (ii) a Frank copula, (iii) a Gumbel copula and two different t-copulas,

(iv) a t-copula with 3 degrees of freedom, and (v) a t-copula with 4 degrees of freedom,

each with sample size n=500. We simulate data in p = 2, 3 and 4 dimensions.

We fit the simulated data following our procedure and the performance is validated by

analyzing the simulation mean of the corrected Akaike information criterion AICc of

non-parametric estimators, denoted by ÂICnp. The results are based on 200 simulations

for p = 2, 3 and 100 simulations for p = 4 and shown in Table 4.4 for different values of

d, the spline dimension, and D, the hierarchy order. The optimal smoothing parameter
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λ is selected with a simple grid search. Note that d = 3, D = 6 as well as d = 4, D = 8

refer to a full tensor product for p = 2. For comparison, we fit the data with a kernel

density estimator using the quadratic Epanechnikov-kernel and optimal bandwidth

selected with likelihood cross-validation. For fitting we use the R package np (see

Hayfield and Racine 2008). The corresponding AICc is denoted as ÂICkernel, where we

use the multivariate analogon of the univariate Akaike information criterion by Loader

(1999). Furthermore, we fit the data with Bernstein polynomials as basis functions

but without any penalization (see Sancetta and Satchell 2004). We use quadratic

programming with the same side constraints as in our routine, that is imposing uniform

margins. As basis dimensions of the Bernstein polynomial we use 3, 4, 5, . . . , 10. To

avoid over-fitting we select the dimension of the basis again by the use of the corrected

Akaike information criterion AICc. The corresponding AICc is denoted as ÂICbern. As

an ultimate benchmark, we calculated the AICc value for the true copula from which

we simulated the data but with their parameter replaced by its Maximum Likelihood

fitted value, as implemented in R using the copula package. This value is denoted as

ÂICtrue.

Let us now look at the results in Table 4.4. First we investigate the two dimensional

setting, i.e. p = 2, which is visualized in Figure 4.3 by plotting the distance to the

optimal AICc for the different competitors. We start with the low correlation case,

i.e. τ = 0.25. The results of the full tensor product kernel d = 4, D = 8 yield

optimal results for each copula scenario. Furthermore the sparse grid (d = 3, D = 3

and d = 4, D = 4) is slightly less efficient for this scenario, but shows comparably

distances to the optimal AICc as the optimal full tensor product does. The kernel

density approach shows the largest difference to the optimal AICc in this case. Also, the

Bernstein polynomials are outperformed with respect to the difference to the optimal

AICc in this case. The picture changes slightly when looking at the stronger correlation

τ = 0.5. Again, the full tensor product for d = 4, D = 8 yields the best results with

respect to the distance to optimal AICc followed by the the full tensor product for

d = 3, D = 6 with slightly increased differences. Moreover the sparse grid (d = 3, D = 3

and d = 4, D = 4) performs weaker but still better than the kernel approach and the

Bernstein polynomials, which have the highest distance to optimal AICc.
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Figure 4.3: Simulated AIC difference ÂIC − AICtrue for p = 2. From left to right:
ÂICnp−AICtrue for d = 3, D = 3 and d = 3, D = 6 and d = 4, D = 4 and d = 4, D = 8,

respectively, ÂICbernstein − AICtrue and finally ÂICkernel − AICtrue
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Next we look at dimension p = 3. The results are visualized in Figure 4.4. Note that

for p = 3 all cases of our approach are sparse grids and the full tensor pruduct with

e.g. d = 4, D = 12 would be numerically demanding, see also Table 4.1. Generally,

for the small correlation case τ = 0.25 (top) we see a tendency that the sparse grid fit

outperforms both, the Bernstein polynomial fit and the kernel based fit. Looking at

sparse grids using d = 3, D = 6 and d = 4, D = 8, we obtain the smallest distance to

the optimal AICc. A similar picture is seen for the strong correlation case, i.e. τ = 0.5.

The spars grids using d = 3, D = 3 and d = 4, D = 4 show comparable differences to

optimal AICc.

Finally, considering the four dimensional case p = 4, we simulate from the Clayton,

Frank and t-copula with 4 degrees of freedom. For the low correlation case τ = 0.25

we observe the lowest distances to the optimal AICc for the sparse grids and the

Bernstein polynomials and the kernel approach are outperformed. Looking at the

stronger correlation τ = 0.5 we observe a similar behaviour. Overall we can conclude

that the sparse grid behaves competitive, in particular for dimensions beyond 2.

Finally, looking at the computing time we list in Table 4.2 the CPU time for the sparse

grid approach for different values of d(= D) and dimensions p = 2, 3, 4. Again, though

the computing time increases with p, calculation is still feasible for dimension p = 4.

d = D p = 2 p = 3 p = 4
3 (K = 9) 1.063 2.020 13.652
4 (K = 17) 4.017 11.081 175.251

Table 4.2: Elapsed system.time for a Frank copula with N = 500 observations.

4.3.2 Example

Finally, we illustrate the applicability of the procedure with two examples. In both

examples, we use t-distribution as univariate margins with maximum-likelihood theory

estimated parameters. We present the results with smoothing parameter λ, chosen by

AICc in Table 4.3.2.

First, we look at monthly interest rate data from the R package Ecdat using the data

set Capm. The raw data are monthly risk-free interest rates which could be used to fit a

Capital Asset Pricing Model (CAPM). We have jittered the data somewhat and created

a bivariate sample by computing lagged rates and changes in rates. The data and the

contour plot of the sparse grid-based fitted copula (left) and the corresponding copula

density (right) are plotted in Figure 4.5, for d = 5 and D = 5. Note that the copula

distribution function on
p×
j=1

[0, 1] is easily calculated by taking the integrated B-spline
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Figure 4.5: Copula (left) and copula density (right) for the interest rate data from the
data set Capm in the R package Ecdat with d = 5 and D = 5.

densities weighted with the spline coefficients. The density shows a strong positive

association between the lagged rate and the volatility of the rate change. Specifically,

the density is high where the lagged rate and the magnitude of the rate change are

either both small or both large. For comparison, we fitted the copula for different spline

dimensions and also with a full tensor product and list the results in Table 4.3.2 (left).

We show the maximum likelihood l̂ and the Akaike Information criterion. Moreover

we fit classical copula families to the data with maximum-likelihood theory estimated

parameters. Also, we use Bernstein polynomials to construct the copula and choose

the dimension of them by the Akaike Information Criterion. The results are shown

in Table 4.3.2. Apparently, none of the parametric models are close to the results of

the non-parametric approach and among the latter, the penalization spline estimators

outperform the Bernstein polynomial estimators, using the AICc as the criterion.

As a second example, we investigate three daily world currency indices from January

3rd, 2000 until May 6th, 2011. The dataset includes values of n = 2854 business days

compared to the US-dollar. The data set includes the Australian dollar (AUS), the

Euro (EUR) and the Japanese yen (YEN). We analyze the log-return from day t to day

t + 1. We present the results for this data set in Table 4.3.2 (right). For comparison

we also fit parametric copula models to the data, also listed in Table 4.3.2. Note, a

full tensor product for p = 3 is constructed with d = 3, D = 9 or d = 4, D = 12, but at

least for d = 4, D = 12 the approach is not feasible due to the curse of dimensionality.

Therefore, we fit the data with a compromise between the smallest sparse grid and

the full tensor product, using d = 3, D = 6 and d = 4, D = 8. The greater sparse

grids with d = 3, D = 6 and d = 4, D = 8 result with higher log-likelihood compared
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Capm data exchange rate data

d D log-likelihood l̂ AICc log-likelihood l̂ AICc

3 3 40.343 -51.162 873.980 -1610.068
3 6 50.932 -55.714 1007.578 -1725.735
4 4 43.983 -52.412 978.359 -1707.725
4 8 57.361 -57.077 1117.326 -1774.491
5 5 46.202 -53.209 - -
5 10 60.598 -58.556 - -
Clayton 19.008 -36.007 83.410 -164.819
Frank 2.811 -3.654 2.707 -3.412

Gumbel 1.391 -0.775 31.649 -61.296
Normal 3.990 -5.972 27.654 -53.307

Bernstein 34.417 -36.833 886.640 -1523.279

Table 4.3: Results for various combinations of d and D for data examples in Section
4.3.2, compared with results fitting maximum likelihood based optimal parameters
for classical copula families and Bernstein polynomials choosing the dimension by the
Akaike Information Criterion.

with the cases d = 3, D = 3 and d = 4, D = 4. Overall, the fits are better than

the competing models including the Bernstein polynomials. Our approach allows to

analyze the bivariate margins of this estimated three dimensional copula. The contour

plot of the fitted bivariate margins (left) with minimal AICc and the corresponding

copula density (right) are plotted in Figure 4.6 with d = 4 and D = 8. We observe

different dependencies among the bivariate margins. Obviously, the high peaks in

(0, 0) and (1, 1) in the bivariate marginal copula of the Euro and the Australian dollar

(Figure 4.6, right in the top row) indicate dependence between these currencies in the

observation period, both currencies have risen or have fallen if one of them have risen or

have fallen. The bivariate marginal copula of the Euro and the Japanese yen (Figure

4.6, right in the middle row) shows a different dependency. The bivariate marginal

copula of the Australian dollar and the Japanese yen (Figure 4.6, right in the middle

row) shows more complex behaviour, which is mirrored in the non-parametric fit.

4.4 Discussion

We propose in this chapter how to fit copula densities with penalized B-splines. Our

approach thereby accommodates side constraints like uniform univariate margins so

that the fitted density is a copula density itself. The use of a reduced tensor product

basis allows to extend the approach to higher dimensions by maintaining numerical

feasibility. Apparently, the approach does not circumvent the curse of dimensionality,
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but it shifts it a little bit so that calculation on 3, 4 (or 5) dimensions is possible. More-

over, we show (see Table 4.3.2), that the choices of d and D are not crucial, if they are

chosen large enough to avoid substantial bias. The approach can be extended to higher

dimensions by making use of further techniques as for instance pair copula estimation.

Generally, the semi-parametric approach suggested in the chapter contributes to the

weakly development field of non- and semi-parametric copula estimation.
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Figure 4.6: Bivariate marginal copula distribution (left) and copula density (right)
between Euro (EUR), Australian Dollar (AUS) and Japanese Yen (JAP) compared to
the US-dollar from January 3rd, 2000 until May 6th, 2011 with d = 4 and D = 8.
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copula true d = 3 d = 4 Bernstein kernel
AICtrue D = 3 D = 6 D = 4 D = 8 AICbern Epanechnikov AICkernel

p = 2 (i) Clayton τ = 0.25 -107.01 (22.38) -69.85 (16.67) -71.66 (17.40) -70.47 (17.34) -72.22 (17.89) -65.09 (15.51) 19.33 (23.05)
(i) Clayton τ = 0.50 -427.26 (38.25) -288.87 (23.01) -330.31 (32.40) -321.50 (29.39) -339.61 (46.75) -262.14 (22.89) -262.74 (38.64)
(ii) Frank τ = 0.25 -72.70 (15.94) -60.93 (14.33) -61.19 (14.37) -61.97 (15.06) -61.19 (14.55) -58.37 (16.03) 46.34 (25.67)
(ii) Frank τ = 0.50 -315.72 (28.86) -276.43 (26.21) -279.60 (32.83) -277.65 (25.89) -290.42 (28.25) -260.35 (23.65) -186.22 (35.77)
(iii) Gumbel τ = 0.25 -94.19 (19.38) -60.51 (15.25) -62.30 (15.62) -60.92 (15.51) -62.66 (15.87) -57.76 (14.86) 35.44 (21.04)
(iii) Gumbel τ = 0.50 -374.33 (34.29) -276.38 (25.09) -302.60 (30.24) -295.31 (29.20) -309.89 (31.91) -258.99 (24.66) -221.33 (34.27)
(iv) tcop df = 3, τ = 0.25 -119.29 (25.59) -69.17 (20.39) -74.25 (21.27) -71.48 (20.95) -75.44 (21.52) -62.36 (17.93) 12.32 (25.16)
(iv) tcop df = 3, τ = 0.50 -390.74 (43.55) -272.07 (29.82) -307.75 (37.40) -300.02 (36.21) -319.51 (39.84) -256.34 (29.66) -223.74 (42.62)
(v) tcop df = 4, τ = 0.25 -102.52 (21.86) -62.97 (17.10) -66.56 (17.63) -64.36 (17.46) -67.53 (17.80) -59.75 (15.71) 25.60 (25.18)
(v) tcop df = 4, τ = 0.50 -376.86 (38.80) -275.60 (29.48) -304.79 (34.86) -297.81 (33.47) -312.76 (42.46) -260.91 (28.51) -214.26 (41.80)

p = 3 (i) Clayton τ = 0.25 -273.40 (37.94) -174.14 (25.85) -180.14 (28.15) -177.79 (26.69) -185.16 (29.68) -151.76 (23.89) 14.45 (37.46)
(i) Clayton τ = 0.50 -974.26 (67.70) -624.11 (39.54) -714.50 (47.27) -662.98 (113.29) -693.25 (123.01) -508.62 (33.75) -579.69 (60.68)
(ii) Frank τ = 0.25 -192.99 (27.84) -163.18 (25.81) -173.13 (26.95) -165.01 (26.25) -176.21 (27.80) -143.22 (25.94) 58.60 (38.50)
(ii) Frank τ = 0.50 -747.08 (48.07) -625.93 (40.03) -697.03 (43.33) -657.44 (49.28) -709.70 (74.74) -533.13 (32.25) -474.06 (52.78)
(iii) Gumbel τ = 0.25 -247.64 (35.96) -159.77 (25.31) -168.13 (24.44) -163.37 (26.03) -174.40 (25.86) -139.78 (23.91) 27.76 (35.72)
(iii) Gumbel τ = 0.50 -876.30 (59.10) -613.29 (39.78) -693.67 (45.92) -648.01 (53.34) -729.04 (55.94) -518.21 (34.66) -525.27 (55.88)
(iv) tcop df = 3, τ = 0.25 -299.08 (37.95) -171.96 (26.35) -185.16 (26.53) -178.98 (27.53) -195.71 (29.29) -141.52 (23.23) 12.05 (37.86)
(iv) tcop df = 3, τ = 0.50 -896.82 (62.32) -588.61 (41.44) -691.52 (54.46) -647.94 (48.92) -724.21 (99.85) -499.84 (38.24) -473.40 (67.63)
(v) tcop df = 4, τ = 0.25 -261.47 (36.83) -158.86 (26.85) -170.10 (32.20) -163.74 (27.83) -176.65 (34.63) -137.83 (25.17) 39.48 (36.90)
(v) tcop df = 4, τ = 0.50 -859.93 (64.03) -589.89 (44.97) -683.12 (58.14) -641.70 (49.90) -718.80 (71.10) -505.96 (41.39) -448.67 (67.88)

p = 4 (i) Clayton τ = 0.25 -462.05 (56.02) -278.72 (36.68) - -288.16 (37.57) - -164.85 (37.33) 24.82 (54.77)
(i) Clayton τ = 0.50 -1576.78 (95.39) -886.38 (47.02) - -916.73 (89.81) - -716.17 (44.24) -885.47 (81.09)
(ii) Frank τ = 0.25 -346.10 (34.68) -276.96 (30.91) - -285.13 (32.66) - -162.40 (31.57) 80.21 (46.67)
(ii) Frank τ = 0.50 -1232.39 (61.67) -959.32 (50.03) - -940.42 (125.61) - -765.26 (42.94) -773.73 (72.53)
(v) tcop df = 4, τ = 0.25 -456.45 (54.97) -263.87 (34.45) - -280.39 (37.33) - -155.55 (32.49) 78.12 (58.53)
(v) tcop df = 4, τ = 0.50 -1409.14 (87.22) -895.12 (52.63) - -914.93 (121.91) - -717.53 (41.36) -657.75 (110.54)

Table 4.4: Reported is the mean (sd) of the AICc. The optimal results are set in bold.
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5 Flexible Pair-Copula Estimation in

D-vines with Penalized Splines

This essay is joint work with Göran Kauermann (LMU Munich). It is a working paper,

compare Kauermann and Schellhase (2012).

In this chapter a new method for flexible fitting of dependences vines, especially for D-

vines is investigated. Therefore, pair-copulas are estimated semi-parametrically using

penalized Bernstein polynomials or linear B-splines, respectively, as spline bases in each

knot of the D-vine throughout each level. A penalty induce smoothness of the fit while

the high dimensional spline basis guarantees flexibility. To ensure uniform univariate

margins of each pair-copula, linear constraints are placed on the spline coefficients and

quadratic programming is used to fit the model. The amount of penalizations for each

pair-copula is driven by a penalty parameter which is selected in a numerically efficient

way. Simulations and practical examples accompany the presentation.

5.1 Introduction

Copula modelling and estimation has become extremely popular over the last decade.

Originally introduced by Sklar (1959) the idea of a copula is attractive since it allows

to decompose a multivariate distribution into its univariate margins and its interaction

structure, expressed through the copula. Assuming the p-dimensional random vec-

tor (x1, . . . , xp) with univariate marginal distributions Fj(xj) for j = 1, . . . , p Sklar’s

theorem states that the joint distribution can be written as

F (x1, . . . , xp) = C
(
F1(x1), . . . , Fp(xp)

)
. (5.1)

Here C(.) is called the copula which can be comprehended as distribution function on

[0, 1]p with the additional property of having uniform univariate margins. We refer

to McNeil, Frey, and Embrechts (2005), Nelsen (2006) or Kolev, Anjos, and Mendes

(2006) for a general discussion on copulas. For a recent overview and introduction see

Härdle and Okhrin (2009) or Jaworski, Durante, Härdle, and Rychlik (2010).
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Numerous strategies to model copulas have been suggested in the last years, this in-

cludes Archimedean copulas (see e.g. Okhrin, Okhrin, and Schmid 2009 or Savu and

Trede 2010), elliptical copulas (see Frahm, Junker, and Szimayer 2003) or so called

pair-copulas as originally proposed by Joe (1996). The idea of the latter is to model a

multivariate copula by a collection of pairwise, that is two dimensional copulas. The

pair-copula uses conditional distributions as arguments but the copula itself is inde-

pendent of any conditioning variables. This is a restriction but it makes the approach

numerically very powerful and handy as demonstrated in Czado (2010) or Aas, Czado,

Frigessi, and Bakken (2009). The collection of paired copulas can be structured in a

set of trees, defined as vines in Bedford & Cooke (2001, 2002). Assuming a hierarchical

or sequential factorization of the distribution leads to a so called D-vine focused also

in this chapter, see e.g. Kurowicka and Cooke (2006) or Smith, Min, Almeida, and

Czado (2010). Though pair-copulas yield flexibility, the approach leaves the user with

the task of model selection, see e.g. Min and Czado (2011). In fact not only the vine

structure needs to be determined but also for each node in the D-vine a specific copula

model has to be selected, such as Archimedean or elliptical copula, etc. We aim to

further develop this point by employing flexible, semi-parametric copula estimation for

each pair.

Assuming a continuous distribution function F (x1, . . . , xp) we can differentiate (5.1) to

get the density, where for p = 2 we get

f(x1, x2) = c
(
F1(x1), F2(x2)

)
f1(x1)f2(x2)

with fj(.) as marginal densities and c(.) as the copula density. Our aim is to esti-

mate the copula density c(·) in a flexible, that is semi-parametric way by refraining

from any strong parametric assumptions on the structure of the pairs. To do so we

use penalized splines with Bernstein polynomials and linear B-splines as spline ba-

sis. Bernstein polynomials for copula estimation have been used before for instance

in Sancetta and Satchell (2004) or Bouezmarni, Rombouts, and Taamouti (2010). B-

splines are discussed thoroughly e.g. in Ruppert, Wand, and Carroll (2003). Both,

Bernstein polynomials and linear B-splines can reproduce the uniform distribution in

[0, 1], which is the reason why using them here.

Generally, the number of splines determines the flexibility of the model, thus taking

high degree Bernstein polynomials or a high dimensional B-spline basis, yields sufficient

modelling flexibility. On the other hand, like in regular spline smoothing, a high

dimensional basis exhibits a large amount of estimation variability yielding non smooth,

wiggled estimation. We therefore borrow the idea of penalization from the spline

smoothing literature, see e.g. Wahba (1990). That is we impose a penalty on the spline
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basis which guarantees numerical stability and provides a smooth well behaved fit.

The following sections are organized as follows. The estimation scheme using Bernstein

Polynomials and linear B-splines for the pair-copula construction is presented in Section

2. The penalization concept and the practical settings are described in the second part

of Section 2. Section 3 gives a practical example and simulation studies. We finalize

the chapter with an discussion in Section 4.

5.2 Pair-Copula Construction

5.2.1 D-Vines

Let x = (x1, . . . , xp) be a p-dimensional continuous random vector with continuously

differentiable marginal distribution functions Fj(xj), j = 1, . . . , p. Let f(x1, . . . , xp)

be the corresponding multivariate density, which with Sklar’s (1959) theorem can be

written as

f(x1, . . . , xp) = c{F1(x1), . . . , Fp(xp)}
p∏

j=1

fj(xj) (5.2)

where c(.) is the copula density. To simplify notation we denote with uj = Fj(xj)

so that the copula density is written as c(u1, . . . , up). We decompose c(.) to pair-

copulas, where we restrict ourselves to so called D-vines (see Bedford and Cooke 2002

). The presentation of pair-copulas thereby follows closely the motivating introduction

in Czado (2010) so that we will be concise here. The underlying idea is that we can

factorize any densities to

f(x1, . . . , xp) =

p∏

j=2

f(xj|x1, . . . , xj−1)f(x1) (5.3)

for a given index order of the variables. For 1 < t ≤ p we can use (5.2) and write

f(xt|x1, . . . , xt−1) = c{F (xt|x1, . . . , xt−2), F (xt−1|x1, . . . , xt−2)|x1, . . . , xt−2}
×f(xt|x1, . . . , xt−2) (5.4)

with c(., .|x1, . . . , xt−2) as conditional copula. The driving idea of pair-copulas is now

that the conditional copula in (5.4) does not depend on the variables we condition on,

that is in (5.4) we assume

c{F (xt|x1, . . . , xt−2), F (xt−1|x1, . . . , xt−2)|x1, . . . , xt−2}
≡ c{F (xt|x1, . . . , xt−2), F (xt−1|x1, . . . , xt−2)} (5.5)
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To simplify notation let ci,j|D = c{F (xi|xD), F (xj |xD)} for some index set D with

i, j /∈ D, i 6= j and xD = (xk : k ∈ D). Then, assuming the pair-copula assumption

(5.5) we can rewrite (5.3) to

f(x1, . . . , xp) =

(
p−1∏

j=1

p−j∏

i=1

ci,i+j|Dij

)(
p∏

j=1

fj(xj)

)
(5.6)

where Dij = {i + 1, . . . , i + j − 1} (see Czado 2010). The construction principle can

be visualized by a set of nested trees coined as vines by Bedford and Cooke (2002).

Exemplary for p = 5 a D-vine based on factorization (5.3) takes the form as shown in

Figure 5.1.
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Figure 5.1: A D-vine with five covariates.

5.2.2 Approximation of Pair-Copulas

Looking at formula (5.6) we see that the entire distribution is built from bivariate

copulas of the form cij|D = c{F (xi|xD), F (xj|xD)}. Our intention is now to estimate

cij|D in a flexible, that is semi-parametric manner. To do so we first replace the copula

by a weighted sum of K + 1 normed basis splines φKki
with

∫
φKki

(u) du = 1 for

ki = 0, . . . , K. A bivariate basis is easily constructed building a Tensor product of the

basis functions φKki
. Let therefore ui|D = F (xi|xD). We now approximate cij|D with

the representation c̃ij|D, say, defined through

c̃ij|D(ui|D, uj|D,v
(i,j|D)) :=

K∑

k1=0

K∑

k2=0

φKk1(ui|D)φKk2(uj|D)v
(i,j|D)
k1,k2

= {φK(ui|D) ⊗ φK(uj|D)}v(i,j|D) (5.7)

where v(i,j|D) = (v
(i,j|D)
00 , . . . , v

(i,j|D)
0K , . . . , v

(i,j|D)
KK ) is subsequently called the coefficient
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vector and φK(u) = (φK0(u), . . . , φKK(u)). We postulate positive coefficients

v
(i,j|D)
k1,k2

≥ 0 (5.8)

which in turn guarantees that c̃ij|D is positive. Moreover we require

∑

k1,k2

v(i,j|D) = 1 (5.9)

which in turn guarantees that c̃ij|D in (5.7) is a density since each single component of

the Tensor product is a density. Note that in order to guarantee that c̃ij|D is in fact a

bivariate copula density we additionally need that its two univariate marginal densities

are uniform. That is we need c̃i|D =
∫
cij|D duj|D ≡ 1 and accordingly c̃j|D ≡ 1. This

condition can be formulated as simple linear constraint on the coefficient vector as will

be shown subsequently for the different bases used.

First, we consider Bernstein polynomials (Lorentz 1953 or Rivlin 1969) as basis func-

tions. Let therefore φK(u) be the basis of normed Bernstein polynomials of degree K,

where

φKk(u) = (K + 1)

(
K

k

)
uk(1 − u)K−k. (5.10)

Note that φKk(u) is normed to be a density, i.e.(5.10) is a Beta distribution and∫ 1

0
φKk(u) du = 1. Based on properties of Bernstein polynomials c̃i|D =

∫
cij|D duj|D ≡

1 holds if the marginal coefficients fulfill

v
(i,j|D)
k1.

=
∑

k2

v
(i,j|D)
k1,k2

= 1/(K + 1) (5.11)

for all k1 = 0, . . . , K. These constraints can be easily formulated in matrix notation

yielding the linear constraints

AKv(i,j|D) = 1 (5.12)

where AK sums up the elements of v
(i,j|D)
k1,k2

column-wise (i.e. over k2) and row-wise (i.e.

over k1), i.e. ATK = ((IK⊗1TK)), (1TK⊗IK)), where 1K is the column vector of dimension

K with elements 1 and IK is the K dimensional identity matrix. Alternatively, we use

linear B-splines φKki
(see de Boor 1978), normalized to be a density, i.e.

∫
φKki

(u) du =

1 and denote with φK(u) = (φKl(u), l = 0, . . . , K) the univariate B-spline density of

dimension K + 1. To guarantee that the marginal density is uniform, we now simply

impose the constraints on the coefficients evaluated at the knots τk, so AK = ΦK(τ)

with τ = τ1, . . . , τK ..

From the copula density (5.7) we can easily calculate the copula C̃(.) itself by noting
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that

C̃ij|D(ui|D, uj|D) =

∫ ui|D

0

∫ uj|D

0

c̃ij|D(zi, zj) dzi dzj .

Letting ΦKk(u) =
∫ u
0
φKk(z) dz be the integrated Bernstein polynomial, i.e. the Beta

distribution, or the integrated B-spline basis. Then from (5.7) we get the explicit form

C̃ij|D(ui|D, uj|D|D) =
K∑

k1=0

K∑

k2=0

ΦKk1(ui|D)ΦKk2(uj|D)v
(i,j|D)
k1,k2

.

Considering copula density (5.7) we recognize that the arguments of the pair-copula, i.e.

ui|D and uj|D, are itself calculated from lower dimensional conditional distributions, the

latter being represented by lower dimensional knots in the vine. Our approach thereby

easily allows to calculate the arguments ui|D and uj|D. To exemplify this note for r ∈ D

we have (see Joe 1996)

ui|D = F (xi|xD) =
∂Cir|D−r

{F (xi|xD−r
), F (xr|xD−r

)}
∂F (xr|xD−r

)

=

K∑

k1=0

K∑

k2=0

ΦKk1(ui|D−r
)φKk2(ur|D−r

)v
(i,r|D−r)
k1,k2

. (5.13)

where D−r = D \ {r}. Hence, with the knowledge of coefficient vector v(i,r|D−r) it

is easy to calculate ui|D. Iterative application of (5.13) finally allows to completely

specify the pair-copula density for all variables.

5.2.3 Estimation

In the above presentation we left the specification of the univariate marginal distri-

bution Fi(xj), i = . . . , p so far undiscussed. This is a conventional and appealing

approach by separating univariate marginal density estimation from copula density es-

timation, see Rank (2007, Section 2) or Jaworski, Durante, Härdle, and Rychlik (2007,

Section 3). We therefore subsequently assume that the univariate margins Fi(.) are

either known, or they are estimated separately for instance by their empirical distri-

bution function. Let xt = (x1,t, . . . , xp,t) be an i.i.d. sample with t = 1, . . . , n and

define with ûi,t = F̂−1
i (xi,t), where F̂i(.) is either the fitted univariate margin or F̂i(·)

is the empirical distribution function. In the latter case ûi,t is the (empirical) rank

of xi,t. Assume now that distributions F (xi|xD) and F (xj |xD) are already fitted and

let ûi,t|D := F̂ (xi,t|xD), where F̂ (xi|xD) denotes the fitted version of F (xi|xD) and

corresponding definition for ûj,t|D.

With the specification of the margins it remains to estimate the set of coefficient vectors
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v(i,j|D) to obtain the entire distribution. With ûi,t|D as defined before we get the log-

likelihood contribution for the pair-copula of i and j with (5.7) through

lij|D(v(i,j|D)) =

n∑

t=1

log
[
{φK(ûi,t|D) ⊗ φK(ûj,t|D)}v(i,j|D)

]
. (5.14)

This likelihood contribution is easily maximized with respect to v(i,j|D) subject to

the linear side constraints (5.8), (5.9) and (5.12). In fact simple quadratic program-

ming can be used to solve this problem. To estimate the pair-copula we make use of

the quadprog package in R which allows to solve the quadratic program. Let there-

fore s
p
ij|D(v(i,j|D), λ(i,j|D)) and H

p
ij|D(v(i,j|D), λ(i,j|D)) denote the first and second order

derivatives of (5.19) yielding

s
p
ij|D(v(i,j|D), λ(i,j|D)) =

T∑

t=1

φK(ûit|D) ⊗ φK(ûjt|D)

c̃ij|D(ûit|D, ûjt|D,v(i,j|D))
− λ(i,j|D)Pv(i,j|D). (5.15)

H
p
ij|D(v(i,j|D), λ(i,j|D)) =

−
T∑

t=1

(φK(ûit|D) ⊗ φK(ûjt|D))(φK(ûit|D) ⊗ φK(ûjt|D))T

c̃ij|D(ûit|D, ûjt|D,v(i,j|D))
− λ(i,j|D)P. (5.16)

We approximate the penalized likelihood lpij|D in (5.19) through a second order Taylor

expansion yielding

lpij|D
(
v(ij|D) + δ(ij|D), λij|D

)
≈ lpij|D

(
v(ij|D), λ(ij|D)

)
δ(ij|D)T

s
p
ij|D
(
vij|D, λ(ij|D)

)

+
1

2
δ(ij|D)T

H
p
ij|D
(
v(ij|D), λ(ij|D)

)
δ(ij|D), (5.17)

where δ(ij|D) is the iteration step selected by maximizing (5.17) subject to the linear

constraints (5.8), (5.9) and (5.12). This optimization is carried out iteratively, by

approximating the likelihood as in (5.17) in each iteration step. To start the algorithm

an admissible starting value for v(i,j|D) is required. We use a uniform distribution on

the the cube [0, 1]2 which defines the starting value in unique way.

Considering now a D-vine structure shown exemplary in Figure 5.1 we see that we can

fit the entire copula by successively fitting pair-copulas by maximizing log-likelihoods

of type (5.14). In fact we fit on each level the knots of the tree and calculate the fitted

coefficients ûi|D with (5.13) from previously fitted copulas. In particular, if parallel

computing is possible, the entire procedure can be calculated parallel on each tree

level.
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5.2.4 Penalization

Though the approach above is flexible, it may not be parsimonious at the same time

since we parameterize each bivariate copula by a set of (K + 1)2 parameters. As a

consequence the fitted copula may be wiggled and not desirably smooth. This problem

is well known from the smoothing literature (see Wahba 1990) and can be easily solved

by imposing an appropriate penalty on the log-likelihood. In fact, assuming smooth

copula densities it seems natural to postulate that the integrated squared second order

derivatives are small, see e.g. Wood (2006). We therefore formulate a penalty matrix

of the form ∫ (
∂2c̃ij|D(ui, uj)

(∂ui)2

)2

+

(
∂2c̃ij|D(ui, uj)

(∂2uj)2

)2

dui duj . (5.18)

We can rewrite (5.18) for the Bernstein polynomials. For the marginal penalties in ui

and uj in (5.18) follows with (5.7) and transformations

∫ (
∂2c̃ij|D(ui, uj)

(∂ui)2

)2

dui duj

= (v(i,j|D))T
∫ [

∂2φK(ui|D)

(∂ui)2
⊗ φK(uj|D)

]T [
∂2φK(ui|D)

(∂ui)2
⊗ φK(uj|D)

]
dui dujv

(i,j|D)

= (v(i,j|D))T
∫ [(

∂2φK(ui|D)

(∂ui)2

)T
∂2φK(ui|D)

(∂ui)2

]
dui ⊗

[
(φK(uj|D))TφK(uj|D)

]

︸ ︷︷ ︸
:=Pui

v(i,j|D).

The integral of the second order derivatives of Bernstein polynomials are calculated

easily. The second order derivative of (5.10) equals (see Doha, Bhrawy, and Saker

2011)

∂2φKk(u)

(∂u)2
=

(K + 1)!

(K − 2)!

min(k,2)∑

m=max(0,k+2−K)

(−1)m+2

(
2

m

)
φK−2,k−m(u).

This is rewritten as
∂2φKk(u)

(∂u)2
= (φK−2,k(u)B)w

with

B =




1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1



, B ∈ R

(K−2)×(K+1)
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and w = (K+1)!
(K−2)!

. Therefore, the matrix Pzi
and Pzj

are equivalent to

Pui
= (wBT

∫
φK−2,k(ui|D)φK−2,k(ui|D) duiBw) ⊗

[
(φK(uj|D))TφK(uj|D)

]

Puj
=
[
(φK(ui|D))TφK(ui|D)

]
⊗ (wBT

∫
φK−2,k(uj|D)φK−2,k(uj|D) dujBw).

So, the penalty can be written as quadratic form λ(i,j|D)v(i,j|D)TPintv
(i,j|D) where λ(i,j|D)

is the penalty parameter steering the amount of smoothness and Pint := Pui
+ Puj

.

It follows, we can rewrite (5.18) for the Bernstein polynomials as quadratic form

v(i,j|D)TPv(i,j|D) with P as penalty matrix. Note that P needs to be calculated only

once for all bivariate copulas. We therefore suggest to replace the log-likelihood (5.14)

by its penalized version

lpij|D(v(i,j|D), λ(i,j|D)) = lij|D(v(i,j|D)) − 1

2
λ(i,j|D)v(i,j|D)TPv(i,j|D), (5.19)

where λ(i,j|D) is the penalty parameter steering the amount of penalization.

Though penalizing the integrated squared second order derivatives is standard in the

spline smoothing literature it might not be the best penalty choice for copula estima-

tion. In fact, using the integrated squared second order derivatives as penalty and due

to the side constraints (5.8), (5.9) and (5.12) we obtain a quadratic copula if we set the

penalty parameter λ(i,j|D) to infinity. Intuitively, it might therefore better to work with

a difference penalty of first or second order differences of the coefficients as suggested

for spline smoothing in Eilers and Marx (1996). We define the difference based penalty

matrix Pdiff for the m-order differences through

Pm

diff
:= (1K+1 ⊗ Lm)T (Lm ⊗ 1K+1) (5.20)

with e.g.

L1 =




1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 −1



.

Now, with P in (5.19) replaced by Pm

diff
we obtain the independence copula, if we set

the penalty parameter λ(i,j|D) to infinity. As before, we maximize (5.19) using quadratic

programming, which makes use of the first (5.15) and second order derivatives (5.16)

of (5.19).
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5.2.5 Selecting the Penalty Parameter

The penalty parameter λ(i,j|D) in (5.19) needs to be selected adequately, that is data

driven based on the data at hand. To simplify notation, let us write λ instead of λ(i,j|D)

in this section. Given the quadratic form of the penalty in (5.19) we again borrow

results from the spline smoothing literature. The idea is to comprehend the penalty as

normal prior imposed on the spline coefficient vector as proposed for smoothing spline

coefficient by Wahba (1985), Stein (1990) or Efron (2001). The idea has been extended

to penalized spline estimation presented in Ruppert, Wand & Carroll (2003, 2009) and

is being used here as well. To do so we adopt a Bayesian viewpoint and comprehend

the penalty as ’a priori’ normal distribution on the spline coefficient in that

v(i,j|D) ∼ N(0, λ−1P−) (5.21)

where P− denotes the (generalized) inverse of the used penalty matrix P. The penalty

parameter now plays the role of a (hyper) parameter in the prior distribution which

can be estimated by maximizing the resulting likelihood. The latter is equivalent to

following empirical Bayes arguments. The prior (5.21) is degenerated, which needs

to be corrected as follows. We decompose v(i,j|D) into the two components v(i,j|D)∼

and v(i,j|D)⊥, respectively, such that v(i,j|D)∼ is a normally distributed random vector

with non degenerated variance and v(i,j|D)⊥ are the remaining components treated as

parameters, see also Wand and Ormerod (2008). In fact based on a singular value

decomposition we have

P = U∼Λ∼U∼T

with Λ∼ as diagonal matrix with positive eigenvalues and U∼ ∈ R(K+1)×h with cor-

responding eigenvectors where K + 1 is the number of elements in v(i,j|D) and h =

K + 1 − 4 is the rank of P . Extending U∼ to an orthogonal basis by U⊥ gives

v(i,j|D)∼ = U∼Tv(i,j|D) with the a priori assumption v(i,j|D)∼ ∼ N(0, λ−1Λ∼−1) and

with U = (U∼, U⊥) as orthogonal basis, we get v(i,j|D)⊥ = U⊥Tv(i,j|D). Conditioning

on v(i,j|D)∼, we have x being distributed according to (5.6) and with (5.21) we get the

mixed model log likelihood

lmij|D(λ,v(i,j|D)⊥) = log

∫
|λΛ∼| 12 exp

{
lpij|D(v(i,j|D), λ)

}
dv(i,j|D)∼. (5.22)

The integral can be approximated by a Laplace approximation (see also Rue, Martino,
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and Chopin 2009)

lmij|D(λ, v̂(i,j|D)⊥) ≈ 1

2
log |λΛ∼| + lpij|D(v̂(i,j|D), λ) − 1

2
log |U∼THp

ij|D(v̂(i,j|D), λ)U∼|
(5.23)

where v̂(i,j|D) denotes the penalized maximum likelihood estimate. We can now differ-

entiate (5.23) with respect to λ which gives

∂lmij|D(λ, v̂(i,j|D)⊥)

∂λ
= −1

2
v̂(i,j|D)TP v̂(i,j|D) (5.24)

+
1

2λ
tr
{

(U∼THp
ij|D(v̂(i,j|D), λ)U∼ + λΛ∼)−1U∼THp

ij|D(v̂(i,j|D), λ = 0)U∼
}

︸ ︷︷ ︸
:=S(λ)

.

We can construct the estimating equation for the difference penalty through

λ̂−1 =
v̂(i,j|D)TPv̂(i,j|D)

tr(S(λ))
(5.25)

with S(λ) as equivalent to a smoothing matrix. Apparently, both sides of equation

(5.25) depend on λ but an iterative solution is possible by fixing λ on the right hand

side in (5.25), update λ on the left hand side and iterate this step by updating the

right hand side of (5.25). This estimation scheme has been suggested in generalized

linear mixed models by Schall (1991), see also Searle, Casella, and McCulloch (1992).

For penalized spline smoothing Wood (2011) shows that the selection of smoothing

parameter λ based in the mixed model approach behaves superior compared to AIC

selected values, see also Reiss and Ogden (2009).

5.2.6 Practical Settings and Specifying the Vine

To maximize the likelihood we need to specify starting values of the coefficients. We

suggest to take v
(i,j|D)
0 mirroring an independence density and set the penalty parameter

λ
(i,j|D)
0 to a moderate size. In each step we estimate new weights v̂(i,j|D), keeping λ(i,j|D)

fixed and then refit λ(i,j|D) using (5.25). This estimation scheme is repeated until

convergence.

Most importantly now is that we need to specify the vine structure to estimate the

entire copula for all variables. For D-vines this implies that the order of variables

in the first tree level completely specifies the vine. The intention is therefore that

the first level tree with the pairwise knots (see Figure 5.1) captures the majority of

(pairwise) dependencies. We use statistical model selection, based on the pair-wise

estimated corrected Akaike information criterion (cAIC) (Hurvich and Tsai 1989, see
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also Burnham and Anderson 2010)

AICc(λ) = −lpij|D(v(i,j|D), λ) + df(λ) +
2df(λ)(df(λ) + 1)

n− df(λ) − 1
(5.26)

with df(λ) is the degree of the model defined through

df(λ) = tr

[{
H
p
ij|D(v(i,j|D), λ)

}−1

H
p
ij|D
(
v(i,j|D), λ = 0

)]
. (5.27)

to select the order of the D-vine. Beginning in the top tree level of a D-vine, we

calculate all
(
p
2

)
marginal pairwise copulas fitted by penalized splines. For each pair

(i, j) this gives the fitted maximized likelihood value lij(v̂
(i,j)) with v̂(i,j) as penalized

estimate resulting from (5.19) and penalty parameter selected data driven as discussed

above. Note that lij(v̂
(i,j)) ≥ 0, where lij(v̂

(i,j)) = 0 indicates independence amongst

the variable pair (i, j). We order the variable pairs, subject to their increasing estimated

pairwise AICc and start with the pair of covariates with lowest estimated AICc. We now

select the pairs of variables such that the resulting selection gives a tree, as sketched

in Figure 5.1 on the first level. The problem of finding this selection is equivalent to

solve a traveler salesman problem (see Applegate 2006) by interpreting the AICc as

distance measure between two variables (see Brechmann 2010). Once this problem is

solved, the specification of the first tree level completely defines the D-vine.

The complexity of D-vines increases exponentially with an increasing number of vari-

ables and it seems advisable to simplify, that is truncate a D-vine. We therefore suggest

to truncate the vine by using the independence copula for higher order tree levels of

the vine. Brechmann, Czado, and Aas (2012) suggest an equivalent principle of trun-

cation, based on changes of Information Criteria like AIC or BIC between levels. In

our approach an independent copula is indicated if the estimated penalty parameter

λ tends to infinity for this copula, so the penalty dominates the estimation. In fact,

penalizing first order differences of v(i,j) results for λ→ ∞ exactly in an independence

copula density. This indicates the level of truncation.

In (5.18), we penalizes second order derivatives of Bernstein polynomials of each margin

and accordingly we achieve a quadratic fit at each margin. If lij(v̂
(i,j)) → 0 and λ→ ∞,

an independent copula is reached and the AICc → 4. Due to numerical difficulties to

calculate an accurate equal distribution of the coefficients v̂(i,j) in this case, we calculate

the present AICc and replace v̂(i,j) with equal weighted coefficients, if λ increases

monotonously and the present AICc is greater than 4. If all pair-copulas in a level of

the tree are estimated with nearly equal weighted coefficients, all missing pair-copulas

in higher levels are independent copulas. This indicates the level of truncation for the
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penalty of integrated squared second order derivatives.

The entire routine is presented in an R-package penDvine, which will be available on

the CRAN server soon.

5.3 Simulations and Examples

5.3.1 Simulations

In order to demonstrate the performance of our approach, we run some simulations of

our approach. We simulate data from a a) Frank copula, b) Clayton copula and c)

t-copula with df = 3, each with Kendall’s τ set to τ = 0.25 and τ = 0.5. As sample

size we take of size N = 100 and N = 500, respectively and the simulations size is

n = 100. This gives 12 simulation scenarios (3 different copulas, 2 values for τ , 2

sample sizes). As basis dimension we work with K = 14. The simulated data are fit

with three different spline settings. First, we use Bernstein polynomials, penalizing

second order differences of the coefficients. Second, we use Bernstein polynomials, but

penalize second order derivatives as in (5.18). The third estimation is done with B-

splines, penalizing second order differences of the spline coefficients. As benchmark, we

also calculate the AICc value for the true copula from which we simulated the data but

with their parameter replaced by its Maximum Likelihood fitted value, as implemented

in R using the copula package.

Table 5.3 reports the results for a bivariate simulation. Up to exceptions, the B-spline

approach using the second order penalty results with minimal AICc, closely followed

by the Bernstein polynomials with penalized second order difference. In the scenarios

of Kendell’s tau τ = 0.25 and N = 500, the Bernstein polynomials with penalized

second order difference behave better than the B-spline approach. Often, the Bernstein

polynomials with integral penalty yield the poorest fit, especially for N = 500.

We extend the previous setup and sample four-dimensional data using the same sim-

ulation scenarios from above. For comparison and somewhat as competition to our

routine we use the function CDVineCopSelect from the R-package CDVine (see Schep-

smeier and Brechmann 2011) to estimate a D-vine. CDVineCopSelect thereby fits a

D-vine copula model, selecting appropriate copula families estimating bivariate copula

in each node using maximum likelihood estimation. The program calculates the corre-

sponding AIC for all available copula families in the R-package, e.g. Gaussian, Student

t-copula, Clayton, Frank, Gumbel or Joe. A complete list of supported copula families

by CDVineCopSelect is given in Table 5.2. Finally the family with the minimum value

is chosen in each node sequentially. We report the AICc value of the CDVine package

but stress, that the degree of freedom is not calculated appropriately, since it omits the
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selection of the copula family. We do not emphasize this point too much. The results

are presented in Table 5.4. Like in Table 5.3, the smallest AICc value is selected by

the CDVine package, which is not surprising since we are simulating from implemented

copulas, that is the true copula is within the list of fitted copulas.

Throughout the whole simulation study (see Table 5.4), the Bernstein polynomials

penalized with second order differences behave not optimal. Like above, the linear

B-splines results with the best performance amongst the spline fitted copulas.

5.3.2 Examples

As first practical example we investigate the maximum daily wind-speed in Germany,

measured at 12 locations distributed over Germany: a) BRE: Bremen, b) MS-OS:

Münster-Osnabrück, c) LEI: Leipzig-Halle, d) BER: Berlin, e) ARK: Arkona, f) CUX:

Cuxhaven, g) KAS: Kassel, h) FRA: Frankfurt, i) MUC: München, j) KEM: Kempten,

k) FEL: Feldberg and l) KOE: Köln-Bonn from 1st January 2000 to 31st December

2011 and the dataset consists of n = 4139 observations. We estimate a D-vine, using

our approach with K = 12 for the cases i) Bernstein polynomials penalizing second

order differences, ii) Bernstein polynomials penalizing squared integral of second order

derivatives iii) B-splines penalizing second order differences and as competitor iv) the

routine CDVineCopSelect from the R-package CDVine. The results are reported in Ta-

ble 5.1 (left). Our approach with B-splines penalizing second order differences results

with lowest AICc and with the highest log-likelihood. We observe the optimal D-vine

with minimal AICc for the B-spline approach, presented in Figure 5.2. Three estimated

pair-copulas, marked in Figure 5.2 with a red triangle, are exemplary visualized in Fig-

ure 5.3. Interestingly, the conditional copula density in Figure 5.2 (bottom) indicates

less dependence between the maximal windspeed in Leipzig-Halle and Arkona, given

the maximal windspeed measured in Berlin. These results indicates a better perfor-

mance using our semi-parametric approach compared with CDVineCopSelect from the

R-package CDVine, which selects only one copula family as the optimal one.

In the second example, we consider the daily sunshine duration in Germany, measured

at the same 12 locations as in the first example. Again, the data are measured from 1st

January 2000 to 31st December 2011 and the dataset consists of n = 4139 observations.

We estimate a D-vine, using the same approaches as in the first example and report

the results in Table 5.1 (right). The approach with B-splines penalizing second order

differences results with lowest AICc and with the highest log-likelihood. The fitted D-

vine is presented in Figure 5.4 and behaves optimally compared to the model selected

by CDVineCopSelect.
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BRE MS-OS FRA MUC KEM FEL KOE KAS LEI BER ARK CUX

ab
-4821 / 2464

bc
-3586 / 1899

cd
-2941 / 1576

de
-3060 / 1640

ef
-1572 / 867

fg
-1246 / 699

gh
-2234 / 1193

hi
-2647 / 1409

ij
-4645 / 2402

jk
-2860 / 1534

kl
-2343 / 1265

ac|b
-104 / 85.5

bd|c
-82.6 / 62.9

ce|d
-569 / 306

df|e
-207 / 156

eg|f
-556 / 337

fh|g
-301 / 161

gi|h
-541 / 308

hj|i
-35.9 / 32.3

ik|j
-98.1 / 75.7

jl|k
-1071 / 579

ad|bc
-138 / 92.2

be|cd
-36.1 / 27.2

cf|de
-567 / 302

dg|ef
-209 / 127

eh|fg
-33.1 / 35.3

fi|gh
-129 / 84.8

gj|hi
-55.3 / 41.3

hk|ij
-46.6 / 38.8

il|jk
-190 / 110

ae|bcd
-14.9 / 20.3

bf|cde
-245 / 162

cg|def
-1093 / 599

dh|efg
-165 / 109

ei|fgh
-508 / 295

fj|ghi
-36.2 / 36.8

gk|hij
-121 / 76

hl|ijk
-135 / 85.4

af|bcde
-51.9 / 44

bg|cdef
-1292 / 699

ch|defg
-800 / 444

di|efgh
-473 / 269

ej|fghi
-98 / 71

fk|ghij
-136 / 94.8

gl|hijk
-285 / 172

ag|b..f
-340 / 204

bh|c..g
-626 / 363

ci|d..h
-271 / 164

dj|e..i
-130 / 96.1

ek|f..j
-217 / 147

fl|g..k
-297 / 184

ah|b..g
-242 / 162

bi|c..h
-949 / 533

cj|d..i
-236 / 162

dk|c..j
-199 / 140

el|d..k
-277 / 186

ai|b..h
-1104 / 625

bj|c..i
-809 / 472

ck|d..j
-285 / 191

dl|e..k
-551 / 335

aj|b..i
-1301 / 733

bk|c..j
-461 / 280

cl|d..k
-254 / 169

ak|b..j
-633 / 381

bl|c..j
-389 / 249

al|b..k
-2101 / 1143

Figure 5.2: Fitted D-Vine for the wind data with K = 12 and B-splines, penalizing second order differences with a) BRE=Bremen,
b) MS-OS Münster-Osnabrück, c) FRA: Frankfurt, d) MUC: München, e) KEM: Kempten, f) FEL: Feldberg, g) KOE: Köln-Bonn,
h) KAS: Kassel, i) LEI: Leipzig-Halle, j) BER: Berlin, k) ARK: Arkona and l) CUX: Cuxhaven. Reported are AICc / log-likelihood.
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wind data sun data
approach AICc log-likelih. AICc log-likelih.

i) Bernstein polyn., Difference pen. -45032.65 23753.08 -67789.69 35736.81
ii) Bernstein polyn., Derivative pen -44582.42 23950.99 -68098.80 36462.65
iii) B-splines, Difference pen. -54050.01 30006.22 -93007.73 51597.96
iv) CDVineCopSelect -48958.39 24590.20 -74902.65 37573.33

Table 5.1: Example of wind and sun data: reported is corrected Akaike Information
Criterion (AICc) and the log-likelihood for i) our approach with Bernstein polynomials,
penalizing second order differences, ii) our approach with Bernstein polynomials, pe-
nalizing squared integral of second order derivatives, iii) our approach with B-splines,
penalizing second order differences and iv) CDVineCopSelect.
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Figure 5.3: Copula density of Bremen and Münster (top left), copula density of Münster
and Frankfurt (top right) and the conditional copula density of Bremen and Frankfurt,
given Münster (bottom).
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BRE MS-OS KOE FRA KAS LEI BER ARK CUX FEL KEM MUC

ab
-7672 / 3961

bc
-6897 / 3575

cd
-6606 / 3429

de
-6769 / 3510

ef
-5693 / 2969

fg
-4657 / 2381

gh
-4502 / 2375

hi
-4127 / 2181

ij
-1900 / 1052

jk
-2837 / 1439

kl
-4574 / 2335

ac|b
-1255 / 740

bd|c
-1246 / 737

ce|d
-2353 / 1306

df|e
-1074 / 645

eg|f
-1459 / 850

fh|g
-924 / 570

gi|h
-1443 / 850

hj|i
-613 / 400

ik|j
-531 / 344

jl|k
-1963 / 1104

ad|bc
-597 / 393

be|cd
-1627 / 922

cf|de
-741 / 477

dg|ef
-603 / 400

eh|fg
-554 / 363

fi|gh
-605 / 392

gj|hi
-573 / 352

hk|ij
-226 / 173

il|jk
-446 / 290

ae|bcd
-815 / 514

bf|cde
-354 / 269

cg|def
-225 / 173

dh|efg
-282 / 204

ei|fgh
-1006 / 598

fj|ghi
-773 / 471

gk|hij
-355 / 226

hl|ijk
-237 / 180

af|bcde
-441 / 286

bg|cdef
-329 / 218

ch|defg
-358 / 260

di|efgh
-315 / 217

ej|fghi
-691 / 411

fk|ghij
-305 / 186

gl|hijk
-360 / 225

ag|b..f
-697 / 425

bh|c..g
-585 / 373

ci|d..h
-487 / 295

dj|e..i
-1433 / 792

ek|f..j
-69.2 / 57.1

fl|g..k
-281 / 169

ah|b..g
-783 / 460

bi|c..h
-1411 / 791

cj|d..i
-469 / 292

dk|c..j
-257 / 173

el|d..k
-166 / 112

ai|b..h
-2349 / 1255

bj|c..i
-304 / 195

ck|d..j
-165 / 123

dl|e..k
-312 / 197

aj|b..i
-249 / 171

bk|c..j
-237 / 161

cl|d..k
-161 / 116

ak|b..j
-237 / 167

bl|c..j
-185 / 136

al|b..k
-257 / 183

Figure 5.4: Fitted D-Vine for the sun data with K = 12 and B-splines, penalizing second order differences with a) BRE=Bremen,
b) MS-OS Münster-Osnabrück, c) KOE: Köln-Bonn, d) FRA: Frankfurt, e) KAS: Kassel, f) LEI: Leipzig-Halle, g) BER: Berlin, h)
ARK: Arkona, i) CUX: Cuxhaven, j) FEL: Feldberg, k) KEM: Kempten and l) MUC: München. Reported are AICc / log-likelihood.
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5.4 Discussion

In this chapter we propose how to fit D-vines with penalized Bernstein polynomials

or penalized B-splines respectively, estimating pair-copulas in each knot of the D-vine.

Our approach thereby accommodates side constraints like uniform univariate margins

so that the fitted density in each knot of the D-vine is a copula density itself. We

consider two different established penalty approaches, which work both well. Probably

there exist more efficient methods, but this is not the focus of this chapter. Generally,

we can estimate a D-vine without any defaults to the entire distribution functions

of the pair-copulas. Each estimation procedure for a pair-copula requires only a low

computational demand and the computational time for the whole D-vine can be reduced

using parallel computing approaches. Furthermore we do not need to test at each

knot whether the pair-copula is from any known copula family. Our routine behaves

acceptably in the sense of the corrected Akaike information criterion. The results in

Section 3 exhibit the applicability of our approach.
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code number type

0 independence copula
1 Gaussian copula
2 Student t copula (t-copula)
3 Clayton copula
4 Gumbel copula
5 Frank copula
6 Joe copula
7 BB1 copula
8 BB6 copula
9 BB7 copula
10 BB8 copula
13 rotated Clayton copula (180 degrees; “survival Clayton”)
14 rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 rotated Joe copula (180 degrees; “survival Joe”)
17 rotated BB1 copula (180 degrees; “survival BB1”)
18 rotated BB6 copula (180 degrees; “survival BB6”)
19 rotated BB7 copula (180 degrees; “survival BB7”)
20 rotated BB8 copula (180 degrees; “survival BB8”)
23 rotated Clayton copula (90 degrees)
24 rotated Gumbel copula (90 degrees)
26 rotated Joe copula (90 degrees)
27 rotated BB1 copula (90 degrees)
28 rotated BB6 copula (90 degrees)
29 rotated BB7 copula (90 degrees)
30 rotated BB8 copula (90 degrees)
33 rotated Clayton copula (270 degrees)
34 rotated Gumbel copula (270 degrees)
36 rotated Joe copula (270 degrees)
37 rotated BB1 copula (270 degrees)
38 rotated BB6 copula (270 degrees)
39 rotated BB7 copula (270 degrees)
40 rotated BB8 copula (270 degrees)

Table 5.2: Codes for copula families in CDVineCopSelect.
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Example Bernstein Bernstein B-spline true
Difference Penalty Derivative penalty Difference penalty

a) Clayton, N = 100, τ = 0.25 -6.63 (7.86) / 9.21 (4.81) -6.03 (7.89) / 7.73 (4.60) -6.53 (7.79) / 9.21 (5.15) -20.73 (10.30) / 11.39 (5.15)
Clayton, N = 500, τ = 0.25 -74.28 (18.44) / 47.88 (10.27) -73.18 (18.89) / 47.72 (11.74) -72.63 (18.68) / 48.84 (11.56) -107.62 (23.38) / 54.82 (11.69)
Clayton, N = 100, τ = 0.5 -48.32 (12.72) / 33.43 (6.88) -49.37 (14.27) / 34.42 (8.61) -51.99 (14.02) / 38.43 (8.10) -84.33 (18.15) / 43.18 (9.07)
Clayton, N = 500, τ = 0.5 -325.03 (29.48) / 180.40 (15.28) -305.54 (57.73) / 172.39 (35.02) -340.69 (32.13) / 200.27 (17.78) -430.25 (39.45) / 216.13 (19.73)

b) Frank, N = 100, τ = 0.25 -6.07 (6.68) / 7.89 (3.78) -6.11 (6.65) / 7.45 (3.58) -6.11 (6.59) / 7.75 (3.90) -13.79 (7.68) / 7.92 (3.84)
Frank, N = 500, τ = 0.25 -62.67 (16.21) / 37.63 (8.76) -62.50 (16.10) / 36.35 (8.68) -62.71 (16.13) / 37.12 (9.31) -73.15 (16.61) / 37.58 (8.31)
Frank, N = 100, τ = 0.5 -45.76 (11.69) / 31.50 (6.35) -45.88 (11.99) / 31.42 (7.13) -48.37 (12.95) / 35.01 (7.52) -62.02 (13.91) / 32.03 (6.95)
Frank, N = 500, τ = 0.5 -292.54 (30.53) / 161.20 (15.71) -287.34 (38.76) / 160.48 (22.09) -298.38 (31.69) / 169.87 (16.74) -318.07 (30.96) / 160.04 (15.48)

c) t-copula, df = 3, N = 100, τ = 0.25 -5.78 (7.33) / 10.02 (4.96) -4.41 (7.91) / 7.42 (5.42) -5.32 (7.30) / 9.89 (5.85) -21.84 (11.11) / 12.98 (5.56)
t-copula, df = 3, N = 500, τ = 0.25 -75.21 (19.85) / 50.87 (10.80) -73.91 (20.13) / 52.22 (11.98) -72.81 (21.33) / 53.10 (13.48) -118.93 (24.90) / 61.48 (12.45)
t-copula, df = 3, N = 100, τ = 0.5 -45.56 (13.16) / 32.73 (7.09) -45.77 (14.12) / 33.26 (8.70) -48.94 (14.30) / 37.80 (8.52) -76.25 (18.39) / 40.19 (9.19)
t-copula, df = 3, N = 500, τ = 0.5 -308.29 (34.72) / 173.79 (18.11) -295.85 (45.55) / 171.02 (27.46) -316.48 (37.93) / 189.67 (21.34) -391.03 (41.61) / 197.53 (20.81)

Table 5.3: Bivariate examples: reported is the mean of the corrected Akaike Information Criterion (AICc) / log-likelihood for K = 14.
The bracketed terms give the standard deviations.

Example Bernstein Bernstein B-spline CDVine
Difference Penalty Derivative penalty Difference penalty

a) Clayton, N = 100, τ = 0.25 -19.40 (17.70) / 43.73 (10.84) -18.73 (18.21) / 37.77 (10.77) -20.71 (18.17) / 44.49 (12.27) -93.75 (24.04) / 53.00 (12.10)
Clayton, N = 500, τ = 0.25 -307.27 (52.08) / 209.21 (29.69) -304.04 (52.30) / 206.76 (32.26) -307.10 (53.59) / 216.68 (33.42) -463.07 (62.88) / 237.99 (31.49)
Clayton, N = 100, τ = 0.5 -168.89 (33.82) / 131.59 (18.90) -169.02 (34.08) / 129.31 (20.35) -183.98 (38.95) / 149.55 (24.34) -307.41 (44.05) / 160.21 (22.13)
Clayton, N = 500, τ = 0.5 -1214.99 (80.07) / 695.25 (41.51) -1159.33 (112.29) / 675.98 (66.99) -1278.77 (91.37) / 772.30 (51.57) -1582.18 (103.46) / 797.63 (51.78)

b) Frank, N = 100, τ = 0.25 -14.70 (14.80) / 36.94 (8.72) -15.01 (14.69) / 33.95 (7.72) -16.54 (15.26) / 36.36 (9.07) -65.00 (17.22) / 39.17 (8.74)
Frank, N = 500, τ = 0.25 -254.76 (36.45) / 163.85 (19.89) -255.94 (36.23) / 158.31 (19.68) -261.25 (36.91) / 162.71 (20.78) -317.39 (40.45) / 166.64 (20.27)
Frank, N = 100, τ = 0.5 -145.56 (23.87) / 115.25 (12.78) -146.81 (24.11) / 113.25 (13.50) -155.82 (25.94) / 125.69 (14.38) -225.89 (26.94) / 119.99 (13.42)
Frank, N = 500, τ = 0.5 -1053.63 (66.26) / 597.84 (34.02) -1032.8 (76.76) / 591.00 (43.95) -1087.13 (72.52) / 631.86 (38.39) -1190.02 (68.54) / 602.81 (34.28)

c) t-copula, df = 3, N = 100, τ = 0.25 -10.73 (16.50) / 42.99 (11.46) -6.83 (16.20) / 32.49 (10.43) -11.48 (16.91) / 42.64 (12.93) -95.16 (23.99) / 57.13 (12.11)
t-copula, df = 3, N = 500, τ = 0.25 -331.25 (48.19) / 236.69 (27.33) -322.94 (48.22) / 237.67 (30.16) -332.10 (50.27) / 254.06 (31.77) -525.57 (59.94) / 274.68 (29.98)
t-copula, df = 3, N = 100, τ = 0.5 -157.62 (32.49) / 129.94 (18.44) -155.80 (33.53) / 125.13 (20.44) -168.77 (37.25) / 144.22 (23.91) -282.79 (41.10) / 151.48 (20.68)
t-copula, df = 3, N = 500, τ = 0.5 -1166.30 (84.03) / 679.96 (44.15) -1140.43 (88.81) / 683.87 (51.11) -1206.35 (91.51) / 744.82 (51.27) -1474.85 (96.26) / 749.41 (48.13)

Table 5.4: Fourdimensional examples: reported is the mean of the corrected Akaike Information Criterion (AICc) / log-likelihood for
K = 14. The bracketed terms give the standard deviations.

.
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6 Extension

This chapter presents an extension of the considered approaches combining the con-

cepts of univariate penalized density estimation (see Chapter 3) and penalized copula

density estimation (see Chapter 4). We re-investigate the currency example presented

in Chapter 4, but the univariate distributions are estimated using the approach pre-

sented in Chapter 3.

The data set includes n = 2854 observations of the Australian dollar (AUS), the

Euro (EUR) and the Japanese yen (JAP) from January 3rd, 2000 until May 6th, 2011.

Again, we analyze the log-return from day t to day t+1 and estimate the density of each

dataset using the approach presented in Chapter 3 with K = 20. Then we estimate

the copula density for the same values of d and D as in the example in Chapter 4.

The results are presented in Table 6.1 (left) and compared to the estimated results in

Chapter 4. In Chapter 4, the marginal data were separately fitted to t-distributions

and the corresponding results of the copula density estimations are repeated in Table

6.1 (right).

Analyzing Table 6.1, we observe increased log-likelihood and decreased AICc values

for each scenario, whenever the marginal data are estimated with the approach of

Chapter 3. Of course, the absolute difference between corresponding values of AICc

is not interpretable. Moreover, the AICc does not consider the foregoing estimations

of marginal distributions. Estimating the univariate distributions with the penalized

splines approach outperforms the competitor.

The contour plot of the fitted bivariate margins (left) with the minimal AICc and the

corresponding copula density (right) are plotted in Figure 6.1 with d = 4 and D = 8.

Comparing the plots in Figure 6.1 with the corresponding plots in Figure 4.6 shows

remarkable differences between the estimations. First, the bivariate copula densities

in Figure 6.1 (right) look smoother then in Figure 4.6 (right), probably due to the

univariate penalized estimation. Second, the contour plots show different marginal

distributions. The contour plots of the copula distribution of EUR and JAP in Figure

6.1 (left, mid) show an agglomeration at the margins, where at least one of both values

is close to 1. That behaviour was not observed in Figure 4.6 (left, mid). Of course,

these facts indicate a different copula density, see Figure 6.1 (right, mid) and Figure
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6 Extension

exchange rate data Chapter 4
pendensity t-distribution

d D log-likelihood l̂ AICc log-likelihood l̂ AICc
3 3 996.088 -1856.782 873.980 -1610.068
3 6 1046.201 -1959.769 1007.578 -1725.735
4 4 1088.495 -1968.252 978.359 -1707.725
4 8 1121.137 -2029.449 1117.326 -1774.491
Clayton 167.242 -332.483 83.410 -164.819
Frank 85.862 -169.722 2.707 -3.412

Gumbel 70.530 -139.059 31.649 -61.296
Normal 105.978 -209.955 27.654 -53.307

Bernstein 977.908 -1705.816 886.640 -1523.279

Table 6.1: Results for various combinations of d and D for exchange rate data example
in Chapter 4 using (left) pendensity from Chapter 3 for the marginal distribution and
(right) repeated results using marginal t-distribution (see Chapter 4).

4.6 (right, mid). Also the comparison of the contour plots of AUS and JAP in Figure

6.1 (right, bottom) and Figure 4.6 (right, bottom) indicate differences, which are also

visible in different copula densities for both time series, see Figure 6.1 (left, bottom)

and Figure 4.6 (left, bottom).

Using this combination of penalized splines approaches is an appealing new extension

of the ideas presented in the preceding chapters of this thesis. Further research may

tackle this combination in detail.
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Figure 6.1: Bivariate marginal copula distribution (left) and copula density (right)
between Euro (EUR), Australian Dollar (AUS) and Japanese Yen (JAP) compared to
the US-dollar from January 3rd, 2000 until May 6th, 2011 with d = 4 and D = 8 using
pendensity from Chapter 3 for estimating the marginal distribution.
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7 Summary

This thesis discussed applications of penalized smoothing splines for univariate den-

sity and copula density estimation. We presented different types of basis functions,

preferring the B-spline bases. To get smooth density fits, we penalized huge differ-

ences of neighboring basis coefficients, both in the univariate and multivariate cases.

The link between P-splines and linear mixed models was used for iterative estimation

of the optimal smoothing parameter λ. The application of quadratic programming,

also in combination with sparse grids worked satisfactorily for the estimation of (high-

dimensional) copula densities. In the context of dependence vines, Bernstein polyno-

mials were investigated as spline basis, but the usage of different penalties did not yield

optimal results. The fits using penalized B-spline outperformed the other approaches.

As theoretical starting point, Chapter 2 discussed the substantial theory for applica-

tions of the following chapters. Chapter 3 presented the univariate density estimation

approach with penalized smoothing splines and theoretical results of the estimator were

presented. First, the estimator had minimal Kullback-Leibler distance to the unknown

density and secondly, we showed asymptotic normality of estimated coefficients. We

calculated the integrated mean squared error (IMSE) for several density scenarios in

simulations studies. The corresponding results were satisfactory for our density estima-

tion approach, which performed usually best. The extension to a covariate dependent

density estimation approach allowed for tests of equality of grouped densities. This

test is powerful, especially when the standard tests did not announce inequality of the

groups. We implemented this approach in the R package pendensity, available on

CRAN.

The presented copula density estimator in Chapter 4 was constructed using sparse grids

based on linear B-spline functions to circumvent the curse of dimensionality. Further-

more, quadratic programming was used for simultaneous estimation of marginal and

joint copula densities. Accordingly, we penalized differences of the basis coefficients

in this context, but the penalty parameter λ was determined by a grid search, such

that λ minimized AICc. This penalized copula density estimation approach allowed

for estimation in up to five or even six dimensions. Moreover, calculated AICc values

in the simulation studies for samples of various copula families presented better results

of the copula density approach using penalized B-splines compared to kernel density
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estimation and Bernstein polynomials. Additionally, the approach allowed for an anal-

ysis of bivariate dependence in the context of high dimensional copula densities. These

marginal copula densities were presented in the examples of Chapters 4 and 6. The

entire estimation concept was implemented in the R package pencopula, available on

CRAN.

For the estimation of dependence vines, discussed in Chapter 5, we used a modified

idea of the copula density estimation approach from Chapter 4 in the bivariate case.

Throughout this chapter, the pair-copula construction principle was considered, espe-

cially in the case of D-vines. The estimation of D-vines was done by estimation of

pair-copulas using penalized splines in each node of the dependence tree. We addition-

ally considered penalized Bernstein polynomials as possible basis functions, but they

did not outperform penalized B-splines. We presented ideas for ordering the first level

of the D-vine based on AICc values, which determined the structure of the complete

D-vine. Furthermore, we presented concepts to truncate the D-vine at a given level in

the case that only independent pair-copulas were estimated. The simulation studies

showed comparable results with respect to AICc for the penalized spline approach to

the true copula density. But the examples of wind and sun data showed powerful results

in contrast to the established parametric estimation approaches. This approach of flex-

ible pair-copula estimation will be available on CRAN in the package penDvine soon.

Further perspectives consider further dependence vines, e.g. C-Vines, which follow a

different decomposition of the joint density. Probably, results of estimated C-Vines can

be comparably good as in the case of D-vines.

Finally, the usage of penalized smoothing splines resulted in comparable or rather

better models for univariate and copula densities compared to established parametric

or non-parametric estimators. Moreover, the combination of the penalized univariate

density estimator and the penalized copula density estimator in Chapter 6 provided an

increased performance.
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