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Abstract

Brain-Computer Interfaces (BCI) are tools that open a new channel of communication be-
tween humans and machines. The majority of human input devices for computers require
proper functioning of our primary sensors and motor functions like grasping, moving and
visual perception. In the case of severe motor disabilities, like amyotrophic lateral sclerosis
(ALS) or spinal chord injury (SCI), these pathways are blocked and cannot be used for com-
munication. Since the brain functions of these people are not affected by the disease, BCI can
provide an effective way to translate thought into machine readable commands.

The most common method to measure brain activity suitable for BCI are electroencephalo-
graphic measurements (EEG) due to their relative cost effectiveness and ease of use. Alter-
native ways to extract brain signals exist but either require invasive procedures, i.e. open-
ing the skull, or are very costly and bulky (MEG, fMRI) which renders them unusable for
home appliance. One of the most popular brain controlled input methods is the P300-Speller
paradigm [Farwell and Donchin, 1988] which gives the user control over a virtual keyboard to
enter text. The term P300 refers to a specific EEG component that can be measured whenever
a rare task relevant stimulus is interspersed with many non-relevant stimuli. This method re-
quires the ability to control the visual presentation of stimuli and therefore also requires some
sort of computer controlled display. The recognition rates for this type of BCI, yet already
quite high with roughly 80-90% accuracy, are still prone to errors and may not be suitable for
critical applications like issuing movement commands to a wheelchair in a highly populated
environment. Commands to stop the wheelchair might be recognized too late. Further, it is
impossible with the standard stimulus matrix to react to external influences like obstacles or
select physical objects in a scene which does not allow the user to interact with a dynamic
environment.

This work aims to fuse state of the art BCI techniques into one single system to control
an artificial actuator like a robot arm and use it to manipulate the physical environment. To
achieve this goal, multiple techniques originating from different fields of research as aug-
mented reality, computer vision, psychology, machine learning and data mining have to be
combined to form a robust, intuitively to use input device.



1 Introduction

1.1 Aim and Scope

From a historical point of view it was not long ago since computers first appeared on the
stage. With the invention of the arguably first programmable computer, the Z1 built by Kon-
rad Zuse around 1938, the number of computing devices is growing at an enormous pace.
Clearly the number of computer users is growing to the same extent and nowadays it is a
mandatory skill to be able to use a computer with ease. Primarily intended as a tool to auto-
mate calculations it has evolved from a simple tool to an all-rounder used in entertainment,
multimedia applications, industrial controlling and has even almost replaced pencil and pa-
per. During the evolution of computers numerous devices have been developed to allow for
easy communication between humans and computers. These devices are often specifically
tailored to a certain task. A prime example is the keyboard which is almost exclusively used
to communicate letters to the computer and is less suitable to manipulate graphical objects
as they occur in graphical applications like drawing programs, modern graphical user inter-
faces or games. For the latter task usually 2D-pointing devices like mice or trackballs are used
since this type of task demands non-symbolic continuous input data for which pointing ges-
tures are the most intuitive way. Numerous other input devices have been developed for even
more specialized tasks, e.g. braille keyboards and displays (figure 1.1) intended for sight im-
paired people as a replacement for the standard keyboard and computer screen. Yet, all of
these input devices require that the user has at least to some extent voluntary control over
their limb movement. For severely impaired people as it is the case with amyotrophic lateral
sclerosis (ALS) or spinal chord injury, no movement of the muscles in the lower extremities
or even the whole body is possible. Therefore none of the preceding input devices is applica-
ble for this group of people. Even though the target group of ALS patients in a late phase is
quite small, people with spinal chord injuries are quite common. People who have lost motor
control over their body completely and are unable to talk, move or express their feelings in
other ways are considered as locked-in patients since they are essentially prisoners in their
own body. As their brain is usually not severely damaged, one possible way to get access to
their world would be to extract relevant information about their intentions directly from their
brain-activity. Nowadays we have several methods to measure brain activity of humans, both
invasive and non-invasive techniques. Devices exploiting brain-activity data for communi-
cation are not even new. Considering the development timeline of the computer mouse, it

2



1.1 Aim and Scope

Figure 1.1. Braille-Displays allow visual impaired people to read the content of a computer screen by using
tactile-coded alphabets.

was around 1984 when the first mice were shipped with the appearance of Macintosh com-
puters to a broader user base. At first this novel input device was kind of neglected and in
the same year it was an article in the San Francisco Examiner which states that "There is no
evidence that people want to use these things." [Dvorak, 1984]. Only 4 years later Farwell &
Donchin published a paper [Farwell and Donchin, 1988] with their groundbreaking finding
that a certain type of event-related brain signal measured by an EEG called P300 component
can be used to determine the users intent if coupled with the right stimulus presentation
method. They designed an experiment that displayed the letters of the alphabet arranged
in a grid structure. The usage is very simple as the subject only has to focus the letter to be
communicated. During the experiment each row and column is highlighted in random or-
der while the subject has to mentally count whenever the focused letter is being highlighted.
This method is comparable to the keyboard input methology as it selects predefined symbols
in an order defined by the subject. The success of this method in BCI research is probably
based on the robustness of the involved brain-signals and high recognition rates. It is diffi-
cult to see how this input methology, yet event-driven and relying on external stimulation,
can effectively be used to control artificial actuators like robot arms which intuitively call for
continuous control signals to constrain their movements. There exist approaches based on
motor imagery, i.e. imagination of limb movements, that seem to be more suitable for con-
trolling robot arms [Wolpaw et al., 2003a,Blankertz et al., 2006,Pfurtscheller et al., 2003] since
they do not rely on external event-triggered stimuli to evoke a brain response. Experiments as
in [Leeb et al., 2004] showed that especially the cognitive load introduced with motor imagery

3



1 Introduction

tasks can be a problem because it distracts from focusing on the environment and shifts at-
tention to the imagination of movements. Another drawback appears in time critical settings,
i.e. fine motor control since time is needed to reliably detect the intended movement. This
in itself would not be a problem but real-time controlling of the movement would be for fine
grained movements. As stated in [Graimann et al., 2008], a BCI handling all the intricates of
low-level interactions needed to achieve a goal would not only be rather slow it can also be
very frustrating for the user which in turn can lead to degraded performance. An alternative
are so called goal-directed approaches which focus on selection of task relevant goals, i.e. se-
lecting a target location for BCI controlled wheelchair, rather than control of the actuator’s
motors itself. An autonomous system takes care of the low-level control of the motors are
with respect to the selected goal. Therefore, goal-directed control strategies for complex sys-
tems like robotic arms or wheelchairs are likely to be more robust than direct control of all
available degrees of freedom.

These facts motivate this work which aims at developing a robust Brain-Computer Inter-
face system suitable for controlling object manipulation tasks in real environments using a
robotic manipulator. A goal-directed approach will be be used as the basis strategy whereas
the motor control itself will be performed in an autonomous way on the robot platform. For
goal selection tasks the P300-Speller paradigm is very well suited since the P300 is one of the
best investigated components and exhibits stable signal properties which can be classified
robustly. And more importantly, a BCI based on P300 evoked potentials does not apply addi-
tional cognitive load to the subject since the P300 is evoked subconsciously and no dedicated
mental action is required for its evocation which allows for a much more natural communica-
tion in agreement with what was already proposed in [Ritter et al., 2007]. Controlling a robot
arm to manipulate the physical world also entails that at least the position, size and shape
of manipulable object must be recognized by the computer to transform these objects into
potential goals, i.e. computer controlled visual stimuli, for the selection task.

To solve this problem, computer-vision and Augmented-Reality techniques in conjunction
with a stereoscopic head-mounted display (HMD) can be used to populate and augment a
real-world scene with computer generated stimuli. Figure 1.2 shows how a so called video
see-through HMD will be used that is equipped with two firewire cameras which record the
subject’s field of view and projects it stereoscopically on the HMD LCD screens. As a proof
of concept, marker-based methods will be employed to extract object information from the
scene. The extracted objects will serve as selectable targets that serve as endeffector positions
for the robotic arm. The finished system will consist of four distinct parts, each responsible
for a specific task within the framework (see Figure 1.2).

Further, possibilities to improve the standard speller paradigm will be investigated in terms
of information transfer rates and accuracy. Another important characteristic of a brain-adequate
BCI is the possibility for human intervention at any point of an action sequence performed
by the robot. This is an important point since wrong movements lead to unintended behav-
ior and in the worst case can even hurt the user or damage the equipment. Recent studies
have reported the presence of error-related brain potentials which occur in response to in-
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1.1 Aim and Scope

Figure 1.2. Schematic view of an Augmented-Reality Brain-Computer Interface.

correct BCI feedback. Of primary interest could be the so called interaction ErrP signal as
reported in [Ferrez, 2008] which was found to be present in a simulated human-robot inter-
action task and occurred whenever the robot moved to the wrong side. Within the scope of
this work it will be investigated if and how these types of signals can be incorporated into a
BCI controlling a real robot arm.

The major difficulty here lies in the reliable detection of erroneous responses in single tri-
als. Usually, as with the P300 detection, multiple trials are averaged to increase the signal-
to-noise ratio of the data. This of course is not possible for the error detection method since
feedback, i.e. the wrong movement of the robot arm, is only available once and therefore only
one short time-series signal must be sufficient to reliably detect an error. There exist only few
studies that incorporated ErrP responses into P300 BCIs [Buttfield et al., 2006,Dal Seno et al.,
2009] whereas only [Dal Seno et al., 2009] used it in a running online experiment with lim-
ited success. The presented work will try to clarify in which cases automatic error correction
using error-related potentials are useful and which factors determine the effectiveness of the
error correction method. To summarize, the envisioned goals for this thesis can be stated as:

• Develop an augmented-reality based visual interface suitable for P300 BCIs.

• Investigate further performance improvements of the standard P300-speller paradigm.

• Investigate the feasibility of error correction using ErrP for the use in human-robot in-
teraction.

• Implement an online BCI to control a robotic manipulator in realtime.
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1 Introduction

1.2 Structure

The structure of this work consists of three main parts. In the first part, background informa-
tion on the topics of human brain anatomy, neurophysiological methods to measure brain
activity and brain-computer interfaces is given. A special focus is put on EEG methods and
EEG signals that are useful for BCI. This includes event-related potentials with emphasize on
the P300 component as well as error-related potentials (ErrP) that can be measured at the
occurrence of wrong actions carried out by the BCI.

The second part will describe the existing P300-based online BCI that was implemented
during my diploma thesis which served as a basis for this work as well as machine-learning
methods and algorithms that were used in the existing BCI along with experiments that aim
to improve these algorithms. Along these lines, an error correction method for P300 BCI will
be presented and its impact on BCI performance will be evaluated on a theoretical basis.

The third part is devoted to the new augmented-reality BCI paradigm and a final experi-
ment to assess the feasibility of the developed approach. Results of an online experiment will
be presented which focuses on grasping objects with a robot arm that is controlled by the
BCI.

Chapter 2 - Background This chapter starts with a neuroanatomical overview of the hu-
man brain. It continues to describe ways to measure brain activity in terms of metabolic
and electrophysiologic activity. A special focus is put on Electroencephalography (EEG)
as it is the primary technique in non-invasive BCI research. In this context, types
of event-related potentials are explained as well as special kinds of evoked potentials
called error-related potentials that occur due to erroneous BCI responses. The chapter
closes with an overview of brain-computer interfaces and explains the different types
of BCIs and principles involved to deduce intentions from brain activity.

Chapter 3 - Brain-Machine Interfaces The third chapter introduces the concepts and dif-
ferent types of Brain-Machine Interfaces. Among others, the existing P300 BCI that was
implemented during my diploma thesis will be briefly described. This system served
as a basis for this thesis and the algorithms and machine-learning techniques will be
presented in detail.

Chapter 4 - Dynamic Subtrials In this first experiment, the performance of an algorith-
mical extension called dynamic subtrials is evaluated. This extension is intended to
adapt the number of stimulus presentations dynamically throughout a running online
session. The results have been published in [Lenhardt et al., 2008].

Chapter 5 - Error-Related Potentials In this chapter, the possibilities to integrate a rather
new EEG feature called error-related potentials (ErrP) is investigated. It will be shown
how ErrPs can diminish under certain experimental conditions. Additionally, a method
to detect erroneous trials on a single-trial basis will be presented that achieves an ac-
curacy comparable to state-of-the-art P300 detection performances.
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1.2 Structure

Chapter 6 - Augmented-Reality based BCI In this chapter the design of an augmented-
reality based P300 BCI is described. It contains details about how brain signals are
translated into actions to control a robot arm and how physical objects are translated
into computer controlled visual stimuli to elicit P300 potentials. A broad overview of
the software design will be given while the implementation details can be found in the
appendix.

Chapter 7 - An Asynchronous BCI for Robot Control The final experiment in this chap-
ter evaluates the performance and usability of the new combined P300 and ErrP detec-
tion methods. The algorithms will be explained in a non-exhaustive way as they are
already described in detail in the previous chapters.

Chapter 8 - Conclusion The conclusion closes with a summary of results and achievements
of this work. Further, thoughts about future directions of research, possible extensions
to the augmented-reality BCI and existing limitations are discussed.
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2 Background

This chapter summarizes the most important aspects of the brain-computer interface re-
search field. Background information about the human brain anatomy will be covered in the
first part followed by an overview of measurement methods for brain-activity. Emphasis will
be put on electroencephalography (EEG) than on other measurement techniques since this
is the most widely used method for non-invasive BCIs and is the one used in this work. Fur-
ther, brain-signals which are suitable for BCI will be described also with a primary focus on
the P300 component.

2.1 Neuroanatomy of the human brain

The human brain is the most complex organ we know on earth. Millions of neurons com-
pressed into a handy bulk of highly complex compound of mass. Even though we might think
we understand the neurobiological workings of single units of the brain, the uncountable in-
terconnections and high plasticity of the former makes it a seemingly impossible task to fully
understand the working principles of the whole brain. With more than 100 billion neurons in
an adult brain it is impossible to investigate the exact paths of information flow at each time
instant and decode their meaning. To make the daunting task of analyzing the brain more
feasible, neuroscientists approach the problem from a top down perspective which breaks
down the whole brain into functionally distinct parts. The late eighteenth century brought
up the field of neurophysiology which evolved rapidly and yielded groundbreaking methods
to visualize the living human brain. The central nervous system is a bilateral and symmetric
structure which is divided into six main parts as can be seen in figure 2.1. Modern experi-
mental methods were able to assign distinct roles and functions to these regions.
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2.1 Neuroanatomy of the human brain

Figure 2.1. Cerebral Hemispheres.

Spinal chord The spinal chord is thought to be partly responsible for the control of limb
movement and the trunk. It also processes sensory information from the skin, joints
and their associated muscles. Further, specialized nuclei responsible for more special-
ized functions as hearing, balance and taste are present primarily towards the more
rostrally located brain stem, consisting of the medulla, pons and midbrain.

Medulla Oblongata The medulla is located right above the spinal chord and controls vege-
tative functions like breathing, regulation of heartbeat or digestion.

Pons This structure emerging above the medulla is responsible for providing movement in-
formation originating from the cerebral hemisphere to the cerebellum. The cerebel-
lum, which lies behind the pons, plays a major role in the learning of movements as
well as controlling force and range of movements.

Midbrain The midbrain is involved in processing and controlling a variety of sensory and
motor functions like eye movements and coordinates auditory and visual reflexes.

Diencephalon Two substructures, the hypothalamus which regulates endocrine, visceral
and other autonomic functions and the thalamus which is responsible for processing
informations reaching the cerebral cortex.

Cerebral hemispheres The cerebral hemisphere is the outermost structure which also con-
tains three deeper lying substructures called basal ganglia, hippocampus and the amyg-
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daloid nucleus. In conjunction, these regions are involved in aspects like memory stor-
age, coordination of autonomic and endocrine responses to emotional states. The cere-
brum, which hosts the cortex, covers the outer surface of the cerebral hemispheres. The
cortex is morphologically characterized by its distinctive folds called gyri. These gyri
make it possible to fit the whole cortex’ surface or roughly 2000cm2 into the skull.

Figure 2.2. Mapping of cognitive functions to localized brain areas.

This broad mapping of functions to brain regions is not fully satisfying the highly com-
plex and dynamic nature of the brain because the principle of functional localization can be
extended to an almost infinitely fine grained level. One commonly accepted principle is that
neurons serving a similar function are likely to be interconnected with each other. These neu-
ronal assemblies get more and more specialized as one descends from macroscopic to micro-
scopic level of detail. As an example the visual cortex, part of the occipital lobe located of the
back of the cerebral hemispheres, contains neuronal assemblies that are specialized to code
colors while others focus on shapes or motion. Perceiving an object, assigning semantics to
it and using it in creative ways is a result of multiple specialized neuronal groups interchang-
ing and processing our sensory information and thereby eventually creating something we
call cognition. Supposedly all cognitive functions are processed in the structures of the cor-
tex which is the outermost layer of the brain. Specialized areas are associated with specific
sensory processing. The broad mappings can be extended to different aspects of cognition
like perception of auditive stimuli, vision, body perception and other aspects of conscious-
ness. Such a broad mapping is shown in Figure 2.2 for the left hemisphere which shows the
localization of different areas responsible for dedicated parts of perception.
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2.1 Neuroanatomy of the human brain

Frontal lobes The frontal lobes are located at the front of the brain, anterior to the neigh-
boring parietal lobe and above the temporal lobe. It is thought to play an important role
in long-term memory and planning as well as reward and attention. One of the reasons
for this belief is the fact that the frontal lobes contain most of the cortex’ dopamine-
sensitive neurons which have been shown to be largely responsible for the aforemen-
tioned cognitive functions.

Parietal lobes Posterior to the frontal lobes, the parietal lobe can be found. The role of this
lobe is primarily associated with the integration of multimodal sensory information
and object manipulation. This includes mapping the position of visually perceived ob-
jects into body space coordinates and knowledge of the relation of different abstract
metrics (e.g. based on numbers or spacial distances).

Occipital lobes The occipital lobes are the smallest anatomical region of the cortex and
consist mainly of the visual system. They are located at the back of the head and thus
are the rearmost of all four lobes. The function of these lobes are almost exclusively
restricted to tasks related to vision. Certain sub-areas are specialized to color or edge
direction detection while the back of the lobes are arranged in such a way as to reflect
the retinal field as a spatial map.

Temporal lobes The temporal lobes are located beneath the parietal and frontal lobes at
each side of the brain. Its functional role consists mainly of processing of smell, sound
and more complex stimuli like face recognition or semantic processing of visual scenes
or speech. Especially the left temporal lobe appears to be specialized to high-level au-
ditory processing like speech. The ventral parts on the other hand are more specialized
for high-level visual processing tasks. The roles associated with the medial parts of the
temporal lobes consist of memory related functions like episodic and spatial memory,
as well as playing a key role in transferring short-term memories into the long-term
memory.
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Figure 2.3. Homunculus shows the cortical areas covered by sensory processing of the body.

A specialized area like the somatosensory cortex can be further subdivided into distinct
areas associated with different body parts. This can be visualized as a sensory map as seen
in Figure 2.3. The size of the warped body parts corresponds to the size of the cortical area
they occupy. Especially the face and lips occupy a remarkably large brain area as they are very
sensitive.

2.2 Measuring neuronal activity

A variety of methods exist which measure different aspects of brain activity. Some techniques
exploit the electrical properties of the brain and measure voltage (EEG) or magnetic field
changes (MEG) at the skull surface and thus measure neuronal activity. Others such as func-
tional imaging methods like PET, fMRI or NIRS measure metabolic processes of the brain.
Further, some methods are more invasive than others. The most invasive type requires, in
addition to opening the skull, to implant electrodes directly into the cortex whereas with less
invasive methods like ECoG electrodes are only attached on top of the cortex’ gray matter.
The reason for the diversity of measurement techniques is simple. Generally speaking, the
more invasive the better the spatial resolution. On the other hand, the less invasive the less
risky and complex the procedure. Additionally, most non-invasive electrophysiologic tech-
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2.2 Measuring neuronal activity

niques lack the ability to measure high frequency content, i.e. the fast temporal dynamics,
of the data since the skull attenuates the signals and acts as a lowpass filter. The full infor-
mation range is only covered by the most invasive techniques like intracellular recordings
or single/multi unit recordings of action potentials (SUA/MUA) which in turn are not able to
cover the whole cortex. It is only feasible to cover small areas with microelectrodes. Figure
2.4 depicts the techniques that will be described on a two-dimensional map based on their
spatial and temporal resolution. The primary method EEG, which was used in this work, will
be covered in more detail in the next subsection.

Positron Emission Tomography (PET) Positron emission tomography (PET) is a tech-
nique that uses radioactive marked substances, called tracers, to indirectly image metabolic
processes within the human brain. The tracer is a substance that is metabolized by the
brain during activity. Usually fludeoxyglucose (FDG), an analogue of glucose, is used
as a tracer. Activity in brain tissues results in increased glucose uptake which can be
measured by detecting pairs of gamma rays emitted by the tracer. This type of scan
is usually combined with computer tomographic x-ray scans to visualize the anatomic
structures of the tissue resulting in a 3-dimensional image of the brain augmented with
metabolic activity. The scan itself is rather slow due to the neurovascular coupling, i.e.
the slow metabolic responses to neuronal activity. Further, the injection of radioactive
molecules, though with a short half-life time, bears a certain risk for the subject.

Functional Magnetic Resonance Imaging (fMRI) Function Magnetic Resonance Imag-
ing (fMRI) is able to measure metabolic changes in living brain tissues, just as the for-
mer mentioned technique. In contrast to PET it does not require any sort of radioactive
tracer and thus eliminates the risk involved with radiation. Neural activity is thought to
be correlated to increased blood deoxygenation since active neurons require a greater
amount of energy which is delivered in the form of oxygen. Hemoglobin, the molecule
binding and releasing oxygen, has different magnetic properties depending on its state
of oxygenation. To measure neural activity, fMRI detects relative changes of oxyhe-
moglobin and deoxyhemoglobin. This contrast is called Blood-oxygen-level dependent
signal (BOLD). As with PET, this technique also requires relatively long scan times and
picks up signal frequencies in the range of 4-5Hz.

Near Infrared Spectroscopy (NIRS) Near infrared spectroscopy is a rather new non-invasive
technique that can measure metabolic processes of the brain. Similar to fMRI, NIRS
employs special properties of oxygenated blood to receive a BOLD signal. In contrast
to the former technique, NIRS emits near infrared light of a specific wavelength. This
light penetrates the skull and cortex to a depth of 1-2cm . The reflected light is de-
tected at multiple positions. Depending on the position and absorption of the light,
blood oxygenation can be deduced from that data. As with with all former methods,
the temporal resolution of NIRS is also bound by the neurovascular coupling that leads
to signals of 4-5Hz.
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Figure 2.4. Recording techniques ordered by their temporal and spatial resolution. Invasive techniques
generally expose better spatiotemporal properties than non-invasive techniques but are more complex to
apply and pose higher risks of injuries.
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2.3 Electroencephalography (EEG)

Magnetoencephalography (MEG) This technique measures the magnetic fields that are
generated by the electrical currents of neuronal activity. It provides a very high tempo-
ral resolution but on the other hand requires huge and costly hardware equipment to
acquire the signals. Further, it is very susceptible to movement artifacts which contam-
inate the signals.

Electrocorticogram (ECoG) As EEG, the electrocorticogram is a technique to record elec-
trophysiological activity where the sensors are directly placed on the surface of the cor-
tex. Since the signals do not have to penetrate the skull and skin anymore the signal
quality is vastly improved compared to the non-invasive electroencephalogram. The
price to pay for the good temporal and spatial resolution however lies in the invasive
natures of the technique. Opening the skull is inevitable since the gray matter of the
cortex must be accessible for the electrodes.

Local Field Potentials (LFP) Stepping further down into the microscopic level, the record-
ing of local field potentials (LFP) allows an even better spatial resolution. This tech-
nique records summed activity from a small cluster of neurons. Thereby a low-impedance
microelectrode is implanted close to the neuron cluster but sufficiently far away from
individual neurons to prevent that activity of single neurons do not suppress the activ-
ity of others in the summed signal. The resulting unfiltered signal reflects the summed
neuronal action potentials of a 50−140µm radius [Buzsaki, 2004].

Single/Multi-Unit Actionpotentials (SUA/MUA) The most accurate in terms of spatial
and temporal resolution are single- and multi-unit recordings of action potentials. This
type of recording technique is usually only applied to animals since the health risks in-
volved are almost certain to occur. As a result, scars and neuronal injuries will develop
during and after the recording since microelectrodes are directly implanted into the
cortex and single neuronal cells. It allows for recording of single (or multiple) cell ac-
tion potentials at their exact firing-rate.

2.3 Electroencephalography (EEG)

Back in 1875 the english physician Richard Caton discovered the presence of electrical poten-
tial fluctuations in the cortex of animals. Due to his findings there was no doubt that brain
activity can be measured from potential deflections measured from the skull or cortex which
result from activity of ganglia cells of the nervous system. The first scientist to exploit his find-
ings was Hans Berger. He is considered the pioneer of electroencephalography (EEG) as he
recorded the first electrical brain activity on graph paper which is shown in Figure 2.5. During
his research he noticed that prominent rhythmic activity varied with conscious states. Most
notably the so called alpha-rhythm, also termed berger wave, which is clearly visible when
the subject closes the eyes. Early on, the potential fluctuations were interpreted as the sum or
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superposition of action potentials of ganglia cells firing in synchrony [Adrian and Matthews,
1934]. This theory however could not explain the slow varying components in EEG record-
ings. Later it could be shown by investigations with microelectrodes, that actionpotentials of
ganglia cells almost vanished when moving further away from the cell than 1µm. Therefore,
even when measuring activity directly on the cortex, the action potentials are vanished which
raises the question what the actual potential sources of EEG are.

2.3.1 Sources of EEG

A revised theory on generators involved in EEG was formulated based on the research of
[Brooks and Eccles, 1947, Eccles, 1964] who identified synapses as an additional source of
electrical potential changes. Activation of synapses leads to a local potential gradient which
is measurable around the center of activity. In contrast to action potentials and their very
short duration of 1-2ms, postsynaptic potentials exhibit a slower potential change over time
in the range of 10-40ms. The summation of single synaptic potentials, as shown in figure 2.6,
at the dendrites exhibit the slow varying characteristics visible in EEG recordings and allow
for a manifold of different superpositions. In conclusion, the EEG measures the cortical field
potential changes induced by the summation of postsynaptic potentials. Once the strength
of these field potentials exceeds a certain strength it can be registered at the skull surface. An
important factor in the development of the strength of cortical field potentials is the degree
of postsynaptic activation synchronicity. The more synapses are activated at the same time
the more potentials sum up which results in a strong field potential. Even though this is an

Figure 2.5. First EEG recording by Hans Berger shows a prominent 10Hz alpha-rhythm.
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2.3 Electroencephalography (EEG)

Figure 2.6. Several potential generators can be identified at different locations in and around the cell. The
main generator contributing to the EEG are the summed postsynaptic potentials as shown in the top trace.

important factor, not all neurons contribute to the strength of field potentials. The spatial
orientation of the cells if also of great importance since these cells can be considered electric
dipoles and the direction of the electrical field influences how potentials are summed. Pri-
marily the vertically arranged pyramidal cells are the main contributors to the EEG. Whenever
many vertically oriented cells get activated at the same time, many equally directed field po-
tentials can sum up to form a strong field. Only these dipoles are relevant for EEG derivations.
Fortunately about one third of the cortex exhibits such an orientation. The remaining cells
are oriented in a less consistent way and as such they cancel out their contributing field to a
great extent.

2.3.2 Recording techniques

EEG recordings are obtained by placing electrodes on the scalp of the subject. Usually the
scalp has to be specifically prepared in order to reduce artifactual influences that result from
high impedances between electrodes. Ethanol, light abrasive pastes and conductive gels are
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used to improve conductivity between skin and electrodes. EEG measures voltage differ-
ences, therefore it is necessary to define pairs of electrodes which are compared to each other.
Each pair is connected to a differential EEG amplifier which amplifies the voltage difference
up to 100.000 times which equals up to 100dB voltage gain [Niedermeyer and Da Silva, 2004].
Typically the maximum amplitude of a non-pathologic EEG does not exceed 100µV when
measured on the scalp [Thompson and Patterson, 1974]. As mentioned, the derivation of an
EEG requires the definition of reference electrodes. There exist four major methods that are
used in the majority of EEG experiments.

Common reference In common reference derivations, each recording electrode represents
the difference in voltage to a single reference electrode common to all recording elec-
trodes. The reference electrode should be placed at a neutral place. Here, neutral
means a place that reduces influence of the brain and muscle potentials. A common
location are the ear lobes or right/left mastoid since these are relatively electrically neu-
tral sites.

Common Average reference As in common reference, average reference derivations use a
single reference. In contrast to the former however, this method uses the average of
all recording electrodes as reference which has the effect of reducing voltage changes
common with all electrodes. This can be useful since externally induced artifacts usu-
ally appear on all electrodes while retaining the inter-electrode differences for the most
part.

Bipolar reference In bipolar EEG derivations, each channel connects two electrodes. Both
of these electrodes are considered active electrodes, i.e. they are likely to be affected
by brain potentials. They are arranged as linked serial pairs since the reference elec-
trode of the first channel is the active electrode of the next channel. This arrangement
scheme is extended throughout the entire electrode array.

In conjunction with the mentioned derivation methods, the placement of electrodes is an
important issue. Data recorded from one site are required to be comparable among sub-
jects. Since the geometry of the human head is not identical among subjects, the locations
of electrodes will be different for each head. Comparable measurements can be achieved by
employing the International 10-20 System [Jasper, 1958a] which uses two fixed reference lo-
cations, the nasion and the inion, that define the size of the head. The distance from nasion
to inion is divided into 10% and 20% intervals in the horizontal and vertical plane (see Fig-
ure 2.7). Each location has a unique label that is systematically assigned. All labels start with
letters, followed by either a number or the letter Z which denotes a central location on the
heads midline. Labels ending on odd numbers are located on the left hemisphere while even
numbers are on the right hemisphere. Further, the distance of the location to the midline
can be determined by its trailing number. The smaller the number the closer the location to
the midline. Consequently, the beginning letter denotes their location based on the major
underlying brain areas such as occipital (O), temporal (T), parietal (P) or frontal (F) lobes.
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Figure 2.7. The international 10-20 system divides the head into equally sized section in the vertical plane
(A) and horizontal plane (B).

2.3.3 Rhythmic activity

When recording an EEG, rhythmic patterns are commonly visible in the traces. Historically,
these rhythms were classified by visual inspection whereas in later research these rhythms
were classified by their specific frequency ranges. Therefore, no precise mapping exists be-
tween the naming conventions and their corresponding frequency range. Figure 2.8 depicts
the most common types of EEG rhythmic activity with their associated frequency ranges.
Along with these patterns, certain cognitive functions or mental states can be coarsely corre-
lated [Niedermeyer and Da Silva, 2004, Webster, 2007].

Delta waves Delta waves are defined in the frequency band of up to 4Hz and show high
amplitudes. They are usually found during slow-wave sleep (SWS) where the EEG con-
sists of 20% delta waves as well as in newborns [Schulz, 2007]. Adults expose a frontal
localization for this type while it is located more posterior in children.

Theta waves Residing in the 4-8Hz band, the strong theta waves are associated with drowsi-
ness but also appear in childhood, adolescence and young adults. It is localized over
the hippocampal area but its function is not well understood. Research done by [Green
and Arduini, 1954] pointed out that these waves occur predominantly along with desyn-
chronized EEG in the neocortex and suggest that it might be associated with arousal. In
contrast, [Vanderwolf, 1969] presumed that, due to strong correlation of motor actions
and theta, it might be related to sensorimotor processing.
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Alpha waves/Mu-rhythm First discovered by Hans Berger and later fully confirmed by [Adrian
and Matthews, 1934], the rhythmic activity of 8-12Hz is called the alpha band. It occurs
primarily at posterior regions of the head over both hemispheres. Depending on the
handedness of the person, the amplitude is slightly higher on the dominant side. The
occurrence of alpha waves can be forced by closing the eyes. In general, occipital alpha
is associated with relaxed or alerted mental states of consciousness. A similar rhythm
called mu-rhythm can be observed over the motor cortex and is attenuated while carry-
ing out or just imagining movements which is a very important feature used in certain
types of BCI [Wolpaw and McFarland, 2004, Pfurtscheller et al., 2006]. Since alpha and
mu expose overlapping frequency bands they are distinguished by their localization.
Rhythmic 10Hz activity focused over the visual cortex is called visual alpha rhythm
while the same activity appearing over the somatosensory cortex is called mu rhythm.
According to [Niedermeyer and Da Silva, 2004] the generating sources of mu rhythms
are the thalamocortical neuronal circuits. Studies of [Pfurtscheller and Berghold, 1989]
revealed a relation to beta waves in that some of those could be separated either to-
pographically or temporally and thus are independent EEG features. Since mu rhythm
occurs in cortical areas directly connected to motor output channels, even the imagina-
tion/preparation of movements entails a decrease of mu and beta rhythms. This phe-
nomenon has been labeled "event-related (de)synchronization" by [Pfurtscheller and
Lopes da Silva, 1999].

Beta waves Beta waves of 12-30Hz are associated with normal waking consciousness while
low amplitude beta with alternating frequencies within the band are related to active,
busy or anxious thinking as well as active concentration. This rhythm is primarily lo-
calized frontally and appears symmetric on over both hemispheres.

Gamma waves The last major type are gamma waves with a frequency band of 30-100Hz.
The functional role of gamma is not fully known. It is hypothesized that this type of
rhythmic activity is related to conscious perception, in particular the binding problem1.
There is however no agreement between researchers on the exact functional role.

2.3.4 Artifacts in EEG recordings

A common problem with EEG is the recording of artifacts that do not originate from the
brain [Lindsley et al., 1974]. In the context of BCI, this definition is further extended to not
only label non-brain originated data as artifact but also certain types of brain activity which
might mask a signal of interest. A prime example are alpha rhythms which expose the same
frequency content as the P300 component. With strong alpha activity the P300 diminishes as

1The binding problem refers to the phenomenon, how distinct sensations (e.g. color and shape) are com-
bined to form a new perception (e.g. a red circle enclosed in a yellow square).
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Figure 2.8. The most common types of rhythmic EEG activity. Each type has an associated frequency range.

it gets masked by the higher amplitudes of the alpha activity. In general, artifacts can be clas-
sified as subject dependent and subject independent artifacts. According to [Lindsley et al.,
1974] subject dependent artifacts may arise from one or more of the following reasons:

• EMG artifacts. Electromyographical (EMG) artifacts are a result of increased muscle
tension. Especially masticatory, neck and forehead muscles will corrupt the EEG with
heavy signal disturbances of high amplitudes. The frequency range of these artifacts
is usually higher than for the signals of interest. But high amplitudes of these artifacts
can mask possible event-related potentials which are used in BCIs.

• Cardiac artifacts. The electrical activity of the heart muscle can also be visible in EEG
recordings and appears as a pulsing negative deflection in the EEG.

• Motion artifacts. Body and limb movements will cause movement of the electrode ca-
bles and can also introduce myographic (EMG) artifacts.

• Oculographic artifacts. A very common type of artifact seen in every EEG recording is a
result of eye blinks and eye movements. The eye, which can essentially be considered
as a dipole, introduces very high amplitude voltage changes on the whole skull.

In contrast to subject dependent artifacts, subject independent artifacts can arise from elec-
tronic equipment or environmental electromagnetic noise. An artifact source present in ev-
ery EEG recording is line noise induced by the EEG amplifiers power supply. The frequency
range depends on the country’s alternating current frequency which is different depending
on the country. In europe a frequency of 50Hz is used whereas in the US a frequency of
60Hz is common. Further sources of noise can include grounding-loops, cell phones, esca-
lators, computers and computer screens or static current of the subject itself [Lindsley et al.,
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1974]. Grounding-loops are one of the more common artifact types. They occur whenever
any element of a circuit is connected to ground at more than one point. In theory this should
not be a problem assuming both points should have the same ground potential. In practice
however, two different grounds never have the same potential due to slightly different resis-
tances and therefore result in interferences or even electrical shocks which can damage the
equipment or the subject. A properly grounded subject will use the same ground point as the
internal circuits of the amplifier. In addition to ground-loops, electromagnetic interferences
of the environment can pose another problem in EEG recordings. The electrodes act like an
antenna picking up even the slightest electromagnetic signals of the surrounding and ampli-
fying them greatly. To reduce this influence, it is necessary to properly prepare the subjects
scalp in order to reach good transition resistances from reference electrodes to active elec-
trodes. The reason for this is that electromagnetic influences are less likely to get picked up
when the impedances of the electrodes (in DC recordings impedance equals resistance) are
low. Besides achieving low electrode impedances, reducing the amount of electronic equip-
ment is usually the best advice to improve recording quality. When signal quality is of the
highest concerns, electromagnetically shielded rooms are another option since they reduce
EM influences in the environment to an absolute minimum. This however is not practical
in home usage of BCI which is why this option can be safely rejected for practical work with
BCIs.

2.3.5 Limitations of EEG

The non-invasiveness, high temporal resolution, ease of use and relative cost effectiveness
of EEG comes at a price. The spatial resolution of EEG is very limited since for each elec-
trode, even though positioned above specific brain areas, electrical activity of locations in
close proximity gets mixed into the recorded signal. Additionally, it is most sensitive to spe-
cific post-synaptic potentials which emerge at the crests (see section 2.3.1). Deeper neuronal
layers and opposingly ordered dipole cells do not contribute to the EEG at all. Therefore,
a precise localization and determination of the underlying brain dynamics is not possible.
Specifically, for neuronal activity to be measurable it must fulfill certain constraints. Dipole
neurons that generate electrical activity must be oriented in a perpendicular axis towards the
scalp and their dendrites must be aligned in parallel to sum their potentials. Only summed
potentials are strong enough to penetrate the skull and be detectable by EEG. The claim for
summation also entails the constraint for synchronicity. Cells that do not fire in synchrony
do not sum up their potentials to the maximum extent. In conclusion, EEG is only able to
measure a very limited subset of the full brain dynamics and is not able to localize the origins
and contributing components precisely. Another limitation is the very low signal-to-noise
ratio (SNR) which is the relation of the signal of interest’s amplitude to the noise amplitude
present in every EEG recording.
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2.4 EEG features for BCI

EEG based brain-computer interfaces rely on reproducible electrophysiological signals that
allow to infer what command the subject intended to communicate. Over the years, different
types of BCIs have been developed which use various kinds of electrophysiological proper-
ties to translate thoughts into commands. This section will give a short overview about the
different methologies and their associated electrophysiological basis.

2.4.1 Motor Imagery

As briefly mentioned in section 2.3.3, an 8-12Hz mu-rhythm over the somatosensory cortex
can be measured in awake people who are not processing any sensory input or producing
motor output. The frequency range is identical to the visual alpha rhythm that occurs pri-
marily over the visual cortex. It could be shown by [Pfurtscheller and Berghold, 1989] that
this somatosensory 8-12Hz mu-rhythm is present in most adults. The actual rhythm is com-
prised of a variety of frequencies within this band which can be separated by their spatial
location and characteristic frequency. These rhythms share correlations with 18-26Hz beta
rhythm in such a way that a motor action, or even the imagination of such actions, will lead
to a decrease of the mu- and beta-rhythms contralateral to the side of motor activity. This
decrease has been labeled Event-Related Desynchronization (ERD) while the opposite Event-
Related Synchronization (ERS) occurs with relaxation after the imagined or conducted motor
action. In order to obtain a clear quantification on how much the power of the specific fre-
quency band changed, a reference power is needed. This is usually obtained by measuring a
baseline signal prior to any imagined movement which serves as a reference value in the fol-
lowing classification task. The time course of such an ERD/ERS phenomenon is depicted in

Figure 2.9. Rhythmic activity in the beta and mu band decrease (ERD) during imagination of motor actions
and increase (ERS) after the imagination of motor actions. (Illustration adopted from [Durka, 2003]).
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Figure 2.9 for a carried out movement. It is remarkable that already 1-2 seconds before the ac-
tual movement, a desynchronization in the alpha band is visible. This is commonly referred
to as Readiness Potential (RP) or Pre-Motor Potential. This potential can be observed prior
to a voluntary muscle movement and is associated with pre-motor cortical structures that
plan the actual movement. The alpha ERD reaches its peak shortly after the movement onset
and lasting for a few seconds until it approaches baseline level. The central beta activity in
contrast shows a short lasting ERD quickly followed by an ERS that falls back to baseline level
quicker than the alpha activity. Additionally, 40Hz gamma activity shows a sharp peak right
before the movement onset to quickly reapproach baseline level right at movement onset. A
BCI utilizing these features along with the topographical mapping of the measured signals
can at least operate on two degrees of freedom since ERD/ERS are primarily measured on the
contralateral side of the limb movement. This technique however requires subject training to
some extent. Even though recent studies improved greatly in this topic (e.g. [Krauledat et al.,
2008]) there remains the need for the subjects to be able to concentrate on the task and with
no doubt trained subjects will perform better than untrained. It is however a highly popular
method employed by numerous research groups (e.g. [Wolpaw et al., 1991, Blankertz et al.,
2006, Pfurtscheller et al., 1997]).

2.4.2 Slow cortical potentials

Slow cortical potentials (SCP) expose the lowest frequency range of all EEG features suitable
for BCIs. Positive deflections of this potential are associated with reduced cortical activity
as suggested in [Rockstroh et al., 1984, Rockstroh, 1989, Birbaumer et al., 1990] while a neg-
ative deflection usually indicates increased cortical activity as it appears during movements
or other activity involving cortical structures. A special property about SCPs are that sub-
jects can learn to control the exposition of this signal voluntarily which has been shown in
many studies of Birbaumer and his colleagues. The signal is used to control a 2D cursor on
a computer screen to select visual goals. As a result, Birbaumer implemented a BCI com-
monly referred to as Thought Translation Device (TTD) which can be used to select letters by
moving the cursor into the appropriate position. It is also remarkable that this kind of signal
works well for the original target group of BCI users, namely patients with late-stage amy-
otrophic lateral sclerosis (ALS) [Kübler, 2000]. In contrast to motor imagery BCIs this method
requires extensive user training of weeks or months to be able to achieve recognition rates
of >75% [Wolpaw et al., 2002]. The recognition phase itself consists of a 2 second baseline
measurement and a 4 second recognition phase during which the subjects have to control
their SCP.

2.4.3 Visual evoked potentials

Visual evoked potentials (VEP) occur in response to visual stimuli and can be measured above
the visual cortex. In BCI a special form of these potentials called steady-state visual evoked
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Figure 2.10. Pole balancing task controlled by SSVEP. The stimuli for left and right movements are phase
inverted checkerboard patterns, flickering at a specific rate.

potentials (SSVEP) can be utilized to determine the gaze direction of the subject. The term
steady-state refers to the periodic property of the VEP when visual stimuli are presented at a
rapid rate of 6-8Hz or more. The presentation of such flickering stimuli leads to overlapping
measurable VEPs above the visual cortex which match the presentation frequency of the at-
tended stimulus. In a study, Lalor et al. [Lalor et al., 2005] employed this feature in a game
scenario with the aim to balance a pole.

2.4.4 Event-Related Potentials

Voltage changes timelocked to sensory, motor or cognitive events are commonly referred to
as event-related potentials (ERP). These voltage changes in ongoing EEG that may be stimulus
related are usually in the order of microvolts and thus are hard to detect within a single pre-
sentation epoch. A common way to improve detectability is to average over multiple stimulus
epochs which improves the signal-to-noise ratio (SNR) significantly. Any brain activity that is
not time-locked to the stimulus onset will most likely disappear due to the averaging process
and only the time-locked components are retained. An ERP consists of multiple components
which are labeled according to their polarity (P or N) and latency. A component occurring at
a latency of 100ms exposing a positive deflection is called P100 (or P1) whereas a component
at a 200ms latency with a negative deflection is called N200 (or N2 ). Clearly, the P300 com-
ponent which this work is mainly based on can be found approximately 300ms after a certain
stimulus presentation showing a positive peak which only appears under very specific cir-
cumstances. Using this classification scheme, an ERP can be segmented by its components.
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Common time-locked components that can be observed due to a sensory stimulus are the
N100, N200, P300 and the N400. In neurophysiological literature these components are fur-
ther subdivided into subcomponents whereas only the P3a and P3b are of greater interest for
this work. Therefore, a further subdivision of the remaining components will be omitted. A
more extensive overview of ERPs and their respective components can be found in [Patel and
Azzam, 2005, Rugg and Coles, 1995].

N100 The N100 is a time-locked ERP peaking at 80-120ms in response to a stimulus and can
be measured over the fronto-central scalp region. The elicitation of this component is
highly sensitive to unpredictable auditory stimuli in the absence of task demands. Yet,
it is also present when presenting visual, olfactory or somatosensory stimuli [Warnke
et al., 1994, Pause et al., 1996, Wang et al., 2008]. A strong correlation between stimu-
lus repetition rate and N100 amplitude has been shown by [Schafer and Marcus, 1973]
such that randomly occurring stimuli produce higher N100 amplitudes while repetitive
stimuli expose a much lower amplitude or even disappear in the case when subjects are
allowed to control the presentation of stimuli themselves.

N200 The N200 component, also called Mismatch Negativity (MMN), appears in response to
an odd stimulus in a long sequence of similar stimuli. The component’s maximum peak
spans from parietal to fronto-central sites. The MMN has been first studied by [Näätä-
nen et al., 1978] in the context of auditory stimuli. The component was elicited by pre-
senting a sequence of equal sounds with an interspersed deviant sound stimulus. Their
study showed that an N200 is elicited even when the subject was not consciously paying
attention to the sound sequence. A subcomponent, the N2b, usually precedes the P300
component and in contrast to the N2a only occurs when the subject actively attends
the stimulus sequence. There exists no commonly accepted theory on the origins and
functional role of the MMN. One of the more recent theories hypothesizes that sensory
afferent neuronal elements that are tuned to the frequent stimulus respond less vigor-
ous with each repetition of the standard stimulus. The MMN might then be a result of
different neuronal elements tuned to the deviant which respond stronger upon deviant
presentation [Näätänen, 1992].

N400 In 1978, Kutas and Hillyard conducted experiments in order to investigate whether
sentence contexts in word recognition tasks can be measured using ERPs. They pre-
dicted that unexpected words in a sentence would elicit a certain ERP component
nowadays called P3b which occurs usually after the presentation of an unpredictable
stimulus interspersed in a sequence of predictable stimuli. It turned out that sentences
with physically unexpected endings as in "‘I shaved off my mustache and beard"’ in-
deed elicited a P3b. To their surprise, sentences with a semantic anomaly as in "‘I
shaved off my mustache and city"’ were followed by a large negative peak at 400ms over
central-parietal sites after the semantically wrong ending [Kutas and Hillyard, 1980,Ku-
tas and Hillyard, 1983, Kutas and Hillyard, 1984]. Factors that influence the N400 am-
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plitude are repetition rate, semantic/associative priming, expectancy/cloze probability
and attention. Each stimulus that in the first place elicited a N400 will also elicit it at
the second repetition with the difference that the N400 amplitude is significantly de-
creased as shown by [Rugg, 1985]. A similar effect could be shown for experiments that
incorporated semantic priming, i.e. experiments presenting a pre-stimulus that ren-
dered the upcoming target stimulus more predictable (see e.g. [Harbin et al., 1984,Stuss
et al., 1988]). Another very important determinant of N400 amplitude is the cloze prob-
ability (i.e. the proportion of people who give a particular word as the most likely com-
pletion of a sentence fragment), whereas according to [Kutas and Hillyard, 1984] high
cloze probability correlates with decreased N400 amplitudes and vice versa. A con-
troversial factor that could influence N400 amplitudes is attention. Studies seem to
contradict on whether the processes involved in the N400 elicitation are automatic or
of controlled nature. The component has been observed for masked stimuli [Misra and
Holcomb, 2003] and even during sleep [Brualla et al., 1998]. On the other hand, ex-
periments that controlled the extent to which attention was allocated to the eliciting
stimulus showed a correlation between amplitude and allocated attention [Holcomb,
1988] and thus suggest that the N400 is at least not fully automatic.

P300 The P300 evoked potential has been discovered in 1965 by Samuel Sutton and col-
leagues. The component was found to be correlated to unpredictable stimuli inter-
spersed in a sequence of uniform stimuli (an experimental paradigm called oddball
task). In this paradigm, frequent background stimuli are shown in rapid succession and
at a random position in that sequence a less frequent target stimulus is interspersed.
Due to this target stimulus, a strong positive peak at around 300ms can be observed in
the EEG which is localized above fronto-central to parietal regions. In addition to the
traditional two-stimulus oddball task described above (cf. Figure 2.11 (middle)), a P300
can also be elicited by variations of this paradigm. A single-stimulus task (c.f. Figure
2.11 (left)) requires the user to mentally or physically respond to a target stimulus which
is presented at random times with no other stimulus between target presentations. The
second variation is a three-stimulus oddball task (c.f. Figure 2.11 (right)) that adds a
distractor stimulus in addition to the background and target stimuli. The subject how-
ever is required to only respond to the target stimulus. This type of experiment is able
to show that the P300 consists of two subcomponents, the P3a and P3b [Snyder and
Hillyard, 1976]. In response to the distractor stimulus, which can be considered as a
novel stimulus interspersed into the sequence, a P3a is elicited which is located towards
central-parietal sites and shorter peak latency, whereas the P3b occurs as a response to
task relevant stimuli/target stimuli at spatially more parietal sites than the P3a. Histor-
ically these components were thought to be distinct entities but more recent studies as
in [Katayama and Polich, 1996, Katayama and Polich, 2001, Brocke, 2004] suggest that
these components stem from the same ERP only varying topographically with atten-
tional and task demands. The functional role of the P300 is controversially discussed
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Figure 2.11. Illustration of 3 different experimental paradigms that are used to elicit a P300. The single-
stimulus (left) requires the subject to focus on an infrequently appearing target marked T in the absence of
other stimuli between consecutive targets. The traditional 2-stimulus oddball (middle) requires target focus
as well but between target presentation, frequent background stimuli appear. The 3-stimulus oddball (right)
adds a third stimulus class called distractor. It also appears less frequent than background stimuli but the
subject must not respond to them. In this paradigm, a P3a is elicited for distractors and a P3b for targets.
The illustration is a modified version of [Polich and Criado, 2006].

by researchers. A theory of context-updating, i.e. the adaption of a mental model to the
oddball stimulus, was formulated by [Donchin, 1981]. Other studies as [Verleger, 1988]
criticize this theory and suggest the P300 is involved in context-closure where a process
waiting for an anticipated stimulus terminates. A more recent study of [Polich, 2007]
speculates that the P300 might be an inhibitory process of ongoing neuronal activity to
facilitate the transmission of stimulus information from frontal (P3a) to parietal (P3b)
regions. The theory is based on the assumption that focal attention needed during the
detection of stimuli which are resolved using the working memory. Therefore, inhibi-
tion of additional stimulus processing mechanisms might improve memory operation
since this inhibition facilitates the information transfer from frontal to parietal regions.
This hypothesis is supported by neurophysiological results and experiments [Friedman
et al., 2001,Nieuwenhuis et al., 2005,Birbaumer et al., 1990]. Depending on the modal-
ity of the stimulus and several other aspects, the shape and the latency of the P300 can
vary. The use of a visual oddball paradigm will prolong the latencies of the respec-
tive components. The same effect of prolonged latencies can be observed for tasks
with varying task difficulty. The more difficult it is for the subject to discriminate be-
tween background and target stimuli, the more the latencies are prolonged. In a visual
paradigm, stimuli with similar color intensities and contrast are harder to discriminate
which result in longer latencies. Another factor that influences the appearance of the
P300 is the target probability. It has been mentioned that targets must appear less fre-
quent than background stimuli. A study of [Coles et al., 1990] showed the relationship
of target probability and P300 amplitude for an auditory oddball paradigm (see Figure
2.12). The subjects were instructed to mentally count the high tones while ignoring the
low tones which appeared as background stimuli. The presentation probability for tar-
gets was successively increased with the result that the P300 for the targets decreased
with increasing target probability. A presentation probability of 90% let the P300 for

28



2.4 EEG features for BCI

Figure 2.12. Target frequency effect on P300 amplitude. Infrequent targets evoke a P300 with larger
amplitudes [Coles et al., 1990].

targets vanish almost completely. A similar effect as target probability emerges from
variation of inter-stimulus intervals (ISI). The ISI is the elapsed time between two con-
secutive stimuli. It was shown by the pioneers of BCI [Farwell and Donchin, 1988], that
P300 amplitude is decreased with shorter ISI while latency is prolonged. An important
finding was that discriminative potentials can still be obtained with an ISI of 125ms.
The ability to evoke a P300 with such a low ISI makes it possible to design P300-based
BCIs with rather fast communication rates as it will be described in chapter 3.
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These days, a life without computers or electronic devices is unconceivable. To facilitate the
control of these devices, intuitive human-computer interfaces (HCI) had been developed to
allow for easy communication between the user and the computer. Prime examples for such
input devices are keyboards and mice. Since these devices seem to resemble a very natu-
ral way of communication they are only suited for healthy users who have complete control
over their motor and visual functions. Blind persons would not be able to take advantage
of such common input methods which led to new interfaces like Braille displays and key-
boards specifically adapted for the needs of sight impaired people. For similar reasons, Brain-
Machine Interfaces emerged for cases where common input devices are not viable. This new
kind of input interface forms a direct bridge between the brain and a computer or computer
controlled output device. Since these devices receive input directly from the brain, voluntary
control over muscles is not necessary to operate them. This is especially useful for cases in
which patients are in a completely paralyzed state but with a wake mind, a state referred to
as locked-in syndrome. Patients with late amyotrophic lateral sclerosis (ALS) or a stroke with
resulting lesions in the pons, which are the most common reasons for this syndrome, are un-
able to communicate with the outside world. At best they are only able to carry on an internal
monologue [Patterson and Grabois, 1986]. Therefore it is even more remarkable that a man
called Jean-Dominique Bauby, who was put into a locked-in state after mid-brain stroke, has
written a whole book called Le scaphandre et le papillon. The book was dictated by himself
to his speech therapist by using only eye-blink codes for each letter which took him over one
year to complete. In the light of cases like this, it seems imperative to research new ways of
communication and this is what gave rise to the invention of brain-computer interfaces. A
pioneer in this field, Prof. Niels Birbaumer, devoted his research to the translation of brain-
potentials to commands which resulted in his famous thought-translation device (TTD) (see
e.g. [Birbaumer et al., 2003]). With this device, patients were able to operate a letter spelling
device by mere thought after multiple initial training sessions. He applied this technique to
the originally intended target group of locked-in patients with great success.

Techniques to translate thoughts into commands however is only a sub-field of the broader
field of brain-machine interfaces. Generally, Brain-Machine Interfaces can be subdivided
into invasive and non-invasive methods which mostly aim at different levels of control as de-
picted in Figure 3.1. Non-invasive methods are usually limited in their ability to decode brain
patterns as the recording techniques involved are either temporally or spatially inaccurate
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Figure 3.1. Classification of brain-machine interfaces into invasive and non-invasive methods.

(c.f. Figure 2.4). Therefore they are best suited for cases where fine-grained control is not
necessary. Further, stimulation of the brain is either not possible at all or only with a very low
spatial resolution as is the case with Transcranial-Magnetic Stimulation (TMS) where whole
brain areas can be muted by large magnetic pulses. Invasive methods on the other hand of-
fer superior signal quality and spatial resolution which in turn results in finer control of the
output device. This chapter will give an overview of both, invasive and non-invasive brain-
machine interfaces with a stronger focus on non-invasive methods based on EEG.

3.1 Invasive Methods

The first experimental demonstration in 1999 with rhesus macaques showed how signals
of neuronal ensembles can be employed to directly control a robotic arm [Chapin et al.,
1999]. Recent research concentrates on the improvement of implantable electrodes and sig-
nal acquisition modules to reduce side effects like scars in the brain tissue and long-term
applicability. In a review of human brain-machine interfaces [Nicolelis, 2001], Nicolelis de-
scribed how these methods can be employed to generate artificial neuronal signals triggered
by brain-activity. This can be useful in cases like epilepsy where seizure activity can be ter-
minated once it gets detected by stimulating cranial nerves. Besides the apparent benefits of
these methods, the health risk involved should be evaluated carefully. In most cases the risk
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of bioincompatibility and tissue scars will outweigh the benefit for most patients. Further,
these approaches are not suitable for healthy subjects at all which renders them less interest-
ing for non-therapeutical applications like gaming or assistive devices for healthy subjects.

Input-Invasive BMI

Input-invasive BMIs transform external stimuli into bioelectric activity that is being pro-
cessed by the brain. A very popular and well established input-invasive BMI is the cochlear
implant. This device records external sound sources by small microphones similar to a hear-
ing aid. The implant though is directly connected to the auditory nerve fibers and translates
the recorded sound into bioelectric activity which in turn serves as input for the auditory
nerve. The implant is not able to reconstruct the natural hearing since the number of elec-
trodes used to connect to the nerve fibers does not even exceed 0.001% of the normal nerve
connectivity. Yet, even with a low number of electrodes, a rudimentary hearing reconstruc-
tion is possible.

Similar to methods that reconstruct basic hearing senses, visual prostheses are able to re-
construct lost vision or amplify existing vision. These neural prostheses rely on externally
worn cameras that transmit pictures to a translation device which transforms them into bio-
electric signals suitable for neuronal processing. Several different types of visual prostheses
exist, one of the most interesting from a technical point of view are visual cortical implants
(e.g. [Coulombe et al., 2007]). This type is implanted directly above the visual cortex and com-
municates via a wireless connection with the image acquisition hardware. The implanted
part of the system consists of a central module which drives a multitude of micro-stimulators
to properly induce sensing of bright spots in the subject’s field of view. One of the first to
report a successful implantation of such an device was Dobelle in 1974. The patient was able
to recognize simple patterns using this device.

A slightly different application emerged in the context of pain relief. In 1965, Melzack and
colleagues proposed a new theory called Gate control theory [Melzack and Wall, 1965]. It was
hypothized that nerves carrying electrically coded tactile and vibrational sensations termi-
nate in the pain fibers which are located at the dorsal horn of the spinal chord. Thereby, two
types of cells are involved in the processing. The transmission (T) and inhibitory cells. Signals
from the pain and sensory fibers excite the T cells until they reach a critical level at which time
pain sets in. Inhibitory cells on the other hand counteract to the T cells by dampening the T
cell excitation, similar to closing the gate to pain (as formulated by Melzack and Wall). The
theory concludes that sensory fiber activation excited the inhibitory cells while at the same
time, pain fiber activation impedes inhibitory cells and thus leaves the gates to pain open.
Therefore, if sensory fiber activation is high compared to pain fiber activation, less pain will
be sensed. Due to this finding a spinal chord stimulator (SCS) was built by [Shealy et al., 1967]
in order to aid in chronic pain therapy. An SCS uses electrodes implanted on top of the spinal
chord and a pulse generator which drives the excitation signal. The sensory fiber excitation
can be controlled on demand by the patient and activates the inhibitory cells as described
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above. Recent research in this field has extended the applicability of this type if device also to
the treatment of Parkinson’s disease [Fuentes et al., 2009].

Output-Invasive BMI

Compared to the former input invasive methods, the flow of information is reversed for output-
invasive brain-machine interfaces. Neuronal signals originating from the brain are being in-
terpreted by a device that translates them into actions that would normally require muscle
activity. One of the most widely used brain signals are neuroelectric potentials arising from
motor cortical activity. These signals can be translated into commands to control either com-
puter cursors or even limb prostheses. This field was pioneered by Chapin who succeeded to
train rats to control a robotic arm along a 1D trajectory using only their brain signals. This was
accomplished by implanting microwire electrodes into the rats primary motorcortex and the
ventrolateral thalamus. The information contained in spike signals of the neuronal ensem-
bles were mathematically transformed into neuronal population functions that could accu-
rately predict the lever trajectory. Similar work was conducted by [Wessberg et al., 2000] who
trained monkeys to precisely control a lever along a 1D and 3D trajectory. In this study, si-
multaneously recorded cortical ensemble data of the monkey was used to train a linear model
and an artificial neural network (ANN). The recording was realized with implanted microwire
electrodes over multiple cortical sites but primarily over the motorcortex. After the implanta-
tion of the electrodes, the monkeys were trained for 12 and 24 month to move a lever either to
the left or to the right. Subsequently, a more complex task requiring three-dimensional tra-
jectories was trained. This task involved controlling a robot arm to reach small pieces of food
which were placed at one out of four random positions on a tray. Neuronal data was recorded
simultaneously to the actual movement and served as input to either a linear model or an
ANN. The hand trajectories predicted by the two methods revealed highly significant correla-
tions to the real trajectories with average correlation coefficients of 0.71 for the linear model
and 0.66 for the ANN. Even though the starting position and movement velocities were not
constant for the individual trials, the predictions remained highly correlated to the real tra-
jectories. This experiment showed that it is possible to decoded motorneuron data and trans-
late it into a control signal that can be used to steer robotic devices. An extended and more
complex variant of this experiment was conducted by [Carmena et al., 2003]. Two macaque
monkeys were trained to perform a 3D movement and grasping task. The goal of the first task
was to move a computer cursor to a given position in a 3D virtual environment. The second
task consisted in not only moving to a specific location but also grasping a virtual disc located
at a random position in the virtual environment. During the first phase of the experiment the
monkeys performed motor actions using a pole which controlled the location of a computer
cursor in a virtual 3D environment. The cursor served as visual feedback for their actions.
Grasping was performed by measuring grip force of the pole. During the training phase the
position of the cursor was controlled by the position of the pole. After a few training trials the
control signal for the cursor was switched to the brain signals of the monkey. While in this
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brain-controlled mode, the monkeys started to perform the same motor actions as learned
in the training session. After a few trials however they stopped performing an actual move-
ment in some trials and controlled the cursor merely by thought. In response to this outcome,
the researchers removed the pole object completely and continued the experiment. The elec-
tromyographic recording of muscle activity (EMG) acquired at the wrist flexors/extensors and
biceps did not reveal any sort of muscle activity, yet both monkeys were able to control the
cursor by thought only without performing any motor actions.

Closed-Loop BMI

In the context of closed-loop control with BMI, Kevin Warwick has drawn much attention
in the media. In 2002, Warwick et al. implanted a micro electrode array into his left arm
which was connected to the median nerve [Warwick et al., 2005]. The array consisted of 100
electrodes with a 4µm diameter at the tip. Wire bundle and connector were attached ex-
ternally on the surface of the arm. The signals transmitted through the wires were used to
control a hand prosthesis by means of voluntary opening and involuntary closing (VOIC).
This means that only opening of the hand could be controlled by Warwick while closing was
accomplished in an autonomous way. Pressure sensors in the prosthesis measured the grip
force to prevent slipping and fed back tactile sensory information to the nerves and hence
closing the loop. Control of the hand required a bit of training until Warwick was able to
use it as intended. Warwick himself stated that coupled with the on-board intelligence of the
prosthetic hand, it is possible to decode the neural activity into distinct control commands.
The coupling of the on-board intelligence and brain controlled commands is a topic that has
reemerged recently under the name shared control (i.e. [Millán et al., 2009]).

3.2 Non-Invasive Methods

In contrast to invasive BMI, non-invasive BMI, also called Brain-Computer Interfaces (BCI),
do not require penetration of the subject’s skull. This is usually accompanied with a signifi-
cant loss of measurement accuracy, either becoming evident in a loss of maximum observ-
able frequency, spatial resolution or both. Generally, the least invasive methods also entail
inferior signal quality (c.f. figure 2.4). By far the most widely used non-invasive method to
measure brain activity in the context of BCI is Electroencephalography (EEG) due to its cost
effectiveness, ease of use and its high temporal resolution. Several other approaches exist
that use Magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI)
or Near Infrared Spectroscopy (NIRS) to measure brain activity suitable for BCI. However,
in the case of MEG and fMRI, these methods lack the ability to be applied in every-day set-
tings like living rooms or being mounted on mobile platforms like wheelchairs due to their
tremendeous size and high technical implications. Further, the subjects have to remain sta-
tionary either lying or sitting which limits the flexibility for possible applications. In the case
of NIRS, which does not measure bioelectric activity but metabolic activity, communication
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Figure 3.2. Schematic model of a general BCI. Brain signals of the user are digitized with an EEG and in a
subsequent step, the intent of the user is extracted using signal processing and machine learning techniques.
The output of the signal processing stage serves as commands for an application like spelling devices or other
assistive devices like wheelchairs or robots. The action of the output devices can be perceived by the subject
which allows him to react accordingly with different intentions.

speed is drastically reduced due to the time constraints of neurovascular coupling. The for-
mer reasons might explain the popularity of EEG which does only lack the ability to precisely
locate the bioelectric generators involved in the measured EEG potentials. Therefore this sec-
tion mainly focuses on EEG-based BCI and will give an overview of the existing approaches
and their applications.

3.2.1 Design of non-invasive BCIs

The design of EEG-based BCI, as depicted in figure 3.2, consists of a closed-loop interaction
between the device and the user’s brain. According to [McFarland and Wolpaw, 2008], ev-
ery BCI contains a signal acquisition module to measure task related brain activity. At the
lowest level, these signals carry information which is coded in neuronal spike frequency. In
EEG-based BCI this type of feature is not accessible since only a limited type and number
of neuronal assemblies penetrates the skull (c.f. section 2.3.1). As a result, the amount in-
formation diminishes as it travels through the skull until it is picked up by the EEG elec-
trodes. Yet, there is still enough information contained in the mixed and convoluted bioelec-
tric EEG potentials to infer a meaning if the user is bound to a specific task. This means that
the EEG in itself is only useful for a BCI when it is coupled with a specially crafted interface
paradigm. In this case, a translation algorithm can decide what action to take since this al-
gorithm has knowledge about the task and the brain signals. It is the type of paradigm which
constrains what type of EEG feature is suitable for the BCI. The most common paradigms
consist of steady-state visual evoked potentials (SSVEP), slow cortical potentials (SCP), men-
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Figure 3.3. Stimulation sequence schemes for a VEP based BCI. Characteristic sequences arise from the
different schemes (a) t-VEP, (b) f-VEP, (c) c-VEP.

tal tasks, event-related (de-)synchronization (ERD/ERS) and P300 speller. Details of these
paradigms will be outlined in the following sections.

One of the main goals in BCI research is to improve communication speed to a level at
which the usage of e.g. a brain controlled spelling device feels as natural as typing it on a
keyboard. Depending on the task, some paradigms are better suited than others. To measure
how well a BCI performs for a given task requires a common performance metric. This how-
ever turns out to be a non-trivial task due to the different approaches that the paradigms em-
ploy. Many metrics have been suggested, but none of them can be considered as a paradigm
independent measure of performance. Usually, the performance of a BCI is expressed in
terms of communication speed which can be measured in bits/sec. Another popular measure
for BCI’s which focus on discrete target selections rather than continuous control is correct
selections/min.

3.2.2 Visual evoked potentials (VEP)

Among EEG based BCIs, visual evoked potentials enjoy a widespread use in the recent decades
(e.g. [Prueckl and Guger, 2009, Guo et al., 2008, Lee et al., 2007, Middendorf et al., 2000a]).
Visual evoked potentials are generated in response to stimulation of the subject’s visual re-
ceptive field and can be measured over the primary visual cortical area. The VEPs reflect
visual information processing mechanisms of the brain. While stimulation of the central vi-
sual field results in large VEPs, a stimulation of the peripheral field leads to smaller potentials.
Paradigms based on this EEG feature can identify target stimuli that the user is visually fixat-
ing. This method requires that each target is coded by a unique stimulation sequence. Pre-
diction of a target is achieved by analyzing the properties of the VEP in response to the known
stimulation sequences. Constructing an appropriate sequence modulation method is a key
issue in VEP based BCIs. Depending on the sequence modulation method, VEP based BCIs
can be assigned to one of three different categories: time modulated VEPs (t-VEP), frequency
modulated VEPs (f-VEP) and pseudorandom code modulated VEPs (c-VEP).

Time modulated VEPs (t-VEP) Paradigms using t-VEPs require the stimulus activations
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to be mutually independent. This constraint is implicitly achieved when either the
flash sequences of the selection targets are not overlapping in time [Guo et al., 2008] or
the duration of a stimulus flash is randomized [Lee et al., 2007]. In response to a short
stimulus flash, a flash visual evoked potential (FVEP) can be observed over the occipital
area of the skull. These FVEPs which are characterized by a short latency and duration.
To achieve a stable prediction, multiple EEG time windows for each target flash can
be averaged due to the FVEP being time- and phase locked to the stimulus. The aver-
aging will cancel out background activity while pertaining the components occurring
after each flash. Since peripheral stimulation of the visual field results in smaller VEPs
compared to those evoked by central field stimulation, the target which produces the
largest mean VEP (measured as valley-to-peak amplitude) will correspond to the fix-
ated target. However, many repetitions are required for a reliable target identification.
Further, the claim for mutually independent stimulus flashes limits the maximum fre-
quency at which stimuli can be flashed (usually <4Hz). This is the main reason why
t-VEP based BCIs are only achieving low communication speeds compared to other
state-of-the art approaches.

Frequency modulated VEPs (f-VEP) In a frequency modulated VEP approach, each tar-
get symbol is flashing at a different frequency. This type of stimulation scheme pro-
duces overlapping visual evoked potentials which can be uniquely identified by their
frequency spectra which corresponds to the fundamental frequency of the attended
flickering stimulus. These flashes usually occur at stimulation rates> 6H z and produce
a periodic elicitation of VEPs which are also called steady-state visual evoked potentials
(SSVEP) in this context. Such a stimulation sequence is shown in figure 3.3(b). In more
detail, the steps required to predict the fixated target symbol consist of

1. Analyze the power spectral densities (PSD) of a short timewindow of EEG data
using (short-time) fourier transformations or similar spectral analysis methods
like wavelets or PSD estimation using Welch’s method [Welch, 1967].

2. Compute the signal-to-noise ratio SN R fi = P ( fi )

X
for each known stimulus frequency

which is the relation of spectral power P ( fi ) for a given frequency fi to the mean
power of all other frequencies X .

3. Predict the target which corresponds to the frequency fi that produced the high-
est SN R fi .

Many studies (e.g. [Muller-Putz and Pfurtscheller, 2008, Bin et al., 2009b, Pfurtscheller
et al., 2010]) demonstrated the robustness and high communication rates of SSVEP
based BCIs. No specific training of the subject is required to successfully use this type
of BCI which can be considered a real advantage over BCIs using slow cortical poten-
tials or motor imagery. Even though for the latter, the Berlin Brain-Computer Interface
Group demonstrated how motor imagery tasks can be robustly classified without ex-
tensive subject training. However, SSVEP based paradigms do not burden the subject
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with additional cognitive load which can be problematic for certain persons using SCP
or motor imagery BCIs [Leeb et al., 2004].

Pseudorandom code modulated VEPs (c-VEP) The target decoding of c-VEP based paradigms
becomes slightly more complicated. In this paradigm, pseudorandom sequences are
used which is shown in figure 3.3(c). The coding scheme is highly related to the Code
Division Multiple Access (CDMA) method which is widely used in mobile communica-
tion. Thereby, a pseudorandom sequence, called m-sequence, is generated which has
special properties that help to decode a focused target among other seemingly ran-
dom flashing targets. One of the m-sequence’s properties consists of its autocorrela-
tion function which closely approximates the unit impulse function. The orthogonal-
ity to its time lag sequence is a second important property. Usually, template matching
methods are used to predict the target symbol. The template is computed during an
initial training session. According to [Bin et al., 2009a] the following steps are com-
monly used to implement a c-VEP based BCI:

1. During an initial training phase the user is required to attend to a specific target
k0 for N stimulation runs while EEG data is being collected.

2. A template T (t ) is computed based on the previously recorded EEG data which
has to be averaged over N trials.

3. To compute the templates for all k targets, T (t ) needs to be shifted by the time lag
difference between target k and k0: Tk (t ) = T (t − (τk −τk0 )).

4. For each EEG timewindow, correlation coefficients Ck are calculated between the
previously computed templates Tk and the current EEG segment x.

5. The prediction simply consists of selecting the target k for which Ck is maximal.

A c-VEP based BCI developed by [Sutter, 1992] reached very high communication rates
of >100 bits per minute which corresponds to approximately 10-12 words per minute.
Despite this seemingly promising result, more recent publications could not reproduce
the same performance in terms of communication speed. As an example, the BCI de-
veloped by Momose [Momose, 2007] took 5 seconds to predict one out of five targets
leading to communication rates of less than 20 bits/min.

3.2.3 Slow cortical potentials (SCP)

Using Slow Cortical Potentials (SCP), as described in section 2.4.2, for BCI has the advantage
that the expression of the expression of detectable features can be voluntarily controlled by
the user which was shown by [Elbert et al., 1980, Birbaumer et al., 1990]. One of the most
representative BCIs of this type was developed by the group around Birbaumer who was also
the first to demonstrate how operant conditioning can be used to gain voluntary control over
slow cortical potentials [Birbaumer et al., 1990]. The study reports that a successful appli-
cation of this technique does not require continuous feedback but reward at the end of the
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Figure 3.4. A BCI based on slow cortical potentials operated by a patient suffering from amyotrophic lateral
sclerosis.

selection. Their system, commonly referred to as Thought Translation Device (TTD), em-
ploys SCP features to control an object on a computer screen with one degree of freedom.
Contrary to many other BCIs, this system has been extensively tested with patients suffer-
ing from late-stage ALS and proved to be able to restore basic communication capabilities of
the patients [Kübler, 2000, Kübler et al., 2001]. The associated paradigm for SCPs can be de-
scribed as a basket paradigm in which the user is asked to move a falling ball into one of the
target baskets which are visualized as bars at the bottom of the screen as depicted in figure
3.4 (B). A selection round is finished once the ball hits one bar. The speed of the ball limits the
maximum communication speed of the system. Prior to each selection the user is asked to
relax for 2 seconds while during the following 2 seconds the SCPs have to be self-regulated as
desired. The control signal is derived by comparing the SCP voltage level against the baseline
period which can be either higher or lower and thus allows for unidimensional control, i.e.
left and right movements. Slow cortical potentials have been successfully applied to spelling
tasks and control of a web browser [Mellinger et al., 2003, Hinterberger et al., 2001]. To gain
control over a web browser, the source code of the application was modified to display col-
ored links as selection targets grouped into stacks of two (see Figure 3.5). The user focuses
on regulating her SCP according to the desired selection. The program will keep splitting the
links contained in the selection boxes until a unique selection between two choices is pos-
sible. In conclusion, the basic methology for using SCPs to control a web browser closely
resembles the basket paradigm used in their speller application.
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Figure 3.5. In the study of [Mellinger et al., 2003] a modified web browser was used to display selecting
groups containing links to other pages. By self-regulating SCPs, the selection could be narrowed down to one
unique target.
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3.2.4 Event-related (de-)synchronization (ERD/ERS)

Brain rhythms related to motor actions or motor action preparations can exhibit either an
amplitude decrease, which is called event-related desynchronization (ERD), or an ampli-
tude increase called event-related synchronization (ERS) [Pfurtscheller and Lopes da Silva,
1999]. A BCI based on this feature will exploit the properties of ERD/ERS in either one or
multiple frequency bands to allow for a recognition of the 2 distinct states. The associated
paradigm can either be cue based (synchronous) or self-paced1 (asynchronous), i.e. the
classification occurs only during fixed timewindows while with self-paced control data pro-
cessing and classification is continuous. To self-regulate the expression of ERDs, motor im-
agery tasks are employed. During an initial training session the user repeatedly imagines a
movement of a body part like hand, foot, leg or tongue. The computational part consists of
finding appropriate electrode locations and distinctive frequency bands which separate the
two brain states. The training continues with a visual feedback of the user’s sensorimotor
rhythm changes with the aim to improve voluntary control over the two states. Thus, the
training usually involves training a classifier to discriminate between both states and train-
ing the subject to self-regulate these states. A well trained subject is able to reach accuracies
in the order of 90% [Scherer, 2008]. To ensure good classification performance, especially
the selection of electrode locations is crucial. A standard method to select good combina-
tions of electrodes is the common spatial patterns (CSP) method [Müller-Gerking et al., 1999].
Generally CSP extracts event-related desynchronization effects in the power spectrum of an
EEG signal, e.g. the frequency attenuation in the µ and β bands. This method was extended
by [Dornhege et al., 2003] to extract movement related features in the data which was further
extended by [Dornhege et al., 2004] to solve multi-class movement related feature tasks. An
asynchronous paradigm involving a visual-rich virtual street (see figure 3.6) was presented
by [Leeb et al., 2007]. This paradigm requires the user to control a virtual wheelchair and
stop at predefined positions marked by computer avatars. At each stop, which was required
to last at least 1 second, the avatar started a short communication with the user. Once the
communication ended, the user was allowed to move on to the next avatar. In their experi-
ment, the brain states were mapped to move forward and stop commands. The experiment
was conducted with a male tetraplegic subject who suffered a traumatic injury of the spinal
chord with lesions below C4 and C5 (c.f. 2.3.2). In this paradigm, no cue was shown that indi-
cated relaxation and motor imagery (MI) phases but was completely up to the subject when
to issue a command and when not. After completing the experiment, the results showed that
he was able to stop at 90% of the 150 avatars. These results proved that an application to
a real wheelchair in a real environment could be possible since the rather large amount of
stimuli in the virtual environment did not seem to influence the classifciation capabilities of
the system. Even though this result is very impressive, SCP based BCIs are rather difficult

1A more stringent definition of the term self-paced also entails that no external stimulation should be re-
quired to communicate with the BCI. While the term asynchronous usually denotes the absence of cues but allows
external stimulation.
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Figure 3.6. (a) Raw EEG data during foot MI and rest. (b) Filtered signal. (c),(d) power spectra of rest and
foot MI. (e) Timecourse of bandpower. (f) Plot of covered distance during movement phases. Missing line
segments indicate stops. (g) Placement of the avatars. (h) Time-Distance plot for the first 3 avatars. (i)
Image sequence of the experiment.
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to operate for a naive user due to the dual task interference. Self-regulation of SCPs as well
as concentrating on the task of selecting appropriate targets entails increased cognitive load.
With sufficient training however, self-regulation can be automated up to a level at which it
does not interfere with the actual selection task anymore as demonstrated by [Neumann and
Birbaumer, 2003]. Still, compared to other approaches which utilize subconciously evoked
features in the EEG, they cannot be considered as the most natural way of communication
since natural communication is effortless and can take place without distraction from a sim-
ple concurrent task like spelling a word or visually inspecting the environment. Escpecially
SCPs communication rates are highly inferior to any other approach and thus do not seem
appropriate for effortless communication.

3.2.5 Mental tasks

Another category of BCIs are related to features emerging while engaged in specific mental
tasks. This type of BCI is somehow related to those utilizing movement related features to
derive a control signal because they also rely heavily on mu rhythm changes. The difference
is that they rely on very specific mental strategies while mu-based BCIs on the other hand do
not require an explicit strategy. This technique relies to a great extent on the different spatial
locations of brain areas which are activated during the different tasks. It is known that e.g.
language processing results in higher activation at left temporal sites while spatial operations
like rotating a cube result in right hemispheric activations. The first to present such a system
were [Keirn and Aunon, 1990]. They instructed the subjects to engage in one out of five differ-
ent mental tasks for 10 seconds. This step was repeated five times. As tasks the subjects could
choose between relaxation, multiplication, rotating a 3D figure, composing a letter to a friend
and visualizing numbers written on a blackboard. In a subsequent step, the power spectrum
of the data were analyzed offline and served as input for a Bayes quadratic classifier. With
this method they were able to predict at least 70% of the states correctly. When limiting the
number of tasks to only two choices, a 90% accuracy could be achieved. Though, translated
into information transfer rate (ITR) this means that a user operating such a system would only
be able to transmit 1-6 bits/min. Compared to other approaches which are ranging up to 90
bits/min [Gao et al., 2003], this method does not seem feasible for most subjects. As a clinical
application though it might still be useful if a user fails to gain voluntary control over SCPs or
is unable to imagine motor actions.

3.2.6 P300 - Detecting expectation

A P300 is an endogenous event-related potential which is elicited in response to an infrequent
or task-relevant stimulus interspersed into a sequence of frequently occurring background
stimuli. Thus, all P300 based BCIs rely on the oddball paradigm in which target stimuli are
infrequently presented during a sequence of background stimuli. The first to implement a
P300 online BCI were Farwell and Donchin [Farwell and Donchin, 1988]. Since their system
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Figure 3.7. Original speller matrix from the experiments of [Farwell and Donchin, 1988].

was intended to be a brain actuated spelling device, the stimuli consisted of the letters of
the alphabet and additional symbols for special functions like quitting and deleting. The
symbols were arranged in a rectangular 6× 6 grid which is commonly known as the speller
matrix (Figure 3.7). To elicit a P300 in such a speller paradigm it is required that the symbols
are flashed in random order. The subject’s task is to focus on a target letter until a prediction
has been made by the BCI. Stimulus presentation can be conducted in two different ways:

1. Multiple stimuli

2. Single stimulus

Farwell and Donchin employed the multiple stimuli method in their experiments. During
the stimulus presentation round, each row and column is highlighted in random order for a
brief period until each row and column has been highlighted once. With each flash a short
epoch of EEG data is assessed. Usually the full evoked potential can be captured within an
700-800ms interval which determines the length of the EEG epoch. The data is used as input
for a classification method that aims to predict whether the epoch contains a P300 or not. An
obvious benefit of the multiple stimulus method is that in the case of 36 choices (i.e. symbols
in the matrix), once all 12 available stimuli have been flashed, it is theoretically possible to in-
fer the symbol that was focused by the subject by selecting the row and column which elicited
a P300. The intersection of this row-column pair will correspond to the target letter. Practi-
cally however, this is rarely possible due to the low signal-to-noise ratio (SNR) of EEG. A P300
which was actually present at a certain flash might be occluded by background noise, other
brain-activity or artifacts. Thus, a subtrial (i.e. the presentation of the 12 stimuli) is repeated
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Figure 3.8. Target probability and presentation speed of (a) Matrix vs. (b) Single Symbol paradigms. The
blue curves show the ratio of target to background stimuli. The green curves denote the time needed to
present a full subtrial given the inter-stimulus interval (ISI) is fixed at 150ms. On the x-axis, the number of
symbols along one dimension of the stimulus matrix is depicted.

multiple times which allows to average the EEG epochs for the corresponding symbols. The
computation of mean epochs effectively increases the SNR which in turn leads to a more ac-
curate prediction of the target letter. An inherent problem with this approach consists of the
increased probability of overlapping P300 epochs. For each subtrial in a 6×6 matrix experi-
ment there exist 2 stimuli that will elicit a P300 (i.e. one row and one column). Since the order
is randomized its is possible that those two stimuli appear in succession to each other. De-
pending on the ISI, the brainresponses to the stimuli will be present in both epochs overlap-
ping in time. As shown by [Martens et al., 2009], refractory effects of evoked brain dynamics
exist which means that the measured signal in response to time overlapping P300 potentials
will be different than those serving as a basis for the classification method. As a result the
BCIs performance will suffer from this effect. This problem might not become evident for
larger grid sizes since the probability of overlapping P300 epochs within a subtrial decreases
with increasing grid size. However, in cases where the number of choices is rather low (i.e.
4-9 choices), flashing multiple stimuli at once might become unfeasible due to the increased
probability of a target flash within the measurement interval of the first target flash. Fur-
ther, with decreasing number of symbols the target probability increases which was has been
shown by [Farwell and Donchin, 1988] to have a significantly attenuating effect on the P300
amplitude. The decreased amplitude coupled with refractory effects resulting from overlap-
ping events in the same timewindow can lead to a substantial loss of performance. Therefore
flashing on a single stimulus basis might be more beneficial in the case of few symbols. A
downside of the single symbol approach stems from the increased amount of time needed to
present a full subtrial. Figure 3.8 depicts the issue of speed vs. target probability. The ulti-
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mate goal would consist of a paradigm satisfying both low target probability and fast subtrial
presentation. The figure however shows that these are contradicting claims since increasing
presentation speed, as accomplished with the matrix paradigm, inevitably results in higher
target probabilities due to the fact that the number of stimuli S = 2∗√

NSymbol s and thus[
P (M atr i xTar g et ) = 2/S

] > [
P (Si ng leTar g et ) = 1/NSymbol s

]
. Generally, for more than 9

choices (i.e. 3× 3 matrices) the speed advantage of the matrix paradigm will outweigh the
benefit of low target probabilities of the single symbol paradigm since a target probability
of 25% does not entail significantly attentuated P300 amplitudes which renders target flash
overlaps less of a problem. With even higher number of choices the disadvanteges of the
matrix paradigm will almost completely vanish.

3.3 BCI applications in virtual and robotic control

Modern BCIs lost the reputation of being only a tool for the completely paralyzed. Current
development strives to make BCIs applicable for healthy persons in the context of entertain-
ment, gaming or assistive technology. Depending on the task to perform with the BCI, a
suitable paradigm has to be selected. The main goal is to make the usage of the system as
intuitive and reliable as possible for the user. This section will give a non exhaustive overview
of BCI applications which employ the modified versions of the paradigms mentioned in the
previous sections with the aim to control devices or virtual objects which are usually situated
in real-world scenes.

3.3.1 Virtual reality and gaming

In her doctoral thesis, Jessica Bayliss investigated how P300 based BCIs perform in noisy en-
vironments with more realistic stimuli and task parameters. The first study consisted of a
virtual stoplight experiment in which the subjects sat in a modified go-cart as seen in figure
3.9. All subjects were equipped with a head-mounted display (HMD) that displayed a virtual
town in which the subjects were navigating. The task was to pay attention to the traffic light
which could be either red, yellow or green. On every red light, the subjects were required to
stop. Bayliss collected EEG data of 100ms prior to the stimulus until 1s after stimulus on-
set from electrode locations Fz, Pz, CPz, Pz, P3 and P4 with linked references from the left
and right mastoids. The ERP grand averages in figure 3.10 show clearly that a P300 response
occurs at red lights while no P300 gets evoked by yellow lights. Green lights however, indi-
cating that the user is free to move on, also evoke a P300 with lower amplitude than the red
lights. This effect might be explained due to the task relevance, which is a precondition for
the evocation of a P300, of the green light. Based on the VR paradigm, Bayliss investigated
the effectiveness of three different signal processing methods. Single trial data was processed
with either Independent Component Analysis (ICA), Kalman filter or a robust Kalman filter
and subsequently classified using a correlation method which can be considered as a form
of template matching. The offline evaluation of the processing methods revealed that robust
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Figure 3.9. The virtual stoplight experiment by Bayliss. Subjects were sat in a modified go-cart (left) and
were required to attend to red light to stop driving in a virtual street (right).

Kalman filtering with classification based on template correlation was best suited with cor-
rect classification of yellow and red lights ranging from 76-92% (see table 3.1). Two of the five
subjects also participated in an online experiment. Accuracies dropped to 80% for the first
and 85% for the second subject. A second study was conducted with the aim to immerse
the subjects into a virtual apartment and perform tasks like switching the lights on and off or
controlling the TV [Bayliss, 2003]. During the experiment, a text at the bottom of the screen
indicated the required task to perform. If the subject was asked to switch off the light, a semi-
transparent red blob appeared over the light switch. The blob was flashing at 1Hz and the
subject was required to silently count how many times the blob appeared. The same elec-
trode configuration as in the stoplight study was used. One of the main questions in this
study was the question whether there are any significant differences in the evoked potentials
among the following three conditions:

1. VR condition: The scene was viewed through a HMD and head movements were mapped
to the scene.

Subjects Correlation % correct ICA % correct Kalmann / robust Kalman %
correct

Red Yel Total Red Yel Total Red Yel Total
S1 81 51 64 76 77 77 54/55 85/86 76/77
S2 95 63 73 86 88 87 82/82 96/94 92/90
S3 89 56 66 72 87 82 61/74 85/85 77/81
S4 81 60 67 73 69 71 63/65 90/91 81/82
S5 63 66 65 65 79 74 78/78 92/92 87/87

Table 3.1. Results for the offline analysis of the virtual stoplight experiment.
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Figure 3.10. Grand average ERPs for red (left), green (middle) and yellow (right) traffic lights.

2. Monitor condition: The same scene was presented at a standard computer monitor
without the use of a HMD.

3. Fixed Monitor condition: A virtual monitor was presented through an HMD. This con-
dition is identical with the second one except that the computer screen was a virtual
one viewed through the HMD.

Further, differences in classification performance, differences in performance over time as
well as the qualitative experience reported by the subjects were analyzed. It turned out that
no significant differences in P300 evocation could be found among the three conditions which
further testified the robustness of the P300. Slight classification performance differences
could be measured between the fixed monitor and monitor condition. Subjects were over-
all performing better in the monitor condition than in any other one. While the study con-
firms minor differences of classification performance over time, none of them was significant
enough to confirm a general trend.

With the intention of improving BCI-feedback presentations to obtain a better control over
the BCI, Robert Leeb and colleagues also explored the use of Virtual Reality environments.
In contrast to the study of Bayliss who used the P300 ERP to toggle discrete actions, Leeb
employed a motor imagery paradigm to navigate in a virtual conference hall. Thereby, sub-
jects were imagining left and right hand movements which were mapped to left and right
rotations of the avatar which was viewed from a first person perspective. The scene was dis-
played through a stereoscopic virtual reality helmet coupled with a head tracking device. A
cue-based paradigm was chosen where at the beginning of each trial a short beep and a visual
stimulus was presented which indicated that the subject should start imagining a movement.
During the training phase, the visual cue also indicated what type of movement, either left or
right, should be imagined. This information was omitted in the subsequent feedback ses-
sions. The classification phase took at least 2 seconds and in the feedback session, the clas-
sification output was presented until 8 seconds after the initial cue. Using bandpass filtering
and linear discriminant analysis (LDA), subjects achieved accuracies of 77-100%. In this pre-
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liminary study, Leeb showed that it is possible to combine the use of BCI and VR techniques.
He stressed the fact, that VR feedback has to be as real as possible and that feedback must not
behave in an unknown or unpredicted way. Otherwise it might disturb the subjects attention
and eventually break immersion which distracts from the actual task. Further, no disturbing
influences on the movement classification from the VR equipment could be identified which
is an important factor when trying to combine the highly sensitive EEG-based BCIs with VR
equipment. This finding confirms the results of Bayliss who proposed the same in the case of
P300 evoked potentials.

3.3.2 Robotic control

Historically, BCI research was focused on developing systems for paralyzed people to give
them the opportunity to participate in everyday life. It is not surprising that this effort lead
to the development of brain-controlled wheelchairs and prosthetic devices like robot arms.
Gaining control over mobile platforms or robot arm trajectories can be a tricky task to master
solely with the use of brain activity. To achieve this goal, one can follow two paths. The first
would be to develop a system that grants access to a limited set of degrees of freedom the
device offers. In the case of a wheelchair, it is enough to control left, right and forward and
stop movements. However, since the movement should be a smooth continuous trajectory
an event-related approach which requires synchronous or cue based paradigms seems rather
complicated. Only discrete commands can be issued which have to be mapped to the motor
control in a continuous fashion. A different approach would use an asynchronous paradigm
which allows the user to interact with the system at any time without the need of stimulus
presentation or cues. A drawback of this approach is that it can be very difficult for the subject
to control all the necessary degrees of freedom. Especially for fine grained movements as they
would occur while the user wants to move through a passage that is barely wide enough for
the wheelchair. In recent years, the concept of shared control seems to become a promising
alternative. In [Vanhooydonck et al., 2003], an intelligent controller estimates the users intent
and corrects the movement of a wheelchair accordingly. In the most recent developments,
this concept finds its application in conjunction with both synchronous and asynchronous
BCI.

Two developments relevant in the context of this thesis were made by [Iturrate et al., 2009]
and [GALAN et al., 2008]. Both constructed a wheelchair that can be moved by brain sig-
nals. They differ from each other by means of EEG features and the paradigm they employ.
In the case of Iturrate, P300 potentials were used in conjunction with a speller matrix like
paradigm. As mentioned, the use of a discrete selection paradigm like the P300 speller ma-
trix might seem counterintuitive for providing a continuous control signal for a wheelchair
motor. However, the work of Iturrate uses an autonomic navigation system that takes care
of the low level movements using obstacle avoidance and laser odometry to navigate in the
environment. The user of the system is only required to select target locations which the
wheelchair should move to. This offers the benefit that the user only has to focus on select-
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Figure 3.11. Synchronous BCI controlling a wheelchair as presented in [Iturrate et al., 2009]. A virtual-reality
paradigm presents circles as stimuli which are aligned in the virtual world to correspond to spatial locations.
Actual motor control of the wheelchair is done autonomously by the system.

ing a target location. Once it got recognized he can relax and let the navigation system do
the actual work. Such a procedure is much less mentally exhausting than a procedure which
requires to continuously give sequential commands to avoid obstacles and correct trajecto-
ries. The paradigm is very similar to the well known P300-Speller grid as seen in figure 3.11.
The environment is scanned using laser sensors and gets reconstructed in a 3D virtual reality
scene on a laptop computer. A stimulus grid consisting of circles connected by lines extends
from the first person view into the reconstructed VR scene. Thereby the circles serve as target
locations. Visual stimulation follows the P300-Speller paradigm as described in section 3.2.6.
The protocol is implemented using a finite state machine. In its initial state, the wheelchair is
stopped and awaiting a user command to process. Stimulation begins by flashing the target
location stimuli and two additional stimuli for left and right turns. Concurrently, EEG data
is recorded which serves as input for the pattern recognition layer. The EEG signals are clas-
sified using stepwise linear discriminant analysis (SWLDA). Once a successful classification
occurs, the wheelchair switches to the validation state which requires the user to confirm
the previously predicted goal by selecting the validation symbol. The third phase consists
of carrying out the path planning and motor control which is completely realized using the
intelligent controller and embedded sensors. While in this last wheelchair moving state, stim-
ulation is blocked. As a consequence, no further commands like stopping or correcting the
goals is possible. Even though the authors report accuracies of up to 94%, possibilities for
error correction and to interrupt the driving wheelchair would be benefitial as also remarked
by the authors. A similar system was presented by [Rebsamen et al., 2007], though at a differ-
ent level of control. Instead of selecting abstract target locations, pre-programmed locations
could be selected. A context-based menu with flashing menu items served as stimulation ma-
trix similar to the speller paradigm. In contrast to Iturrate and the standard speller paradigm,
an asynchronous paradigm was used. This was implemented by flashing all items continu-
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Figure 3.12. Shared-control system design. Probabilities of recognized mental commands are combined
with probabilities of expected commands based on the environment. Thereby, shared-control systems act as
assistive controllers to modify the user plan.

ously and omitting the use of a predefined number of subtrials. Classification scores for each
symbol were accumulated and a selection was made once the score for the highest rated sym-
bol exceeded a manually adjusted threshold value. During wheelchair movement, the BCI is
still available for input which is also a strict requirement for this paradigm since the most
important command during movements is the STOP command. However, the authors men-
tion that for some cases the reaction time of the system, which stems from the time needed
to present the stimuli, is not short enough to safely navigate in a dynamic environment. If a
human is blocking the path, it is possible that the stop command would be recognized too
late. Therefore they implemented a low-cost shared-control component in terms of an in-
frared proximity sensor. Using this data, an emergency stop command can be issued without
the detection of brain potentials. An obvious shortcoming of such a paradigm is the need to
create a map of the surrounding, pre-program motion paths and select an appropriate set of
actions that serve as stimulation symbols.

In [GALAN et al., 2008], the same goal of controlling a mobile platform was achieved us-
ing motor imagery and an asynchronous paradigm. Asynchronous in this context refers to
the ability to communicate with the system at any point in time without the need to wait
for a cue which signals that the system is now ready to receive input. Their system is built
around an intelligent wheelchair which performs low-level control of motors based on es-
timated brain-states (i.e. mental commands) and the environmental context, a technique
called context-based filtering. This means that the user does not have full control over the low-
level functionality of the wheelchair. Probabilities of imagined commands are interpreted in
conjunction with the surrounding which defines the basis for a shared-control system. Such
a design is depicted in figure 3.12. The combined information is used to control low-level
functionalities of the platform. Thereby, the intelligent controller serves as an assistance unit
that can modify the user’s commands to safely or more efficiently execute their original in-
tent. This can be especially useful for fine maneuvering the wheelchair in environments with
many obstacles. Further, recognition of mental commands is not always perfect. If the user
is facing a wall a command of moving forward is most likely the result of a wrong recogni-
tion. The intelligent controller which is aware of the fact that moving forward would result in
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a crash with the wall can modify this plan and maneuver around the wall, since the original
intent could be moving to a spot behind the wall. In specific, this environmental awareness
is implemented using a laser range finder which continuously monitors the environment.
One of three different commands (LEFT, RIGHT, FORWARD) is selected based on the highest
probability and converted into translational and rotational velocities suitable for the motor
control. Combined with the current wheelchair velocity, a smooth trajectory is generated. At
this point the intelligent controller uses this motor command in addition to environmental
information gathered by the laser scan to generate an assistive behavior. As a proof of con-
cept, Galán conducted a study with 2 subjects which were required to control a simulated VR
wheelchair. A predefined goal had to be reached by using the 3 commands LEFT, RIGHT or
FORWARD. The path was split into zones, each of them associated with a command that would
allow the user to pass through this zone correctly. Performance was defined as the percent-
age final goals reached during one session. Each subject was participating for 5 consecutive
days with 1 session per day. As far as the limited amount of subject permits, a positive trend
in final goals reached could be found over the 5 days. One of the subjects was able to reach
all final goals during one session, while the best performance of the second subject did not
exceed 70%. At the last day however, performance seemed to decrease for both subjects to
70% and 50% respectively.

In a recent online study [Millán et al., 2009], Millán and colleagues assessed the perfor-
mance of the system in terms of a function goal radius and targets reached. This time, a real
wheelchair was used in contrast to the simulated scenario of Galán. Compared to the simu-
lation scenario, the online results turned out to be much lower since none of them exceeded
the 50% mark; not even with a tolerance radius of 2m per goal. However, a simulation with
random commands performed only at a 10% level while even a naive user reached almost
30% of the goals. A subject interview revealed that driving the real wheelchair is much harder
to control than the simulated one due to the more complex behaviour. Further, the assistance
obtained from the shared-control module was not yet perfect for the task as remarked by the
authors.

The last relevant field of application in robotics consists of controlling reaching and grasp-
ing movements of robotic limbs. These limbs can either be prosthetic devices which are at-
tached directly to the human body (e.g. [Guger et al., 1999]) or external robotic arms that can
be "thought controlled". An approach comparable to the one developed in this thesis was
presented by [Palankar et al., 2009]. In their paper they describe how they control a 7-DOF
robot arm connected to a robotic gripper with the use of a P300 speller-like paradigm. The
robot hardware has been attached to a modified wheelchair which could be controlled via
the same mechanism as the arm, resulting in a total of 9 DOF. Their stimulus matrix (figure
3.13) contains symbols for positioning the end-effector in the XYZ plane as well as rotation
commands to orient the end-effector. A selection of a command results in the desired move-
ment with a predefined velocity (i.e. rotation about the x-axis with 50mm/sec). The authors
evaluated the recognition performance of the BCI in a simulation study which revealed that
the participants achieved mean accuracies of 70-85%. To improve reaction time of the sys-
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Figure 3.13. Low-level control of a robot arm and gripper with P300 evoked potentials [Palankar et al., 2009].
Translation and rotation are controlled via symbol selection according to the P300-Speller paradigm.

tem, the optimal number of subtrials1 was determined by evaluating the mean performance
of all subjects for different numbers of subtrials. Depending on the desired number of cor-
rectly predicted symbols per minute and the desired accuracy, the number of subtrials was
set to the appropriate value. Selecting a command of the symbol matrix was equal to switch-
ing to a different movement state. While in e.g. X rotation state, the gripper might move at
50mm/sec. To bring it into a desired end position, the state must be switch to the STOP state
in time as it might overshoot if the selection does occur at the right moment. The authors
note that it takes 15 seconds to select a symbol which is far too long to be an acceptable
reaction time. Approaching stairs in this wheelchair will become a dangerous issue. Fur-
ther, Palankar reports that the subjects suffered from fatigue after extended periods of use
since the user is required to look at the screen the whole time while also paying attention to
the robot movement. Command and robot movement have to be precisely timed, otherwise
the intended end position will not be reached. This process introduces heavy cognitive load
which demands a lot of concentration from the user. A state that can not be maintained for a
long time. This dilemma was briefly discussed in the beginning of this section. The work of
Palankar makes it clear that low-level control can be a daunting task to achieve with a binary
selection based system that has an inherently slow reaction time.

1The term subtrial is used in this thesis while [Palankar et al., 2009] use the term flash sequence to denote a
full round of symbol intensifications.
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This chapter has been published in IEEE Transactions on Neural Systems and Rehabilitation
Engineering [Lenhardt et al., 2008].

4.1 Introduction

The use of the P300 component of an evoked potential in current brain-computer interfaces
(BCIs) is a feasible method to translate the user’s intent into commands to control artificial
devices. Farwell and Donchin [Farwell and Donchin, 1988] demonstrated how the P300 can
be used to spell words by ”mere thought”. Steady research in this field improved information
transfer rates as well as accuracies, which is a crucial issue in terms of usability. In addition
to the P300 component in EEG data several other types of signals can be used to translate
the user’s intent into commands. Examples for the most common types are slow cortical po-
tentials [Birbaumer et al., 2003], mu and beta rhythms [Wolpaw et al., 2003b], event related
(de)synchronization [Pfurtscheller et al., 2006] and steady-state visual evoked potentials [Mid-
dendorf et al., 2000b]. A more detailed discussion of the different types of BCIs can be found
in [Wolpaw et al., 2002]. A common way to compare different approaches is to express the
performance of a BCI in terms of speed (i.e. bits/min), accuracy and the time needed to train
the subject. Therefore, we present an improved P300-based brain-computer interface that
allows for simple tuning to be either accurate or fast at detecting letters, and that outper-
forms similar approaches as presented in [Serby et al., 2005] at comparable accuracies. As
already demonstrated by [Kaper, 2006, Kaper and Ritter, 2004], linear discriminant analysis
(LDA) was used for classification due to its good classification performance and low compu-
tational and training requirements compared to more complex classifiers like SVM. Since the
dimensionality of one epoch of EEG data was too large to be used with LDA, principal compo-
nent analysis (PCA) was applied to reduce dimensionality. Considering information transfer
rates, very competitive results of up to 92.22 bits/min in the first study and 84.6 bits/min in
the second study were achieved during online classification, whereas the second study em-
ployed a threshold based algorithm [Lenhardt, 2006] which dynamically limits the number of
subtrial presentations during a trial. A similar approach was introduced by [Serby et al., 2005]
which also adapts to the subjects online performance by limiting the number of subtrial pre-
sentations. They demonstrated the usefulness of such techniques and therefore we aim to
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Figure 4.1. Screenshot of the P300-Speller matrix

strengthen those findings by introducing a similar approach and extending the number of
involved subjects as well as the amount of data collected per subject.

4.2 Methods

4.2.1 P300 Speller Paradigm

Our BCI is based on a modified Oddball Paradigm [Sutton et al., 1965] called P300-Speller
Paradigm. The experimental setup consists of a computer CRT screen that displays a 6× 6
matrix consisting of the letters A-Z and the digits 0-9 (see figure 4.1). According to [Farwell
and Donchin, 1988], the term event denotes the intensification of either a row or a column of
the matrix. The computer controls the presentation of the events, while the basic idea is to
intensify each row and column in random order and assess a short time window of EEG data
for each event. As the subject is focusing attention to a specific letter, the column and row
containing this letter become relevant events. This means, that out of 12 possible events (6
rows and 6 columns) only two of them are relevant. Due to the relative rarity of their occur-
rence they will elicit a P300 whenever a row or column which contains the cell is highlighted.
If the inter stimulus interval (ISI) is large enough along with the low presentation probabil-
ity of the target events, the P300 is well discriminable from other components, occurring for
each background event. Therefore, to infer a letter, the amplitude of the P300 following each
intensification is assessed, and the inferred letter is determined by the intersection of the
row and column which elicited the highest P300 amplitude. Since EEG typically exhibits a
very low signal-to-noise ratio (SNR), the experiment is structured in a special way. Figure 4.2
illustrates the structure of a single subtrial. A subtrial is comprised of 12 events which are
displayed in random order. The onset of each event triggers a new EEG time series, called
epoch. In our experiments, an ISI of 140ms was used. By averaging over a certain number of
subtrials the SNR can be improved.
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Figure 4.2. Epoching of the continuous EEG data stream.

4.2.2 Experimental Setup and Data Acquisition

Subjects

Data of 19 voluntary, healthy subjects were recorded. The experimenting room was not shielded
against noise or electromagnetic influences of the surroundings. Each subject performed a
single 30 minute training session which was used to collect EEG data for the training of the
classifier. An explicit training of the subject itself was not necessary.

Hardware Setup

All subjects sat on a fixed chair. The gold-cup electrodes were attached to the scalp at the po-
sitions Fz,Pz,Cz,Oz,P3,C3,P4,C4,PO7 and PO8 according to the 10-20 system [Jasper, 1958b].
A Samsung X30 notebook with 512MB Ram was used to record data from the EEG amplifier
(Mindset24 - Nolan Computer Systems LLC). Signal quality was monitored with the Mind-
set24 software in real time, using the traces and the FFT spectrum provided by that software
package. Furthermore, a 19” Sony screen with a refresh rate of 100Hz was used to display the
visual stimuli.

Experimental Setup

Each experiment consisted of three basic steps:

1. Preparation of the subject

2. Recording of training data and training of the classifier

3. Classifying using the trained classifier.

The preparation involved cleaning of the scalp at the electrode positions with isopropanol.
Additionally, an abrasive paste was applied which removed the upper dermal layer to improve
impedances. To achieve low-noise signals, only impedances < 5kΩwere accepted.
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Figure 4.3. Cumulative Eigenvalues for Principal Components from the data of a random subject using 1600-
dimensional feature vectors representing time series of 10 electrodes (according to [Kaper, 2006]). Even with
only 84 Principle Components 99.9% of the data variance is captured. Therefore, we utilized the first 100
Principal Components in our online experiments

During the recording of training data and the final classification task, the software part of
our BCI controlled the presentation of the stimuli and kept track of the stimulus onsets (trig-
gers). Using these marks, the continuous EEG data were split into epochs of 800ms length,
each corresponding to one single stimulus (see figure 4.2).

Prior to the actual recording of training data, the subjects were offered a few presentation
steps (about 2-3 trials) to familiarize themselves with the training procedure. Thereby, the
software selected 5 different and randomly chosen letters that were used as target letters, i.e.
which the subject should pay attention to. A total number of 50 trials were issued. Each trial
consisted of 5 subtrials with each of the 5 letters chosen for a random subset of the 10 trials.
Prior to each trial, the target letter was displayed for 2 seconds. During the recording of a trial,
the subjects were advised to remain still and try to prevent eye movements and blinking. At
the end of a trial the software waited for a keypress to allow the subject to move and blink
eyes. After completing all subtrials the data were used to train the classifier.

As a last step, a predefined word should be spelled using the trained classifier. The proce-
dure differs from the training phase in such a way, that no keypresses were issued between
consecutive trials. Furthermore, the classified letter is shown at the end of a subtrial for 3
seconds followed by another 3 second delay where the letter matrix was displayed.

4.2.3 Preprocessing and Classification

For the training set, EEG data of the 10 electrodes were collected and split into 800ms time
windows, called epochs. All data were sampled at 256Hz (i.e. 256 samples per second) and
therefore one epoch of 800ms data consists of

256 ·800

1000
= 204 (4.1)
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samples per channel. Each channel was bandpass filtered with upper and lower corner fre-
quencies of 1 and 9Hz (using a DFT of the FFTW library [Frigo and Johnson, 2005]). Since
10 channels were used in our experiments, the epochs of each channel were concatenated
to form the final input vector with a dimension of 204 · 10 = 2040. In order to reduce the
dimensionality of the data, Principal Component Analysis (PCA) was applied.

To calculate this transformation, given X is the n-dimensional input vector, one has to find
the n ×n orthonormal projection P such that

Y = PT X (4.2)

with the constraint that cov(Y) is a diagonal matrix and P−1 = PT . By substitution and matrix
algebra this can be rewritten as

cov(Y) = E [YYT ]

= E [(PT X)(PT X)T ]

= E [(PT X)(XT P)]

= PT E [XXT ]P

= PT cov(X)P.

Now we have
Pcov(Y) = PPT cov(X)P = cov(X)P

Rewriting P as a d ×1 column vector yields

P = [P1,P2, . . . ,Pn]

and cov(Y) as  λ1 · · · 0
...

. . .
...

0 · · · λn


Substituting into equation above we obtain

[λ1P1,λ2P2, . . . ,λnPn]

= [cov(X )P1,cov(X )P2, . . . ,cov(X )Pn]

For each pair λi Pi = cov(X)Pi Pi is an Eigenvector of cov(X). Thus finding the Eigenvectors
of the covariance matrix a projection P can be constructed which satisfies (4.2).

Kaper [Kaper, 2006] computed the cumulative eigenvalues for his subjects to get an es-
timate of the number of principal components that should be used to achieve a strong di-
mensionality reduction whilst retaining most of the data variance. The distribution of the
cumulative Eigenvalues of a exemplary subject is depicted in Figure 4.3 using a 10 channel
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time series of 160 samples per channel, sampled at 200H z. For this subject, 99.9% of the data
variance are captured whithin the first 84 Principal Components, while 99% and 90% are in-
corporated in 56 and 17 components, respectively. Therefore, we decided to use the first 100
Principal Components in our experiments to construct a dimensionality reduced data set
which served as training input for the Linear Discriminant Analysis (LDA) classifier. To save
computation/preprocessing time, a modified PCA matrix, which we call general PCA [Kaper,
2006], was used to eliminate the need to recompute the matrix for each subject. A general
PCA matrix can be applied to EEG data of arbitrary subjects, as long as the internal structure
of the data (i.e. the order of the channels) remains identical to those data that were used
to compute the general PCA. For a detailed explanation the authors are referring to [Kaper,
2006]. Due to the higher sampling rate in our online experiments, the original general PCA
matrix was linearly extended to be applicable to 2040 dimensions, i.e. 204 samples for each
of the 10 channels as explained in the beginning of section 4.2.3 The reduction of dimension-
ality is essential since the computation of the LDA weight vector

w = S−1
W (m1 −m2), (4.3)

where m1,m2 are means for class 1 and 2 respectively, requires the inversion of the within-
scatter matrix SW . With the initial dimension of 2040 (i.e. 10 channels×204 samples) it is
likely that the matrix becomes singular and thus its inverse does not exist.

Using this weight vector, a binary decision can be made by computing the projection

s(x) = w ·x+b, (4.4)

where b is a bias and x is the data vector containing the EEG data for a specific epoch. Based
on the sign of s(x), the epoch x is considered to belong to the P + class (contains P300) if
the sign is positive and to the P − class (contains no P300) otherwise. A bias is found using a
grid search and validated by a 5-fold cross validation., while the b that showed the best binary
classification performance during the cross validation is kept. In this case the grid-search and
cross validation to determine the bias is necessary because one can not expect equal covari-
ances for both classes. As seen in figure 4.2 the sample windows (i.e. epochs) are overlapping.
Due to this it is clear that several P − windows overlap with the two P + windows within one
single subtrial. Therefore, variance of the P − class is influenced by the usual noise and mus-
cle artifacts as well as windowed parts of P300 components (i.e. high amplitudes at varying
positions). Consequently the class variance is much higher for the P − class than for the P +

class, which should be rather constant given both class distributions are equally influenced
by noise and muscle artifacts, and therefore covariances for both classes are not expected to
be equal. As a result, the direct solution for the bias b will be sub-optimal and a grid search
has to be conducted to find an optimal value. When running the online letter classification
task, the decision on whether a row/column is considered P + or P − is achieved by averaging
a classification over a number of subtrials. Therefore, a score is computed for each epoch xi

of a trial which is essentially s(xi ). To infer whether a specific row and column contained the
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Figure 4.4. The cross-section of the row and column with the highest classification score denotes the classified
letter (highlighted letter). The bars near the SΨi terms indicate the classification score of the corresponding
epoch (i.e row/column) as computed by equation 4.5.

target letter (i.e., a P300 was elicited during the intensification of the row/column), the scores

SΨi (
⋃

j
xi , j ) =

j∑
n=1

s(xi ,n), (4.5)

with xi , j denoting the i -th epoch of the j -th subtrial are computed and merged into the score
matrix M whereas each cell Mi , j is defined by

Mi , j = SΨh +SΨk (4.6)

with

h = (i −1) ·6+1 (4.7)

k = h + j (4.8)

Consequently, the target letter/cell Mi , j is determined by

r,c = argmax
i , j∈[1,...,6]

Mi , j . (4.9)

This process is also illustrated in figure 4.4.

4.2.4 Measuring the BCI’s performance

In order to assess the speed of the BCI we calculated the information transfer rate B in bits/min
according to equation 4.10 using the accuracy of the spelling task, denoted by pacc , as depen-
dent variable. Though taking into account the number of possible inferences (i.e. number of
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symbols) ns ym and the time for spelling a symbol using nsub subtrials with an Interstimu-
lus Interval of tI SI seconds, these rates do not account for the inevitable time delay between
consecutive trials and thus only reflect a theoretical information transfer rate.

B(ns ym ,nsub , tI SI ) = T ·L (4.10)

where

T = 60

nsub · tI SI

L = log2ns ym +pacc log2pacc + (1−pacc )log2
1−pacc

ns ym −1

4.2.5 Experiment 1 - Static Subtrials

The first experiment employed a fixed number of subtrials per trial which were systematically
modified ranging from 1 to 10 subtrials per trial. After the initial training procedure, the sub-
jects had to spell the word INTERFACE ten times, each time with a different number of subtri-
als per trial, by counting the number of target letter intensification. The experiment started
with a fixed number of 10 subtrials while decreasing this number for each subsequent round
by one until 1 subtrial was reached. Whenever a wrong classification occurred, the subject
continued with the next letter without correcting the last one. Symbol inference was carried
out according to equation 4.9 incorporating data of all subtrials.

4.2.6 Experiment 2 - Dynamic Subtrials

While examining single trials of the previous experiment that used a static number of sub-
trials, we noticed that the majority of the classified letters could have been already classified
several subtrials before the predefined limit. A visualization of the row and column scores
(figure 4.5) shows the development from a random classification up to a very certain result.
Each cell represents a letter of the original letter matrix that was presented to the user. The
color intensity of each cell depicts the confidence in a true positive (TP) classification for the
respective letter. With increasing subtrials the brightness densities are shifted towards the
target row and column, resulting in a cross-like shape. As a result, the overall brightness of
the matrix M decreases if M is accumulated over a number of subtrials and then scaled to
[0. . .1]. A metric to measure the overall brightness is given by

T Pscor e =
∑

i

∑
j

Mi , j (4.11)

with

M = M−mi n(M)

max(M)
(4.12)
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Figure 4.5. The figures (a)-(f) represent the score matrices of a complete trial, consisting of 6 subtrials.
Thereby, (a) is the score matrix obtained from the first subtrial and (b)-(f) from the subsequent subtrials.
The brightest spot in (a) and (b) would coincide with the target letter that would be inferred using equation
4.9). However, especially the first 2 matrices expose a very broad brightness distribution and thus lead to
rather uncertain inferences. With increasing subtrials, the brightest column changes to column 5 (see (c))
while the brightest row remains the same. Furthermore, the overall brightness of the matrices (reflected by
T Pscor e) decreases with increasing subtrials. Since M4,5 denotes the correct target letter, a true positive
classification could have been achieved already after the third subtrial (c).

For an infinite number of subtrials T Pscor e will converge towards 1. If M is processed as stated
in 4.12 it represents the sum of all LDA scores received for each cell. Since the classifier was
trained to output high values for epochs that match the samples of the P + class, the value of
the target cell will grow faster than all others. This can be proven using the strong law of large
numbers. Let X i be the sample average for i samples of the P + class and µ+ be the P + class
mean. Then, according to the law of large numbers, the probability that X i will converge
towards µ+ for infinite i equals 1, or more formally speaking

P ( lim
i→∞

X i =µ+) = 1.

The same applies for the P − class. Let Ri be the 6× 6 matrix containing only of LDA row
scores for the i -th subtrial and Ci the matrix containing the column scores. Given the target
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letter is located at position (1,1) (top left), the following holds:

∀c lim
i→∞

1

i

i∑
n=1

Rn
1,c =µ+ (4.13)

∀r lim
i→∞

1

i

i∑
n=1

C n
r,1 =µ+ (4.14)

Now let Mi = R i +C i be the combined score matrix (see equation 4.5) for the i -th subtrial,
then

lim
i→∞

1

i

i∑
n=1

mn
1,1 = 2µ+ (4.15)

lim
i→∞

1

i

i∑
n=1

mn
[2...6],1 =µ+ (4.16)

lim
i→∞

1

i

i∑
n=1

mn
1,[2...6] =µ+ (4.17)

and for any other cell r,c

lim
i→∞

1

i

i∑
n=1

mn
r,c =µ− (4.18)

and thus

MΘ ≡ lim
i→∞

1

i

i∑
n=1

M n =


2µ+ µ+ · · · µ+

µ+ µ− · · · µ−
...

...
. . .

...
µ+ µ− · · · µ−

 . (4.19)

Now MΘ contains only three distinct values, namely 2µ+, µ+ and µ−. If in a next step MΘ is
scaled to [0. . .1], the maximum value (i.e. mΘ

1,1 = 2µ+) gets mapped to 1, µ+ gets mapped
to 0.5 and all other values (i.e. µ−) get mapped to 0 since 2µ+ > µ+ > µ−. Consequently
lim

i→∞
T Pscor e (MΘ) = 6, i.e. with increasing subtrials T Pscor e will decrease asymptotically to a

minimum of 6.
The training data, incorporating all subjects from experiment 1, were used to calculate a

mean T Pmean by extracting the first subtrial of each trial which would have resulted in a true
positive classification. This value served as a base threshold that corresponds to the fastest
setting. During the offline experiments it was systematically modified after each round as
stated in table 4.2. During the spelling task, equation 4.12 was calculated after each subtrial
and an additional subtrial was issued whenever T Pscor e < T Pmean . All subjects had to spell
the word BRAINCOMPUTERINTERFACE four times, each time with a different threshold setting.
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4 Study 1 - Dynamic Subtrials

4.3 Results

4.3.1 Experiment 1 - Results

To assess the performance of our BCI, we computed the binary classification accuracy (table
4.1) of the classifier as well as information transfer rates and accuracies of the spelling task,
depicted in figure 4.6. The subplot (a) of figure 4.6 shows the transfer rates of each individual
subject, that were calculated for the according number of subtrials. Transfer rates up to 92.32
bits/min were achieved by subject 5 who spelled the word INTERFACE without errors using
only 2 subtrials per letter. The mean transfer rates are depicted in the mid part of the figure,
showing a maximum transfer rate of 32.17 bits/min at 4 subtrials, followed by 2 subtrials with
an approximate transfer rate of 30 bits/min but at the cost of about 30% accuracy loss which
makes effective communication impossible. A further decrease of subtrials did not lead to a
better overall performance in transfer rates. Furthermore, the error bars in figure 4.6 (a) and
(b), representing the maximum and minimum achieved transfer rate/accuracy for a given
subtrial amount, as well as the standard deviation of the results show a generally increasing
variance for decreasing subtrials per trial with the exception of 1 subtrial per trial. If only 1
subtrial per trial is issued all subjects performed almost equally bad in terms of accuracy.

Table 4.1. Binary classification results for all 7 subjects as obtained after the initial training of the LDA
classifier. These percentages the training accuracy based on single subtrial classifications. Thereby only the
sign of the resulting projection of the data vector onto the weight vector was used to discriminate between
the P + and P − classes.

S1 S2 S3 S4 S5 S6 S7 Mean

80% 82% 71% 74% 88% 79% 83% 80%±5.6%
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Figure 4.6. Performance for a word spelling task of experiment 1 : The subjects had to spell the word
INTERFACE. Plot a) represent the speed and b) the accuracy for a given number of subtrial presentations.
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4.3.2 Experiment 2 - Results

Twelve subjects participated in the final experiment block to evaluate the performance of the
BCI using dynamic subtrials. To assess performance more precisely, the word that had to
be spelled was elongated to BRAINCOMPUTERINTERFACE. An initial threshold value of T Pmean

was used in the first session, while this parameter was decreased for each subsequent ses-
sion as shown in table 4.2. Fastest transfer rates were achieved at a threshold of 34 which
revealed a maximum performance of 84.60 bits/min (or 19.48 theoretical symbols/min) at
81.81% accuracy. Mean transfer rates (table 4.3) ranged from 29.35 to 50.61 bits/min with
mean accuracies ranging from 65.53% to 87.50% (table 4.4). Since high bit rates coupled with
low accuracy are of limited use for an online BCI a more practical measure to evaluate the
actual performance is given in table 4.3. This measure shows the number of accurate symbol
selections per minute (SPM) calculated by

SPM = Ncor r ect

t
,

whereas Ncor r ect denotes the number of correctly classified letters and t the time used for the
whole spelling task. The results presented in table 4.3 show theoretical symbol communica-
tion rates ranging from 13.13 at the fastest setting to 6.37 at the most accurate setting. These
rates however, did not account for the inter-trial delay that results from displaying the clas-
sified letter to the user. Since this is an inevitable issue of online BCI’s the actual ”real-world
performance” was included in the table (SPM 2) which incorporates the 6 seconds inter-trial
delay in the calculation. Taking the latter results as a basis it can be stated that our BCI is
able communicate about 4 letters per minute in a real-wold scenario. The theoretical trans-
fer rates however, (those not incorporating the inter-trial delay) are still useful as they serve
as reference values to other BCI systems which usually omit the time between trials in their
performance measures. Compared to the fastest mean transfer rate of the static subtrial ap-
proach even the second most accurate setting (thr=28.9) of this new approach outperforms
the initial one by about 4 bits/min while maintaining a mean accuracy of 86%. For two of
the 12 subjects accuracies of 100% were achieved and 7 of the subjects achieved more than
90% accuracy. A comparison of the maximum mean transfer rates shows an improvement of
72.9% (i.e. 21.46 bits/min difference) over the static subtrial approach. At this fastest setting,
accuracies dropped to 65.53% in the mean. As figure 4.7 depicts, the mean accuracies are
clearly decreasing with increasing threshold, whereas mean transfer rates are almost linearly
increasing. The standard deviation of the results however decreases with increasing accuracy
settings as expected. While results differ more than 20 bits/min at the fastest setting, less than
10 bits/min variance is present at the most accurate setting (a threshold of 27.2).

4.3.3 Offline Analysis of the Scoring Function

The dynamic subtrial method we employed in our last experiment was solely based on the
overall brightness intensity of the normalized score matrix and therefore was based on only
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34 30.6 28.9 27.2
0

20

40

60

80

100

Threshold

b
it

s/
m

in

 

 

Mean transfer rate
Standard Deviation

34 30.6 28.9 27.2
0

0.2

0.4

0.6

0.8

1

Threshold

A
cc

u
ra

cy

 

 

Mean accuracy
Standard Deviation

Figure 4.7. Mean transfer rates and accuracies obtained from the second experiment. The error bars depict
the maximum and minimum rates achieved by the subjects for a given threshold. The standard deviation
(dotted line) steadily decreases with decreasing thresholds, i.e. increasing accuracy.

Session Threshold % of Start Threshold
1 34 100%
2 30.6 80%
3 28.9 70%
4 27.2 60%

Table 4.2. Thresholds for T Pscor e that were investigated in experiment 2. An initial threshold of 34.00 was
applied for all subjects. For each subsequent session, the threshold was decreased by the certain amount,
according to table 4.2.
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Threshold
34 30.6 28.9 27.2

BPM (theoretical mean) 50.61 45.33 33.88 29.35
SPM 1 (theoretical mean) 13.13 10.57 7.62 6.37
SPM 2 (real mean) 4.33 4.41 3.91 3.65
Avg. theoretical time (min) 1.17 1.74 2.58 3.16
Avg. real time (min) 3.37 3.94 4.78 5.36

Table 4.3. Transfer rates measured in bits/min (BPM) as well as correctly predicted letters per minute
(SPM) for the 22 letter word spelling task using the dynamic subtrial scheduling scheme. The theoretical
values omitted the 6 second inter trial delay that occurred between consecutive letters in the study, whereas
the real values incorporate this delay in the calculation. Additionally, the average time needed by the subjects
to spell a 22 letter word presented in the lower part of the table.

Threshold
Subject 34 30.6 28.9 27.2

1 72.72 81.81 81.82 90.91
2 77.27 86.36 90.91 86.36
3 72.72 50.00 77.27 72.72
4 68.18 90.90 86.36 81.82
5 68.18 77.27 86.36 90.91
6 63.63 77.27 86.36 100.00
7 63.63 77.27 72.72 86.36
8 50.00 72.72 81.82 86.36
9 81.81 90.90 95.45 86.36

10 36.36 59.09 63.63 81.82
11 68.18 86.36 86.36 100.00
12 63.63 77.27 90.91 86.36

Mean 65.53 77.27 83.33 87.50

Table 4.4. Accuracies in percent as achieved by the 12 subjects for each threshold setting. Mean accuracies
increase with decreasing threshold values.
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a single criterion. This, however, is not the only criterion which can serve as an indicator
of whether to repeat or end the current subtrial. We expected results to improve by adding
a second criterion which must be met in addition to the original brightness condition. An
investigation of false classified epochs showed that the difference between the best and the
second best cell of the score matrix can be a suitable secondary criterion since similar values
indicate uncertain classification. Therefore, we added the secondary criterion to the sub-
trial repetition decision function to improve accuracy of the decision function. A trial will be
ended if both of the following criteria are met:

C1) Sum Threshold - Overall brightness is lower than (or equals) threshold t1 (i.e. the orig-
inal T Pscor e criterion)

C2) Ratio Threshold - Score ratio of highest scored cell to second highest scored cell (i.e.
percental difference of the two highest ranked cells) is greater than (or equals) thresh-
old t2.

Thereby, C1 corresponds to the T Pscor e measure which was already introduced in section
4.2.6. Both conditions can be encapsulated into one single function of the score matrix M.
Defining the conditions C1 and C2 as

C1(M) = T Pscor e =
∑

i

∑
j

Mi , j , (4.20)

C2(M) = 1− k2

k1
(4.21)

and defining

k1 = Mi1, j1 with i1, j1 = argmax
h,k

Mh,k ∈ M (4.22)

k2 = Mi2, j2 with i2, j2 = argmax
h,k

Mh,k ∈ (M\Mi1, j1 ) (4.23)

allows the construction of a boolean subtrial repetition decision function D as

D(M, t1, t2) =
{

true if (C1(M) ≤ t1)∧ (C2(M) ≥ t2)

false other wi se
. (4.24)

The basic main loop of the BCI is outlined by Algorithm 1. Clearly, a trial is ended whenever
both criteria are met, i.e. D = true.

Since there exist no optimal a priori values for the thresholds t1 and t2, a grid search was
conducted to find good values. To evaluate the extended score function, data of a random
subject (subject 2 of the second experiment) was used to carry out an offline experiment
which incorporates the improved decision function as defined by equation 4.24. These data
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Algorithm 1 BCI main loop

1: M ← 0 {initialize score matrix M with zeros}
2: repeat
3: Present subtrial
4: Preprocess epochs
5: Classify epochs
6: Add classification score to M
7: T ← M
8: Normalize T to 1
9: until D(T, t1, t2) == true

10: return Infer letter according to equation 4.9

contained 10 subtrials per trial for 22 letters. Figure 4.8 illustrates the grid search result car-
ried out for this subject. Thereby, 81×81 = 6561 different threshold combinations were tested
and shown in the plots a)-d). In addition to the overall performance (measured in bits/min)
that would have been achieved with certain threshold pairs, the number of subtrials and the
errors/accuracies for each threshold pair are depicted in plots b)-d).

Further a comparison of both decision functions is implicitly shown in a). Since the initial
decision function that was used in experiment 2 only employed the sum threshold criterion
C1, which is equivalent to setting the ratio threshold C2 to 0, the first horizontal line of plot
a) reflects the performance of the subject that would have been achieved with the BCI used
in experiment 2. To clarify this equivalency, consider the function C2 whose output is the
interval [0, . . . ,1]. In fact, those numbers only describe the percental difference between the
highest scored cell and the second highest scored cell of M and therefore C2(M) = 0 necessar-
ily requires k1 = k2 as this equates to

C2(M) = 1− k2

k1
= 1− k

k
= 1−1 = 0 (4.25)

with

k1 = k2 = k. (4.26)

Since k2 denotes the value of the second highest scored cell and thus is either less than or
equal to k1, equation 4.26 shows that the lowest possible value for C2 is 0. Now given that
C2 will at least yield a value of 0 it is clear that the right hand side of the boolean term
(C1(M) ≤ t1)∨ (C2(M) ≥ t2), as defined in equation 4.24, is always true for t2 = 0 and there-
fore D is only dependent on the left hand side (i.e. the first condition C1). Thus, the first
line of plot a) shows the performance that would have been achieved by our current online
system and all subsequent lines depict the performance that could have been achieved if the
ratio threshold (i.e. condition C2) is incorporated into the decision function. The maximum
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transfer rate could be increased from 58.54 bits/min (taking only C1 into account) to 70.27
bits/min (taking C1 and C2 into account) which is an improvement of 19.73 bits/min (i.e.
20.4%) over the decision function which was used in experiment 2.

An important advantage of this method is that the BCI can be optimized for speed at a
given accuracy constraint or it can be optimized for accuracy at a given speed constraint.
Given B is a n ×m matrix with Bi , j denoting the bitrate achieved with the i -th C2 threshold
and the j -th C1 threshold. Further let A be the n ×m matrix containing the accuracies for
the corresponding thresholds, T C2 = {t1 . . . tn} be the set of tested C2 threshold values (ratio
threshold) and T C1 = {t1 . . . tm} be the set of tested C1 threshold values (sum threshold). The
threshold pair (T C2

i ,T C1
j ) can be optimized for accuracy by choosing

I1 =
{
n|An,m ≥ τacc

}
(4.27)

I2 =
{
m|An,m ≥ τacc

}
(4.28){

(T C2
i ,T C1

j )|i , j = argmax
n∈I1,m∈I2

(
Bn,m

)}
(4.29)

with τacc denoting the lower bound of the desired accuracy. If τacc = max(A), the threshold
pair which results in best bit rates for the given maximum accuracy will be chosen. In turn,
the BCI can be optimized for pure speed by choosing

I1 =
{
n|Bn,m ≥ τbps

}
(4.30)

I2 =
{
m|Bn,m ≥ τbps

}
(4.31){

(T C2
i ,T C1

j )|i , j = argmax
n∈I1,m∈I2

(
An,m

)}
(4.32)

with τbps denoting the lower bound of the desired bitrate. Utilizing equation 4.32, the thresh-
old pair which results in highest accuracy and delivers at least a bit rate of τbps is being se-
lected. One possible drawback of this proposed threshold selection scheme is the possible
overfitting. As it can be seen in plot a), c) and d), variance increases in the upper right part.
Therefore, if the selected threshold pair lies within a area of high variance it might lead to sub
optimal results. Nevertheless, accuracy of the maps should increase with the amount of data
used to calculate them.

4.4 Conclusion

In this paper we showed how classification speed of a P300 based BCI can be improved by
employing a dynamic subtrial scheduling scheme. Taking the offline BCI of Kaper that was
ranked at first place in [Kaper et al., 2004] as our basis, the classification system was modified
to an online version and a first experiment to assess its performance was conducted. As the
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Figure 4.8. Visualization of the grid search results using the extended decision function D. Each point of the
picture reflects the performance that would have been achieved with the corresponding thresholds. In total,
results of 81× 81 = 6561 offline experiments each with a different threshold combination are shown in the
plots. Data for 22 letters with 10 subtrials per trial were provided by subject 2 who participated in the second
experiment. Top left: Performance measured in bits/min for each threshold pair. Bottom Left: Amount of
subtrial used for the corresponding threshold pair. Right: Accuracy for each threshold pair. .
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results were lower than in the offline version, further adaptions were introduced to match the
transfer rates achieved by the offline version.

Following the example of Serby [Serby et al., 2005] who already introduced a method to
adapt to the users performance online, a similar method has been presented that limits the
number of subtrial repetitions according to the users online performance. To strengthen the
findings of Serby, who only used 6 subjects and 5 letters in their experiments, that dynamic
subtrial limiting according to the users performance is a viable method for boosting bitrates
and maintaining accuracy, we elongated the word for the spelling task to 22 letters and incor-
porated 12 subjects in the second study. Therefore, our mean results are less likely to be con-
taminated with outliers. As experiment 2 shows, the maximum mean transfer rates could be
improvement from 32.17 bits/min to 50.61 bits/min (57.32%), though at a substantial loss of
26% accuracy. At comparable accuracies of around 80%±5%, mean bitrate could be boosted
from 32 bits/min to 45 bits/min with a slight accuracy loss of 5%. Compared to the BCI in-
troduced by Serby [Serby et al., 2005], who reached a mean accuracy 79.5% and a communi-
cation rate of 4.51 symbols/min, our approach showed a mean communication rate of 7.62
symbols/min at 83.33% mean accuracy. When incorporating the 6 seconds inter-trial delay
in our calculation, we still achieve a communication rate of 3.91 symbols/min at 83.33% ac-
curacy. Since the delay is inevitable for an online BCI as it gives the user time to perceive the
predicted symbols, this rate should be taken as the practical communication rate whereas the
former rates should be considered theoretical communication rates. A peak practical com-
munication rate of 5.82 symbols/min with an accuracy of 90.9% was achieved by subject 9
which equals an information transfer rate of 84.60 bits/min. We also showed with an offline
analysis, that it is possible to further increase transfer rates by choosing better subtrial repeti-
tion decision functions. An example of such an improved decision function was given in sec-
tion 4.3.3 that extended the initial decision function by a secondary criterion. Furthermore, a
method to select accuracy or bitrate optimized thresholds was presented in conjunction with
the extended decision function D. Though not tested in an online scenario, the maximum
transfer rate of 58.54 bits/min (of subject 2) obtained by the initial approach (offline in this
case) could be increased to 70.27 bits/min which is an improvement of 20.4%. These results
show that a dynamic subtrial scheduling scheme can dramatically improve performance of
an online BCI and therefore strengthen the findings of [Serby et al., 2005]. Additional research
should investigate if a dynamic subtrial approach also applicable for locked-in patients.
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5.1 Introduction

Recent research has brought up a vast amount of sophisticated classification methods which
are able to predict the user’s intent with relatively high accuracy and minimal training data.
Nevertheless, BCIs are prone to classification errors. Some efforts have been made to incor-
porate error-related brain responses to improve accuracy of the system which mainly rely
on a certain type of error-negativity (ERN/Ne) occurring after the onset of an erroneous trial
followed by a later positivity called Pe which occurs at 300-400ms after the stimulus onset.
The idea of using additional information contained in EEG signals that can give information
about the correctness of the command inferred by the BCI has already been used by some
groups [Ferrez et al., 2007, Ferrez and del Millan, 2005, Schalk et al., 2000]. For the most part
these studies used the ERN to predict errors in a selection task using imagined motor com-
mands. These methods are based on previous error-potentials (ErrP) research which identi-
fied mainly 3 different types of error-potentials.

The response ErrP can be observed during choice reaction tasks and is especially pro-
nounced at fast stimulus presentation speeds. The second type is called feedback ErrP which
occurs during reinforcement learning tasks. That is, the BCI response to an actively executed
action is delayed in order to measure only brain activity related to the response. This is the
type which coincides with most paradigms employed by BCIs. The last type is called observa-
tion ErrP and it occurs in pure action-response observation tasks where the subject does not
execute an action but can observe the action and response of another person. As with the
former types of ErrP, a negative deflection is visible 250ms after an erroneous response was
perceived by the subject [van Schie et al., 2004]. The latencies of the Ne and Pe components
strongly correlate with the peaks found in oddball experiments and therefore, as mentioned
by [Schalk et al., 2000], it is not clear whether the ErrP measured after erroneous trials is in
fact only a P300. Recent studies tried to incorporate the ErrP into an error correction system
for a P300 Speller BCI. For the discrimination task between ErrP and non-ErrP epochs they
reported overall correct rates ranging from 60-80% [Visconti et al., 2008,Dal Seno et al., 2009].

The aim of this study is to assess EEG data of erroneous trials and investigate properties of
the error-related potential. In a second step, a classification method will be developed which
reliably discriminates between correct and erroneous trials. The experiments presented in
this chapter will serve as a basis for a general error correction framework. Section 5.5 will in-
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troduce a framework which models a general error correcting BCI with Markov chains. This
probabilistic model allows to compute the theoretical communication time per correct sym-
bol. A particular useful feature of this method is the ability to optimize classifier thresholds
to yield an optimal global system performance. Using this novel method, the feasibility of the
proposed error correction BCI will be evaluated in section 5.6.

5.2 Experimental setup

The P300-speller paradigm itself consists of a matrix of letters as shown in figure 4.1. For
each stimulus presentation round each row and column of this matrix are highlighted once
in random order for a short amount of time. The term subtrial will be used for the process
of highlighting each row/column once. Whenever the row or column which contains the at-
tended letter is highlighted, a P300 component can be measured. The symbol cell the user is
focusing corresponds to the intersection of the row and column which elicited a P300. The
predicted letter is usually displayed as a feedback stimulus after the end of a trial. Multiple
subtrials are often used to improve the signal to noise ratio which results in a more accurate
prediction of the target. To exploit activity related to incorrect feedback of the BCI, a classifi-
cation method is required that is able to identify erroneous responses from the EEG within a
single trial since feedback is only available once at the end of a trial.

Therefore it is necessary to investigate what type of ErrP occurs in a P300-Speller paradigm
and what parameters might influence the elicitation. To answer these questions an experi-
ment with 5 healthy mixed male and female subjects has been conducted. For this experi-
ment, presentation parameters such as ISI, target-error probability and presentation dura-
tion have been chosen according to values which also produce high amplitude P300 com-
ponents. A conservative ISI of 1s was chosen to eliminate overlapping epochs. A low target-
error probability of 25% has been used for two reasons. First off, this corresponds to a real-
istic number of errors for an online BCI and secondly it is not clear whether an ErrP might
vanish with increasing error probability. Since it has been shown by [Ferrez, 2008, Dal Seno
et al., 2009] that ErrPs occur at 25% error probability, this value proved to be a reasonable
choice. A parameter so far never mentioned in the literature in relation to ErrPs is the pre-
sentation duration of the predicted letter. This parameter could be linked to task difficulty
since it is mentally more challenging to recognize letters quickly. This induces slight stress
to the subjects which seemed to be an important parameter in earlier ErrP experiments [van
Schie et al., 2004] involving reactive movements under strict time restrictions. To investiagte
whether the stimulus presentation time, which is linked to task difficulty, has an effect on the
ErrP components, two experimental blocks were conducted.

Condition 1 - Low Task Difficulty With respect to these requirements the experiment was
designed to simulate a letter spelling task using the P300 Speller paradigm. Prior to
each trial, a target letter that had to be focused was shown followed by a 1s period
showing a black screen followed by the transition to the matrix presentation round.
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After one complete round, the screen was set to black for 3s to prevent post stimulus
effects like slow-waves to be included in the feedback evaluation. The predicted letter
was shown afterwards for 1s followed by another 1s pause displaying a black screen.
The timing structure of the paradigm is illustrated in figure 5.1.

For this experiment the accurate prediction of the target letter was not important as
we were interested in the brain response to the feedback only. For each subject an
experiment comprised of 5 blocks was conducted. Each experimental block used a
fixed number of one subtrial per letter whereas the task for the subject was to spell the
word "BRAINCOMPUTERINTERFACE12" containing 24 letters. Since the error-rate of
the feedback could potentially have an influence on the error-related activity it had to
be controlled. Therefore classification of the brain-response to predict the target was
omitted and predetermined letters were used. The sets of predetermined outcomes
were chosen to contain 25% wrong letters and were randomized with respect to their
occurence in the sequence to account for habituation effects of the subjects. All five
subjects were told to attend to the letter that was shown at the beginning of each trial
and mentally count whenever the row or column containing this letter was highlighted.
Further, they were informed that the BCI would predict which letter they attended after
the end of the speller phase. None of the subjects was aware that the outcome was
predetermined. After each completed block of 24 trials the subjects were given the
option for a short pause to relax since the procedure can be very tiresome which in
turn could have an effect on the measured signals.

Condition 2 - High Task Difficulty The second condition follows exactly the same scheme
as condition 1. In contrast to the first condition though, the ISI and feedback stimu-
lus presentation time as well as pause times had been adjusted to compress the time
needed to complete a full run from pre- to post-trial. The time for the trial-to-trial
pause was reduced to 500ms and the pre-feedback pause was reduced to 1s. Feedback
presentation time was adjusted to 250ms to coincide with the stimulus presentation
time of the speller round. The ISI was lowered to 500ms to speed up the speller round
since these stimulations were not needed in the ErrP evaluation. A convenient side ef-
fect of this condition is the fact that less time was needed for each round. Therefore it
was possible to collect more data with the same amount of time compared to the first
condition. This is a crucial point for later classification and statistical analysis since
each completed round of 24 letters contained only 6 epochs which are related to erro-
neous trials. While the experiments in the first condition could only collect data from 5
blocks in reasonable time, the second experimental condition could collect data from
7 blocks which equals 40% more error-related epochs.
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Figure 5.1. Structure and timing of the experiment (condition 1): Depicted are the three phases target-,
stimulus- and feedback presentation. The transition delay between each phase was set to 3s. To maximize
P300 amplitude 1s ISI was selected for all stimuli except the presentation of the target letter (3s).

5.2.1 Data acquisition

Ten subjects (7 male and 3 female) volunteered to participate in this experiment. The sub-
jects were split into two groups where group 1 was assigned the low task difficulty (condition
1) and group 2 the high task difficulty condition (condition 2). As recording equipment a
gUSBAmp EEG amplifier was used with 14 Ag/AgCl sintered ring electrodes attached to the
positions Fp1, Fp2, AFz, Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, O1 and O2. Reference electrodes
were placed on the left and right ear in common reference montage. During recording, a
highpass filter with cutoff frequency of 0.1Hz was applied. All data were sampled at 128Hz as
a continuous stream and stored for the following offline analysis. Impedances ranged from
5− 15kΩ except for subject 2 with impedances of 20kΩ. As a consequence, below average
signal-to-noise (SNR) ratios were expected for this subject. All subjects were placed about 1m
in front of a video screen that displayed the stimuli which remained in the field of view during
the whole experiment. Further, the subjects were advised to try to avoid eye blinks and body
movements especially in the feedback interval of 3s. The timings for the speller task were set
to 900ms for the stimulus intensification time and 100ms stimulus deactivation time during
which the stimulus was set back to a neutral color. Adding these times resulted in a inter-
stimulus interval of 1s between consecutive stimuli. After the speller phase, the screen was
set to black for 3s followed by the feedback phase which displayed the BCI response for 1s.
The completion of all 5 blocks of condition 1 resulted in EEG data of 30 erroneous feedback
epochs (6 for each block) and 90 correct feedback epochs (18 for each block) per subject. For
condition 2 42 erroneous and 126 correct epochs were collected. A typical experiment took
around 2 hours to complete including preparation time.
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Figure 5.2. The two largest ERPs separated out by ICA are clearly localized towards the frontal part of the
head which coincides strongly with eye blinks (component 1) and eye movements (component 3). The blue
shaded area depicts the potential variance covered by those components.

5.3 ErrP offline analysis

As a first step, the data were analyzed offline in Matlab using the EEGLAB toolbox [Delorme
and Makeig, 2004]. The data were analyzed with respect to artifacts, mean ERPs, single trial
and cross subject ERP phase variability. A first inspection was devoted to identify and clean
up artifacts present in the data. On average 23% of all epochs were contaminated with arti-
facts stemming from eye blinks. This ratio increased in the second experimental condition
to 36%. In the case of one subject who participated in the second experiment, 80% of the
trials were contaminated with blink artifacts. The eye blink artifacts were equally distributed
throughout both conditions of error and correct trials. This increase might be related to the
increased task difficulty coupled with the psychological stress to restrain from blinking while
staying focused on the task.

5.3.1 Preprocessing

As an initial preprocessing step the data were highpass filtered to mitigate slow potential
drifts which usually occur due to sweating and impedance changes of the skin-electrode
connection. To reduce blink artifacts in the data an independent component analysis was
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computed to split the raw EEG data recorded at different sensor locations into statistically in-
dependent signals. This is a widely used technique to reduce typical EEG artifacts like muscle
activity or eye movements and blinks. It was shown by [Delorme et al., 2007] that ICA can be
used to efficiently reduce those mentioned artifacts without significantly distorting the un-
derlying EEG data which effectively raises the signal-to-noise ratio (SNR). The analysis of the
raw 14-channel EEG data resulted in 14 independent components, with two of them expos-
ing a very high amplitude and typical topographic localization towards the frontal part of the
skull (see Figure 5.2). Since these components strongly correlate with artifactual eye blinks
and movements they were rejected from the data by setting their corresponding weights in
the unmixing matrix to zero. A backprojection resulted in a cleaned up dataset which was
used for throughout the rest of the analysis. This preprocessing step was applied for both
low- and high task difficulty conditions. Further, all epochs were bandpass filtered with cor-
ner frequencies of 3 and 20Hz.

5.3.2 Analysis of error vs. correct trials

The epochs of each experimental setting (high- and low task difficulty) were analyzed with
respect to known ErrP characteristics like the Ne and Pe component, the spatial location of
their maximum amplitudes, trial-to-trial variability and cross subject variability. For the low
task difficulty condition it turned out to be fairly difficult to reproduce the results mentioned
in [Ferrez, 2008]. Morphologically a strong negative peak around 250-350ms after the onset
of an erroneous feedback stimulus was expected. For a correct feedback it was unclear what
brain response was to be expected. Considering the the similarity to the given task to focus
on the target letter, a correct feedback (i.e. the target letter) might elicit a P300 as well. To test
whether there exists a significant statistical difference between the mean amplitudes of the
correct and error condition a t-test was computed for all samples along the time axis. Data
of all subjects were used as input and thus the results were expected to reveal time inter-
vals and channel locations common to all subjects with significant difference between both
conditions. For the experiment with low task difficulty, a rather weak statistical difference
between erroneous and correct epochs could be detected. The significance values for each
timestep and channel are drawn in the matrix of figure 5.3 (B). The plots below and on the
right side of the color coded matrix visualize the row and columns means of this matrix, i.e.
the mean statistical significance per channel for each timestep. All colored cells in this matrix
correspond to space × t i me pairs that passed a two-tailed paired t-test at a 0.01 significance
level. Therefore, all these cells show at what time for each channel a significant difference
in mean amplitudes between erroneous and correct trials exist. For the low task difficulty
experiment (B) the most significant areas are found primarily in parietal and occipital loca-
tions with a latency of 250-300ms and 400-500ms after stimulus onset. Areas with weaker
statistical significance are also found towards frontal and central sites with maximas occur-
ring around Fz and Cz. These areas are activated at 350-400ms and 500ms after a stimulus
has been presented. When taking the mean significance values along the channel axis into
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Figure 5.3. The plots show color coded significant differences between erroneous and correct trials. Brighter
values correspond to higher significance. The side plots show the cross-sectional average along their respective
axis. Differences between erroneous and correct trials in the high task difficulty condition (A) are much more
pronounced than in the low task difficulty condition (B). For (B), most significant areas are around occipital
and central areas while (A) shows highest significance over frontal areas.

account, it can be observed that the channels with highest statistical difference are the oc-
cipital followed by parietal and central areas. In general, highest significances were expected
to occur at frontal parts of the head where the amplitude of error-related potentials is usu-
ally high and ErrPs were not expected to occur in correct trials. On the other hand, during
correct trials which show the expected feedback which was also focused at the beginning of
the speller matrix presentation, a P300 component was likely to occur due to the similarity
to the prior speller task. Therefore additional significant differences around central to pari-
etal/occipital sites could be expected. From the values shown in (B) it is rather difficult to
prove a high correlation between the hypothesis and the actual measurement. Frontal parts
did pass the t-test but most only slightly above significance level. Since the t-test only mea-
sures statistical significant deviations from the mean it does not answer the question how
stable the onset latency of possible error-related components are To measure the degree of
latency uniformity, i.e. the degree of time jitter from trial to trial, the inter-trial coherency
(ITC)1 can be computed which is solely based on phase angles of the signal and independent
of the signal amplitude. A frequency 5Hz was used in the analysis since the associated ITC
values were maximal compared to the remaining frequency band. Especially for the time in-
tervals of interest around 200-400ms [Ferrez, 2008,Dal Seno et al., 2009] the phase coherency
ranges from 0.15 to almost 0. The blue shaded area of these plots depict the 0.01 significance
level. Since the ITC values of the erroneous trials never exceed this level it could be confirmed
that there was no significantly latency-stable ERP component within the erroneous trial con-

1sometimes referred to as phase-locking factor
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dition. For the correct trial condition a slightly significant consistency could be detected at
the Fz site at 200-250ms after stimulus onset. The result was equal for the lateralized sites
around Fz which in turn coincides with the t-test seen in figure 5.3 (B). It should be noted
however, that due to the low number of erroneous trials in this setting the statistical evalu-
ation should be taken with a grain of salt. It is possible that minor differences could not be
recognized due to the low number of samples.

Exactly the same experiment has also been conducted with more stringent time constraints
by lowering presentation intervals and thereby increasing the task difficulty. Afterwards the
same analysis as explained above has been conducted. The results for this high task difficulty
experiment are visualized in 5.3 (A) and figure 5.4 (bottom). Here the statistical difference
between error and correct conditions are much more explicit with prominent peaks at laten-
cies of 200-250ms (prefrontal to central), 300ms (frontal to occipital), 400ms (frontal), 500ms
(frontal to occipital) and 600ms (frontal to occipital) after stimulus onset. For the erroneous
condition at Fz location, ITC values do by far exceed the 0.01 significance level from 200ms
onwards with a much larger spectral power increase after stimulus onset compared to the low
task difficulty experiment. Even without statistical analysis it can be observed in the single-
trial visualization (Figure 5.4 bottom) that a amplitude modulation with similar latencies in
response to an erroneous stimulus is present. This signal is composed of 2 main peaks at
300ms (negative deflection) and 400ms (positive deflection) and 2 smaller peaks at 200ms
and 500ms. This is exactly what was to be expected for ErrPs which occur at 200-300ms at
fronto-central locations. This also coincides with differences found in the t-test results shown
in figure 5.3 (A). The analysis of the correct trial condition revealed that no time-stable 5Hz
components are present for this condition at a 0.01 significance level whereas the erroneous
condition shows highly significant phase correlations for the 5Hz frequency. Compared to
the low task difficulty experiment, no significant difference in spectral power increase could
be measured for the correct trial condition as both groups only show around 1dB increase
over baseline level.
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Figure 5.4. Single-trial visualization of frontal erroneous (left) and correct (right) trial ERPs for low task
difficulty (top) and high task difficulty (bottom) experiments. The colored plot shows a 10-epoch smoothed
visualization of single trial amplitudes. In addition, an event-related spectral perturbation (ERSP) and inter-
trial coherence (ITC) plots are shown below. The blue shaded areas denote the 0.01 significance level which
has to be exceeded in order to be regarded as a significantly stable time interval with respect to the stimulus
onset.
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Figure 5.5. Schematic view of an error correction method using error-related potentials. Green paths corre-
spond to increased or unchanged performance, whereas red paths denote performance loss.

5.4 Automatic correction of erroneous trials

In the case of the BCI developed in this thesis, an error correction method could be useful to
prevent unintended grasping of objects and the need to correct for these mistakes. Manual
correcting of such error would be require the user to drop the object at a certain location and
instructing the system to grasp the object again just to put it to the correct location. Error
related potentials could serve as a last chance feature to decide if the BCI prediction is really
correct. Normally the BCI’s prediction is visually displayed once before an action is carried
out. If the EEG activity is significantly different between incorrect and correct predictions and
if this activity can be recognized with only one sample of EEG data, then the action can either
be carried out or stopped. A schematic overview of the proposed error correction system is
shown in figure 5.5. Beneath the Intent Recognition layer, an additional Error Correction layer
is introduced which receives EEG data as input that corresponds temporally to the point in
time where the BCI prediction is presented to the user. On an incorrect prediction, an ErrP
should be elicited. In order for ErrPs to be usable in an online BCI, a method to classify er-
roneous trials using only one single EEG epoch (single-trial) is required. Depending on the
reliability of the classification, certain costs are involved with the outcome. In figure 5.5 these
costs are visualized by red and green paths. Green paths correspond to no performance loss
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or even improvement compared to the standard classification procedure without error cor-
rection, whereas red paths denote cases where a loss of performance is involved. Section 5.5
will investigate the performance costs inclined with the depicted paths (1)-(4) and propose
an analytical method to compute the performance of such a BCI system.

The task of implementing such a system and automating the ErrP recognition can be split
into three different sub-tasks:

Preprocessing A process that aims to convert the raw data into a suitable representation
and improve the SNR of the data with methods that can also be applied in real-time in
an online BCI.

Feature Extraction Based on the preprocessed data, specific features that discriminate well
between classes are extracted.

Classification The classification problem involves assigning class labels to the input data
consisting of the previously computed feature vectors.

Based on the results of the offline analysis, combinations of popular preprocessing, feature
extraction and classification methods will be compared in this section.

5.4.1 Preprocessing

Common to all method combinations, the continuous EEG data were bandpass filtered to
1-10Hz and segmented into epochs from 100ms pre-stimulus to 800ms after stimulus onset.
For each epoch a baseline correction was conducted with the data of the 100ms pre-stimulus
interval. This was done in order to remove linear trends that might still be present after the
filtering. As a first step the data were inspected with respect to obvious artifacts like eyeblinks
or muscle activity. Even though the subjects were instructed not to blink especially not during
the feedback phase, frequent eye blink artifacts were found which primarily occurred during
the pre-stimulus time and near the end of the epoch. No muscle artifacts could be identi-
fied throughout the whole dataset. Every epoch with obvious artifacts exceeding 100µV was
rejected from the dataset.

Downsampling In this step, the downsampling method was subject to evaluation. The idea
is that the original data dimensionality can be reduced without any significant loss of infor-
mation since the lowpass filtered data can be equally well represented by a lower number
of samples per time interval. This reasoning is a direct result of Nyquist’s theorem [Nyquist,
1928] which states that a signal with maximum frequency f has to be sampled at a frequency
of at least 2 · f to capture the full frequency content. Due to the lowpass filter which limited
the maximum frequency to 10Hz from the original 256Hz, a dimensionality reduction fac-
tor of 10H z

256H z = 0.391 can be achieved which equals almost 61% smaller input data. A lower
dimensional dataset is highly preferable since any of the classification methods will benefit
from lower dimensional input data given the limited number of input data for each class.
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5.4.2 Feature extraction
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Figure 5.6. ERP image of subject 1 for condition Correct (left) Error (right) visualizing ICA component
number 5.

The feature extraction step aims at finding and extracting patterns in the data that discrim-
inate better between classes than the raw data alone. As methods, independent component
analysis (ICA), principal component analysis (PCA) and t-test are considered in the evalua-
tion.

ICA features ICA was chosen since it decomposes the signal into a set of statistically inde-
pendent sources. The resulting signals can be interpreted as a decomposed linear mixture of
EEG components that are characteristic for the measured time interval. Experimental results
(e.g. [Jung et al., 1998], [Callan et al., 2001], [Jung et al., 1999]) showed that event-related ac-
tivity is usually assigned to one specific independent component while the remaining signal
activity like artifacts and noise are assigned to different components. As a result, the SNR of
the relevant signal is improved.

To receive a transformation that decomposes the mixed signal, a projection matrix W is
computed that minimizes the gaussianity of the data and transforms the sensor space data X
into independent component space S or more formally

S = WX. (5.1)
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As ICA algorithm, extended Infomax ICA [Bell and Sejnowski, 1995] was used which com-
putes the unmixing matrix by minimizing the mutual information of the data projected on
all axes. The resulting component activations show that it should be possible to discriminate
between both conditions. One example is shown in figure 5.4.2 which visualizes the prop-
erties of component 5 of subject 1 who participated in the high task difficulty experiment.
Especially the epochs of the error condition show a stable signal phase angle over consec-
utive trials which can be seen as straight vertical color gradients whereas the trial-to-trial
variability of the correct condition is much higher. Further, the middle plot shows no sig-
nificant increase in spectral power for the correct condition. This fact indicates that after a
correct stimulus there is no significant change in the signal amplitude of any frequency com-
pared to the baseline time interval. The highest phase coherence could be measured for the
3Hz frequency which is highest during baseline and extends to half the post-stimulus time
interval. This finding corresponds to the analysis of the original sensor-space data in section
5.3. Therefore it was known that highly discriminable time intervals can be found from 200-
500ms after stimulus onset. But since the former analysis was based on the combined dataset
of all subjects, an automatic method to find the most discriminable intervals is likely to find
better intervals since slight subject dependent latency variations can be expected.
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Figure 5.7. First 3 ICA non-artifactual components of subject 2. A timepoint is selected as feature when
the p-value exceeds 0.99, i.e. the 0.01 significance level. The selected regions correspond to those significant
regions found in the offline analysis.

t-test features The encouraging results of [Visconti et al., 2008] motivated for a similar pro-
cedure to identify regions of interest that could be used to reduce the dimensionality of the
data while retaining the discriminable dimensions. For each epoch, channels were concate-
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nated into one single feature vector. A data point was marked as a possible feature candi-
date if the null hypothesis of equal means using a two-tailed t-test at significance level α
was rejected. The remaining data point indices were retained and were used to cut out the
significant regions of the epochs in the dataset. The features found by this procedure partly
matched what could be expected from visual inspection of the independent components and
thus lends itself to be combined with ICA.

PCA features To compare the performance of the proposed t-test method a second feature
extractor was added based on principal component analysis (PCA). We have been using this
method in our previous P300 experiments on time domain sensor space data with good suc-
cess [Kaper, 2006,Lenhardt, 2006,Lenhardt et al., 2008,Finke et al., 2009]. Every 14×115 epoch
in the training set was concatenated to form a 1×1610 vector. Applied to the full dataset, a
n ×1610 matrix , with n being the number of epochs in the training set, was obtained. PCA
was computed on this set resulting in a n ×n matrix since all principal components higher
than n are essentially zero. The number of PCs were chosen based on the amount of variance
they account for. The cutoff was set to 1−α. Multiple values for α were tested.

5.4.3 Classification

The primary classification method used was Linear Discriminant Analysis (LDA) (c.f. 4.2.3).
This method and its variants have been used in many studies (e.g. [Kaper, 2006,Visconti et al.,
2008,Lotte and Cuntai, 2009] and in a comparison of classification methods [Krusienski et al.,
2006]), LDA was among the best methods . Usually an LDA classifier is trained using many
epochs of P300 and non-P300 epochs (e.g. 100+). In the special case of ErrP training it is not
possible to collect such an amount of data for erroneous epochs since they occur at a very
low rate during the experiment. Additionally, even more erroneous epochs would be required
than P300 epochs to get a better estimate of their statistical properties. The reason for this is
that for P300-speller tasks it is usually acceptable to accumulate epochs over multiple trials
and classify on their mean, i.e. they don’t rely on single-trial classification. In the case of
error-detection using error potentials, the input data consists of only one epoch since the
classified result is shown to the user only once. Due to the small number of training samples
(usually in the order of 20-50) compared to the dimensionality of more than 1500, normal
LDA cannot be used since the covariance estimate needed for the calculation of the weight
vector becomes singular. To improve the covariance estimates, shrinkage of the covariance
matrices has been selected as regularization method. To regularize the sample covariance
matrix defined by

S = XXT /n (5.2)

a linear combination of the type

Σ∗ = p1I+p2S (5.3)
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has to be found which minimizes the expected quadratic loss and thus is optimal with respect
to

min
p1,p2

[
E

[∥∥Σ∗−Σ∥∥2
]]

(5.4)

Finding these two parameters is a sensitive task. It is possible to search the parameter space
for a good solution. This however requires extensive computation and it is impossible to
know whether the found parameter set is optimal with respect to the real covariance matrix.
The work of Ledoit and Wolf [Ledoit and Wolf, 2004] proposed an analytical method to com-
pute optimal shrinkage parameters for the given sample covariance matrix. Ledoit and Wolf
proved that the shrunken covariance matrix is always invertible, well-conditioned and more
precise than the sample covariance estimator. The estimator for a (p ×n) dataset is defined
by

S∗ = b

d
mnI+ a

d
S (5.5)

with
mn = tr

(∥∥SIT
∥∥2

)
/p (5.6)

d = ‖S−mnI‖2 (5.7)

b = min

(
1

n2

n∑
k=1

∥∥xk xT
k −S

∥∥2
,d

)
(5.8)

a = b −d (5.9)

and ‖·‖2 being the squared Frobenius norm with its associated inner product

A1 ◦A2 = tr (A1AT
2 )/p. (5.10)

5.5 Utility metric for ErrP error correction

In the recent literature (e.g. [Visconti et al., 2008], [Dal Seno et al., 2009] or [Takahashi et al.,
2010]) it is common to assume that the correction of erroneous trials using ErrP reduces the
communication time between the user and the BCI. This assumption is based on the fact that
upon a successful recognition of an erroneous trial, a correction command (e.g. backspace
for a spelling device) can be issued automatically without the need to explicitly communicate
it to the BCI via brain signals. However, when analyzing the general structure of such an error
correcting BCI as depicted in figure 5.5, it becomes obvious that the initial assumption is
dependent on many factors. The figure describes the control flow of a BCI for robot grasping
tasks in three phases. Only the top and bottom phase consume time which correspond to
presentation of stimuli (Intent Recognition Phase) and the time it takes to execute the grasp
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action (Execution Phase). Green paths denote the optimal flow of information while the red
paths correspond to communication overhead which equals increased time to complete an
action.

In the case of path (1), an incorrect command was predicted by the intent recognition layer
that would lead to a wrong object being grasped. But since the error correction method cor-
rectly classified the wrong prediction, the system returns to the stimulus presentation state
to gather more data for a more accurate prediction. Thus, the accuracy is increased and the
time spent to communicate the intended object is decreased since no manual correction (i.e.
dropping the grasped object, reselecting it and dropping it at another location) is required.
Path (2) is equivalent with the method without error correction since both the object and
the ErrP have been correctly classified. No performance gains or losses are involved. The
third path (3) however can be devastating to the performance and presumably to the motiva-
tion of the subject. If the user’s selection was classified correctly but an ErrP was incorrectly
detected, the system returns to the stimulus presentation state which will double the time
needed to communicate the symbol even though it was correct in the first place. A similar is-
sue arises for path (4). If an ErrP is present but is not recognized, the action will be carried out
which requires manual correction afterwards by the user. However, since this additional cost
is also present when no error correction is applied, no additional performance loss compared
to the former method is entailed. As a consequence, only path (3) can cause a significant per-
formance loss compared to a method without error correction. An error correction classifier
with 100% false negative rate and 0% false positive rate would be equivalent with no error cor-
rection at all since path (3) will never occur and path (4) will be entered on every occurence
of an ErrP.

The former described structure can be interpreted in a more analytical and general way.
In fact, the whole process can be modeled as a stochastic process with BCI actions as states
and classifier performance values as transition probabilities between those states. Such a
process is depicted in figure 5.8 which resembles mainly to the structure shown in figure 5.5.
State A corresponds to the stimulus presentation step which obviously takes time to present
all stimuli. Depending on the outcome of the P300 classifier, the system makes a transition
to state B upon an incorrect P300 classification or state C in case the P300 classification is
correct. From both states B and C a path is leading back to the stimulus presentation. In case
of state B, an ErrP will be elicited since a wrong command was recognized by the previous
intent recognition step. Thus, a true positive result of the ErrP classifier can be used to au-
tomatically return to the stimulus presentation instead of conducting a wrong action which
has to be corrected afterwards. As a result, the time until a sequence of correct commands
is communicated is reduced compared to the standard paradigm. On the other hand, if the
system’s state is C which corresponds to a correctly classified command, an ErrP classifier
that erroneously finds an ErrP (i.e. false positive) will lead to an increased communication
time by going back to state A. The same rule applies for the next state transitions. Compared
to illustration 5.5, the action state here has been split into two different states even though
both of them conduct the action and consume the same time. The reason will be explained in
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TN and FN).

the following. Using this structure, an error correcting BCI can be simulated by issuing many
trials and iteratively adding action times and stimulus presentation times. To simulate this
process, certain parameters have to be known:

• P300 classification accuracy (Acc)

• ErrP confusion matrix (TP, FP, TN, FN)

• Action time (Tact )

• Average stimulus presentation time (Tst i m)

The simulation will end once the given number of correct actions has been reached, i.e.
whenever the emitted sequence of states contains a certain number of state E. The average
time it takes to conduct a correct action can be easily calculated by dividing the total time
by the number of simulated trials. For realistic parameters, it is possible to find a solution
for the total time per trial. However, since the structure contains multiple feedback loops,
certain parameter constellations might converge very slowly or not converge at all if stuck
in a feedback loop. An extreme example would be an ErrP classifier with 100% false positive
rate. In this case, the system would return to the stimulus presentation on every correctly
predicted action and hence would never converge.
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5 Study 2 - Error-Related Potentials

Instead of simulating the process with an iterative method, the whole structure can be
solved analytically. The graph in figure 5.8 represents a discrete-time random process with
Markov properties, which means that future states are independent of the the previous states
and thus can be solved using the forward Chapman-Kolmogorov equations [Papoulis et al.,
2002]. The state probability vector of a Markov chain can be defined as

p(n) =


[p(n)]1

[p(n)]2
...

[p(n)]m

 (5.11)

where each [p(n)]i denotes the probability that the system is in state i after the n− th transi-
tion. Further, the single-step probability matrix is defined by

P =

p11 · · · p15
...

. . .
...

p51 · · · p55

 (5.12)

with p j k being the probability that the next state will be k given the current state is j . If the
state probability vector at time n is known, the probabilities of every state i can be computed
by the forward Chapman-Kolmogorov equation

[p(n +1)]i =
5∑

k=1
[p(n)]k pki (5.13)

which leads to the recurrent computation of all states with

p(0) = (
1 0 · · · 0

)T
, arbitrary stochastic vector (5.14)

p(n +1) = P T p(n) (5.15)

The goal with this formulation is to find the steady-state vector

π= lim
n→∞p(n)T (5.16)

which corresponds to the occurrence probability for each state given an infinite number of
trials. The ergodicity theorem claims that for any ergodic Markov chain, a limiting state distri-
bution or steady-state vector π exists which is unique and does not depend on the initial state
p(0). Thus, the steady-state vector can be approximated by simply raising the single-step
probability matrix P to a high power n with

π≈
n∏

i=1
p(i )T = p(0)T P n (5.17)
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5.5 Utility metric for ErrP error correction

Depending on the transition probabilities, π might converge after 20 steps or it might take
2000 steps. Raising P to very high powersπmight converge in most cases but it is not ensured.
A more elegant way to compute π is to treat the problem as one of solving the set of linear
equations represented by

πP =π (5.18)

This means that π is a left eigenvector of P with eigenvalue 1. Hence, the vector π can be
found by

π= ei g (P T ) (5.19)

In the above equation, P is transposed to get the left eigenvector assuming that the eig func-
tion usually corresponds to the right eigenvector of a matrix. However, the left eigenvector of
a matrix is the same as the right eigenvector of the same transposed matrix. One last thing
to consider is the scaling of π. Since π as calculated above is an eigenvector, µπ is also an
eigenvector. The scaling depends on the implementation of the solver and thus cannot be
predicted. But since we know that the steady-state vector must sum to 1, π can be easily
rescaled by

π′ = π∑
i
πi

(5.20)

The resulting vector contains the probabilities for each state occurrence for an infinite
number of simulation runs. Thus, it can be interpreted as percentages for each state of the
whole set of entered states. The usefulness of this vector becomes obvious when it comes
to the question, how long it will take for a BCI with given parameters to correctly recognize
n commands without errors including correcting actions. As mentioned in the beginning,
time is only consumed when state A, D or E are entered since these correspond to stimulus
presentation and action execution. The steady state vector however contains all five states
which means that the time consuming states have to be extracted into a new vector which
has to be rescaled. Thus, the final vector which contains the relative occurrence frequencies
of the time consuming states will be defined as

Π= 1∑
i={1,4,5}

π′
i

π′
1

π′
4

π′
5

 (5.21)

The average total time Ttot al for n correct trials can be computed by rescaling Π such that
Π3 = n and computing the dot product betweenΠ and a vector containing the trial and action
times as shown in 5.22.

Ttot al =
n

Π3
ΠT

Tst i m

Tact

Tact

 (5.22)

At this point it becomes clear why the structure depicted in figure 5.8 deviates from figure
5.5 by splitting the action state into two different states. If the probability Π3 corresponding
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5 Study 2 - Error-Related Potentials

to state E, i.e. a correct action, equals 0 then the scaling factor n
Π3

= n
0 =∞. As a result, the

average time to execute a single correct action Ttot al goes towards infinity and thus a correct
action will never be achieved. Hence, the reason for splitting the action state is to allow to
keep track of correct and wrong actions.

The proposed analytical solution of the convergence time is useful for formulating a per-
formance metric that compares communication speed differences between two BCIs with
known parameters.

A metricΘ to measure the percental difference is shown in 5.23, with T A
tot al being the total

communication time per correct symbol for one BCI and T B
tot al the time for another BCI with

different parameters.

Θ= T B
tot al

T A
tot al

(5.23)

A value of Θ greater than 1 corresponds to an improvement in communication speed of A
over B, while values smaller than one imply speed loss. The percental speed gain/loss of A
over B can be quantified by simply setting

Θ100 =
(

T B
tot al

T A
tot al

−1

)
·100

with positive values corresponding to the percental speed increase of BCI A over BCI B.

5.5.1 Accounting for manual corrections

The above formulation of the problem considers only the time between two successive cor-
rect actions. For many real applications this solution might be sufficient. On the other hand,
there may be tasks which require a correction of erroneously recognized commands. An ex-
ample would be a spelling device with the aim to enter a 4 digit pincode to get money from
an ATM. This BCI also offers a special Backspace command, to delete the last spelled let-
ter. If the entered pincode contains a wrong character or has a different length, the ATM
will not give out any money. Given the correct pincode is ABCD, entering those 4 characters
would require 5 correct commands in succession. Realistically though, the BCI will produce
some errors during the spelling of the sequence which might result in the sequence ABCX.
In this case, the user will try to correct the last letter by entering the Backspace command
and try to spell the correct letter once again. The sequence of commands to spell the pin-
code correctly might consist of [A B C X Backspace D]. It is obvious that this sequence is
2 commands longer than in the optimal case. As a general rule, each wrong command results
in at least 2 additional commands which have to be correctly recognized (deletion and re-
entering the correct command). Of course the above example sequence is not the only pos-
sible one. In fact, a sequence like [A Z Backspace B C X K O Backspace P Backspace
Backspace Backspace D] would also produce the output ABCD but is significantly longer
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Q Q'' Q'''Q'

p' p'' p'''

q q' q''

p

Figure 5.9. To model manual corrections, an infinite Markov chain can be constructed with each state Q
denoting the chain as depicted figure 5.8. Transition from one state to the previous one via p happen whenever
a correct classification occurs. Contrary, on every wrong command the next Q is entered.

than in the previous example. The question here is, how long such a input sequence is in the
mean for a given output sequence of length n .

The proposed Markov chain can be extended to account for these correction actions. For
this, the model depicted in figure 5.8 will be denoted by the state Q. When translated into a
state graph, the correction process can be modeled as an infinite chain of Q’s, where each Q
will transit to the next state Q’ whenever a wrong command occurs, i.e. state D is entered. On
every correct command, i.e. state E, the model will transit from the current state Q(n) back to
the previous state Q(n−1) and thus jump up in the nesting level. A graphical representation of
this extended model is shown in figure 5.9. This infinitely deep structure generally equals a
bounded 1D random-walk. The corresponding transition matrix for this chain is defined by

M =


p p 0 0 · · ·
q 0 p 0 · · ·
0 q 0 p · · ·
0 0 q 0 · · ·
...

...
...

...
. . .

 (5.24)

with (
p
q

)
=

(
Π3

Π2

)
and p +q = 1 (5.25)

An analytical solution of the problem can be obtained in the following way.
From 5.24 at n = 1 follows

π1 = pπ1 +pπ2 (5.26)

π2 = 1−p

p
π1 = q

p
π1 (5.27)

Assuming

πk = q

p
πk−1 for k = 2,3, . . . ,n

93
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equation 5.24 yields

πn = qπn−1 +pπn+1 (5.28)

⇒πn+1 = 1

p

(
πn −qπn+1

)
(5.29)

= 1

p

(
πn −q

q

p
πn

)
(5.30)

= q

p
πn (5.31)

⇒πk = q

p
πk−1 ∀k > 1 � (5.32)

from which follows that all state probabilities πn can be expressed as

πn = qn−1 ·qn−2 . . . q0

pn ·pn−1 . . . p1
π0 (5.33)

=
n−1∏
i=1

qi

pi+1
π1 (5.34)

=
(

q

p

)n−1

π1 (5.35)

Further assuming that the system is currently in state Q0, a successful trial will consist of
any sequence of the form

Q0, . . . ,Qni , . . . ,Q0 with each ni ∈ 1, ...,∞
The expected length i of this sequence, i.e. the average number of visited Q states until the
system returns to the initial state Q0, can be calculated by

πcor r ≡ 1+ q1

p1
+ q1q2

p1p2
+ . . . (5.36)

= 1+
∞∑

k=1

n−1∏
i=1

qi

pi+1
(5.37)

= 1+ q

p
+

(
q

p

)2

+ . . .+
(

q

p

)n

since pi = pi+1∀i and qi = qi +1∀i (5.38)

Equation 5.38 corresponds to the geometric series

1+ r + r 2 + . . . =
n−1∑
k=0

ar k with r = q

p
(5.39)

and thus the final solution converges to

πcor r = 1

1−
(

q
p

) (5.40)
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Intuitively, the error correction process will only converge if the probability for a correct
classification p is higher than for an erroneous classification q which is also a constraint for
the geometric series that convergence is only achieved for q

p < 1.
Informally speaking, the first term of equation 5.38 corresponds to the first state of the

sequence Q0 which will be entered in any case. Each subsequent term q
p denotes how many

q transitions occur for each p transition. Thus, equation 5.40 returns the average number
of Q states which are entered until the process returns to the initial state Q, i.e. the average
sequence length between two states Q including the initial state and excluding the final Q.
This means that the total time required to enter a sequence of n commands without errors is

Tcor r = nπcor r Ttot al = n
Ttot al

1− Π2
Π3

. (5.41)

5.6 Experimental results

In this section results for the error-potential detection are presented based on data of 5 sub-
jects for each of the 2 conducted experiments (i.e. low- and high task difficulty). Each dataset
was tested using RLDA, SVM and k-Nearest Neighbor and for each of these classification
methods a set of feature extraction and preprocessing methods was tested. Performance of
the respective combination of methods was assessed in a 5-fold crossvalidation where any
step that required training to some extend (i.e. ICA or t-test features) was carried out only
on the fold containing the training data. Prior to each crossvalidation run, the data were bal-
anced to contain the same amount of epochs from both classes. The balancing of classes
is necessary to prevent overfitting of the classifiers since the error probability in the exper-
iments was only 25% which means that the whole data set contains 75% epochs of the P−

class (containing no ErrP) and only 25% epochs of the P+ class (containing an ErrP). This
step however causes the performance results to differ for each crossvalidation run due to
the random selection of epochs from the P− class. To mitigate this effect and assess a more
reliable result the balancing followed by a crossavlidation was carried out 10 times and clas-
sification accuracies were collected for each fold. Using a bootstrap sampling approach, the
0.01 confidence interval for the mean accuracy was determined after all 10 crossvalidation
runs were completed. In addition, standard deviation and classification accuracies for each
class were computed as an additional measure. The complete listing of all assessed measures
can be found in the appendix (tables .1 - .5). In this table, the mean accuracies reflect cor-
rectly classified ErrP epochs vs. non-ErrP epochs. The classification threshold was chosen to
minimize false positives and false negatives. For reference, the preprocessing combinations
enumerated in the former table are given below:

The accuracy differences among the top methods are minor but RLDA slightly outperforms
the SVM classifier as can be seen in figure 5.10. As for the preprocessing, table 5.1 summa-
rizes the mean accuracies across subjects for the RLDA classifier. Methods (1)-(4) from the
ICA category, method (7) from the Raw and method (11) from the PCA category are at the
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(1) ICA+Raw+DS
(2) ICA+Raw+NoDS
(3) ICA+TTest+DS
(4) ICA+TTest+NoDS

(5) Raw+Raw+DS
(6) Raw+Raw+NoDS
(7) Raw+TTest+DS
(8) Raw+TTest+NoDS

(9) PCA+Raw+DS
(10) PCA+Raw+NoDS
(11) PCA+TTest+DS
(12) PCA+TTest+NoDS
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Figure 5.10. Mean accuracy (across subjects) difference between LDA and SVM classifier. Higher values
correspond to LDA advantages, whereas negative values denote better performance of the SVM.

same level of accuracy. The worst performing ones are method (6) which is equivalent with
no preprocessing except the initial low-pass filtering and method (10) which corresponds to
the method mentioned in [Kaper, 2006]. A pairwise comparison of the methods with and
without downsampling showed (figure 5.11(a)), that for the ICA based approaches, no signif-
icant improvement could be achieved. Both, Raw and PCA based methods showed a 4-5%
improvement in accuracy. The results in this plot were computed by taking the average of all
ICA based methods with downsampling and subtracting the average accuracies of the same
methods without downsampling. Performance differences for Raw and PCA methods were
computed in the same way.

In practice a high true positive ErrP detection, while keeping a low false positive rate, is
more important than overall accuracy for reasons which are explained in section 5.5. Since
actual classification is nothing more than assigning class labels depending on a scalar thresh-
old, the true positive rate (TPR) and false positive rate (FPR) can be tuned by modifying this
threshold. To highlight the classifiers performances over the full spectrum of classification
thresholds, ROC curves of the two best performing methods (red and green curves) and the

Method 1 2 3 4 5 6 7 8 9 10 11 12
Acc % 85.6 85.2 86.4 85.8 83.6 78.8 85.2 81.0 83.8 77.6 85.0 80.8

Table 5.1. Mean LDA accuracy across all subjects for the 12 preprocessing combinations.
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(a) Accuracy improvement due to downsam-
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(b) Accuracy improvement due to t-test.

original method from [Kaper et al., 2004] (blue curve) which was also used in [Lenhardt,
2006, Finke et al., 2009] are depicted in figure 5.11. Method (2) and (7) clearly outperform
the original method proposed by Kaper for all subjects. The differences between the two
best performing methods is minor. For subject 2, t-test feature selection and downsampling
achieved better results than the ICA based method, while for subject 5 this result is reversed.
For the remaining subject, both methods are equivalent in terms of accuracy.

To investigate the theoretical impact of the proposed error correction method, a simulation
of an experiment has been conducted consisting of multiple runs of 10000 trials. P300 and
ErrP classifiers were simulated by setting their confusion matrix (i.e. TPR, FPR, TNR, FNR)to
fixed values for each run. The time needed to correctly classify all 10000 trials was assessed.
This measure was assessed with error correction (EC+) and without error correction (EC−).
The important parameters according to section 5.5 were set to values which can be expected
for a real experiment:

• ISI: 200ms

• Number of stimuli: 8×8 matrix, i.e. 16 stimuli

• Average subtrials until classification: 6

• ErrP classifier FPR rate: 0.1

• Average stimulus presentation time Tst i m = I SI ·Sti muli ·Subtr i al s = 19.2s

• Time to execute action Tact = 15s

The stimulus presentation time was set to 19.2s, a value that corresponds to an average of
6 subtrials until a prediction is made by the BCI, an ISI of 200ms and a number of 16 stimuli
which resembles an 8×8 stimulus matrix. The FPR rate of the simulated ErrP classifier was
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Figure 5.11. ROC curves for the high task difficulty condition for all 5 subjects.
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Figure 5.12.

constraint to 10% throught the whole simulation. The TPR parameter of the ErrP classifier
and the overall accuracy of the P300 classifier (assuming equal amount of false negatives and
false positives) were varied from 50-100% (P300 Classifier) and 30-100% (ErrP classifier) re-
sulting in a matrix of time measurements for the respective parameter combinations. The
false positive rate of the ErrP classifier was fixed at 10% which means that according to the
ROC curves presented in figure 5.11, true positive rates of more than 70% can be expected in
a realistic setting.

Figure 5.12(a) shows the percental communication speed improvement of the error correc-
tion method over the standard method without error correction. The values were computed
using the utility metric presented in 5.5 and hence are a visualization which depictsΘ100 over
multiple parameter values. The blue line in the figure marks the break-even point where nei-
ther performance improvement nor performance loss is evident between both methods. For
all points above this line, a communication speed improvement can be expected in the long
run. The dashed green line denotes the start of regions which result in > 10% difference in
communication speed.

According to this, the proposed error correction method offers a slight improvement of up
to 5% if the P300 classification accuracy drops below 65%, the ErrP TPR is greater than 70%
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Figure 5.13. Action time increased to 50s. The same remaining parameters as in figure 5.5 were used. Time
factors for variable P3 accuracy and ErrP true positive rates. Lower values (bright values) correspond to
fast communication speed. The blue line marks the break-even point where both methods perform equally
well. In addition, 10% and 20% boundaries are shown which can be considered as significant improvemnt or
degradation areas.

and the FPR is does not exceed 10%.
With regard to the previously reported single-trial accuracies for the ErrP detection in fig-

ure 5.11, the method can be considered very useful in certain cases. An example would be the
BCI controlled wheelchair (e.g. [Iturrate et al., 2009] or [Rebsamen et al., 2007]). Both authors
were using the P300 signal to commit commands to a wheelchair that drives to a specific lo-
cation. Naturally the action time, i.e. driving to the location, can take a significant amount
of time compared to simple grasping of an object with a robot arm. When the action time is
increased to 50s, a different picture emerges as seen in figure 5.13.

One last thing left to prove is the hypothesis, that the FPR of the ErrP classifier is the param-
eter that can lead to significant performance degradation. In the beginning of this section it
was shown, that the FPR controls path (2) (Figure 5.5), a feedback connection which causes
the system to use more subtrial presentations than necessary and is not present in a BCI
without error correction. And indeed, increasing this parameter to 15% (Figure 5.14(a)) and
20% (Figure 5.14(b)) of the initial 10% and computing Θ100 over a range of parameter values
results in a serious performance drop as can be seen in figure 5.14(a) and 5.14(b).

5.7 Conclusion

In this chapter, an experiment to evoke error-related potentials has been conducted and the
differences of the EEG patterns occurring after incorrect BCI predictions to EEG patterns
evoked in response to correct prediction have been analyzed. Based on these findings, an
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Figure 5.14. Increasing the false positive rate of the ErrP classifier leads to significant communication speed
loss of the BCI.

error correction method has been proposed that could potentially help to improve the com-
munication speed of BCIs. A classification method has been developed that is able detect
the presence of an ErrP using only one EEG epoch as input data. Based on this method, 12
combinations of preprocessing and feature extraction methods have been compared which
revealed that ICA based preprocessing and downsampling combined with a t-test for feature
selection outperformed the remaining methods with mean accuracies of 85% across all 5 sub-
jects. Given that P300 classification accuracy using an average over multiple subtrials usually
resides in the range of 80-90% accuracy, this can be considered as a surprisingly good result.
The data obtained from the ROC curves in figure 5.11 showed that accuracies of 85−90% are
possible to achieve while even keeping the false positive rates under 10%.

In addition, the feasibility of error correction has been studied using a probabilistic model
of a generic BCI with automatic error correction. For BCI’s without error correction, the av-
erage time to communicate a command can be calculated very easily since the BCI’s con-
trol flow can be described as a simple feed-forward structure which depends only on the
classifier’s correct rate. This task becomes more complicated for BCI’s with automatic error
correction which introduces internal feedback loops. Using the proposed model it is now
possible to predict the time between consecutive correct commands and thus compute the
average time the BCI needs to correctly communicate an arbitrary number of commands.
The model accounts for the internal feedback loops and is able to predict in which cases
the BCI will get stuck in the error correction feedback loops. It was also shown, that the
average time to spell an error free sequence of commands, which requires deleting wrong
commands and communicating the correct one afterwards, can be described as a discrete-
time infinite Markov chain. This advanced model accounts for manual user corrections of
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erroneous BCI commands. As an example, spelling the word [HELLO] might be the result
of the command sequence [H,E,L,L,Z,Backspace,I,Backspace,O]. From this sequence
of 9 commands, only 2 are erroneously recognized commands (Z and I). For every wrong
command, a Backspace has to be entered to correct for the mistake. In this sense, the infi-
nite Markov chain can predict the time required to enter the the word HELLO while also con-
sidering the time required for the correction of erroneous commands. Using this theoretic
framework it is now possible to directly compare the communication time for different BCI’s.
In contrast to the usual measure of bits/sec, the outcome has more practical relevance since
knowing the raw bits/sec carries no information about the practical communication speed
in terms of time to communicate a sequence of commands correctly.

In a simulation study, the performance difference between a BCI with error correction and
without error correction has been investigated. P300 detection accuracy and ErrP true pos-
itive rates served as free parameters to highlight their effect on the overall communication
time. The results showed, that ErrP true positive recognition rates must rise with P3 clas-
sification accuracy if a performance improvement should be achieved. For tasks where the
action time is long, e.g. for wheelchair navigation similar to [Rebsamen et al., 2007] where
the action ends when the wheelchair arrived at the selected destination, error correction is
highly feasible since it mainly avoids excessive execution of wrong actions. Further, the ex-
periment validated that the false positive rate (FPR) of the ErrP classifier is the parameter that
can cause a BCI with error correction to perform significantly worse than without error cor-
rection. The usage of the proposed method extends even into the performance optimization
domain. Since the global system performance can be predicted for any classifier threshold
(i.e. all possible TPR/FPR combinations), a parameter set can be found that minimizesΘ and
thus minimizes mean communication times. The search space for the TPR/FPR combina-
tions consists of the ROC curve of the respective ErrP classifier which can be obtained from
the training set.

A limitation of this model is the assumption that the input data to for the BCI do not change
over time, or more specifically that classification accuracy remains constant over time. Fa-
tigue of the user or an increasing lack of concentration might lead to degraded classification
performance in the intent recognition and error correction phase which might invalidate the
model parameters.

To summarize, the goal of implementing an ErrP based error correction system for BCIs has
been achieved. Important aspects of the feasibility of the error correction system have been
studied which resulted in the development of a probabilistic model to compute the BCI’s
communication time per correct symbol. The use of this theoretic framework might become
more evident in the future for optimizing classifier thresholds in a complex BCI and as a com-
parison measure whose accuracy does not suffer from low population sizes as it is common in
real experiments. The effect of the involved parameters on the overall performance has been
investigated which will prove to be useful for other researchers when it comes to optimize
their own BCI’s performance. A single-trial classification method has been proposed which
performed reasonably well with more than 80% correct rate in an offline setting. In conclu-
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sion it can be ascertained, that tasks which involve long action execution times, automatic
error correction offers a great communication speed improvement. Thus, the proposed sys-
tem might be of great value for other researchers who apply ErrP based error correction with
P300 BCIs in a setting which involves long command execution times. When optimizing the
system with respect to communication time for correct commands, the probabilistic frame-
work presented in this chapter will be useful for adapting the classifier’s threshold. This prob-
lem which was usually solved by choosing a point on the ROC curve with heuristic optimality
constraints as in [Takahashi et al., 2010] while the presented method is able to analytically
determine the optimal operating point and even accounts for manual corrections.
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6 Augmented Reality-based BCI

This thesis was motivated by the question how a P300-based BCI can be used to efficiently
control reaching and grasping movements of robotic actuators. A solution for this problem
requires that the term efficiently has to be clearly defined. When talking about an efficient
brain controlled robotic actuator it should imply that

1. Operation of the system should add as few additional cognitive load as possible

2. Operation should be intuitive and effortless

3. No subject training should be required

4. Translation of mental commands should be fast and reliable

In the following, the design of a novel system to control robotic devices in a natural way
by brain signals will be presented. Initial design decisions and principles regarding the em-
ployed paradigm will be discussed as well as the subcomponents involved in the whole pro-
cess of detecting the users intentions down to the low-level control of the robotic endeffec-
tors.

6.1 System design

When evaluating the existing approaches as presented in section 3.3.2 with respect to these
claims, it turns out that none of them is able to fully comply with these propositions. A rea-
sonable assumption is that controlling many degrees of freedom also requires increased ef-
fort from the user to be able to command all of them in a coordinated manner. However,
this would contradict the first claim since control over many degrees of freedom implicitly
allocates higher cognitive resources to control all DOF with respect to a goal. This raises the
question how the process can be simplified for the user without sacrificing functionality of
the system.

Two popular strategies are employed in modern BCIs which control artificial actuators. As
reviewed by [Wolpaw, 2007], control strategies can be distinguished by Process Control and
Goal Selection (see figure 6.1). Thereby, process control strategies aim for direct control of
the available motors or muscles while goal selection approaches focus on recognizing the in-
tent of a user and delegating low-level control to an autonomous subcomponent. The intent
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Cortex BCI
Intent

Detection

Execution

Unit

Joint/Motor

Control

Cortex BCI ActionProcess

Control

Goal 

Selection

Joint/Motor

Control

Afferent Path
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Figure 6.1. Robotic control via brain signals can follow two different control strategies. Process control offers
the most flexibility since a closed feedback loop between action and the brain is established with full control
over the robots movements. Goal selection approaches offer limited flexibility in that only intent is extracted
from brain signals while motor control is delegated to soft- and hardware subcomponents.

serves as input for an execution unit which translates it to a sequence of motor actions. Ob-
viously, the goal selection approach does not require the user to achieve full control over the
output device via brain signals. A rather simple intent detection scheme would be sufficient
which requires only a one dimensional selection of a target symbol corresponding to the de-
sired action while the process control approach would require the user to be able to control
at least 3 DOF to navigate freely in space. In goal selection approaches, actual control is del-
egated to subcomponents which are not bound to higher cognitive functions. This reflects
the normal output pathways of the brain and its underlying systems for motor control. Thus,
it can be stated that goal selection approaches are currently the most natural way to control
robotic output devices by brain signals. A statement that Wolpaw seems confirm in his review
of BCI technologies [Wolpaw, 2007]:

Thus, with further development, including refinement and elaboration of feed-
back from the downstream apparatus to the CNS, the goal-selection strategy has
the potential to emulate with increasing fidelity the brain’s normal output path-
ways. In contrast, process-control BCI methods that vest control entirely in the
cortex are likely to remain an artificial and fundamentally unnatural approach.

P300 event-related BCI approaches perfectly fit for the goal selection approach since intents
(or actions) can be represented as single stimuli as is the case with the P300-Speller paradigm.
Therefore, the decision to use a P300-based approach was the most natural choice for this
thesis. A drawback of the goal selection approach is however, that the symbols which rep-
resent intents are static (i.e. they have to be pre-programmed) and thus only a limited set
of intents can be represented. Further, a system that aims to allow the user to grasp objects
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6 Augmented Reality-based BCI

must implement a way to transform these objects into computer controlled stimuli and as-
sociate a reasonable set of actions with them. A possible setting could be a scene consisting
of two objects, a cell phone and an apple, laying on a desk and a brain controlled robot arm
with a gripper. The first problem to solve is how the intention of the user to grasp the ap-
ple can be extracted from the EEG signals. As stated above, in P300-based paradigms intents
or goals can be represented as graphical stimuli that need to be selected according to the
known oddball principle. In this setting, the graphical stimuli consist of real objects. Thus,
computer-vision techniques are required to segment objects from background. Once the ob-
jects are recognized, they can be highlighted on a computer screen which now corresponds
to the P300-Speller paradigm. Grasping the apple would additionally require the spatial po-
sition of the object relative to the robots coordinate system. This is a non-trivial task since
either stereo-vision algorithms would be involved or a marker-based approach which relies
on predefined markers attached to the objects. Once the apple and its position are known
it is possible to use these information for a P300-Speller-like paradigm and select the apple
by mere thought. The action to take on selecting the apple would most likely be grasping.
An issue with context dependent actions could arise with the cellphone. It is not entirely
clear what the most probable action would be when selecting the cellphone. It could either
be USE CELLPHONE or GRASP CELLPHONE. A problem that might be possible to solve using AI
techniques. This is, however, beyond the scope of this work and was chosen to be omitted.

To solve this task, a novel system called Brain-Link has been developed within this thesis
that can operate in a way as described in the aforementioned example. It is structured into
three different components: the vision, EEG and robot component. A schematic view of the
system is shown in figure 6.2. The whole system is built in a modular way to allow for ex-
changing and adding subcomponents at any point of the pipeline. All subcomponents are
able to communicate with each other over a network connection. This allows to distribute
the components over many computers and even allows for a teleoperation scenario where
the user is able to control a remote robot arm over the internet. As a general framework,
BCI2000 [Schalk et al., 2004] was chosen which already offers a rich set of functionalities re-
quired for the module communication and data logging. The methology of BCI2000 can be
best described as a distributed client-server architecture with a central component that takes
care of all housekeeping functions like data logging, configuration propagation to connected
modules, network access and module communication capabilities via global state variables.
A module of this framework can be either one of three different types:

• Data Acquisition Module

• Signal Processing Module

• Application Module

Each of these modules is running as a separate process while inter-process communication
is established via UDP network messages in form of state variables which can be defined by
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BCI2000

EEG

Acquisition

Robot Com Server

Robot Backend

GUI

Figure 6.2. Distributed system architecture of the BrainLink system. Each cloud denotes a system component
that can run on a separate machine and is able to communicate via network messages with other modules.
Three main modules exist which integrate into the BCI2000 framework [Schalk et al., 2004]: Acquisition,
Signal Processing and the Application (i.e. graphical interface). A fourth module, operating outside the
standard BCI2000 framework is the robot control part which is implemented with the OpenKC framework
[Schöpfer et al., 2010] and a UDP client-server interface.

107



6 Augmented Reality-based BCI

Figure 6.3. Subject view of the scene. Computer generated 3D models are augmented onto the cube objects
which represent the stimuli in the augmented-reality paradigm. When a stimulus is intensified, the color is
changed to yellow (top left). Neutral stimuli appear as gray clored numbers.

the modules. A further advantage of using BCI2000 is the ability to easily insert Matlab code
into the module chain which speeds up development times greatly.

6.2 Augmented Reality paradigm

The most natural approach to select real objects would be to implement a way to highlight
these objects. This allows for dynamic stimuli in the scene without the need to pre-define
selections as in [Rebsamen et al., 2007] or to use static stimuli that serve as waypoints as
in [Iturrate et al., 2009]. The novel paradigm presented in this section employs Augmented
Reality techniques to augment the natural vision of the user with computer generated graph-
ical stimuli, whic are aligned with the spatial position and orientation of the real objects. A
head-mounted display (HMD) with two firewire cameras is used to stereoscopically display
the scene in front of the user. Objects can be of any shape and form as long as they have a
special marker attached that is being recognized by the vision component of the framework.
The system works in two phases. The first phase is devoted to recognize a target object which
has to be grasped. Figure 6.3 shows a typical scene with multiple objects distributed on a
table. As stimuli, 3-dimensional numbers are augmented on top of the cubes. During a run-
ning selection task, these numbers will flash on a single-object basis. In this special case the
single-stimulus highlighting scheme was favored over the grid based design since the num-
ber of stimuli is too low to gain any benefit from a grid-based design (c.f. 3.2.6). Once an
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object has been identified as the intended target, the robot arm will grasp and lift the object
to a specified height and the second phase is started. During this next round a 3D grid model
is overlayed with the scene (Figure 6.3). This stimulus presentation shares a strong similarity
to the known P300-Speller matrix but selection target (i.e. cell) can only be distinguished by
their spatial location, whereas the cells of the speller matrix can be distinguished by their con-
tent (i.e. different letters) and spatial location. Stimulation is done in the same way as with
the speller matrix using a multiple stimulus approach where rows and columns are flashed
in random order. A recognized target cell serves as a dropoff coordinate for the robot arm
which puts the already grasped object at the location coinciding with the augmented grid
cell. A sequence of the involved processes is shown as a flow diagram in figure 6.4. The sys-
tem is running in a synchronous fashion. Each module is waiting for input from its preceding
module in the pipeline. Since the EEG data acquisition has to query the internal buffers on
a regular basis to prevent an overflow, a real-time constraint is implied with the system. One
full cycle of processing including EEG acquisition, signal processing, marker recognition and
stimulus augmentation have to be completed within the timeframe defined by the EEG data
buffer size and samplingrate. During the experiments, a block size of 15 samples at 256Hz
was chosen resulting in a timewindow of roughly 60ms in which one full pipeline cycle had
to be completed. On a coarser level, the sequence of processes consists of two main compo-
nents driving the functionalities of the BCI. The central part of the system, the AR Paradigm,
controls the behavior of the graphical frontend with respect to the classification results and
also triggers robot actions by sending appropriate commands and parameters to the second
main component, the robot backend. This backend module is not a designated component
of the BCI2000 framework which only knows acquisition, signal processing and application
modules. It consists merely of a remote server accepting incoming network messages from
the AR Paradigm and performs the necessary low-level commands to control the robot ac-
cording to the received command.

6.3 Augmented-Reality component

For the sake of simplicity, sophisticated stereo-vision and object recognition methods were
rejected in favor of a marker based vision approach. ARToolkitPlus (ARTK+) which is based
on ARToolkit (ARTK) [Kato and Billinghurst, 1999] was chosen as Augmented-Reality toolkit
which offers marker position and pose estimation via monocular camera images. The system
is able to identify predefined square black-white marker patterns printed out on white paper.
The resulting pose matrices can be used to orient a virtual 3D object in virtual space which
can be aligned with the camera image. This process of combining the camera image and the
computer generated (CG) 3D object is commonly called augmentation. Augmenting camera
images with CG objects requires a series of processing methods. With ARToolkit, these steps
can be separated into 5 groups as shown in figure 6.5:

• Pixel Format Selection
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Figure 6.4. Diagram of the module interactions and timing contraints for the Grasping Task.
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Figure 6.5. Pose calculation pipeline of ARToolkit. After converting the raw image into the required image
format, thresholding is applied to get a binarized image. This image serves as input for the marker detection
algorithm. In this step, the binary coded IDs of the marker are extracted using the BCH pixel patterns on
the marker. Next, the image is undistorted using the camera parameters which have to be acquired in a
calibration procedure. The final step is the calculation of the marker pose which is achieved by the Robust
Planar Pose algorithm [Schweighofer and Pinz, 2006].

• Thresholding

• Marker Detection

• Lens Undistortion

• Pose Estimation

Pixel Format Selection

The process of pixel format selection is straightforward since it only requires to convert the
native camera image format into one of the available formats that can be used with ARToolk-
itPlus. For tracking purposes luminance images are well suited since they conserve memory
and computation time. Ultimately all images are converted into grayscale images inside AR-
Toolkit but since the display on the HMD required color, the acquired images were converted
to the RGB format.

Thresholding

In a next step, the acquired and converted image has to be binarized, i.e. converted into a
black-and-white image. This is achieved by a thresholding algorithm which sets every pixel
above a certain luminance threshold to white while all other remain black. Stationary light-
ing setups can be controlled in such a way as to provide very equal lighting throughout the
whole scene. Such a setup usually requires special lighting equipment like diffusers and spe-
cific light angles to suppress glaring and reflections on the markers. Therefore the standard
thresholding algorithm of ARTK might be sufficient which requires the programmer to set
a constant threshold value for the mapping. However, as soon as daylight hits a room, the
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6 Augmented Reality-based BCI

Figure 6.6. Thresholding of camera images. Left: Original image with radially imbalanced lighting. Mid-
dle: Constant global thresholding results in a radial artifact. Right: Thresholded image after vignetting
compensation.

quality of the constant thresholding can suffer. Further, some cameras are less light sensitive
at the outer diameters of the lens and produce a seemingly unequal lighting condition on the
scene. The problem of changing lighting condition can be tackled by the use of the automatic
threshold method provided by ARTK+. To improve performance, only the last seen marker is
considered. The median of all marker pixels is computed which serves as a threshold for the
next frame to process. If no marker is found in the next frame, the threshold is randomized
for every new frame until a marker is detected. Using this heuristic it is possible to reacquire
a marker within a few frames in case it got lost. A second optimization called vignetting com-
pensation can be used for images showing a radial light intensity falloff. This effect can be
very noticeable on certain camera types. But since the cameras did not suffer from such an
effect, no vignetting compensation was used.

Marker Detection

To detect markers in the binarized image, a connected component labeling algorithm finds
areas that are connected by adjacent pixels of the same color. This step is required to find the
thick marker border which serves as input for the subsequent pattern normalization and pose
estimation. Once the all connected components have been labeled the pattern is normalized
and edge contours are traced. Normalization is the process of reverting the perspective dis-
tortion resulting from the patterns pose angle to the camera.

All regions with edge contours that can be fitted by four line segments are regarded as a de-
tected marker. The four vertices resulting from the intersection of the four line segments are
stored for the subsequent processing algorithms. Further, the inner section of the rectangle
is extracted which serves as an identifier for the different markers. Two methods can be used
for marker identification

1. Template matching (requires training)

2. Binary BCH code patterns (no training required)
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6.3 Augmented-Reality component

Figure 6.7. Pattern normalization: a) Original pattern with perspective distortion. b) perspective corrected
pattern. c) Downsampling of resolution to speedup recognition times.

In the first case of template matching, the inner pattern has to be trained by capturing a
camera image perpendicular to the marker. This step has to be repeated for every new pattern
that should be recognized.

A more practical solution was introduced in ARTK+ with the use of BCH coded markers
which allows automatic identification of the patterns using a syndrome decoding1 method.
BCI codes represent a class of parameterized error-correcting codes. They require very little
computation time for decoding which makes them suitable for this application. They are
made up of a 2-dimensional grid of black or white pixels (Figure 6.6) which code a certain
number which serves as an ID. Since this method is more flexible in terms of adding new
markers in addition to the trainingless nature, it was chosen as the preferred method for this
work.

Lens Undistortion

Accurate pose estimation entails the requirement for near-optimal screen coordinates which
approximate a perfectly flat projection surface of the virtual camera. With physical cameras
however, lens distortion effects can be observed (see figure 6.8). This is especially visible with
fish-eye lenses. But also standard lenses show distortion effects on the edges of the image.
To mitigate these effects, an initial camera calibration procedure is applied to calculate the
intrinsic camera parameters which will be used to undistort the image. As seen in figure 6.8
the undistorted image will not fit the screen and therefore a scale adjustment is required to
fit the whole rectified image on the screen.

Pose Estimation

Marker pose estimation is based on known sizes of the markers. A transformation Tcm, as
pointed out in eq. 6.1, has to be found which transforms the marker coordinates into camera

1An efficient method to decode a linear code over a noisy channel. An example is the well known Hamming
code.
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screen coordinates as shown in figure 6.9.
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 (6.1)

The transformation Tcm is found by an iterative process that aims to minimize

er r = 1

4

∑
i=1,2,3,4

{
(xi − x̂i )2 + (yi − ŷi )2} (6.2)

where (xi , yi ) represent the previously extracted vertices and (x̂i , ŷi ) the four vertices in ideal
image coordinates (eq. 6.3).

hx̂i

hŷi

h

= C ·Tcm


XMi

YMi

ZMi

1

 , i = 1,2,3,4 (6.3)

The transformation into ideal screen coordinates is implicitly shown in eq. 6.3 by the multi-
plcation of Tcm with a perspective transformation matrix C. The latter matrix is found, along
with the distortion parameters, during the camera calibration process.

As a result, the AR component calculates the position and orientation of the recognized
markers with respect to the current camera coordinate frame. In the context of the BCI appli-
cation however, marker positions that conform with the coordinate frame of the robotic arm
are required. Since the subject is wearing the HMD and thus is mobile in general, a calcula-
tion of a transformation matrix from the user to the robot coordinate frame is not possible
without further tracking equipment and calibration techniques. As a simple solution, a ref-
erence marker is placed at a known position in the robot coordinate frame and serves solely
as a reference point. To determine all other marker positions with respect to the reference
point, as depicted in figure 6.10, the transformation matrix which positioned the reference
marker in the camera frame is inverted and multiplied by the transformation matrices of the
other markers. The known position of the reference marker allows to calculate all positions
of the other markers by simply multiplying their transforms with the inverse of the reference
marker’s transform. In practice however, placing the reference marker at the origin would not
be an optimal place since the origin is too far away from the cameras and can be occluded
by the robot arms. Therefore, a position closer to the cameras was chosen which is 90cm
along the y-axis of the robot’s coordinate frame. The resulting relative positions of the other
markers have to account for this translation.
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6.3 Augmented-Reality component

Figure 6.8. Images are compensated for lens distortions induced by the cameras to achieve accurate results
of the pose calculations. Unwarping the image leaves areas with no image content. The actual image size is
reduced to completely fit into the inner boundary of the unwarped image.

Figure 6.9. Transformation between different coordinate systems.
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TCM

Camera frame

Reference-Marker 

local frame

TCM
-1

(a) (b)

aligned with robot frame

Figure 6.10. Due to the unknown head position position and orientation of the camera frame with respect
to the robot frame are also unknown. (a) Stimuli are transformed into the robots fixed coordinate frame by
using a reference marker placed at a known position in the robot frame. (b) The position of each marker
relative to the reference marker can be derived by multiplying the markers transformation matrix TC M with
the inverse transform T−1

C M of the reference marker.

6.4 EEG component

The EEG component consists of a pipeline of signal processing and classification modules
which were all implemented in MATLAB. Insights from the previous experiments were incor-
porated and modified to yield an optimal result. The basic procedure shares strong similar-
ities to the methods described in section 4.2. Optimizations were primarily applied to the
dynamic subtrial algorithm and the LDA classifier to conform with the classification method
described in chapter 5. An in-depth explanation of the above methods will be explained in
chapter 7. Schematically, the pipeline can be divided into four components each with a dis-
tinctive role:

Acquisition The data acquisition component simply manages calls to the low-level driver
functionalities of the EEG and keeps requesting data buffer from the device in cyclic
time intervals. Further, it controls the built in hardware IIR digital filters which helps to
reduce the required workload of the subsequent signal processing steps. The acquired
data is passed to the BCI2000 operator module which handles data logging and storage
facilities and passes the data to the preprocessing node in the pipeline.

Preprocessing When running in online mode (i.e. live classification of unknown data) the
preprocessing extracts epochs from the continuous EEG data stream and applies fea-
ture extraction methods to each epoch. Further, it changes the internal data represen-
tation to conform with the format required by the subsequent classification method.
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6.5 Robot component

Classification Classification is carried out for each new epoch received from the preprocess-
ing step. As classifier, LDA is used with analytically determined regularization parame-
ters for the covariance estimator as described in 5.4.

Postprocessing The postprocessing step consists of the dynamic subtrial algorithm which
collects classification scores for the respective epochs and is able to control the behav-
ior of the visual paradigm by setting appropriate global state variables.

When running in offline mode, all steps after the data acquisition are skipped since only
data are recorded without any classification.

6.5 Robot component

PC running OpenKC

Kuka Robot Controller 

running KRL program

Robot control via 

SERCOS

at 1ms cycle

Answers XML message

containing join corrections

Sends XML message

every 12ms

containing joint positions

Figure 6.11. Schematic view of the low-level robot control infrastructure using OpenKC [Schöpfer et al.,
2010] and Kuka Robot Language (KRL) to control the endeffectors.

All previous components were primarily concerned with the recognition of mental com-
mands. This last component constitutes the interface from the mental to the physical world.
Commands detected in the former steps are translated into control statements of a robotic
actuator. Thereby, sensor data originating from the 3D position and pose estimation of the
AR component serve as target coordinates for the robot controller. Using the AR paradigm
scenario only two different types of actions are possible, grasping an object and releasing it at
a desired location. The mechanism of the high-level interfacing part of the robot component
is quite simple. An UDP network socket is bound to a specified port while listening for in-
coming packets. Packets will be sent out from the AR paradigm contained in the Augmented-
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Reality component. Each packet contains a list of variables (i.e. a state vector) representing
the next required state of the robot. The components of the state vector S̄ = (

tx , ty , tz , a
)

con-
sist of the target location

(
tx , ty , tz

)
with respect to the robots coordinate frame and an action

type variable a ∈ [1,2,3] where the numbers represent a certain type of action which can be
either GRASP, RELEASE or RESET. Only the first two commands GRASP and RELEASE can
be issued by mental commands. The last command RESET merely serves as a convenience
command to bring the robot into a predefined position. Low-level control of the robotic ac-
tuator can not be achieved by mental commands. Instead, the robot backend completely
controls arm trajectory and grasp parameters. The low-level control process consists of inte-
grating arm position, hand posture, grip force and tactile feedback into a control loop to be
able to grasp arbitrary objects by simply knowing their coordinates. Information about the
objects shape, size and weight are important parameters to apply correct grip pressure and
hand postures for grasping and releasing an object. This problem however is solved in the
Open Kuka Control (OpenKC) framework [Schöpfer et al., 2010]. All low-level control is man-
aged with the use of the OpenKC API. In the default setup of the Kuka arms, a robot program
written in KukaRobotLanguage (KRL) running on an embedded realtime capable Windows
using VxWorks is sending joint control commands to the endeffectors at a 1ms cycle. The
current setup adds a remote realtime capable computer running the OpenKC framework. As
seen in figure 6.11, the remote computer communicates with the Kuka controller by sending
out XML network messages. These messages comply with the XML version of the Robot Sen-
sor Interface (RSI-XML) protocol which is an open protocol provided by Kuka for real-time
control of the manipulator. Once a network communication is established, the robot con-
troller starts to send XML messages in a 12ms interval containing current joint positions to
the remote computer which in turn is required to answer this message with appropriate joint
correction values.
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7.1 Introduction

This final study aims to investigate the usability of the Augmented-Reality based Brain-Computer
Interface. The focus is put on the usability evaluation in real-world situations and improve-
ments related to issues arising from the trial-based nature of P300-based paradigms. Con-
trary to the majority of BCI studies, the subjects were allowed to talk, move to a certain extent
and look around freely which entails a high grade of robustness of the classification methods.
This setting should allow to simulate the behavior of people using such a system as a tool in
an arbitrary environment. In addition, the previously proposed dynamic subtrial algorithm
(c.f. chapter 4) has been reinvestigated and extended to incorporate and asynchronous oper-
ation. In this version, specific information is extracted which can be used to decide whether
a user actually intents to communicate with the BCI or is just reacting to a stimulus which
was not originating from the BCI. Knowledge about the user’s intent to communicate with
the system is a crucial point when implementing a BCI for robot control. Since the event re-
sponsible for the evocation of an event-related potential, which is used to derive the intended
action of the user, can stem from the stimulation paradigm of the BCI or from some arbitrary
uncontrollable outside stimulus it is difficult without additional sensors like microphones or
cameras to identify the origin of the event. The idea behind the extended dynamic subtrial
algorithm is that the temporal event onsets stemming from an event issued by the BCI should
also temporally correspond to a P300 potential over multiple epochs. If the user is paying at-
tention to an outside event which is not controlled by the BCI but occurs at the same time
as a BCI related event, an ambiguity arises. This ambiguity however can be resolved since
it is unlikely that the outside stimulus will be temporally correlated to the BCI event multi-
ple times in a row. The extended version of the dynamic subtrial algorithm keeps track of
the temporal correlation of consecutive P300 epochs for each stimulus and combines this in-
formation with the classification output. Using this method, the BCI becomes more robust
to outside events, artifacts, misclassifications and allows to transform the trial-based nature
of P300 based BCI’s into a continuous one. The advantage of a continuously running BCI
is that it can receive commands at an arbitrary time in contrast to the trial based approach
which defines a point in time where the user has to start concentrating for a given number of
subtrials.
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Interaction Volume            

[40x40x30 cm]

“Free-Move”

User Area

Figure 7.1. Illustration of the environment setup of the experiment. The volume in which actual object
interaction can occur is 40x40x30 cm large. A "Free-Move" area is located in front of the cage where the
user is allowed to move around freely while viewing the scene.

7.2 Experimental Setup

The physical environment which served as stimulus input was restricted to a 170cm×170cm
robot cage. A table was located inside the cage at 130cm above the ground. The Kuka robot
arm was mounted at the back of the cage and 50cm above the table surface. Due to robot
joint constraints, the table area on which actual object manipulation could occur was limited
to a 40cm × 40cm square area aligned around the tables center. Five plastic cubes with at-
tached AR markers on the top were placed on the table inside the 40×40 interaction volume
with random initial positions. An illustration of the experimental setup is shown in figure
7.1. According to the AR paradigm as described in chapter 6, each subject was equipped with
EEG electrodes and a stereoscopic Trivisio AR-Head Mounted Display (HMD). The user was
viewing the physical scene solely through the LCD displays of the HMD at a 800×600 reso-
lution and 60Hz refresh rate. Image acquisition from both cameras was synchronized via the
firewire API of the drivers and displayed on the corresponding LCD screen. The narrow field
of view of the oculars made it was necessary to manually adjust the ocular positions for each
user. Since no blinders were used with the HMD it was possible to direct the gaze past the ex-
tents of the oculars. Thus, parts of the environment were visible in the peripheral view of the
user but not in the field of view of the cameras. When viewed through the HMD, each marker
was augmented with a 3-dimensional model of a number with the exception of one special
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marker. This special marker was placed at a predefined position with known coordinates in-
side the robot coordinate frame and served as reference point for the required coordinate
transformations from the camera to the robot frame. When trying to place a grasped object,
a grid was augmented on top of this marker where each grid cell corresponded to a selectable
target location.

Data acquisition

To evaluate the usability of the Brain-Link system, a study involving 4 healthy subjects was
conducted. Based on the knowledge gained from previous experiments, electrodes were at-
tached at the positions O1, O2, Pz, P3, P4, Cz, C3, C4, Fz, F3 and F4 to cover the primary areas
related to the P300 ERP (central to occipital sites) as well as frontal areas which seemed to
be prominent locations for the detection of error-related potentials. Reference and ground
electrodes were attached to the left and right ear lobes. The scalp of the subject was prepared
at the electrode locations with ethanol and an abrasive paste to improve skin conductance.
Impedances greater than10kΩ were rejected and the site was prepared again until a proper
impedance was achieved. Data recording was done with a 16 channel gUSBAmp EEG ampli-
fier with corner frequencies of the internal bandpass filter set to 0.1 and 60Hz to account for
slow signal drifts which can occur from changing skin conductance. Throughout the train-
ing session, data of the resulting continuous EEG data were stored to disk for later offline
analysis.

Experimental protocol

Similar to the previous studies, the grasp experiment was broken down into a training and an
online phase.

Training Phase During the training session, the subject was viewing the scene through the
HMD and was asked to keep all marker cubes in his field of view at all times. A gray
colored 3-dimensional model of unique numbers was displayed above the cubes. The
procedure required the subjects to focus on a given cube (i.e. the number above it) and
count the number of intensifications. Training started with marking the target cube
by changing the color of its associated number to green for 3 seconds, followed by 10
intensification rounds. Each intensification round consisted of flashing all visible num-
bers on a one-by-one basis for 60ms. This corresponds to the Single-Speller Paradigm
as described in section 3.2.6. For 5 available symbols a subtrial denotes a full round
of 5 intensifications while 10 consecutive subtrials denote a trial. A complete train-
ing session covered 30 trials which resulted in 60 epochs from the P300 class and 240
epochs containing no P300. Once the data collection had been completed, the data
were passed to a Matlab script which computed an LDA classifier.

Online Phase During the online phase, the subjects were also viewing the scene through
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the HMD. The robot arm and thus movement of the cubes could be controlled in a
two-staged process (c.f. figure 6.4). In a first step, the cubes were augmented with
their corresponding number and selection took place by focusing on a certain number
while mentally counting it’s number of flashes. In contrast to the training procedure,
no fixed number of subtrials was given. The optimal number of subtrials to predict the
letter was determined by an extended version of the dynamic subtrial method. Once
the target cube had been identified, a grasp command was sent to the robot backend
along with the coordinates of the cube’ relative position to the robot’s coordinate frame.
Pathplanning and grip force was handled autonomously by the backend and was not
controllable in any way by the user. The first stage was completed once the robot had
grasped and lifted the target cube 30cm above the table.

At the beginning of the second stage the system switched into the grid-mode which
concealed all cube augmentations and displayed a grid plane which was anchored at
the reference marker. Each grid cell corresponded to a target symbol and marked a
spatial location for placing the grasped object. Selection of the cells followed the proce-
dure of a normal P300-Speller paradigm by highlighting rows and columns in random
order. Again, the user had to focus on a symbol (i.e. grid-cell) and count the number
of corresponding flashes. As in the first stage, the extended dynamic subtrial method
determined the number of subtrials. In response to an identified target grid-cell the
object was placed at the desired location. Afterwards the arm was moving back to it’s
initial position, ready to receive a new command from stage one.

To evaluate the efficiency of the system, the subjects were required to control the robotic arm
during the online phase and rearrange the five marker cubes at randomized initial positions.
The task was to move 10 arbitrary markers to a different location. During the running exper-
iment the subjects were standing in front of the robot cage and were allowed to walk freely
from left to right in front of the cage. Further, talking and asking questions was allowed as well
as looking around the room freely. Relaxing the experimental constraints usually involved in
BCI studies (i.e. sitting still, not moving) allowed to evaluate the usability for healthy sub-
jects. Since these are potential sources of EEG artifacts, misclassification on single-trial basis
is an inevitable drawback. To detect and mitigate these effects was subject to the extended
dynamic subtrial method (EDS) and thus served as a benchmark to test its robustness.

To get an objective measure of the performance of the extended dynamic subtrial method,
the BCI remained active and was ready to receive commands after completing the actual goal
of rearranging the cubes. During that time, the subjects were interviewed by the experiment
supervisor. The questionnaire contained questions about the ease of use, subjective effi-
ciency, identified problems and suggestions to improve the system. During that interview,
the BCI remained active but was to required to stay idle and not conduct any robot actions.
The study closed with a last verbally given order to the subject to move the first cube back to
the lower left grid-cell.
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In summary the experiment aimed to investigate two aspects of the BCI:

• Evaluation of the Object Interaction task, involving pickup and placement subtasks

• Evaluation of the asynchronous Extended Dynamic Subtrial (EDS) method

Prior to each experiment, an initial training session was conducted to gather information re-
quired by the classifier and EDS algorithm. In the following analysis of the results, the object
interaction task will be referred to as Block 1 and the evaluation the EDS method as Block 2.

7.3 Methods

The methods to determine the intended symbol selection combine the findings of the previ-
ous studies. In specific, these are P300 detection using a Fisher Linear Discriminant Analysis
(LDA) using EEG data preprocessed with an Infomax ICA. As demonstrated in the first study,
an automatic determination of an optimal number of subtrials can effectively reduce the time
needed to communicate a symbol. Therefore, this technique has been incorporated into the
final system. In addition, this technique lends itself to implement a technique that is capable
to indirectly determine whether an EEG epoch, identified by the system as a P300 containing
epoch, represents information that is directed to the BCI or is merely a response to outside
events or even just a misclassification. Hence, an extension to the method is proposed which
incorporates the desired characteristics.

Preprocessing and P300 Classification

During the training session, a stream of EEG data which contained 300 stimulus events was
acquired. As a next step, the data were split into epochs with total lengths of 800ms rang-
ing from 100ms pre-stimulus to 700ms post-stimulus. An Independent Component Analysis
(ICA) was computed on these data to unmix statistically independent sources into separate
channels. In specific, prior to ICA a spatial Principal Component Analysis (PCA) was per-
formed to reduce the data to their intrinsic dimension and sphere the data. The sphering
step is in fact not required but reduces the convergence time of the following Extended Info-
max ICA algorithm [Lee et al., 1999]. Traditional ICA algorithms like Infomax ICA [Bell and
Sejnowski, 1995] are unable to separate sub-gaussian 1 sources. Some types of ocular arti-
facts were shown to have a sub-gaussian distribution [Jung et al., 1998]. Therefore extended
ICA was chosen to be able to decompose sources exposing a variety of distributions. Accord-
ing to the findings of the ErrP study (chapter 5), classification of EEG epochs benefit from
downsampling of the signals. Downsampling resamples the signal at a lower rate. However,
simple skipping of sample values will inevitably result in aliasing effects since frequencies

1The most prominent artifacts have been shown to have a sub-gaussian distribution. In [Lee et al., 1999] an
extended version of Infomax ICA has been suggested to separate these artifacts from actual EEG.
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higher than the Nyquist frequency (with respect to the new samplerate) will be mirrored into
the lower frequency spectrum. To mitigate this problem, the data were processed with an 8th
order IIR Chebyshev Type I lowpass filter before decimating the signal. The cutoff frequency
of the filter was set to C = 0.8∗ (Fs/2)/R with Fs being the samplerate and R the decimation
factor. Since the frequency content of a normal P300 potential does not exceed 20Hz, a dec-
imation factor of R = ⌈128H z

20H z

⌉ = 7 and a cutoff frequency of C = 0.8 · 128H z
7 = 14.6H z. After

decimation, the size of an epoch was 26 samples per channel. The final feature vector was
formed by concatenating the channels into a single vector with 11×26 = 286 elements. Each
concatenated epoch was added to the training set represented by a 300×286 matrix.

Next, a Fisher Linear Discriminant classifier with regularization parameters for the covari-
ance matrices was trained based on the former data set. The computational steps are similar
to the approach described in the first study (c.f. 4.2.3). Adapting an LDA weight vector w to
the training data requires to calculate the pooled within scatter matrix SW which is defined
as

SW = SP+ +SP− , (7.1)

where SP+ denotes the covariance matrix estimate for all P300 epochs and SP− the estimate
for all non-P300 epochs. For small sample sizes, it is known that the sample covariance es-
timation is rather imprecise and for N << p even ill-posed, with N being the number of ob-
servations and p the number of features. As a result, the smallest eigenvalues of the matrix
are too small while the largest eigenvalues are too large compared to the real eigenvalues. For
ill-posed matrices 0 eigenvalues exist and thus, its inverse cannot be computed. A popular
method to improve the accuracy of the estimation is to use shrinkage methods. Thereby, the
covariance ellipse is shrunken towards the center which effectively shrinks the eigenvalues
of the matrix towards their mean. Maximum shrinkage in this context will modify the ellip-
tic shape to a circle. Regularization parameters were computed using an analytic method as
presented by [Ledoit and Wolf, 2004]. For both of these covariance matrix estimates, optimal
shrinkage parameters have been calculated which modify equation 7.1 to

S∗
W =

[
b1

c1
mnI+ a1

c1
SP+

]
+

[
b2

c2
mnI+ a2

c2
SP−

]
(7.2)

The parameters a,b,c were calculated according to the equations already described in sec-
tion 5.4.3. Using the modified S∗

W within scatter matrix, the LDA weight vector calculation
changes to

w = S∗
W
−1(m+−m−) , (7.3)

with m+ being the mean vector of the P300 class and m− the mean vector of the non-P300
class. As in the previous studies using LDA as classifier, projecting a new epoch onto the
weight vector results in a scalar number

s(x) = w · x +b (7.4)
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b1 b2

b2 =
β − δ

2α
b1 =

µ+ + µ−

2

µ+ µ−

Figure 7.2. Bias calculation is done depending on the equality of covariances. In case of equal covariances,
simply the center of the interval spanned by the mean values of the distributions is taken. For unequal
covariances the gaussian intersection is used.

whereas the sign can be used to discriminate between both classes (i.e. positive numbers cor-
respond to the P300 class while negative correspond to the non-P300 class). A last difference
concerns the calculation of the bias parameter b which was found by cross-validation and a
grid search in the first study. For a discrimination task of two classes with equal covariance b
can be easily calculated by setting it to the center of the interval spanned by the P+ and the
P− class means. In case of unequal covariances however, the gaussian intersection of those
classes is calculated and taken as bias by

b = β−δ2

2α
(7.5)

with

σ+ = wT S∗
P+w (the projected P+ class variances) (7.6)

σ− = wT S∗
P−w (the projected P− class variances) (7.7)

α= 1

σ+ − 1

σ+ (7.8)

β= 2 · (
s(m+)

σ+ − s(m−)

σ− ) (7.9)

γ= s(m+)2

σ+ − s(m−)2

σ− + log(σ+)− log(σ−) (7.10)

δ2 =β2 −4αγ (7.11)
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7.3.1 Extended Dynamic Subtrial (EDS) Method

An initial approach to adapt the number of presented subtrials has been presented in the
first study. A more flexible version has been developed within this study that serves three
main purposes:

• Online adaption of presented subtrials (communication speed increase)

• Provide a better degree of robustness with respect to classification outliers

• Enable the BCI to operate in an asynchronous mode

Both the Dynamic Subtrial (DS) and extended Dynamic Subtrial (EDS) method rely on the
distribution of the projected class samples. Figure 7.3 visualizes a simplified example with
two classes (red and blue) of 2D samples. First, the high dimensional samples are projected
onto the LDA weight vector, which is orthogonal to the decision boundary of the classifier.
The projection results in a dimension reduction by projecting all points into a 1D space.
When using single-trial classification, all projected samples greater than the bias b are as-
signed to the blue class, while all projected values smaller than b are assigned to the red
class. Both methods assume, that the mean score for each stimulus will converge towards
their corresponding class mean.

Specifically, the DS method relies on the assumption that it is highly unlikely that the mean
of a sequence of samples belonging to the non-P300 will be close to or greater than the pro-
jected mean of the P300 class. For a matrix-style paradigm, these scores are simply added
to their corresponding cell. For the first subtrial, only single trial classification can take place
which inevitably results in rather dispersed score distribution within the matrix. As more sub-
trials are added into the process, these values will converge to their expected means. The DS
method estimates the point in time at which actual classification should happen, by defining
a decision function based on the contrast (or the dispersion of values) of the score matrix.
In essence, the DS method defines an abstract value based on a heuristic decision func-
tion which measures the dispersion of the score matrix. A drawback of this method is the
parametrization. At the beginning of an experiment, a reasonable T Pscor e threshold can be
found by using the training data to search for a value that equalizes false positives and false
negatives. During a running experiment the score values for each symbol are determined by
continuously averaging their single-trial scores. High variances in the underlying score dis-
tribution will cause the values of the score matrix to fluctuate randomly during the first few
subtrials. Hence, with only few subtrials their explanatory power is poor. The method lacks
the ability to account for the variance present in the score distribution.

The extended version in contrast uses a probabilistic approach which lets the user define a
confidence level for detection of the best number of subtrials. This is achieved by interpret-
ing classification scores as features and estimating the gaussian PDF parameters µ andσ2 for
both classes in the feature space. In its simplest form, each EEG epoch (corresponding tem-
porally to a stimulus/symbol) is classified and the resulting classification score is collected for
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Projection into 1D-space
(i.e. onto the weight vector w)

Bias b
LDA weight vector w

Figure 7.3. Projecting the high-dimensional EEG data onto the trained LDA weight vector w results in 2
classes of points which are normally distributed along an 1D space.

each symbol. Once a symbol has been presented n times, its associated sequence of collected
scores form an observation vector x of size n. The observation vector is subject to a subse-
quent hypothesis test with regard to the question whether the mean of the observation vector
significantly differs from the true mean of the P300 class. By transforming the principles of
the DS method into a probabilistic framework, it is possible to base the decision function not
only on the mean value but also account for variance and number of presentations. Instead
of standardizing the scores by scaling them to a fixed interval, as it is done in the DS method,
EDS utilizes the standardized z-statistic

xφ ≡ z(x,µ+,σ2
+) = x−µ+

σ2+/
p

n
(7.12)

to estimate the observation mean value’s deviation from the true mean µ+; an approach that
implicitly accounts for both, number of observed values and variance. Here, only the mean
and standard deviation of the P+ class are used. The reason is that we want to test how much
an unknown sequence of scores deviates from the prototypical distribution of the P300 class
which was obtained from the training set. This allows a more elegant formulation1 of the
decision function since not an abstract value like the T Pscor e (c.f. 4.2.6) has to be given but a
confidence level can be defined. When choosing a suitable confidence level, the general aim
is to minimize type I errors, i.e. labeling a sequence of classification scores for one symbol as

1the formulation is considered as more elegant since it is embedded in a theoretically sound framework of
probability theory.
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P− when it is in fact belonging to the P+ class. The new formulation of the decision function
is defined as

D(x,α,µ,σ2) =
{

true P (Φ(z(x,µ+,σ2+)) ≤ zp=α|H0) ≤α
false other wi se

(7.13)

with zp being the quantile function

Φ(x)−1 ≡ zp =
p

2 erf−1(2p −1), p ∈ (0,1) (7.14)

which can be derived by inversion of the standard normal CDF

Φ(x) = 1p
2π

∫ x

−∞
e−t 2/2d t = 1

2

[
1+erf

(
xp
2

)]
. (7.15)

Thereby, the erf(x) function denotes the error function which is defined as

erf(x) = 2p
π

∫ x

0
e−t 2

d t . (7.16)

In practice, during a running trial every classification score received from the LDA is added
to the observation vector for the respective symbol. A standard score is calculated based on
the classification score of the observation vector x after every presented stimulus using 7.12.
The resulting scores are now represented in terms of standard deviations from the P300 class.
In the following, these values will be referred to as confidence values. As a consequence, these
confidences can now be used to calculated the probability of a type I error (false positive). The
practical result of a type I error would be a wrong action conducted by the robot. Practically
it is more efficient to present another round of stimuli than to end the trial too early which
could potentially result in a wrong classification due to too few score observations. Correcting
a wrong robot action would most likely require more time than presenting more subtrials
before the action was conducted. Thus, in cases where accuracy is of greater importance
than speed, the critical value used in the hypothesis test should be biased to towards the P+

class. This ensures that false positives are minimized at the expense of false negatives. The
latter type of error does not have any influence on the the issue of prematurely ending a trial.
Thus, it only increases the amount of time needed to correctly classify a set of epochs which
is a rather uncricitcal issue.

A question not addressed so far is how a suitable confidence level α as required by the
decision function (eq. 7.13) can be found. Setting this value too high will most likely lead
to an infinitely running trial as the required threshold is never reached. On the other hand,
using a too low value will prematurely end a trial with a very high probability of a wrong
classification. A convenient way to calculate α is to express it as a function of false positives

α(F P ) = z(z−1(zp=1−F P ,µ−,σ2
−),µ+,σ2

+). (7.17)

This formulation requires to define an acceptable false positive probability denoted by F P .
The quantile function zp transforms this value into a z-score. To find the critical value based
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Figure 7.4. Evolution of the test statistic values for 5 symbols over 4 subtrials. The black line marks the
critical value for rejection of H0. During subtrial 1-2 the hypothesis that the scores for the corresponding
symbols belong to the P+ class is rejected for symbols 1-5. For the third subtrial, two possible candidates for
a target symbol show up since H0 can not be rejected for them, however, only one candidate is allowed so
one more subtrial is necessary. Subtrial 4 finally delivers only one single candidate and EDS terminates the
trial.

on the distribution parameters of the P+ class, the z-score is destandardized by z−1 using the
gaussian parameters of the P− class and subsequently restandardized using the meanµ+ and
standard deviation σ2+ of the P+ class. Once this z-score is known it can serve as the critical
value for the hypothesis test. For the single symbol paradigm, the iteration of the subtrial
presentations finishes whenever the z-test rejects all but one symbol. In a similar way, during
the matrix style paradigm, the presentation finishes whenever the z-test rejects all but two
symbols.

The algorithm itself is simple to implement (see algorithm 2). For each symbol presented
n times calculate D(xφ,α,µ+,σ2+) with xφ being the list of standardized classification scores
for the symbol φ.

Asynchronous Mode

A side-effect of the EDS method is that the concept used for adapting the number of sub-
trials implicitly enables the BCI to be used in an asynchronous mode. While synchronous
BCIs require the user to start focusing on a target symbol at a specific time for a defined
time span, the EDS can automatically decide whether the acquired observations correlate to
a P300 event or do not contain sustained correlations over a certain time interval at all. How-
ever, using the method as described in this section will inevitably lead to problems due to the
continuously growing averaging window for the observations. Once a user stops focusing on
the BCI while it is running, observations are still being accumulated for each symbol. Given
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Algorithm 2 Pseudocode of the Extended Dynamic Subtrial (EDS) algorithm.
repeat

i ← r andom(1,n)
present stimulus i
x ← extract EEG epoch
S[i ] ⇐ LDA(x) {Add LDA score to the list S[i ]}
for all S[i ] do

xφ← z(S[i ],µ+,σ2+)
Hi ←D(xφ,α,µ+,σ2+)

end for
until

∑
i

(Hi ) == true

the user starts focusing on the BCI again after 50 subtrials have been presented (i.e. 50 ob-
servations per symbol), more than 50 subtrials are needed to mitigate the influence of the 50
non-P300 epochs to the averaging. In essence, the EDS will treat the whole time span until a
classification occurs as one single trial and will also keep accumulating observations during
that time. As a result, switching from a no-control (NC) state to intentional-control (IC) state
can potentially take very long. The switching time until D returns a true value is bound to
the time spent in the NC state. A small adaption to the the previously presented method is
required which replaces the growing averaging buffer by a moving average filter with dynam-
ically shrinking and extending window sizes. Instead of continuously gathering observations
for the averaging, a window ω(tmi n , tmax ) is defined using a minimum tmi n and maximum
length tmax . At the beginning of a new trial, the size of ω is initialized with tmi n . The window
is required to contain at least tmi n observations before it is passed to the decision function for
the first time. This allows to set a minimum number of subtrials to be presented to improve
the reliability of the hypothesis test. A value of 1 would simply turn off this feature and clas-
sification can occur from subtrial 1 onwards. With each additional subtrial ω is extended by
one sample until it reaches the maximum size tmax . From this point on, the window remains
static in size until a classification is made. For each additional subtrial, the oldest observa-
tion is replaced by the most recent one. A suitable value for tmax was selected by taking the
results of previous BCI experiments into account (c.f. 4.2.6). High recognition rates could
be obtained by using only 4-5 subtrials. Thus, 4 subtrials have been chosen as maximum
window size for the grasping experiment. The modified algorithm is outlined in 3.

Using this method, it is now possible to ignore the BCI stimuli for a long period and switch
back into IC state within just a couple of subtrials. A benefit of this method is, that no ad-
ditional training is required (as in e.g. [Zhang et al., 2008]) for approximating a probabilistic
model of EEG data that do not correspond to intentional control commands. At the same
time, no additional computation time and space is needed for the online adaption of subtri-
als since the method solves both tasks at the same time. The approach is graphically illus-
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Algorithm 3 Pseudocode of the asynchronous EDS. The continuously growing score list S[i]
has been replaced by a variable size window ω. In single-symbol mode, only one symbol
should lead to a rejected H0 whereas in grid-mode two symbols will cause H0 to be rejected
(N=1 or 2).
Require: tmi n , tmax

if Single-Symbol mode then
N ← 1

else
N ← 2

end if
initialize ω with size tmi n

repeat
i ← r andom(1,n)
PresentStimulus(i)
x ← extract EEG epoch
if si ze(ω[i ]) > tmax then
ω[i ]ol dest ⇔ LD A(x)

else
extend size of ω by 1
ω[i ] ⇐ LDA(x)

end if
for all ω[i ] do

xφ← z(ω[i ],µ+,σ2+)
Hi ←D(xφ,α,µ+,σ2+)

end for
until

∑
i

(H tr ue
i ) == N
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Figure 7.5. Illustration of the asynchronous EDS algorithm with dynamic window sizes. An averaging window
grows with increasing number of subtrials until a maximum length is reached. For each subtrial, the current
window serves as input for the decision function D which either start another subtrial if the contained values
do not significantly correlate with the P300 score distribution, or outputs the result if the contained values
are significantly similar to the P300 score distribution.

trated in figure 7.5 which shows how each consecutive subtrial adds one more classification
score to the window. For each added score, the windows grows by one until it reaches its
maximum size of 4. After this point, the oldest score observation gets replaced by the most
recent one. The decision function will evaluate the current window for every subtrial and
return true whenever the sequence of scores is likely to stem from the P300 score normal
distribution with parameters µ+ and σ+.

7.4 Results

An experiment was conducted with 4 mixed male and female subjects with the aim to eval-
uate the overall usability of the system and the feasibility of the asynchronous protocol. The
task for the subject was to move objects placed in front of them to a different location on
the table. Both, the object and the target location were chosen by the subject. Whenever the
robot picked up or placed an object, the subject was asked to report on the correctness of
the robots action. The experiment ended when the subject successfully moved 10 objects to
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Pickup Task Placement Task No-Control Task
Subject Acc. Sym./min Acc. Sym./min FPR F PR∗ TTA

S1 80% 3.3 (2:20) 70% 1.1 (6:30) 0.4 0.2 12s
S2 90% 2.3 (2:50) 70% 1.4 (5:00) 0.6 0.71 18s
S3 100% 5.9 (1:40) 90% 1.7 (5:50) 0.2 0.39 8s
S4 80% 2.3 (3:40) 60% 0.7 (8:20) 0.8 1.54 10s
Mean 87.5% 3.45 72.5% 1.23 0.5 0.71 12s

Table 7.1. BCI performance achieved in the study. The measures accuracy (Acc.), correct symbols per minute
(Sym./min), false positive rate as wrong actions per minute during the no-control period and time to active
(TTA) are shown. For comparison, F PR∗ reflects the results from [Zhang et al., 2008] who also used 4
subjects in his study. These rates were assessed with a different set of subjects.

different locations which required 20 selection commands (i.e. 10 for pickup and 10 for the
placement task). The task performance was measured by calculating the communication rate
in correct symbols per minute, as well as the overall accuracy.

To evaluate the feasibility of the asynchronous protocol, the subject’s focus had to be dis-
tracted from the BCI stimulus presentation. For this reason, they were asked to fill out a short
questionnaire and answer to questions of the experiment supervisor after the experiment
ended. During that time the BCI was still running and was ready to receive commands. The
evaluation criterion here was the number of action conducted during this period. A perfect
recognition of user inactivity could not be achieved but the number of 0.5 conducted actions
per minute is slightly better than the method proposed by [Zhang et al., 2008] which was also
used in P300 wheelchair control of [Rebsamen et al., 2007]. Further, to evaluate how long
the system takes to recognize that the subject is now actively communicating with the sys-
tem, one more object relocation had to be carried out. Table 7.1 summarizes the number of
wrongly conducted actions per minute during the questionnaire period as well as the time
it took the system to recognize a voluntary selection command of the user (time to active
(TTA)).

For the best performing subject 3, a close to perfect result in both tasks could be achieved
with accuracies of 100% for the pickup task and 90% for the placement task. As a general
trend however, the accuracy in the placement task is inferior to the pickup task with about
10-20% less accurate predictions. The practical communication speed during the pickup task
ranged from 2.3-5.9 symbols per minute seem to be comparable to other state of the art work
(e.g. [Townsend et al., 2010]). In contrast, the communication speed during the placement
task dropped by a factor of almost 3. Considering the much larger set of stimuli, this is not a
surprising fact since for the placement, a set with 64 stimuli has to be presented whereas the
pickup task only required 5 stimuli to be displayed. For this reason, it would be inaccurate
to directly compare these results to other works which work with different number of stimuli
and different time periods between consecutive stimulus presentations.

The results of the no-control state detection are comparable to the method proposed by
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Number Question

1 The system is intuitive
2 The system is exhausting
3 The system reacts as I expect it
4 The system is slow
5 The system usage is complicated
6 The system reacts different when I talk or move
7 Concentration declines after the training phase
8 I had to concentrate hard to make it work
9 My commands were recognized reliably

Table 7.2. Translated questions from the questionnaire. The subjects had to assign scores to each question
between 1 (does not agree) to 10 (fully agree).

Zhang. Even though a slightly lower FPR was achieved by the EDS method, the rates per
subject seem to suggest that there is no significant difference in detection performance be-
tween both methods. This fact is not surprising considering the similarity of the methods.
Both exploit the scalar score distribution of a classifier and statistical significance testing to
assign class labels. The difference consists mainly of the fact that the EDS requires only P300
and non-P300 class epochs for the training while Zhang’s method requires epochs acquired
during user inactivity as a third class.

To evaluate the practical usability of the system, relevant information from the question-
naires were considered. The appendix lists the original questionnaires in german language
while table 7.2 shows a translated version of the questions.

The mean scores assigned by the subjects are shown in figure 7.6. For convenience, the
mean values have been converted into performance values. The performance value will be
referred to as a value that equals 1 if the given score corresponds 100% to the desired be-
haviour of the system. For instance, question 2 states that the system is exhausting. When a
subject fully agrees to this question, a 10 will be assigned. Since the intention of a BCI devel-
oper would be to design a system that is not exhausting at all, the performance value will be
0. On the other hand, a system that is intuitive and easy to use (question 1 and 5) is highly de-
sirable, hence a user score of 10 would correspond to a performance value of 1. With respect
to the intended behavior, questions 2, 4, 5, 6, 7 and 8 are negative formulations which require
negation (i.e. 11−scor e) of the assigned scores to receive unnormalized performance values.
After negation, all scores were normalized to the [0..1] interval.

The results show that the BCI did not perform well in all parts concerning concentration
(i.e. question 2, 7 and 8). None of these values could reach 50% performance. All subjects
testified that the BCI usage is very exhausting after a while. It is not surprising that question
7 and 8 did not receive favorable scores as well since an exhausted user will have difficul-
ties concentrating on a specific task. However, the standard deviation for question 7 and 8
are much larger than for question 2 which indicates that the subjects opinions differed to a
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Figure 7.6. (a) Mean scores of the usability study with standard deviation bars. (b) Normalized performance
values, with 1 corresponding to best and 0 to worst outcome for the specific question.

larger extend. Another important factor is the perceived communication speed (question 4).
On average, speed was rated as mediocre. If the score assigned by subject 2 was not included,
the result would be even worse. For subject 3 however, even though he achieved statistically
the highest speed and most accurate results, only a performance of 0.3 (score of 7)was as-
signed whereas subject 2 rated the speed with 0.7 (score of 3). This phenomenon shows that
the perceived communication speed is highly subject dependent. It remains unclear, which
factors have an influence on the speed perception in this setting. On the more positive side,
the remaining fields covered by the questionnaire performed much better. Questions 1 and
5 were aimed to assess the ease of use of the BCI with the expectation, that both question
would be answered with the same score. The mean scores shown in figure 7.6 reveal that
question 1 and 5 were consistently given similar performance rating of 0.77 and more with
low standard deviations. These results indicate that the subjects had no difficulties using the
BCI. A similar outcome could be ascertained for the questions 3 and 8, both aimed to assess
the subjectively perceived BCI accuracy. Both questions were given similar scores of more
than 77% with comparable standard deviations. As an interesting fact, the perceived accu-
racy even matches the real mean accuracy of 80% (averaged over all subjects and both tasks).
Thus it can be asserted, that subjects of this study had good feeling for the overall accuracy
and did not get biased by the long and exhausting experiment.

The last topic to be evaluated was the no-control state detection which was covered by ques-
tion 6. Overall, the scores showed that most of the subjects did not notice a huge difference
while talking or moving (performance values of 0.5-0.7), except subject 2 who assigned a per-
formance value of 0.3. The mean value still exceeds 60%.
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7.5 Conclusion

This final chapter demonstrated the use of a novel Augmented Reality based P300 paradigm
for robot grasping tasks. The presented system features a novel asynchronous dynamic sub-
trial paradigm which allows the user to communicate with the system at arbitrary times and
eliminates the need for a fixed number of subtrials. In an online study, covering 4 subjects,
the performance of the system was evaluated with respect to overall accuracy, communica-
tion speed and reliability of the no-control state detection. The results confirmed that the
proposed methods are suitable for use with an online BCI that controls a robot arm for object
grasping tasks. Especially the pickup task revealed consistent accuracies of 80% and higher.
An accuracy drop could be measured for the placement task. A possible reason for this effect
might be the larger number of stimuli (i.e. 16 for the placement task and 5 for the pickup
task). Additionally, due to the row-column paradigm, 2 out of the 16 epochs have to be cor-
rectly detected as P300 epochs while for the pickup task, only 1 out of 5 epochs have to be
correctly labeled as P300 epoch. Thus, the second task can be considered as more difficult
than the pickup scenario.

The reliability of no-control phases, i.e. periods of user inactivity where no communication
with the BCI takes place, consistently achieved less than 1 wrong action per minute. Even
though the achieved average of 0.5 wrong actions per minute is slightly better than the results
reported by Zhang [Zhang et al., 2008], for critical tasks which result in a real action being
conducted this value is still too high to be practical in an out-of-lab setting. Yet, the presented
method achieves to solve two different goals, the dynamic adjustment of subtrials and the
detection of no-control states at the same time. This process comes without the need to
record additional training data for the no-control state detection and thus can be applied to
every subject without prior training.

In the end, a usability study was conducted which emphasized some weak points of the
BCI. Primarily the exhausting nature of the paradigm and monotone usage, which is common
to all other BCIs, proved to be a crucial factor that was collectively rated with low scores. The
perceived speed of the system was also only in the middle of the ranking. System ease of
use and accuracy however, were given high scores. Further, the no-control state detection
did prove to be useful since most subjects could not recognize a huge difference in the BCI
behavior when they were talking or moving. In this sense, the presented techniques can be
considered as a promising step towards a reliable asynchronous P300 BCI.
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Brain-Computer Interface (BCI) systems provide a promising and new way to control robotic
actuators for grasping tasks. Classical P300 based BCI were mostly limited to applications
like spelling devices. Due to their dependency on external stimuli to evoke a P300 potential,
the most straight forward way to utilize this type of BCI is to associate predefined commands
with each stimulus. As demonstrated first by Farwell and Donchin [Farwell and Donchin,
1988], a spelling device can be constructed which is solely controlled by brain signals. In
more recent years, researchers like Rebsamen [Rebsamen et al., 2007] adopted this approach
to control physical devices like wheelchairs with the P300 paradigm. This task demands
for more dynamical stimulus-action associations since positions and locations can be dy-
namic. Rebsamen resolved this issue by mounting additional sensors and control units on the
wheelchair that realize obstacle avoidance and path planning autonomously. Stimuli consist
of predefined locations like Office, Toilets or Lift. Coordinates are supposed to be available for
these locations and are not acquired dynamically. A change in the environment would lead
to invalid commands until the internal map has been rebuilt. A similar approach was pre-
sented by [Iturrate et al., 2009] but instead of using predefined locations, Iturrate mounted
laser range finders on a wheelchair to reconstruct the surrounding in a virtual reality scene.
A grid pattern was overlayed with the scene where each grid intersection served as a stimulus
corresponding to the spatial location in the VR scene. This was, the system enabled the user
to drive the wheelchair to arbitrary locations. A downside in this work was the missing pos-
sibility of asynchronous control and thus relied on the fact that the user was communicating
with the BCI at all times.

In this thesis, a BCI system has been developed that solves both of the mentioned problems
and even goes beyond by investigating a method to correct for errors caused by incorrect
BCI classification. A novel paradigm based on Augmented Reality techniques was proposed
which enables physical objects being used as stimuli. Instead of associating fixed locations
with the stimuli, they can be extracted from camera images using computer vision meth-
ods. To highlight the practical use of the method, a BCI system was developed that enables
a user to control a robotic arm and hand to grasp plastic cube objects. This system features
a novel method that detects the optimal number stimulus presentation rounds in real-time.
The initial method as published in [Lenhardt et al., 2008] was extended by a no-control state
detection with promising results. To my best knowledge, the only other method that deals
with this issue is the approach presented by Zhang [Zhang et al., 2008]. In constrast to the
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method presented in this thesis, Zhang uses training samples from user inacticity periods
to construct a statistical model. The results of both approaches seem to be comparable but
both studies are limited in their significance due to the rather small number of subjects. A
perfectly working method like this would finally transform the synchronous P300 paradigms
into asynchronous ones which would allow BCI technology to be used in other settings than
scientific laboratories.

A further achievment of this thesis is a new method that is rarely seen in current online
BCI, which is the detection of erroneous classifications of the BCI based on error-related po-
tentials (ErrP). A type of event related potential (ERP) that occurs in response to errors com-
mitted by the BCI. In the second study (chapter 5), possibilities to utilize this ERP to avoid
wrong robot actions being carried out during a running experiment were examined. Com-
pared to P300 classification, the ErrP detection is supposed to be more difficult due to the
fact that only one trial is available for the decision. Obviously, single-trial classification does
not allow for signal averaging and thus signal-to-noise ratio (SNR) is much worse than for the
corresponding P300 classification method. In the presented study, a classification method
was developed that could achieve an true positive rate of close to 90% with a false positive
rate of less than 10% for two out of five subjects. A mean accuracy across all subject of more
than 80% could be measured which can be considered as a very promising result compared
to other recent studies like [Dal Seno et al., 2009] or [Chavarriaga et al., 2010], both reporting
ErrP recognition rates of 60-70% at a comparable occurrence frequency. A simulation study
also conquered the question whether the application of ErrP error correction is beneficial for
a given BCI system. The study investigated how the BCI’s communication throughput de-
pends on P300 classification accuracy and ErrP true positive/false positive rates and investi-
gated the role of static parameters like average trial times and action times which are different
for every BCI and task. Since many parameters influence the performance of the BCI, a way
to analytically calculate the expected communication speed was developed. A probabilis-
tic model based on markov chains was presented that allows to compute the average time
such a recurrent error correcting BCI takes to correctly predict an arbitrarily long sequence of
commands without errors. This novel model allows to compare different parameter setups
and find out which parameter constellation leads to performance improvement or loss. The
model might serve as a performance metric, similar to the bits/min of Wolpaw [Wolpaw et al.,
2002], which puts more focus on comparing different BCI approaches regarding their prac-
tical communication time instead of simple information throughput. Another application
could be the usage as a function subject to optimization when searching for the best clas-
sifier thresholds. Researchers could optimize their BCI by tuning their classifier thresholds
using ROC curves (i.e. TPR vs. FPR) whose optimal points can be calculated by the proposed
model.

The last topic of this thesis covers novel augmented reality paradigm. Methods for marker
recognition, signal processing and an advanced version of the dynamic subtrial algorithm
were presented. With the introduction of the extended dynamic subtrial (EDS) algorithm,
detection of user inactivity periods became possible. This new method does not require ad-
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ditional training like other methods (e.g. [Zhang et al., 2008]) but performs equally well or
better. Further it achieves to solve both problems of dynamic adaption of subtrial presenta-
tion and no-control state detection in one single step. The feasbility of the EDS was evaluated
in a final online experiment (section 7.4). During the experiment, the four participating sub-
jects had to grasp objects with the robot arm and place them at certain locations. Along with a
statistical evaluation of accuracy, communication speed and no-control state detection time,
a questionnaire was completed by all participants to assess subjective usability values.

The augmented reality-based paradigm was developed under the premise that:

1. Operation of the system should add as few additional cognitive load as possible

2. Operation should be intuitive and effortless

3. No subject training should be required

4. Translation of mental commands should be fast and reliable

The results of questionnaire indicate, that the current system fulfills most of these claims.
Only the subjectively perceived communication speed did not achieve good user ratings. A
problem which every BCI has to face, to either be accurate or fast. Even though much effort
has been put into resolving this isseu partly, the presented methods could not convince the
study participants in that sense. On the other hand, all participants collectively rated the
system as intuitive to use and very reliable. Since P300 paradigms do not require specific user
training sinc evocation of P300 happens subconsciously, claim 1 and 3 were also fulfilled.

8.1 Future directions

This thesis demonstrated the usefulness of augmented reality techniques when it comes to
interacting with dynamical environments. The presented system uses marker based object
recognition to incorporate real objects into the BCI pradigm. For practical application, this
approach is probably not sufficient since everyday objects would have to be equipped with
markers. A more convenient way would be to use markerless tracking and object recognition
methods (e.g. [Comport et al., 2006], [Guo et al., 2009] or [Ta et al., 2009]). Further, semantic
associations with the objects could control context sensitive actions which are possible for a
certain object. The current BCI offers only grasping and placing object. For a real application,
possible actions for a light switch would be pressing while actions for a banana could be pick
up or peel. However, implementing all of these aspects demands cooperation from more
than one scientific field. A joint work from artificial intelligence, computer vision, robotics
and BCI researchers could potentially lead to a very sophisticated system. Moving away from
the almost historic target audience of locked-in patients, applications to hands-busy tasks as
encountered in underwater robot control, or crane steering, would also be possible.

Last but not least, the proposed utility metric based on markov chains (see 5.5) will provide
a useful tool for other researchers to optimize their error-correcting BCI’s. Further adaption
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of the chains might be needed to account for different BCI structures. As a logical next step,
the framework should be incorporated into the existing robot control BCI as presented in
chapter 7. Online experiments are needed to confirm the practical correctness of the theo-
retical predictions. In addition, a method to automatically switch between the use of ErrP
error correction and the standard paradigm is conceivable. If parameters like the average in-
tent recognition time and action time are continuously evaluated, the model can be adapted
to reflect the current BCI performance prior to the error correction phase. If the model based
on the current parameters shows that error correction is not feasible anymore, the error cor-
rection phase could simply be skipped or the classifier threshold can be changed to yield best
possible performance under the current circumstances. This way the model will also become
more stable over time in case certain parameters do not remain constant during sustained
use of the system.
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Preprocessing Classifier α ErrP non-ErrP avg. Acc Acc CI

(1) ica+raw+DS
SVM 0.10 0.72±0.0 0.69±0.0 0.71±0.1 0.68 / 0.74
LDA 0.10 0.85±0.03 0.86±0.03 0.85±0.05 0.82 / 0.88
KNN 0.10 0.72±0.01 0.84±0.03 0.78±0.05 0.75 / 0.81

(2) ica+raw+NoDS
SVM 0.10 0.86±0.0 0.87±0.0 0.87±0.1 0.84 / 0.90
LDA 0.10 0.86±0.05 0.89±0.03 0.88±0.05 0.85 / 0.91
KNN 0.10 0.67±0.03 0.84±0.04 0.75±0.07 0.71 / 0.79

(3) ica+ttest+DS
SVM 0.10 0.83±0.0 0.84±0.0 0.83±0.1 0.81 / 0.86
LDA 0.10 0.87±0.03 0.87±0.02 0.87±0.05 0.84 / 0.90
KNN 0.90 0.76±0.05 0.80±0.05 0.78±0.07 0.75 / 0.82

(4) ica+ttest+NoDS
SVM 0.50 0.85±0.0 0.90±0.0 0.87±0.1 0.82 / 0.89
LDA 0.50 0.88±0.04 0.88±0.06 0.88±0.05 0.85 / 0.91
KNN 0.90 0.70±0.04 0.81±0.05 0.76±0.07 0.71 / 0.79

(5) raw+raw+DS
SVM 0.10 0.80±0.0 0.79±0.0 0.80±0.1 0.77 / 0.83
LDA 0.10 0.84±0.02 0.86±0.01 0.85±0.04 0.83 / 0.87
KNN 0.10 0.71±0.04 0.71±0.06 0.71±0.08 0.67 / 0.75

(6) raw+raw+NoDS
SVM 0.10 0.80±0.0 0.81±0.1 0.80±0.1 0.77 / 0.83
LDA 0.10 0.80±0.03 0.81±0.05 0.81±0.05 0.77 / 0.83
KNN 0.10 0.72±0.03 0.71±0.05 0.72±0.05 0.69 / 0.74

(7) raw+ttest+DS
SVM 0.10 0.82±0.0 0.87±0.0 0.85±0.1 0.80 / 0.88
LDA 0.50 0.85±0.02 0.89±0.04 0.87±0.04 0.85 / 0.89
KNN 0.10 0.72±0.02 0.77±0.05 0.75±0.05 0.72 / 0.78

(8) raw+ttest+NoDS
SVM 0.50 0.78±0.0 0.79±0.0 0.78±0.0 0.76 / 0.81
LDA 0.90 0.79±0.02 0.82±0.04 0.80±0.06 0.77 / 0.84
KNN 0.50 0.75±0.06 0.77±0.01 0.76±0.06 0.73 / 0.80

(9) pca+raw+DS
SVM 0.10 0.78±0.0 0.81±0.0 0.80±0.1 0.76 / 0.83
LDA 0.10 0.85±0.02 0.85±0.02 0.85±0.04 0.82 / 0.87
KNN 0.10 0.71±0.04 0.72±0.02 0.71±0.04 0.69 / 0.74

(10) pca+raw+NoDS
SVM 0.10 0.80±0.0 0.78±0.0 0.79±0.1 0.75 / 0.82
LDA 0.10 0.74±0.06 0.83±0.04 0.78±0.06 0.75 / 0.82
KNN 0.10 0.71±0.02 0.70±0.02 0.70±0.06 0.67 / 0.74

(11) pca+ttest+DS
SVM 0.10 0.79±0.0 0.85±0.0 0.82±0.0 0.79 / 0.84
LDA 0.50 0.85±0.03 0.87±0.03 0.86±0.05 0.83 / 0.88
KNN 0.50 0.72±0.04 0.74±0.03 0.73±0.07 0.69 / 0.78

(12) pca+ttest+NoDS
SVM 0.90 0.81±0.0 0.81±0.0 0.81±0.0 0.78 / 0.83
LDA 0.90 0.76±0.04 0.84±0.06 0.80±0.04 0.78 / 0.82
KNN 0.50 0.73±0.02 0.72±0.10 0.72±0.07 0.68 / 0.75

Table .1. Performances of subject 1 for the tested preprocessing and classifier combinations. The optimal
parameter α was obtained in an iterative search. (DS=Downsampling to 32Hz)
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Preprocessing Classifier α ErrP non-ErrP avg. Acc Acc CI

(1) ica+raw+DS
SVM 0.10 0.79±0.0 0.81±0.0 0.80±0.1 0.76 / 0.85
LDA 0.10 0.85±0.05 0.85±0.03 0.84±0.10 0.77 / 0.89
KNN 0.10 0.66±0.04 0.70±0.08 0.68±0.09 0.61 / 0.73

(2) ica+raw+NoDS
SVM 0.10 0.77±0.0 0.81±0.1 0.79±0.1 0.74 / 0.83
LDA 0.10 0.76±0.03 0.80±0.01 0.78±0.10 0.73 / 0.84
KNN 0.10 0.70±0.05 0.70±0.10 0.70±0.10 0.65 / 0.77

(3) ica+ttest+DS
SVM 0.10 0.82±0.0 0.77±0.1 0.80±0.1 0.74 / 0.86
LDA 0.50 0.82±0.03 0.85±0.04 0.84±0.08 0.80 / 0.88
KNN 0.10 0.73±0.06 0.74±0.07 0.74±0.12 0.66 / 0.80

(4) ica+ttest+NoDS
SVM 0.50 0.80±0.1 0.85±0.0 0.82±0.1 0.78 / 0.86
LDA 0.90 0.80±0.01 0.83±0.06 0.81±0.10 0.75 / 0.86
KNN 0.10 0.73±0.07 0.76±0.07 0.74±0.08 0.70 / 0.79

(5) raw+raw+DS
SVM 0.10 0.79±0.1 0.74±0.0 0.77±0.1 0.71 / 0.83
LDA 0.10 0.81±0.07 0.73±0.07 0.77±0.10 0.70 / 0.82
KNN 0.10 0.70±0.05 0.74±0.03 0.72±0.09 0.67 / 0.77

(6) raw+raw+NoDS
SVM 0.10 0.84±0.0 0.76±0.1 0.80±0.1 0.73 / 0.85
LDA 0.10 0.80±0.05 0.70±0.05 0.75±0.05 0.72 / 0.78
KNN 0.10 0.68±0.09 0.73±0.03 0.71±0.09 0.66 / 0.76

(7) raw+ttest+DS
SVM 0.50 0.76±0.0 0.79±0.0 0.77±0.1 0.71 / 0.82
LDA 0.50 0.84±0.06 0.80±0.03 0.82±0.08 0.78 / 0.87
KNN 0.50 0.75±0.05 0.73±0.07 0.74±0.11 0.67 / 0.80

(8) raw+ttest+NoDS
SVM 0.50 0.81±0.1 0.70±0.0 0.75±0.1 0.70 / 0.81
LDA 0.10 0.82±0.03 0.80±0.05 0.81±0.08 0.77 / 0.86
KNN 0.50 0.69±0.09 0.79±0.08 0.74±0.12 0.69 / 0.80

(9) pca+raw+DS
SVM 0.10 0.71±0.1 0.74±0.1 0.72±0.1 0.65 / 0.79
LDA 0.10 0.84±0.01 0.76±0.00 0.80±0.10 0.74 / 0.86
KNN 0.10 0.66±0.04 0.76±0.06 0.71±0.11 0.64 / 0.77

(10) pca+raw+NoDS
SVM 0.10 0.78±0.0 0.73±0.0 0.76±0.1 0.72 / 0.80
LDA 0.10 0.79±0.05 0.67±0.06 0.73±0.11 0.68 / 0.80
KNN 0.10 0.64±0.04 0.76±0.07 0.70±0.12 0.62 / 0.75

(11) pca+ttest+DS
SVM 0.10 0.80±0.0 0.77±0.0 0.79±0.1 0.73 / 0.84
LDA 0.50 0.85±0.06 0.82±0.09 0.83±0.07 0.79 / 0.86
KNN 0.10 0.72±0.12 0.81±0.08 0.76±0.11 0.69 / 0.82

(12) pca+ttest+NoDS
SVM 0.90 0.79±0.0 0.73±0.1 0.76±0.1 0.71 / 0.82
LDA 0.50 0.76±0.04 0.74±0.04 0.75±0.08 0.70 / 0.80
KNN 0.90 0.62±0.09 0.74±0.13 0.68±0.13 0.61 / 0.77

Table .2. Performances of subject 2 for the tested preprocessing and classifier combinations. The optimal
parameter α was obtained in an iterative search. (DS=Downsampling to 32Hz)
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Appendix

Preprocessing Classifier α ErrP non-ErrP avg. Acc Acc CI

(1) ica+raw+DS
SVM 0.10 0.86±0.0 0.88±0.0 0.87±0.0 0.85 / 0.89
LDA 0.10 0.93±0.01 0.93±0.02 0.93±0.03 0.92 / 0.94
KNN 0.10 0.79±0.01 0.78±0.03 0.79±0.04 0.77 / 0.81

(2) ica+raw+NoDS
SVM 0.10 0.93±0.0 0.93±0.0 0.93±0.0 0.91 / 0.95
LDA 0.10 0.94±0.01 0.93±0.01 0.94±0.02 0.92 / 0.95
KNN 0.10 0.77±0.04 0.74±0.01 0.76±0.05 0.73 / 0.78

(3) ica+ttest+DS
SVM 0.10 0.92±0.0 0.92±0.0 0.92±0.0 0.90 / 0.94
LDA 0.10 0.94±0.01 0.94±0.02 0.94±0.02 0.93 / 0.95
KNN 0.10 0.86±0.02 0.83±0.03 0.85±0.05 0.81 / 0.87

(4) ica+ttest+NoDS
SVM 0.90 0.92±0.0 0.93±0.0 0.92±0.0 0.90 / 0.95
LDA 0.90 0.94±0.01 0.92±0.02 0.93±0.03 0.92 / 0.95
KNN 0.10 0.84±0.01 0.81±0.04 0.82±0.04 0.81 / 0.85

(5) raw+raw+DS
SVM 0.10 0.91±0.0 0.88±0.0 0.90±0.0 0.88 / 0.91
LDA 0.10 0.93±0.00 0.93±0.01 0.93±0.03 0.91 / 0.94
KNN 0.10 0.85±0.03 0.77±0.03 0.81±0.05 0.78 / 0.84

(6) raw+raw+NoDS
SVM 0.10 0.89±0.0 0.86±0.0 0.87±0.0 0.85 / 0.89
LDA 0.10 0.91±0.02 0.88±0.03 0.89±0.03 0.88 / 0.91
KNN 0.10 0.84±0.04 0.70±0.05 0.77±0.06 0.74 / 0.80

(7) raw+ttest+DS
SVM 0.10 0.91±0.0 0.91±0.0 0.91±0.0 0.90 / 0.92
LDA 0.50 0.94±0.01 0.94±0.00 0.94±0.03 0.93 / 0.96
KNN 0.10 0.86±0.02 0.77±0.02 0.81±0.04 0.79 / 0.84

(8) raw+ttest+NoDS
SVM 0.90 0.90±0.0 0.86±0.0 0.88±0.0 0.86 / 0.90
LDA 0.90 0.91±0.02 0.88±0.02 0.89±0.04 0.87 / 0.91
KNN 0.10 0.87±0.04 0.76±0.03 0.81±0.05 0.79 / 0.84

(9) pca+raw+DS
SVM 0.10 0.90±0.0 0.90±0.0 0.90±0.0 0.88 / 0.92
LDA 0.10 0.93±0.01 0.94±0.03 0.93±0.03 0.92 / 0.95
KNN 0.10 0.87±0.03 0.73±0.05 0.80±0.04 0.78 / 0.82

(10) pca+raw+NoDS
SVM 0.10 0.89±0.0 0.85±0.0 0.87±0.0 0.84 / 0.89
LDA 0.10 0.90±0.02 0.89±0.02 0.89±0.03 0.87 / 0.91
KNN 0.10 0.85±0.01 0.72±0.02 0.79±0.05 0.75 / 0.81

(11) pca+ttest+DS
SVM 0.10 0.93±0.0 0.93±0.0 0.93±0.0 0.91 / 0.95
LDA 0.90 0.94±0.01 0.94±0.02 0.94±0.03 0.91 / 0.95
KNN 0.10 0.90±0.02 0.79±0.03 0.85±0.04 0.82 / 0.87

(12) pca+ttest+NoDS
SVM 0.90 0.89±0.0 0.86±0.0 0.87±0.0 0.84 / 0.89
LDA 0.10 0.94±0.01 0.89±0.01 0.92±0.03 0.90 / 0.93
KNN 0.10 0.86±0.01 0.75±0.02 0.81±0.03 0.79 / 0.82

Table .3. Performances of subject 3 for the tested preprocessing and classifier combinations. The optimal
parameter α was obtained in an iterative search. (DS=Downsampling to 32Hz)
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Preprocessing Classifier α ErrP non-ErrP avg. Acc Acc CI

(1) ica+raw+DS
SVM 0.10 0.67±0.1 0.69±0.0 0.68±0.1 0.64 / 0.72
LDA 0.10 0.79±0.03 0.79±0.01 0.79±0.06 0.76 / 0.82
KNN 0.10 0.53±0.08 0.80±0.04 0.67±0.08 0.62 / 0.71

(2) ica+raw+NoDS
SVM 0.10 0.76±0.0 0.76±0.0 0.76±0.0 0.73 / 0.79
LDA 0.10 0.76±0.03 0.75±0.01 0.76±0.04 0.74 / 0.79
KNN 0.10 0.53±0.04 0.76±0.01 0.64±0.07 0.60 / 0.67

(3) ica+ttest+DS
SVM 0.10 0.76±0.0 0.76±0.0 0.76±0.1 0.72 / 0.79
LDA 0.10 0.79±0.03 0.80±0.06 0.80±0.06 0.76 / 0.83
KNN 0.10 0.59±0.02 0.77±0.01 0.68±0.05 0.65 / 0.71

(4) ica+ttest+NoDS
SVM 0.90 0.78±0.0 0.77±0.1 0.77±0.1 0.74 / 0.81
LDA 0.90 0.80±0.04 0.74±0.05 0.77±0.05 0.74 / 0.80
KNN 0.10 0.62±0.04 0.77±0.03 0.69±0.06 0.66 / 0.73

(5) raw+raw+DS
SVM 0.10 0.73±0.0 0.74±0.0 0.73±0.1 0.69 / 0.77
LDA 0.10 0.76±0.04 0.78±0.02 0.77±0.06 0.74 / 0.81
KNN 0.10 0.58±0.07 0.72±0.03 0.65±0.06 0.62 / 0.69

(6) raw+raw+NoDS
SVM 0.10 0.69±0.0 0.68±0.0 0.68±0.1 0.64 / 0.72
LDA 0.10 0.70±0.04 0.68±0.04 0.69±0.04 0.67 / 0.71
KNN 0.10 0.66±0.05 0.66±0.06 0.66±0.06 0.62 / 0.69

(7) raw+ttest+DS
SVM 0.50 0.74±0.0 0.79±0.0 0.76±0.1 0.73 / 0.80
LDA 0.10 0.76±0.01 0.78±0.03 0.77±0.06 0.74 / 0.80
KNN 0.10 0.63±0.04 0.74±0.05 0.69±0.08 0.63 / 0.73

(8) raw+ttest+NoDS
SVM 0.90 0.68±0.0 0.73±0.0 0.70±0.1 0.67 / 0.73
LDA 0.10 0.70±0.04 0.69±0.05 0.70±0.07 0.65 / 0.74
KNN 0.50 0.63±0.05 0.71±0.05 0.67±0.08 0.63 / 0.71

(9) pca+raw+DS
SVM 0.10 0.73±0.0 0.73±0.0 0.73±0.0 0.70 / 0.75
LDA 0.10 0.77±0.02 0.76±0.05 0.77±0.06 0.73 / 0.80
KNN 0.10 0.57±0.02 0.73±0.03 0.65±0.06 0.61 / 0.68

(10) pca+raw+NoDS
SVM 0.10 0.67±0.1 0.69±0.0 0.68±0.1 0.65 / 0.72
LDA 0.10 0.69±0.04 0.70±0.02 0.69±0.05 0.66 / 0.72
KNN 0.10 0.63±0.07 0.66±0.05 0.65±0.07 0.60 / 0.68

(11) pca+ttest+DS
SVM 0.50 0.74±0.0 0.75±0.0 0.75±0.1 0.71 / 0.78
LDA 0.50 0.76±0.04 0.79±0.02 0.77±0.04 0.75 / 0.80
KNN 0.10 0.59±0.06 0.75±0.05 0.67±0.09 0.62 / 0.71

(12) pca+ttest+NoDS
SVM 0.90 0.70±0.0 0.73±0.0 0.71±0.1 0.69 / 0.75
LDA 0.90 0.76±0.05 0.71±0.05 0.73±0.07 0.70 / 0.78
KNN 0.90 0.59±0.06 0.72±0.04 0.66±0.07 0.61 / 0.70

Table .4. Performances of subject 4 for the tested preprocessing and classifier combinations. The optimal
parameter α was obtained in an iterative search. (DS=Downsampling to 32Hz)
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Appendix

Preprocessing Classifier α ErrP non-ErrP avg. Acc Acc CI

(1) ica+raw+DS
SVM 0.10 0.80±0.1 0.80±0.1 0.80±0.1 0.73 / 0.87
LDA 0.10 0.86±0.03 0.89±0.04 0.87±0.07 0.83 / 0.91
KNN 0.10 0.79±0.05 0.64±0.08 0.72±0.09 0.67 / 0.77

(2) ica+raw+NoDS
SVM 0.10 0.89±0.0 0.93±0.0 0.91±0.1 0.87 / 0.95
LDA 0.10 0.86±0.02 0.93±0.02 0.90±0.07 0.85 / 0.93
KNN 0.10 0.73±0.04 0.65±0.09 0.69±0.08 0.65 / 0.74

(3) ica+ttest+DS
SVM 0.90 0.82±0.0 0.86±0.0 0.84±0.1 0.78 / 0.88
LDA 0.90 0.86±0.08 0.89±0.06 0.87±0.09 0.82 / 0.92
KNN 0.50 0.78±0.04 0.80±0.07 0.79±0.10 0.72 / 0.84

(4) ica+ttest+NoDS
SVM 0.90 0.88±0.0 0.91±0.0 0.89±0.1 0.85 / 0.93
LDA 0.50 0.88±0.03 0.92±0.06 0.90±0.07 0.85 / 0.93
KNN 0.10 0.75±0.06 0.83±0.05 0.79±0.11 0.73 / 0.85

(5) raw+raw+DS
SVM 0.10 0.74±0.0 0.82±0.0 0.78±0.1 0.72 / 0.84
LDA 0.10 0.86±0.02 0.86±0.03 0.86±0.08 0.81 / 0.90
KNN 0.10 0.67±0.02 0.66±0.03 0.66±0.11 0.60 / 0.72

(6) raw+raw+NoDS
SVM 0.10 0.82±0.0 0.85±0.1 0.83±0.1 0.78 / 0.88
LDA 0.10 0.83±0.05 0.82±0.05 0.82±0.07 0.78 / 0.86
KNN 0.10 0.68±0.06 0.70±0.04 0.69±0.07 0.65 / 0.73

(7) raw+ttest+DS
SVM 0.10 0.80±0.0 0.85±0.0 0.83±0.1 0.77 / 0.86
LDA 0.10 0.87±0.03 0.86±0.02 0.86±0.08 0.82 / 0.91
KNN 0.10 0.77±0.08 0.68±0.02 0.73±0.11 0.66 / 0.79

(8) raw+ttest+NoDS
SVM 0.90 0.83±0.0 0.83±0.1 0.83±0.1 0.78 / 0.89
LDA 0.10 0.85±0.03 0.86±0.03 0.85±0.07 0.80 / 0.89
KNN 0.10 0.77±0.05 0.76±0.08 0.76±0.12 0.69 / 0.83

(9) pca+raw+DS
SVM 0.10 0.73±0.0 0.78±0.1 0.76±0.1 0.68 / 0.81
LDA 0.10 0.83±0.03 0.84±0.02 0.84±0.08 0.79 / 0.88
KNN 0.10 0.68±0.05 0.64±0.04 0.66±0.11 0.61 / 0.73

(10) pca+raw+NoDS
SVM 0.10 0.82±0.1 0.79±0.1 0.80±0.1 0.73 / 0.87
LDA 0.10 0.82±0.01 0.77±0.07 0.79±0.08 0.74 / 0.84
KNN 0.10 0.63±0.06 0.66±0.09 0.65±0.13 0.58 / 0.73

(11) pca+ttest+DS
SVM 0.10 0.79±0.1 0.85±0.1 0.82±0.1 0.75 / 0.88
LDA 0.10 0.85±0.05 0.86±0.06 0.85±0.08 0.81 / 0.90
KNN 0.10 0.74±0.05 0.69±0.05 0.71±0.09 0.66 / 0.76

(12) pca+ttest+NoDS
SVM 0.10 0.82±0.0 0.83±0.0 0.83±0.1 0.79 / 0.86
LDA 0.90 0.86±0.05 0.82±0.08 0.84±0.10 0.79 / 0.89
KNN 0.10 0.74±0.11 0.71±0.09 0.73±0.11 0.66 / 0.78

Table .5. Performances of subject 5 for the tested preprocessing and classifier combinations. The optimal
parameter α was obtained in an iterative search. (DS=Downsampling to 32Hz)
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Benutzerstudie zum Brain-Computer-Interface 

Im Folgenden werden ein paar Fragen aufgelistet. Bitte vergib Punkte von 1-10 je nach 

Zutreffen der Antwort (1: trifft nicht zu, ..., 10: trifft voll zu) 

Frage Note 

Das System ist intuitiv bedienbar 8 

Das System ist ermüdend. 10 

Das System reagiert so wie ich es erwarte. 7 

Das System ist sehr langsam. 8 

Das System ist kompliziert. 2 

Das System reagiert anders, wenn Ich mich bewege oder spreche. 3 

Die Konzentration lässt nach der Trainingsphase nach. 10 

Ich musste mich stark konzentrieren, damit überhaupt etwas passiert. 7 

Meine Befehle wurden zuverlässig erkannt. 8 

 

 

 

 

 

 

Kommentar: 
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Benutzerstudie zum Brain-Computer-Interface 

Im Folgenden werden ein paar Fragen aufgelistet. Bitte vergib Punkte von 1-10 je nach 

Zutreffen der Antwort (1: trifft nicht zu, ..., 10: trifft voll zu) 
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Kommentar: 

System funktioniert besser, wenn das Zählen des Stimulus so schnell wie möglich nach dem 

Aufblinken erfolgt. Entspanntes zählen scheint schlechter zu funktionieren. 
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