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Abstract 
Magnetic thin films and nanostructures, like nanoparticles and molecules, 

have unique transport properties considering their ability to eject spin polar-
ised currents. In this work, the possibilities to make these properties accessi-
ble by means of scanning probe microscopy have been investigated. 

 In the first part of this thesis magnetic thin films with out-of-plane mag-
netic anisotropy covered by ultrathin MgO films have been prepared and 
then investigated with scanning tunneling microscopy, atomic force micros-
copy and magnetic force microscopy. The investigated Co/Pd and Co/Au 
multilayer systems showed roughness values between rms: 0.4 nm and  rms: 
0.8 nm. MFM images showed typical maze domain patterns.  

In the second part of this work magnetic molecules have been deposited on 
MgO covered gold substrates and entities with the size of single molecules 
could be isolated and AFM images have been taken. A clear phase contrast 
makes the entities identifiable. 

In the third part of this thesis the main focus lies on the measurements of 
the transport properties of ligand stabilized cobalt nanoparticles deposited 
on HOPG by means of conducting atomic force microscopy. The current-
voltage curves showed gaps corresponding with the band gap of CoO/Co3O4 
nanostructures.  
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List Of Abbreviations 
 

 

 

AES    Auger Electron Spectroscopy 
AFM    Atomic Force Microscopy 
AGM    Alternating Gradient Magnetometer 
Co/CoO/Co3O4 Cobalt/Cobalt Monoxide/ Tricobalt Tetraoxide 
CoAu    Cobalt Gold (as abbreviation for a multilayer) 
C-AFM    Conductive AFM 
CoPd    Cobalt Palladium 
DSP    Digital Signal Processor 
FFT    Fast Fourier Transformation 
FPGA    Field Programmable Gate Array 
GMR    Giant Magneto Resistance 
HOPG    Highly Oriented Pyrolytic Graphite 
I-V curves   Current Voltage curves 
KFPM    Kelvin Force Probe Microscopy 
MFM    Magnetic Force Microscopy 
Mg/MgO   Magnesium / Magnesium Oxide 
MOKE    Magneto Optical Kerr Effect 
SNOM    Scanning Near Field Microscopy 
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PZT    Lead Zirconate Titanate 
RMS    Root Mean Square 
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SEM    Scanning Electron Microscopy 
SMM    Single Molecule Magnet 
SPM    Scanning Probe Microscopy 
STM    Scanning Tunneling Microscopy 
TEM    Transmission Electron Microscopy 
TMR    Tunneling Magneto Resistance 
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Introduction 
In this introductory chapter a motivation for the investigation of magnetic 

thin films and nanoparticles will be given. Additionally this thesis will be 

outlined. 

 

Quote 1  from Leach, Richard K, Robert Boyd, Theresa Burke, Hans-Ulrich Danzebrink, Kai Dirscherl, 

Thorsten Dziomba, Mark Gee, et al. “The European nanometrology landscape.” Nanotechnology 22, 

no. 6 (February 11, 2011). 

  

Traditionally thin films play an important role in nanotechnology and they 

are already widely used in science and technology. Specially tailored magnet-

ic thin films are used in sensor applications and in spintronic devices (Zutic 

et al., 2004).  

One standard way of preparation of thin films is sputtering: it is fast, reliable 

and capable of producing high quality films, as needed for e.g. large tunnel-

ling magneto resistances. Recent advances in the field of Tunneling Magneto 

Resistance and Giant Magneto Resistance (TMR/GMR) sensors (Hayakawa 

et al., 2006), (Yuasa, 2008) suggest, that sputtered films can already rival the 

quality of films prepared with molecular beam epitaxy.  

The higher speed and the lower cost for high quality thin film production 

give an opportunity for additional fields of applications, e.g. as substrates for 

SPM applications as discussed in this work.  

 
Magnetic nanoparticles are another building block for nanotechnology de-

vices and products. A wide variety of possible applications has evolved and is 

still expanding (Reiss and Hütten, 2005), (Weddemann et al., 2010). 

Commercial applications demand analytical methods like Scanning Probe 
Microscopy (SPM) for quality control and access to the physical properties, 
like conductivity, surface topology and sticking coefficients. In Figure 1 the 
lateral and vertical dimensions of different analytical tools are presented.  



Chapter 1: Introduction 

6 

 
Figure 1 Measurement instruments for dimensional micro and nanometrology. 
Taken from Hansen, H.N., K. Carneiro, H. Haitjema, and L. De Chiffre. “Dimen-
sional Micro and Nano Metrology.” (2006). Used with permission. 
 
As shown in Figure 1 the regime of SPMs is ideal for the investigation of na-

noparticles and nanostructures.  Speed, stability, accessibility, versatility and 

usability of SPMs have still potential for improvement and are important 

properties of SPMs for the future nanometrological tasks in quality control 

in the next decade (Leach et al., 2011).  

 
SPM has been applied to all the relevant subjects of experimental nanosci-
ence and is an established tool in biology and chemistry. Therefore the 
choice to apply SPM techniques on magnetic nanostructures and thin films is 
not unique or special; it is rather an established path for characterisation, 
which gives access to the nanoscopic properties of a specimen. The ability to 
have three dimensional information in real time and to manipulate it (the 
specimen) with e.g. a current at the same time is unique to this technique 
and opens up a whole new world of possibilities of access to physical proper-
ties. 
Although there are a lot of commercially available microscopes on the mar-
ket, the final step from a powerful research tool handled by experts to a 
standard laboratory inventory with ease of use and access to most of the pa-
rameters for SPM is not available – even though there has been a lot of pro-
gress recently (e.g. NT-MDT’s SOLVER platform (Foster, 2009) or Bruker’s 
Dimension/Innova microscopes).   
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Figure 2 Schematic of an imaginary automated chemical specimen analyser. This 
work will cover the development of magnetic substrates and the deposition of 
specimen. Additionally the accessibility of magnetic nanoparticles with SPM is 
demonstrated in this work.  
 
A SPM tool which operates like a mass spectrometer used in most chemistry 

and biology laboratories today is still missing: just insert a solvent with the 

specimen and press start. For such an imaginary machine a choice of sub-

strates and deposition methods should be available. One part is to design the 

substrates and to test them for their applicability. Another part of this ma-

chine would be the deposition of the specimen1. A schematic of a possible 

processing order in such a machine is shown in Figure 2. 

While building such a machine is a challenging engineering task, it is from 

the physicist point of view very interesting to test, if such a machine would be 

able to provide the desired results. Therefore testing the concepts of using 

sputtered magnetic substrates for SPM and the access of deposited specimen 

and their properties on substrates was a fundamental motivation for this the-

sis. 

Additional motivation gave the intriguing idea of having spin polarised sub-

strates with out-of plane configuration at hand, which will not suffer from 

the Kondo effect (the screening of states of adsorbed molecules by electrons 

of the metal) due to the MgO coverage.  

                                                           
1
In this work only ex-situ characterisation techniques are discussed. The molecules and par-

ticles have also been deposited after film production. Although vacuum might be applied 
for the drying of the solvent, no in-situ deposition like evaporation, electrospray ionisation 
are discussed or used.  

Sample Holder

Substrate

Substrate 
Dispenser

Automated 
Measurement 
System

Mask

Solvent and 
Specimen 
Dispenser
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Chapter 2 and 3 contain the methodology section. Chapter 2 will discuss 

scanning probe methods and their technological implementations.  

In Chapter 3 about thin film production and thin film magnetism a very 

brief description of the underlying processes will be given. Also in Chapter 3 

deposition and self-organisation of specimen will be treated in a short man-

ner in order to cover the observed effects and methods. 

In Chapter 4 the obtained results will be presented and discussed. Starting 

with magnetic multilayers (CoPd, CoAu) covered with ultrathin layers of 

MgO. The MgO layers will be treated briefly. 

MFM, AFM and STM images of the multilayer systems will be presented and 

their properties will be discussed.  

Aging processes of the samples have been investigated with SEM and AFM. 

Deposition of single molecules magnets on CoPd multilayer, covered with an 

ultrathin MgO layer is one topic of the next section. Additionally mask depo-

sition of molecules on substrates using a TEM grid and KPFM measurements 

on gold covered molecules are presented. 

The next section deals with deposited cobalt nanoparticles, how they self-

organise on Higly Orientated Pyrolitic Graphite (HOPG).  AFM images and 

SEM images are shown. 

The following section will treat electric transport through cobalt nanoparti-

cles on HOPG measured with C-AFM. Current maps, which were simulta-

neously acquired with the topography and I-V curves applied on HOPG, 

clusters and single particles are presented. The behaviour of the curves is 

compared with known properties of cobalt nanostructures and a possible ex-

planation of the observed curves and maps is discussed. Finally some KFPM 

images of HOPG and nanoparticles on HOPG are shown. 

In the last chapter a summary and an outlook on further studies and applica-

tions is given. 

Finally there is the literature section and the appendix.  
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METHODOLOGY  

General Approach To Scanning Probe Microscopy 
 

In this section I will describe briefly the basics of scanning probe methods 

used in this work. I will start with a section where the general approach to 

scanning probe methods is described and will go on with the realisation in 

hard and software. The end of this chapter will explain the flavours used in 

this work: STM, AFM, MFM, C-AFM and KFPM. The description of these 

concepts is inspired by the books of (Wiesendanger, 1995), (Chen, 2007), 

(Mironov, 2004) and (Foster and Hofer, 2006). Some additionally infor-

mation has been derived from (Hartmann, 1999) and (Melitz et al., 2011). 

 

Scanning Probe Microscopy is based on the fundamental concept of a local 

probe brought in contact with a specimen under investigation. The contact is 

defined by the interaction chosen for the measurement, e.g. a chemical inter-

action, an electric interaction or a magnetic interaction. Technical require-

ments for a local probe instrument have been stated by H. Rohrer: 

 1. Strong distance dependency 

 2. Close proximity of probe and object 

 3. Very sharp probe tip (small diameter) 

 4. Stable positioning device  

In addition one might add that the environment where the local probe is ap-

plied is of importance, too. Generally there can be distinguished between 

ambient conditions, a controlled gaseous environment, liquid cells and vacu-

um. Another significant role plays the temperature.  

The interactions of the local probe with the specimen under test can be due 

to, e.g. forces or electron transport. Furthermore some properties can be 

probed directly, e.g. with a scanning squid microscopy, a scanning hall probe 

microscopy, scanning thermal microscopy and SNOM. A lot of combined 

methods have also evolved, e.g. tip enhanced Raman spectroscopy, FRET 

combined with AFM and nanomanipulation, nanolithography with dip-pen 

method and/or nanocapillary in the tip, SEM and AFM combined, and many 

more.  

Physical interactions are dynamic processes or quasi static processes, de-

pending on the time scale and the probe should be chosen with respect to the 

interaction probed. 
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Forces occurring in Scanning Probe Microscopy 
 

A local probe brought close to a specimen will experience forces originated 

by electronic and atomic interactions. These forces can be classified by the 

range of their interactions and by their origins. In the Appendix a list of force 

interactions and their main features are tabulated (after (Israelachvili, 2011)). 

For convenience the forces are divided into macroscopic and microscopic 

forces. For this work relevant are macroscopic forces, because the measure-

ments have been performed under ambient conditions, where chemical con-

trasts are hard to obtain. 

Macroscopic forces 
 

Van der Waals force 
 

The van der Waals (vdW) force is caused by the electromagnetic interaction 

of dipoles between probe and sample and is composed of three main compo-

nents: the dispersion force (or London force), the induction force (or Debye 

force) and the orientation force (or Keesome force). 

The vdW force is mostly attractive and small changes in the distance between 

probe and sample will cause forces in the range of several nN. The vdW force 

is not very dependent of the chemical composition of the probe - it can be 

treated as a long range interaction. As it is most of the time exceeding the 

chemical forces, it is in many cases the dominating force interaction. For cor-

rect calculations all atomic interactions would have to be included. As this is 

not possible an approximation must be made. Assuming a known potential 

(V(r)) between two atoms with the distance r separating them, the force can 

be written:  

 

The potential is  

𝑉(𝑟) = −
𝐶6
𝑟6

 

r6 

where C6 is a material specific constant. Following the hypothesis of Hamak-

er the total force between two macroscopic bodies can be calculated through 

the following integration: 
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    =     ∫ ∫  (𝑟) 𝑉  𝑉 
    

 

where ρ1 and ρ2 are the number densities2 and V1 and V2 are the volumes of 

bodies 1 and 2 respectively. The constant introduced by Hamaker for the 

general interaction between two bodies is 

 𝐻 = 𝜋² 𝐶6     

It characterizes the resonance interactions between electronic orbitals of two 

particles.  

 
The vdW force is a function of distance for a given tip shape. Three charac-

teristic tip shapes are considered here (for more information see 

(Israelachvili, 2011)). For a sphere with radius R in a distance D the force is 

given as: 

 
for a pyramidal tip the force is 

 
with θ as angle between the rotational axis and the edge of the pyramid. For a 

conical tip of angle γ and radius R the force equals: 

 

 
 

                                                           
2
Hamakers Ansatz for Van der Waals interactions between two bodies assumes a continu-

ous medium where each atom occupies a volume dV with a number density ρ. 
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If the atoms are far enough apart, the time for the electric field to reach the 

atom can be greater than the period of the dipole interactions. This retarda-

tion effect will cause repulsive interaction and a change in the distance de-

pendence.  

 
Image forces 
 

The interaction of a conducting local probe due to polarization by charged 

atoms of the sample is called image force. Image forces caused by charge dis-

tribution are a standard problem in classical electrostatics and calculations 

can be found in every standard book about electrodynamics e.g.(Jackson, 

1998). The image forces introduce an additional energy Uel to the system. 

This energy can then be added to calculations for the total tip-surface force. 

 

Capacitance Force 
 

If two different conducting materials with different work functions are in 

contact and electron flow is allowed, there will be a contact potential. Alt-

hough the image force includes the capacitance force, it is still useful to cal-

culate an analytical approximation for macroscopic systems. The electrostat-

ic energy produced by difference of the surface potential of two materials 

reads: 

  
where C is the probe-sample capacitance and U(x,y) the potential difference. 

Differentiation with respect to z gives the capacitance force: 

 
In order to evaluate this expression, it is necessary to find a physical expres-

sion for C(z) for a real probe shape. With an approximate analytical ap-

proach that gives the capacitance of an axisymmetric probe, one obtains: 

𝐶(𝑧) =
1

𝑈
∫ 2𝜋 𝑠

′

𝑝𝑟𝑜𝑏𝑒

(𝑧′)𝜎𝑠(𝑧
′) 𝑧′ 

where ρS is the analytical surface equation of the probe and σS is the surface 

charge density. A given spherical shape with radius R would therefore result 

in:  
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The relevance of this force is crucially dependent on the probe and surface 

properties and also on the experimental setup. Because only if there is a sig-

nificant potential difference between the probe and the surface, the capaci-

tance force is an important contribution to the interactions. 

 

Work function anisotropies: 

If the surface is rough or has an inhomogeneous work function distribution, 

the above calculations are not exact anymore and must be modified. Unfor-

tunately there is no analytical way to do this, because some of the needed pa-

rameters are unknown. In order to take those effects into account the charge 

density can be modified and the applied bias in the calculations can be ad-

justed. 

 

Forces due to probe and surface charging 
 

There are several mechanisms which cause charging effects, e.g. cleaving, 

sputtering, tribocharging.  Charging effects usually occur on insulator sur-

faces, e.g. on freshly cleaved MgO surfaces or MICA surfaces. The range of 

this interaction is limited due to the exponential3 decay of the charge-charge 

interaction for a neutral surface, where all the charged defects are compen-

sated without atomic displacement. If the charges form dipoles, the dipole 

interactions have a longer range and can introduce electrostatic contribu-

tions to the force. 

 
Magnetic forces 
 

If the probe and the sample are ferromagnets, magnetic forces between them 

will occur. Therefore a magnetostatic coupling between sample and probe 

exists. For simplicity a probe in needle form consisting of a ferromagnetic 

material is assumed. The tip is therefore modeled as a homogeneously mag-

netized prolate spheroid of suitable dimension. External stray fields of the 

sample are neglected. Therefore the problem can be treated as a purely mag-

netostatic one. The potential for any ferromagnetic sample becomes: 

                                                           
3
 Assuming e.g. a Buckingham type potential. 
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where Ms(r‘) is the sample magnetization vector field and s‘ an outward 

normal vector from the sample surface. The first integral takes the surface 

magnetic charges into consideration, which are created by magnetization 

components perpendicular to the surface. Volume magnetic charges from 

interior divergences of the magnetization vector field are covered by the 

three dimensional integral. Therefore the stray field is: 

𝐻𝑠 = −∇ ∙ 𝜙𝑠(𝒓) 

and the magnetostatic energy reads: 

 

𝐸(𝒓) = μ0(∫  
 𝒔

′
∙ 𝑴𝑝(𝒓

′)𝜙𝑆(𝒓
′) + ∫ 𝟑𝒓′∇𝑟′ ∙ [ϕs(𝒓

′)𝑴𝑝(𝒓
′)] )  

 

Mp(r’) is the magnetization vectorfield of the probe. The force is then:  

 
In the point probe approximation a multipole expansion of E(r) gives mono-

pole and dipole moments, which are projected into a fictious probe of infini-

tesimal size that is located a certain distance away from the sample surface. 

With this approximation the force acting on the probe, immersed into the 

near surface sample microfield, is: 

 

with q and m as monopole and dipole moments. 

 

Capillary forces 
 

Under ambient conditions atmospheric humidity plays an important role for 

the interactions between the probe and the sample surface. A certain discon-

tinuous behavior in the interaction between probe and sample might occur. 

For example, the liquid layers will “jump into contact”, and form a meniscus 

with a large radius between them and probe, and until “hard contact” is 

reached, this liquid layer will be compressed. Removing the probe will cause 

the meniscus to stretch until it breaks.   
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Microscopic forces 
 

Chemical forces dominate the microscopic interactions and are usually much 

weaker than the macroscopic forces. The forces basically originate in the in-

teraction between nuclei and electrons in the system. A simple classification 

(Foster & Hofer, 2006) results in: 

 

• Electrostatic forces: Coulomb interaction between ions in the tip and sam-

ple. 

For an ionic surface and an ionic tip the electrostatic force between ions will 

dominate the microscopic forces in most cases. 

 

• Polarization forces: polarization of an electron-cloud by ions.  

This is especially relevant for conducting materials, which are highly polariz-

able, interacting with insulating materials. 

 

• Van der Waals forces: the microscopic version of the force discussed in the 

previous section, generally much weaker than the other forces at this scale, 

but important in imaging of inert surfaces like Xenon or in considering the 

physisorption of inert species on surfaces. 

 

• Chemical bonding: in the case that the system’s materials cannot be ap-

proximated as ideally ionic or inert, it becomes important to take chemical 

bonds into account, which may form between the tip and surface. This is es-

pecially important for the consideration of the interactions between reactive 

tips and surfaces, where the need to saturate dangling bonds results in strong 

tip–surface bonds and correspondingly large microscopic forces. 

 

• Magnetic forces: on the microscopic scale, magnetic forces represent the 

exchange force between atomic spins in the tip and surface. For a spin polar-

ized tip scanning a magnetic surface, the exchange force will vary according 

to the spin–state of the atom under the tip. 
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Electron transport theory in tunneling microscopy 
 

Whenever two conducting electrodes are separated by a small enough poten-

tial barrier, electrons will tunnel from one electrode to the other. The trans-

fer-Hamiltonian approach of Bardeen states that the tunneling current I is a 

measure of the overlap in the separating gap of the wave functions of the two 

electrodes.  In this picture, the current is a function of the separation and of 

the nature of the electron states involved. A very common tunneling configu-

ration is a conductor-isolator-conductor planar film stack.  Following Sim-

mons, one can write the current density at small voltages V<<Φ as 
 

  𝑗 = (
𝑒 

ℏ
) (

𝜅0

4𝜋 𝑠
) ∙ 𝑉 ∙ exp (−2𝜅0𝑠) 

 

with s as effective tunnel distance in Å , к0 the inverse decay length of the 

wave function density outside the surface, V the applied voltage in V, and  

𝜅0 = 1.025√Φ(𝑒𝑉) 

with Ф as effective barrier height.  For an intermediate bias voltage range the 

current density becomes:  

 
High voltage ranges result in the following current density: 

 
with F=U/s. 

 

A difference in the work functions of the electrode material leads to an 

asymmetric potential barrier and the I-V curve becomes polarity dependent.    
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Simmons also stated that the classic image potential can be approximated by: 

   
The image potential leads to rounded edges in a rectangular barrier; the 

thickness of the barrier is reduced and the current flow between the two elec-

trodes is increased. As this approximation does not take quantum mechanics 

into account, it does have some severe limitations which are discussed in 

(Wiesendanger, 1995).  
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Realisation In Hardware And Software  
 

This section deals with the realisation of SPM systems. It will cover the tech-

nical aspects and introduces literature for further information. In this work a 

modified Bruker Nanoscope III controller based multimode microscope was 

used. For the STM measurements the SECPM addition with universal bipo-

tentiostat has been connected. 

 

In Scanning Probe Microscopy the physical process, that is measured, are the 

interactions between the probe and the surface, or an interaction “guided” by 

the probe, e. g. evanescent light waves in SNOM. 

 

 

Figure 3  Flowchart of a general simple SPM setup. The feedback data is usually 
the drive signal of the PID controller. The visualization process describes the math-
ematical operations on the data in order to make the physical interactions visible. 
(*) The feedback control can be automatic.     
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In Figure 3 the general setup of a simple SPM is presented as a flow chart. 

The shown setup is an open loop system, in order to keep the presentation 

simple. Systems with sensors for the actuators and with feedback controlled 

xy-scanners and z-heights are called closed loop systems; they are capable of 

correcting drift and creep problems of the piezos, used for sample and tip 

positioning.  

The working principle of a simple scanning probe microscope can be de-

scribed as a probe brought locally in “contact” with the sample, where it is 

interacting with the surface. The interaction is measured by a sensor. The 

feedback loop regulates the z-height in order to keep the output of the sensor 

on a user specified value. The drive signal of the feedback loop is the generat-

ed feedback data. During the visualization process of the measured data, the 

feedback data is processed and/or the raw data and afterwards displayed and 

saved. The xy-scanner moves to the next position and the process starts over. 

Piezoelectric Materials 
 

In order to get a lateral atomic resolution the xy-scanner needs to have sub-

nanometer resolution, which can be achieved with piezo electric materials4. 

This material class has been discovered by Pierre and Jaques Curie in the late 

19th century and its applications started in the 20’s of the 20th century. The 

Heckmann diagram, first developed in 1925, gives an instructive schematic 

representation of couplings between elastic, electric, and thermal variables. A 

recent version of the diagram is shown in Figure 4.  Following the thermo-

dynamics of an elastic dielectric, one gets linear constitutive equations. 

Those define the relations of the material dependent coefficients, which are 

represented by the lines in Figure 4. 

 

In order to keep the description simple the interested reader is recommend-

ed to read (Tichý et al., 2010) for further information about the single coeffi-

cients. For the following section only the piezoelectric coefficient is im-

portant. The treatment of piezoelectric materials is only covered as far as it is 

helpful for the understanding of the basic principles of SPM. 

                                                           
4
 There are other ways to achieve a similar high resolution, e.g. micromechanical springs, 

but piezo transducers remain the main choice of producers of SPM systems. As the scan-
ners used in this work are all piezo based, the other methods will not be discussed here. 



Chapter 2: Realisation In Hardware And Software 

21 

 

Figure 4  Heckmann's diagram.  After J. Tichý, J. Erhart, E. Kittinger, and J. Pív-
ratská, Fundamentals of Piezoelectric Sensorics, (2010). Every line represents a 
variable in the constitutive equations. 
 
A general distinction between direct and converse piezoelectric effect can be 

made. The direct piezoelectric effect and the converse piezoelectric effect de-

pend on the piezoelectric coefficient d111:  

 
for the direct effect, with T11 as component of the stress tensor and  

 for the converse effect, with S11 as strain and E1  as external field. The con-

verse piezoelectric effect is used for scanning applications. The piezoelectric 

coefficients are defined as the ratios of the strain components over a compo-

nent of the applied electrical field intensity  1
31
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Typical values for these coefficients found in the literature are -9 -110 mV  to  
-12 -110 mV . The traditional piezo ceramic material used for scanners is lead 

zirconate titanate ceramics (PZT). The initial produced ceramics do not 

show the piezoelectric effect, because they are isotropic due to random ar-

rangement of the dipoles. A poling process ensures a permanent electric po-

larisation. The dipoles are then aligned with the poling field. The poling field 

is labelled following a convention in the 3 direction (the positive z-direction). 

Newer piezo ceramics are lead free, but have lower piezo constants. An over-

view over the relevant parameters for piezoelectrics is given in the Appendix. 

Scanner Designs 
 

A general distinction between scanning tip and scanning sample designs can 

be made. Both design approaches have advantages and disadvantages. While 

scanning tip based scanner designs are usually more versatile for advanced 

operations, e.g. low temperature applications, scanning sample based sys-

tems are often mechanically more stable.  

There are usually two main approaches for achieving the nanometer resolu-

tion in scanning probe microscopy: tube piezo based designs and linear actu-

ator based designs. Tube designs have the advantage of having a low drift and 

stable operation, but they introduce a scanner bow and can exhibit nonline-

arities. For closed loop operation linear actuator based designs are preferred, 

because they are easier to implement and actuators with sensors are com-

mercially available. The scanner used in the Multimode is a sample scanning, 

open loop tube scanner. 

Sensors 
 

Most of the measured physical interactions, disregarding electron tunneling 

as in use for STM at the moment, cause a displacement of the probe or a shift 

of the actuating frequency. Detecting sensors need to be able measure small 

displacements or frequency shifts. As the displacement is usually very small, 

the sensors signal needs high amplification and therefore a good signal noise 

ratio must be ensured. In Table 1 is an overview of sensors and their applica-

tions in SPM. In Figure 5 the most commonly used detection methods are 

illustrated. 
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Figure 5 Commonly used sensors for displacement of cantilevers and tips. 
 

Method Description 

Electron tunneling original concept, potentially highly sensitive, prac-
tically problematic 

Laser beam deflec-
tion 

most widely used, robust, high sensitivity, not di-
rectly quantitative, requires calibration 

Interferometer best sensitivity, quantitative, uses limited space, 
complicated 

Capacitance sensor can be microfabricated, strong force from 
sensor, limited sensitivity 

Piezoresistance ideal for microfabrication & integration, limited 
sensitivity, heating of cantilever, drift, creep 

Piezoelectric mostly quartz tuning forks, good for true atomic 
resolution, limited sensitivity 
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Computer Interfaces 
 

While early designs of scanning probe microscopes could work without any 

computers, simply displaying the scanned lines on an oscilloscope or being 

recorded with a XY-recorder, it has become a convenient practice to use a 

computer for controlling and recording of the measurement. Analysing the 

measured data with a computer enables to make use of the full arsenal of dig-

ital data processing. 

Nowadays it is even common to implement the complete feedback control 

loop(s) in field programmable arrays (Nowak et al., 2011), so that the control 

processes involved in scanning probe microscopy can be adressed in software 

in real time. Graphical programming languages like Labview5 or IHDL (for 

the R9 controller by RHK) are convenient ways to modify the setup. Software 

for numerical computations like Matlab/Scilab/Octave gives full analytical 

access to the data. 

Though this is the current state, the usual lab equipment has still an analogue 

feedback, digitally controlled by a microprocessor and/or DSP, which is con-

nected to a computer. In order to interface with a computer or microproces-

sor, somewhere in the signal flow an analogue-to-digital conversion has to 

take place. Usually the drive signal from the feedback loop is converted and is 

representing the image height signal. Digital-analogue converter are used to 

control the piezo amplifiers, the scanning process, setpoints for feedback 

loops, possible bias voltages and/or other equipment that needs to be con-

trolled. Additional inputs can be used to acquire current maps, magnetic 

force images, electric potential maps, sensor outputs, etc.  

  

                                                           
5
 A case study by the National Taiwan University can be found under cs-14623 on the 

webpage of National Instruments. (www.ni.com). 
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Software Realization 
 

 
Figure 6 Schematic example diagram of a hierarchical software structure for SPM 
software. 
 

In Figure 6 a schematic diagram for a hierarchical software structure is pre-

sented. It gives an impression of a general structure for the implementation 

of SPM software. There are some open source implementations of SPM soft-

ware, e.g. GsXM (Zahl et al., 2010). 

Visualization And Data Representation 
 

From a mathematical point of view, an image is just a matrix, a two dimen-

sional array of real numbers v(x,y). Unless the image has infinite resolution, 

the variables x and y are discrete and can be represented as natural numbers. 

In a typical SPM image the lateral resolution is given by the size of the scan 

area, divided through the numbers of measurement points, e.g. a 100 nm x 

100 nm image with 256 x 256 points gives a theoretical lateral resolution of 

0.4 nm. The real lateral resolution will be depending on the measured physi-

cal property, the probe geometry and the instrument stability.  Heights in 

SPM images represent the measured physical interaction, in STM experi-

ments to obtain the topography this is usually the drive signal from the con-

stant current feedback loop implementation.  
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Image processing 
 

As all SPM images can be seen as two dimensional discrete matrices, the 

methods of numerical computation apply. Data treatment can therefore be 

done by standard mathematical methods: 

By means of programming (e.g. in Python, C, etc.) or with specialized pro-

grams like Matlab (Octave), Igor or Origin the data can be analysed, modi-

fied and displayed. But it is usually more convenient to use specialized pro-

grams which have the most common processes and analysis functions pre-

programmed, e.g. SPIP (commercial), Gwyddion (free) (Nečas and Klapetek, 

2011), ImageJ (free) (Abramoff, M.D., Magalhaes, P.J., Ram, 2004), WSxM 

(citeware) (Horcas et al., 2007) and for Bruker (Veeco, Digital Instruments, 

Thermoscope) AFMs there is Nanoscope Analysis (free).  

 

Common processes and analysis functions are listed and explained in the 

Appendix. Additional information on the mathematical and methodical ap-

proaches can be found in The Image Processing Handbook by (Russ, 2011). 

 

In this thesis several versions of WSxM are used for all image representa-

tions. For the access of additional image data the Nanoscope Analysis 1.40 

software and the Nanoscope 5.31/6.136 software have been used. For grain 

analysis Gwyddion 2.25 has been used. Whenever necessary the image data 

and metadata in the header have been directly accessed with editors or 

homemade software. 
  

                                                           
6
 The Nanoscope 5.31/6.13 software has been used to acquire the images, as discussed in 

the Appendix. 
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Scanning Tunneling Microscopy 
 

Scanning tunnelling microscopy was invented by Binnig and Rohrer (1982) 

and uses electron tunnelling as physical interaction between probe and sam-

ple. The probes are usually metal electrodes and the samples need to have 

certain conductivity. The tunnelling current is converted by a current to 

voltage circuit to a voltage, which is compared with a reference value. The 

output voltage Vout of a current to voltage converter is defined as: 

𝑉𝑜𝑢𝑡  =  𝑅𝐺𝑎𝑖𝑛 ∙ 𝐼, where RGain is usually between 1 MΩ and 10 GΩ.  

The difference between measured I and the setpoint Iset is then amplified to 

drive the z piezo.  

Two major modes exist besides a dynamic mode, a constant current mode 

and a constant height mode. In Figure 7 these modes are demonstrated with 

the tip on three positions on a sample.  

 

Figure 7 Constant current (left) and constant height mode (right). A tip is shown 
on three positions. The dashed line implicates the measured topography. The small 
arrows implicate with their length the current flow between tip and surface. 
 
Dynamic modes are rather rare but can extract additional information about 

the sample material, like dielectric properties. 

The constant current mode uses the feedback loop to regulate the current on 

every measurement point to a constant reference value. The error signal 

from the feedback can then be used to display the topography, if one consid-

ers the corrugation of a homogeneous material.  

The constant height mode measures the current changes if a constant z 

height is adjusted. This mode only works on flat surfaces.  Advantages are 

that one can see material differences - the disadvantages are the risk to crash, 

if there are height changes and z drift (e.g. in open loop systems) the tip can 

easily crash. 
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Figure 8 Atomic resolution on HOPG under ambient conditions showing the hon-
eycomb lattice (left) and the triangular lattice (Bernal stacked graphite)(right). 
 
Scanning tunnelling spectroscopy 
 

In scanning tunnelling spectroscopy a voltage is ramped and the current is 

measured. This can be done at every pixel of an image (CITS), over the com-

plete range of the image (slowly/fast modulated), at one point in the middle 

of the image or aimed somewhere on a desired spot – depending on the im-

plementation of the measurement setup. The used measurement setup in this 

work only allowed taking an I-V curve in the middle of the image.  

Taking a dI-dV curve probes the local density of states of the sample and can 

also contain states of the tip. For more detailed information about STS I rec-

ommend the already mentioned literature. 

 

Tip considerations 
 

STM tips can be produced by etching or mechanical shearing. The tips used 

in this work have been platin-iridium tips, which have been mechanically 

cut. Platin-iridium tips are very stable in ambient conditions and therefore 

are a preferable choice for measurements under those conditions and are 

known to produce atomic resolution (as demonstrated in Figure 8). 
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Figure 9 The potential regions which define what kind of contact between tip and 
sample is established for the different AFM modes. For dynamic mode measure-
ments the intermittent contact region and the non-contact region are utilised.  

Atomic Force Microscopy 
 

The atomic force microscope was invented 1986 by (Binnig and Quate, 

1986). In standard atomic force microscopy there can be distinguished be-

tween contact modes, where a constant force is applied and held constant, 

and dynamic modes (García, 2002) where damping or phase shift/frequency 

shift are held constant. The dynamic modes can be classified in non-contact 

and in tapping mode. In Figure 9 the different potential regimes are present-

ed. 

 
Contact Mode 
 

In contact mode the tip scans the sample in close contact with the surface, 

which means that the force on the tip is repulsive in range of several nN.  In 

contact mode AFM the deflection of the cantilever is sensed with a four 

quadrant diode and compared in a feedback amplifier to a reference value. If 

the measured deflection is different from a reference value a voltage is ap-

plied to the piezo to raise or lower the sample relative to the cantilever until 

the difference to the reference value is nullified. The drive signal is displayed 

as a function of the lateral position of the sample.  
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Non-contact Mode 
 

In non-contact mode, invented in 1987 (Martin et al., 1987), the tip oscillates 

close to its resonant frequency 1 - 10 nm above the sample surface, actuated 

by a piezo oscillator. AC detection methods can be used to detect the small 

forces between the tip and the sample by measuring the change in amplitude, 

phase, or frequency of the oscillating cantilever in response to force gradients 

from the sample.  

 
Tapping Mode 
 

Tapping mode (TM) imaging is implemented by oscillating a cantilever as-

sembly at or near the cantilever's resonant frequency. The piezo motion 

causes the cantilever to oscillate with a high amplitude (typically greater than 

20 nm) when the tip is not in contact with the surface. The oscillating tip is 

then moved toward the surface until it begins to tap on the surface. The ver-

tically oscillating tip alternately contacts the surface and lifts off, generally at 

a frequency of 50 to 500 kHz. As the oscillating cantilever begins to intermit-

tently contact the surface, the cantilever oscillation is reduced due to energy 

loss caused by the tip contacting the surface. The cantilever oscillation ampli-

tude is maintained constant by a feedback loop and the drive signal is the 

presented image height information.  The digital feedback loop adjusts the 

tip-sample separation to maintain constant amplitude and force on the sam-

ple. The phase image can be used to identify material properties (Schmitz et 

al., 1997). 

 

MFM 
 

Magnetic force microscopy (MFM) is usually done in a dynamic mode on a 

magnetic sample, using a magnetic cantilever. In Figure 10 the original de-

scription of the AFM producer is presented. It is outlined that the magnetic 

force gradient causes a phase shift while scanning the tip above different do-

mains during the LiftMode scan. In this thesis MFM has been used to clarify 

the out-of-plane domain structure of the used substrates. Figure 11 shows a 

MFM image of a recording tape. On the left image the simultaneously meas-

ured topography is shown and the right image shows the magnetic structure 

of the tape. 
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Figure 10 A multimode system from Bruker was used during this thesis. MFM as it 
is explained by Bruker: “Magnetic Force Microscopy (MFM) uses a combination of 
TappingMode™, LiftMode™ and a properly prepared tip to gather information 
about the magnetic held above a sample. Each line of the sample is first scanned in 
TappingMode operation to obtain the sample topography. The topographic infor-
mation is stored and retraced with a user selectable height offset in LiftMode, dur-
ing which the magnetic data are collected. Typical lift heights in MFM range from 
20-100 nm.” The image is courtesy of the manufacturer.   

 

Figure 11 MFM measurement of a magnetic recording tape. The left picture shows 
the simultaneously measured topography in a three dimensional representation.  
The right picture shows the magnetic structure of the tape.  
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Figure 12 Schematic of the modified C-AFM setup used in this work. A Femto 
(LCA-1K-5G) current to voltage converter with a fixed gain of 5 x 109 V/A has been 
used for the current conversion.  
 
C-AFM 
 

Conducting atomic force microscopy (C-AFM) is done in contact mode with 

a conducting cantilever. Usually normal contact mode operation is per-

formed, a deflection setpoint set and the feedback adjusted to keep the force 

constant.  

Additionally to the topography the current between tip and sample is rec-

orded, which results in a current map of the surface. Therefore interesting 

conducting regions can be spatially resolved on the topography and vice ver-

sa.  
 
Current-voltage (I–V) characteristics can be acquired at fixed points on the 

surface by applying a voltage between the AFM tip and a fixed counter elec-

trode, and measuring the resulting current between the electrodes. Depend-

ing on the system under study, the measured currents can range from pico-

Amperes to hundreds of nano-Amperes.  

 

A Femto amplifier with a range of 4 nA has been added to the microscope in 

order to sense currents between tip and sample. The output of the amplifier 

was connected with an auxiliary ADC input of the Nanoscope III electronics. 

In the software this input has been assigned to record the current simultane-

ously with the topography, which results in a current map of the surface. 
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Figure 13 Schematic showing the functional principle of the Kelvin-Probe-Force-
Microscopy as implemented in the Multimode AFM. The picture is taken from the 
manual and is courtesy of Bruker. 
 

Kelvin-Probe-Force-Microscopy 
 

Kelvin-Probe-Force-Microscopy has been invented by (Nonnenmacher et al., 

1991). It combines the Kelvin-Probe technique (Kelvin, 1898) with dynamic 

force microscopy. 
 

KPFM provides the capability to image the local surface potential, the con-

tact potential difference of a sample with high spatial resolution. It minimiz-

es the electrostatic interaction between the tip and the surface.  As the ampli-

tude modulated tapping mode represents the direct force between tip and 

sample, the changes in oscillation frequency of the tip are dependent on the 

force gradient between tip and sample.  The CPD itself is defined as 
 

𝑉𝐶𝑃𝐷 =
Φ𝑇𝑖𝑝 −Φ𝑆𝑎𝑚𝑝𝑙𝑒

−𝑒
 

 

where ΦTip and ΦSample are the work functions of the sample and tip, and e is 

the electronic charge. 
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Starting from the energy in a parallel plate capacitor 

𝑈 =
1

2
𝐶(Δ𝑉)² 

with C as the local capacitance between the AFM tip and the sample; ΔV as 

the voltage difference between the two, the  force on the tip is the rate of 

change of the energy with separation distance: 

 = −
 𝑈

 𝑍
= −

1

2

 𝐶

 𝑍
(Δ𝑉)² 

Using an AC voltage and a DC voltage on the tip generates a AC and DC 

component of ΔV:  

Δ𝑉 = Δ𝑉𝐷𝐶 + 𝑉 𝐶    (  ) 

ΔVDC includes applied DC voltages, work function differences, surface 

charge effects, etc. The force can then be written as: 
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 𝐶

 𝑍
𝑉 𝐶
     (2  + 2 ) 

This formula has a DC term, an omega term and a two omega term.  

A sinusoidal driving force is caused by the oscillating electric force with the 

frequency omega. The cantilever itself is only excited by forces near or at it 

resonance frequency and therefore the DC and the two omega term do not 

cause significant oscillation of the cantilever. 

Through the electric force motion in z-direction can be excited in the canti-

lever. The cantilever response is directly proportional to the amplitude of the 

Fomega drive term: 

𝑎𝑚𝑝𝑙𝑖 𝑢 𝑒 𝑜𝑓  𝜔 =
 𝐶

 𝑍
Δ𝑉𝐷𝐶𝑉 𝐶 

The scanning process is a two pass method. In the first pass the topography is 

measured and in the second pass the tip moved in an adjustable height over 

the surface. During the second pass the AC7 voltage is applied to the tip and 

the local electrical fields excite the cantilever. The surface potential feedback 

loop is adjusting the voltage on the tip until it equals the voltage of the sam-

ple (ΔVDC = 0), where the cantilever amplitude should be zero (Fomega = 0).  In 

order to get absolute numbers, the tip must be calibrated. As the tip calibra-

tion under ambient conditions is difficult, measurements presented in this 

work will only be showing work function differences instead of absolute 

numbers. 

                                                           
7
 Plus an additional small default DC voltage. 
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Cantilever choice and characteristics 
 

For all AFM methods the choice of the cantilever is important.   

The standard used cantilever in this thesis is the Olympic OMCL-AC 240 

series:  

 

Tip shape : sharpened tetrahedral (tilted)  

Tip height : 15 µm (9 to 19 µm) 

Tip radius : smaller than 10 nm (7 nm (typ.)) 

Tip angle : less than 35 degrees  

Tip material : single crystal silicon (semiconductor, N type, 4 - 6 ohm*cm) 

 

The typical mechanical properties of the cantilever are: 

 

Thickness(um) Length(um) Width(um) Spring con-
stant (N/m) 

Resonacne 
frequency 
(kHz) 

2.8 240 30 1.8 (0.7 - 3.8) 70 (50 - 90) 
 

For MFM imaging homemade and commercially available tips have been 

used. The homemade tips had a CoCr coating of 60 nm and had a resonance 

frequency around 250 kHz.  

For C-AFM and Kelvin-Probe imaging commercially available Pt coated tips 

with a minimum tip apex of 25 nm and a resonance frequency of 80 kHz 

have been used. 

 
Tip load and high resolution 
 

The capability of high resolution imaging under ambient conditions depends 

on the tip load. With careful adjustment of the parameters even atomic reso-

lution in contact mode should be possible (Gan, 2009), if the used setup has 

the ability to fine tune the parameters as needed.  It is therefore mandatory to 

find the correct parameters for every sample/tip combination in order to 

achieve high resolution and quality images.  





Chapter 3: Magnetic Thin Films: Preparation And Magnetism 

37 

Magnetic Thin Films: Preparation And Mag-
netism 

Preparation of Thin Films 
 

In this section I will discuss the possibilities to deposit material on a sub-

strate via physical vapour deposition.  Two methods of deposition, evapora-

tion and sputtering, will be briefly discussed. More information can be found 

in (Ohring, 2002), (Mattox, 1989, 2003), (Venables et al., 1984) and in 

(Rossnagel et al., 1990). 

 

Physical vapour deposition (PVD) processes are techniques which physically 

“vaporise” materials and deposit the material on a substrate in a high vacu-

um. In opposite to chemical vapour deposition, where precursors can be cho-

sen to control deposition, only adhesion and surface diffusion of the ad-

sorbed material on the substrate determine the resulting film structure and 

thickness. If the substrate is crystalline and flat, defect rate and lattice mis-

match between the deposited material and the substrate are important for 

the film growth and morphology.  During an evaporation process a material 

source is heated and the material is then transferred to a substrate in a cer-

tain distance, where the film growth process starts. Sputtering is a process 

where atoms are ejected from the source material, which is usually at room 

temperature, through the impact of gaseous ions of a noble gas, generated in 

glow discharge plasma. The ejected atoms are transferred to substrate in a 

certain distance. The processes involved in film growth are depicted in Fig-

ure 14. 

 

 
Figure 14 Surface processes as described by (Venables et al., 1984). 
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During thermal evaporation the temperature of the source material is raised 

until the material evaporates or sublimes onto the substrate. Often an open 

boat made of tungsten suspended on a wire is chosen to heat the source ma-

terial. The evaporated material will be deposited in the whole chamber and 

therefore evaporation is a messy, inefficient method, which will not produce 

a uniform deposit. For more uniform films, the substrates ought to be rotat-

ed. The deposition rate is related to the source area, to the temperature and 

to the distance between source and substrate. Quartz oscillators can be used 

to measure the amount of material deposited. The frequency shift will be 

proportional to the deposited material and if one calibrates with e.g. X-Ray-

Reflectivity to determine the layer thickness of a sample, it is possible to 

measure in-situ the amount of the deposited material and therefore the ex-

pected film thickness. 

The favoured method to sputter uniform films is magnetron sputtering.  In 

Figure 15 a schematic of conventional magnetron sputtering is shown. Dur-

ing the ion bombardment of the target, secondary electrons are also emitted 

from the target and these electrons play an important role in maintaining the 

plasma.  For magnetron sputtering these electrons are constrained in their 

motion to the vicinity of the target by magnets, which are arranged so that 

one pole is positioned at the central axis of the target and the second pole is 

formed by a ring of magnets around the outer edge of the target. The trapped 

electrons increase the ionization efficiency in the dense plasma in the target 

region. Therefore increased ion bombardment leads to higher sputter rates 

and deposition rates. Another advantage of magnetron sputtering is the low-

er operating pressure.  

 

Figure 15 Schematic of conventional magnetron sputtering. 
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The parameters for magnetron sputtering are the voltage for the plasma, the 

field strength of the magnets and the operating pressure. These parameters 

can be adjusted to reach the desired film properties (Thornton, 1986).  Addi-

tionally the distance between substrate and target can be changed. If the sub-

strate is in the vicinity of the plasma ions, ion bombardment of the film will 

change the film growth (Mattox, 1989). The energy distribution of the eject-

ed material depends on the scattering events on their way to the substrate 

and on the energy distribution of the plasma ions.  

For oxide sputtering, RF sputtering has been used. In RF sputtering one ap-

plies an alternating potential to one side of a dielectric plate and a discharge 

exists on the other side, so that a displacement current can flow though the 

dielectric into the plasma. A positive potential of the dielectric plate causes a 

large electron current to flow to the surface of the plate, charging it negative-

ly. The current saturates a few volts above the plasma potential at a high 

enough value to remain negative when the plasma is switching to positive. 

This causes an ion current to the target. If the cycle length is short enough, 

the target surface can remain negative. The ions take, because of their mass, 

several cycles to arrive at the target and have an energy distribution which 

peaks approximately at the peak of RF voltage. High pressures during sput-

tering can smear out the energy distribution through scattering of the ions. 

 

 

In this work all thin films have been prepared in a Leybold CLAB Clustertool 

sputter system consisting of six four inch magnetron sputter sources, a two 

inch source and a handler system which enables to coat up to eight four inch 

wafer. The sputter system is completely computer controlled and the param-

eters are the argon spatial pressure (via the turbo pump shutter), argon flow, 

the power applied to the sputter target and the application of the sputter 

masks which are installed. The film thickness has been measured on calibra-

tion samples (i.e. sputter time =100s), applying X-Ray Reflectometry (XRR). 

 

For evaporation of gold on the molecules a home build8 system with inte-

grated quartz oscillator has been used. 
  

                                                           
8
 Designed and built by Dr. K. Rott. 
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Magnetism of Thin Films 
 

In this section I will shortly outline the principles of magnetism of thin films 

and the mechanisms involved. A deeper insight can be found in (Vaz et al., 

2008)and in the citations therein. 

 

Magnetism is caused by the Pauli Exclusion Principle, the electron-electron 

repulsive Coulomb term of the electronic potential and the kinetic energy of 

the electrons. Different electron spin states are coupled via their electron or-

bitals by the exchange energy. The exchange energy can be described by the 

Heisenberg Hamiltonian for localized spin states: 
 

  𝐻 = ∑ 𝐽𝑖𝑗𝑆𝑖 ∙ 𝑆𝑗 
 

where Jij is the exchange integral and Si the spin of atom i. Other magnetic 

terms are the magnetic anisotropy term (originating from spin-orbit cou-

pling), the classical magnetostatic energy term and the Zeeman term.  

Usually the exchange energy is much larger (0.1 eV/atom) than the magneto 

static (0.1 meV/atom) and magnetic anisotropy (10μeV/atom), but in thin 

films certain length scales can be reached, which change the influence of 

magnetostatic and magnetic anisotropy for the macroscopic magnetism of a 

sample.  

The excess exchange energy density is for cubic or isotropic materials: 
 

 𝑒𝑒𝑥 = 𝐴(∇𝒎)² 
 

where A is the exchange constant and m=M/MS is the magnetization unit 

vector with MS  the saturation magnetization.   

The anisotropy energy density is usually expressed phenomenologically by: 

𝑒𝑢𝑛𝑖 = 𝐾𝑢(1 − 𝛼3
 ) + 𝐾𝑢

′ (1 − 𝛼3
 ) +...for uniaxial materials and 

𝑒𝑐𝑢𝑏 = 𝐾 ∑ 𝛼𝑖² 𝛼𝑗² + 𝐾 𝛼 ² 𝛼 ²𝛼3² +𝑖>𝑗 …for cubic materials, 

where the αi are the direction cosines of the magnetization.  

The magnetostatic energy density term can be written as 

 
 𝑒𝑚𝑠 = 2 𝜋  ∙ 𝑴 

where  Hd is the magnetic dipolar field created be the magnetization distribu-

tion, given by9: 

  d = −ℳ𝑴  

                                                           
9 Ellipsoidal geometry 
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and ℳ is the shape dependent demagnetizing tensor. Due to the long range 

character of the dipolar interaction the shape of the specimen plays an im-

portant role for the orientation of the magnetization. For this reason the 

name shape anisotropy often occurs in the literature. In thin films the shape 

anisotropy is the main reason for a preferred in-plane configuration.  

From these expressions the exchange length lex and the domain wall width ldw 

can be calculated. 

 𝑙𝑒𝑥 = √(
 

 𝜋𝑀𝑆
 ) 

 𝑙 𝑤 = √(
 

𝐾
) 

In thin films considered in this work the film thickness is smaller than the 

exchange length.  

The exchange constant A is a measure of the interaction strength of neigh-

bouring spins and is a phenomenological parameter that reflects the magnet-

ic symmetry of the system, which can be related to the microscopic parame-

ters of the system. Sadly it is hard to obtain for thin films, so that usually bulk 

values are used for calculations. 

The magnetic anisotropy with the anisotropy constant K is a relativistic man-

ifestation of the coupling between the electron spin and the orbital moment.  

Therefore local changes in the electronic structure at surfaces and interfaces 

are expected to lead to changes in the magnetic anisotropy – this can result in 

interface induced perpendicular magnetic anisotropy, as first shown  by 

Gradman and Müller in Ni48Fe52(111) thin films (Gradmann and Müller, 

1968).  

Following Néel’s notation the surface anisotropy is given by 

 

 𝐸𝑆 = 𝐾𝑠 𝑜𝑠² + 𝐾𝑠 𝑝𝑠𝑖 ²  𝑜𝑠²𝜙 

where θ and Φ and  are the polar and azimuthal angles of the magnetization 

vector with respect to the direction perpendicular to the surface, respectively.  

If KS is negative, the first term favours perpendicular anisotropy. An in-plane 

surface anisotropy is expressed through the second term, which must be con-

sidered in lower symmetry surfaces, e.g. fcc(110), bcc(110), etc.  

Although this model is very intriguing, it fails often in the prediction of the 

sign of Ks , a more detailed discussion of that matter can be found in (Vaz et 

al., 2008).  

 



Chapter 3: Magnetic Thin Films:  Preparation and Magnetism  

 

42 

The effective uniaxial anisotropy perpendicular to the plane of a thin film 

can be written as10: 

𝐾𝑢 𝑒𝑓𝑓 = 2𝜋𝐷𝑚𝑀𝑆² + 𝐾𝑢 +
2𝐾𝑆
 

 

with the magnetic dipolar energy contribution as the first term, Ku is the 

magnetocrystalline energy contribution from the bulk and the surface mag-

netic anisotropy energy contribution is the last term. The out-plane demag-

netizing factor Dm , which is approximately one for thin films, is in general a 

function of the film thickness, e.g. for an undistorted fcc (001) film it is  

D=1-0.2338/n (n>1 is the film thickness in monolayers). 

If one introduces strain, magnetoelastic coupling will contribute to the ani-

sotropy. Ku,eff becomes 

𝐾𝑢 𝑒𝑓𝑓 = 2𝜋𝑀𝑆² + 𝐾𝑢 + 𝐵𝑚𝑒𝜖 +
2𝐾𝑆
 

 
 

where ε is the strain and Bme is the magnetoelastic coupling coefficient. Strain 

in films can be caused by e.g. thermal strain, associated with differences in 

thermal expansion coefficients, intrinsic strain caused by the nature of the 

deposition process and strain due to lattice mismatch.  

The thin films switch from out-of-plane to in in-plane magnetisation after 

reaching a certain thickness. This can be understood, if one takes into ac-

count the competition between the surface and volume terms. One obtains a 

critical thickness: 

 𝑆𝑅𝑇 = −
2𝐾𝑠

2 𝜋 𝑀𝑆
 + 𝐾𝑢

 

 

Below the critical thickness the sign of Ku,eff changes its sign from positive to 

negative and the spins prefer to lie along the surface normal. This model ig-

nores higher order anisotropies as they occur in e.g. Co(0001)/Au(111).  

 

 

 

 

 

 

 

 
                                                           
10

 For very small domains, the magnetostatic interaction between the domains is such that 

the magnetostatic term can be described by:  
 

 
 0𝑀𝑠 𝑝𝑒𝑟𝑝

 (average perpendicular compo-

nent of magnetisation)(Johnson et al., 1996) 
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Deposition Of Molecules Or Nanoparticles 
On Substrates 
 

For specimen deposition several methods can be found in the literature e.g. 

(Gomar-Nadal et al., 2008). The most common technique is to simply drop 

cast the specimen in a solvent, which will evaporate on the surface and will 

leave the entities on the surface. 

 
Figure 16 Schematic of drop-casting (left), spin-coating (middle) and sample-
drowning (right). 
 

It is also possible to apply a droplet to a sample and to mount it on a spin 

coater11 (or apply the droplet during rotation). Furthermore the whole sub-

strate could be drowned in the solution and pulled out slowly, so that the 

sample is wetted. All of these methods have in common that after the expo-

sure to the solution of specimen and solvent, the solvent evaporates and the 

specimen is distributed over the substrate. 

  

Self-Ordering 
 

In general two methods of self-ordering can be distinguished: self-assembly 

which happens near the equilibrium and self-organisation which usually oc-

curs far from equilibrium. Self-assembly is usually a process determined by 

surface potentials on surfaces of the substrates. Self-organisation forms pat-

terns under uniform surface potentials, in a highly non-equilibrium envi-

ronment and with strong non-linearity. In Figure 17 the relationship be-

tween order and disorder and the grade of non-equilibrium is schematically 

shown. 

                                                           
11 Spin coater are common tools for lithographic processes, they are usually rotating the 
sample and used for resist coating. 
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Figure 17 Schematic characteristics of self-assembly and self-organisation. The 
transition from disorder to order can be described as a function of non-equilibrium 
(super saturation) in the liquid drying process.  Inspired by (Hosokawa et al., 
2007). 
 
The description of self-ordering processes in colloidal systems can be de-

ducted from the self-organisation during the drying process of nanoparticles. 

The schematic drying process is shown in Figure 18. 

The movement of the nanoparticles in liquid is governed by newton’s law. 

Several forces acting on the nanoparticles must be taken into account. There 

are horizontal capillary forces due to the shape deformation of free surfaces 

caused by interaction between nanoparticles and solvent, electrical forces 

caused by the surface charging of the nanoparticles and also magnetic forces 

as magnetic nanoparticles are used. Brownian force based on the molecular 

movement in the solvent must also be considered. Additionally vdW forces 

between the nanoparticles occur. The force between nanoparticle and sub-

strate is a friction force based on the Coulomb rule. Which force dominates 

the drying process is governed by the drying rate. High drying rates create 

more disorder while slow drying rates will result in more ordered films. Di-

polar interactions are responsible for colloidal crystal formation. These in-

teractions can be electrostatic or magnetostatic. The involved forces can be 

manipulated in order to achieve the desired effect. 

 

 
Figure 18 Schematic drying process. 

disorder

order

nonequibilirium

self-organisationself-assembly
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RESULTS 

Magnetic Multilayer Sytems As Substrates For SPM 
 

In this section the utilisation of magnetic multilayers as a magnetic substrate 

for SPM measurements are discussed. 

 

Why magnetic multilayers? 
 

While spin-polarized STM and other spin-dependent SPM techniques rely 

on a magnetic tip, which are difficult to prepare, magnetic substrates can be 

prepared fast and easy with sputtering techniques. 

In the literature (e.g. (Jia et al., 2011)) single crystals with an ultrathin mag-

netic layer prepared by MBE have been the preferred choice for SPM investi-

gations on magnetic surfaces, because of the highly controllable MBE process 

and therefore high quality thin films. Although these substrates have several 

advantages they take some effort in handling and time to prepare.  

Sputtering has evolved to a technique that can produce high quality thin 

films with high quality interfaces as can be seen in e.g. TMR elements 

(Thomas et al., 2008). Therefore using sputtered thin films for SPM investi-

gation should be possible in general.  

Magnetic multilayer systems have been vastly investigated in the past e.g. by 

(Stiles, 2006), (Johnson et al., 1996) and many others. They can be “tuned” by 

adjusting the film parameters to have different properties e.g. the magnetisa-

tion can be in-plane or out-of-plane, depending of the magnetic interlayer 

thickness. The advantage of multilayers over a single magnetic thin film is 

the easily accessible magnetisation because the magnetic moment of the sys-

tem is detectable enough for typical measurement methods. The disad-

vantage may be the higher roughness and less defined interfaces. 
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Magnesium Oxide Cover Layer 
 

This section discusses the detection and structuring of the magnesium oxide 

cover layer and shows the resulting images. 
 

The magnetic thin films prepared in this thesis have been covered with a thin 

magnesium oxide cover layer. The chosen nominal thickness of the layer was 

between one and two monolayers in order to have enough coverage on the 

substrate which is still thin enough to obtain STM images. Magnesium oxide 

is known to be isolating even in monolayer thickness (Schintke et al., 2001) 

and has a large band gap (7.7 eV)(Daude et al., 1977). Because of the low 

nominal thicknesses used in this work, the success of the deposition has been 

checked with AES. A TEM grid has been used as a sputter mask to demon-

strate the MgO coverage in SEM. 

 

Auger Electron Spectra  
 

Auger Electron Spetroscopy is very surface and material sensitive (Powell et 

al., 1999). Even small amounts of deposited materials can be detected. The 

characteristic Auger-electron energy for Mg is 1150 eV. The presence of Mg 

has been checked for the samples and a small bump in the spectra at the 

characteristic energy has been found as presented in Figure 19. 

 
Figure 19 Typical complete AES spectrum with marked MgO peak taken on a 
CoPd multilayer. The black line is a smoothed line in order to visualise the curva-
ture. The nominal thickness of the MgO layer was 0.2 nm. The inset shows the 
marked region with subtracted background and the positions of the MgO peaks.  
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TEM grid deposition 
 

Additionally to the AES investigations to prove the existence of the MgO 

cover layers a TEM grid was used as a sputter mask. Commercially available 

TEM grids are coated with carbon or Formvar and come in different sizes 

and shapes. A carbon coated gold TEM grid with five micron wide quadratic 

holes has been put into an ultrasonic bath until the carbon coating was re-

moved.  After removing the carbon, the TEM grid was mounted onto the 

sample by pressing it on the surface with a metal sheet clamped on. The met-

al sheet had a hole a bit smaller than diameter of the TEM grid, a schematic 

is shown in Figure 20. In Figure 21 SEM images of the mask sputtered MgO 

are shown. As the MgO has been sputtered on gold, the charging of the MgO 

layer gives a good contrast in the SEM picture. 

 
Figure 20 Schematic of the deposition process. The grid was clamped onto the 
surface with a metal sheet with a hole in it, which was slightly smaller than the 
TEM grid. 
 

 
Figure 21 SEM picture of MgO deposited through the mask on Au. The nominal 
film thickness of the MgO is 5 nm (on the left). Even a nominal thickness of 0.5 nm 
results in a clearly visible pattern (on the right). 
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Using a TEM grid as a deposition mask is an easy and convenient way to 

achieve a patterned surface. In the Section about magnetic molecules a TEM 

grid will be used for the patterning of molecules on a thin-film substrate.  
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Cobalt Palladium Multilayer 
 

Cobalt Palladium multilayer with ultrathin cobalt layer have first been inves-

tigated by Carcia et. al. in 1985 (Carcia et al., 1985). They exhibit an out-of 

plane magnetisation which can be attributed to the interfacial strain and po-

larisation effects of the Pd atoms in the Pd layer beetween the cobalt layers 

(Draaisma and de Jonge, 1987). The interfacial strain is caused by the lattice 

mismatch (Cobalt (HEX/FCC): 2.51 Å/3.54 Å, Palladium (FCC): 3.89 Å). In 

this section AFM/STM/MFM images are shown and discussed. Occurring 

aging effects under ambient conditions will be demonstrated. 

 

Sample preparation 
 

The multilayer systems have been sputterdeposited on SiO50/Si Wafers. Sam-

ples usually have been characterised shortly after preparation. The mainly 

used layerstack [Co0.4Pd1.8nm]x9 MgO0.2nm  is depicted in Figure 22.  

For the MFM measurements [CoxPd1.8nm]x19 MgO2nm layerstacks have been 

used, with x=0.4 nm, x=0.45 nm and x=0.5 nm.  The samples were prepared 

with a base pressure of 1·107 mbar and an argon pressure of 1·103 mbar. The 

argon flow was held at 20 sccm. The applied power to the targets has been 

115 W for the MgO and Co and 60 W for the Pd.   

Film thicknesses have been calibrated with XRR measurements on calibra-

tion samples. 

Further details about similarly prepared CoPd layerstacks and details about 

their magnetic behaviour optimisation can be found in (Kugler et al., 2011).  

 

 
Figure 22 Schematic of the mainly used layerstack. 
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Figure 23 Out-of-plane AGM measurement12 of the Pd10[Co0.4Pd1.8]x9MgO0.2 multi-
layer. The inset shows the in-plane measurement.  
 

Magnetic properties 
 

The out-plane magnetism has been confirmed with MOKE and AGM meas-

urements, a typical AGM curve can be seen in Figure 23.  The magnetisation 

curve shows the characteristic shape for out-of-plane magnetisation as 

shown schematically in Figure 24. The magnetisation change from up to 

down starts with nucleation of domains at the nucleation field Hn. After the 

up and down domains have reached an equilibrium at the minimum magnet-

isation of the nucleation field, the domains start to switch from up to down 

until the saturation magnetisation MS is reached. The magnetisation from 

down to up undergoes the same process from the other direction. 

 
Figure 24 Schematic magnetisation curve of the layerstack with MS as saturation 
magnetisation, Mr as remanent magnetisation, HSM as saturation field strength, Hc 
as coercive field strength and HN as nucleation field strength.   

                                                           
12

 The magnetisation is calculated by first approximating the magnetic volume (VM)           
(VM = sample weight * magnetic thin film thickness / wafer density). In order to obtain the 
magnetisation the measured moment is divided by the magnetic volume. 
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Figure 25 Tapping mode AFM images (topography on the left, phase image on the 
right side) of the Pd MgO Surface. The measurement was made shortly after prep-
aration. The topographic image is equalized in order to expose the grain structure. 
 
AFM images 
 
The tapping mode images obtained with a standard tip from the surface of 

the Pd10[Co0.4Pd1.8]x9MgO0.2 sample presented in Figure 25 show very small 

grains with an mean grain size of approximately 3.6 nm (obtained using 

Gwyddions grainsize anaylsis).  The height histogram in Figure 26 confirms 

an extremely flat surface. 
 

 
Figure 26 Exemplary height histogram of the AFM image. The image has a rough-
ness (RMS) of: 0.23 nm.  
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Figure 27 STM image of the Pd MgO surfaces. Settings were 1 V bias and a cur-
rent set point of 5 nA.  
 
STM images 
 

STM images taken from the surface show the same flat topography as the 

AFM images, with a bit higher roughness (0.3 nm (RMS)), probably caused 

by the MgO (Nilius, 2009). A typical STM image is shown in Figure 27.  

On fresh samples stable tunnelling currents between tip and sample could be 

established and stable measurements have been performed. 

The flat STM image demonstrates convincingly that it can be used as a sub-

strate for other entities though the small grain size makes small objects diffi-

cult to find.  

 
MFM images 
 
Figure 28 shows a schematic representation of the cobalt palladium multi-

layer system after Draaisma and de Jonge. The domains line up over several 

layers and domain walls are assumed to be very small. 

In Figure 29 to 31 MFM images and their topographic images are shown. As 

the magnetic tips have been prepared via sputtering, the exact tip shapes and 

sizes are unknown. The samples have been reasonably flat (roughness < 0.6 

nm (RMS)) 13. The tips have been magnetised shortly before the measure-

ments. The lift height has been adjusted to 60 nm scan height. Due to the flat 

surface of the samples there was no change of the phase caused by surface 

corrugations.  

                                                           
13

 Aging effects caused the higher roughness. Further information can be found on page 57. 
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Figure 28 Schematic representation of a cross section of the multilayer films after 
Draaisma and de Jonge. The cobalt films are magnetised perpendiculary to the 
substrate plane. The domains line up over several layers and domain walls are very 
small. The domain width is d and the film thicknesses are s for the Pd layer and t 
for the Co layer. 
 

The observed change in the phase image can therefore be attributed to mag-

netic interactions between tip and sample. The maze pattern is expected for 

out-of-plane magnetisation and has been analysed in detail by (Barnes et al., 

1994) and (Rushforth et al., 2001). The maze structure clearly changes with 

the amount of Co in the magnetic interlayer thickness. In the demonstrated 

series the domain width is decreasing with increasing Co. As calculated by 

(Draaisma and de Jonge, 1987) this is not always expected, a minimum 

should occur, but the measured regime for the Co interlayer from 0.4 nm to 

0.5 nm is too small to confirm the predicted behaviour.  

 
Figure 29 Topography (left) and MFM image (right) of CoPd multilayer with 0.4 
nm Co layer thickness. The lift-height for the MFM picture was 60 nm. 
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Figure 30 Topography (left) and MFM image (right) of CoPd multilayer with 0.45 
nm Co layer thickness. The lift-height for the MFM picture was 60 nm.  

 
Figure 31 Topography (left, equalized) and MFM image (right) of CoPd multilayer 
with 0.5 nm Co layer thickness. The lift-height for the MFM picture was 60 nm. 
 

 
Figure 32 FFT analysis of the MFM images. The power spectral analysis results in 
a domain width of 625 nm for Figure 29, 444 nm for Figure 30 and 388 nm for 
Figure 31.  
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In Figure 32 a FFT analysis is of the MFM images is shown. If one calculates 

the power spectral density14 for the images, one obtains the average value for 

the domain repetition length. The values are: 625 nm for Figure 29, 444 nm 

for Figure 30 and 388 nm for Figure 31. 

Barnes et al. measured for a Co interlayer of 0.475 nm and a Pd layer with 

1.43 nm in an 18 bilayer system a domain repetition length of 127 nm. This is 

a much smaller length than the ca. 416 nm (interpolated from Figure 30 and 

31) of our samples. The observed difference can be attributed to a different 

measurement technique (lift mode as described on p. 31) and different film 

properties. Our films have been much smoother than the films investigated 

by Barnes et al. and a smaller grain size (Barnes: 20 to 40 nm).  A higher 

quality film though should lead to larger domain sizes as the domains nucle-

ate at film defects, so a film with fewer defects will exhibit larger domains. 
 

  

                                                           
14

 "Power Spectra" answers the question "which frequencies contain the signal´s power?" 
(or in an image “at which frequency does a change repeat”). The answer is in the form of a 
distribution of power values as a function of frequency, where "power" is considered to be 
the average of the signal. 
(http://www.wavemetrics.com/products/igorpro/dataanalysis/signalprocessing/powerspec
tra.htm) 
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Manipulation of the domains of a sample. 
 

On the [Co0.4Pd1.8nm]x9 MgO0.2nm  samples the cobalt content of the samples is 

less than in the above shown MFM images. Therefore the interaction forces 

caused by the sample are weaker and a tip which is exhibiting a high field can 

manipulate the domain structure of the sample. 

 
Figure 33 Manipulation of the domains with tip and magnet demonstrated in a 
MFM image. 
 
In Figure 33 the manipulation of the domain structure of a sample is demon-

strated. In the middle a recent scan area is visible. The tip “wrote” the area 

blank. At the marked line a magnetic field was applied to the sample and the 

maze pattern has been erased. Magnetic areas of such a sample can be pat-

terned as needed. 
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Figure 34 SEM image of an annealed sample after several days of exposure to air. 
(right left).  AFM measurement of a several days old, not annealed sample (right 
side). Large crystals are visible. 
 
Aging of the samples 
 

During this work a rapid change of the surface of the samples has been ob-

served. On the surface of the MgO covered CoPd samples crystals of un-

known material appear. As Pd in combination with MgO is known to be a 

catalyst e.g. (Harding et al., 2008), the assumption of a chemical reaction on 

the surface is intriguing. However, we could not confirm or deny that as-

sumption with an EDX investigation. The grown crystals are shown in Figure 

34 (SEM image and AFM image). An annealed (annealing temperature of 

250°C) sample is shown in the SEM image which has long rods. The AFM 

image shows an as prepared sample, which seems to grow islands of crystals. 

The growth of the crystals starts shortly after getting in touch with air and 

continues over time until the crystals are even visible without microscope. 

 

The reason for the crystal growth is assumed to be a rearrangement of the 

Mg atoms on the surface of a noble metal driven by the oxygen from the air 

as it has been observed with e.g. Ag atoms on MgO cubes (Liu et al., 1992). 
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Cobalt Gold Multilayer 
 

Cobalt Gold mulitlayer with ultrathin cobalt layers have first been investigat-

ed by Chappert et. al. in 1986 (Chappert et al., 1986). They exhibit out-of-

plane magnetisation for certain cobalt film thicknesses.  

 

Sample Preparation 
 

The multilayer systems have been sputterdeposited on SiO50/Si Wafer. Sam-

ples usually have been characterised shortly after preparation. A series of 

Au10/[Cox/Auy]9x samples  has been produced with x=[0.6 nm to 1.1 nm] and 

y=[1 nm to 6 nm]. The mainly used layer stack is depicted in Figure 35. Fur-

ther details about the stack optimisation can be found in (Grote, 2010). 

 

 
Figure 35 Typical stack used in the experiments.  
 
Magnetic Properties 
 

The magnetic properties of the multilayer systems have been investigated 

with AGM and MOKE as demonstrated in Figure 36. The out-of-plane 

measurements of both methods have been normalised and compared in or-

der to check if one obtains the same curve shape.  The saturation magnetisa-

tion is 621 kA/m and the coercivity is 155 Oe in this example. The lower sat-

uration magnetisation is unexpected but has been observed in co-

balt/nonmagnetic metal systems with changed surface to volume ratio (Ho et 

al., 2010). The curve shape deviates a little bit from the curves obtained for 

CoPd, which is probably caused by the different film smoothness and inter-

faces and or by the more or less failed automatic diamagnetic background 

subtraction of the AGM software. 
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Figure 36  Magnetisation curves of Au10/[Co0.7/Au6]9x measured with AGM.  The 
left inset shows the in-plane curve. 
In the right inset MOKE and AGM measurements are compared, the MOKE setup 
has been modified in order to measure the out-of-plane direction of the field. 
 
AFM Images 
 
In Figure 37 the AFM images of a MgO covered Au10/[Co0.7/Au6]9x mulitlayer 

is shown. Gwyddions grainsize analysis results in a mean grainsize of 23.2 

nm. The roughness of the AFM image is 0.47 nm (RMS). 

 
Figure 37 AFM image of CoAu Multilayer covered with two monolayer MgO. To-
pography is on the left side and phase image is on the right. 
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Figure 38 STM image of CoAu Multilayer covered with two monlayer (right) and 
with one monolayer MgO (left). Parameters to obtain images like those shown 
above were usually a current setpoint around 1 nA and bias voltages around 100 
mV. 
  

STM Images 
 

STM images showed a roughness of approximately 0.6 nm (RMS). This is 

three times rougher than the CoPd multilayer systems. While the MgO mis-

match is smaller, the grain size of the CoAu multilayer systems is ten times 

larger than the grain size of the CoPd systems. The larger grains seem to be 

the cause for the higher roughness, as their uneven facets corrugate the sur-

face. This can be assumed analysing the image in Figure 38.  

 

 

MFM 
 

One MFM image of a MgO covered Au10/[Co0.7/Au6]30x mulitlayer can be seen 

in Figure 39 and shows a maze pattern mixed with bubbles15. MFM images of 

CoAu systems have been discussed by (Donzelli et al., 2003). In our samples 

the large nonmagnetic interlayer (6 nm), chosen for better film properties, 

causes less coupling and therefore the Co layer behave nearly magnetically  

independent. The observed large domains (compared with (Donzelli et al., 

2003)) correspond to that interpretation (Draaisma and de Jonge, 1987).   

                                                           
15

  The typical situation in a perpendicular magnetised film is that the domains are now 
connected with stray fields. In the walls the magnetisation lies parallel to the surface along 
different directions. Bubbles are isolated cylindrical domains that might form on perpendic-
ular magnetised films due to their stability.  
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Figure 39 Topography (left) and MFM image (right) of a CoAu multilayer with 0.7 
nm Co layer thickness. The lift-height for the MFM picture was 60 nm. 
 
Aging 
 

In order to make sure that the samples are stable in ambient conditions a 

freshly prepared sample has been measured initially and eight days later with 

SEM. The results can be seen in Figure 40: no visible aging effects have been 

observed. The MgO/Au combination is stable enough to be used in ambient 

condition experiments. 

 

 
Figure 40 SEM picture MgO covered Au10/[Co0.7/Au6]9x mulitlayer directly after 
sputtering (left side). SEM picture after eight days (right side): No aging effects 
have been observed during that time period. 
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Magnetic Molecules 
 

Single Molecule Magnets (SMM) have been brought into the focus of physics 

through the pioneering work of  (Gatteschi, 1994). The multiple usefulness 

of SMMs can be found in the literature e.g. (Sanvito and Rocha, 2006), 

(Leuenberger and Loss, 2001). In this work the molecules have been deposit-

ed as an example for the accessibility of molecular nanostructures on mag-

netic substrates and investigated with AFM/STM.  

 

Molecules 
 

The molecules used in this thesis are [{(talentBu
2)Mn3 {Cr(CN)6}]3+ solved in 

different solvents and are provided by the chemistry group of Prof. Th. Gla-

ser16. Details about the used molecules can be found in (Glaser et al., 2006). 

 
Spin Coating 
 

The molecules have been solved in dichloromethane and solvent has been 

added until the liquid has become optical transparent (typically a concentra-

tion around 1:106). The substrate has then been mounted on the spin coater 

and the speed has been adjusted to 6000 rpm. After starting the rotation, the 

molecules and solvent have been drop casted on the spinning substrate. A 

resulting AFM image is shown in Figure 41. The images have been obtained 

on the MgO covered CoPd multilayer systems discussed in the previous sec-

tions. Freshly prepared samples have been used to avoid the aging problems. 

The molecules stick together and build structures with a lateral diameter of 

10 to 20 nm and a height from one to three molecular heights. These 

nanostructures exhibit a clear phase response, due to strong adhesion forces. 

 

                                                           
16

 [talen
xx

] stands for the triplesalen ligands used to stabilize the molecules. In our case the 
tris(tetradentate) triplesalen ligand H(6)talen(t-Bu2). 



Chapter 4: Results: Magnetic Molecules 

 

64 

 
Figure 41  TM-AFM image of molecules deposited on CoPd with spin coating, us-
ing dichlormethane as a solvent. Low concentrations used. The coating speed has 
been 6000 rpm. The spinning time has been 30 s. Topography is on the left side 
and phase image is on the right. 
 
While on the AFM images a clear distinction between the molecules and the 

underground can be made, this has not been possible on STM images. The 

solvent alters the electronic surface so that a distinction between under-

ground and molecules can only be estimated by the height of the entities. 

Another approach would be CITS, which was not available with the STM at 

hand. Some STS curves have been acquired but as the location of the curve is 

unknown, it is difficult to evaluate if there are molecules involved at all.  

 
Figure 42 STM image of spin coated molecules. It is clearly difficult to identify the 
molecules only from the topography. Although a height contrast can be seen, the 
altered surface (caused by the solvent and/or the molecules) of the substrate 
makes an association of the prominent features with the molecules questionable. 
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Figure 43 Using a TEM grid with 20 micrometre  windows for patterning of mole-
cules on a substrate. The microscope image in 200 times magnification shows pat-
terned regions. AFM images of parts the patterned surface give a microscopic view 
of the patterning. 
 
Mask deposition using a TEM grid 
 

Lithography Assisted Wetting has been demonstrated as a tool for position-

ing specimen on the surface (Cavallini and Biscarini, 2003). We have tested 

the capabilities of a TEM grid to assist creating pattern of molecules on the 

surface. The TEM grids have been freed of the carbon layers in an ultrasonic 

bath and pressed on the surface of a MgO covered gold substrate. In Figure 

43 the patterned surface is shown in an optical microscope image.  The im-

age shows clearly regions with higher concentration and regions with lower 

concentration of the drying solvent. In the AFM images a microscopic view 

of the high concentration regions in Figure 43 is shown, areas with a visible 

coverage, where molecules build clusters on the surface, are prominent.  The 

general problem concerning the clusters is to identify molecules in them – 

the solvent (dichloromethane) usually is not as clean as desired, as it is solv-

ing residues contained in the air and surroundings. The solvent also covers 

homogeneously the surroundings of the molecule – adhesion differences be-

tween the substrate and molecules are not visible in the phase anymore.  
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Figure 44 Schematic explanation of the rectangular pattern on the microscopy im-
age. The capillary forces make the solvent dry at the contact points with the grid. In 
the middle forms a coffee stain pattern. 
 

The process of how the patterns are established is illustrated in Figure 44. 

 

In order to get a smaller pattern TEM grids with 5 μm windows have been 

used on another substrate and molecules in solvent have been deposited via 

drop casting.  

During the AFM analysis areas with extremely low coverage have been tar-

geted. In Figure 45 the results of the attempts to isolate molecules is shown. 

If the solvent is not equalizing the phase interaction a clear difference be-

tween the molecules (black spots) and the substrate can be seen in the phase 

image. It was then possible to isolate entities whose sizes correspond with the 

expected heights of a single molecule, obtained by (Heidemeier, 2006). Com-

paring with results obtained by the group of P. Müller in Erlangen shown in 

the Appendix the phase respond matches perfectly. They deposited only via 

drop casting without a TEM grid. Therefore the mask deposition technique 

can be considered as a working pathway in order to deposit entities at a local 

position.  
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Figure 45 The areas in-between the patterned can exhibit very low coverage of the 
molecules. The upper image pair shows a survey of a region with low coverage.  
The lower image pair shows entities with the height of a single of molecules and a 
clear phase contrast (right images) could be identified.  These images correspond 
with the findings of the group of P. Müller in Erlangen (see Appendix). 
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Kelvin Force Probe Microscopy On SMMs 
 

Molecules have been drop casted on a MgO (0.5 nm) layer on Ru (10 nm) 

and afterwards covered with Gold (2 nm, evaporated). This sample has been 

measured with Kelvin Force Probe Microscopy. In Figure 46 an overview of 

the resulting images is presented.  

 
Figure 46 Overview measurement of molecules on theMgO/Ru surface. Large 
clusters and small clusters have been observed. The work function of the clusters 
with assumed molecules is higher than the measured work function of the sur-
rounding substrate areas. The marked are is shown in Figure 47. 
 
Large clusters surrounded by small clusters are visible. The small clusters 

have not all the same work function, although some of them have the same 

height. The difference in the potential is demonstrated in Figure 47. Higher 

potential is repulsive for electrons, which means that clusters with molecules 

should “light up” in the KFPM images.  

 
Figure 47 Upper region of Figure 46 in detail with the layered work function map 
showing areas with higher potential on the left and regions with lower work func-
tion between the clusters. 
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Magnetic Nanoparticles  
 

Since the success of magnetic nanoparticle synthesis in the 1960’s (e.g. (Faber, 

O. C., Jr.; Papell, 1968) the synthesis has made a huge progress. Puntes et. al. 

for example introduced in 2001 a synthesis that enables shape and size con-

trol of cobalt nanoparticles (Puntes et al., 2001). General information about 

the used nanoparticles can be found in (Weddemann et al., 2010). 

Cobalt nanoparticles have been deposited on HOPG and tapping mode AFM 

images have been acquired. Two different deposition processes are demon-

strated.  Finally the transport properties of clusters and single cobalt particles 

have been investigated.   

Deposition Of Nanoparticles On Substrates 
 

In the following the results of the deposition process are presented. In Figure 

48 drop casted cobalt nanoparticles with a diameter between 6 nm and 12 

nm prepared through thermolysis have built clusters on HOPG. The clusters 

can be found on HOPG edges and defects, where the nucleation process is 

taking place. This indicates that the particles adhere more to each other than 

to the substrate. The clusters themself seem to be structured due to self-

ordering processes. The usual concentration of the nanoparticles in solution 

for this experiments is 1:50 (nanoparticle solution to solvent ((m)ethanol)). 

 
Figure 48 Drop casting cobalt particles on HOPG results on in particles clusters. 
The general result is cluster formation caused by strong capillary forces and inter 
particle forces. The clusters prefer HOPG edges (blue lines) as nucleation sites, but 
also reside at other nucleation templates given by the substrate, e.g. defects and 
contaminations.  More images can be found in the Appendix (p. 118). 
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Ordering through external field 
 

Without an external magnetic field the deposited particles organise in clus-

ters as shown in Figure 49. In Figure 50 a small area scan shows that single 

particles already can be assumed and that the particles might have close 

range order in the clusters.  

 
Figure 49 Large area scan of deposited cobalt nanoparticles on HOPG without 
applied filed while deposition. The topography is on the left and the phase image 
on the right. The close-up shown in Figure 50 is marked. 
 

 
Figure 50 Close-up on a cluster. Single particles can be assumed comparing the 
sizes of the entities visible in topography (left) and phase image (right). 
 
Applying a magnetic field while the solvent evaporates aligns the particles 

along the magnetic field, due to induced dipolar interaction. Only where they 

are free to move during the drying process they are able to align, at a barrier 

the particles are forced into another direction. This effect can be used for es-

tablishing patterns on the substrate. In Figure 51 the resulting alignment of 

the cobalt nanoparticles along the magnetic field axis is shown.  
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Figure 51 Deposition in a magnetic field. The superparamagnetic particles order 
along the field lines. The diagonal distortion of the particle lines is caused by the 
topography. 3D-Topography on the left, phase image is on the right side. 
 
Self-organisation 
 

Contrary to the simple drop casting in the section above cobalt nanoparticles 

prepared as a 1:50 solution have been drop casted onto HOPG in an argon 

atmosphere and directly after the deposition a vacuum is applied, which 

causes the solvent to evaporate very quickly. The resulting AFM and SEM 

images are shown in Figure 52. As the solvent evaporates fast, the drying 

process is far from equilibrium and therefore a self-organisation of the parti-

cles can be seen. The nanoparticles still reside in clusters, while the particles 

in the clusters are organised in hexagonal lattices. Mainly the clusters are as 

flat as one or two particle heights, which indicate that flat clusters are pre-

ferred.  In Figure 53 an area of Figure 52 is magnified in order to show the 

hexagonal ordering. Applying a two dimensional FFT on the ordered parti-

cles reveals the typical FFT pattern of hexagonal ordered entities. 

 

Without nucleation sites the clusters have no place to stick to. Plane edges on 

HOPG are these ideal nucleation sites and the clusters and particles are al-

ways found in the vicinity of a plane edge. Another example can be seen in 

Figure 54. More images of clusters nucleated at edges can be found in the 

Appendix on p. 118. 
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Figure 52 Tapping mode image of self-organised Cobalt nanoparticles on HOPG. 
The particles are  clearly distinguishable in phase image (right) and topography 
(left). The small inset shows a SEM image of an ordered cluster. 

 
Figure 53 Hexagonal order of the particles. The image on the left is a magnified 
region of the topography of Figure 52. The right image is a 2d-FFT of that image 
and shows the typical pattern of a hexagonally ordered entities, with a particle dis-
tance of about 10 nm, which corresponds with the particle radius. 

 
Figure 54 Another cluster located at a plane edge. Edges are ideal nucleation sites 
and are needed for the clusters. 
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Transport Properties Of Cobalt Nanoparti-
cles 
 

The transport properties of cobalt nanoparticles are important for future de-

vice applications. One possible application might be the design of GMR sys-

tems based on two magnetic nanoparticles  connected via a CNT  (Fu et al., 

2005). In order to realise such configurations it is imperative to understand 

the electronic transport through single particles and clusters. In this section 

measured conductance maps of cobalt particles and clusters on HOPG and 

their I-V curves will be presented. In Figure 55 a sketch of the measurement 

geometry is shown. 

 

 
Figure 55 Schematic of the measurement geometry. 
 

 

C-AFM is a common method in order to contact nanostructures and mole-

cules (Mativetsky et al., 2008) and has been chosen for taking images of the 

magnetic nanoparticles and for taking I-V curves of them.  

In order to measure single particles the concentration of the particles in the 

solvent has been reduced to 1:100. 
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Characterisation of the used nanoparticles 
 

The particles used for the transport measurements have been deposited on a 

TEM grid and the diameter has been measured, SEM images were taken, and 

AGM measurements have been performed. In Figure 54 a TEM image of the 

particles deposited on a TEM grid is shown. Clearly sizes and shapes of the 

particles can be seen. The diameter statistics in Figure 56 gives an average of 

6.8 nm ± 2 nm for the particle diameter. For comparison with AFM images 

one must keep in mind that the ligand shell is not visible in the TEM. 

 
Figure 56 TEM image of the used particles on TEM grid. (Image width: 648.4 nm) 

  
Figure 57 Particle diameter statistics. The resulting average is 6.8 nm ± 2 nm. 
 
In Figure 58 a high resolution TEM image of a single nanoparticle is present-

ed – regions of CoO on the outside and a Co core can be identified and the 

lattice constants can be measured. The polycrystalline regions of CoO on the 

outside give an impression of how inhomogeneous a possible contact area 

with the single particle can be.  Cobalt oxide is believed to have two modifi-

cations, CoO in rocksalt structure and the spinel form Co3O4. 
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Figure 58 High resolution TEM image17 of a single cobalt nanoparticle. The 
measured distances correspond with the lattice constant of CoO (For conven-
ience not  every measured distance is shown, but there are no distances which 
can be attributed to the spinel structure). The oxide shell does not consist of a 
monocrystaline layer, instead  it has regions of CoO with different orientations. 
 
Magnetic properties 

 
Figure 59 AGM curve of the used particles. They are superparamagnetic.  
 
The magnetisation curve measured with an AGM shown in Figure 59 con-

firms the expected superparamagnetic behaviour of Co nanoparticles of this 

size. This means, that there are no attractive repulsive long time interactions 

between the particles. 

                                                           
17

 Acquired by Prof. Dr. A. Hütten of Bielefeld University at Jeol Ltd in Japan. 
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Figure 60 Topography images taken with a conductive tip, with a tip radius around 
50 nm.  a)  Gives an overview over a typical region. b)  and  c) show clusters  and 
d) and f ) single particles. From d) to e) the particle has been removed.   
 
Topography of the deposited nanoparticles 
 
In Figure 60 topography images of the deposited nanoparticles on the HOPG 

are shown. In Figure d) and e) the same regions are imaged, where a single 

particle has been removed (indicated by the arrow). In order to remove par-

ticles the force setpoint is crucial and can be used to manipulate particles on 

the surface. 

The slightly higher lateral size of single particles can be explained with rests 

of the solvent trapped at the ligand shell. This can be seen in lateral force im-

ages, as places where the particles have been removed are still deflecting the 

cantilever due to capillary forces as shown in Figure 61. 

The mechanism of surface adhesion of the particles seems to be governed by 

the solvent. Therefore the particles are not strongly bound to the surface: this 

can also be observed with STM experiments, where the particles are simply 

moved aside by the tip (Figure 62). 
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Figure 61 Topography images (left side) and the friction force images (right side) 
show that the particle is disappeared. At the spot where the particle has been, 
there is still a rest of the solvent which is visible in the friction image.  

 
Figure 62 Contact mode AFM image on the left, STM image of the same sample, 
but not the exact same position on the right. No particles can be found with the 
STM, because they are moved aside. 
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Conductance maps 
 

A common problem of C-AFM measurements is to establish a reliable con-

tact between tip and item under investigation (Guo et al., 2006). In order to 

have an indicator for a good contact, the tip is brought in contact with the 

HOPG and the force set point is adjusted until the characteristic pattern 

(Banerjee et al., 2005) is appearing in the current image. In Figure 63 this 

pattern on  HOPG is shown. 

 

 
Figure 63 Topography of cleaved HOPG and the conductance map. The edges of 
the graphene flakes are clearly visible. 
 

HOPG can be described as periodical stacked graphene sheets along the c-

axis. In the a-b plane a strong σ bonding (sp²) exists, while the perpendicular 

π-orbital electrons along the c-axis are the cause of the conductivity along 

the a-b plane by quantum mechanical hopping. The graphene layers are 

weakly bonded to their neighbouring layers through interlayer interaction 

forces.  At the edges of the graphene layers the π electronic states are differ-

ent - this causes an observable conductance change and can also be observed 

in the work function change at the edges. There is a vast amount of research 

concerning the edges of graphene sheets in the literature e.g. (Banerjee et al., 

2006) which cannot be covered by this work. Concerning this work it is only 

important to know that the conductance and work function changes are 

there and therefore individual flakes of graphene can be recognised.  

In Figure 64 the schematic explanation of the pattern is shown. For more de-

tailed explanation the above mentioned literature is recommended. 
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Figure 64  Schematic explanation of the stripes on the current map. The stripe 
with a larger distance h1 has a higher electron mobility than the lower sheet h2 , 
because less electrons take part in the bonding vdW forces between the sheets. 
 
Through the adjustment of the AFM parameters to make the pattern visible 

the contact between tip and surface is ensured. 

In Figure 65 deposited nanoparticles on HOPG are shown in a survey image 

over a three micron large area.   

 

 
Figure 65 Overview over a region where drop casted particles as clusters and sin-
gle particles reside. It is the same region as shown in Figure 60 a). On the right the 
topography is shown and on the left the simultaneously obtained conducting map. 
The HOPG pattern is visible, but broken at the lines where the particle clusters are 
(explanation in the text). 
 

In Figure 66 the topographies from single particles and particle clusters are 

overlaid by a colormap obtained from the simultaneously measured con-

ductance maps. 
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Figure 66 Topographies from a particle cluster (left) and a single particle (right) 
are overlaid by a colormap obtained from the simultaneously measured conduct-
ance maps. The topographies are from Figure 60 c) and e) 
 
In Figure 65 on the right side and in Figure 66 on the left side the HOPG 

conductance pattern vanishes in the scan lines at the locations, where the 

particles reside in the cluster. This could be caused by the feedback loop 

which adjusts the tip to the height of the particles. If the tip gets into a side-

wall-contact with the particle, the feedback moves the tip to a slightly higher 

position above the surface so that the contact to the HOPG is lost. Alterna-

tively the tip could have picked up some contamination from the solvent 

which either blocks the conductance or shifts the force setpoint through the 

compressibility from the liquid, so that the conductance disappears until the 

contamination is removed trough the scanning process. 

The conductance map of a single particle shown in Figure 66 on the right 

side, however, showed some substructure and we assumed that the conduct-

ing parts of the particle can be attributed to metal and the less conducting 

parts to oxidised regions. The conductance maps give a general impression of 

the accessibility of the nanoparticles to local conductance measurements. 
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I-V Curves Of Cobalt Nanoparticles 
 

In order to acquire I-V curves the point and shoot method of the Nanoscope 

software has been applied. First an image is acquired, then the points of in-

terest can be marked and while the bias is ramped at this point, the current is 

recorded, a demonstration give Figure 67 and Figure 68. The resulting I-V 

curves were extremely sensitive to the applied force and to the state of the 

tip.  Nevertheless, we observed characteristic features at low current re-

gions around zero bias and the corresponding values for the band gaps 

match those of the different cobalt oxide configurations,  i.e. 3.7 eV for 

CoO and 1.3 eV for the indirect  band gap of the spinel Co3O4 (Yamamoto 

et al., 2004). 

 

 

 
Figure 67 Demonstrating the point and shoot method: First an image is acquired 
and then the region where the I-V curves should be taken is marked. 
 

 
Figure 68 The averaged curves taken on the position marked in Figure 67. A shift-
ed gap can be seen. The gap size is approximately 3.7 V. 
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Figure 69 Typical  I-V curves on HOPG (upper) and  on small clusters (lower).   
The  graphs are averaged  I-V curves from at least 3 curves at different places.  The 
gap visible on the right side is nearly the same as the gap found on the bulk particle 
clusters (Figure 68). 
 
I-V  curves of HOPG and Clusters 
 

In Figure 69 typical I-V curves taken on small clusters as depicted in Figure 

60c and HOPG are shown.  For the HOPG  I-V curves shown in Figure 69 on 

the top, the tip was moved to a position away from any particle.  Similar re-

sults could be obtained on pure HOPG and in the vicinity of the particles.   It 

corresponds with the expected behaviour for a metal-graphite contact. Small 

differences were obtained at atomic steps on the HOPG. Note that the output 

of the I/V converter saturates at I= 2 nA. 

The small clusters show a similar I-V curve as the bulk particle clusters of 

Figure 68 with the large band gap of 3.7 eV.  But here is a different behaviour 

at the edges of the clusters - on several occasions a change to a smaller gap 

has been observed.  This is caused through possible single particle contacts 

The change to the smaller gap is shown in Figure 70.  
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Figure 70 Changes observed at the edges of small clusters. The plateau changes 
from the wide gap in the forward direction to the smaller gap in the backward di-
rection.  
 
In Figure 71 a histogram analysis of the I-V curves on clusters is presented. It 

shows the trend to different band gaps: most prominent is the 3.7 eV gap and 

the smallest observed is the 1.3 eV gap, which is mostly observed at the edges 

of clusters. Additionally the 2.4 V plateau can be seen. It is the corresponding 

plateau to the 2.4 eV band gap of bulk cobalt. 

The histogram also demonstrates that the contact stability is still an issue: 

Several of the I-V curves are far away from any reasonable value. An example 

of the typical obtained curves is given in the Appendix. 
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Figure 71 Histogram-Analysis of the I-V-curves on the clusters. The gap sizes are 
shown and the bin18 size is 0.2 V. There are peaks by 1.3 V, 2.4 V, 3 V, 3.7 V, 5 V, 
6V and around 7.8V . The clear peak at 3.7 V is caused by the CoO gap. The small 
one at 1.3 V is only found on single particles and at the edges of clusters. The peak 
at 2.4 V corresponds with the bulk band gap of CoO. 
 
 
 
  

                                                           
18

 The bin size has been chosen with respect to the distance between two measurement 
points in the I/V-curves. Applying a rule of thumb for gauss distributions would give a bin 
size of 0.9 V, which would not give a detailed enough overview of the results here, as there 
are multiple peaks (

 
D.W. SCOTT, Biometrika 66, 605-610 (1979)).  
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Figure 72 Single particle curve. The forward (black)  and backward  (grey)  volt-
age  scan direction  are shown.  The gap in the forward direction is 1.3 V. The 
observed dielectric breakdown (i.e. the disappearing of the gap in backward di-
rection) can be attributed to ion movement in the particle. The topography 
of the single particle where this curves have been obtained is shown in Figure 
60 f). 
 
I-V curves of clusters and single particles 
 

As clusters of particles are high enough to bring the tip out of contact with 

the HOPG at the cluster edges this is not the case for a single particle.   Addi-

tionally, the I-V curves of the cluster show a much wider gap than that ob-

served for single particles as shown in Figure 72.    
 
Here, the corresponding gap is 1.3 eV, i.e. it is in the regime of the indirect 

band gap of spinel cobalt oxides.  Taking a look at the voltage sweep direc-

tions in Figure 67, it is interesting to see that the gap is observed in the for-

ward direction. The backward voltage sweep shows a much smaller gap 

width and thus a breakdown of the resistance in the forward-scan gap region. 

Because a repetition of the measurement reproduces the same breakdown-

behaviour this cannot be attributed to a permanent dielectric breakdown.  

This finding also corresponds with the soft dielectric breakdown behaviour 

observed by other groups (Inoue et al., 2008). In Figure 73 the histogram 

analysis for single particles is shown. It demonstrates clearly two peaks: one 

at 0.5 V and one at 1.3 V. While the 0.5 V peak can be due to small contact 

resistances caused by the ligand shell, it is nearly always observed in the 

backward direction.  
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Figure 73 Histogram-Analysis of the single particle I/V-curves. Here the gap sizes 
are shown, the bin size is 0.2V. The curves show two distinct maxima. The multi 
peak fit gives two maxima: 1.29 V and 0.5 V. The 1.29 V maxima is the forward 
direction peak and the 0.5 V the backward direction peak as shown in Figure 72. 
 
Effects of current stressing in  clusters and single particles 
 

The use of platin-iridium coated tips can increase oxidation rates through 

driving oxygen into the particle (Mugtasimov et al., 2011).  The typical oxi-

dation  of a cobalt  nanoparticle  is governed by the Mott potential which 

moves the  cobalt  cations  through  the  particle  and an already existing shell 

to the  surface, where they form the oxide (Gulbransen and Andrew, 1951) . 

Usually the oxidation happens through electron transfer from the metal to 

the oxygen. As the cobalt oxides are ionic, they will react to an applied volt-

age (Campbell, 1997) . Therefore, the applied voltage and the flowing current 

can be expected to cause a certain movement of atoms and ions in the parti-

cle and to heat the area underneath the tip.  While in large clusters there are 

enough pathways for heat dissipation, due to the larger contact area, this is 

not the case for a single particle.   Thus single particles will reach a higher 

temperature during the current flow from the tip to the particle.  The change 

from CoO with a gap of 3.7 eV to Co3O4 (gap:1.3 eV) is expected in the tem-

perature range of 400°C (Tompkins, 1981) . This temperature can easily be 

achieved if the transport of heat away from the nanoparticles is blocked or 

hindered (Dubi and Di Ventra, 2011). The control experiments on Co-films 

(thickness:  10 nm, Figure 77) did not show this reduction of the gap size 
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during voltage sweeping which additionally supports this interpretation. A 

simple possible explanation is illustrated in Figure 74 where the pathways for 

heat dissipation in a single particle and in a cluster are sketched. For a single 

particle there is only the tip and the substrate available for heat exchange, 

while in a cluster the neighbouring particles can exchange heat also. 

 

 
Figure 74 Simple explanation for the different heat channels of a single particle 
and a cluster. The single particle can only transfer heat to the HOPG and the tip, 
while in the cluster the particle can transfer heat to the neighbours also.  
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Dielectric breakdown 
 

In order to further characterise the changes of the I-V curves observed dur-

ing voltage sweeps on single particles, we measured highly resolved conduct-

ance maps prior to and after voltage sweeping.  As shown by the resulting 

conductance maps in Figure 75 an obvious change in the local conductance 

on one single particle can be observed which was caused by the voltage 

sweeps.  

 
Figure 75  Conductance map of a single nanoparticle before (on the left  side) 
and after (on the r ight side) several I-V measurements. A clear change of the 
local conductance can be observed, which can be attributed to ionic transport 
in the particle. 
 

As outlined, this can be explained by the movement of ions in the particle, 

which is obviously not homogeneous.  This finding is in agreement with the 

HR-TEM image which showed varying crystallographic orientations in the 

oxidic CoO-shell of the Co particles.  The different regions of the oxygen 

crystal orientation visible in Figure 58 will cause a non-homogeneous local 

conductance so that different contacts between tip and particle and related 

ion movement can be expected.  This indicates, that the soft breakdown in 

cobalt oxides, which has been also observed by other groups in thin films (Fu 

et al., 2005) and nanorods (Nagashima et al., 2011), is locally promoted  by 

structural inhomogeneities at the particle  surface. 
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Control experiments 
 

In order to check the results a cobalt thin film (10 nm) on HOPG has been 

deposited. STM images and a STS curve have been obtained. In Figure 76 the 

measured topography is shown and in Figure 77 the STS curve is shown. The 

STS curve is averaged over ten measurements in order to reduce noise. 

 

 
Figure 76 STM image of 10 nm cobalt thin film deposited on HOPG.  
 

 
Figure 77 STS curve taken on the cobalt thin film. Ten curves are averaged. The 
3.7 V gap is clearly visible. The forward direction (grey) and the backward direction 
(black) are shifted - resistive switching. The STM amplifier has a range of ±100 nA. 
 
The STS curve clearly shows the gap as it has been observed in the I-V curves 

of the clusters, e.g. in Figure 68 .  It also exhibits the resistive switching. 
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If the Co films are thicker than 10 nm, experiments with C-AFM show the 

expected 2.4 eV (Landolt-Börnstein, 1984) band gap of bulk cobalt oxide. 

These measurements confirm that under a certain thickness the band gap 

changes due to the surface volume ratio.  

 

 
Figure 78 Conductive AFM measurement of a cobalt film on HOPG with at thick-
ness beyond 10 nm.  
 

 
Figure 79 If the film thickness is high enough the band gap reverts to its bulk value 
of 2.4 eV. 
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Kelvin Force Probe Microscopy Of Nanoparticles On 
HOPG 
 

Following the same route for the experiments as in C-AFM experiments 

firstly a clean HOPG sample has been investigated. In Figure 80  the results 

can be seen. Comparing with the results found by (Sommerhalter et al., 1999) 

a match of findings can be stated.  

 
Figure 80 The topography is shown on the right side. On the left side the KFPM 
image is shown. The areas with equal work functions are clearly visible. 
 

Cobalt nanoparticles have been deposited on the surface and the measure-

ment can be seen in Figure 81. As expected the oxidised particles have higher 

electron repulsion than their surroundings (means a higher KFP signal). It is 

noteworthy that the HOPG pattern could not be identified but considering 

the scales and the surface sensitivity of KFPM this is not unexpected. 

 

 
Figure 81 Magnetic nanoparticles on HOPG measured with KFPM technique. On 
the left is the topography and on the right side the potential image. 
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Figure 82 The 3D representation of the topography (on the left) and the phase 
image (on the right side) give a hint for the reason of the different work function 
measured at some places. 
 

While most of the features correspond with the topographic image on the left 

side there are also areas where the work function is higher, which do not cor-

respond to the topographic image. One of the areas is marked on the images 

in Figure 81 and Figure 82. These areas can be identified with the help of 

Figure 82 where the 3D representation and the phase image are shown. On 

the 3D image there are no features at those areas and the phase is different 

there. The reason for the areas with changed KFP- and phase signal cannot 

be identified. Because there is no topographic feature at these locations “bur-

ied” structures within the HOPG could be one possible source. Another pos-

sible source might be an uncovered surface of the HOPG, which is less likely 

considering that these areas are next to the particles. 

 

Despite these structures it is remarkable that there are no strong KFP signal 

changes on the particles. In Figure 83 the contour plot with a discrete scale is 

shown. Comparing the topography with the KFP signal map one comes to 

the conclusion that there is not more than 20.5 millivolts (one colour) devia-

tion for the particle cluster, which is less than would be expected for different 

oxides. Therefore the clusters are uniformly oxidised. This result underlines 

the previous findings and interpretations that the spinel gap is induced by 

the measurement. 
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Figure 83 Comparison of the contour plots of the topography and the KFP signal. A 
change of colours in the KFP plot means a change of maximal 20.5 mV.  
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Summary And Conclusion 
 

In this thesis it has been demonstrated that magnetic multilayer systems can 

be used as magnetic substrates for SPM applications and nanostructures 

composed of SMMs or magnetic nanoparticles and that they are accessible by 

several flavours of SPM (AFM, KPFM, C-AFM).  

 

Magnetic multilayer systems covered with ultrathin MgO and with out-of-

plane magnetisation have been prepared via sputtering and measured with 

STM/AFM/MFM. It has been proved that these systems exhibited the ex-

pected domain structures and that they are reasonable flat for SPM applica-

tions.  

 

Single Molecule Magnets have been deposited on a substrate and measured 

with AFM and STM. Entities with the height of one molecule could be isolat-

ed and imaged.  

 

Furthermore cobalt nanoparticles have been investigated with respect to 

their transport properties. Characteristic topographical features and current-

voltage curves were observed with a striking difference between the resulting 

gap structure of particle clusters and single particles. A narrower gap struc-

ture found for single nanoparticles as compared to particle-clusters could be 

matched with the band gaps of cobalt oxide in rock salt (CoO) and spinel 

form (Co3O4). While the rock salt band gaps of 3.7 eV only occurred in the 

particle-clusters, the narrower gap of the spinel (1.3 eV) was frequently 

found for the single nanoparticles. 

 

Another interesting point is that the resistive switching of cobalt oxide could 

be observed once again – even on a scale of 10 nm. Moreover, it seems even 

possible to switch the particles from one oxide to another.  

 

The successful application of scanning probe methods to thin films, nano-

particles and nanostructures confirms that the imaginary machine intro-

duced in the introduction can be built as the physics needed for the involved 

processes plays along. 
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The results found in this work can be used for further applications. Consid-

ering the current high interest in resistive switching (e.g. in RE-RAM) one 

can easily imagine a multitude of applications for cobalt nanoparticles in 

electric circuits. If one keeps in mind that not only the resistance changes, 

but also the magnetic behaviour, a combination between spintronics and the 

usually electron based electronics is thinkable. Both oxides are antiferromag-

netic, but the Néel temperature for CoO  is 290 K while the Néel temperature 

for Co3O4 is only 40 K (Gragnaniello et al., 2010). For technical applications 

this means one could switch off the antiferromagnetism with a current pulse 

(transition of the particle from CoO to Co3O4 ). In Figure 84 a sketch of a 

possible multipurpose system is made.  

 

 

 
Figure 84 Proposed multipurpose system. Assuming pinning between a ferromag-
netic layer and antiferromagnetic nanoparticles is achievable one could use such a 
system for resistive switching of the cobalt particle and for TMR/GMR systems 
with “off switch” for the pinning.  Current lines, which are necessary for the mag-
netic field, have been omitted for clarity. 
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APPENDIX 

Table of forces 
 

 

Type of Force Subclasses and  
Alternative Names 

Main Features 

 Attractive  
van der Waals Dispersion force (v & s) 

Induced dipole force (v & s)  
Casimir force (v & s) 

Ubiquitous force, oc-
curs both in vacuum 
and in liquids 

Electrostatic Coulombic force (v & s) 
Ionic bond (v) 
Hydrogen bond (v) 
Charge–transfer interaction (v & 
s)  
“Harpooning” interaction (v) 

Strong, long-ranged 
force arising in polar 
solvents; requires  
surface charging or 
charge-separation 
mechanism 

Quantum mechanical  Covalent bond (v) 
Metallic bond (v) 
Exchange interaction (v) 

Strong short-ranged 
forces responsible for 
contact binding  
of crystalline surfaces 

Hydrophobic Attractive hydration force (s) Strong, apparently 
long-ranged force; 
origin not yet  
Understood 

Ion–correlation van der Waals force of polariza-
ble ions (s) 

Requires mobile charges 
on surfaces in a polar sol-
vent 

Solvation Oscillatory force (s) 
Depletion force (s) 

The oscillatory force 
generally alternates 
between attraction  
and repulsion; mainly 
entropic in origin 

Specific binding “Lock and key” binding (v & s) 
Receptor–ligand interaction (s) 
Antibody–antigen interaction (s) 

Subtle combination of 
different noncovalent 
forces giving  
rise to highly specific 
binding; main 
“recognition”  
mechanism of biologi-
cal systems. 

 Repulsive  
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Quantum mechanical Hard-core (v) 
Steric repulsion (v) 
Born repulsion (v) 

Forces stabilizing at-
tractive covalent and 
ionic binding  
forces, effectively de-
termine molecular size 
and shape 

Van der Waals Van der Waals disjoining pres-
sure (v) 

Arises only between 
dissimilar bodies in-
teracting in a medium 

Electrostatic  Arises for certain con-
strained surface 
charge distributions 

Solvation  Oscillatory solvation force (s) 
Structural force (s) 
Hydration force (s) 

Monotonically repul-
sive forces, believed to 
arise when solvent 
molecules bind strong-
ly to surfaces 

Entropic Osmotic repulsion (s) 
Double-layer force (s) 
Thermal fluctuation force (s) 
Steric polymer repulsion (s) 
Undulation force (s) 
Protrusion force (s) 

Forces due to con-
finement of molecular 
or ionic species be-
tween two approach-
ing surfaces. Requires 
a mechanism which 
keeps trapped species 
between the surfaces 

 Dynamic Interactions  
Nonequilibrium Hydrodynamic forces (s) 

Viscous forces (s) 
Friction forces (v+s) 
Lubrication forces (s) 

Energy-dissipating 
forces occurring during 
relative motions of sur-
faces or bodies. 

Note: v, Applies only to interactions in vacuum; s, applies only to interactions in solution, or 
to surfaces separated by a liquid; v & s, applies to interactions occurring both in vacuum 
and in solution 
 

Taken from:(Israelachvili, 2011)  
  



Appendix 

107 

Important parameters for piezoelectronics 
 

 

 

Parameter Meaning 

Curie point The piezoelectric ceramics are ferroelectric 
materials – above the Curie point the ferroe-
lectricity is lost and the piezoelectric property 
is degraded above such a temperature. 

Piezoelectric should only be used in their 
specified operation temperature. 

Temperature dependence 
of piezoelectric coefficients 

The variation of the piezoelectric coefficients 
through temperature is strongly material de-
pendent. The material has to be chosen appli-
cation dependent. 

Mechanical quality number This number provides a measure of the inter-
nal mechanical energy loss of the material. A 
large number indicates a small loss and is 
therefore desired. 

Coupling constants These constants give a measure of the effec-
tiveness of the piezoelectric material.  

k equals the electrical energy converted to 
mechanical energy divided by the input elec-
trical energy 

The typical range is from 0.5 to 0.7. 

Aging Due to relaxation the materials lose their    
piezoelectric properties. The aging follows a 
logarithmic law. 
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Common scanner designs 
 

 

The classical tripod scanner 
The first STM built by Binnig 

and Rohrer was based on the 

tripod design. The displace-

ments along the x,y,z axis are 

actuated by three independent 

PZT transducers. The trans-

ducers were made of rectangu-

lar pieces of PZT, metallized 

on two sides. For a 20 mm 

long and 2 mm thick piezo one 

will find a resonance frequen-

cy of 3.3 kHz, which is quite 

low and therefore needs good 

vibrational isolation. 

 

Modern tripod scanner 
An example modern tripod 

design uses a tripod in order to 

move the probe over the sam-

ple. The piezos are separated 

and the z-scanner is close to 

the sample. The setup is able 

to scan large areas up to 130 

μm and was invented by To-

pometrix.   

 

 

 

Tube scanner 
The tube scanner has become 

the most used concept and has 

also been used in this work. 

The scanner has high piezo 

constants as well as high reso-

nance frequencies. The tube 

scanner has been invented by 

Binnig and Smith in 1986. The 

 
The working principle of the deflection in a 
four quadrant tube scanner. The same but 
on side inversed voltage is applied at the y 



Appendix 

109 

easiest way to implement a 

tube scanner is to segment 

four segments on the outside 

of the tube for x-y movement 

and use the inner electrode as 

piezo for the z-direction.  

One of the problems with this 

design is that the motions 

driven by the x, y, and z volt-

ages are nonlinear and not 

precisely orthogonal. This 

must be corrected by pro-

gramming in the control sys-

tem. Substantial improvement 

can be achieved by using bipo-

lar, symmetric x and y voltag-

es, and by placing the tip at the 

center of the tube. A  + Vx, and 

–Vx voltages are applied on the 

opposite x quadrants, whereas 

a +Vy and  -Vy voltages are ap-

plied on the opposite y quad-

rants.  

electrodes of the scanner, while the x, z elec-
trodes are grounded. A pressure is generat-
ed in the upper quadrant, and a tension is 
generated in the lower quadrant. The torque 
at every cross section in B sums up to zero, 
whenever the strain and tension are in equi-
librium.  

Decoupled scanner 
A decoupled scanner has total-

ly independent movement of 

xy- and z- scanners. This con-

cept has been introduced by 

Park Systems and its ad-

vantages are that it eliminates 

the scanner bow and that non-

contact modes can be imple-

mented easily. This concept is 

now widely used by many 

manufacturers.  
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Besocke Beetle design 
The beetle design has been in-

vented by K. Besocke and is 

based on tube piezos. This de-

sign enables variable tempera-

ture measurements as it de-

couples the tip from the sam-

ple.  The main advantage of 

this approach is thermal drift 

stability and a small mechani-

cal loop. If one uses a sample 

holder with inclined planes for 

every leg, the approach can be 

done with short pulses to the 

piezo legs - the tip is “walked” 

into contact. 

This design is an example of 

inertial stepper designs. 

 

 
Beetle walker design. Three legs consisting 
of segmented piezo tubes “walk” the tip over 
the sample. The z-piezo is underneath the 
tip holder. 

 

Additional designs 
There are several other pro-

posed designs, e.g. an uni-

morph disk scanner, a bi-

morph pizo based design, an 

inchworm based design or 

other piezo driven motor 

based designs.  
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Common methods for image treatment 
 

Method How it works and what it is for 

Plane subtraction A 2D-Plane is subtracted from the image. This can correct 
mal alignments between probe and sample. Planes can be 
subtracted globally or local. 

Flatten Due to drift in the z-direction between two lines, SPM im-
ages can have a low frequency noise in Y direction. This 
can be treated, using a polynomial line fit, subtracting the 
line to line difference. The simplest flatten function is just 
to subtract a constant, the average of the line. For scanner 
bows, a parabola fit is often useful. In some occasions 
third order fits can achieve the desired effect. The chosen 
flatten function can be responsible for roughness differ-
ences or shadow effects. Most of the programs offer flat-
tening along paths or flattening discarding regions. These 
functions are useful to avoid shadow effects, e.g. if there is 
a single nanoparticle on a flat surface.  

Erase\average lines Sometimes single lines in a measurement are corrupted in 
an otherwise good looking image. Those lines are just arti-
facts which do not contribute to the general understand-
ing and often they destroy the image scaling. For better 
representation of the relevant data it is sometimes helpful 
to find an average of the lines next to the line in question 
and the line itself or to erase such lines. 

Crop and split It is often only a part of an image which contains the data 
of interest, therefore crop and split functions are useful 
tools in order to visualize a region of interest, without dis-
tracting the viewer with unneeded information. 

LUT edit-
ing/manipulation 

The lookup tables (LUT) colorize the data height depend-
ent. The tables do not alter the data. They only change the 
appearance of the presentation. Parameters that can be 
changed are contrast, brightness and scaling of the im-
age.If the scaling is changed, the image data is altered. 

 Another process to visualize features on the SPM image 
is equalizing the height dependence. Equalizing changes 
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the height scale.  

2D-Correlation Two correlations are usually probed: 

Self-correlation, which is defined by a shift Kx and Ky of 
the original image matrix from the image center multiplied 
with a sum over the image point. The new resulting image   

 (𝐾𝑥 𝐾 ) =∑𝑓(   ) ∙ 𝑓( + 𝐾𝑥   + 𝐾 ) 

is then a measure of how different the two images are. 
The more similar the image and the shifted image are, the 
higher the value of the self-correlation. The highest value 
is obtained at the center of the image (where Kx and Ky 
are zero) and any periodicity in the original image will be 
visible as a periodic pattern. 

Cross-correlation, which is defined as  

 (𝐾𝑥 𝐾 ) =∑ (   ) ∙ 𝑓( + 𝐾𝑥  + 𝐾 ) 

 where g and f represent two image matrices. 

2D-FFT A two dimensional Fast-Fourier transformation makes it 
possible to detect regular patterns on an image. It is de-
fined on a complex function h(x,y) as 

 

The resulting image can then be analyzed  with respect to 
the distances between the regular entities  and their or-
dering on the original images. An example is a STM image 
of HOPG, the Fourier image reveals the hexagonal order-
ing and the interatomic distance. 

2D-Filter Image distortions caused by measurement artifacts and 
hidden features in an image can be enhanced or sup-
pressed by two dimensional filtering, e. g. high frequency 
distortions can be treated with a lowpass filter.  2D-Filter 
usually reduce the resolution of the image as they work on 
windows of several pixel. 
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Image Math As an image is represented by a two dimensional matrix, 
matrix operations (rotate, mirror, inverse, multiply,add, 
subtract) can be applied for image corrections or modifi-
cations. 

Image Statistics A typical image with a 512x512 resolution has 262144 
points in total. Therefore a vast amount of statistical anal-
ysis methods can be applied, e.g. roughness analysis, grain 
size analysis, etc. Some commonly reported values to 
quantify the height statistics are: 

Root Mean Square 
This is the standard deviation of the height distribution: 

  

Arithmetic Mean 
The arithmetic mean is the mean surface height or the 
first moment of distribution: 

 

Skewness 
The skewness describes the third statistical moment, 
qualifying the symmetry of distribution: 

 

Kurtosis 
The kurtosis is the fourth statistical moment, describing 
the flatness of distribution: 

 

Grain Analysis 
The methods applied can be found in “Theoretical anal-
ysis of the atomic force microscopy characterization 
of columnar thin films” by P. Klapetek, I. Ohlídal 
Ultramicroscopy, 94 (19-29), 2003 



Appendix 

114 

The used measurement software 
 

The measurement software is the Nanoscope 6.13r1 software for all AFM ap-

plications and the 5.31r1 for STM measurements. In Figure 85 is a screenshot 

of the software during a measurement. 

 

 
Figure 85 Nanoscope 6.13r1 software during a tapping mode measurement of na-
noparticles. 
 

The software has a realtime mode and an offline mode. In the offline mode 

image analysis with the build in analysis tool can be done.   

For the STM measurements it is mandatory to use the 5.31r1 software as the 

STM head is connected to the universal bipotentiostat, which is only adress-

able from the 5.31r1 software. Actually the STM is just a subfunction of the 

SECPM mode and therefore the parameter names can be a little bit confus-

ing.  
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The point and shoot mode 
 

For the transport measurements the bias voltage has been ramped at certain 

spots on an image. In the point and shoot mode, an image is acquired first 

and then spots on that image can be marked for the ramping operation. The 

problem in an open loop system is the drift that happens between the ramp-

ing and the image acquisition. Therefore the positions are only approximate-

ly correct. 

In Figure 86 the typical appearance of measured spots on the image opened 

in Nanoscope Analysis 1.4 is demonstrated. The spots can be switched on 

(red) and off (white) for further analysis. 

 
Figure 86 Image with marked spots for measurements. Curves could be acquired 
on the particles, close by the particles and on the substrate (On the left). On the 
right side is the  point and shoot view (taken from the manual, courtesy of Bruker). 

 
Figure 87 Obtained curves at different points on a particle cluster. Contact instabil-
ities make high numbers of repetition of measurements necessary. The drift in the 
open loop system makes it obligatory to reduce the amount of measurements at 
one spot. 
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AFM images of molecules measured in Erlangen 
 

Due to cooperation with Erlangen AFM measurements of single molecule 

magnets on the CoAu multilayer systems have been performed. The results 

correspond with my measurements. 
 

 
Figure 88 Survey of SMM measured on CoAu multilayer systems in Erlangen by M. 
Enzelberger. 

 
Figure 89 Close up on one entity with size of a single molecule. The same phase 
response as in the images on page 73 has been observed. 
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STM images of molecules? 
Due to the difficulties to identify the molecules the here shown images give 

only a hint of how the molecules might look in STM images. The shape how-

ever does correspond with the AFM images, showing the same ellipsoidal 

form. 

 

 
 

  
Figure 90 STM images of “molecules” on HOPG. The upper image is the topogra-
phy image and its 3D representation. The lower images are just demonstrating that 
those entities can be found more than once.  
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Nanoparticles on edges 

  

  

  
Figure 91 These are just some more images demonstrating how the clusters 
nulceate at or nearby HOPG plane edges. 
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Map of I-V curves 
The following PowerPoint slides illustrate typical locations for the I-V 

curves.  

 

 

The blue arrow marks the typi-

cal curves obtained on HOPG. 

The blue arrow marks the typi-

cal curves obtained on the clus-

ter edges. 
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