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Abstract

This thesis addresses the problem of generating goal-directed movements for robots, a
challenging problem especially in cases where the involved state spaces are high-dimensional
and complex constraints, such as obstacles and joint-limits, are present. Local methods can
be severely hindered in such situations and planning on a global level becomes necessary.
Although an exhaustive search of the state space can generally solve these problems, complete
planning methods do not scale well with the number of dimensions. To avoid the inherent
complexity of complete state space planning, this work proposes the use of a condensed task-
centered representation, focusing on the task to be achieved and neglecting all unnecessary
details. The motion planning problem can then be effectively decomposed into two layers:
A global search component that is restricted to the coarse-scale task representation and a
local control method that generates fine-scale motions.

The ability of the approach to solve difficult planning problems is demonstrated with an
application for redundant robotic manipulators. Due to the limitation of global planning to
the task representation, completeness can no longer be guaranteed, but it can be shown that
many relevant situations can be solved. In particular, the ability to solve planning tasks
for a humanoid robot operating in human-centered environments is demonstrated in both
simulation and laboratory experiments, providing evidence of a significant computational
advantage compared to complete state space sampling methods.
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Chapter 1

Introduction

The world continues to be computerized at a fast pace. Driven by the integrating power
of the globe-circling Internet, information technology enters our everyday lives and shapes
our culture. Electronic entertainment, education and communication. To an even greater
extend, our machines evolve, crammed with micro controllers and sensors, recording on
all channels with high bandwidth. Smart automobiles, intelligent domestic appliances and
interactive toys. On the frontier of this process, there are robots emerging in application
areas outside of academia. Medical robots are assisting during operations, cars are able
to park by themselves and unmanned drones replace civil and military planes. Factory
automation and automated warehouse logistics are reaching ever higher levels, producing
and distributing our global streams of goods.

Among many, some key scientific and technological advancements can be identified that
drive this evolution. On one hand, a wide spectrum of powerful sensors becomes available and
there is progress in integrating many of them for robust and accurate information gathering
and perception. On the other hand, steps are taken that go beyond a hard-wired behavior
and a blind following of pre-determined programs. Benefiting from sensory enhancements,
it becomes possible to dynamically adapt behaviors and to react to unforeseen events. This
work aims to utilize these capabilities to take a step towards more deliberative action
generation. While small scale adaptive behavior can perform reactive mircomanagment, an
enlarged perceptive horizon can be utilized to concentrate on the achievement of large scale
objectives. The immediate course of actions can be reactively generated, leaving resources
to reason about future states and to plan ahead in time.

The level of large scale objective addressed in this work is the goal-directed planning of
non-trivial movements for redundant robotic manipulators. A large scale objective could for
instance be to reach for a certain object in a obstructed and cluttered environment. While
deliberative planning guides and monitors the progress towards this goal, small scale motion
coordination handles the individual motion of the robots limbs based on sensory inputs.
This devision of labor enables to tackle complex problems, as shown in an application of
motion planning for highly redundant humanoid robots operating in human environments.

It is important to keep in mind that goal-directed planning as discussed here is not the
ultimate level of planning, there exist higher levels not subject of this work. It is assumed
that a goal is already given, the intention is already there. Determination of this goal is a
different planning problem.

1.1 Integrating Control and Planning

The creation of smooth goal-directed movements is a central research field in robotics. In
the area of motion control, various tools for a systematic development of control strategies
can be found. They allow for an efficient solution for the problem of controlling a potentially
very high number of variables in order to follow a certain defined motion behavior. Relying
on explicit modeling of the involved systems, they can handle complex relationships while
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Chapter 1 Introduction

being fast and accurate. If sensory information is incorporated, it is also possible to adapt
the behavior to cope with varying conditions. However, since motion control heavily relies
on explicit models of the application domain, it often lacks the flexibility to achieve more
complex behaviors. For these cases, it might be possible to develop problem specific solutions,
hand tuned for a certain objective, but this can quickly become a tedious task and is not
universally applicable.

The ability to create any kind of movement is addressed in the field of motion planning in
a general way. Typically, the problem is handled on a more abstract level, which allows for
the development of methods that are independent of specific system models. Although some
astonishing results in solving complex problems can be achieved, these methods are not
very efficient and have difficulties in handling the requirements of real world applications.
This is the case because task specific knowledge is neglected and a huge number of possible
solutions is considered, even those irrelevant to the task at hand.

Combining both, the small scale motion control and the large scale motion planning
approach, helps in overcoming these limitations. By augmenting control methods with
motion planning capabilities, solving more complex problems in a general way becomes
possible, without the need to develop specific solutions. Conversely, incorporating suitable
control approaches into motion planning effectively narrows the huge amount of possibilities
down to the most relevant portion for a given task.

This concept is implemented in our proposed hybrid motion planning framework. The gap
between motion control and motion planning is bridged, combining the strengths of both
approaches and overcoming their weaknesses. A key element is the shift of planning towards
a high-level task representation, on which sub-goals can be specified on a coarse, task-specific
scale, while actual execution of these task-level sub-goals is delegated to suitable motion
control techniques.

Several questions and challenges have to be addressed towards a successful application
of hybrid motion planning. One issue is to adapt motion planning towards searching the
task representation. Can already known methods be re-used in this different context? What
is the most efficient way to search on task level? Other questions are arising from the
involvement of motion control. How autonomous in creating movements should the control
method be and is it possible to effectively utilize this? Can additional constraints arising
from motion control be handled? Further, with respect to the application to planning for
redundant robots, can complex problems indeed be solved and is the effort to do so reduced?
Is it possible to address real world planning problems? Also, are there limits on the problems
that can be solved?

1.2 Outline

Since the project is located at the intersection of motion control and motion planning, these
two areas are separately introduced first. Chapter 2 reviews the widely used resolved motion
control method as a way to generate movements towards a given task target. Extensions
for singularity robust control and redundancy resolution are presented and with the whole
body motion control framework, an implementation of these methods for humanoid robots
is described. Building on resolved motion control, a novel control method is developed
in chapter 3. The strict task hierarchy of primary and secondary tasks, characteristic for
the methods of chapter 2, is broken. Secondary tasks are allowed to influence the primary
task and the influence can be dynamically varied. An approach to automatically adapt the
secondary tasks influence to ensure primary task convergence is presented.

An introduction into the area of motion planning is given in chapter 4. Three basic
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1.2 Outline

approaches are summarized, local techniques based on potential fields and optimization,
globally valid combinatorial and sampling-based methods. In particular, probabilistically
complete random tree search methods are described and their specific properties and
challenges are highlighted.

Chapter 5 then develops the proposed concept of hybrid motion planning. The previously
described areas of motion control and motion planning are joined in a hybrid motion planning
approach. The conceptual division into a local planning and a global planning layer is
formalized and conceptual properties are analyzed. The interplay of both layers is examined
with the goal of devising good global exploration strategies for redundant robots.

An implementation of hybrid motion planning for redundant robots is presented in
chapter 6, combining sampling-based global planning with local motion control, able to
utilize redundancies to avoid joint-limits and obstacle constraints. A simulated humanoid
robot is used as a test system for a planning study, comparing our novel approach against
state of the art motion planning methods. In chapter 7, the feasibility of hybrid planning
for real-world scenarios is demonstrated, using a humanoid robot performing a complex
bi-manual object placement task. So far, the optimization abilities of local planning were
limited to the redundant space. Chapter 8 integrates the relaxed motion control method
developed in chapter 3 into the framework, allowing to modify task trajectories as well in
order to enhance the constraint avoidance capabilities of local planning. A novel sampling
heuristic exploiting the enhanced local planning abilities is developed and simulation results
for a redundant planar manipulator are presented.

Finally, a conclusion and outlook is given in chapter 9.
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Chapter 2

Motion Control

This chapter reviews methods for generating movements for robotic manipulators. Starting
with a discussion of the question how tasks can be represented in section 2.1, the basic
resolved motion rate control technique is introduced in section 2.2 and singularity robust
motion rate control in section 2.3. If the kinematic structure of a manipulator is redundant,
there remains some freedom in choosing the joint motions which can be utilized for secondary
motion objectives, as explained in section 2.4. While the first parts of this chapter deal
with general manipulators, a specific control framework for humanoid robots is described in
section 2.5. Finally, section 2.6 examines constraints of the control system with the aim of
characterizing the behavior of the resulting movements.

2.1 Task Representation

Different robots can move on many different ways. They have different actuation possibilities
and different kinematic structures, normally selected to best fit their primary work objectives.
Looking at different applications, one can differentiate several distinct areas with distinct
movement characteristics. Some objectives exculsively address point-to-point movements,
for example to reach for a certain object and to carry it to some fixed destination. Other
types of movements need to perform an exact tracing of a pre-determined geometric path,
like an industrial welding robot that has to precisely follow a weld seam. In contrast, other
path following movements allow for a greater freedom in execution, for instance wiping
movements for cleaning a surface or human like gestures. Another class of movements has
an almost opposite objective, not to change the spatial position of the robot or a tool but
to stabilize it on a fixed position. This is the case for balancing tasks, for example moving
the hip and the legs of a humanoid robot in a way that keeps it in an upright position.

Once the type of movement needed is specified, the question arises how to encode the
actual movement to be done, how to represent a certain task. Consider a mobile robot
that is able to move in the plane. Its full state space consists of three variables, the two
dimensional position on the plane and the orientation around its vertical axis. A possible
objective of the robot could be to patrol between a number of waypoints, defined as two
dimensional positions on the plane. The orientation at this waypoints remains undefined,
since one is only concerned about the robot being at a certain place, with any orientation.
The task space in which the waypoints are specified is thus a two dimensional sub-space of
the three dimensional state space. Regarding the movement objective of the robot, only the
position in the task space matters.

Transfered to robotic manipulators, similar observations can be made. Usually, the goal of
a movement is described as moving one point of the structure, often the end-effector, from
one position to another. Such a task is not defined by specifying complete postures of the
manipulator in its state space, but is described in a different task dependent representation,
capturing the movement goal more directly. For example, the task of sliding an object on a
table surface between two positions is more easily described by planar coordinates on the
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table than by full arm postures, involving a potentially large number of joints. The task can
be fully encoded in planar table surface space, which is of a lower dimension than the full
state space and for which a mapping between task positions and states of the robot exists.

The existence of such task centered representations can be confirmed in humans as
well. Scholz and Schöner (1999) show that motion trajectories of a human performing a
sit-to-stand movement can be decomposed into two orthogonal subspaces. While motions
in one subspace affect the controlled variables, motions in the other subspace have no
influence. For the sit-to-stand task, the position of the center of mass in the sagittal plane
is controlled, while head and hand positions are controlled less stable, they are part of the
uncontrolled manifold. Consequently, the motion objective can be described with a task
space representation given by the center of mass position, while all other degrees of freedom
are not of interest, they are redundant to the task at hand.

These task space representations can be found for other types of human movements as well
using machine learning techniques. For instance, Maycock et al. (2010) examine kinematic
data of humans grasping for spherical objects. Analyzing the data with principal component
analysis reveal that a large amount of the postural variance can be described with few
principal components. These components can be seen as a condensed representation of
this specific grasping task. In (Steffen et al., 2008), human manipulation data is used to
explicitly build a representation of the involved movements. It is possible to construct low
dimensional manifolds that contain the hand postures specific for a certain task, like the
unscrewing of a bottle. With a suitable structuring of these manifolds, meaningful motion
parameters can be captured along distinct dimensions, like the size of a bottle cap in one
dimension and the cap turning motion along another dimension. Calinon et al. (2007) use
kinesthetic teaching to record a desired movement for a humanoid robot. By computing
statistics over the data variance along different dimensions, a probabilistic representation of
the movement can be constructed on a low dimensional latent space.

Thus, the first step in finding the right task representation is to identify in which space
the task should be encoded. In this work, the idea of decomposing the state space into a
task specific and a task independent subspace or manifold is used, but unlike the previously
presented machine learning methods, the task space is explicitly modeled for the task at
hand. Sections 2.2 and 2.3 introduce the resolved motion rate control method as a well
known and versatile approach for motion control of robotic manipulators. Motions can
be executed fast and accurate due to a precise modeling of the kinematics. In addition,
redundancies can be effectively utilized to perform additional motion objectives with the
gradient projection method, as shown in section 2.4.

The second step is then to encode the actual movement to be done, using the previously
found task representation. A movement can be defined as a geometrical path, for example a
pair of a starting and a target point with a finite sequence of points in-between. Often a
smooth movement between these points is desired, for which a time law over the path is
specified, a rule that assigns a velocity and acceleration to each spatial point. Techniques to
produce such smooth trajectories with polynomial interpolation are for example given by
Sciavicco and Siciliano (2000, chapter 5).

This approach is feasible if the objective is primarily about following pre-defined paths,
but often it is desired to generalize tasks away from specific paths towards whole sets of
paths. Many tasks can be solved by following different paths that equivalently solve the
problem. For example, the only condition for the task of reaching for a fixed object is that
the path ends at the object. The shape of the path before the object is reached is not
restricted. A suitable representation allowing this generalization are dynamical systems, as
demonstrated by works of Schöner et al. (1995) or with the dynamic movement primitives
(DMP) (Ijspeert et al., 2002; Schaal, 2006). An advantage of dynamical systems is the ability
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Figure 2.1: Simple example of a robot manipu-
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is fixed at the base (0, 0) and the end-effector is
marked by the red circle. Task space is the 2
dimensional end-effector position.
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Figure 2.2: To reach a task space target (red
cross), suitable task velocities have to be specified.
Based on the velocities, motion rate control is
used to compute a matching motion of the joints.

to maintain stable behaviors over a large space of possibilities. For example, if the dynamics
follow the slope of a potential well with a single global extremum, the convergence can be
guaranteed under all circumstances. Another strength is the flexibility to include multiple
modalities, like vision and position, and multiple tasks, like simultaneous target reaching
and obstacle avoidance, as shown in chapter 3.

In this work, the dynamical system concept is followed for the representation of desired
movements. More specifically, the second order attractor dynamic approach introduced by
Gienger et al. (2005) is used and detailed description is given in section 2.5.1.

2.2 Jacobian Pseudoinverse Motion Rate Control

Figure 2.1 shows a schematic model of planar manipulator. While the posture of the
manipulator is given by a vector of joint-angles q ∈ Rn, the task is defined by a second vector
x ∈ Rm, representing for example the tool or end-effector position. Note that the space
where the task is defined, the task-space, does not have to coincide with the workspace of the
manipulator, here the two dimensional plane. For instance, the task space could encompass
three dimensions given by the tool position and orientation. The connection between
joint-angles and task representation is given by the kinematic mapping of a manipulator,
determining where a point of interest on the robot is located, given an exact specification of
the posture. Formally, this mapping can be expressed by a nonlinear mapping x = f(q).

A fundamental problem for the control of a manipulator is the computation of the right
joint angles in order to reach a desired position of the end-effector. This problem is called
inverse kinematics and can be realized by inverting the kinematic equation. Although there
exist algebraic solutions for some simpler structures there is no general closed form solution.
For general robotic manipulators, a common approach is to restrain to a linearization of the
equation and to use the differential relationship between the joint velocities and end-effector
velocities. As shown in figure 2.2, the problem is then to compute a suitable instantaneous
joint motion for every time step, given a desired task velocity. With this method, called
resolved motion rate control, it is then possible to solve the inverse kinematics problem.

Following Nakamura (1991), differentiation of the kinematic mapping with respect to time
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Chapter 2 Motion Control

yields

ẋ = J(q)q̇ (2.1)

with the Jacobian matrix J(q) ∈ Rm×n relating joint velocities q̇ ∈ Rn to the resulting
end-effector velocities ẋ ∈ Rm. This linear equation can be inverted to solve for the joint
velocities given desired end-effector velocities, under the assumption that the Jacobian can
be inverted. If m = n, the Jacobian is square and is invertible if it has full rank. If m < n,
the system is redundant, meaning that there are more degrees of freedom than end-effector
variables, leading to an under determined equation system and thus potentially to an infinite
variety of solutions. In this case, the solution for the inverse Jacobian can be obtained using
the generalized Jacobian pseudoinverse J#(q) ∈ Rn×m:

q̇ = J#(q)ẋ (2.2)

The pseudoinverse can be seen as the least-squares solution of equation 2.1, minimizing
the norm ‖ẋ− J(q) q̇‖ and choosing the smallest possible ‖q̇‖ among all possible solutions.
It can be computed as follows:1

J# = JT (JJT )−1 (2.3)

A numerically stable way of computing the pseudoinverse is to use the singular value
decomposition (SVD), see e.g. (Nakamura, 1991).

2.3 Singularity Robust Motion Rate Control

A problem with resolved motion rate control is how to deal with singularities. Singularities
are configurations of a manipulator where the mobility is reduced and can be classified into
two cases (Sciavicco and Siciliano, 2000): Boundary singularities are at the boundary of the
workspace when the manipulator is either outstretched or retracted. These singularities can
be avoided since these regions are relatively easy to identify and the manipulator can be
prevented to go there. The second class of singularities are internal singularities that can
occur everywhere inside the workspace. They appear if degrees of freedom are aligned in an
unfortunate way and are harder to counteract because they are not as easily located.

Regarding the Jacobian pseudoinverse approach, there are also computational problems
caused by singularities (Nakamura, 1991): Although the pseudoinverse in equation 2.3
gives approximate solutions at singularities, the switch from an accurate solution to an
approximated one causes discontinuities. Also the joint-rates become prohibitively large in a
neighborhood around singularities. In order to compute continuous and feasible solutions at
or in the neighborhood of singularities, a singularity robust inverse is proposed by Nakamura
(1991) as one particular method from the family of damped least-squares approaches, see for
example (Chiaverini et al., 2008). It minimizes an error norm ||e|| composed of the exactness
of the solution and the magnitude of the joint velocities

e =

(
ẋ− J(q)q̇

q̇

)
, (2.4)

in order to find a solution that is both accurate and feasible with small joint rates. The
singularity robust pseudoinverse can be computed as:

J∗ = JT (JJT + kI)−1 (2.5)

1If not explicitly stated, the Jacobian J(q) is always dependent on q.
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Figure 2.3: Example of a four joint manipu-
lator approaching a singularity (top). Near the
singularity, the joint velocities are discontinuous,
leading to a discontinuous joint space trajectory
as well (bottom).
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Figure 2.4: Example of a four joint manipulator
approaching a singularity under singularity robust
control (top). The joint velocities are damped,
resulting in a smooth continuous joint space tra-
jectory (bottom).

with I being the identity matrix. The parameter k weights between exactness (small) and
feasibility (large) of the solution and can be chosen adaptively, based on the manipulability
measure w =

√
det(JJT ) as an estimate of the closeness to singularities:

k =

{
k0(1− w

w0
)2 for w < w0

0 else
(2.6)

If the manipulability w gets smaller than a threshold w0, the weight k is increased until it
reaches its maximum value of k0 at w = 0.

Figure 2.3 shows an example how Jacobian pseudoinverse motion rate control behaves
when approaching a singularity. In figure 2.4 the same movement is done with the singularity
robust pseudoinverse control.

2.4 Redundancy Resolution

The gradient projection method (Liegeois, 1977) is one of the most widely adopted approaches
to resolve redundancy. It is based on a more general solution of equation 2.2:

q̇ = J#(q)ẋ+ (I − J#J)z (2.7)
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Figure 2.5: Computation of the obstacle avoidance cost function illustrated. The obstacle cost
depends quadratically on the distance d of closest points p1 and p2 on the robot and obstacle. Only
distances below the threshold dB are considered.

The first term uniquely maps task-velocities ẋ ∈ Rm to joint-velocities q̇ ∈ Rn, just as
in equation 2.2, and the second term projects an arbitrary vector z ∈ Rn to the Jacobian
nullspace. Of both projections, the nullspace N (J) and the range space R(J#) = N⊥(J),
are orthogonal to each other. The vector z, projected on the nullspace, can only induce a
manipulator self-motion without disturbing the task execution and by systematically varying
z, all possible inversions of equation 2.1 are created.

This way, the choice of z controls how the manipulators redundancy is resolved. With the
gradient projection method, the redundancy is used to optimize the motion with respect to
a secondary task objective, given by a scalar cost function H(q) in joint-space. To minimize
this cost function, z is set proportional to the negative gradient of the cost function in every
control step:

z = −γ
(
∂H

∂q

)T

(2.8)

The overall joint motion thus consists of a task component minimizing ||ẋ− J(q)q̇|| and a
secondary motion objective, minimizing ||H(q)||. Note that the minimization is done locally
in every control step and does in general not result in a global cost minimization over the
whole trajectory. In the following sections two possible secondary motion cost functions are
described.

The singularity robust pseudoinverse J∗(q) (equation 2.5) could be used in this scheme as
well. However, the orthogonality of the task- and redundant-space projections can be violated
in certain situations, meaning that the task and redundant space motions are no longer
strictly separated. As a result, the joined minimization of the task- and secondary-motion
objectives might fail once the redundant space motion influences the task motion or vice
versa. In practice however, situations where the singularity robust pseudoinverse mapping is
substantially different from the simple pseudoinverse solution are limited to a narrow region
around singularities and the impact on the complete trajectories remains rather small.
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2.4 Redundancy Resolution

2.4.1 Joint Limit Avoidance

A cost-function Hjc that avoids the mechanical limits of joints is developed in Liegeois
(1977):

Hjc(q) =
1

2

n∑
i=1

(
qi − q0,i

qmax,i − qmin,i

)2

(2.9)

The function penalizes the deviation of joint i from a given reference position q0,i with
quadratic costs and the contribution of each joint to the overall cost is weighted by its
motion range, given by qmin,i and qmax,i.

2.4.2 Obstacle Avoidance

To prevent the manipulator from colliding with itself or with external obstacles, a cost
function that is based on the distance of closest point pairs is defined in Gienger et al. (2010).
The costs of an individual pair pi, consisting of points p1,i and p2,i, are given by a quadratic
cost function gpi , based on the distance dpi

gpi =

{
s(dpi − dB)2 0 ≤ dpi ≤ dB
0 dpi > dB

(2.10)

Costs are only created below a threshold distance dB and the parameter s determines
the slope of the parabola at zero distance. The overall cost function Hoc incorporates all
individual costs over the set of all closest point pairs {pi = (p1,i, p2,i) | i = 1...P}:

Hoc =

P∑
i=1

gpi (2.11)

This cost function is not yet defined in the joint-space. To do so, the distance gradient
is expressed w.r.t. the closest points p1 and p2 and mapped into the joint space with the
corresponding body point Jacobians Jp1 and Jp2 . In combination with the gradient of the
distance based cost function, the joint-space gradient w.r.t. a single point pair pi becomes

∂gpi
∂q

=
∂gpi
∂dp

∂dp
∂x

∂x

∂q
= 2s(1− dB/dp)(Jp2 − Jp1)T (p2 − p1) (2.12)

and summing over all individual gradients yields the overall cost-function gradient

∂Hoc

∂q
=

P∑
i=1

∂gpi
∂q

(2.13)

2.4.3 Examples

How the pseudoinverse control approach behaves is shown in some simple example movements.
The controlled robot is the previously used simple planer manipulator with four joints. The
task space is the two-dimensional space of end-effector position, leaving the end-effector
orientation unspecified. The task is represented as an attractor point and the second order
dynamical system from (Gienger et al., 2010) (see section 2.5.1) is used to compute task
velocities ẋ for given current task space positions x and targets y. Joint-space velocities q̇
are then computed according to the motion rate control law.

Different redundant space resolution strategies are compared. In figure 2.6 the plain
pseudoinverse approach is used, according to equation 2.2.
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Figure 2.7 and figure 2.8 illustrate redundancy resolution with the gradient projection
method, equation 2.7. In figure 2.7, the joint limit avoidance cost function is used, given by
equation 2.9. As visible in the cost function plot, the redundant space movement quickly
converges from an initial high cost posture to a lower cost posture.

The obstacle avoidance cost function, equation 2.10, is shown in figure 2.8. Note that the
cost function is not guaranteed to monotonically decrease, indeed the costs initially raise for
this example.

2.5 Humanoid Whole Body Motion

All control methods described up to now are quite general and could be applied to any kind of
redundant or non-redundant manipulator. There are many robot classes that are successfully
controlled with these methods and this section introduces a control framework for one class
of particular interest – humanoid robots. Humanoid robots are directly inspired by human
capabilities, for an introduction and overview of existing systems refer to (Kemp et al.,
2008). Central topics in this field are the realization of human like two legged locomotion
and balancing, as well as two handed manipulation incorporating complex upper body
structures and hands of different levels of dexterity. This two areas can also be combined
for activities including walking and upper body manipulation. Other important aspects are
human inspired perception and also social behavior and communication.

Humanoid robots have body structure morphological similar to humans, that is they
have two arms, two legs, a torso and a head. The structure is more complex than a single
sequential manipulator, posing some challenges from the control perspective. Not only is
the state space high-dimensional and redundant, the morphology also diverges from the
sequential manipulator and resembles a tree. Rooted at the torso, five branches originate:
One for each arm and leg and one for the head. To tackle this tree structure, most control
methods separate the body into functional groups. While the legs and hip are used for
walking, manipulation only involves the torso and the arms. It is then possible to address
the walking problem with specific control methods, e.g. (Harada et al., 2004). Movements
that only involve the upper body can be generated with the previously presented motion
control approach for redundant manipulators.

One of these upper body control methods is the whole body motion control framework
developed by Gienger et al. It aims to facilitate the high level of versatility of humanoid
robots given by their complex body structure. As one example, manipulations can be
done with either the left or the right hand, or even with both. The framework consists of
multiple components and a summary is given in (Gienger et al., 2010). It is build around the
known resolved motion rate control approach with gradient projection redundancy resolution
and adds some enhanced abilities: Flexible task representations, displacement intervals for
weakly constrained motions, self-collision and obstacle avoidance. Further it is possible to
use the control method as the basis for stance point and trajectory optimization, including
the selection of optimal grasps. The framework is able to compute motions of the upper
body of a humanoid robot in real-time, while walking and the lower-body of the robot
are not explicitly controlled. Walking abilities are handled in the framework by specifying
high-level stance positions, control of the actual walking pattern is not considered.

2.5.1 Task Attractor Dynamics

Tasks can be defined in a very flexible way by utilizing the tree structure of the robot.
Instead of controlling the end-effector with respect to a fixed robot coordinate frame only,
whole body motion control allows to define tasks as the movement of one body with respect
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Figure 2.6: Motion rate control of a redundant manipulator, doing a movement towards the target
position marked by the cross (left). The pseudoinverse approach is used here without additional
redundancy resolution. For comparison, the joint-limit cost function is plotted against time (right).
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Figure 2.7: Resulting trajectory if the redundant space is utilized to avoid joint limits (left). The
value of the joint limit cost function is plotted against time (right).
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Figure 2.8: Using the redundant space for obstacle avoidance (left). The value of the obstacle
avoidance cost function is plotted against time (right). Also, the joint-limit cost function is shown,
although not explicitly minimized here.
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Figure 2.9: Simulation of a humanoid robot under whole body motion control. Starting at the
marked positions (blue ball), three position targets are approached. The resulting trajectory is shown
in red.

to any other body in the tree (Gienger et al., 2010). For example, it is possible to control
the left hand position with respect to the head or relative to the right hand position. Since
external objects can also be part of the tree, it is also possible to control motions with respect
to other objects too. In addition to that, the dimensionality of task vectors is not fixed.
Gienger et al. (2005) illustrates the cases of three-dimensional position and five-dimensional
position and orientation tasks, but in principle any kind of task modality could be used. This
way, it is easy to only constrain relevant dimensions and to leave all others unconstrained.
For example, consider the task of grasping a cylindrical object, symmetrical around its
vertical axis. In order to pick up the object, it is sufficient to control the hand orientation
relative to this symmetry axis, while the actual orientation around this axis is not relevant
for the task.

Independent of the actual task definition, the goal is always represented by a target
attractor point, following the dynamical system approach described in section 2.1. The
dynamical system used here is a second order attractor dynamic similar to DMP. Given
a single target attractor point, a vector field is defined over the whole task domain, in
which every trajectory converges to the target. The dynamical system is given in a discrete
formulation in Toussaint et al. (2007). Alternatively, it can be expressed with a continuous
state transition function ÿ = h(ẏ, y, u, t), defining an acceleration ÿ for every position y and
current velocity at this position ẏ:

ÿ = α(u(t)− y)− βẏ (2.14)

Coefficients α and β determine the convergence behavior. The task enters the dynamic
with the time dependent parameter u(t), which is just a time dependent linear interpolation
between an initial starting point yk and a target point yk+1:

u(t) =

{
yk + (yk+1 − yk)t for 0 ≤ t ≤ 1

yk+1 else
(2.15)

The second order transition function can be reduced to a first order transition function
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example.

ẋ = f(x, u, t) by representing it in the phase space (y, ẏ) = (x1, x2) ∈ X :

ẋ1 = x2

ẋ2 = α(u(t)− x1)− βx2
(2.16)

Figure 2.10 shows a resulting trajectory, starting at (y, ẏ) = (0, 0) with the target y = 1.
Figure 2.11 illustrates the corresponding velocity and acceleration profiles. Parameters are
α = 10, β = 6.

2.5.2 Instantaneous Motion Optimization

Since most humanoid robots possess a high level of redundancy that can be exploited to fulfill
secondary movement characteristics, the whole body motion control framework employs
the gradient projection method introduced in section 2.4. Given desired task velocities ẋ,
computed by the previously described attractor dynamic approach, matching joint velocities
q̇ are computed according to equation 2.7. During assembly of the Jacobian, the two arm
morphology has to be respected.

The redundant space movement is given by an arbitrary joint-space cost function H(q)
that is locally optimized. Two different secondary movement objectives are defined. The
cost function in (Gienger et al., 2005) is used to avoid joint-limits by penalizing deviations
from a given reference- or home-posture, refer to section 2.4.1. Figure 2.12 demonstrates
redundancy resolution with this cost function, showing the effect of favoring natural looking
human-like postures.

Another use of redundancy is to avoid collisions of the robot, either with external obstacles
or with itself, as shown in (Sugiura et al., 2007, 2010). For this a cost function based on the
distance to obstacles is defined, as described in section 2.4.2. Figure 2.13 shows an example
where the motion is optimized to penalize joint-limits and to stay away from the obstacle.
Comparing this motion to the previous case of mere joint-limit avoidance, it is visible how
the redundancy is effectively used to successfully circumvent the obstacle, without altering
the task execution.

Using the collision avoidance cost function adds computational costs to each control
iteration. Closest points between robot segments and obstacles have to be determined
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Figure 2.12: Example motion with joint limit avoidance. Local redundancy resolution drives the
robot towards postures minimizing the deviation from a pre-defined home position, resulting in a
natural looking movement.

Figure 2.13: Example motion with joint limit avoidance and obstacle avoidance. Based on the
distance of robot segments to the obstacle, locally optimal avoidance motions (black arrows) are
projected into the redundant space.

and in order to project the corresponding costs into the joint-space, local Jacobians at the
closest points have to be computed. However, if the number of segments is limited and
simple geometric primitives are used, the overhead remains small and control can still be
done in real-time. Throughout this work, all geometries consists of spheres, boxes and
sphere-swept-lines, for which efficient distance computation and collision checking is possible,
e.g. (Larsen et al., 1999; Van den Bergen, 1999)

Despite the computational burden, the present collision avoidance method exhibits
principal limitations. One is the restriction to the redundant space. If an obstacle can not be
avoided without modifying the task trajectory, a collision can not be prevented. The second
limitation is due to the local nature of the gradient descent cost minimization. Although an
optimal motion is done in every step, optimality is only locally evaluated. With respect to
the whole trajectory, gradient descent is likely to confine to sub-optimal solutions or even to
run into local minima.

2.6 Constraints

The previous sections outlined ways to represent and generate movements for robotic
manipulators. Starting with some task description, given in a suitable representation,
motions for each joint are computed with the Jacobian pseudoinverse approach. If the
mechanism possess redundancies regarding the task, the resulting freedom of multiple
solutions can be effectively exploited with the gradient projection method, for example to
avoid joint-limits or obstacles. At the end of this process, joint-velocities are calculated and
by integrating them in time, a joint-space trajectory is created.

In this section, another look at the motion generation process is taken, examining the
behavior of the resulting movement paths. More specifically, the question is addressed if it
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is indeed possible to create every movement possible, or if there are paths that can not be
taken and positions that can not be reached. The question is if the set of possible paths
and the set of reachable states is limited in any way by constraints.

Two types of constraints were already encountered before: Joint-limits can hinder a
manipulator to reach postures outside an allowed joint-range and obstacle constraints forbid
postures that result in a collision of the robot with itself or with other obstacles. These
constraints block certain parts of the state space and can be characterized as a binary
function, indicating for every state of the robot if it is allowed or not. They prevent
the creation of every possible movement and limit the reachable positions, but since they
originate from mechanical properties of the modeled system, their adherence is highly
desirable and does not result in practical limitations.

A different kind of constraint is not as easily characterized. Kinematic constraints limit
the freedom of movement in a less obvious way. Following Latombe (1991), kinematic
constraints can be distinguished into two classes:

Holonomic constraint:
Supposing there is a robot at time t and state q, a holonomic constraint imposes
a scalar constraint of the form F (q, t) = 0.2 If there are k independent constraints
defined, a holonomic constraint determines a (m− k) dimensional manifold of the m
dimensional state space. The robot can freely move in this manifold but is not able to
leave it. An example for a holonomic constraint is a block that lies on a table and
that can only be manipulated by pushing it. The block can not move freely in space,
it can not be lower than the table and it can not go above the table, its movements
are limited to sliding on the table surface. However on the table surface, the block
can be pushed to any possible position.

Nonholonomic constraint:
If a scalar constraint on the robot state q can not be expressed without derivatives,
i.e. is of the form F (q, q̇, t) = 0, it is called a nonholonomic constraint. The set of
possible velocities q̇ is restricted to a subspace of the tangent space Tq of state q. Thus
a robot is no longer able to move from any state to any state, even if both states are
in principle allowed. The directions in which motion is allowed are determined by the
nonholonomic constraint. A common example is the car-like motion behavior. A car
can move on a horizontal plane, but it can only move forward and backward, with
the direction determined by the state of the steering wheel. It is not possible to slide
the car perpendicular to its driving direction. However, we know by experience that a
car is nevertheless able to reach every possible state – only the path might become
more complex. For example it is possible to reach states perpendicular to the driving
direction by performing a parallel parking maneuver.

Note that the presence of derivatives in a constraint equation does not always imply a
nonholonomic constraint. Sometimes it is possible to eliminate the derivatives in a
different but equal form of constraint equation. Only if this integration is not possible,
the constraint is said to be nonholonomic.

The car example is a good way to show the relevance of this principal distinction into
holonomic or nonholonomic constraints. Only the non-holonomity of the system allows
the car to drive to every possible state. In contrast, the movement range of a car with a
holonomic constraint would be severely limited, as for example happening when the steering

2Inequality constraints F (q, t) ≤ 0 are also possible
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Figure 2.14: Starting at the position marked by
the circle, several target positions marked by the
crosses are fed into the system in sequential order.
The switch from one target to the next occurs
before the target is reached.
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Figure 2.15: The corresponding velocity profiles
show that there is always one velocity compo-
nent grater than zero, resulting in a steady move-
ment without stops. (blue: velocity in x-direction,
green: velocity in y-direction)

wheel remains fixed at one position. Possible movements would then be limited to a manifold
described by a closed circle.

In the following, the nature of the constraints arising from the described control methods
is analyzed. This is especially interesting once motion control is used for planning, where
movements no longer consist of single point to point motions but of multiple consecutive
motions on a complicated path. Characterizing the constraints answers the question if
there are any additional limitations on the paths, besides the compulsory prevention of
joint-limit or obstacle constraints. This can be systematically addressed by examining the
reachability of the system by looking at the reachable set of all states of the system (LaValle,
2006, chapter 14). It is defined as the set of all states visited by any possible trajectory
starting at a fixed state. A general property is that if the constraints are holonomic, the
set of reachable states is always limited to a manifold of the state space. If the constraints
are nonholonomic, the complete state space can be reachable, depending on the specific
properties of the constraints.

To characterize the motion control approach used in this work, two components are
examined separately. The process of computing task velocities ẋ from a task target, covered
in the next section 2.6.1, and the control law computing joint-velocities q̇, covered in section
2.6.2.

2.6.1 Attractor Dynamics

In section 2.5.1 a second-order attractor dynamical system was presented, with the goal
of creating a smooth task space trajectory towards a given task target. Equation 2.14
constraints the acceleration ÿ in dependence of the current state position y and state velocity
ẏ. The desired task target is given by u(t), an attractor point linearly shifted towards the
target. The system can be written as a constraint equation

α(u(t)− y)− βẏ − ÿ = 0 (2.17)

including first- and second-order derivatives. Due to the acceleration constraint, it is not
possible to instantly change the direction of motion, as shown in figures 2.14 and 2.15. If
the target position is changed before a target was reached, the motion generation process

18



2.6 Constraints

0 1 2 3 4 5
−1

−0.50

0

0.50

1

1.50

2

 

 

Figure 2.16: The same target positions are ap-
proached in sequential order, but this time all
intermediate positions are reached with zero ve-
locity.
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Figure 2.17: The velocities are (close to) zero
when a target is reached and the system switches
to the next target. (blue: velocity in x-direction,
green: velocity in y-direction)

smoothly changes the motion direction towards the new target. There is momentum left
from the previous motion and since acceleration is constrained, counteracting the momentum
needs some time. This limitation of possible accelerations in every state of the motion
implies the presence of nonholonomic constraints. Indeed, Appendix A shows that it is
not possible to express this constraint in an integrated form not depending on velocities,
in particular on the initial velocity at the beginning of the motion. Looking at a series of
movements in the previous example, this means that each sub-trajectory is influenced by its
predecessor because the initial velocity of every new movement equals the end velocity of
the previous one.

A special case arises if movements are restricted to direct target-to-target movements,
starting at a rest position with zero initial velocity and ending at another rest position with
an almost zero velocity. If subsequent target-to-target movements are done, the influence of
the previous movement is neglectable because the close to zero initial velocity has almost
no impact. All possible movements in all directions can be done from any sub-trajectory
end-point, regardless of the actual sub-trajectory that led to that end-point. Figures 2.16
and 2.17 illustrate how the direction changes between target points can now be precisely
followed.

Regarding the state reachability of the dynamic system, it can be assumed that every
position can be reached. Although the set of possible sub-trajectories starting at a given
state is constrained, i.e. certain accelerations might be impossible, the set of reachable
trajectory end-points is not limited. If the additional condition of zero velocity at switching
points between sub-trajectories is imposed, the dynamic system behaves like a holonomic
constraint: Originating from such a switching point all possible motions are allowed, there
are no impossible accelerations. All target states can be reached on a straight-line path and
every subsequent straight-line path is completely independent of its predecessor.

2.6.2 Motion Rate Control

Section 2.2 introduced the Jacobian psuedoinverse motion rate control method as a way
to generate joint-space motions q̇ for desired task motions ẋ. If the mechanic structure is
redundant with respect to the task, the control system is underactuated and movements
in the joint-space are implicitly subject to differential constraints. De Luca and Oriolo
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Figure 2.18: Simulation of a manipulator per-
forming a closed loop movement from A to B to C
and back to A. Redundancy is resolved with the
gradient projection method and the joint-limit
avoidance cost function. The manipulator con-
verges to the same posture at position A after
performing the loop.
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Figure 2.19: The same closed loop movement
from A to B to C and back to A. In comparison to
the figure to the left the gradient steps are smaller,
resulting in different redundant space configura-
tions. After performing the loop, the manipulator
converges to a slightly different configuration at
position A.
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Figure 2.20: A closed loop movement from A to
B to C and back to A in presence of an obstacle.
The redundant space cost function consists of
both joint-limit avoidance and obstacle avoidance.
Due to the obstacle, the manipulator converges
to a completely different configuration at position
A after the loop. It starts bending to the right
(dark blue) and ends bending to the left (light
blue).

−4 −3 −2 −1 0 1 2
−1

0

1

2

3

4

A

B

C

Figure 2.21: A closed loop movement from A to
B to C and back to A passes through a singularity
at position B. As a result, the manipulator reaches
A with a different configuration, representing an
alternative solution to the inverse kinematic prob-
lem. It starts bending to the right (dark blue)
and ends bending to the left (light blue).
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2.6 Constraints

(1997) characterize these constraints as being either holonomic or nonholonomic and show
the equivalence to the well studied problem of the repeatability or cyclicity of redundant
manipulator movements. Holonomic constraints result in a cyclic control scheme where
every closed task-space loop also results in a closed joint-space loop. If constraints are
nonholonomic, complete cyclicity is lost. Integrability of the constraints or equivalently
cyclicity of the control can be tested with the help of the Frobenius theorem (Shamir and
Yomdin, 1988). Unfortunately, this depends heavily on the actual mechanism and Jacobian
inversion and it is hard to state general properties.

In this work, pseudoinverse control with gradient projection redundancy resolution is
used, refer to section 2.4. With equation 2.7, it is possible to explicitly write every possible
control law within this scheme as

q̇ = J#(q)ẋ+ (I − J#J)z (2.18)

The second term maps an arbitrary vector z to the nullspace N (J), while the first term
uniquely maps to the orthogonal space R(J#) = N⊥(J). By choosing z, every possible
inversion of equation 2.1 can be created and the actual choice determines if the control is
holonomic or not. Without loss of generality, the following statements about the holonomy
of gradient projection control can be made:

1. If the system is holonomic, the control scheme is cyclic. A path starting at (x0, q0)
and ending at (xn, qn) is cyclic if a closed task space loop xn = x0 results in a closed
configuration space loop qn = q0 as well. This implies that the redundant inverse
kinematic mapping has to map x0 and xn to the same q, thus z has to be unique for
every q in equation 2.18 to let q̇ converge to the same q.

The gradient projection method sets z as the cost-function gradient z = γ∇H(q).
While the gradient is unique for every q, the convergence to the same q can not be
guaranteed! Depending on the step-width γ, the control might converge to different
joint configurations at the same task position, as illustrated in figures 2.18 and 2.19. If
the cost function H(q) possess local minima, like the obstacle avoidance cost function
in section 2.4.2, the gradient might even converge to entirely different minima, see
figure 2.20.

2. The control law in equation 2.18 becomes unfeasible at singularities, where J is not of
full rank. For this reason, the treatment of cyclicity and holonomic control is often
limited to non-singular regions of the space (Shamir and Yomdin, 1988; De Luca and
Oriolo, 1997). However, it is possible to move through singularities with a singulartiy
robust pseudoinverse, see section 2.3. The control law returns feasible joint-rates even
inside singularities and trajectories can thus move from one region of the solution space
to another region, as illustrated in figure 2.21. It is visible that cyclicity is lost in this
example, because the same task positions are now reached by completely different joint
configurations. The space of valid joint-postures for a given task position is partitioned
into different solution regions connected through singularities. Notably this is also
the case for non-redundant structures. A two joint manipulator (relative joint angles
θ1 and θ2) with a two dimensional positioning task is not redundant, yet every task
position can be reached with the ”elbow” joint either pointing to the left (π > θ2 > 0)
or to the right (−π < θ2 < 0). To pass from one solution to the other, one has to go
through the ”stretched out” (θ1 = θ2 = 0) or ”folded” singularity (θ2 = ±π).

Considering these two points together, the gradient projection control scheme can only
be characterized as holonomic under two conditions: The first condition is that holonomic
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Chapter 2 Motion Control

behavior is limited to singularity free regions. Passing through a singularity, the system
enters a different solution region with a different posture for the same task position and
holonomy is lost. The second condition requires that the global minimum of the redundancy
resolution cost function is always found inside a singularity free region, resulting in an unique
mapping of states to a manifold. A diverging mapping can result in diverging postures for
identical task positions, also violating holonomy.

In practice, these to conditions are generally not met. With the use of singularity robust
control, the system can pass through singularities. Also, using gradient decent based
optimization for redundancy resolution might lead to different convergence points and states
diverging from the manifold. Thus, the motion control approach presented in this chapter
has to be characterized as possessing nonholonomic behavior. The reachability of the control
system with respect to the complete state space is not limited to a single manifold. It is
possible that identical task positions are reached with different joint postures, either by
diverging redundant space gradients or after the transition into a different solution space
region through a singularity. This does not necessarily mean that the whole configuration
space becomes reachable, but at least the region of reachable configurations is substantially
enlarged in most cases.
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Chapter 3

Relaxed Motion Control

The previous chapter 2 introduced motion control methods for redundant manipulators,
where the redundancy is exploited to optimize secondary motion objectives without disturbing
the primary task. In this chapter, a control method is developed that weakens this strict
prioritization in order to gain more freedom in motion optimization. After an introduction
in section 3.1, the relaxed motion control method is described in section 3.2. It can also be
integrated into the whole body motion control framework, as elaborated in section 3.3.

3.1 Multiple Motion Objectives

The Jacobian pseudoinverse gradient projection technique demonstrates a way to utilize
redundancies for the fulfillment of additional motion objectives, section 2.4. This kind of
motion optimization is by design restricted to the redundant space and is not interfering
with the task. Motion objectives are strictly prioritized: Most important is the fulfillment
of the primary task and only if there is some freedom left, secondary tasks like obstacle
avoidance are considered. While this property is often desired if precise task execution is
the main objective, one can think of situations where this strict devision is not necessary or
even cumbersome. For example, consider a simple pick and place task where the goal is to
reach a certain target position. A direct and straight trajectory towards the target is of
course a reasonable solution, but not necessarily the only solution. Every deformation of
the trajectory is also a valid solution, as long as the end-points remain fixed. While the
straight trajectory minimizes the total trajectory length, other trajectories might minimize
other cost objectives, like the already introduced joint-limit or obstacle distance costs. For
instance, if we allow the modification of the task trajectory according to obstacle distance
costs, the resulting trajectory could bend around obstacles.

This example illustrates a case where it makes sense to weaken the strict prioritization
into task objective and redundant space objective. By deliberately allowing the deviation
from straight task execution, it is possible to put greater weight on the optimization of
secondary motion properties. This is especially beneficial if the available redundant space
freedom is limited. If the task at hand allows it, one can trade precision and predictability
of task execution for lower cost trajectories, for example for trajectories staying further away
from obstacles.

In this chapter, the control scheme of chapter 2 is enhanced to allow deviations from
direct task execution in order to foster the minimization of an additional cost function.
The strict division into primary and secondary motion objective is broken by allowing the
secondary motion to interfere with the primary one. The influence of the secondary motion
can be fixed to have the same priority than the primary one, or can be adaptively weighted
to have a lower priority in conflict situations. This leads to a motion control law with a
“relaxed” attitude regarding the compliance with different task objectives.

Several control methods can be found in the literature that handle multiple motion
objectives simultaneously. Escande et al. (2010) solve a stack of tasks with quadratic
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programming and conflicting objectives are resolved by defining a strict hierarchy. For cases
in which such strict priorities are not desired, Salini et al. (2011) resort to a soft hierarchy
of tasks with an importance weighting strategy that also allows to do smooth transitions.
Tasks and constraints are formulated as an optimization problem and solved with linear
quadratic programming. With our proposed control method, it is also possible to define a
task hierarchy to resolve conflicts and to switch between tasks in a smooth way. In contrast
to the optimization based methods, a pseudoinverse control approach is used, with tasks
and constraints formulated as potential functions. Also, task weighting is done on task-
instead of joint-level.

A comparable control based approach is presented in (Brock and Khatib, 2002), based
on an adjustable task representation called elastic strips. Consisting of a sequence of
sub-targets, the strip can be dynamically adapted according to external forces exerted by
obstacles, pushing the path away, and internal forces, ensuring its closure. Tasks can also be
defined with priorities, using the operational space formulation, and it is possible to suspend
individual tasks and to smoothly switch between them. Unlike elastic strips, the relaxed
motion control method developed in this chapter does not operate on a whole sequence
of sub-targets. Only a single target is given and the resulting path is always consistent,
without the need to maintain the path closure.

A way to relax task constraints in the whole body motion control framework from section
2.5 is developed in (Gienger et al., 2006). The secondary motion component, originally
used for redundancy resolution, is projected onto the task space. There it is overlaid with
the target directed motion, leading to a displacement away from the original trajectory in
a direction that minimizes the secondary motion cost function. If the secondary motion
optimization criteria is given by a joint-limit avoidance cost function, it is shown that
resulting trajectories indeed stay further away from joint-limits and the movements are more
natural looking. Since the trajectory displacement is limited to an allowed interval, it is still
possible to ensure certain task necessities. For example the hand can be restricted to stay
in a tunnel around the task trajectory or the angular deflection of a grasped bottle can be
limited, avoiding an accidental pouring of the content.

The proposed relaxed motion control method also uses the approach of projecting a
secondary motion joint-space gradient onto the task space, superposing the primary target
reaching motion. However, the resulting displacement is not restricted to a certain interval
that limits the freedom in fulfilling the optimization. Task constraints are weakened to
a greater extend, the only requirement remaining is to exactly reach the commanded
target position. That is a difference to (Gienger et al., 2006), where the adherence to the
displacement interval is guaranteed, not the convergence to the target.

The control scheme in (Sugiura et al., 2010) also utilizes the whole body motion control
framework, employing the gradient projection method for redundant space obstacle avoidance.
Since this approach puts onesided priority to task reaching, an additional controller is
developed that interchanges priorities. The first priority is to avoid obstacles, while target
reaching plays a subordinate role in the redundant space of the obstacle avoidance motion.
The control output of both controllers is then smoothly blended between the two priorities
task reaching and self-collision avoidance, based on the closest distance between robot
segments. If the distance falls below a defined threshold, the priority of self-collision
avoidance gets increasingly larger while the priority of task reaching gets proportionally
lower. This way, uncritical task targets are reached and critical targets resulting in self-
collisions are executed as far as possible.

Relaxed motion rate control allows to smoothly vary the influence of the secondary motion
to the task execution with an a-priori determined weighting parameter, comparable to the
priority weighting of Sugiura et al. (2010). But unlike their approach, only a single control
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equation is used. Also the weighting is not automatically adapted as a function of segment
distances but in dependence to the target distance. The controller is enforced to always
converge to the target position, even if it is necessary to move close to obstacles. The basic
principle of the proposed method was presented in (Behnisch et al., 2011), but without the
weight adaption technique enforcing the target convergence developed in this work.

3.2 Task Space Motion Optimization

The proposed relaxed motion control technique builds upon the known resolved motion rate
approach, see the previous chapter 2. In the control equation, relating task velocities ẋ to
joint velocities q̇, the task velocity ẋ is replaced by the composite term ẋ = αẋtg − βẋcf :

q̇ = J#(αẋtg − βẋcf )− γ(I − J#J)∇H (3.1)

The task velocity now consists of a weighted superposition of the target directed task
space velocity ẋtg and the task space velocity ẋcf , minimizing a arbitrary joint-space cost
function H(q). This velocity is determined by projecting the cost function gradient to the
task space as

ẋcf =
∂H

∂x
=
∂H

∂q

∂q

∂x
= ∇HTJ# (3.2)

The motion consists of three components now, a target directed motion, a local cost
optimization motion in task space and a local cost optimization motion in the redundant
space. The influence of each is weighted by the parameters α, β and γ, respectively.

Since the redundant space motion is by design not interfering with the task space motion,
the weighting of this component with γ is independent of the weighting of the task space
motion. Thus the value of this parameter is not very critical. For the weighting of the task
space components however, this is not the case. Here the motions are both in the task space
and are thus directly influencing each other.

The challenge is to weight both parts appropriately. For example, consider the cost
function is designed to avoid obstacles, resulting in a task velocity away from obstacles.
The two objectives of getting closer to the target and staying away from obstacles might
be contradicting in certain target and obstacle configurations. In such cases, we propose
to control the task space behavior by modifying the parameter β. If it is set to 1, there is
a large emphasis on cost function minimization, e.g. obstacle avoidance. If it is set to 0,
pure target following without any deviation is done. An example with obstacle avoidance is
shown in figure 3.1 and 3.2, employing the cost function presented in section 2.4.2.

It is also possible to dynamically adapt α to assign an even higher priority to cost
minimization, as shown in (Behnisch et al., 2011). In situations where the cost function
gradient is large, α is smoothly tuned down, decreasing the influence of the target directed
velocity and increasing the relative weight of β and the cost minimization velocity.

The example in figures 3.1 and 3.2 shows that, depending on the spatial arrangement of
target and obstacles, the control might converge to different points for different β. Why this
is happening is illustrated in figures 3.3 and 3.4 for the case of β = 0.5. The two velocity
vectors ẋtg and ẋcf are both acting in the same space, and depending on α and β, it might
happen that their difference is zero, αẋtg − βẋcf = 0. In order to prevent the controller to
converge to points that are not the target, it has to be ensured that the target motion is
always dominating the overall motion.
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Figure 3.1: Example of mixing the projected
obstacle avoidance cost function with the target
directed motion. Different values of β between
the extremes full target following (β = 0) and full
obstacle avoidance (β = 1) are shown.

0 10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

time

o
b
s
ta

c
le

 c
o
s
t

β = 1

β = 0.5

β = 0

Figure 3.2: Obstacle avoidance cost function
Hcoll over time, for different β. If the obstacle
cost gradient is mixed in to a greater extend for
larger β, the costs remain smaller.
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Figure 3.3: Mixing target motion and obstacle
avoidance motion with β = 0.5, the controller fails
to reach the target and converges to a different
task position.
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Figure 3.4: Magnitudes of the target velocity
vector, avoidance velocity vector and resulting
mixed velocity vector over time. At one point,
target and avoidance velocity become equal and
cancel each other out, resulting in zero mixed
velocity.
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Figure 3.5: The same example with adaptive
control of β′. The controller is able to reach the
target position and still avoids the obstacle.
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Figure 3.6: Magnitudes of the target velocity
vector, avoidance velocity vector and resulting
mixed velocity vector over time. By adapting
β′, it is ensured that the target velocity always
dominates the avoidance velocity.

A way to do this is to ensure that the magnitude of the target directed velocity is always
greater than the magnitude of the cost minimization velocity, i.e. that

α||ẋtg|| > β||ẋcf || (3.3)

is valid during the whole movement. By modifying the influence of the cost minimization
velocity by adapting β in equation 3.1, this condition can be guaranteed. β is replaced by
β′, in dependency of the following three cases:

β′ =


0 if α||ẋtg|| ≤ ε
(α||ẋtg|| − ε) / ||ẋcf || if α||ẋtg|| < β||ẋcf ||+ ε

β if α||ẋtg|| ≥ β||ẋcf ||+ ε

(3.4)

If the target motion is below a small threshold ε, the cost minimization motion is completely
disabled by setting β′ to zero. The cost minimization term vanishes, β′||ẋcf || = 0, and
condition 3.3 holds. If the target motion is at least greater than the cost minimization
motion by ε, the condition also holds and β′ is simply set equal to β. If the target motion
is in between these two boundaries, ε < α||ẋtg|| < β||ẋcf || + ε, the adaptive weighting
parameter β′ is computed to achieve the dominance of the target motion term by reducing
the influence of the non-target motion. The required condition is met by enforcing the
relationship α||ẋtg|| − β′||ẋcf || = ε, scaling the non-target motion down in order to keep the
magnitude of the target motion larger by ε.

Figures 3.5 and 3.6 illustrate the control behavior when using adaptively weighted obstacle
avoidance. Both objectives of reaching the goal and staying away from obstacles can be
met. How the resulting trajectories look like for different β is shown in figures 3.7 and 3.8.

The solution of determining β′ in dependency of the velocity magnitudes is a conservative
approach. It does not take the direction of the vectors into account and the premise that
equal vector magnitude results in zero motion only holds if the vectors are exactly opponent
to each other. In all other cases, there is some resulting movement, possibly towards the
target as well. By enforcing a larger target motion in these cases, our approach is restricting
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Figure 3.7: The example of mixed target di-
rected and obstacle avoidance motion revisited.
Different values of β are shown, but this time β′

is adapted to achieve the target convergence of
the controller.
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Figure 3.8: Obstacle avoidance cost function
Hcoll over time. Since the controller is forced
to converge to the target, the final costs are the
same for different β. Seen over the whole motion
however, the costs can be effectively reduced in
earlier stages of the movement with a larger β.

the cost function minimization more than necessary. An advantage of our conservative
solution is that target convergence can be guaranteed right away in all circumstances.

Figure 3.9 shows another example. Here, two secondary motion objectives are used. One
is the previously used obstacle avoidance and the other is joint-limit avoidance, as described
in section 2.4.1. The corresponding cost functions are jointly optimized in the redundant
space. Task space avoidance motions however are optimized with respect to obstacle costs
only. The example demonstrates how these two costs behave for a motion sequence towards
two task targets, comparing the case of strict hierarchical motion generation (β = 0) and
the relaxed approach (β = 1) with enforced task convergence, i.e. adaptive β′ control.

The resulting task trajectories confirm that the relaxed approach succeeds in simultane-
ously achieving the two tasks of obstacle avoidance and target reaching. The two targets are
exactly reached and the paths in-between are significantly changed towards a greater distance
to obstacles. At the end of the movement, the manipulator converges to a different posture
with less obstacle costs. This can also be seen in the cost evolution plot. The obstacle
costs are constantly lower over the whole trajectory if the relaxed method is used (red solid
line), compared to the obstacle costs of redundant space optimization (red dashed line).
Consequently, the overall costs integrated over the trajectory are lower. The joint-limit costs
are also shown for reference (blue lines). Their optimization is restricted to the redundant
space and is not possible to the same extend. Note that the costs are different for both
approaches because of the different task trajectory and different manipulator postures.

3.3 Relaxed Whole Body Motion Control

The technique of relaxed motion control, as developed in the previous section, can be
integrated into the whole body motion control framework of section 2.5. Since the control
principle is the same, the whole body motion control law can be replaced with the relaxed
motion control of equation 3.1. The task space projection (equation 3.2) and the adaptive β
weighting (equation 3.4) then apply accordingly.

As secondary motion objectives besides the task motion, the known joint limit avoidance
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Figure 3.9: Comparing hierarchical motion generation with redundant space optimization β = 0
(top left) against the relaxed approach β = 1 (top right), also optimizing the task trajectory w.r.t.
obstacle avoidance. Two consecutive movements are done, starting at the right side, the manipulator
moves to the left and then down. Resulting costs are plotted over the path duration (bottom left),
showing the individual evolution of joint-limit and obstacle costs. Cumulative cost over the whole
movement are also shown (bottom right).
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Figure 3.10: Example motion using Whole Body Motion Control with strict task priority. The
trajectory results in a collision of the gripped object (orange) with the obstacle (green).

Figure 3.11: Example motion using Whole Body Motion Control and the Relaxed Task Space
Control method. The secondary motion is given by a obstacle avoidance cost function and the task
avoidance is weighted with β = 1. The obstacle is successfully circumvented.

cost function Hjc (section 2.4.1) and obstacle avoidance cost function Hoc (section 2.4.2) are
used. The redundant space motion is computed using the sum of both joint-limit avoidance
and obstacle avoidance, while the task space deviation motion is only based upon obstacle
avoidance. This way, only the priority of the obstacle avoidance task is increased and allowed
to interfere with the target task, while joint-limit avoidance stays on low priority, restricted
to the redundant space. The reason for that is that we want to focus on circumventing
obstacles and joint-limit avoidance could be counteracting this efforts. Joint-limit avoidance
still happens, but only in a way that does not interfere with the task.

Some care has to be taken to assure the continuity of the trajectory, since the closest-points
distance and therefore the obstacle cost function can be discontinuous. It is also possible
that the a-priori weighting parameter β is changed during a trajectory or a trajectory
sequence, in which case it needs to be smoothed to maintain continuity. In both cases, a
simple low-pass filtering approach is taken.

The behavior of the developed control method is shown for a simulated humanoid in figure
3.11. To illustrate the difference to whole body motion control with strict task priority,
refer to figure 3.10. The impact of the adaptive weighting technique with a dynamically
changed β′ is shown in figure 3.12. It is visible that indeed all trajectories converge to the
desired task target. Another example with two obstacles is shown in figure 3.13. Again
different values of β lead to different trajectories, but in this example a large influence of
obstacle avoidance leads to collisions, while a lower weighted obstacle avoidance results in a
trajectory successfully reaching the target.
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Figure 3.12: With adaptive weighting, it can be assured that all trajectories converge to the target
(left). Trajectories for β values of 0, 0.5 and 1 are shown, from bottom to top. Without adaptive
weighting, trajectory endpoints diverge significantly from the target.

Figure 3.13: Depending on the spatial distribution of obstacles, different values of β are needed
for a collision free trajectory. With β = 0.25 the target is reached, while for β = 0.5 and β = 1 a
collision occurs.
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Chapter 4

Motion Planning

This chapter introduces the field of motion planning. Although the purpose of motion
planning is comparable to the previously described motion control methods, the creation of
movements to fulfill a certain task, the perspective is different. While motion control can
be seen as an optimization based approach, as elaborated in section 4.1, motion planning
treats the problem more generally as the problem of finding an arbitrary path that is able
to reach the goal. Section 4.2 formally defines the general motion planning problem. The
problem can be solved by an exhaustive search over all possibilities with combinatorial
motion planning, section 4.3. Since these methods are usually too costly for more complex
robots, many practical applications rely on sampling-based motion planning, introduced in
section 4.4. Difficulties and challenges of sampling-based planning are subject of the last
section 4.5.

4.1 Planning as Optimization

As seen in chapter 2 and particularly in chapter 3, it is possible to adapt the motion
generation process according to external influences. For example, with the relaxed motion
control method it is possible to dynamically modify a trajectory to circumvent an obstacle.
This capability might already be seen as a form of planning, since it requires the ability
to change the course of actions to achieve a certain goal under changing conditions. The
mentioned control methods achieve this change of actions by locally optimizing a combination
of different cost functions, encoding conditions like obstacles or other motion constraints.
This approach has much in common with the potential field motion planning technique, an
early and widely used solution for planning robotic movements.

Potential field motion planning, as stated by Latombe (1991), is based on the general idea
of treating the robot as a particle under the influence of an artificial potential field. The field
induces an artificial force acting on the robot and by following the direction of this force,
motion is generated. A typical choice to model the potential field is to use an attractive
potential, pulling the robot towards the goal, and an repulsive potential, pushing the robot
away from obstacles. The sum of both functions establishes the overall potential function
and taking the gradient yields a force acting on the robot. An early implementation for
articulated robots can be found in (Khatib, 1986). Since the fields are evaluated for every
iteration step, the motion can instantaneously react to sudden changes in the potential, like
movement of obstacles or even the appearance of new obstacles.

This way of motion planning acts as performing gradient descent on some potential
function, which is the same as doing a local optimization of some cost function. Potential
field motion planning is motion planning by optimization. If optimization is only performed
locally, as for example the case for gradient descent optimization, it is subject to local
minima that lead to undesired behaviors. Consider a point robot moving in the plane.
Attracted by the goal, the robot enters a U-shaped obstacle, where it is repelled from the
walls. At a certain point, the attracting and repelling potentials will form a local minima,
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simultaneously pulling the robot towards the wall and pushing it away from the wall. No
more motion is generated and the robot is trapped.

To overcome these problems, optimization has to be done on a global scale. Various
planning approaches can be found in the literature that take a step into this direction
by considering the entire trajectory for optimization, instead of doing just instantaneous
optimizations. This task is sometimes called trajectory planning and is also treated in the
field of optimal control.

Some planning methods optimize a trajectory directly in the state space. CHOMP (Ratliff
et al., 2009) uses covariant gradient descent to optimize trajectories according to obstacle
and smoothness costs. Although a naive initial guess can often be transformed into a valid
solution, the convergence is sensitive to local minima. The method in (Kalakrishnan et al.,
2011) relies on a stochastic optimization process instead that is more robust against local
minima and allows non-differentiable and non-smooth cost functions. However, the process
might still fail for an unfortunate initialization.

The work in (Zhang and Knoll, 1995) represents a trajectory by a sequence of sub-goals
and associated smooth B-splines on joint level. The parameters of the splines are optimized
regarding motion duration, trajectory length and bending energy, while smoothness is
maintained. Although heuristics are introduced that dynamically insert additional sub-
goals in case local minima or collisions are encountered, the initial sub-goals have to be
pre-determined in a reasonable way. This is also the case for the approach in (Pan et al.,
2011), where an initial trajectory is refined using a similar B-spline representation. Using a
mixture of recursive spline sub-division and spline parameter optimization, the trajectory is
smoothed while constraints are maintained even in cluttered environments.

There exist several methods that extend or incorporate the motion rate control approach
of chapter 2. Building upon gradient projection redundancy resolution, see section 2.4,
Nakamura (1991, chapter 5) consistently optimizes the redundant space motion over the
whole trajectory. The task space trajectory however remains unchanged. An optimization
approach that operates on the task trajectory directly is the elastic strips framework (Brock
and Khatib, 2002). An initial trajectory is adapted according to external obstacle forces,
pushing the trajectory away, and internal forces, ensuring the closure of the trajectory.
The method presented in (Toussaint et al., 2007) operates on a task attractor dynamic
system representation. Different criteria like trajectory length, smoothness, joint-limit
avoidance and obstacle distance can be efficiently optimized, using analytic gradients in a
back-propagation scheme. This way, sub-optimal and invalid trajectories can be adapted to
varying conditions in changing environments.

The approach of treating planning as an optimization problem has some convincing
advantages. First of all, the presented methods offer a fast solution for generating movements
in, or close to real-time. In addition, the found solutions can be optimal with respect to
various cost formulations, for instance the length of the trajectory or maintaining the largest
possible distance to obstacles. With this two properties, planning speed and optimality
regarding external conditions, it is possible to achieve some robustness towards disturbances
like changing obstacle positions.

The described methods are able to solve many planning challenges, but limitations remain.
A considerable drawback is their sensitivity to local minima of the cost functions. Although
various attempts to overcome this problem are developed, the vulnerability to inappropriate
initializations always remain. Most solutions are tailored to a specific planning challenge. A
true global view that incorporates all motion possibilities is not achieved and completeness
can not be guaranteed.
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4.2 The General Motion Planning Problem

In the previous section, motion planning was treated as an optimization process. Planning
in this context means to formulate a problem as a set of suitable cost functions and to
provide a way to systematically adapt an initial guess inside a range of possible solutions.
How to determine the right solution structure in a general way is not clear. The ability to
solve a planning problem without a pre-structuring for the task at hand seems to require a
higher level of planning.

In this section, motion planning is formulated in a more general way. By classifying
different approaches according to their ability to solve this formal problem, it is possible to
draw a separating line between planning as a mere adaption of a pre-determined problem
structure and planning as a global, knowledge free search in the space of all possible solutions.

Following Latombe (1991), lets define the state space as the space containing all possible
states of any moving entity. Although a motion planning problem can appear different in
terms of geometry and kinematics, the state space provides a common ground on which
the same motion planning algorithms can be applied. Assuming a robot A moving in a
workspace W , the state space is the configuration space C of all possible configurations q of
A. The subset of W that is occupied by A is denoted by A(q).

The goal of motion planning is to find a path for the robot that obeys all constraints
given by its intrinsic properties and its environment. For example, constraints might arise
from mechanical limitations like physical joint range limits. If these limits can be expressed
as a certain set of configurations, they form a forbidden subset of the configuration space
L ⊂ C. The most common case of constraints for motion planning are obstacles present
in the workspace. They can be integrated into the configuration space representation by
mapping workspace obstacle regions Bi to configuration space obstacles

CBi = {q ∈ C | A(q) ∩ Bi 6= ∅} (4.1)

Given some joint space constraint definitions, one can define the free part of the configu-
ration space Cfree. In the case of both joint limit and obstacle constraints, the free part
contains all configurations not forbidden by limits or inside an obstacle

Cfree = C\L ∪ C\
⋃
i

CBi (4.2)

Now, the general motion planning problem can be formally defined, sometimes referred to
as the piano mover’s problem (LaValle, 2006, chapter 4): The goal is to compute a free path
τ : [0, 1]→ Cfree between the initial configuration qinit ∈ Cfree and the goal configuration
qgoal ∈ Cfree with τ(0) = qinit and τ(1) = qgoal or correctly report that such a path does not
exist. Various approaches to solve this formal motion planning problem are presented in the
remainder of this chapter.

4.3 Combinatorial Motion Planning

A whole family of planning algorithms, solving the formal motion planning problem given in
the previous section, are summarized as combinatorial or exact motion planning methods. A
characterizing property of these methods is their completeness with respect to the problem
definition. Every solvable problem instance will actually be solved. If no solution is found,
it proves that no solution exists.

A prerequisite of algorithmic completeness is a an exact and complete representation of
the state space and its constraints, i.e. an explicit representation of Cfree. Given such a
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characterization of the free space, the approach is then to construct a roadmap, a graph
that covers the connectedness of the free space. From every position, it should be trivial
to reach the next roadmap node and once on the roadmap, every other node and every
other position can be reached. Given a roadmap, solving subsequent planning queries is
easy and consists mainly of a graph-search, for which efficient methods are available, like
the A* algorithm (Hart et al., 1968). The most demanding part is to create the roadmap,
especially for high-dimensional state spaces with complex constraints, like obstacle regions
consisting of arbitrarly complicated geometries.

Construction of the roadmap often proceeds by computationally partitioning the space
into simpler geometric sub-regions, like polygonal cells (e.g. triangulation into triangles,
decomposition into cylinders) or more general semi-algebraic models. By checking the
accessibility of neighboring regions, a complete roadmap capturing the adjacency of free
regions can then be created. More details and example algorithms can be found in (LaValle,
2006, chapter 6).

The principle of explicitly constructing a free-space representation allows to completely
solve the motion planning problem, a major advantage of these methods, but also accounts
for their major weakness. To be able to consider all solution possibilities, the costly process
of explicitly partitioning the space and enumerating all movement possibilities has to
be shouldered. Depending on the complexity of the problem, this can quickly become
intractable. For example, Canny’s roadmap algorithm has a worst-case runtime exponential
in the number of dimensions of the state space (LaValle, 2006, chapter 6).

More general, the computational complexity of the formal motion planning problem,
as given in the previous section, solved by a complete algorithm, has been shown to be
PSPACE-complete. The class PSPACE denotes problems solvable with a polynomial amount
of storage space and PSPACE-hardness implies NP-hardness. However, this high complexity
does not necessarily mean that complete motion planning is impossible, most applications
are in fact simpler than the theoretical upper bounds and for many applications powerful
heuristics can be found (LaValle, 2006, chapter 6). The next section introduces the field of
sampling-based motion planning as techniques that are very successful by weakening the
strict completeness guarantee.

4.4 Sampling-Based Motion Planning

The understanding that exhaustive combinatorial search inevitably leads to high complexity
bounds triggered the development of a new methodology in motion planning. The key idea
of sampling-based motion planning is to abandon an explicit and complete model of the free
space and to rely on a systematic probing process instead. Using a so called local planner,
sub-paths in the state space are created and checked against constraint violations. This
constraint violation check is done with a suitable simulation module, for example testing for
collisions between a geometric robot model and obstacles. The placement of the sub-paths
is determined by a sampling scheme, with the objective of organizing the probing process
and the resulting sub-paths in an adequate way. By repeating the sampling, local planning
and constraint checking processes, an implicit representation of the free space can be build
up in an incremental fashion. Since the sub-path construction is encapsulated into the local
planner, the sampling scheme can be implemented without the knowledge of a concrete
problem instance. Local planning can be treated as as a “black box”, returning a valid
path segment if possible. This allows the sampling-based planning approach to be relatively
easily used in a broad range of applications.

It is important to note that sampling-based planning comes with the cost of loosing strong
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completeness guarantees (LaValle, 2006, chapter 5). As described in the previous section, a
complete algorithm has to either return a solution, or to correctly report the nonexistence
of a solution. In sampling-based planning the placement of samples is often randomized and
a complete coverage of the space can only be reached asymptoticly after infinite runtime.
These methods are said to be probabilistically complete, the probability of finding a solution
converges to one at infinity. They find a solution with increasing probability, but they
can not proof the nonexistence of a path, a required property for completeness. If the
samples are placed in a deterministic way, like on a regular grid, the planning algorithm can
guarantee to find a path with respect to the given sampling density, it is resolution complete.
But still, it gives no information about solutions that might exist below the resolution limit.

Despite this limitation, sampling-based motion planning is successfully used for many
challenging problems. In particular, it is very practical for high-dimensional problems
where complete methods are intractable. Here the drawback of only being probabilistically
complete turns into a major advantage, because the search space can be greatly reduced and
still most of the time solutions are found. This is enough for most real world applications,
although there are some pathological cases that are hard to solve.

Due to the success of these methods there have been a lot of work on this topic. A
comprehensive overview is given in (Choset et al., 2005; LaValle, 2006). The different
methods basically vary the main components sampling scheme and local planner to implement
different planning strategies and specialized heuristics for problem specific affordances.

4.4.1 Random Trees

The family of motion planning algorithms presented in this section are designed for the
problem of finding one solution path for one given goal state in one specific situation. A
situation is determined by the current state of the system, i.e. the start state, and the state of
all relevant constraints, like the current placement of obstacles. This setup is often described
as single-query motion planning. Essentially, most single-query methods try to incrementally
grow a tree in the free space, from the initial state until the goal state is reached. In a
nutshell, five main components can be identified (LaValle, 2006): (1) Initialization of the
tree data structure, (2) selection of already present tree nodes for extension, (3) sampling of
new target states, (4) local planning to extend the selected node and finally (5) integration
of new nodes into the tree. How these components are implemented varies along the different
algorithms.

A popular sampling-based random tree algorithm is the Rapidly Exploring Random Tree
(RRT) (LaValle, 1998; LaValle and Kuffner, 2000). The implementation of the five main
components are shown as pseudo code in algorithm 4.1. After tree initialization, the first
step in each iteration is to pick a random sample x from a uniform state space distribution.
Based on the sampled state, a node of the present tree is selected for extension. The RRT
determines this node by searching the closest node p of the tree. Given the closest node, an
attempt is made to extend the tree with the local planner, generating a sub-path originating
at the selected closest tree node p towards the random sample x. The local planner executes
the desired motion as long as obstacle- and all other constraints are satisfied. Finally, the
end-state of the local tree extension is added to the tree. These steps are iterated until the
goal state is reached or a maximum number of iterations respectively maximum execution
time has passed.

The RRT algorithm has the characterizing property of biasing the search towards a fast
exploration of the space. Due to the nearest neighbor node selection, the probability of
selecting a certain tree node is proportional to the likelihood of a random sample to be
placed into the the empty space surrounding it. The volume of a nodes empty space is
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Algorithm 4.1 RRT

T = initialize tree
while not done and not time over do

x = sample uniform random state
p = nearest neighbor tree node of x
n = extend tree node p towards x
T = add new tree node n

end while

Algorithm 4.2 EST

T = init. tree, W = init. weights
while not done and not time over do

p = select random tree node
w.r.t. weight distribution W

x = sample in neighborhood of p
n = extend tree node p towards x
T = add new tree node n
W = update weight distribution

end while

given by its Voronoi region and therefore the probability of selecting a node is directly
proportional to the Voronoi region. In early iterations, the tree reaches out fast into the
space, because the Voronoi regions of nodes close to the outer boundary of the tree are
larger. When they are no more over-proportional large Voronoi regions in later iterations,
the tree continues to explore the entire space more densely, until it converges towards the
sampling distribution. Figure 4.1 illustrates the RRT growing process.

A similar approach of building single-query random trees is the Expansive Space Tree
(EST) algorithm (Hsu et al., 2002). It also incrementally builds a search tree rooted at
the initial state towards a goal state, but the implementation and execution order of the
individual tree growing components differs. As shown in algorithm 4.2, the first step is to
select a tree node p for extension. The selection is random, but based on a distribution of
weights w that are maintained for each node, determining the probability of how frequent
a certain node is chosen. Once a node is selected, a target state x is sampled in its
neighborhood, followed by a tree extension attempt of the local planner. In addition to
adding the local planner end-state as a new tree node, the distribution of tree weights is
updated to reflect the growth of the tree. The EST growing process is sketched in figure 4.2.

Different biasing behaviors can be implemented within this approach. Hsu et al. (2002)
aims to achieve a uniform coverage of the space by setting the node weights inversely
proportional to the number of nodes already present within a fixed neighborhood. Since the
weight is higher for nodes with fewer neighbors, the growth is steered towards less explored
regions of the state space. This concept is enhanced further with the Guided EST (Phillips
et al., 2004). Here the node weight takes additional information into account, namely the
number of outgoing edges of a node, how recently it was created and an estimated total
cost to the goal. This results in a tree that prevents too many expansions of a single node,
keeps the expansion on the frontier of the tree and focuses the search towards the goal.

The Utility-Guided Random Tree (Burns and Brock, 2007) proceeds similar to the EST
algorithm: First a node is selected and then a target state is generated. The target sampling
is differentiated into selection of a direction and selection of a distance. During all of these
execution steps, a notion of the utility of a particular state space exploration is used in order
to maximize the usefulness of every tree growing iteration. For instance, nodes also have
associated weights, corresponding to their utility. To be able to estimate the expectation
value for a certain exploration utility, an approximate probabilistic model of the state space
is build in an incremental fashion by gathering all information about former explorations.

The described random tree planning methods all employ different heuristics to bias
the search. Comparing the RRT algorithm on one side with the EST, Guided EST and
Utility-Guided Tree on the other side, the main difference lies in the order in which the
steps state sampling and node selection are done. While the RRT first creates a sample and
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1. Sample

2. Nearest Neighbor

3. Local Planner

Figure 4.1: Illustration of the incremental RRT
growing process. After sampling a random state
(1), the nearest neighbor node is searched (2) and
the local planner tries to extend the tree towards
the sample (3). Note that the probability of
selecting a tree node for extension is proportional
to the Voronoi region surrounding it.

1. Node Selection

2. Sample

3. Local 
    Planner

Figure 4.2: Incremental EST growing. First
step is to select a tree node (1), then a state is
sampled (2) and the tree is extended towards the
sample (3). To bias the tree growth, nodes can
have different selection probabilities (weights),
shown by the size of the nodes here.

then uses the sample to select a node, the other algorithms first select a tree node and then
create a sample in the neighborhood of the node. RRT node selection is determined by the
distance based Voronoi bias and in order to incorporate further heuristics one has to change
the distance metric or the sampling domain where the metric is defined. With the other
EST-like family of algorithms there are no general limitations for heuristics, because the
tree node selection is completely independent. The described methods already demonstrated
some different biasing techniques and it is easy to incorporate others.

A characteristic property of most random tree methods is their capability to solve problems
subject to nonholonomic constraints (refer to section 2.6). Such constraints are encapsulated
in the local planner component and every path created automatically conforms to them.
Caused by the additional constraints however, it can become more difficult to reach certain
states and as a result, a uniform coverage of the state space is not as easily achieved.

4.4.2 Bi-Directional Trees

It is possible to extend the random tree approach to perform a bi-directional search by using
two search trees (Kuffner and LaValle, 2000). One RRT is rooted at the start state and
another RRT is rooted at the goal state. Both trees are simultaneously grown, the start
tree forward and the goal tree backwards, and with a certain frequency direct connection
attempts between them are done. Once the tree connection succeeds, a valid solution path
is found. With this approach, the search can be greedily focused towards the goal and the
number of necessary tree extensions can be reduced.

A bi-directional tree can be used if there is a unique goal state, where the backward
tree can be rooted. For some applications, multiple goal states or even a continuous goal
region are possible, and although multiple backward trees might be used in these cases, the
performance gain decreases or might even vanish. Another problem are nonholonomic motion
constraints. During the connection step, it is necessary to connect to already present tree
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nodes i.e. to plan sub-paths that exactly reach a certain state. While trivial with holonomic
systems, nonholonomic systems require to solve a boundary value problem, substantially
complicating this step.

4.4.3 Roadmaps

Another popular approach in sampling-based motion planning is the use of roadmaps in a
multi-query planning setup, as introduced by Kavraki et al. (1996) with the Probabilistic
Roadmap algorithm (PRM). The idea is to incrementally construct a graph that covers the
connectivity of the free space, very much like the combinatorial methods from section 4.3.
Instead of an explicit state space representation however, random states are sampled and
connected by the local planner. Unlike the random tree approach, each new sample should
be connected to multiple nodes in order to form graph structures. If the sampling and
connection process is repeated long enough, all nodes are eventually connected in one big
graph that covers all areas of the free space. By modifying the way how states are connected
to the graph and by adapting the sampling scheme, the probabilistic roadmap approach can
be tuned for many applications. Some variants are described in (LaValle, 2006, chapter 5.6).

Roadmap methods handle the planning problem in a comprehensive pre-processing phase
and assume that the setup does not change in later query solving phases. If constraints are
modified, parts of the roadmap are no longer valid. It is possible to incorporate changing
environments into the approach, see for example (van den Berg, 2007), but more effort has
to be invested to maintain the roadmap by re-evaluating and repairing node connections.

Roadmaps do not naturally extend to problems with nonholonomic motion constraints.
Many newly created states have to be connected to already present nodes, similar to the
connection step of bi-directional trees and equally making it necessary to solve a boundary
value problem.

4.5 Challenges for Sampling-Based Planning

Theoretically, sampling-based motion planners are able to solve every planning problem that
can be formulated in terms of a state space that can be sampled and a local planner that is
able to connect samples and to check for constraint violations. Due to the limitations of
probabilistically completeness however, the running time of these planners is not bounded
and it is not possible to prove the nonexistence of a solution.

Many complicated problems can indeed be solved, for example geometric puzzle games
or industrial part assembly problems, where complex objects have to be moved in highly
constrained environments. Another interesting application area is in computational biology,
where sampling-based methods are used to find possible dock positions of proteins or to
simulate complex protein folding processes. More details and further examples can be found
in (LaValle, 2006, chapter 1). For these applications however, speed is of minor importance
and runtimes easily reach minutes or hours.

To get an insight into the reasons for such long runtimes, the high dimensionality of certain
state spaces and the complex structure of constraints in this spaces have to be considered.
It is known that such conditions often lead to computational problems, often described as
as the curse of dimensionality, e.g. see (Bishop, 2006). One problem for instance is that the
number of samples, necessary to cover a space with a certain resolution, grows exponentially
with the number of dimensions. As a consequence, an exhausting sampling-based search
would also need an exponentially increasing number of samples.

But even in lower dimensional spaces, the structure of constraints can hinder the sampling
progress. Two particularly difficult constraint conditions can be repeatedly found in the
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literature. One are narrow gaps of free space that have to be discovered during sampling.
The probability to find a path passing through it decreases with the size of the gap. Narrow
passages or corridors worsen this problem, since they require to repeatedly place samples
into small fractions of free space while inside a corridor. Another source of difficulties are
motion constraints arising from nonholonomic systems, as for example the case for planning
with dynamics. Although the random tree methods are capable of solving these problems,
they are usually not very efficient. State spaces are high dimensional, since they have to
incorporate velocities or derivatives of higher order. Also, it is difficult to achieve a uniform
coverage of the state. In the following, some approaches to overcome these problems by
adapting to specific system characteristics and constraints are presented.

There are several variants and enhancements of the basic RRT scheme. Cheng and
LaValle (2001) address differentially constrained and high dimensional systems, where a
naive euclidean metric results in a poor performance characterized by an over-exploration of
certain nodes. To avoid this problem, the underlying metric itself is not changed, but the
original Voronoi bias is weakened by allowing to skip tree extensions, as determined by a
constraint violation frequency heuristic. Paths with a higher collision probability can thus
be avoided. Also the algorithm takes care that identical extensions are not repeated.

Yershova et al. (2005) introduce a refinement called Dynamic Domain RRT. The sampling
scheme is enhanced to incorporate the distribution of configuration space obstacles into the
Voronoi bias, motivated by the observation that the exploration speed can dramatically
decrease if many frontier nodes of the tree are in close proximity to obstacles, as it may
happen if large portions of the space are blocked. The idea is to reduce the probability of
extension for nodes that are near to boundaries of the free space by individually adapting
their sampling domain. If this is done in a dynamic way, it is possible to automatically
balance between exploration and refinement behavior and to better adapt to the local shape
of the free space.

The algorithm in (Ladd and Kavraki, 2005) also aims for a balanced search by estimating
the current coverage of the state space with a non-uniform cell partition. Based on a density
estimate on this space subdivision, the exploration process is guided towards less covered
regions. Interior-Exterior Cell Exploration (KPIECE) (Sucan and Kavraki, 2009a) estimates
the state space coverage with a discrete grid-based cell representation. In contrast to the
previous method, this representation is defined on a different lower dimensional space than
the state space, in order to avoid the curse of dimensionality. An exploration strategy
based on the distribution of projected samples towards the grid cells is developed, aiming to
equalize the coverage of cells. The exploration heuristic also differentiates between interior
and exterior cells to bias the search towards cells on the frontier of the tree. The definition
of a suitable grid presentation and state projection is problem specific, but the authors
claim that finding a random projection leading to a good performance is easy.

Other approaches rely on machine learning techniques to utilize information gathered
during the exploration. The work in (Li and Bekris, 2010) is motivated by the observation
that the exploration of random tree planners can be heavily biased towards a specific
direction due to the presence of dynamics and underactuation. To counteract this effect, the
algorithm tries to learn the observed bias with principal component analysis in an offline
computation step and utilizes this knowledge in subsequent planning runs. By modifying
the RRT sampling to prefer directions that were previously underrepresented due to the
undesired bias, a more balanced exploration of the state space can be achieved.

The method presented in (Dalibard and Laumond, 2011) tries to learn the structure of
the free space and to focus the exploration along free directions. If the free space can be
described by a local submanifold of the full state space, biasing the search according to this
submanifold can significantly accelerate the exploration process. During sampling, principal
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component analysis is used to characterize the local distribution of previously successful
movements and random direction samples are changed in order to favor directions where
the local variance is high. This way, the exploration proceeds with higher probability in
locally free directions and sampling is guided to follow narrow passages.
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Hybrid Motion Planning

The previous chapters introduced the areas of motion control and motion planning. Various
control and planning approaches have been presented and their specific strengths and
weaknesses were highlighted. Resting on this basis, the main contribution of this thesis can
be developed, the concept of hybrid motion planning. Central idea is the integration of local
control and global planning into a hybrid approach, as presented in section 5.1. A detailed
description of the concept is given in section 5.2. Section 5.3 then discusses how global
planning can be implemented with sampling-based random-tree methods and compares two
different strategies in a simple case study. The question if planning can be guaranteed to be
complete is subject of section 5.4.

5.1 Task Level Planning

Motion control is capable to efficiently produce movements, as seen in chapters 2 and 3.
Tasks can be encoded with flexible motion primitives and optimization techniques can be
incorporated that minimize different cost functions instantaneously, e.g. with the gradient
projection approach, or over a whole trajectory, e.g. with trajectory planning. These methods
are capable of solving many problems, but by treating motion generation mostly as an
optimization problem, they can be hindered by local minima. Although some problems
can be avoided with problem specific modeling to cope with specific cost structures and
constraints, this is not possible in a generally applicable way.

In contrast, motion planning does not have these problems. As discussed in chapter 4, the
generation of motions is handled as a search problem that can be solved by evaluating all
possibilities. Motion planning methods are global approaches, not subject to the limitations
of motion control. However, other difficulties arise. There is the demanding computational
complexity of combinatorial planning and likewise, sampling-based approaches suffer from
high dimensional state spaces and complex constraints.

Our proposed hybrid motion planning framework utilizes concepts from both motion
control and motion planning in order to benefit from their individual strengths and to
address their weaknesses. Key idea is to shift planning to a task specific representation. This
way, the problem can be decoupled into two processes. The task representation is searched
on global level with motion planning methods, systematically specifying task targets, while
motion control techniques are used to generate local movement trajectories corresponding
to these task targets.

Figure 5.1 schematically illustrates the idea. The state space fully describes the state of
the system of interest, including its constraints. Assuming we are dealing with a robotic
manipulator, the state space encodes the state of its joints and constraints could be joint-
limits and obstacles. Most motion planning approaches directly operate on this level. With
hybrid motion planning however, a second task space is defined. This representation is
chosen according to the actual intention behind planning, the task that has to be achieved.
For example, assuming the manipulator has to reach for an object, the spatial position of the
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Task Space

State Space

State Space:
- Constraints: Obstacles, Joint-Limits
- State Space Local Planning

Goal
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Task Space:
- Goal Representation
- Task Level Global Planning 
- Task Consistent Local Planning

Representation Shift Control Mapping

Local
Planning

Global
Planning

Figure 5.1: The motion planning problem is decomposed into global search on a task representation
and local control in the state space.

hand relative to the object could be the task space. The goal of planning can then be given
in the task space as well, a desired relative position between hand and object. Utilizing the
representation shift from the state to the task space, global planning operates now directly
on task level by specifying task targets. For the manipulator reaching for an object, these
task target would be positions of the hand relative to the object. Local planning then
generates a movement towards the target, by employing a motion control component that
creates a full state space trajectory. In the case of our manipulator, a joint-level trajectory
is generated, driving the hand towards the desired target. Motion control establishes a
mapping between task space and state space motions. This process is now repeated until
the goal is reached, until the hand reaches the desired position.

Adding a search layer on top of motion control enables our approach to find solutions
with a global scope, counteracting the limitations of local control. In general, global search
with motion planning methods is costly, but by limiting the search to the task space, the
dimensionality can be reduced. The effort of searching a space can decrease dramatically
with every dimension less. Also, focusing on the task representation fosters progress towards
the actual goal at hand stronger than an uninformed search in the state space. The search
is biased towards states that have a better chance to achieve the task. If multiple states are
satisfying the goal condition, the planning process automatically discovers which states are
feasible in the current situation. It is not necessary to determine the set of feasible goal
states beforehand, another advantage of the proposed method.

Local planning of state space trajectories can exploit the optimization abilities of motion
control methods. Some constraints can be handled locally by employing joint-limit or
obstacle avoidance optimization for example. This way, using motion control does not only
support motion planning by establishing the representation shift from state to task space,
but also by helping to avoid constraints. The better this constraint avoidance works, the less
global search effort remains for global planning. If local planning succeeds in circumventing
constraints more often, the resulting trajectories are longer and the task targets can be
further apart, the space can be searched with a coarser resolution.
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5.2 Formulation

The hybrid motion planning concept is now transfered into a mathematical formulation.
Section 4.2 elaborates the notion of the free configuration space Cfree as the region of the
configuration space not forbidden by constraints. Only states that lie in this region are
allowed and a valid solution to any motion planning problem has to restrain to it.

The key idea of hybrid motion planning is to define a second space in addition to the
configuration space, in which the task to be solved is represented. This space is referred
to as the task space X . It can be of arbitrary topology and dimension, the only condition
is that for every configuration q ∈ C there exist a corresponding task space representation
x ∈ X , there is a mapping k : C → X . The laws of motion, determining the evolution of
states, are given by two state transition functions:

ẋ = f(x, u, t) (5.1)

q̇ = g(q, ẋ) (5.2)

Given a current task space position x ∈ X and a task control input u ∈ X , equation
5.1 maps to task transition velocities ẋ ∈ Tx(X ), in dependency of time t. Tx(X ) denotes
the tangent space of X at position x. The second equation 5.2 describes the transition
of configuration states. Given a current configuration q ∈ C and desired task transition
ẋ ∈ Tx(X ) as input, the configuration space velocity q̇ ∈ Tq(C) is computed.

With this definitions, a motion trajectory can be generated as follows. Function 5.1
returns a task velocity ẋ, which is fed into function 5.2 to get a configuration velocity q̇. A
configuration space trajectory is then generated by integration of the configuration velocities
over time. The corresponding task space trajectory is uniquely given with the task space
mapping x = k(q). What has to be known is the initial start condition, that is a start
configuration qinit and a start task position xinit, and a sequence of control inputs u for
every time t. This sequence of control inputs is exactly what is searched during planning.

In analogy to the piano movers problem formulation, section 4.2, the hybrid motion
planning problem can now be formulated in a similar way. The path is represented in two
spaces, task space X and configuration space C, every point of the path is a tuple p ∈ (X , C).
Find a sequence of task space control inputs u(t) over time t such that the resulting
path with initial condition pinit = (xinit, qinit) and final condition pgoal = (xgoal, qgoal) is
collision free, that is the configurations of the entire path lie in Cfree. With the path being
τ : [0, t] → (X , Cfree), τ(0) = pinit and τ(t) = pgoal. While the final task position xgoal
should be in a given goal region, satisfying xgoal ∈ Xgoal, a goal configuration qgoal is not set
in the goal description and is left undefined. If such a valid solution path does not exist, it
should be correctly reported.

Global planning drives the overall planning process by specifying task control inputs.
Appropriate task space transitions are created, based on this input, and these task space
transitions are in turn resulting in configuration space transitions. Local planning can
happen in two places now.

If the system is redundant, a desired task space transition do not uniquely determine
a configuration space transition. There is some freedom left in choosing a particular
configuration trajectory. Local planning can exploit redundancy according to various
criteria, for example by employing local optimization techniques. Chapter 6 presents a
hybrid planning approach with exploitation of redundancy in greater detail.

Independent of the presence of redundancy, the configuration space transition does not
have to exactly follow the desired task space transition. Local planning can also modify the
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task trajectory. In chapter 8, a control method is utilized that optimizes the task trajectory
in order to circumvent obstacles.

5.3 Task Space Sampling

Hybrid Motion Planning limits the globally searched space to a lower dimensional, problem
specific task space. Although many ways to perform this global search are possible, an
interesting approach is to use sampling-based motion planning, reviewed in section 4.4. These
methods have the advantage of being able to solve complex problems, while being relatively
easy to implement. The representation shift towards task space planning is accomplished
by using motion control methods as local planning components. Since these methods can
posses nonholonomic motion constraints, as shown in section 2.6, the single-query random-
tree approach fits particularly well into the approach. The bi-directional tree method or
multi-query roadmaps would require a specific treatment of these constraints, unnecessarily
complicating the implementation and preventing a general solution independent of the actual
motion model.

This section investigates the question, which random-tree sampling strategy fits best into
the hybrid planning context. Without further knowledge, a reasonable approach is to aim
towards a rapid exploration of the global task space as a fast way to discover movement
alternatives on a course scale. Actual small scale motion generation is left to local planning,
exploiting local properties of the space. This approach is taken by a greedy task space
exploration strategy, described in section 5.3.3, transferring a known random-tree algorithm
to the new task representation.

Focusing on the task space only and completely ignoring the state space local planning
process however might not be always justified. Since motion control techniques can exhibit
nonholonomic behavior, identical task positions can be reached with different configurations.
If local planning always picks the right configuration, there is no problem in ignoring
alternative states during sampling the state space. If this can not be guaranteed, as the
limited scope of local methods suggests, it makes sense to actively explore these alternatives
by incorporating state space information into global sampling. A novel sampling strategy
simultaneously invloving the task and the configuration space is developed in section 5.3.4.

The behavior of these two sampling approaches is compared in a case study involving
a simple redundant robot model. For this a measure of the sampling progress is needed,
estimating how well the search tree covers the space, or more precisely the two spaces used
in the hybrid planning framework. Such a measure is given by the dispersion, described in
section 5.3.1. The concept of dispersion is well known in the field of motion planning and is
for example used to achieve a greedy dispersion reducing sampling, as explained in section
5.3.2.

5.3.1 Dispersion Estimation

Dispersion is a measure of how well a space is covered with samples. It measures the
sampling density of points by finding the largest completely empty area remaining in the
space. A formal definition can be found in (Lindemann and LaValle, 2004): The dispersion
δ of a point set P ⊂ X with respect to the space X and metric ρ on X is defined as

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (5.3)

With other words, for each sample q from X the nearest neighbor p from the point set
P is determined and the largest of these nearest neighbor distances corresponds to the
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Figure 5.2: Dispersion measures the largest
empty region of a space, not covered by points
from a finite set. With the euclidean metric, this
corresponds to the largest empty ball that can be
placed into the space.

p j

q i

Figure 5.3: To estimate the disperision in prac-
tice, the sample-space is approximated by a finite
set of points q. After finding the nearest neighbor
p of each q, the largest nearest neighbor distance
approximates the true dispersion.

dispersion. To get the exact dispersion measure, it would be necessary to cover X with
infinitely many points. For a practical approximation of dispersion, a finite set of state space
sample points is chosen. Figure 5.2 illustrates the concept of dispersion. The approximate
dispersion estimation process is illustrated in figure 5.3.

5.3.2 Dispersion Reduction Sampling

The notion of dispersion is a useful concept for sampling-based planning, since it can provide
information about how well the state space is covered and where samples are missing. In
order to estimate the dispersion for sampling-based planning, the point set P corresponds
to the set of all tree nodes and the sample space X to the state space. During computation
of the dispersion according to equation 5.3, a set of nearest neighbor tree nodes pj ∈ P is
identified, each with an associated distance towards the nearest sample point dj = ρ(pj , qi).
The largest distance dmax denotes the global dispersion and the corresponding tree node
pmax lies in the vicinity of the largest uncovered area.

The RRT algorithm, as introduced in section 4.4.1, can be interpreted as a method that
systematically lowers the state space dispersion. In each iteration, tree nodes are extended
with a probability proportional to their Voronoi region and as a result, the growth is strongly
biased towards less covered areas of the space. The largest Voronoi region corresponds to
the region with the largest nearest neighbor distance and exploring this region results in
decreasing the overall dispersion. The RRT does not always explore the largest Voronoi
region but puts a greater bias on it, thus driving the search towards decreasing the dispersion
in a probabilistic way.

A variant of the RRT algorithm explicitly lowering the dispersion of the tree as much
as possible is presented in (Lindemann and LaValle, 2004). In each iteration, an attempt
is made to identify and explore the largest empty region by finding the tree node pmax.
Since finding the true global dispersion is intractable, the approximative approach using
a finite set of sample points is used, as shown in figure 5.3. Once pmax is found, an
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10 iterations 50 iterations 100 iterations 200 iterations

Figure 5.4: Incremental growth of a Dispersion Reducing RRT, after 10, 50, 100 and 200 iterations.

exploration step towards the associated sample q is done, which can be guaranteed to lower
the global dispersion. This behavior results in a much more regular tree structure and a
faster exploration, as can be seen in figure 5.4.

5.3.3 Task Space Dispersion Reduction

The idea of the dispersion reducing RRT (Lindemann and LaValle, 2004) can be transfered
to the hybrid planning framework. The sampled space is now the task space and local
planning employs a motion control method to generate state space trajectories. How the
Task Space Dispersion Reducing RRT (DRTask) proceeds is shown in algorithm 5.1.

Instead of generating a single random sample, like the original RRT, a number K of
uniform random samples from the task space xk are drawn. For every sample, the nearest
neighbor pk in the already present tree is computed, using a suitable task space metric
ρ(x, y) with x, y ∈ X . Every sample xk and corresponding tree node pk are stored in a list
of candidate explorations, together with the actual computed closest distance dk.

In the next step, the candidate list is sorted according to decreasing distance. This is
a way of ordering the possible tree extensions by their expected impact in reducing the
dispersion. Afterwards, the tree extension resulting in the largest dispersion reduction is first
in the list, followed by the second best tree extension etc. The sorted list is then iterated
and the local planner generates configuration space trajectories for each element, starting at
the closest tree node pk and extending towards the target sample xk. If the local planner
succeeds in creating a local trajectory that reaches the target sample, the new trajectory is
added as a branch to the tree and the iteration of the candidate list is terminated.

The algorithm as presented is operating in an exploration-only mode, no planning goal is
given and thus no test for goal reaching is included. Instead, tree growing is just iterated N
times. Extending the algorithm to perform proper planning is easy, but not necessary for
the present evaluation of exploration behavior.

5.3.4 Simultaneous Task and Configuration Space Dispersion Reduction

In this section, an alternative exploration strategy is developed. Instead of an exclusive
focus on task space dispersion reduction, like the previously described DRTask algorithm,
the new strategy incorporates the dispersion of the underlying state space as well. Sampling
should be done in a way that simultaneously reduces the dispersion in both spaces.

Since both spaces can be different in terms of dimensionality and topology, the dispersion
estimate differs in both spaces. Moreover, it can be assumed that in most cases, the
maximum dispersion tree nodes are not identical. To reduce the task space dispersion, a
different tree node has to be extended than to reduce the configuration space dispersion. In
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Algorithm 5.1 Task Space Dispersion Reducing RRT (DRTask)

tree with nodes pi = (xi, qi) ∈ T = (X , C)
metric ρ(x, y), x, y ∈ X
for i = 1...N do

for k = 1...K do
xk = sample from X
pk = nearest tree neighbor to sample xk with distance dk = minp∈T ρ(xk, p)
LN = add tuple (pk, xk, dk) to candidate node list LN

end for
SLN = sort list LN by decreasing distance dk

for k = 1...K do
(pk, xk) = tree node pk and target sample xk form sorted list SLN

extend pk towards target sample xk
if extension successful then

add new branch from pk to xk
break for

end if
end for

end for

order to resolve this conflict, an exploration strategy is proposed that prioritizes dispersion
reduction. First step is to select the tree node with the largest configuration space dispersion,
followed by sampling the task space target with the largest task space dispersion. Thus,
reduction of configuration space dispersion has a higher priority, determining where to
search, while task space dispersion guides the sampling and chooses in which direction the
search proceeds to achieve the largest reduction impact. Tree node selection operates with
global scope, while determination of the extension target is limited to a local neighborhood
around the selected node.

Algorithm 5.2 schematically shows the new sampling strategy, named Simultaneous
Dispersion Reducing Tree (DRSim). The dispersion estimation technique from (Lindemann
and LaValle, 2004) is used to identify the tree node with the potentially largest dispersion
reduction effect in the configuration space. K sample points xk are drawn from the
configuration space C, their nearest neighbor nodes pk in the already present tree are
determined, based on a suitable configuration space metric ϕ(q, p) with q, p ∈ C and each
tree node is put into a list LN of candidate nodes, together with the associated distance dk.
The list is sorted according to decreasing distances, now containing the tree nodes ordered
by their estimated impact on the configuration space dispersion.

Next, the list is iterated, and for each node pk a task space target xt is chosen. To find
the target with the greatest impact in reducing the task space dispersion, L samples xl
are created in the task space X within a certain neighborhood of pk and the nearest tree
neighbor of each sample is searched, using a task space metric ρ(x, y) with x, y ∈ X . Because
the sampling range is limited, the set of possible nearest tree neighbors is also limited to the
subset of direct relatives of the node. After L candidate targets are created and stored in
the list LS , the target xt with the largest nearest neighbor distance is found by sorting the
list. Identifying the exploration direction with the potentially largest impact of reducing
the task space dispersion, the selected tree node pk is extended towards the target xt. If the
extension is successful and not hindered by constraints, the new branch is added to the tree
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Algorithm 5.2 Simultaneous Dispersion Reducing Tree (DRSim)

tree with nodes pi = (xi, qi) ∈ T = (X , C)
metric ρ(x, y), x, y ∈ X , metric ϕ(q, p), q, p ∈ C
for i = 1...N do

for k = 1...K do
qk = sample from C
pk = nearest tree neighbor to sample qk with distance dk = minp∈T ϕ(qk, p)
LN = insert pair (pk, dk) into candidate nodes list LN

end for
SLN = sort list LN by decreasing distances dk

for k = 1...K do
pk = node k from sorted list SLN

for l = 1...L do
xl = sample from X in neighborhood of node pk
dl = nearest neighbor of childs c of node pk, distance dl = minc ρ(xl, c)
LS = insert pair (xl, dl) into candidate samples list LS

end for
SLS = sort list LS by decreasing distances dl

xt = first node from sorted list SLS

extend pk towards target xt
if extension successful then

add new branch from pk to xt
break for

end if
end for

end for

and the iteration of candidate nodes is terminated. If not successful, the target sampling
and selection process is repeated for the next candidate tree node in the sorted list SLN .

In contrast to the previous RRT based approaches, the new exploration strategy decouples
the node selection and target sampling steps, proceeding in a similar way as the EST (Hsu
et al., 2002) inspired methods, described in section 4.4.1. Random node selection according
to node-wise coverage estimation is replaced by the selection of the node with the highest
configuration space dispersion. While the dispersion measure can be interpreted as another
way to estimate the coverage, node selection is much stronger biased to greedily reduce
the dispersion in every iteration. While the EST randomly samples target points, the new
sampling approach greedily reduces the task space dispersion by selecting the target with
the largest anticipated dispersion reduction effect. In combination, both node selection and
target sampling lead to greedy and simultaneous reduction of task- and configuration space
dispersion.

5.3.5 Case Study: Simple Redundant Robot Model

To evaluate the behavior of the two proposed sampling strategies in the context of the hybrid
motion planning framework, a simple setup is used. A robot is modeled as a redundant,
multi-link planar manipulator, with a two dimensional task space given by the end-effector
position. The singularity robust motion rate control and redundancy resolution methods of
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Algorithm 5.3 Motion Control Local Planner

extend tree node p = (x, q) ∈ (X , C) towards target u ∈ X
while not max. control time tmax exceeded and not constraints violated do

get desired task velocities ẋ from current position x and target u
compute joint velocities q̇ given configuration q and task velocities ẋ
update current task position x with ẋ
update current joint position q with q̇
check updated q for constraint violations

end while

chapter 2 are used as local planning components. Algorithm 5.3 shows the local planning
process and how a tree node p is extended towards a task target u. In dependency on the
current task position x, a desired task velocity ẋ is computed (task transition equation
5.1), using the second order attractor dynamic (section 2.5.1). Based on the task velocity
ẋ and current configuration q, the motion control methods are employed to determine the
configuration velocity q̇ (configuration transition equation 5.2).

According to the hybrid planning formulation, planning is separated into task space
and state space planning. Here, the state space is given by the robots configuration space,
spanned by the number of joints, and the task space state is defined to be the two dimensional
end-effector position. Local planning in the task space performs a straight target directed
movement, while local planning in the state space utilizes the redundancy to accomplish
secondary motion objectives with local optimization. Three conditions for redundant space
movements are used here. One is the pure singularity robust control approach without
explicit redundant space handling, section 2.3. The other two conditions are joint-limit
avoidance and combined joint-limit and external obstacle avoidance. Corresponding cost
functions can be found in section 2.4.

The two proposed task space sampling strategies, DRTask and DRSim, are compared
with respect to their ability to explore. Since both algorithms aim to greedily reduce
the dispersion in every iteration, their exploration success is quantified by measuring the
remaining dispersion after each iteration. Of primary concern is the exploration of the task
space, the space where the global search is done and the planning goal is defined. The
current task space dispersion is estimated with a fixed grid of points, covering the reachable
task space, as shown in figure 5.5. Although not actively sampled, the exploration also
proceeds in the underlying configuration space and to get an understanding of the coverage
of this space, the remaining dispersion is also measured in the configuration space. Similar
to the fixed task space estimation points, a regular grid is placed into the configuration
space.

5.3.6 Results

2D Task Space, 3D Configuration Space, No Constraints

A first evaluation is done for a simple unconstrained setup. A three-joint manipulator can
be freely moved by sampling targets in the two dimensional position task space. Local
planning is done with singularity robust pseudoinverse motion control without any further
secondary motion objectives.

An example task space exploration tree produced with the DRTask sampling approach
can be seen in figure 5.6 and the corresponding configuration space tree is shown in figure
5.7. The disk-shaped reachable workspace is indeed rapidly explored and the resulting tree
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Figure 5.5: A 3-joint manipulator with a 2D
end-effector position task space. The dispersion
of the the tree nodes (blue) is estimated with
respect to the sample points arranged in a regular
grid (green), covering the reachable task space.
The current dispersion corresponds to the largest
nearest neighbor distance (red).
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nodes cover the space quite regular. The distribution of tree nodes in the configuration
space is not as easily interpretable, but one apparent impression is that the space is not
regularly explored at all. There seems to be a manifold of densely packed nodes and a large
empty space surrounding it.

Example results for a run of the DRSim algorithm are shown in figure 5.8 and 5.9, showing
the task space and the configuration space trees, respectively. The task space region reached
by the tree is quite similar to the reached area of the DRTask tree, although the exploration
is much more chaotic and exhibits no regular structure. Looking at the covered configuration
space however, it seems like the DRSim tree reaches a larger portion of the space.

Lets examine the space coverage quantitatively by looking at the dispersion measure in
the task and the configuration space. The evolution of these quantities over 500 iterations
and averaged over 30 runs is shown in figure 5.10 for the DRTask algorithm. The aim of
reducing the task space dispersion in every step is achieved with a very fast initial reduction
phase, characterizing a rapid exploration behavior. The corresponding configuration space
dispersion is also reduced, but the reduction trend nearly vanishes after some first initial
iterations and thus the dispersion in this space stays high over the whole interval.

The dispersion reduction trend for the DRSim algorithm is shown in figure 5.11. Looking
at the task space dispersion curve, it is visible that the dispersion is also reduced in every
iteration, but slower as with the DRTask algorithm. Also the mean dispersion after 500
iterations is slightly greater. In the configuration space, the dispersion behaves differently.
It is decreasing over the whole interval, not showing the same saturation effect as with
DRTask. At the end of the interval, the configuration space dispersion is on average lower
with the DRSim algorithm than with the DRTask algorithm. This can also be seen in table
5.1, where the final values of the dispersion measure after 500 iterations are summarized.

Lets see how the dispersion behaves when another local planning method is used. In
figures 5.12 and 5.13 the dispersion history for both algorithms is plotted, but this time the
joint-limit avoiding redundancy resolution control method is used. The DRTask exploration
strategy shows a very similar behavior. While the task dispersion is rapidly reduced, the
configuration dispersion lowers only initially and then stays at a high level. Using the
DRSim method does reproduce the outcome of the previous trial. Again is the dispersion in
both spaces reduced, but in contrast to the previous trial, the configuration space dispersion
is not constantly lowered but converges to a comparable high value than with DRTask.
Overall, both exploration techniques perform similar in reducing dispersion, as can again be
verified in table 5.1, only the convergence speed of DRTask is better.
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Figure 5.6: Task Space Dispersion Reducing
Tree (DRTask) after 200 iterations, using sin-
gularity robust control and the 2D end-effector
position task space.
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Figure 5.7: The corresponding tree in the 3D
configuration space, spanned by the joints of the
manipulator.
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Figure 5.8: Simultaneous Task and Configura-
tion Space Dispersion Reducing Tree (DRSim) af-
ter 200 iterations, using singularity robust control
local planning and the 2D end-effector position
task space.
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Figure 5.9: The corresponding tree in the 3D
configuration space, spanned by the joints of the
manipulator.
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Figure 5.10: Evolution of dispersion measures,
task (red) and configuration space (blue), during
500 iterations and averaged over 30 runs. Task
Space Dispersion Reducing Tree (DRTask) sam-
pling with singularity robust pseudoinverse con-
trol local planning.
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Figure 5.11: Evolution of dispersion measures,
task (red) and configuration space (blue), during
500 iterations and averaged over 30 runs. Si-
multaneous Dispersion Reducing Tree (DRSim)
sampling with singularity robust pseudoinverse
control local planning.
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Figure 5.12: Dispersion evolution during 500
iterations, averaged over 30 runs. DRTask with
singularity robust joint-limit avoidance local plan-
ning.
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Figure 5.13: Dispersion evolution during 500
iterations, averaged over 30 runs. DRSim with
singularity robust joint-limit avoidance local plan-
ning.

Setup Algorithm

3 joints, no obstacle DRTask DRSim

Control Task Disp. Conf. Disp. Task Disp. Conf. Disp.

Singularity Robust 0.25 (0.02) 4.87 (0.38) 0.41 (0.06) 3.63 (0.55)

Joint Limit 0.25 (0.02) 4.87 (0.49) 0.43 (0.04) 4.48 (0.02)
Avoidance

Table 5.1: Average remaining task space and configuration space dispersion and standard deviation,
after 500 iterations, over 30 runs.
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Figure 5.14: DRTask exploration tree after 200
iterations, with combined joint-limit and obstacle
avoidance control. The manipulator is initially
trapped between two obstacles, but during explo-
ration a path escaping the trap is found.
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Figure 5.15: The same setup, but this time the
exploration was not able to escape the trap.

2D Task Space, 5D Configuration Space, Obstacles and Joint-Limits

So far, the setup was quite simple, the whole space was easily accessible. To create a
more interesting environment, additional constraints are now added to the robot and to
the workspace. Configurations are constrained by obstacles and by joint-limits of the
manipulator. Also the number of joint and therefore the dimensionality of the configuration
space is increased to five joints respectively dimensions. Two obstacles are placed in a way
that substantially limits the freedom of movement, making it necessary to traverse a narrow
passage.

The layout of he obstacles and the initial configuration of the manipulator can be seen in
figure 5.14. For this example, sampling is done using the DRTask approach with combined
joint-limit and obstacle avoidance local planning. The whole task space is explored and
regularly covered. Another run of the algorithm is shown in figure 5.15. In contrast to the
previous example, the space is not completely covered, the exploration was not successful.
Apparently, the manipulator was not able to get out of the obstacle trap. Such cases
happened several times and increasing the number of iterations up to 2000 did not help,
there are always cases where the exploration gets stuck.

For a better understanding of this effect, the evolution of the task and configuration
space dispersion is evaluated, again over the course of 500 iterations and averaged over 30
runs. The results reveal two clearly distinguishable trends. Some runs reached a low task
dispersion value below 4, while others quickly converged to a substantially higher value. This
separation can be interpreted as a grouping into runs that were able to escape the obstacle
trap, achieving a low dispersion, and runs that got stuck, not able to explore the whole task
space. Figure 5.16 shows the dispersion evolution separated into these two groups. The
majority of trials (26/30) belong to the group of unsuccessful explorations, only for a few
cases (4/30) the whole space was explored.

The same evaluation is done for the alternative DRSim exploration strategy. In contrast
to the previous results, the trials show a coherent behavior of continuously decreasing
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Figure 5.16: Dispersion evolution during 500
iterations, averaged over 30 runs. DRTask with
combined joint-limit and obstacle avoidance con-
trol.
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Figure 5.17: Dispersion evolution during 500
iterations, averaged over 30 runs. DRSim with
combined joint-limit and obstacle avoidance con-
trol.

dispersion. No group of runs converging to a higher dispersion can be found. The average
evolution of dispersion is displayed in figure 5.17. Although the rate of dispersion reduction
is slower now, all runs succeed in systematically exploring the task space and in escaping
the obstacle trap. For an example exploration tree refer to figure 5.18. Figure 5.19 shows a
particular path traversing the trap.

The exploration behavior of the two sampling approaches is also evaluated for the
other local planning methods, used in the previous setup. Table 5.2 summarizes all results,
including plain singularity robust motion control, joint-limit avoidance redundancy resolution
and combined joint-limit and obstacle avoidance. As already discussed for the latter case of
joint-limit and obstacle avoidance control, exploration does not always succeed in covering
the whole space and gets sometimes trapped. To a various degree, this is the case for DRTask
sampling under all three local planning conditions. For singularity robust control without
explicit redundancy resolution, most trials successfully explored the whole space (28/30)
and only few are trapped (2/30). If joint-limit avoidance is added however, not a single
exploration is able to escape, all 30 runs are trapped. Finally, with both joint-limit avoidance
and obstacle avoidance, some trails are able to escape (4/30) while a larger fraction is not
able to cover the whole task space.

The exploration of the DRSim sampling strategy shows a more reliable behavior. All
trials are able to traverse the obstacle gap and to successfully explore the task space, for the
cases of singularity robust control and combined joint-limit and obstacle avoidance control.
Although only some runs (5/30) escaped if pure joint-limit avoidance is used, this is already
an enhancement compared to the DRTask approach, where not a single run was able to
escape.

The results of table 5.2 further show differences in the dispersion reduction performance
of both approaches. If DRTask is able to escape the trap, the task space dispersion drops to
a low value around or below 1. With DRSim, the reached task dispersion remains larger,
close to 2.5. Comparing the configuration space dispersion values, no such large differences
can be seen. If the exploration proceeds through the gap, the dispersion is a little lower,
but the achieved minimum value remains high for both approaches.
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Figure 5.18: DRSim exploration tree after 200
iterations, with combined joint-limit and obstacle
avoidance control. A path escaping the obstacle
trap is found and the whole space can be explored.
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Figure 5.19: An individual sub-path of the DR-
Sim tree, traversing the narrow passage between
the two obstacles.

Setup Algorithm

5 joints, obstacle trap DRTask DRSim

Control Task Disp. Conf. Disp. Task Disp. Conf. Disp.

Singularity Robust 28/30 escaped all escaped
0.65 (0.18) 6.85 (0.10) 2.69 (1.21) 6.89 (0.21)

2/30 trapped
5.72 (0.04) 7.18 (0.02)

Joint Limit 5/30 escaped
Avoidance 2.57 (1.57) 6.73 (0.01)

all trapped 25/30 trapped
5.05 (0.12) 7.11 (0.05) 4.99 (0.04) 7.09 (0.01)

Joint Limit and 4/30 escaped all escaped
Obstacle Avoidance 1.09 (1.15) 6.91 (0.10) 2.43 (0.67) 6.79 (0.07)

26/30 trapped
4.69 (0.15) 7.17 (0.04)

Table 5.2: Average remaining task space and configuration space dispersion and standard deviation,
after 500 iterations, over 30 runs.
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5.3.7 Discussion

Two different sampling strategies were compared with respect to their exploration abilities.
DRTask only regards the task space and tries to explore this space as fast as possible
by greedily reducing the task space dispersion. In contrast, DRSim aims to balance the
exploration in the task and the configuration space. Task space sampling also focuses on
reducing the dispersion in every step, by selecting the task target sample with the highest
local dispersion reduction effect. In addition, a configuration space dispersion measure is
used to steer the exploration process on a global level towards less covered regions. This
way, the dispersion is simultaneously reduced in both spaces.

The results of the simulation study show that the methodology of an incremental dispersion
reduction sampling indeed lead to a continuously fast exploration of the task space. The
DRTask approach can reduce the dispersion faster by determining the optimal extension
step exclusively in the task space, while DRSim has to balance between task space and
configuration space dispersion reduction, which is not always possible at the same time.
Nonetheless, with the sampling process progressing, the actual amount of remaining task
dispersion converges to a similar value with both approaches. The speed of exploration is
lower, not the principal ability to explore.

The second more realistic setting with obstacle and joint-limit motion constraints reveals a
more profound difference between both sampling approaches. Depending on the actual setup
of constraints and local planning method, the exploration of the DRTask tree exhibits a
divergent behavior. While in some cases the task space is rapidly explored to low dispersion
values, other cases fail to explore and are converging to a significantly higher value. The
exploration gets trapped and refining the exploration with more iterations does not help.
The DRSim exploration on the contrary shows a more stable exploration ability. Task
dispersion is continuously decreasing, even though the lowering rate is slower.

Since the DRSim sampling approach incorporates the configuration space dispersion,
exploration is continued in regions with already low task space dispersion if the corresponding
configuration dispersion remains high. A high configuration dispersion implies the presence
of alternative configurations for similar tasks that might be discovered by re-visiting already
explored regions. It was shown during evaluation that the configuration space dispersion can
be indeed lowered to a greater extend this way. Considering this alternative configurations
is the reason why DRSim prevents situations of trapped explorations. Even if configurations
were chosen that turn out to result in a trap, alternative and more successful choices can
still be discovered in later stages. DRTask, conversely, does not re-visit task regions and the
further exploration is completely dependent on the previous choices. If these turn out to be
unfortunate later, there is no way to recover.

In order to benefit from DRSim’s ability to recover from local planning failures, the
assumption is of course that configuration alternatives can be found with local planning.
Technically, this property is given if local planning possesses nonholonomic behavior. In this
study, all of the used local planning methods involve some sort of nonholonomic constraints.
While the task representation behaves holonomic if trajectory start and end points are
reached with zero velocity, resolved motion rate control does not, refer to section 2.6.

The impact of this nonholonomic behavior is quite different, depending on the redundancy
resolution method and the concrete layout of constraints, particularly the placement of
obstacles. Pure singularity robust control is not influenced much in the tested case, only a
few trials did fail with DRTask and DRSim is successfully able to resolve all these cases. On
the other hand, combined joint-limit and obstacle avoidance is strongly affected. Only for
some cases DRTask can succeed here while DRSim benefits unambiguously and is again able
to always escape the trap. If only joint-limit avoidance is used for redundancy resolution,
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DRTask is not able to explore the whole task space. The DRSim exploration however is only
able for some cases to traverse the obstacle gap. This can be explained by the relatively
weak non-holonomy arising from joint-limit avoidance, which is mainly due to sub-optimal
cost function optimization. It is not directly possible to systematically exploit this behavior
to reliable generate alternative configurations by task sampling.

From this discussion of the properties of the two opposing sampling strategies, some
conclusions can be inferred regarding global task space planning as proposed in the hybrid
planning formalism. One observation is that the iterative dispersion reduction approach is a
good heuristic to achieve a fast and throughout exploration. Secondly, it was shown that
under the presence of nonholonomic constraints, the exploration ability is more robust if the
state space is incorporated into the sampling heuristic. A too greedy task space sampling
that neglects the state space coverage might lead to stagnating exploration.

5.4 Completeness

In this section, the issue of completeness of planning is addressed. With hybrid planning,
the globally searched space is no longer the configuration space and the question arises, if
completeness guarantees can still be made.

In motion planning, completeness is defined with the piano movers problem, refer to
section 4.2. Basically, a complete motion planning algorithm has to be able to find every
possible free path and to be able to recognize if no solution is possible. Completeness of
hybrid planning was defined very similar in section 5.2. A difference is that there is no
goal configuration given, only a goal task position, potentially satisfied by a multitude of
configurations. Also a solution path is now represented by a sequence of task space control
inputs. Hybrid completeness is given if a path between a start configuration and any goal
configuration, whose corresponding task position matches a given goal task region, exists and
a sequence of task control inputs can be found that creates such a configuration path. Paths
are generated by these task space control inputs by integrating the described transition
functions for task and configuration space velocities. To be able to examine the completeness
of an actual hybrid planning approach, properties of these transitions have to be understood
for both the global task space planning and the local configuration space planning process:

Global planning:
The global planning process is determined by the task space transition function f .
Inputs to the system are given by means of the current task position x and a task
control input u, while the output ẋ is feed to the local planning process. The task
space path results from integrating the output velocities ẋ. The global process is
complete now if every possible task space path can be created by integrating a sequence
of control inputs.

As explained in section 2.6, this property can be examined by characterizing the
reachable set of a system. For instance in section 2.6.1, the second-order attractor
dynamic task representation was shown to be able to reach every state of the system
and with the special case of target-to-target movements with zero velocity at the target
points, all possible task space paths can be created.

Local planning:
The local planning process utilizes a second transition function g, specifying config-
uration space velocities q̇ for given configuration space positions q and target task
velocities ẋ. Completeness can once again be achieved if it is possible to create every
configuration space path by integration of the output velocities. That is, if every
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possible path resulting from integrating q̇ can be generated with the right sequence of
task velocities ẋ.

If this is possible depends on the nature of the system g. It was shown in section 2.6.2
that if a redundant control system posses holonomic constraints, the reachable space
is limited to a manifold of the configuration space. In this case, the local planning
process can not be complete because there is no way to create paths leaving this
manifold by altering the input sequence of task velocities.

For a redundant control system with nonholonomic constraints, the whole space might
become reachable, dependent on the properties of the actual system. The gradient
projection control scheme used in this thesis can be characterized as a nonholonomic
system under certain conditions and consequently, local planning can create different
paths with different input task velocities sequences. Full state space reachability
however can not be generally established but is dependent on the actual kinematics,
the employed cost function for redundancy resolution and the structure of constraints.

The completeness of hybrid planning can thus be determined by examining the planning
processes in both layers. It is relatively easy to achieve completeness of the global planning
component, as for example described for the attractor dynamic case. The overall completeness
is then determined on the local planning layer, where completeness is harder to achieve. If
the same task input always results in the same configuration, it is impossible to achieve
completeness in configuration space even if the task space is completely searched. If different
configuration can be produced, all possibilities might be reached, but this is not necessarily
always the case.

Consequently, hybrid planning is not automatically complete in terms of considering
all possible configurations. In fact, the limitation of the globally complete search to the
lower-dimensional task representation already implies that not all motion alternatives are
explicitly included into the search. However, a softer condition of completeness can be
pursued instead. If the local planning component is able to choose valid constraint free
configurations with high probability, then the probability of finding a global solution path
is also high, given that the global planning layer explores a, preferably complete, set of
alternatives.

Of course a misbehaving local planning behavior can always happen, as demonstrated
in the previous section 5.3. In such cases, it is valuable to adopt a robust global sampling
strategy like the DRSim approach to be able to recover from unfortunate local planning
steps.

60



Chapter 6

Hybrid Planning for Redundant Robots

The previous chapter introduced our concept of hybrid motion planning on a rather theoretical
level. This chapter develops an application of the method for motion planning with a
redundant manipulator. After a short discussion of the specific challenges, a sampling-based
hybrid planning algorithm is presented in section 6.2, using a simple space invariant coverage
heuristic. The approach is evaluated for a humanoid robot as an example for a redundant
robot. It is compared against an alternative planning method, performing a full configuration
space search incorporating a goal directed task bias, as described in section 6.3. Evaluation
is done with the help of a specifically developed simulation framework 6.4. The evaluation
setup and results are discussed in the last part of this chapter.

6.1 Redundant Robot Motion Planning

Redundant robots are characterized as robots having more degrees of freedom than necessary
to fulfill a certain task. A common case are sequential manipulators with more joints than
task variables, as previously described in chapter 2. This type of redundancy can be often
found in robotic systems, for example in industrial manipulators. Redundancy occurs in
multi-limb systems as well, for example in multi-arm setups or multi-fingered hands. A
particularly interesting family of redundant systems are humanoid robots. In section 2.5,
a control framework for humanoid robots was presented, already highlighting some of the
specific challenges regarding the implementation of motion control techniques for these
robots.

With respect to motion planning, redundant robots pose some challenges. They typically
have a large number of joints, resulting in high-dimensional state spaces and complete
motion planning by explicitly searching or sampling the state space can become prohibitively
expensive. This is even more the case for applications involving more than one manipulator.
Not only increases the state dimension with every additional joint, also the collision con-
straints become very complex. This difficulty arises in the context of bi-manual planning for
instance and is described with more detail in chapter 7.

In contrast to the high-dimensional state spaces, the task to be planned is often defined
in a lower dimensional space. For instance, the task for an industrial manipulator could be
to move a tool to a specific spatial position while the posture is not specified. A humanoid
with the task of grasping some object can typically do this in different ways, all equally valid.
This poses difficulties for state space motion planning because the target is not exactly
pre-determined. There exist a set or even a whole continuum of valid target postures and it
is not clear how to select the right target in a certain situation.

These two properties, high-dimensional state spaces and lower-dimensional task speci-
fications, motivate to treat redundant robot motion planning with the proposed hybrid
motion planning approach. By focusing the search on the task representation, global search
is limited to a lower dimensional space and the problem of assigning the right target posture
is simultaneously solved without the need to determine the posture beforehand.
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Figure 6.1: Hybrid planning with local redun-
dancy exploitation. A task space trajectory (1)
towards a task space control target (2) is created.
The corresponding configuration space trajectory
is locally optimized using the redundant space,
shown in light gray (3). For example the optimiza-
tion can be based on a obstacle distance potential
function, driving the trajectory away from ob-
stacles. Note that every possible trajectory in
the redundant space is mapped to the same task
space trajectory.

Task Space

Configuration Space

(1)
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Key element of the hybrid approach is the availability of a control component establishing
the representation shift from the state space to the task space. For redundant robots, various
suitable motion control methods exist. Chapter 2 presented control techniques based on
resolved motion rate control, able to efficiently create state space trajectories and to exploit
redundancy for local motion optimization. Many different redundant space motions can
be implemented, but in the context of motion planning the avoidance of constraints like
joint-limits and obstacles are especially rewarding.

Figure 6.1 illustrates the hybrid planning process for redundant robots. The task space
is globally searched by a systematic sampling of task targets, incrementally creating a
planning tree of task space trajectories. Using the motion control framework, the task space
trajectories are mapped to configuration space trajectories and by utilizing local redundancy
optimization, obstacles can be avoided.

There are several motion planning approaches for robotic manipulators that include ideas
of task specific search heuristics and representations. Decomposition techniques, for instance,
proceed by dividing the problem into two subproblems. The first subproblem is to determine
a workspace tunnel of free space, assumed to contain the swept volume of the robot following
a solution path. The second subproblem is then to find a collision free path for the robot
inside this tunnel. Creation of the tunnel can be done by iteratively sampling collision free
spheres of a maximal radius in a goal directed best first fashion (Brock and Kavraki, 2001).
For the movement inside the tunnel, a potential function is defined. The centers of the
free space tunnel spheres attract the end-effector towards the goal, while another potential
function repels the robot away from obstacles. Elastic Roadmaps (Yang and Brock, 2010)
capture the connectivity of the workspace with a sampling-based roadmap. Paths of the
map are followed employing a feedback control framework, while roadmap nodes are allowed
to move in response to obstacles and the connections between them are constantly updated.

These decomposition techniques share the idea of utilizing control methods that deal with
actual trajectory generation, while a global process determines a rough higher level plan.
Since the global connectivity is determined in the workspace however, the approach is best
suited for mobile manipulation applications, where the free space is relatively large and
individual workspace positions can be often connected with local control. For stationary
manipulation tasks with highly redundant robots in highly constrained environments, local
connections are difficult and a reasonably precise approximation of the free workspace can
become costly to obtain.
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Relying on local control methods, the process of generating a movement along a workspace
path can fail due to local minima. The decomposition technique in (Rickert et al., 2008) is
able to recover from this situations by adaptively switching between two planning modes. In
exploitation mode, a goal directed workspace tunnel is followed, again utilizing a feedback
control framework. If this local workspace exploitation gets stuck, the algorithm switchs
towards a RRT-like exploration mode, able to overcome local minima by sampling in the
configuration space.

The planning method in (Gochev et al., 2012) is also designed to switch between planning
modes. Motivated by the observation that large parts of a solution path can have a lower-
dimensional structure, the planner constructs a state-space with adaptive dimensionality.
The complete high-dimensional state space is only included in situations where no low-
dimensional solution is possible, reducing the size of the state space and consequently the time
and memory requirements. One planning mode searches a low-dimensional representation
with fixed structure and dimension and a second planning mode searches the full high-
dimensional space. The algorithm relies on a suitable discretization of both spaces, which
can be problematic for higher dimensional spaces. If a too coarse discretization is used, a
significant portion of motion freedom is lost, while a too fine discretization quickly raises
memory and time requirements. Thus, the number of motion primitives that can be
incorporated is limited in practice.

Other methods primarily operate in the full-dimensional state space, but employ different
task driven heuristics. Bertram et al. (2006) accompany a RRT exploration process with
a heuristic that is used to bias the search based on an estimate of the workspace distance
of the robot to the goal and to obstacles. JT-RRT (Weghe et al., 2007) builds upon the
same principle of searching the configuration space, but imposes a stronger goal bias by
randomly performing direct movements towards the goal in the end-effector space. For this
the Jacobian transpose is employed as a approximate mapping between end-effector poses
and configuration space postures. The Jacobian transpose is also used in (Vahrenkamp
et al., 2010) to guide a configuration space search, but here the goal is to simultaneously
find a trajectory and a suitable grasp position for a one or two handed object manipulation
task. End-effector motions are performed to a broader set of possible end-effector positions,
determined by grasp generation and scoring heuristics. The BiSpace planner (Diankov et al.,
2008) uses two search trees: A forward tree in configuration space starting at the current
posture and a backward tree in the workspace, originating from the workspace target. The
search of the RRT based algorithm is focused on connecting both trees utilizing a workspace
metric. This way, the forward configuration search can be guided towards the goal.

General ways to guide the search by focusing on certain regions of the space were
mentioned in section 4.5. Some of these methods also employ heuristics that can utilize
lower dimensional information. Sucan and Kavraki (2009b) show that it is beneficial to aim
towards a uniform coverage of a lower dimensional linear projection space instead of the
full high-dimensional state space. It is demonstrated that for a redundant manipulator for
instance, one can use the end-effector position as such a projection space to effectively guide
the search towards the goal. The sampling approach of (Dalibard and Laumond, 2011) tries
to learn such low-dimensional projections in order to detect lower dimensional structures of
the free space. In contrast to the previous method however, only local constraint information
is taken into account, no globally valid heuristic is identified.

The task representation employed by our hybrid method can be interpreted as a similar low-
dimensional guidance space. Unlike to the previous learning method, the space is specifically
designed for the task at hand, allowing to incorporate domain dependent knowledge which
can result in a more powerful heuristic. The linear projection space coverage estimation
technique uses a predefined representation as well, but like all previous state space sampling
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methods is still searching the configuration space. It is possible to guarantee probabilistic
completeness this way, but the problem of globally sampling a high-dimensional space is not
eliminated. It is assumed that the low-dimensional projection or task level control heuristic
guide the search, but the success in reducing the sampling effort is dependent on the actual
situation.

The proposed hybrid approach, conversely, shifts global planning entirely to the task
representation. A method performing the entire search in the task space as well is presented
in (Shkolnik and Tedrake, 2009), where a Jacobian pseudo-inverse feedback controller
generates configuration space trajectories for a highly redundant robot arm based on a
low-dimensional task specification. It is shown that searching the space of task positions
with a modified RRT algorithm can lead to an enormous performance improvement in
contrast to high-dimensional configuration space search. This approach is similar to the
hybrid motion planning framework presented in this chapter. Global sampling is also limited
to a task representation and a pseudoinverse control framework is employed for local motion
generation. Our method incorporates more powerful methods for both the global task space
and the local configuration space motion generation. It is possible to solve a broader class
of problems and to solve a larger subset of planning queries.

The next section describes a sampling-based planning algorithm, implementing the
described framework. The algorithm is independent of the actual motion control method
used. The actual task representation and local planning component used for evaluation are
discussed in section 6.5.

6.2 A Hybrid Motion Planning Algorithm

The hybrid motion planning algorithm developed in this section tightly follows the EST
random-tree approach (Hsu et al., 2002), as introduced in section 4.4.1. First step in each
iteration of the incremental tree growing process is to select a tree node for extension. The
selection is done by randomly picking nodes according to a probability distribution, assigning
a individual weight to each node. This weight should reflect how well certain regions of the
space are covered and by assigning higher weights to nodes in less covered regions the search
is biased towards unexplored parts of the space.

Section 5.3 evaluated different task sampling strategies for hybrid motion planning. It
was concluded that under the presence of nonholonomic constraints and in particular when
resolved motion rate control is used, it becomes necessary to incorporate a configuration
space coverage measure into the node selection heuristic. With the DRSim algorithm a
suitable technique was developed, relying on the estimation of dispersion in the task and
configuration space to guide the exploration. However, we would like to us a simpler
heuristic here in order to ease a proof-of-concept implementation and evaluation. Instead of
incorporating two coverage estimates, separately computed for both spaces, a single heuristic
that is invariant to both spaces is used. The heuristic is taken from the EST implementation
of (Plaku et al., 2007) and just counts the number of outgoing edges of a node and assigns
the weight inversely proportional to this number. This is an estimate of local coverage,
because every neighbor in the tree stands for a successful exploration in the direct vicinity
of the node. It is invariant to the task respectively configuration space, because the node
connectivity is the same, regardless of the spatial arrangement of nodes.

The complete hybrid task space tree growing (TaskTree) algorithm is shown in algorithm 6.1.
It operates by executing the five EST steps node selection, target sampling, tree extension,
tree node adding and weight update in each iteration, refer to section 5.3. Each node pi
in the tree data structure consists of a pair of task space position xi and corresponding
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Algorithm 6.1 Hybrid Task Space Tree Growing with Greedy Goal Bias (TaskTree)

tree with nodes pi = (xi, qi, ui, ti, wi) ∈ T = (X , C,X ,R,Rd)
metric ρ(x, y), x, y ∈ X
while not goal reached and not time over do

if goal bias then
ps = nearest tree neighbor to goal with minx∈T ρ(xgoal, x) not yet goal biased
utgt = xgoal

else
ps = select tree node based on weights wi ∈ T
utgt = sample in neighborhood of ps

end if
(xtgt, qtgt, ttgt) = local planner from (xs, qs) towards utgt with max. duration tmax

if tmin ≤ ttgt ≤ tmax then
add new tree node (xtgt, qtgt, utgt, t, wnew) to T , branching from ps
update tree weights wi ∈ T

end if
end while

Algorithm 6.2 Node Selection

select tree node based on weights wi ∈ T :
ps = choose randomly according to weight distribution { wi | i = 1...N }

configuration space position qi as well as a task space control target ui and control time
ti that was used to create the node. This way a node always represents the end of a local
motion and can be continuously resumed with a new local motion towards another target.
Also a weight wi is associated with each node, determining the probability of the node to
be selected for further exploration.

At the beginning of each iteration of the algorithm, a decision is made if the tree should
explore or should try to reach the goal directly (goal biasing). The goal biasing case is done
by selecting the closest tree node ps to the goal position xgoal, according to the task space
metric ρ, and setting the goal position as the local control target utgt. This method has a
greedy behavior, since the closest node is always chosen. However the algorithm maintains
a flag at each node to keep track if the node was already selected for goal biasing and to
make sure that each node is only selected once. If the closest node is already goal biased the
second closest is taken etc., thus even nodes that are far away from the goal will eventually
be used, preventing the goal biasing to get stuck in unfortunate situations.

If no goal biasing is done, the algorithm performs an exploration step. The node selection
module (algorithm 6.2) is called to select a tree node ps at random with a probability
distribution given by the exploration weights of each node. For example, consider a tree
node j with associated wight wj . The probability of selection of this node equals wj/wN

with wN =
∑

i=1...N wi.

Next, the target sampling component (algorithm 6.3) samples a new task space target
utgt in the neighborhood around the selected node ps. Given the target, the local planner
is called to create a new trajectory, starting at the selected node and extending the tree
towards the sampled target utgt with a maximum control duration time tmax. The local
planner utilizes the underlying control framework and is described later in section 6.5.3.
The whole trajectory is represented as a pair of corresponding task space and configuration
space points and after each iteration step, the local planning module returns the portion of
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Algorithm 6.3 Target Sampling

sample in neighborhood of ps :
utgt = sample from X in neighborhood of node ps

Algorithm 6.4 Weight Update

update tree weights wi ∈ T , selected node ps :
weight of new node wnew = 1
weight of selected node ws = 1/number of node edges

the trajectory not violating any constraints, represented by the trajectory end-points xtgt
and qtgt as well as the elapsed control time ttgt.

Finally, if the time duration of the trajectory is between min and max values, a new tree
node is added to the tree, branching from the previously selected node ps. Also, the weights
of the tree nodes are updated by the weight update component (algorithm 6.4). The initial
exploration weight of each new node is set and the exploration weight of the extended parent
node is updated to reflect the exploration that just happened.

6.3 A Control-Enhanced Motion Planning Algorithm

The classical approach to motion planning is to search the robots configuration space
directly. Like already mentioned, there are some related motion planning techniques that
enhance the classical approach in order to deal with redundant robots. To compare the
proposed hybrid motion planning concept, we choose to compare against these methods, in
particular against the JT-RRT method (Weghe et al., 2007). In brief, JT-RRT performs a
classical RRT search in the configuration space, but adds goal directed movements with an
approximate task space control method, acting as a strong bias to focus the search. Also it
is no longer needed to predefine a set of possible goal configurations, it is enough to define a
goal in the lower dimensional task space and a valid configuration at the goal is computed
during the search.

Algorithm 6.5 shows an adapted version from the original JT-RRT algorithm. It also
grows a configuration space search tree with interleaved target directed motions in the
task space. The difference of the presented algorithm is the use of a powerful local control
method instead of the simple approximate Jacobian transpose. This way, the algorithm uses
a even stronger bias towards the goal than JT-RRT.

Basically, there are two modes of operation. In the normal case, a classic RRT configuration
space search is done, refer to section 4.4.1. First a random sample in the configuration space
qs is created and the nearest neighbor node pn in the already explored tree is determined.
For this nearest neighbor computation a suitable configuration space metric ϕ is defined.
The second step then is to connect the nearest neighbor node with the sampled node, using
a simple configuration space local planner, for example a simple straight line interpolation,
and to simultaneously check this movement for constraint violations. If the movement is
valid, the sampled point is added to the tree. Each tree node holds a configuration space
position and the corresponding task space position, thus it is necessary to compute the
forward kinematics of the sampled configuration space position xs and add it to the tree as
well.

The second mode of operation is the goal bias case, randomly executed with a certain
probability. In this mode, a goal directed movement in the task space is done. For this, the
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Algorithm 6.5 Configuration Space RRT with Greedy Task Space Goal Bias (ConfTree)

tree with nodes pi = (xi, qi, ti) ∈ T = (X , C,R)
metric ρ(x, y), x, y ∈ X
metric ϕ(q, p), q, p ∈ C
while not goal reached and not time over do

if goal bias then
pn = nearest tree neighbor to goal with minx∈T ρ(xgoal, x) not yet goal biased
(xg, qg, tg) = local planner from (xn, qn) towards xgoal with max. duration tmax

if tmin ≤ tg ≤ tmax then
add new tree node (xg, qg, tg) branching from pn

end if
else

qs = sample from C
pn = nearest tree neighbor to sample with minq∈T ϕ(qs, q)
if connect qs and qn then

xs = forward kinematics qs
add new tree node (xs, qs, t = 0) branching from pn

end if
end if

end while

nearest tree node pn to the task space goal xgoal is computed according to the task space
metric ρ. Starting at the closest tree node, the control based local planner is invoked, creating
a task space trajectory towards xgoal with a maximum duration tmax. If the trajectory is
valid, that is longer than tmin and shorter than tmax and not resulting in collision, it is
added to the tree.

It is possible to arbitrarily interleave these two operation modes, because every tree node
holds the information needed for both operations, the configuration space posture and the
corresponding task space position. If the goal biasing probability is large, fast progress
towards the goal can be achieved but also the exploration breaks down. In practice it is
reasonable to limit the amount of goal biasing and to let the configuration space exploration
dominate the search.

6.4 Simulation Framework

A simulation framework was developed in order to evaluate the hybrid planning approach.
Basically the framework consists of three modules, a geometric world model, a local control
method and a sampling-based planner. Figure 6.2 illustrates how these modules relate to
each other.

The robot and world model maintains the geometrical representation of the robot and other
objects in the workspace. Its main purpose is to check for collisions and to compute distances,
also this module can be used to visualize the planning setup and solution trajectories. It is
implemented using the Vortex physics simulation library1, offering fast collision detection
and distance computation methods for geometric primitives like spheres, boxes and capsules
as well as for polygon meshes. In the present simulations, only simple primitives are used
for fast computations. The local control module encapsulates the motion control algorithm

1CM Labs Vortex,http://www.vxsim.com
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Figure 6.2: Schematic architecture of the hybrid motion planning framework. The three main
components, sampling-based planning, local control and robot/world model are shown and the
information flow is depicted by arrows.

used to create motions of the robot. Given a task specification, a trajectory is computed
which fully determines the position of every segment of the robot for every timestep.

Finally, the sampling-based planning component takes care of the overall search process.
It maintains a data structure of already searched parts of the space and decides where
to search next. This part is implemented using the OOPSMP sampling based planning
library2 (Plaku et al., 2007). OOPSMP follows a plug-in driven design, making it easy to
add or modify parts of the system. Following a factory design pattern, the whole setup can
be specified with XML files that are parsed to dynamically create all needed component
instances.

There are two loops in the architecture of the hybrid planning framework. One loop that
is iterated in every step of the simulation is the coupling between the local control module
and the robot model. This can be seen as the world simulation loop. Once the controller has
determined a current robot posture, the corresponding transformation of each robot segment
is passed to the robot model. The geometry of the current robot posture is then used to
pass closest point distances between robot segments or between the robot and other objects
back to the controller. Also the updated robot posture can be checked against collisions.

The other conceptual loop in the system architecture defines the interplay between the
described world simulation loop and the sampling-based planning module. In order to set
a new sub-target for the local control, the planning module sends the information of the
current posture (configuration) of the robot and the task target, which the controller should
reach. This is the input of the control system and after the system is iterated the same
modalities are sent back as the output, i.e. the configuration and task position after a
control step. In addition, another output is the information whether a collision occurred
and possible some sort of information of the nature of the just created local trajectory.

2OOPSMP, http://www.kavrakilab.rice.edu
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Figure 6.3: Kinematic model of the humanoid
robot. In the simulation, only upper body move-
ments are actively controlled, including the two
arms, the torso and the hip. The legs are pas-
sively adjusted to counteract changes of the hip
posture, but stepping or walking motions are not
considered.

Figure 6.4: Geometric model of the humanoid
robot. The real shape (left) is approximated with
sphere-swept-line geometric primitives (right),
greatly reducing the costs of collision and dis-
tance computations, while maintaining a reason-
able level of accuracy.

6.5 Evaluation

In this section, the performance of the proposed hybrid motion planning algorithm is
evaluated using a simulated planning task for a humanoid robot. Using the previously
described simulation framework, the setup can be easily realized by implementing the local
control module and the robot and world model. Local control wraps the humanoid whole
body motion control framework from section 2.5. It is used during local planning to create
motion trajectories and maintains the kinematic state of the robot. The kinematic structure
of the humanoid robot used here is depicted in figure 6.3. The robot and the world model
simulate the spatial geometry as shown in figure 6.4. Global planning implements the
sampling-based hybrid motion planning approach (TaskTree) given in algorithm 6.1 and the
classical JT-RRT based solution (ConfTree) in algorithm 6.5.

6.5.1 Task Representation

The whole body motion framework as the underlying local control method allows a flexible
definition of tasks. In the present setup two task spaces are defined, one in the three-
dimensional position of the hand relative to the robots coordinate frame and the other is a
five-dimensional position and orientation representation, as introduced in (Gienger et al.,
2005). Figure 6.5 shows this hand attitude representation. The axis centered in the hand
coordinate frame and pointing in direction of the extended thumb is the so called grasp axis
– the axis around which the fingers of the hand are closed. What is controlled now is the
direction in which this axis is pointing but not the actual orientation angle around the axis.
Thus a orientation representation is used that leaves one dimension unconstrained. The
direction of the grasp axis can either be described in polar coordinates or by a point on the
unit sphere centered at the hand coordinate frame.

Uniform sampling of the three-dimensional position space is trivial. Sampling in the
neighborhood of a given central task space point is done by drawing points from a spatial
Gaussian distribution with the peak at the center point. First a Gaussian distributed
desired distance of a sample point is taken which defines a sphere on which then a uniform
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Figure 6.5: Two-dimensional hand attitude rep-
resentation, from Gienger et al. (2005).

Figure 6.6: Samples from the Von Mises-Fisher
distribution on the unit sphere, centered at
(0,−0.7071, 0.7071) with concentration κ = 10.

distributed random point is picked.

For sampling the five-dimensional position and orientation space, sampling of the orienta-
tion axis unit vector is added. This orientation vector is defined by the difference vector
from a point on the three-dimensional unit sphere to the center of the sphere. Sampling
thus reduces to finding points on the unit sphere. The transformation of the neighborhood
sampling idea is done by applying the spatial Gaussian distribution concept to the sphere
by using the von Mises-Fisher distribution, see figure 6.6. A receipt for transforming
two uniform distributions on the unit interval into a three-dimensional von Mises-Fisher
distribution is given in (Fisher et al., 1981).

6.5.2 Configuration Space

Independent of which of the two task representations are used, the control framework creates
movements involving the whole body of the robot, represented in the configuration space.
Even if only a part of the body is relevant for the task, other parts might also be moved due
to the redundancy optimization. For example, if a reaching movement is done with the left
hand, the right arm might also move in order to optimize some motion criteria. Although
this behavior is wanted and useful, the configuration space is much larger than necessary
for the task at hand. Because the dimensionality is crucial for the classical configuration
space search approach (ConfTree), the configuration space is reduced to a minimum number
of relevant dimensions for this method. For the setup in this study 9 dimensions are used, 5
for the arm and 4 for the upper body and hip.

Note that the configuration space dimensionality is not reduced for the hybrid motion
planning method (TaskTree). Although including more dimensions increases the size of
the Jacobian, the overhead is not as big as for the configuration space search and is thus
neglected here.

6.5.3 Local Planning

As already mentioned, the local planner of TaskTree and the goal bias local planner of
ConfTree both employ the whole body motion control framework, as introduced in section
2.5. Redundancy is locally optimized to fulfill secondary motion objectives and here two
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Algorithm 6.6 Motion Rate Control Local Planner

local planner from (x, q) ∈ (X , C) towards u ∈ X with max. control duration time tmax

while not max. duration time tmax exceeded and not constraints violated do
get desired task velocities ẋ from current position x and target u
compute joint velocities q̇ given configuration q and task velocities ẋ
update current task position x
update current joint position q
check constraint violation of updated q

end while

different conditions for optimization are used. In the first condition, only the joint limit
avoidance cost function is used and in the second condition, the obstacle avoidance cost
function is added.

In the ConfTree algorithm, the majority of local planning is done in the configuration
space, where two configuration space points need to be connected. This is done by a simple
linear interpolation with a constant step size.

6.5.4 Algorithm Implementation

The implementations of EST and RRT algorithms, available in the OOPSMP library, were
extended in order to match the TaskTree and ConfTree approaches. Both algorithms
need distances metrics, TaskTree only in the task space and ConfTree in the task and the
configuration space. The task space distance metric for the position is a simple euclidean
metric, for positions p1, p2 ∈ R3, ρpos(p1, p2) = ||p2 − p1||. When hand orientations are
involved, the spherical distance between the grasp axes is added, a1, a2 ∈ R3, ρrot(a1, a2) =
cos−1(aT1 a2). For configuration space distances, the euclidean metric is used as well, q1, q2 ∈ C,
ϕ(q1, q2) = ||q2 − q1||.

Distances are used to compute nearest neighbors in both algorithms. In TaskTree, finding
the nearest tree-node to the goal is only necessary in the goal biasing case. Also, this can be
done in constant time if the fixed goal distance is stored with every node. In contrast, the
ConfTree approach makes heavy use of nearest neighbor computations in the exploration
step, having to find closest tree neighbors for randomly sampled configurations. Naively
implemented, this operation has quadratic complexity, but by using more sophisticated
methods like GNAT (Brin, 1995), the complexity can be dramatically reduced.

6.5.5 Setup

In the sampling-based planning methodology, the environments is only directly relevant to
the local planner, which is treated as a black box. Thus in principle, the actual environment
and operating workspace does not matter. This is also true for the proposed hybrid planning
method, only the local control deals with the geometry of the problem at hand.

The performance, however, is very much dependent on the spatial layout of the environment.
For humanoid robots a natural application area are human like environments, motivating
the setup used in this study. Figure 6.7 shows the first setup, consisting of a table and a
grid like structure, resembling common objects like windows or cupboards. The class of
tasks relevant in this environment are reaching and pick and place tasks.

Three motion planning queries are done, as shown in figures 6.9 and 6.10, for the two
task spaces position and joined position and orientation. For these queries, a general local
optimization method that is not specifically initialized for the problem at hand would fail.
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Figure 6.7: Setup A. Humanoid robot motion
planning in a human environment, featuring a
table and a grid like ”cupboard” structure.

Figure 6.8: Setup B from Behnisch et al. (2010)
with a smaller sized grid and a larger number of
goal positions, marked by the blue balls.

A local method can only find paths that are in the same homotopy class as the initial
path. There are three separate homotopy classes of valid solutions in this setup and a naive
straight line initialization would not be in any of them. Thus global planning is indeed
necessary, if problem specific tailoring should be omitted. In addition, especially target 1
is characterized by very constrained areas where not much movement variety is possible.
This narrow passages are a difficult problem for sampling-based motion planning and they
achieved a lot of attention to deal with them. To summarize, the given setup is thus both a
relevant and a challenging problem for the targeted application area of motion planning for
redundant robots.

Figure 6.8 shows a second setup, already used in (Behnisch et al., 2010). The spatial
structure is comparable, but here the focus lies on the reachability of goal positions, tested
by defining a whole set of goal positions, shown as blue balls on the table surface. Start
position is always the shown posture with the arm in a rest position. The set of valid
solution paths is divided into two homotopy classes here.

For the queries of setup A a number of motion planning runs is executed, testing all
combinations of two task spaces (3D position and 5D joined position and orientation), two
planning algorithms (hybrid planning and classical RRT with task space bias) and two
local planning methods (whole body motion control and whole body motion control with
redundant space obstacle avoidance).

For the setup B, the same two task spaces and local planning methods are used though.
The planning algorithms are different, hybrid planning is less greedy and the configuration
space planner operates as an Expansive Space Tree (EST) (Hsu et al., 2002). Because these
differences only impact the runtime and not the principle reachability of goal positions, the
results are reported here too.

6.5.6 Performance Metric

To compare the runtime of the algorithms, the time needed to find a solution path is
measured and arithmetically averaged over all planning runs.

Due to the random nature of sampling-based methods, their completeness is only defined
probabilistically, i.e. the probability to find a solution converges to one at infinite time. It
is not possible to define an upper time limit at which the search can be terminated because
it is always possible that a solution is still found later. In practice it is necessary to set an
upper time limit and once it is reached, the search is aborted without a true runtime result,
adding some uncertainty to the runtime statistics. To capture this uncertainty, another
informative performance hint is the fraction of actually solved planning runs relative to the
total number of runs.

A measure related to the runtime is the number of tree extensions. Every tree extension
involves a call to the local planner which in turn calls the control framework, distance
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Figure 6.9: Setup A, 3D task space start and goal positions. Planning of a trajectory from the
start position (first from left) to three distinct goal positions, target 1 to 3.

Figure 6.10: Setup A, 5D task space start and goal positions. Planning of a trajectory from the
start position (first from left) to three distinct goal positions, target 1 to 3.

computation and collision detection several times. This steps are accountable for a large
share of the overall computation needed.

6.6 Results

Figure 6.12 shows two examples of successful planning runs and the computed solutions
paths and search trees for setup A and the TaskTree algorithm. Figure 6.13 shows the
same for ConfTree. Comparing the resulting movement trajectories of both algorithms, two
observations can be made. The TaskTree solution is smoother than the ConfTree solution
and appears also to be shorter. While the former creates a continuous natural looking
trajectory, the movement of the latter make a jaggy and unnatural impression.

Figure 6.11 and table 6.1 summarize results for planning trials using the 3D hand position
task space, showing the three performance measures number of solved queries, runtime
and tree size. The statistics are computed by averaging over 100 runs each and are split
into groups. There are three groups that separate the three target positions. Each of the
target position groups is further divided into four items, showing results for each of the four
different algorithm and local control combinations. Starting with the last target position,
target 3, this position shows an equal low average runtime and tree size for all algorithm
and local planning combinations. This position can be easily and reliably reached. Target 2
shows more difference. Here TaskTree performs significantly better than ConfTree, both
runtime and tree size are lower. Comparing the two local control conditions there is no clear
advantage visible. The most significant difference between the two algorithms is present for
target position 1. ConfTree takes considerable more time and is not always able to find a
solution in the given time limit. While the difference between the local control methods is
neglectable with ConfTree, the tree size of TaskTree differs with obstacle avoidance resulting
in a smaller tree. However this difference is not visible when looking at the runtime.

Results for the 5D hand positon and orientation task space are given in figure 6.14
and table 6.2, again divided into groups of different target positions, algorithm and local
planning. Similar to the 3D case, target 3 can be reached without problems. Solution time
and tree size is comparable, only ConfTree with obstacle avoidance takes little more time.
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Figure 6.11: Setup A with 3D hand position task space. Fraction of solved queries, average runtime
and tree size grouped by target positions (1, 2, 3), planning algorithm (TaskTree, ConfTree) and
local control redundancy resolution method (Joint limit avoidance, obstacle avoidance).

Table 6.1: Results for setup A for the 3D hand position task space.

Algorithm Redundancy Task Space Target Solved Time Tree Size

TaskTree Joint 3D 1 1.00 10.90 (20.19) 2496 (3787)
Limits 2 1.00 2.15 (1.56) 512 (395)

3 1.00 1.67 (1.66) 367 (386)

Obstacle 3D 1 1.00 10.58 (10.60) 1670 (1692)
Avoidance 2 1.00 3.73 (2.98) 564 (486)

3 1.00 1.71 (1.28) 236 (166)

ConfTree Joint 3D 1 0.53 183.57 (122.67) 15943 (7173)
Limits 2 1.00 18.64 (25.95) 4529 (3566)

3 1.00 0.53 (0.43) 287 (259)

Obstacle 3D 1 0.55 190.71 (114.44) 15746 (6217)
Avoidance 2 1.00 22.18 (35.26) 4087 (3726)

3 1.00 1.17 (1.10) 344 (368)

The second target positon, target 2, shows a clear advantage of TaskTree. The runtime is
lower if the joint limit avoidance control is used. For the last target position 1, findings are
similar. ConfTree takes more time and larger trees to find a solution and the greater part of
queries could not be solved at all. Comparing local obstacle avoidance control to joint limit
avoidance control, there is again an advantage of joint limit avoidance control visible, to a
greater extend regarding the runtime and less for the tree size, which is almost equal.

Figure 6.15 shows results from (Behnisch et al., 2010) concerning the spatial distribution
of the time needed to solve a planning query. The runtime is shown individually for every
query position on the table, refer to figure 6.8. For the configuration space with task space
bias planning it is visible that the runtime on the left side of the table is higher as with
task space planning. Comparing the obstacle avoidance with the joint limit avoidance
condition, two observations can be made. The runtime is larger for the 5D task and joint
limit avoidance case, which is also reflected by the low count of successful runs. For the 3D
joint limit avoidance case, less positions could be solved.

6.7 Discussion

In setup A, there are major differences among the three target positions, thus they are best
analyzed individually. Target 3 is easy to reach and planning queries are fast and reliable
solved. Depending on the task space, a solution typically takes 2 or 3 seconds and there are
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Figure 6.12: Two examples of planned trajectories for target 3 (top) and target 1 (bottom), using
the hybrid motion planning algorithm (TaskTree). Task space is the 3D position of the left hand.
Solutions are shown in green and the respective search trees are shown in red.

Figure 6.13: Two examples of planned trajectories for target 3 (top) and target 1 (bottom), using
the classical RRT based algorithm (ConfTree) with task space biasing in the 3D position space of the
left hand. All parts of the solution that are planned in the configuration space are drawn in orange
and task space goal biasing parts are drawn in green. In the search tree, configuration space parts
are blue and task space parts are red.
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Figure 6.14: Setup A with 5D hand position and orientation task space. Fraction of solved queries,
average runtime and tree size grouped by target positions (1, 2, 3), planning algorithm (TaskTree,
ConfTree) and local control redundancy resolution method (Joint limit avoidance, obstacle avoidance).

Table 6.2: Results for setup A for the 5D hand position and orientation task space.

Algorithm Redundancy Task Space Target Solved Time Tree Size

TaskTree Joint 5D 1 0.85 95.49 (105.30) 1452 (1279)
Limits 2 1.00 8.91 (8.58) 212 (198)

3 1.00 2.64 (1.91) 60 (46)

Obstacle 5D 1 0.61 178.00 (113.98) 1977 (1110)
Avoidance 2 1.00 18.92 (18.14) 283 (263)

3 1.00 3.42 (2.91) 47 (43)

ConfTree Joint 5D 1 0.16 264.58 (85.29) 2014 (475)
Limits 2 0.97 70.64 (78.64) 930 (602)

3 1.00 3.71 (4.80) 163 (159)

Obstacle 5D 1 0.13 274.73 (74.12) 1987 (393)
Avoidance 2 0.80 112.79 (112.55) 1082 (696)

3 1.00 6.51 (11.16) 157 (182)

Figure 6.15: Spatial distribution of solution times, setup B, from Behnisch et al. (2010). Time
is colorcoded from blue (0 sec.) to orange (100 sec.) and the size of the rectangles encodes the
fraction of successful planning runs, smaller means fewer runs are successful. From left to right:
Configuration space planning with task space bias, task space planning with obstacle avoidance and
task space planning with joint limit avoidance. Top row: 3D hand position task space. Bottom row:
5D hand position and orientation task space.
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no big differences between algorithms and control methods. Solutions for targets 1 and 2
take longer time and TaskTree is significantly faster, with bigger difference for the 3D task
and less for the 5D task.

The differences between the target positions imply a large variance in planning difficulty.
Target 1 is indeed only affected by minor obstacle constraints and the path is relatively short.
The solution paths of targets 2 and 3 are longer and also have to get closer to both obstacles
and to the robot body itself, only leaving narrow passages of valid motions. The increasing
difficulty results in gradually increasing runtime of the planning algorithms. While the
runtime of the TaskTree method only increases moderately, the time consumption of the
ConfTree shows a steeper increase, up to a frequent exhaustion of the time limit for target
1. If the 3D and the 5D task space are compared for the TaskTree algorithm, the latter
takes more effort, visible by greater increase in runtime but still remains below the high
time consumption of ConfTree.

Overall the task space search as done with TaskTree is able to find solutions faster,
although each tree extension is more costly. The ratio of speedup compared to configuration
space search is dependent on the dimensionality of the task space. The 3D task space has
the lowest dimensionality and the lowest search times, followed by th 5D task space. These
both task spaces result in a significant lowering of dimensionality for sampling, compared to
the 9D configuration space, which can be transformed into a planning speedup, as shown by
the results. A speedup is possible although each iteration of the search is more costly once
the local control framework is involved.

Setup B compares the algorithms on a spatial scale and shows that the differences in
runtime are differently distributed. On the left side of the table the advantage of task space
search becomes clearly visible, while on the right side differences are smaller. In analogy to
the results from setup A, one can see that the behavior of both algorithms varies with the
actual planning query. The additional effort for hybrid planning does not always pay off in
decreased runtime, but a somehow challenging setup is required. It is important to note
however, that even quite simple looking tasks can be challenging enough, for example all the
planning queries that involve passing obstacles and the robot itself. The only easy queries
in this sense happen if there is only one obstacle, a short distance and a large free space.

The choice of the local planning method has an ambivalent effect. Redundant space
obstacle avoidance has a positive effect for Target 1 with the 3D task, where it results in a
smaller search tree. Unfortunately, the smaller tree does not result in lower runtime, since
every tree extension step has a larger cost. When the 5D task space is used, a negative
effect of obstacle avoidance is evident for target 2 and especially target 1, where the search
trees a larger, resulting in a higher solution time. However, a clear advantage of redundant
obstacle avoidance is visible in setup B, where some positions are only reachable when
obstacle avoidance is used and the solutions involving obstacle avoidance tend to be faster
for some target positions.
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Chapter 7

Bi-Manual Hybrid Planning

How hybrid planning could be used for redundant robots was shown in the previous chapter.
The feasibility of the concept was proven with a simulated humanoid robot, but specific
capabilities of humanoids were not addressed, in particular, the possibility to utilize two
arms for bi-manual interactions. In this chapter, a motion planning experiment is described
that realizes a complex bi-manual task for a humanoid robot in a real world lab environment.

Section 7.1 introduces the setup and motivates the use of hybrid planning in comparison to
other bi-manual planning approaches, described in section 7.2. The actual task representation
and hybrid planning algorithm are explained in sections 7.3 and 7.4, respectively. Sections
7.5, 7.6 and 7.7 deal with the realization and evaluation of the experiment.

7.1 A Humanoid Motion Planning Experiment

Morphological similar to humans, humanoid robots are able to cope with a large class of
manipulation problems. Especially, the possibility to utilize two arms and two hands greatly
enlarges their handling skills, compared to single arm systems. In this chapter, a hybrid
planning solution for a bi-manual motion planning task for humanoid robots is developed
and evaluated in a lab setting.

Since planning is done in the physical world now, it is necessary to build a reasonably
accurate model of the robot and the environment to be able to test for collisions. While the
robot state is known with an adequate precision from joint motion encoders, the acquisition
of the world state is a difficult problem. An external solution is used here, where a motion
tracking systems computes the position of objects with the help of multiple cameras.

The experiment is designed in a way that introduces a lot of variance into the process.
Figure 7.1 shows the experimental setup in the lab. The humanoid is holding a basket in
its left hand and the task is to put the flower held with the right hand inside the basket.
Locations of the objects are not given beforehand but are instead allowed to vary. The
basket can be grasped at any position at the handlebar and the same is true for the flower,
there is a large number of possible grasping positions. Also, the target position of the flower
inside the basket is not fixed. Before each planning run, a human demonstrator shows where
the flower should be placed. Due to these three sources of variance, each planning run has
to be solved under different conditions. The ability to handle these changing conditions is a
crucial requirement for motion planning methods operating in real world environments.

7.2 Bi-Manual Motion Planning

In the motion planning literature, works about bi-manual manipulation planning often
tackle the particular problem of robot arms that form a closed kinematic chain, connected
by a jointly grasped object. This problem instance is especially hard to solve, because the
chain-closure constraint restricts the set of valid postures to a manifold in configuration
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Figure 7.1: Objective of the bi-manual plan-
ning task is to place the flower, held with the
right hand, into a basket, held with the left hand.
The desired goal position of the flower inside the
basket is not fixed, but determined by a human
demonstrator. Also the grasp positions of the
flower and the basket can vary. Once the left
hand holds the basket, the left arm and the han-
dle bar constraint the possibilities for collision
free paths of the flower into the basket to three
homotopy classes of paths. Depending on the
goal position, the right homotopy class has to be
picked, thus global search is really necessary for
this setup.

A

B

Figure 7.2: Task model: Control the position
and orientation (5D) of a reference point fixed
to the right hand (A) relative to a point (B)
fixed to the coordinate frame of the left hand
until the two points coincide. While the right
hand can move freely, the left hand movement is
constrained. Translations can only be done in a
horizontal plane of constant height. Rotations are
allowed around the normal axis of this horizontal
movement plane and around the grasp axis of the
hand, i.e. around the handle bar of the basket.
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space. In a classic sampling approach over the whole space, the probability of hitting these
valid configurations is zero. In (LaValle, 2006, chapter 7), some specialized approaches for
planning with closed loops are summarized.

The problem of bi-manual planning where both arms are not connected is not often
explicitly addressed. In this case, there are no chain-closure constraints and planning could
in principle be done with a standard configuration space sampling approach. However,
since the space contains both arms now, the configuration space often becomes very high-
dimensional and directly sampling the full space quickly becomes very expensive. To tackle
this difficulty, it is beneficial to have a closer look at the particular problem instance.

Due to the tree-like kinematic structure of multi-arm robots, it is possible to decompose
the robot into several independently moving sub-robots. Planning is then equivalent to multi-
robot motion planning, a problem often solved with decoupled approaches, (LaValle, 2006,
chapter 7). For each sub-robot, an independent partial plan is produced in its individual
configuration sub-space, which is typically less complex. Building on the partial component
solutions, an overall solution can be orchestrated by considering the interactions between
the partial plans.

A planning algorithm for multi-arm systems, operating with this decomposition technique,
is presented in (Gharbi et al., 2009). In a first stage, a probabilistic roadmap is build for
each robot arm in a preprocessing phase. To solve a specific planning query, the individual
arm solutions are coordinated by composing the super-graph over all arm roadmaps in the
second stage of the algorithm. It is shown that it is possible to achieve a performance gain
with this two-stage approach. The work in (Vahrenkamp et al., 2010) implements bi-manual
trajectory planning with a focus on grasping, using an approximate Jacobian transpose
task space control method to bias the search. Their method also decouples the problem
by planning each arm independently, but no further effort is taken to synchronize both
partial solutions, planning is just repeated until two collision free trajectories are found.
The approximate task control operates on each arm separately as well.

Although the decoupling approach would be able to solve the bi-manual planning problem
of the described experiment, one can assume that the second coordination step can become
difficult. The workspaces of both arms are heavily overlapping and the chance of collisions
between the arms is high.

To cast the bi-manual planning problem in terms of our hybrid planning approach, a
suitable task space representation has to be defined first. An intuitive way to describe the
task is to provide a desired position of the flower relative to the basket. Since both objects
are rigidly1 connected to the hands, this can be transformed into the position of one hand
relative to the other. Global planning can then be done on the relative hand position task
space, leaving the simultaneous arm movement and coordination to be solved on the local
planning layer. Thus, the high dimensional planning problem can be effectively reduced to
a low dimensional search of the task space. The remaining freedom in the redundant space
can be utilized to overcome the severe obstacle constraints in this setup by employing local
obstacle avoidance motion optimization. Another advantage of local obstacle avoidance is
the ability to counteract possible disturbances by imprecise object localizations.

7.3 Task Representation

In order to employ the hybrid motion planning method for the given setup, a suitable task
space has to be defined. Given a control target in this task space, the Whole Body Motion

1A perfectly rigid connection can not be guaranteed in practice, but this can be counteracted by tracking
the object movement relatively to the hand movement.
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Control framework (chapter 2.5) is used to translate the control inputs to full configuration
space motions of the upper body.

The setup is shown in figure 7.1. The goal for planning is the placement of the flower
inside the basket, what can be described in terms of the position of the flower relative to
the basket, equivalent to the position of the right hand relative to the left hand. Figure 7.2
schematically illustrates the spatial relationship. The position and orientation of a reference
point described in the coordinate system of the right hand (A) is controlled with respect to
a fixed point in the coordinate system of the left hand (B). This relative position defines
the task space control input, consisting of the 3D spatial position and the 2D grasp-axis
orientation representation, summing up to a 5D task space similar to the space in 6.5.1.

Beside these task constraints, the movement of the right hand is not further restricted.
The movement of the left hand however is limited by some constraints. The first constraint
fixes the vertical position of the hand, i.e. the hand has to stay in a predetermined horizontal
plane. This is illustrated with the two black arrows in figure 7.2, spanning the plane of
allowed motion. The second constraint fixes the orientation of the left hand, as denoted by
the two dotted axes. Rotations are only allowed around the normal axis of the horizontal
movement plane and around the grasp axis of the hand, collinear to the handlebar of the
basket.

Due to the relative definition, the task acts on both hands. Imagine that the task involves
to move both hands closer together. The controller has three possibilities to achieve this,
either to move only the left or the right hand or alternatively to move both hands at the
same time. The task itself does not constrain this, the definition leaves some redundancy
that can be exploited by the controller. In terms of the concrete setup this means that it
does not matter where exactly the task is done, the robot can hold the basket close to the
body or further away, more to the left or more to the right, as long as the goal position of
the flower relative to the basket is achieved. More freedom in task execution is gained which
can be usefully exploited by the control framework by defining secondary motion objectives.

7.4 Planning

Planning is done with the hybrid planning algorithm from chapter 6. The same algorithm
can be used because the change of task representation does not change the procedure. It
affects the sampling of task positions, task space distances and the local planner, these parts
have to be adapted to the task at hand. For the bi-manual task, changes involve mainly
the local planner. Sampling and distance metrics can be reused from the 5D position and
orientation task from section 6.5.1, the only difference is the coordinate frame of reference.

The difference between the current planning setup and the setup in chapter 6 is the
involvement of both arms of the robot. This is reflected in the new task space definition
and also by a different configuration space. Adding the right arm, the dimensionality of the
space increases from 9 to 14 dimensions. Since the task space is of the same dimensionality,
3 position dimensions and 2 orientation dimensions, the redundant space for the bi-manual
task is larger.

Local planning again utilizes the whole body motion control framework of section 2.5,
adapted to the new task representation. Redundancy resolution employs the joint-limit
avoidance and obstacle avoidance cost functions. The effect of the redundant space obstacle
avoidance for the presented task are illustrated in figure 7.3. If the basket gets too close to the
robots body or the obstacle, avoidance motions are done as indicated. The high-dimensional
configuration space is effectively re-arranged into a low-dimensional relative positioning task
space and a large redundant space, leaving room for local obstacle avoidance.
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Figure 7.3: Illustration of redundant space obstacle avoidance. Minimizing the obstacle avoidance
costs results in a movement away from obstacles. Since the movement is limited to the redundant
space, task execution is not affected.

Figure 7.4: Setup of the experiment. The robot
is surrounded by 8 Vicon cameras. Two HD
cameras are used for recording.

Figure 7.5: The flower and basket used in the
experiment, with the infrared reflective Vicon
motion tracking markers attached.

7.5 Setup

Figure 7.4 shows the setup in the lab during the experiment. The humanoid robot is holding
the two objects, flower and basket, which are tracked with a Vicon motion capturing system2.
Motion capturing operates based on infrared reflective markers, whose spatial location can
be estimated by triangulation from multiple different views. The scene is observed by 8
infrared cameras and once a marker is visible in at least 3 views, its location can be robustly
tracked. A closer view of the objects in the setup is given in figure 7.5, where the tracking
markers a clearly visible.

The object tracking system can be used in two stages. At first, it is needed for determining
the positions of the robot and the objects relative to the robot in a a-priori model building
stage. Planning operates on this environmental model. The second stage can be activated
during plan execution in order to update object positions and to recognize plan discrepancies,

2http://www.vicon.com
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for example if objects are slipping in the hand. The updated positions can than be
incorporated in the plan execution. To include object tracking into the hybrid planning
simulation framework, the “World Model Interface” is enhanced to allow to directly set
the transformations of certain objects from outside, here from the Vicon motion capturing
system.

The course of the experiment can be divided into five phases, with the first four phases
depicted in figures 7.6 to 7.9. Starting in its rest position, the robot grasps the basket in
the initial phase, as shown in figure 7.6. The position of the basket is tracked because
the handle-bar can be grasped in different ways and thus the position of the basket can
substantially vary. Next step is the demonstration where exactly the flower should be placed
inside the basket, carried out by a human instructor, figure 7.7. The flower is tracked and its
position relative to the left hand and the basket is stored as the current planning goal. Once
the target position is determined, the robot grasps the flower with the right hand, while a
human operator is handing over the flower, as shown in figure 7.8. Again the flower position
is tracked because the location where the flower is grasped is not pre-determined. In this
picture, a view of the simulation visualization can be seen on the display in the background,
used to monitor the object tracking. The current state of the simulation is then used in
the next phase to plan the motion, employing the hybrid motion planning framework as
described. Starting point for planning is always a posture similar to the one in figure 7.9.
During planning, the object tracking is paused in order to avoid interference. If the plan is
executed in the fifth and final phase, the second object tracking stage is activated, updating
the positions in an online fashion. Displacements of the flower and basket can be detected
and compensated during execution.

7.6 Results

Two examples of the execution of a solution trajectory, the last phase during each run of
the experiment, is shown in figure 7.10. The whole process was repeated a couple of times
and all solution trajectories were successfully executed. However, due to the large variety
in object and target positions in the course of the experiment, there are no meaningful
statistics available for the lab experiment. In order to gain insight into the capabilities of
hybrid planning for this setup, a small study was conducted in simulation only.

Figure 7.11 show three flower target positions, two on the right hand side of the handle-bar
and one on the left hand side. The initial position prior to planning is the same as in the real
world experiment. For each of the target positions the hybrid motion planning algorithm is
run with two different local planning conditions, once with redundant obstacle avoidance
and once without. Also, two different setups of the environment are used, the plain setup
as shown in figure 7.11 and a setup with an additional obstacle, placed as in figure 7.3.
Example trajectories for target positions 2 and 3 can be found in figures 7.12 and 7.13.

Statistics gathered during 100 runs for each position are summarized in table 7.1. These
are the fraction of solved queries, i.e. runs with a runtime lower than the limit time of 200
sec., the average runtime and the average tree size. The averaged values also contain the
trials which were not successfully solved in the available time.

The average runtime varies substantially between the three targets. Without the additional
obstacle, target 1 is always solved with a relative low average solution time of around 5
sec. Target 2 needs more time to be solved and comparing the two local control approaches,
the runtime is lower if no obstacle avoidance is used. The same can be seen for target 3.
The runtime is much higher as for the other two targets and local control without obstacle
avoidance performs better. Looking at the second setup with an additional obstacle, only
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Figure 7.6: Initial phase: The robot holds the
basket in its left hand. The position of the basket
is tracked.

Figure 7.7: Demonstration phase: A human
demonstrator shows where the flower should be
moved to. The end position of the tracked flower
movement is stored as the goal position.

Figure 7.8: The robot grasps the flower, with
the human demonstrator holding the flower into
the right hand. Again the precise position of the
flower is tracked. In order to monitor the tracking,
the screen in the background shows the current
state of the simulation with realtime position
update of all tracked objects.

Figure 7.9: Planning phase: Holding the flower
and the basket is the start configuration for plan-
ning. The simulation, containing the robot and
all tracked objects, is used for planning as well.
Object tracking is paused during planning but
activated again during execution of the planned
movement. This way, displacements of the flower
and basket relative to the robots hands can be
compensated with reactive obstacle avoidance.
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Figure 7.10: The humanoid during execution of two solution trajectories for two distinct flower
target positions.

Figure 7.11: Simulated motion planning for three distinct flower target positions. From left to
right target positions 1, 2 and 3.
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7.7 Discussion

Plain Setup

Redundant Space Obstacle Avoidance No Obstacle Avoidance

Target Solved Time (σ) Tree Size (σ) Solved Time (σ) Tree Size (σ)

1 1.00 5.19 (4.82) 1107 (1000) 1.00 5.47 (4.92) 1266 (1119)
2 1.00 14.73 (17.01) 2963 (2880) 1.00 7.09 (5.86) 1620 (1288)
3 0.91 59.17 (59.63) 8819 (6887) 0.97 48.85 (50.18) 8015 (6406)

Setup with Additional Obstacle

Redundant Space Obstacle Avoidance No Obstacle Avoidance

1 0.95 43.92 (51.64) 6099 (5752) – – –
2 1.00 11.44 (9.31) 2036 (1569) 1.00 7.90 (8.97) 1568 (1652)
3 – – – – – –

Table 7.1: Simulation results for three fixed target positions, showing: Fraction of solved queries,
average runtime (in sec.) and average tree size.

target 2 could be reliably solved using both local planning methods. Target 1 is only solved
if obstacle avoidance control is used. Target 3, in contrast, was not solved at all.

7.7 Discussion

The lab experiment was successfully done as devised. Hybrid planning was able to find
solution for most of the desired target positions using the task representation especially
defined for the setup. Once a solution was found, it was executed without problems. The
large amount of variability in the setup, in consequence of the flexibility of grasp and target
positions, was successfully handled.

The results of the simulation study show a large variability, depending on the target
position. While some targets are solved with constantly low runtimes, others need con-
siderable more time. Comparing the two local planning methods, the results are again
ambivalent, supporting the findings in chapter 6. The use of obstacle avoidance control
does not necessarily reduce solution times, in fact it leads to higher times for 2 of the 3
targets. This is reflected in the tree sizes as well, which tend to be larger for obstacle
avoidance control. The enhanced local planning abilities increase the probability of successful
explorations in the neighborhood of obstacles. Some of these explorations contribute to the
solution, but others do not, exploring portions of the space that are not accessible without
obstacle avoidance. As a consequence, the overall number of tree nodes gets larger.

Looking at the setup with the additional obstacle however, an advantage of using obstacle
avoidance can be seen. While target 2 is again not impacted in a positive way, target 1 can
only be solved with obstacle avoidance. Figure 7.14 explains why this is the case. If the
redundant space motion is based on joint-limit avoidance only, the optimal posture results
in a collision of the basket with the obstacle. When obstacle avoidance is added, a different
collision free posture can be found that minimizes the obstacle costs as well.
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Figure 7.12: Example of a solution path to target position 2. The flower trajectory is shown in
green and the search tree in red.

Figure 7.13: Example of a solution path to target position 3. The flower trajectory is shown in
green and the search tree in red.

Figure 7.14: Local planning without obstacle avoidance does not succeed in finding a valid solution
(left). Joint-limit avoidance as the only secondary motion criteria drives the trajectory into the
obstacle. With obstacle avoidance, the trajectory is modified to stay away from the obstacle (right).
The task trajectory is identical for both cases, only the redundant part of the motion is changed.
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Chapter 8

Relaxed Control Hybrid Planning

In the previous chapters, the applicability of hybrid planning for redundant robots was
demonstrated. Local planning utilized the redundant space to avoid joint-limits and obstacles,
but task space trajectories were always performing straight target directed movements. For
motion planning, task constraints often do not need to be as strict and weakening them
can be useful. This is for example the case if a point-to-point movement has to be planned,
where the shape of the resulting trajectory is not crucial. In this chapter, the relaxed motion
control from chapter 3 is integrated into the hybrid planning framework. This enables the
task space local planning process to stronger contribute to overall planning by adapting task
trajectories according to additional objectives, like the avoidance of obstacles.

After an introduction in sections 8.1 and 8.2, section 8.3 describes the integration of relaxed
control in the previously developed planning framework. Further, specialized sampling
and node weighting strategies are developed that aim to utilize specific properties of the
new local planning approach. All together, relaxed control hybrid planning is evaluated in
sections 8.4, 8.5 and 8.6, in a simulation study for a simple planar manipulator. Section 8.7
discusses possible enhancements to find optimal solutions.

8.1 Task Space Local Planning

The hybrid planning methodology developed in the previous chapters benefits from two
key features, global sampling of a condensed task representation and utilization of local
optimization capabilities. The impact of choosing different task spaces was shown and local
planning successfully exploited the redundant space for the fulfillment of additional motion
criteria. Motion generation in the task space was based on a dynamical system approach,
producing a strictly goal directed trajectory with the single objective of reaching the target
on the shortest path. Other objectives were not included into the task space planning
process. The relaxed control method of chapter 3 however illustrated that the task space
can also be used for local planning. More specifically, by weakening strict task constraints
and allowing deviations from greedy task achievement, for example to avoid obstacles, local
planning gains freedom for more powerful motion optimization.

In this chapter, the proposed relaxed control method is integrated into the hybrid planning
framework. In contrast to the hybrid planning applications in chapters 6 and 7, local planning
modifies both the task space and the configuration space trajectory. The idea is illustrated
in figure 8.1. As before, global planning searches the task space and the configuration space
motion is generated by employing a local control method, choosing a trajectory according
to secondary motion objectives like obstacle avoidance. If relaxed motion control is used
as the local planner, not only the configuration space trajectory is optimized but the task
space trajectory as well. By regarding the same criteria in both spaces, task space and
configuration space local planning can work hand in hand for a greater optimization success.
For example, if obstacle avoidance is a secondary motion objective, the task space trajectory
is actively adapted to move away from obstacles.
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Figure 8.1: Hybrid planning with local trajec-
tory optimization. If the local optimization during
configuration space trajectory generation (1) is al-
lowed to go beyond the redundant space, the task
space trajectory (2) is also affected. For example
if an obstacle distance potential is used, push-
ing the configuration space trajectory away from
obstacles, the task space trajectory is deviated
away from obstacles as well. Not restricted to the
redundant space, local optimization can have a
larger impact, but also can result in a substantial
deviation of the task trajectory away from the
target.

Task Space

Configuration Space

(1)

(2)

x

Using such an enhanced local planning method can reduce the amount of global sampling
needed, in particular in setups containing some distinct local structures. Such structures
could be narrow corridors for instance, which are difficult to solve with general sampling
approaches, as discussed in section 4.5. A local planner with task space obstacle avoidance
however is able to locally guide the trajectory through the corridor, while a straight line
local planner needs to sample its way through. This can become quite difficult, because
depending on the narrowness of the corridor, the probability to place a sample inside the
corridor decreases.

Relaxed control can be forced to always converge to the desired target position, if not
prevented by constraints, even if costs are increasing. This property is useful in the context
of motion planning, because it allows local planning to disrespect cost structures and to
plan trajectories that enter higher cost regions. Without this property, regions with higher
costs than the starting region would never be explored and it would be impossible to reach
a uniform coverage of the space. Consequently, the optimization of secondary movement
costs is thus not always converging to lower costs, but dependent on the placement of target
points.

The changed task space local planning behavior has an effect on the operation of the
global planning component. Although it is possible to include the new control method
into the sampling-based hybrid planning algorithm without further changes, an explicit
treatment of the specific behavior offers new possibilities. The success rate of the local
planner is higher in regions where the local structure can be utilized, for example in the
mentioned narrow corridor situations, since the trajectory generation is guided to prevent
constraint violations. These regions can then be explored with fewer samples than regions
where such a local planning speedup is not possible. This implies that the global sampling
process can be improved to focus sampling in regions where it is needed and to prevent an
over-sampling of regions where local planning successfully guides the exploration. Another
local planning property that can be utilized during global planning is the cost optimization
capability. If the search is focused on trajectories with lower costs, the overall solution costs
are lower too.

Since the sampling-based framework builds on EST, which is a very flexible tree search
algorithm allowing to exchange individual components and to use arbitrary node weighting
schemes, it is simple to incorporate different search and sampling behaviors that account for
this new possibilities. The search should try to make good use of local planning to speedup
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search progress. As described in the next section, the term exploitation is often used in the
literature to depict the ability to utilize as much local information as possible. Exploration,
on the other hand, describes the ability to discover the global connectivity of the space,
aiming to eventually cover the whole space. Of course exploitation alone does not suffice in
cases where a global scope is needed and the challenge is to carefully balance between local
exploitation and global exploration.

8.2 Exploration and Exploitation

Three different classes of approaches for motion planning can be distinguished that, either
explicitly or implicitly, utilize local exploitation and differentiate global exploration.

The first class of methods are sampling-based roadmap planners, aiming to capture the
global connectivity of the free space with a minimum number of graph edges. The resulting
roadmaps form a minimum representation of the exploration necessary to cover the space,
where all edges not contributing to the global exploration are pruned. These redundant
edges only exploit local structure and can be omitted during preprocessing, since it can be
assumed that they can be trivially reproduced again in the query phase. The Medial Axis
Roadmap (Wilmarth et al., 1999) for example retracts edges to lie on the medial axis in the
free space between obstacles, forming a minimal skeleton representation using the geometric
property of obstacle distance. During planning, a query node can be easily connected by
exploiting the free space while all global exploration is already captured. This relatively
simple geometric argument is taken further in (Jaillet and Simeon, 2008) by defining smooth
higher order deformations between edges as local exploitation. By filtering a roadmap to only
contain edges not deformable up to a certain order, a minimal exploration representation
can be obtained.

While these roadmap approaches filter local exploitation to reduce the number of edges
to a minimum necessary to capture the space, another family of methods operates by
suppressing an excess exploitation during the growth of a single-query sampling tree. Some
algorithms that prevent an over-proportional sampling of individual nodes (Cheng and
LaValle, 2001; Yershova et al., 2005) or regions (Ladd and Kavraki, 2005; Sucan and Kavraki,
2009a) were presented in section 4.5. By maintaining different measures of localized state
space coverage, these methods actively guide exploration towards less covered regions.

In contrast to the former two classes that focus on state space exploration, a third class
of methods follows the reverse approach of focusing on exploitation and only performing
exploration when necessary. The decomposition approach of Rickert et al. (2008) (refer to
section 6.1) exploits local workspace properties by following a potential function defined in
a free space tunnel towards the goal. If this exploitation fails, the search is gradually shifted
to exploration by sampling inside the tunnel. If exploration is successful, the search mode is
shifted back to exploitation again. The Transition RRT (Jaillet et al., 2010) treats planning
as the optimization problem of finding a low cost path on a globally defined cost function.
It uses a temperature parameter commonly found in stochastic optimization to control the
acceptance or rejection of states based on a Boltzmann distribution. It is desired to keep the
path in low costs regions with a low temperature and only if that fails the temperature is
raised and higher costs states are accepted too. The temperature is automatically balanced
as a function of state rejections, with the two objectives of maintaining low costs and of
preventing an excessive refinement of regions not at the frontier of the tree. Berenson et al.
(2011) observes that the approach of cost minimization by sampling has difficulties finding
narrow low-cost chasms, because sampling those passages directly is relatively unlikely. They
propose to combine the Transition RRT with local gradient descent steps, exploiting the cost
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Algorithm 8.1 Hybrid Task Space Tree Growing with Greedy Goal Bias (TaskTree)

tree with nodes pi = (xi, qi, ui, ti, wi) ∈ T = (X , C,X ,R,Rd)
metric ρ(x, y), x, y ∈ X
while not goal reached and not time over do

if goal bias then
ps = nearest tree neighbor to goal with minx∈T ρ(xgoal, x) not yet goal biased
utgt = xgoal

else
ps = select tree node based on weights wi ∈ T
utgt = sample in neighborhood of ps

end if
(xtgt, qtgt, ttgt) = local planner from (xs, qs) towards utgt with max. duration tmax

if tmin ≤ ttgt ≤ tmax then
add new tree node (xtgt, qtgt, utgt, t, wnew) to T , branching from ps
update tree weights wi ∈ T

end if
end while

function by pulling the tree extension towards a low-cost area if the extension fails because
of too high costs. This way the tree growth is more greedily focusing on exploitation. If the
solution needs to traverse large high cost areas however, exploration can be substantially
slowed down.

The next section presents a modified version of the sampling-based random-tree planning
approach developed in chapter 6, incorporating relaxed control local planning. Unlike
the previous exploitation-heavy methods, the focus of the global task space search lies on
exploration, the rapid and coarse scale discovery of global connectivity. This is achieved
by a suppression of over-refinement, similar to the described techniques of guiding the
search towards an uniform coverage, by including a new node weighting and target sampling
scheme, biasing exploration towards less covered regions.

Although focused on exploration, local planning also performs exploitation by modifying
trajectories according to the local costs, as long as not conflicting with the goal of reaching
the target. By distinguishing trajectories that are better in line with the local costs, it is
possible to bias the search towards low cost regions. An approach to measure and incorporate
local costs into node weighting is developed.

8.3 Hybrid Planning with Relaxed Motion Control

In chapter 6.2, a sampling-based algorithm implementing the hybrid planning framework
was developed (TaskTree). The relaxed motion control approach of chapter 3 can be
immediately included by replacing the control method used in the local planning component.
Algorithm 8.1 again shows the sampling-based hybrid planning algorithm. In order to
incorporate relaxed motion control, the local planner is adapted, algorithm 8.2. Note that
the inputs remain the same: The current state given by task and configuration positions
(xs, qs), the task target utgt and the maximum control iteration time tmax. The outputs
are the reached state (xtgt, qtgt) with control time ttgt and in addition the cost reduction
δc, indicating the amount of cost reduction done during local planning. As described in
chapter 3, task velocities are mixed according to the weighting coefficients α and β, equation
3.1, with β being automatically adapted to ensure target convergence, equation 3.4. The
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Algorithm 8.2 Relaxed Motion Control Local Planner

local planner from (x, q) ∈ (X , C) towards u ∈ X with max. control duration time tmax

while not max. duration time tmax exceeded and not constraints violated do
compute cost-function H(q) and gradient ∇H(q)
get target velocity ẋtg and cost minimization velocity ẋcf
mixing of task velocities according to α and β respectively β′

compute joint velocities q̇ given configuration q and mixed task velocities ẋ
update current task position x and joint position q
check constraint violation of updated q

end while
estimate trajectory cost reduction δc

Algorithm 8.3 Dispersion Reduction Target Sampling

sample in neighborhood of ps :
for k = 1...K do

xk = sample from X in neighborhood of node ps
dk = nearest node from neighbors n of node ps with distance dk = minn ρ(xk, n)
LS = insert pair (xk, dk) into candidate samples list LS

end for
SLS = sort list LS by decreasing distances dk
utgt = first target sample from sorted list SLS

baseline proportion between the task velocities is fixed here with constant coefficients.

The other components, namely goal biasing, tree node selection, target sampling and
node weighting do not necessarily need to be changed for relaxed motion control. However
as already mentioned, relaxed motion control offers new possibilities needing different search
and sampling strategies in order to utilize them. The following sections introduce novel
heuristics replacing the node selection, target sampling and node weighing components.

8.3.1 Exploration Heuristic

With the sampling-based incremental tree growing approach of algorithm 8.1, nodes can be
weighted according to different heuristics. One commonly used heuristic in sampling-based
planning is a bias towards less explored regions of the space. The EST (Hsu et al., 2002)
for example estimates how well the space is covered around a node, with the intention of
biasing growth towards nodes in less covered regions. This heuristic is also used in the
implementation of OOPSMP, see chapter 6, where the weight of a node is set inversely
proportional to the number of outgoing edges of the node. If the spatial distribution and
length of edges can be assumed to be uniform on average, the number of outgoing edges is a
reasonable local coverage estimate. Although this assumption does only hold to a certain
extend in actual motion planning, where some edges are blocked or shortened by constraints,
some global exploration is always maintained.

Once this edge uniformity degrades to a larger heterogeneity in spatial edge distribution
and edge length, the coverage estimate and the bias towards less explored regions degrades
as well. With the increased local motion optimization ability of relaxed control, especially
for better obstacle avoidance, such a larger heterogeneity becomes more likely. The local
planner is more successful in creating motions because trajectories are forced away from
obstacles, resulting in edges with a longer duration, covering larger distances. In other
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situations local planning fails, either due to limitations of local optimization or due to
constraints. The overall distribution of edge lengths can thus have a larger variance. In
combination with the outgoing edge heuristic, exploration would be biased towards regions
with short edges and dense node distributions, which are the regions where local planning
did more frequent fail. Regions with successful local planning and longer edges, where nodes
are less dense, would receive less attention on the contrary.

To counteract the over-proportional exploration in regions with a already dense node
distribution, a different coverage estimation method is developed, useful for both node
selection and target sampling. It is based on the idea of dispersion, as described in section
5.3. Dispersion measures the sampling density of a set of points, intuitively given by the
radius of the largest possible ball that can be fitted into the free space between points. If
the dispersion of a motion planning tree with respect to the state space is computed, one
can identify the region of the space which is least covered by the tree. In section 5.3, this
was used for ensuring rapid space exploration by greedily focusing the tree to achieve the
largest possible dispersion reducing effect in every iteration. The Simultaneous Task and
Configuration Space Dispersion Reducing Tree (algorithm 5.2) computes the dispersion in
both the task and the configuration space and uses this information to identify the tree
node with the largest configuration space dispersion and grows it towards the task target
with the largest task space dispersion reducing effect.

This task space dispersion reduction method is now transfered into the sampling-based
algorithm used here by replacing the target sampling component with a dispersion reduction
target sampling, algorithm 8.3. Instead of just sampling one random target point in the
neighborhood of the selected node, K points xk are sampled and for each xk, the nearest
tree neighbor node with distance dk is determined. This nearest neighbor search is limited to
the local region of the node, including only the node itself and all directly connected nodes.
The sample with the largest distance represents the approximated local dispersion around
the node and growing the tree towards this sample has the largest dispersion reduction
impact. Figure 8.2 illustrates this process.

With the new target sampling, local exploration now takes edge length and distribution
into account and tries to reach an uniform local coverage. In order to equalize the global
coverage as well, the node weighting scheme is adapted to incorporate the dispersion estimate
captured during target sampling. Nodes with a lower remaining dispersion are assumed to
lie in better covered regions than nodes with higher remaining dispersion and putting a bias
towards this high dispersion nodes steers the exploration towards uncovered regions. Figure
8.3 shows how the weights are computed. The initial weight of a newly created node x′i
is set in relation to its distance d′1. This does not reflect the new nodes local dispersion,
but could be interpreted as the contribution in dispersion reduction of the new node. The
weight of the extended node is set to the second largest distance d2, corresponding to an
estimate of the remaining local dispersion after the new node is added to the tree. Thus a
new node gets a larger weight if the local planner explored further and the weight of an
old node gets lowered, if the density of nodes in the neighborhood increases. The list of
distance sorted samples SLS is kept in algorithm 8.3 for being able to access the second
largest distance d2 later during node update.

The Simultaneous Task and Configuration Space Dispersion Reducing Tree estimates the
configuration space dispersion as well to identify less covered configuration space regions.
Although it is possible to incorporate this additional information into the node weighting
scheme, the expected impact is negligible here. With a greater local planning autonomy,
the main focus lies on most profitable task space sampling and exploitation.
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Figure 8.2: Local dispersion estimation in the
neighborhood of node pj as the largest nearest
neighbor distance d1 = maxxk

minpn ρ(xk, pn) of
samples xk towards direct neighbor nodes pn of
node pj .
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Figure 8.3: After local planning, a resulting
node at x′i receives an exploration weight wi equal
to the distance d′1. The exploration weight wj of
the extended node pj is set to the second largest
dispersion estimate d2.

8.3.2 Exploitation Heuristic

The exploration heuristic from the previous section is targeting a rapid and uniform coverage
of the task space. In this section, another heuristic is developed, aiming to achieve a better
minimization of local costs. Local planning with the control methods of chapters 2 and 3
includes optimization of additional cost functions, encoding secondary motion objectives.
These objectives are minor objectives, subordinate to the objective of reaching the target
position. The amount of optimization possible is dependent on the actual sampled target
position. Some targets can be reached on trajectories with decreasing costs, while others can
not. Figure 8.4 shows some example trajectories and the evolution of the obstacle avoidance
costs. It can be seen that depending on the target position, the cost difference between the
start and end positions varies. While the costs are steadily decreasing for trajectory A, costs
are increasing towards the end for trajectory B. Looking at the absolute difference, costs
are only slightly less for trajectory B at the end, while the cost decrease is more prominent
for trajectory A. It is even possible that costs are increasing beyond the initial value.

Since the amount of optimization possible depends on the ability of the local planner to
utilize the local cost structure, the term exploitation is used here. Good exploitation refers
to a trajectory with successful cost minimization. Bad exploitation depicts a trajectory
forced to move towards increasing costs and thus ignoring local structure. By focussing the
global search towards trajectories with better success in cost minimization, a bias towards
regions with good exploitation abilities is introduced. This has two benefits. First, focusing
the search in regions with larger exploitation means focusing on regions where local planning
was successful and is also more likely to continue to be successful, if some local uniformity
of the cost structure is assumed. Global sampling can be potentially faster, if there are
solutions possible that stay in low cost regions. Secondly, the overall costs of a solution
trajectory are more likely to stay low, since the growth is biased to favor low cost nodes.

There are several possibilities to estimate cost decrease and thus exploitation. The one
adapted here in the local planner component (algorithm 8.2) is very simple. It is computed
by just taking the difference between the first and the last cost measure, ignoring the
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Figure 8.4: A simple three joint manipulator performing movements in the plane (top left). Starting
at the central position, five targets marked by the crosses are approached with relaxed motion control,
optimizing obstacle avoidance. The exploration weight of the resulting tree nodes is shown (bottom
left). To estimate the success of exploitation, the absolute cost function decrease (top right) is used
to set corresponding exploitation weights (bottom right). Since the cost decreases more towards
node A, its exploitation weight is larger than the exploitation weight of node B.

behavior between these points. It can be computed very fast but is of course only a very
rough estimate. A way to include the whole behavior for example would be to sum up all
portions with monotonically increasing costs to get a notion of work necessary to follow
the path (Jaillet et al., 2010). How this exploitation estimation is included into the node
weighting scheme is subject of the next section.

8.3.3 Node Weighting

The exploration and exploitation heuristics are both included into the node selection of
the hybrid sampling-based planning algorithm. The probability of a node to be selected is
proportional to its overall weight and by construction of a suitable weighting function, both
heuristics can be considered.

In principle, the desired node weighting scheme could be outlined as follows. If a new
tree branch covers a longer distance, it was able to explore the space to a greater extend
and should receive a high exploration weight. Conversely, shorter distances receive a lower
exploration weight. Also, if a node is selected more than once, its exploration weight should
lower proportionally to the level of further exploration in its neighborhood. This is captured
by setting the weight according to the local dispersion estimate after a node was extended.
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Algorithm 8.4 Weight Initialization

initial node weight, parent node s and local planning cost estimate c :
exploration weight of new node wex,new = ρ(xtgt, xs)
exploitation weight wpl,new = 1/(1 + exp(−b δc))

Algorithm 8.5 Weight Update

update tree weight of selected node ps :
exploration weight of selected node wex,s = second largest distance d2 from SLS

To achieve this behavior, the exploration weight is set to the covered distance for new nodes
and to the local dispersion estimate else in a linear fashion, as shown in algorithm 8.4 and
8.5.

The exploitation weight is set relative to the cost decrease estimate. It is desired to
have a high weight if the cost is decreasing and a low weight if the cost is increasing. In
order to emphasize the difference between decreasing and increasing costs even stronger,
a non-linear relationship is used to compute exploitation weights, as shown in figure 8.5.
Slight cost changes around zero receive proportionally more attention than cost variations on
either high or low level. Once computed for every new node, exploitation weights are fixed.
Algorithm 8.4 shows the equation, with b being proportional to the slope of the function at
zero cost change.

Finally, exploration and exploitation weight are multiplied to form the overall node
weight, algorithm 8.6. Figure 8.6 shows the combined weight in relation to exploration
and exploitation. Node weight is linearly increasing with larger exploration distance, but
the slope is dependent on the amount of exploitation cost decrease. With a positive cost
decrease, the weight is raising faster for better exploration and slower for less exploration.
Overall, this weighting function discriminates between exploration with high exploitation
and with low exploitation and puts a bias on the former.

8.4 Evaluation

To test the impact of relaxed motion control and the proposed exploration and exploitation
heuristics, the performance in a simulated motion planning task is evaluated. Three variants
of the global planning scheme are compared. The approach from chapter 6 using the EST
edge count coverage estimate, the exploration heuristic explained in section 8.3.1 and the
combined exploration and exploitation heuristic as described in section 8.3.3. In addition,
local planning with the new relaxed local planner and with the previously used local planner
with redundant space optimization is compared.

Algorithm 8.6 Node Selection

select tree node from pi ∈ T :
ps = choose randomly according to weight distribution { wex,i · wpl,i | i = 1...N }
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Figure 8.5: Non-linear relationship between cost
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Figure 8.6: Overall node weight in dependence
of exploration and exploitation.

8.4.1 Algorithm Implementation

The simulation environment used for evaluation of the approach presented in this chapter is
completely implemented in Matlab1. The three main components are the sampling-based
global search (algorithm 8.1), local planning incorporating the underlying control framework
(algorithm 8.2), and the simulation of the robot arm, including kinematics, collisions and
obstacle distance computations.

In the sampling-based global search component, distance computations are needed for
goal-biasing and dispersion reduction target sampling. These distances are defined in the
task space simply as the euclidean distance ρ(x, y) = ||x− y||, x, y ∈ R2. While distance
computations for large point sets are a major concern for sampling-based planning, see
(LaValle and Kuffner, 2000) for example, these problems do not arise here. Nearest tree
neighbors of a candidate sample set are computed during target sampling, but since the
scope is limited to a small local sub-tree and candidate set (K = 5), costs remain bounded.
For goal-biasing, the goal distance of each node is calculated after local planning and stored
in the node. The nearest neighbor to the node is then found in linear time by searching the
current minimal goal distance.

An expensive part of the current implementation is local planning, with the iteration of the
control equations and evaluation of the potential functions. If the obstacle avoidance is used,
computation of the potential can quickly become the most expensive part of the approach,
depending on the number of obstacles involved. In the present simulation environment, the
robot workspace is planar with the robot segments modeled as lines and obstacles modeled
as circles, refer to figure 8.7. Although the individual calculation of distances and closest
points between planar lines and circles can be implemented very efficiently, the number of
these calculations increases quadratically with the number of robot segments and obstacles.
Also, closest-point Jacobians have to be assembled for every obstacle inside the reactive
range, another costly operation during the potential function computation2.

Other simulation components, like forward kinematics of the robot arm and collision
detection are less critical. The collision detection in particular can be very efficient if the
results of the distance computations are reused.

1http://www.mathworks.com/products/matlab
2For Setup B, the iteration of the control equations needs about 95% of the overall computation time, with
Jacobian assembly (about 40%) and distance computation (about 30%) using the largest share.
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Figure 8.7: Local planning with relaxed motion
control incorporates two hierarchical motions: Pri-
mary task-space motion and secondary redundant-
space motion. The primary task motion consists
of a target directed and an obstacle avoidance
component. The secondary redundant motion
performs joint-limit avoidance and obstacle avoid-
ance.

primary
target

primary
obstacle

secondary
obstacle
joint−limit

8.4.2 Local Planning

Local planning builds on the relaxed motion control approach from chapter 3. Besides target
reaching, two secondary objectives are incorporated, joint-limit avoidance and obstacle
avoidance. Section 2.4 describes potential functions encoding these two objectives. Secondary
motions influence local planning in two ways. First, the primary target directed motion is
mixed with obstacle avoidance, resulting in task trajectories able to circumvent obstacles but
still converging to the target. Second, both joint-limit and obstacle avoidance movements
are projected into the redundant space, locally optimizing the robots posture. Figure 8.7
schematically shows the interplay of the different objectives.

By setting the β parameter in the relaxed control equation, it is possible to switch between
full task space local planning with relaxed motion optimization and local planning with
redundant space optimization. An example comparing these two local planning approaches
was previously given in section 3.2, illustrating the ability of relaxed control to avoid obstacles
by modifying the task trajectory and to produce movements with lower obstacle costs.

8.4.3 Setup

Several motion planning tasks are defined in two different environments, both featuring a
planar multi-link robot in a planar workspace, populated by circular obstacles. The two
setups (A and B) are shown in figure 8.8 and 8.9, respectively. Setup A has a regular
structure with six goal positions all located at the end of different corridors. Figure 8.10
illustrates that indeed a global planning scope is necessary, because local optimization alone
does not succeed. Also, the goal positions at the right side (4,5 and 6) can not be directly
reached due to joint constraints, as shown in figure 8.11. The joint range is limited to stay
in the interval from −π to π, i.e. the manipulator can not fold upon itself. In addition
obstacle collision constraints are active, but note that self-collisions of the manipulator are
not prohibited. The spatial structure in setup B is less regular. Some corridor like structures
exist, but to a lesser extent. Also, some goal positions can be reached on different paths, not
homeomorphic to each other. The task space in both setups is the two dimensional position
space, while the configuration space in setup A is of dimension 4 and the configuration space
in setup B of dimension 8.

8.4.4 Performance Metric

There are two areas of interest for comparing the simulation results. One is the difference
between the local planning methods, between redundant space motion optimization and
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Figure 8.8: Setup A: Planar robot arm with 4
joints, fixed at the origin, the red circle represents
the end-effector. 6 different task goals are defined
in the 2D position task space.
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Figure 8.9: Setup B: Planar robot arm with 8
joints, fixed at the origin, the red circle represents
the end-effector. 9 different task goals are defined
in the 2D position task space.
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Figure 8.10: Setup A, approaching target 2 with
relaxed obstacle avoidance control. The limited
scope of local optimization leads the motion into
a dead-end situation.
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Figure 8.11: Setup A, approaching target 2 di-
rectly. Again caused by the limited scope of local
optimization, the arm moves towards a joint-limit,
preventing further progress.
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relaxed optimization incorporating the task space. The second area is the impact of the
three global sampling weighting heuristics, EST coverage estimation, exploration weighting
and combined exploration and exploitation weighting. In order to compare these methods,
a suitable performance metric has to be used that measures the effort of planning.

Previously in chapter 6 and 7, the overall runtime was used as such a measure of effort.
The overall runtime is determined by two factors, the number of control cycles needed to
create a local plan and the number of local plans generated until the goal is found. However,
the runtime of local planning with relaxed motion control is in general higher. A higher
number of control cycles are needed for planning a trajectory with the same start and target
position, because the trajectory can be longer and is generated with smaller steps, especially
in situations with conflicting task objectives, where the resulting target velocity is low.
However, the actual runtime difference of local planning is merely an implementation issue
and could be counteracted by controlling the control step sizes and equalizing the number
of iterations needed.

Assuming that the runtime of local planning under the two control schemes can be
equalized, the overall time is then governed by the number of calls of the local planner.
Consequently, the number of local planning calls, or correspondingly the number of tree
growing attempts, is used here as the performance measure. It enables to measure the
planning effort independently of local planning costs, making it easy to compare the impact
of the different tree weighting heuristics.

The maximum number of iterations is bounded to 500 in the present setup. If planning
runs do not succeed with less than 500 iterations, they are terminated and reported as
not solved. For the performance evaluation, it is thus necessary to look at the fraction of
solved planning queries out of the total number of queries. Unsuccessful runs account to the
overall iteration number statistics with a constant value of 500, introducing a distortion of
the average towards a value lower than the true iteration average, if every run would be
iterated until a solution is found.

Local planning with relaxed control is able to locally lower the obstacle avoidance cost
function to a greater extend than with strict task constraints, as previously shown in section
3.2. An interesting question for evaluation is how the obstacle avoidance costs of solution
paths behave on the global level. In particular, the influence of the exploitation node
selection heuristic has to be analyzed. To do so, the individual contribution of path segments
in decreasing the overall path cost is estimated the same way as during estimation of the
exploitation weight, as explained in section 8.3.2. All individual path segment contributions
are then averaged over the whole path to form a solution cost optimization performance
estimate. This way, the cost performance measure uses the same information as used during
planning, sharing the same inaccuracy regarding the actual cost evolution between local
planning end-points and the length of path segments. However, this inaccurate estimate is
sufficient to assess the differences between the different node weighting heuristics.

8.5 Results

For every goal position of both setups and for every combination of local planning (relaxed
optimization control with β = 1 and redundant optimization control with β = 0) with
node weighting (EST, exploration weight and combined exploration/exploitation weight)
50 motion planning runs were simulated. Example solutions are shown in figure 8.12 and
figure 8.13. In both cases global planning used combined exploration/exploitation weighting,
while local planning was done with redundant optimization control in figure 8.12 and with
relaxed control in figure 8.13. Comparing both local planning variants, it can be seen how
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Figure 8.12: Setup A: Example solutions and corresponding search trees for two different goal
positions, marked by the crosses. Local obstacle and joint-limit avoidance is limited to the redundant
space (β = 0). Global planning uses the combined exploration/exploitation weighting scheme. Nodes
with higher weights are shown with larger and brighter circles.
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Figure 8.13: Setup A: Example solutions and corresponding search trees for two different goal
positions, marked by the crosses. Local planning with relaxed control, optimizing obstacle avoidance
in the task space and combined obstacle and joint-limit avoidance in the redundant space (β = 1).
Global planning uses the combined exploration/exploitation weighting scheme. Nodes with higher
weights are shown with larger and brighter circles.
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Figure 8.14: Setup A: Fraction of solved planning queries (top row) and average number of iterations
(bottom row), 50 runs per target. Redundant motion optimization (β = 0) on the left and relaxed
optimization control (β = 1) on the right. For each target, results for EST weighting, exploration
weighting and combined exploration/exploitation weighting are shown.

the relaxed control trajectories are deformed to locally avoid obstacles.

The results for setup A and B are shown in figures 8.14 and 8.15, respectively. They are
divided according to the two different local planning methods and the three node weighting
heuristics and grouped together for every target. The fraction of solved planning queries
out of 50 trails is depicted in the top row.

Depending on the actual target, the individual performance varies in a nonuniform way,
with some more and some less distinctive differences. Starting with the less distinctive,
one can identify some target positions which are constantly and reliably solved with a low
number of iterations, regardless of the used control method and weighting heuristic. Targets
A1, A3 and B1 (setup A, targets 1 and 3, setup B target 1) are solved with approximately
100 iterations or less on average. Targets B7 and B8 took around 200 iterations, but do not
show any pronounced variations across the different methods either.

More interesting are the cases that show clearly distinctive differences. Such a observation
is that for every target, excluding the previously identified low distinctive ones, the lowest
number of iterations is always achieved with relaxed control. How much lower the number
of iterations is, varies between the targets as well as between the three weighting heuristics.
For targets A4, A6, B3, B5, B6 and B9, EST weighting does not reduce the number of
iterations while for targets A2, A5, B2 and B4 EST weighting is able to reduce it. The
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Figure 8.15: Setup B: Fraction of solved planning queries (top row) and average number of iterations
(bottom row), 50 runs per target. Redundant motion optimization (β = 0) on the left and relaxed
optimization control (β = 1) on the right. For each target, results for EST weighting, exploration
weighting and combined exploration/exploitation weighting are shown.
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Figure 8.16: Average obstacle avoidance costs of solution trajectories for setup A (top row) and
setup B (bottom row). Redundant motion optimization (β = 0) on the left and relaxed optimization
control (β = 1) on the right. For each target, results for EST weighting, exploration weighting
and combined exploration/exploitation weighting are shown. Note that larger values are better,
representing a stronger decrease of obstacle costs.

exploration and the combined exploration/exploitation weight on the other hand reduce
the number of iterations when relaxed control is used, for almost all targets except B3 and
B6, where no differences between both control methods are visible. Compared to the EST
heuristic, this two heuristics always need less iterations.

Lets have a closer look on the exploration heuristic. Like already mentioned, the number
of iterations needed is lower as with the EST heuristic, clearly lower if relaxed control is used
and also to a lesser extend for redundant motion optimization. For several cases, namely for
targets A5, A6, B3, B4, B5, B6 for relaxed control and targets B3, B5 and B6 for redundant
optimization control, the number of iterations drops by 50%.

Regarding the impact of the combined exploration/exploitation heuristic, there are some
examples where the additional exploitation weight further decreases the iteration number.
For relaxed control, these are A2, A4, B3, B5 and B6 and for redundant optimization A2,
B4 and B6. Conversely, for the remaining targets the iteration number remains the same or
is even increasing.

Figure 8.16 shows the obstacle avoidance costs averaged over all solution trajectories.
Comparing both local planning methods, it can be seen that for all target positions the
average solution costs for relaxed motion optimization are not substantially better. Regarding
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Figure 8.17: Distribution of tree branch lengths
for EST and exploration node weighting. Longer
branches correspond to a more successful local
planning and a faster exploration of the space.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
relaxed optimization branch length distribution

branch length

fr
a

c
ti
o

n

 

 

EST

Exploration

−5 0 5
−4

−2

0

2

4
cost exploitation weight distribution

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
cost exploitation weight distribution

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 8.18: Spatial distribution of exploitation node weights wpl, for setup A (left) and setup B
(right). Weights are averaged over all nodes in a cell.

the three different node weighting schemes, no consistent relation is visible. In setup A, the
single slight difference can be seen for target A, where the combined exploration/exploitation
heuristic performs the best. Conversely in setup B, the EST weighting scheme behaves
better than the other two heuristics.

8.6 Discussion

The results for both setups show the advantage of using the relaxed motion control scheme
as a local planner in the hybrid motion planning framework. For most target positions,
relaxed motion control reduces the number of global planning iterations needed to find a
solution. The enhanced capability to avoid obstacles by modifying the task space trajectory
increases the probability of the local planner to find a valid trajectory, reaching the sampled
task targets more often and exploring the space faster. In regions with an easy to exploit
local structure, the effect is stronger than in regions with less easy structure and accordingly,
the ability to reduce the iteration number varies across the different targets. However, there
are no targets where relaxed motion control has a negative impact.

The global sampling scheme plays an important role too. Using the EST node weighting
heuristic as in chapters 6 and 7 is possible, but in general a larger number of global planning
iterations is needed. Using relaxed control reduces the number of iterations in some cases,
but not to the same extend as with the other two weighting heuristics.
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The exploration node weighting heuristic on the other hand is more successful in reducing
the global sampling effort. Although this can be seen for both local planning approaches, the
benefit of this weighting scheme is most obvious if relaxed motion control is used. The novel
exploration weighting scheme utilizes the capabilities of relaxed control to a greater extend.
Looking at the distribution of lengths of the tree branches in figure 8.17 shows a significant
difference between the EST and exploration heuristics. A large number of relatively short
branches are present in the EST tree, while the exploration tree has a wider distribution of
branch lengths, with considerable less short branches and more longer branches. By focusing
on nodes with a large exploration rate, the exploration heuristic hinders an over-exploration
of regions where local planning is successful but not progressing very much, as occurring
frequently with relaxed control. The EST heuristic however treats all regions the same,
eagerly focusing exploration even if little progress is made.

With the combined exploration/exploitation node weighting scheme, results are ambivalent.
In some cases a further speedup of the global search is possible, but in other cases not. The
spatial distribution of the additional exploitation weights in figure 8.18 indicates why not
all planning runs benefit. High weights can be found in the center and the boundaries of
the workspace, where relatively large areas of free space are located. In setup B another
region with high weights is on the top right, where the corridor between obstacles is wide.
If corridors get narrower, weights are quickly decreasing. Nearly all of the goal positions
also lie in regions where low weights dominate. Thus, biasing the search towards higher
exploitation weights drives the search away from narrow corridors towards more open regions.
While this behavior has a positive effect if large parts of a solution trajectory lie in the free
space, it makes it more difficult to find solutions that have to get closer to obstacles.

However, the negative impact remains rather small in the current setups, although narrow
corridors have to be traversed for most goal positions. One explanation why this is the
case is given by the obstacle avoidance ability of relaxed motion control, helping to traverse
corridors and making exhaustive sampling inside the corridors unnecessary. For different
motion planning setups, it could be worthwhile to tune the relationship between exploration
and exploitation weights. Figure 8.19 illustrates the evolution of node weights during
global planning. Equal node weights are shown with isolines in the space spanned by the
two components exploration, given by the dispersion estimate d, and exploitation, given
by the cost decrease δc. Due to the non-linear mixture of both components, nodes with
higher exploitation are over-proportionally favored, while low exploitation nodes receive
less attention. By modifying the weighting function, it is possible to implement a wide
range of behaviors, adapted to certain problem instances. For example, the slope b can be
increased for an even stronger bias towards high exploitation. Conversely, the bias can be
shifted towards lower exploitation by decreasing b, up to negative values of b, reversing the
relationship by favoring low exploitation over high exploitation. For setups where solutions
are known to primarily traverse high cost areas, this could be advantageous.

Regarding the second performance criteria of lower obstacle avoidance costs, a positive
effect of relaxed motion control and exploitation weighting can not be shown. Local planning
with relaxed motion control does not consistently lower the overall costs of the solution
trajectories. Also, the EST weighting scheme tends to perform better, especially for setup
B. Adding the exploitation weights to measure the achieved cost reduction does not result
in finding low cost solutions.

To get an insight into this results, it is important to keep the precedence of all involved
motion objectives in mind. The local planning modules used in the current setup primarily
try to reach the sampled target positions, even if the secondary objective of low obstacle
avoidance cost is counteracted. Only if both objectives are not conflicting, obstacle costs
can be equally considered. This way a rapid exploration of the task space can be achieved,
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Figure 8.19: Relationship between exploration (y-axis), exploitation (x-axis) and node weights
(color) and its evolution over time. Dots represent tree nodes and weight changes of nodes are
indicated by arrows, either decreasing weight (down) or increasing weight (up). The arrowheads
grow with successive selection of the corresponding node.

but reducing obstacle avoidance costs plays a subordinate role. Assuming an identical global
sampling process, the overall cost of a solution trajectory can only be lower if sub-trajectories
can be optimized without these conflicts. Consequently, randomized global sampling without
any dependence on optimization success can only result in lower costs under fortunate
preconditions or by random chance.

The idea of incorporating the achieved optimization into the node selection with the
combined exploration/exploitation weighting is to actively bias the search towards solutions
with lower costs. If better sub-trajectories are encountered that benefit from fortunate local
conditions they are favored. To be able to choose these better trajectories, sufficiently many
of them have to be created, capturing at least parts of the local cost variations. A dense
sampling of alternative trajectories however contradicts the premise of a rapid exploration
with few iterations. Looking at the example search trees in figure 8.13 indeed confirms the
relative sparseness of samples. Comparing the node placement with the local cost structure,
as indicated in figure 8.18, shows that it is likely that solutions are already found before
cost minimas are encountered.

Figure 8.20 shows the spatial distribution of solution path nodes over all planning runs for
one target. Comparing the EST and the exploration/exploitation heuristic one can see that
in the latter case, solution trajectories cover a larger area of the space. The exploration bias
results in longer paths, spreading out faster into the space until constraints are encountered.
Consequently, solutions found with this approach tend to be longer too and to cover larger
areas. Depending on the cost structure of the setup, also shown in figure 8.20, the wider
distribution of solutions results in parts of the trajectories traversing regions with higher
costs. Thus, the overall costs can indeed be larger if the exploration heuristic is used,
explaining the finding that EST tends to produce solutions with lower costs.
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Figure 8.20: Spatial distribution of solution trajectory nodes for target 9 of setup B, showing the
percental node count (left) and averaged obstacle avoidance cost decrease δc (right). Distributions
for EST (top) and exploration/exploitation (bottom) heuristics are shown.

8.7 Optimal Solutions

The developed exploration heuristic is good for a fast discovery of solutions, using a limited
number of local planning calls. However, the solutions found are not optimal, caused by
two reasons: Motion optimization is only done locally and is dominated by exploration in
conflicting situations. For practical motion planning applications it would be useful to have,
at least close to, optimal solutions, for example minimizing the execution time or minimizing
energy costs. Building upon the presented hybrid approach, two paths can be followed.

One possibility is to post-process the solutions. Taking the result of hybrid planning as
an initial guess, trajectory optimization methods incrementally refine the solution until a
minimum is found. The method of Toussaint et al. (2007) would be a promising approach,
since it is able to operate on the same task representation as hybrid planning.

A second way is to combine exploration and optimization in a holistic approach. Berenson
et al. (2011) propose to interleave exploration with gradient based optimization steps in
order to keep the tree in low cost areas. This idea can be utilized for hybrid planning as
well. While task space exploration proceeds as described, intermediate task targets could be
incrementally changed towards lower costs with gradient descent steps. Although this would
be relatively costly because it would involve a re-evaluation of the modified trajectories,
the higher optimization costs could be counteracted by lower global exploration costs.
Heuristics could be included that heavily bias paths with good optimization characteristics,
concentrating the exploration towards optimal paths and effectively pruning less optimal
parts of the tree. With respect to the exploration/exploitation weighting scheme, this
means that exploitation weights of nodes are not fixed but can be updated by incremental
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optimization steps. In figure 8.19, nodes can also move horizontally, which changes their
weight according to optimization success.

It is important to note that these two optimization approaches can not guarantee to
find the true global optimum. For instance, if multiple topological different solution paths
are possible, exploration would randomly choose one and optimization would not be able
to consider other possibilities. To overcome this limitation, all alternatives have to be
discovered and considered, as for example practiced in a recent sampling-based approach for
optimal motion planning (Karaman and Frazzoli, 2010). It relies on a constant re-wiring of
tree nodes and selection of the shortest paths, a costly process, counteracting our premise
of keeping the exploration and local planning calls low. Thus, for applications where true
optimality is not the biggest concern, we argue that the solution of optimizing a solution
found by sampling-based exploration is sufficient, if this enables us to find the solutions
faster.
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Chapter 9

Conclusion

This final chapter summarizes hybrid motion planning as introduced and evaluated in this
thesis. Also, an outlook of possible further developments is given.

9.1 Hybrid Motion Planning

Hybrid motion planning combines motion control methods and ideas from motion planning.
The key element is the use of a task representation layer, on which planning operates by
specifying task level targets just as a general global motion planning approach. The role of
motion control is to handle local planning between individual task targets, simultaneously
optimizing the resulting trajectories locally. This way it is possible to overcome limitations
of both local and global methods and to benefit from their strengths.

Widely used techniques for motion control, especially for redundant robots, were described
in chapter 2. Although these methods are successful in generating locally optimal motions
very fast, they might fail if subjected to local minima. Seen from the motion control
perspective, hybrid motion planning adds a global planning layer to overcome this intrinsic
limitation of local control approaches.

Motion planning, introduced in chapter 4, views the problem from a different perspective.
Instead of treating the generation of movements as an optimization problem, it is formulated
as a search process. While this solves arbitrary movement planning problems in a very
general way, the high costs of an exhaustive search among all possible solutions render the
approach impractical for many applications. From the motion planning perspective, hybrid
planning counteracts the prohibitive costs of searching high dimensional state spaces by
shifting the global search to a high level task representation. With respect to the underlaying
state space, this high level representation constitutes a strong task induced heuristic that is
able to rigorously reduce the searched space to a meaningful low-dimensional subset. By
exploiting local optimization capabilities of control based local planning, the search can be
effectively guided and planning can proceed on a coarser scale.

In chapter 5, two different strategies to search the task space according to sampling-based
motion planning were evaluated. The first strategy (DRTask) adapts the popular rapid
exploration heuristic in order to search the task space instead of the full state space. It
can be shown that this strategy might lead to a unsuccessful exploration if local planning
exhibits non-holonomic motion constraints. As a solution, an alternative sampling strategy
(DRSim) is proposed, incorporating a measure of state space coverage into the exploration
heuristic. The results of a small case study for a simple robotic manipulator reveal that
the alternative strategy indeed shows a more stable exploration behavior and is thus better
suited for the specific requirements of hybrid planning.

These insights into the interplay of global sampling and local planning influenced the
implementation of hybrid planning for the application domain of redundant robots in
chapter 6. In order to avoid the problems of exclusively biasing the search towards task
space progress, a simple space invariant coverage heuristic is used in a hybrid random-tree
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planning algorithm (TaskTree). Comparing the performance of the hybrid solution against
a configuration space sampling algorithm (ConfTree) in a simulated motion planning setup
shows the advantage of hybrid planning. Although a single exploration step is more costly
because of the involvement of motion control methods, the reduced sampling effort due to
the lower dimensionality of the sampling domain outweighs this and the overall runtime of
TaskTree is lower.

The task definition of the simulation from chapter 6 was useful for the problem of reaching
towards a fixed target. Chapter 7 demonstrated that task spaces can be used to describe
more complex tasks as well, as shown for a bi-manual object placement job for a humanoid
robot. This setup illustrates the benefit of employing a carefully chosen task representation,
allowing to significantly lower the sampling effort. The redundant and not actively searched
dimensions can be effectively exploited using local motion optimization, for instance to avoid
obstacles. The experiment was done in a lab environment and showed the ability of hybrid
motion planning to address real world problems.

Besides limiting global search to the task space, another strength of the hybrid approach is
the possibility of exploiting local optimization abilities of motion control. Simulation results
of chapters 6 and 7 showed that redundant space obstacle avoidance indeed helps to increase
the set of problems that can be solved by increasing the reachability of local planning. The
time needed to find a solution however was not generally lower. An explanation why this
is the case is given by the increased probability of successful tree extensions if obstacle
avoidance is used. The search tree can cover a larger portion of the state space and gets
larger, resulting in an over-exploration of certain regions.

While this behavior was not respected in the space invariant exploration bias, a novel
sampling heuristic, explicitly considering a variable exploration success, was developed in
chapter 8. This is even more important if the relaxed motion control technique from chapter
3 is used for local planning. It allows to optimize a motion according to multiple primary
motion objectives. Mixing obstacle avoidance and target reaching results in a local planner
with an increased ability to circumvent obstacles, accelerating the planning process by
guiding trajectories autonomously through problematic structures like narrow corridors.

Based on the TaskTree hybrid random-tree planning algorithm, principles developed during
the discussion of task sampling strategies in chapter 5 are incorporated. The novel sampling
heuristic systematically explores the task space by reducing the task dispersion locally and
maintains a simultaneous global exploration of the state space. Combining exploration with
an additional exploitation measure, a heuristic is created favoring trajectories with a greater
exploration effect and with a larger contribution to reduce optimization costs. Evaluation
shows the advantage of relaxed motion control to guide the search through corridors and
demonstrates that the proposed exploration heuristic outperforms the previously used
simpler heuristic. The impact of the combined exploration/exploitation heuristic however
remains ambivalent. Planning can only be accelerated for some queries, for which relatively
easy low cost solutions exist. Target sampling tends to be too sparse to capture less obvious
cost minima.

The following list collects all key properties of hybrid motion planning, summarizing this
thesis and describing a frame for possible future applications:

• Planning problems that need a global scope can be solved, where local methods are
not sufficient. For example, problems involving local minima or possessing complex
free space topologies can be addressed. It is not necessary to tailor problem specific
solutions for specific use-cases, using a global planning layer enables to find solutions
in a very general way.

• It is well suited for motion planning for redundant systems, where state spaces are
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high-dimensional and the planning objective can be achieved with more than one or a
whole continuum of states. It is not necessary to pre-determine a set of possible goal
states, hybrid planning can discover any feasible goal during the search.

• Prohibitive costs of global planning can be reduced by limiting the search to high-level
task specific representations. Depending on the task, these representations can be of
much lower dimensionality than the full state space.

• It is possible to include motion optimization techniques that help local planning to
avoid constraints or to achieve other objectives, like creating more efficient trajectories.

• A flexible hybrid motion planning framework based on sampling-based random-tree
planning is proposed. The developed sampling strategies and weighting heuristics
focus on an efficient exploration while being robust to sub-optimal or failed local
planning and unmodeled non-holonomic behavior.

To be able to utilize hybrid planning, it is important to consider the following challenges
for a successful application of the method:

• A sufficiently complete and precise model of the robot and the environment is needed.
In comparison to plain local motion control, the horizon of available sensory data has
to be larger since planning goes beyond the immediately visible. It is no longer possible
to instantly react to changes like obstacle movements or localization errors without
potentially invalidating the solution. Although a certain level of perturbations can be
tolerated, coping with more substantial changes needs to re-evaluate and re-plan the
solution.

• It is difficult to guarantee completeness of hybrid planning. The global search can
be complete with respect to the high-level task representation, but the coverage of
the underlying state space is subject to the local planning process. Dependent on
the actually used method, it might be possible to show the fitness of local planning
regarding a particular problem setup, but is appears unlikely that this is always
possible.

• Due to the involvement of motion control, the implementation of hybrid motion
planning is usually more challenging than classical motion planning. However, for
many robotic platforms, motion control methods do already exist and it is relatively
easy to include them into the framework.

9.2 Outlook

The framework as presented in this thesis can be used very generally for different applications,
given there exist suitable local control methods and a model of the environment that can
be used for simulation. The use for single-chain and dual-chain redundant robots was
demonstrated. Another promising application would be multi-chain manipulators, for
example robotic hands. Typically consisting of three or more fingers, hands have high-
dimensional state spaces and complex constraints. With respect to typical tasks however,
hand structures are highly redundant. The task of grasping an object for instance can
be solved with different hand postures and contact points. It is difficult to treat grasp
planning as an optimization problem, since many constraints are active: Constraints from the
hand morphology and the object geometry as well as grasp contact constraints. Assuming
that some limited control abilities are available, the hybrid approach might be a way of
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incorporating a global planning component, enabling solutions to more complex grasp
problems. For instance, a global exploration of finger contact points could be done on a
lower dimensional task representation, while local planning generates matching finger and
hand postures, obeying hand and contact constraints.

Throughout this work, well studied control methods were used as local planning compo-
nents. They are generally very fast but need a precise model of the system. In practice, such
an explicit modeling can become too expensive or impractical. Machine learning techniques
can then be used used to estimate a control model based on empirical data. The task
representation might be given in a less explicit way, but nonetheless it is possible to use
hybrid planning. In particular, the additional global planning layer can help to counteract
failures of local planning, which are likely to happen with an often imperfect learned model.
Sampling on learned or only implicitly defined task manifolds can be more complicated, but
there exists methods addressing this issue, for example see (Porta and Jaillet, 2011).

In other cases, a fixed model is not desired, sometimes variety is included on purpose.
If motion models are derived from human movement data for example, variations during
execution of a task should be captured as well. Corresponding task representations can then
be defined in a probabilistic way, containing both the means and the variances, refer to
(Mühlig et al., 2009). These models could be used as importance probability distributions,
guiding the global exploration process according to observed behaviors. The search space
can be heavily narrowed down in low variance areas, while other areas with higher variance
can be explored more generously. As a result, the search space is effectively reduced based
on the meaningfulness with respect to an observed task and by biasing motion planning to
this space, more natural behaviors can be created.
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Appendix A

Integrating the Attractor Dynamic

The second-order attractor dynamic constraint

ÿ + βẏ + αy = αu(t) (A.1)

can be treated as an ordinary second-order differential equation. A homogeneous solution
is then given by

yh = C1e
−t + C2te

−t (A.2)

choosing α = 1 and β = 2
√
α = 2. For the right hand term u(t) two cases have to be

differentiated, the moving attractor u(t) = t for 0 ≤ t ≤ 1 and the steady attractor u(t) = 1
for t > 1. Two general solutions of the differential equation are then

y1 = C1e
−t + C2te

−t + t− 2 0 ≤ t ≤ 1 (A.3)

y2 = C3e
−t + C4te

−t + 1 t > 1 (A.4)

Setting the initial values y1(0) = 0, ẏ1(0) = ν and y2(1) = y1(1), ẏ2(1) = ẏ1(1) yields

y1 = 2e−t + (ν + 1)te−t + t− 2 0 ≤ t ≤ 1 (A.5)

y2 = (2− e)e−t + (ν + 1− e)te−t + 1 t > 1 (A.6)

These two equations represent an explicit solution of the constraint equation, describing
the resulting trajectory depending on the initial conditions y1(0) and ẏ1(0). Since the initial
velocity ν is present in the solution of the dynamic constraint, it is not possible to express
the trajectory without knowing ν. The constraint can not be completely integrated to a
velocity independent form.
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