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Abstract

This work deals with conceptual and software aspects (i.e. algorithms and structure)

of intelligent systems interacting with the real-world. Typical domains for such sys-

tems are robotics as well as personal digital- and driver assistance. In decades of

research on intelligent systems, a large number of system structures or architectures

for intelligent artifacts have been proposed and implemented. However, no estab-

lished and broadly accepted hypothesis for such a system structure has emerged

because no common language or common understanding of the space of architectures

exists. This in turn makes scientific discourse about architectures difficult.

In this thesis we aim to improve the process and tools for describing, constructing

and evolving the architecture and software of large-scale systems for intelligent ar-

tifacts. At the heart of this improvement is the proposed formalism ‘Systematica

2d’, suitable for both flexible description of system architectures as well as for func-

tional design of the resulting system integration process. We motivate the approach

and relate it to other formal descriptions by means of a new formalization measure.

The new language is shown to find a good compromise between cognitive descrip-

tion, high flexibility and easy implementation. We present ways to map resulting de-

signs to the most popular infrastructure paradigms and derive mathematically prov-

able benefits for the system construction process: incremental composition, graceful

degradation, subsystem separation and global deadlock-free operation.

Finally, the powers of the formalism for architecture categorization and comparison

are explored. It is analytically shown that there is a direct relation between sensor

/ behavior spaces (a descriptive design property) and the interfaces and connections

of units (a functional design property).

Without lack of generality, examples and results are obtained from two specific,

recent and state-of-the-art large-scale systems: ALIS3[1] and AutoSys[2]. Experi-

mental results show that a) modeling a wide variety of systems as Systematica

2d designs is possible, b) implementing systems according to such a design is dra-

matically faster and produces inherent, provable system properties and c) different

systems can be related and classified based on the designs.
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1 Introduction

The goal to create complex intelligent artifacts which are real-world capable, practical

and useful is as old as the study of intelligence itself. In this effort, a large number of

different disciplines is involved, including neuroscience, hardware research, statistical

data analysis and evolutionary intelligence studies, to name a few. In this work

we will focus on the conceptual and software aspect (i. e. algorithms and structure)

of intelligent systems installed on a physical platform and interacting with the real

world. Typical domains for such systems are robotics as well as personal digital- and

driver assistance systems. We will refer to this specific sub-area of intelligent systems

as ‘Embedded Intelligence’ (EI), with the goal of synthesizing intelligence in the hull

of a physical artifact.

Research on EI systems is characterized by two issues: First, all processing must be

real-world capable, i. e. it must be able to deal with adequate levels of noise and run at

speeds which allow interaction with the world. Second, in order to create a ‘complete’

real-world artifact, an interplay of a great number of disciplines is required. Although

the actual organization of subsystems in any implemented system may vary, they can

be roughly categorized into designing or learning of functionalities for

I Information Acquisition from the world,

II Internal Information Processing,

III Action Generation in the world,

IV Subsystem Integration to create a desired overall system behavior and

V Embedding in a physical artifact.

Creating such complete systems is beneficial for studying associations between per-

ception and behavior (e. g. ‘grounding’[6]), testing the feasibility of processing algo-

rithms (areas I-III) for real-world artifacts, developing the ability to interact with

humans[7] and many others. To this end, excellent processing algorithms are an

important prerequisite, but whether their interaction creates an intelligent system

strongly depends on the system structure. In other words: Intelligence is not the re-

sult of individually superior processing algorithms or hardware components but arises

from the structure and interaction in an integrated system (see, e. g. [7, 8, 9, 10]).
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Chapter 1. Introduction

In decades of research on intelligent systems, a large number of system structures

for intelligent artifacts (we will refer to these as ‘hypotheses’) have been proposed

and implemented, starting with the Sense-Plan-Act layout[11], over Subsumption[11]

and 3-Tier[3, 12] to CogAff[4] or multi-agent systems[13, 14]. However, none of these

has emerged as an established and broadly accepted hypothesis.

The central problem in this search, as Christensen et al. precisely point out, is that

“[. . . ] there is no agreement on what the space of possible architectures

is like, nor on the terminology for describing architectures or on criteria

for evaluating and comparing them.” [15]

This implies that scientific work on system architectures is difficult because system-

atic comparison and knowledge transfer are nearly impossible. However, it also allows

to derive the necessary phases for devising a system architecture or hypothesis: the

first phase is hypothesis formulation, i. e. description in a suitable language, followed

by hypothesis evaluation, usually by system construction to allow experiments, and

hypothesis evolution, potentially based on a formal comparison to other hypotheses

and resulting in the formulation of a new system hypothesis. We will refer to these

phases as the ‘Hypothesis Test Cycle’. Improving the search for viable intelligent

artifact hypotheses thus implies improving or enabling each of these phases.

Several scientific fields deal with system design and construction, of which the

following three are the most relevant (see Fig. 1.1):

1. Software Engineering, providing technical, precise design languages such as

UML[16] or xADL[17],

2. Cognitive Description, providing theoretical system models in several lan-

guages like CogAff[10], 3-Tier[3] or Systematica [5] and

3. Software Infrastructure, providing practical frameworks for collaborative

construction of intelligent artifact systems, e. g. ROS[18], XCF[19] or YARP[20].

Since each of these fields has different priorities and different target domains, each

field also has different strengths and weaknesses regarding the hypothesis test cycle

for intelligent artifacts. Software engineering provides languages to precisely and

completely specify large software system, allowing an efficient construction process

but occasionally conflicting with the dynamic nature of research system construction.

Cognitive descriptions focus on expressing the concept or hypothesis behind an in-

telligent artifact system, which makes them ideal for theoretic analysis but in many

cases provides little support for the construction process. Software infrastructures

finally combine all tools necessary for efficient, collaborative system construction but

2



Software Engineering
Examples: UML, xADL

Design (technical)

Cognitive Description
Examples: CogAff, 3-Tier, SYSTEMATICA

Describe (theoretical)

Software Infrastructure
Examples: ROS, XCF, YARP

Collaborate (practical)

Intelligent Artifact 

Research

Figure 1.1: Relation of Intelligent Artifact Research Systems to established research direc-

tions.

usually lack a design language that allows understanding of component interdepen-

dencies or theoretical discourse.

In this work, we will propose a specific formalism, which we will call ‘Systematica

2d’, together with a process to apply it, in order to combine the beneficial properties

of these fields specifically for the phases of the hypothesis test cycle: formulating,

constructing and evolving architectures for intelligent artifacts. The main contribu-

tions of this thesis, i. e. the problems addressed and overcome in each of these three

phases, will be detailed in the following.

Hypothesis Formulation

The first step towards any EI system is the formulation, as text, graphical represen-

tation or formal expression, of the targeted system’s structure. This can be done

verbally or implicitly, emerging from the design or implementation of the system on

a software infrastructure, but it is nonetheless a form of formulation.

Traditionally, looking for instance at the Sense-Plan-Act models and the later

Subsumption[11] and 3-Tier[3] models, the means of formulating systems were linked

with a concrete proposal of system structure. This helps in order to tailor the for-

malisms to the way systems are to be built but allows little generalization of formula-

tion techniques. Only recent models, especially CogAff by Sloman[10] and System-

atica by Goerick[9] have started to look for underlying patterns of organization in

order to establish a notation for various integration approaches and related system

hypotheses.

3



Chapter 1. Introduction

The Systematica 2d language introduced in this work will allow standardized

expression of a wide range of system hypotheses, as will be shown by translating

established approaches to Systematica 2d. This in turn will allow comparing and

discussing hypotheses in a common language in order to establish common patterns,

which we will refer to as ‘system types’, as a first step towards understanding the space

of possible architectures. At the same time, the language will achieve a compromise

between precise software specification and high-level description of cognitive concepts

and thereby consider the other two phases, System Construction and Hypothesis

Evolution.

System Construction

The difficulty of the system integration or construction process – once a system de-

sign which should satisfy all functional requirements is formulated – depends on two

factors: the target infrastructure and the amount of collaboration between involved

scientists. The latter does not refer to the effort of plugging together two modules

in the chosen infrastructure but to the much more difficult tasks of fitting the pro-

vided output of one algorithm to the requirements of another and synchronizing the

temporal order of the whole system – not to mention system-wide learning, where all

modules need to support common ways of parameterization, see, e. g., [21].

Technological progress is currently mainly centered around the integration infra-

structure. The most prominent examples for EI research are blackboard[19, 22, 23],

service-oriented[14, 24] and data-flow-oriented[18, 20, 25] platforms. However, none

of these bridge the gap between the description of a system hypothesis and the tech-

nical design of the system to be built. The resulting lack of consideration for system

construction during the system formulation phases often leads to complications, usu-

ally due to underestimated dependencies between system parts built by different

scientists.

We will show that Systematica 2d combines technical and theoretical elements

and adds a small but significant bias in order to enforce consideration of the con-

struction phase during system formulation. We will show that this bias does not

dramatically reduce the space of possible hypotheses but helps greatly in defining de-

pendencies and organizing as well as speeding up the construction process. Practical

applicability of the proposed language will be substantiated by presenting specific

mappings of language elements to popular software infrastructures as well as ex-

periments with large-scale intelligent systems built according to Systematica 2d

designs.

4



Hypothesis Evolution

After the implementation of a system hypothesis, several steps remain: the evaluation

of the integrated system, the publication of the system hypothesis and the evolution,

i. e. extension or revision of the hypothesis towards the next test cycle. The ease with

which all of these can be done depends to a large part on the formalization of the

hypothesis and the organization of the implemented system.

A modular organization may allow experiments with subsets of the full system to

show the value of each system element; a standardized formalism may allow compar-

ison to related system architectures to show novelty (see, again, [10, 5]); a modular

formulation of the hypothesis will allow reuse of subsystems, possibly supported by

a similar separability of the implemented system.

Systematica 2d will provide a mathematically formalized, modular way of de-

scribing systems, combined with the ability to map this modular formulation into a

modular implementation on a variety of software infrastructures, to the extent that

the separability of these systems can be formally verified. The language will allow

formulating technical and theoretical aspects of a hypothesis on separate levels of

granularity in order to highlight relevant aspects for publication and allow theoreti-

cal discourse about system types, which we will discuss both in theory and by means

of two examples of large-scale intelligent systems.

Structure of the Thesis

First, in the next chapter we will present two ‘reference systems’ which will serve as

recurring examples throughout the thesis. The two systems are from the humanoid

robotics and intelligent vehicle domains and thus are good examples of what we un-

derstand as ‘Embedded Intelligence’ domains. Based on these introductory examples,

we move to the analysis of constraints a formalism has to fulfill, derive a measure

to evaluate system formalisms and compare existing approaches in Ch. 3. We then

present our formalism ‘Systematica 2d’ in Ch. 4, accompanied by a discussion of

the impact of guiding elements or ‘structural bias’.

We continue by presenting mappings of the formalism to popular software infras-

tructures in Ch. 5, including generic concepts to enrich an infrastructure in order to

allow a smooth translation of Systematica 2d designs into implementations. The

conceptual part of this work is completed by an analysis of the comparability of sys-

tem hypotheses under Systematica 2d in Ch. 6. Finally, the gained integration

speed as well as other beneficial results of the presented concepts are shown in Ch. 7

before concluding in Ch. 8.
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2 What Kind of Systems?

It is possible, but less intuitive and comprehensive, to discuss the benefits of formal

design languages for abstract embedded intelligence systems. We therefore present

two EI systems in this chapter which will serve as recurring examples throughout

the thesis. They span two important domains of EI research, humanoid robotics and

automotive safety systems, and thus represent the level of generality for which the

techniques in later chapters were researched – although their applicability may be

broader. Both are collaborative projects of between five and 15 scientists, both are

recent scientific projects, exceeding the state-of-the-art on the algorithmic as well as

on the system level and both focus on major problems of their respective domains.

In other words: the presented systems are scientifically interesting and of comparable

scientific and computational complexity.

For each of these systems we will describe the same relevant aspects:

� the major challenges the system addresses to overcome,

� the system hypothesis followed,

� the individual algorithms used,

� the design, implementation and evaluation process followed and

� the final system behavior and results achieved.

2.1 Adaptive Learning and Interaction System

Goal of the Adaptive Learning and Interaction System (‘ALIS’) was to enable a

humanoid robot to interact freely with a human tutor and learn associations be-

tween arbitrary speech labels and generic sensor- / action-related properties of the

world[1]. Such properties can be spatial (left, right, top, . . . ), object-related (big,

small, moving, still, . . . ) and behavior-related (approach, grasp, release, . . . )[26].

Speech labels can be arbitrary, in any language, based on a clustering of the auditory

sensor space[27, 26].

7



Chapter 2. What Kind of Systems?

2.1.1 Challenges

The major challenges towards these goals are the following: First, in order to al-

low real-world interaction on a humanoid platform, a generic visual and auditory

segmentation of the world into background and interaction targets must be made.

Second, possible behaviors of the humanoid robot must be selected such that the

robot reacts to the tutor fluently, combining different elements like looking, pointing,

walking and nodding, but without violating its basic constraints, e. g. pointing back-

wards or touching its head with its arm. Thirdly, the current sensor (position, size,

motion, etc.) and behavioral (approach, retreat, grasp) state must be clustered and

associated to the speech labels provided by the tutor. Finally, learned associations

are to be ‘expressed’ by choosing appropriate actions in response to queries by the

tutor. Since the implemented system is to run on a humanoid robot, relevant system

parts need to run at high enough frame rates to support interactive operation, but

this challenge is usually not explicitly formulated.

In addition to these functional challenges, ALIS was the motivating example for

this work’s objective to improve the system integration process. Especially the (sec-

ondary) challenges of Testability and Extendability were not sufficiently solved for

an efficient development of ALIS.

2.1.2 System Hypothesis

A schematic view of the ALIS system hypothesis can be seen in Fig. 2.1. The system

is split into two major parts: The lower half is composed of sensor pre-processing

and action generation using a central arbiter which, together with the robot hard-

ware and the environment, forms a reactive loop that serves as an interaction basis

for all further processing. The upper half performs feature clustering (visual, audi-

tory and behavioral), association learning, expectation generation and expectation

evaluation[28].

This enables the robot to interact naturally based on the lower reactive layer, inde-

pendently of the upper associative layer, unless the upper layer sends a modulation

signal to activate a behavior (e. g. nodding). In addition, the associative layer can

rely on a task-unspecific visual detection and tracking of interaction targets, reactive

gaze tracking and following as well as modulation-friendly behavior selection.
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2.1. Adaptive Learning and Interaction System

Figure 2.1: ALIS System Schematic – The figure shows system elements and the layered

connection structure of the ALIS system. Taken from [1], please refer to text for

details.

2.1.3 Specific Algorithms

The entire system is made possible by a large number of interacting algorithms of

which we want to highlight four. All details are taken from the publications relevant

to ALIS: [29], [30] and [1].

Proto-Object Detection and Tracking The concept of Proto-Objects stems from

psychophysical modeling[31] and has been technologically applied in several works[32,

33, 29]. A Proto-Object in ALIS is a task-unspecific sensory detection which is stable

over time, space and possibly multiple cues, e. g. a moving colored bottle which is

repeatedly detected by depth-, color- and motion-segmentation. Detections within

each cue are stabilized and tracked over time before they are fused among cues to

stable interaction targets[29]. The data stored with each Proto-Object contains its

3D position, the 2D bounding box and pixel segmentation (for visual Proto-Object)
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and a Kalman-filter for movement prediction. Given this information, most behaviors

(gazing, pointing, approaching) can function based on the data of the currently active

Proto-Object alone[26].

Behavior Selection During the full interaction, the robot has a variety of possi-

ble motor behaviors available: gazing or pointing at a Proto-Object, approaching

a Proto-Object by walking towards it, nodding or shaking its head, grasping and

releasing an object and retreating to its starting position. These behaviors must be

dynamically activated and deactivated based on the current reactive preprocessing

results (Are there visible Proto-Objects?), the modulation received from the asso-

ciative system layer (Does the speech label ‘right’ match the current Proto-Object’s

position?) and the physical constraints of the robot (Can the robot nod and shake

its head at the same time?). These problems are solved by a central ‘Arbiter’ in

the ‘Action generation’ module, responsible for evaluating the current demand and

feasibility of each behavior and selecting which set of behaviors should be active

at any given time[29]. Behaviors compute a fitness value based on current sensor

information (e. g. pointing is possible if a Proto-Object is visible) and may receive

an activation bias from the associative system layer. Together with a compatibility

matrix this allows reliable and flexible behavior activation.

Feature Space Clustering and Association The associative system layer works on

one Proto-Object at a time. Based on the Proto-Object’s data, a set of sensory

features is computed, namely 3D position, size (1D) and movement speed (1D).

Associations are learned between a visual sensory feature space and the space of

arbitrary auditory labels within the time-window of a tutor-initiated learning session

of approximately five to ten seconds with three to five repetitions of the speech label.

In order to decide whether the recorded data should be used to create a new cluster

in the relevant feature space or should extend an existing one, a novelty detection

is employed which uses the learned associations to map cluster activations from one

feature space to another. In other words: A feature cluster in position space can be

extended by using the same speech label and a synonym speech label can be learned

by showing the Proto-Object in the same position as a previously associated speech

label[1].

Expectation Generation and Evaluation The last missing functionality of the sys-

tem is to apply the learned associations to queries of the tutor. For this purpose,

the system constantly creates expectations about the associated features: a speech
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2.2. Automotive Multi-Cue Object Detection System

label ‘big’ from the tutor will create an expectation for a big Proto-Object, a speech

label ‘left’ will create an expectation for a Proto-Object on the left, etc. These ex-

pectations are then evaluated on the active Proto-Object (should there be one): if

the Proto-Object matches the expected features, a bias to the ‘nod’ behavior is gen-

erated, otherwise a bias to the ‘shake’ behavior, followed by a fixed timespan where

the robot tries to find other Proto-Objects which satisfy the expectation[28].

2.1.4 Process

The design process followed through the two major version of the ALIS system[30, 1]

was driven by the desire to couple specific system functionalities (e. g. Proto-Object

tracking, association learning and grasping) in order to achieve specific properties

of the whole system (e. g. autonomous interaction, multi-modal learning, etc.). Not

all functionalities were complete when work on the system started (the first version

required a close-talk microphone and did not allow grasping) and several demands

on functionality performance only became apparent during system integration (e. g.

association learning was extended to allow overlapping clusters). Thus, the overall

system design was continuously extended as new functionalities were added or ma-

tured – which makes ALIS, in our opinion, a typical system integration project (cmp.

Sec. 3.2.1). As a result of this interlink of design and implementation, a separation

of the system was not easily possible, thus most evaluations were done on the full

system.

2.1.5 Results

A full description of system behavior, evaluation results and scientific impact can be

found in [1], Fig. 2.2 shows two sample scenes from an interaction with a tutor. In

short, the system, running on the Honda humanoid robot, displays an unprecedented

ability for autonomous interaction with arbitrary interaction partners and is able to

learn generic concepts about the world (left / right), objects (big / small) and its own

actions (approach, grasp) in any language. It represents a state-of-the-art intelligent

artifact system, in terms of algorithms, complexity and system performance.

2.2 Automotive Multi-Cue Object Detection System

The second system which will serve as a recurring example is the Automotive Multi-

Cue Object Detection System (‘AutoSys’). It is a mainly vision-oriented system

with the aim of finding and tracking all relevant traffic participants in real-world
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LARGE! SMALL!

Figure 2.2: ALIS interaction example – The figure shows two situations from a normal

interaction of a tutor with the ALIS system, running on the Honda humanoid

robot. The robot learns the size of large (left) and small objects (right) and binds

these features to words. Based on [1], please refer to text for details.

scenes under varying contexts (highway, rural road, inner city) and weather situa-

tions (sunny, overcast, rainy, snowy) both in day and night time[2]. The result is a

visual warning for the driver which highlights traffic participants with a low ‘time-to-

contact’, i. e.participants where a contact or collision with the ego-vehicle is predicted

for the near future.

2.2.1 Challenges

The main challenge is the required broadness of objects and contexts: the system

should not be limited to detecting objects where the visual appearance is known or to

contexts where appearance-based classification works well (i. e. well-lit scenes without

sharp shadows). This in turn asks for multiple, more flexible detection algorithms,

together with a generic fusion process and shared representation in order to compute,

e. g., the time-to-contact. This multi-cue approach however poses a new challenge

since detections from more flexible detection algorithms produce a high-number of

false positive (i. e. detections where no interesting object is in the world, like a window

which looks similar to a car). These detections should be filtered in a way that objects

in the world are found, even if only one detection algorithm found them, but still the

number of false-positives is minimal.

Where ALIS was the motivating example, AutoSys served as a proof-of-concept

for the system integration benefits of Systematica 2d. We will show in Sec. 5.3
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2.2. Automotive Multi-Cue Object Detection System

Figure 2.3: AutoSys System Schematic – The figure shows system elements and the lay-

ered connection structure of the AutoSys system. Taken from [2], please refer

to text for details.

and Ch. 7 how Testability, Extendability and Reusability were improved. The fact

that AutoSys was not built primarily to demonstrate these benefits, i. e. does not

elevate them to first-class challenges, emphasizes the applicability of Systematica

2d to real-world system integration projects.

2.2.2 System Hypothesis

A schematic of the final AutoSys system can be seen in Fig. 2.3. Based on a

common preprocessing performing disparity calculation, ground plane estimation,

road surface detection and ego-motion estimation, two detection cues produce a set
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of Proto-Objects in each camera frame (for an introduction to Proto-Objects see

Sec. 2.1.3). This detection is modulated by a ‘scene context’ model, either learnt

based on detection statistics or in form of a heuristics optimized offline, which helps

to filter out unreasonable detections (e. g. cars above the ground plane, too big or

too small, wrong aspect ratio, etc.). The filtered detections are fused and stabilized

over time, space and other image features, again reducing spurious detections, be-

fore being used by task-specific post-processing algorithms like the time-to-contact

computation[2].

2.2.3 Specific Algorithms

Like with the ALIS system, a large number of algorithms contribute to the perfor-

mance of the overall system. We will not focus on the (equally sophisticated) pre-

processing, including disparity calculation[2], road surface detection[34] and ground

plane estimation[35], and rather give a short summary of the following four ‘high-

lights’. All details are taken from the publications relevant to AutoSys: [35] and

[2].

Detection Cues Two algorithms are used as visual detection cues, one appearance-

based and thus task-specific and one disparity-based and thus task-unspecific. The

appearance-based detection is based on a visual classification of patches in an image

pyramid of different resolutions[36]. As a result, the same object model can be used

to detect objects of different sizes resulting in activations at different levels of the

pyramid. In order to estimate the regions of interest (ROIs) of detected objects,

a single layer perception is trained on the activations at different scales, leading to

detections with object identity, ROI and classification confidence[2].

The disparity-based detection uses a region-growing on the disparity map, resulting in

detections with ROI, 3D position, physical size and distance. For detections from the

appearance-based cue, 3D position, physical size and distance are computed based

on the visual ROI and the disparity map.

Scene Context Modulation In order to provide a first filter to reduce the large

number of spurious or even stable incorrect detections from both cues, results are

filtered with a ‘scene context model’[2]. This model is essentially a set of constraints

on the relevant characteristics of the detections: 2D position, ROI aspect ratio,

height above ground plane (based on 3D position and ground plane) and physical

size. Two approaches were tested: Using a multi-objective optimization based on the
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2.2. Automotive Multi-Cue Object Detection System

method in [37], a set of bounds for each characteristic feature can be found, leading

to a binary decision heuristics. Alternatively, feature distributions associated with

object identities were learned based on the method in [21] and then inverted in order

to obtain probabilistic distributions over the features and thus modulate detection

confidences to achieve soft filtering[2].

As a result, the number of false-positives (i. e. detections where no interesting object

exists) can be drastically reduced, almost without dropping correct detections.

Figure 2.4: Color coding of time-

to-contact estimations –

from [2].

Advanced Proto-Object Fusion Based on

the Proto-Object treatment used in ALIS

(see Sec. 2.1.3 or [26]) the fusion process was

extended to deal with the high number of

possible detections in a realistic, cluttered

out-door environment. Main difference is

the inclusion of alternative features into the

fusion process: based on the Proto-Object

ROI, color and Local Orientation Coding

(LOC)[38] features are extracted from the

original image and stored with the Proto-Object. When fusing new detections with

the Kalman-predicted previous set of Proto-Objects, a comparison of these features

in addition to the position and ROI give much less support to spurious detections

and thus again reduce the number of false-positives[2].

Time-To-Contact Estimation As an example of the Proto-Object based postpro-

cessing, the time-to-contact estimation uses the driver’s own predicted trajectory at

time t (et, based on speed and steering angle) together with the predicted trajectories

of Proto-Objects at time t (P̂ t, as encoded in their Kalman-filter) to estimate the rel-

ative distance d(P̂ t, et) over future timesteps τ . The minimal distance dmin(t) and

associated time tmin(t) are then computed and shown to the driver using a simple

color coding (see Fig. 2.4).

2.2.4 Process

Similar to the ALIS system, most specific algorithms incorporated in AutoSys were

not finalized when the integration process started. However, the system hypothesis,

and with it the central question to be answered by the full system, was formalized at

the beginning: “Can several noisy detection cues be combined with context filtering
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Figure 2.5: AutoSys visualization example – The figure shows the visualization of dif-

ferent stages of computation in the AutoSys system. Taken from [2], please refer

to text for details.

and Proto-Object fusion so that all relevant objects are found under many different

real-world driving conditions?” As a result, the overall system design, as well as most

dependencies between algorithms, was static throughout the implementation process.

Experiments and evaluations could be done on subsystems, e. g. with only a single

detection cue or with disabled scene context, in order to judge the contribution of

each part to the performance of the whole system.

2.2.5 Results

A full description of system behavior, evaluation results and scientific impact can be

found in [2]. Fig. 2.5 shows a visualization of processing results at different stages of

computation. As a first step, detections of the appearance- and disparity-based cues

are shown (after scene context filtering). These are then fused (third image) and

used for time-to-contact estimation (fourth image, color code see Fig. 2.4). System

performance is shown to increase substantially because of scene context filtering and
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Proto-Object fusion, in direct sunlight as well as in overcast, rainy, snowy situations

and at night. In short, the system is shown to surpass existing visual detection system

in the automotive domain, making it a state-of-the-art intelligent artifact system.

2.3 Conclusion

This chapter has introduced two implemented system instances, their underlying

hypotheses and the major system elements. Both systems work under real-world

conditions, combine methods from various disciplines (e. g. image processing, track-

ing, supervised and un-supervised learning and robot control), were built by groups

of between five and 15 scientists and represent the state-of-the-art in their respective

fields.

On the one hand, these systems will serve as recurring examples in all future

chapters. They represent two examples of the ‘Embedded Intelligence’ domain in

that they aim to provide intelligent capabilities to physical, real-world artifacts. They

were both designed and built in a research environment and thus allow to discuss

the specific requirements of system design formalisms for this domain (see Ch. 3).

In addition, since both systems were built based on some form of formalism (ALIS

using an ad-hoc notation as shown in Fig. 2.1, AutoSys using the Systematica 2d

language introduced in this work), they will serve as examples for these two languages

and make their comparison more intuitive.

On the other hand, we can derive generalized goals and motivations from the

problems encountered and overcome in the process of designing and constructing

both systems. These are generally rooted in the research process, which is based on

an iterative, spiral refinement of concepts, system elements and full systems, with a

strong collaborative component in all three phases.

The conflict between each scientists individual work on the algorithms in compo-

nents or system units and the collaboration between these units in the full system is

the most dominant obstacle in the system construction process. First, the collabo-

ration in a system with unclear dependencies is slowed down by changes in different

system parts interfering with each other, thereby dramatically increasing the time

needed for system integration. Second, unforeseen dependencies between system

parts require incremental change of the original design or system hypothesis during

the system construction phase.

While the first issue entails merely a waste of resources, the second can seriously

affect the quality of scientific statements about the original system hypotheses: If the
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implemented system differs in design from the original hypothesis, what conclusions

about this hypothesis do the experiments on the implemented system allow?

We believe that one method to overcome these limitations is a way to describe

systems which is both able to capture the theoretical aspects of the system hypothesis

and to guide and support the system construction. The remainder of this work will

therefore be concerned with motivating, introducing, evaluating and discussing such

a new formalism for system design of intelligent systems. While we will demonstrate

the main benefits of this new formalism on the contrast between AutoSys (built

with Systematica 2d) and ALIS (built without), the following inductive steps are

targeted at the generalized set of problems, not at the specific system instances.
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3 A Measure for Design Languages

As a first step to improving the formalization of EI system hypotheses, this chapter

will address the questions how one formalism can be compared to another and what

strengths and weaknesses existing formalisms have. To obtain a good and complete

measure for system formalisms, all three phases described in Ch. 1 must be taken into

account: Hypothesis Formulation, System Construction and Hypothesis Evolution.

We will refer to the iteration over these three phases as the ‘Hypothesis Test Cycle’

(see Fig. 3.1) and define a set of criteria to form the measure in such a way that

they evaluate the suitability of formal notations over the whole cycle. This includes

the flexibility and comparability of descriptions, addressing of future implementation

issues and the ability to decompose both the design and the implemented system.

Since the comparison of system formalisms is a central part of this thesis, related

work will be discussed in three parts. Sec. 3.1 will cover the wider area of EI system

notations and taxonomies for such notations. Sec. 3.3 will introduce a set of criteria,

following a discussion of the specific requirements of EI system integration: the rela-

tion to software engineering practices (e. g. UML[16]) and to software infrastructures

(e. g. CAST[39], XCF[22], YARP[20]) as well as the importance of guiding the design

process by a ‘structural bias’ in the formalism. In Sec. 3.4 several existing formalisms

are then evaluated along those criteria: the class of ad-hoc notations used in only

one publication (we will refer to these as ‘Boxes and Arrows’), 3-Tier[3], CogAff[4]

and Systematica[5]. A conclusion summarizes the lessons learnt from defining and

applying the measure criteria to existing formalisms. Major parts of this chapter

were previously published in [40].

3.1 Related Work

Two areas of related work are relevant to this work: measures of formal notations

(‘taxonomies’) and specific notations for intelligent artifacts.

Attempts at formulating measures, classification frameworks or taxonomies of for-

mal notations are sparse, qualitative and, for the most part, too generic to be of value

when judging the benefit of a formalism for EI systems. One prominent example is
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Figure 3.1: Visualization of the Hypothesis Test Cycle.

the work of Medvidovic et al.[41] giving a qualitative comparison of software architec-

ture description languages (ADLs). They provide a fixed set of description elements

which an ADL needs to have: Components, Connectors and Architecture Configu-

rations. Based on a detailed discussion of each of these three elements, the authors

evaluate several languages used to describe software architectures, e. g. Rapide[42],

C2, LILEANNA and ACME[43], and determine which of them can be considered an

ADL. One of the conclusions we can strongly agree with is that the defining property

of an ADL is the ability to describe full system configurations (i. e. the pattern in

which components and connectors are combined to form a system), in addition to

the system elements alone. However, although the work claims to allow comparing
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ADLs, it does not provide a measure to judge which kinds of constraints on the

description of a system are suitable for which domain.

For intelligent systems, we see two comparisons of integration approaches and for-

malisms: Vernon et al.[8] give a survey of recent development in cognitive architec-

tures by analyzing a wide range of approaches and sorting them into three ‘paradigms’

of cognition (Cognitivist, Emergent and Hybrid). A different approach is pursued

by Goerick et al.[5], where a new framework for modeling hierarchical architectures

(‘Systematica’, encapsulating the subsumption architecture[11]) is used to express

existing cognitive architecture approaches in the same language and compare them

on this basis. Both are able to compare existing architectures to one another but they

do not evaluate how the elements of the specific description languages (in contrast

to the elements of the evaluated systems) affect their cognitive qualities.

Formal notations for intelligent systems today come from three areas. First, there

are mathematical formalizations of system component interaction[44, 45, 46]. These

allow a formal analysis and proof of interaction properties of components, but there

is no evidence that the attached description languages are able to express estab-

lished cognitive architectures such as 3-Tier[3] or CogAff[10]. Second, architecture

description languages are a popular tool in the software engineering domain to de-

scribe large software systems, for instance Rapide[42] and ACME[43], but probably

the most generic being xADL[17]. These languages contain all relevant elements for

describing an architecture but since, to the best of our knowledge, no application of

such an ADL to the EI domain has been attempted, it is unclear what guidance, or

‘bias’, they can provide for guiding an EI system design in a favorable direction (see

discussion of structural bias in Sec. 3.2.2). Especially xADL provides no structural

bias whatsoever by itself but rather allows expressing architecture constraints. It is

therefore reasonable to assume that the formalism introduced in this thesis can be

expressed using xADL, but this is no limitation of the concepts put forward here.

Finally, there are specific notations used in intelligent systems[11, 4, 19, 9, 12, 47,

48] or reviews[3] and plans[49] of such. Among these notations, we see two groups:

on the one hand there are systems described in a formalism used only once in the

paper describing the system, usually (but not always) closely related to the software

infrastructure on which the implementation is based — we will refer to these notations

collectively as ‘Boxes and Arrows’. On the other hand there are systems described in

independently introduced notations, we will focus our comparison on 3-Tier[3], used

in [12], CogAff[10], used in [4], and Systematica[5], used in [9]. We will perform

a more detailed analysis of these four notations, ‘Boxes and Arrows’, 3-Tier, CogAff
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and Systematica— the focus being on the comparison of the notations, not of the

systems built with them — when we evaluate them in Sec. 3.4.

To conclude, we can say that there is a great variety in the notations used to

describe systems and a very small number of attempts to measure and compare these.

In the following, we will therefore start by introducing such a measure while discussing

the relation of EI systems, software engineering and software infrastructures. This

measure will then be used to evaluate a set of notations and compare them to the

new formalism introduced in the next chapter.

3.2 Target Setting

To formulate a specific set of criteria for a formal language, three considerations

are central: the difference between intelligent system integration and software engi-

neering, the importance of structural bias and the relation between a formal system

design and the software infrastructure used for implementation.

3.2.1 Why EI System Integration Is Not Software Engineering

What are the scientific challenges in EI system integration? It is, to a large part, soft-

ware development — and yet to arrive at criteria to judge formalisms specifically for

scientific work on research systems we must understand their specific requirements.

The basic questions of analysis, design, implementation, deployment and life cycle

management of large software systems are not new but answering them in a scientific

context, especially w. r. t. large-scale system integration is rarely attempted. Even

the hypothesis test cycle resembles, whether intentionally or not, typical software de-

velopment life cycle methodologies[50] like the spiral model or extreme programming

— but in our experience, more often than not the actual choice of method is among

the agile models.

We believe there are three fundamentally different constraints which apply to sci-

entific software integration as opposed to industrial software engineering. First, the

components of the system to be integrated are rarely finalized when integration starts

— neither their theoretical basis nor their implementation. Second, with every sci-

entist being the expert in his or her specific area, and thus for his or her specific part

of the system, it is an impossible task for a system designer to plan the integrated

system, composed of many state-of-the-art components from many experts, down

to the last class or member variable — a level of flexibility which only the specific

experts can fill is inevitable. Finally, the process of integration is not separate from
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each scientist’s work on his contribution to the system but intertwined both ways:

lessons learnt developing components can influence system design and lessons learnt

from running components in the full system can provide new constraints for compo-

nent development. It is this combination of a high degree of spread expertise among

scientists and the co-evolution of system and components which we see as typical

traits of software integration projects in the intelligent artifact domain.

These differences lead us to the conclusion that the perfect formalism cannot be

the most exact one. Languages like UML[16] are suitable for analysis and design of

large software systems, built by dedicated developers based on established principles.

Research system integration, on the other hand, requires a focus on expressing system

hypothesis and component interconnectivity, but at a level that leaves the necessary

room for scientific work (similar arguments are presented in [51]). In other words,

while software engineering is focused on creating designs in the sense of specifications,

system design for research and collaboration needs a stronger foundation in concepts.

3.2.2 The Importance of Structural Bias

If any formalism must allow room for the individual scientist’s work, a valid question

to ask is what the point of specific formalisms for EI system integration is altogether.

In fact, the description of systems and system hypotheses as arbitrary graphs (an

approach we will evaluate under the name ‘Boxes and Arrows’ later) is widely used

exactly because it does not limit the range of expression — thus allowing the preferred

level of specificity.

However, in giving up the guidance of a specific formalism, all other benefits such

a formalism might provide vanish with it. This is mainly important during the

implementation phase of a system, but also during design and refactoring a formalism

can help to consider details which will be important later.

We call this influence of the formalism on the system integration process ‘Struc-

tural Bias’. The degree of structural bias can be estimated by counting the number

of constraints which have to be considered while designing a system: how many sys-

tem elements are pre-defined, which combinations / connections are not allowed, etc.

Fig. 3.2 shows a sorting of the formalisms analyzed more closely in this work accord-

ing to their degree of structural bias. UML is clearly the most detailed, but also the

formalism with the least constraints on the way concepts must be expressed. ‘Boxes

and Arrows’ are similar, with the degree of bias depending on the specific applica-

tion. Three related formalisms, CogAff, Systematica and 3-Tier will be analyzed
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Figure 3.2: Rough ordering of formalization approaches according to the amount of structural

bias.

in Secs. 3.4 according to the criteria defined in the following; the new formalism

Systematica 2d introduced in this thesis will be evaluated in Sec. 4.3.2.

3.2.3 Relation of System Design to Software Infrastructure

With the declared aim of providing support for the full hypothesis test cycle — in-

cluding implementation and reuse — the importance of a software infrastructure to

run the designed systems cannot be ignored. The question then is how well estab-

lished infrastructures are suited for system design already, or at least how the design

of a system and the infrastructure chosen for its implementation are related.

To this end we will review the types of system targeted, the level of description

and the structural bias imposed by six such established infrastructures:

CAST The CoSy Architecture Schema Toolkit aims at “construction and explo-

ration of information-processing architectures for intelligent systems”[39]. A cen-

tral mechanism of description is a decomposition of the whole system into sub-

architectures running in separate processes, each with a working memory and a set

of managed and unmanaged components. Interaction between sub-architectures is

done by reading each other’s working memories and through a central goal manager.

Beyond the decision about sub-architecture granularity and separation of compo-

nents into managed and unmanaged, the structural bias is quite low; to understand

communication patterns, component interdependencies or the relation between rep-

resentations a separate system design language would be beneficial.

XCF The XML enabled Communication Framework[19, 22] aims at providing a

simple and standardized approach to distributed processing and memory structures of

cognitive systems. Central mechanisms of description are the separation of processing

into asynchronously running components, an Active Memory XML server and the

communication between those entities using standardized XML messages. Interaction
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between processing components is done through the active memory by queries and

subscriptions to events, potentially coordinated by a central Active Memory Petri-

Net Engine.

Except for this very last point (the Petri-Net) there is a strong similarity of de-

composition and description (if not of implementation specifics) between XCF and

CAST: within a CAST sub-architecture, the communication pattern of components

and working memory is comparable to that between XCF components and the active

memory. Above that CAST adds distribution into multiple sub-architectures and a

management of goals and XCF adds a more elaborate internal dynamic of the active

memory up to a central coordination using petri-nets. However, the structural bias

imposed by XCF is not stronger than that of CAST and also here communication

patterns and interdependencies (between components) would benefit from a separate

design language.

Middleware A group of very software-oriented infrastructures is spanned by Think-

ingCap II[52], YARP[20], ROS[18], ToolBOS[25] and OpenRTM[53]. They all share

the basic decomposition of a system into concurrently running processing compo-

nents and support their configuration, communication and monitoring. All except

ThinkingCap and ToolBOS support the addition and removal of components at run-

time, the main differences are in the chosen programming languages and the spe-

cific communication protocol (direct or by subscription) and communication method

(XML-RPC or custom).

What all of them have in common is that structural bias introduced by the infra-

structure is (intentionally) very low. For instance, while an architecture description

file (ADF) in ThinkingCap II at least contains a description of the entire system

to be run, ROS is only able to determine the specific communication pattern be-

tween components by run-time analysis. We therefore conclude that especially for

this set of infrastructures, an additional design language determining the relation of

components and their communication and dependencies is essential.

Conclusion It is not our intention to deny that a software infrastructure is essential

for moving from a system design to an implemented system. However, the evaluation

of structural bias imposed by the analyzed infrastructures has shown that this is not

the level where a discussion about design and formal design languages is adequate. It

is the goal of most infrastructures to provide the tools for implementing a very large

spectrum of possible applications. Guiding this process by enforcing consideration

of component dependencies and subsystem separation during the design process (as
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the measure criteria in the following will make explicit) is the task of a formal design

language.

One criterion for such a language (but one of many) must be that it can be mapped

to (at least) one software infrastructure, e. g. the example in [52] for ThinkingCap

II is based on a 3-Tier design. We will therefore consider the relation between the

evaluated formalisms and software infrastructures (where published) when applying

the measure in this section. In addition, Ch. 5 will discuss the mapping of the

Systematica 2d formal design language introduced in this thesis to a set of software

infrastructures.

3.3 Criteria for System Integration Formalisms

Only few attempts at establishing a formalism measure have been made (e. g. [41, 8])

and even those are qualitative in nature. We agree to the assessment made in these

works: A measure to judge the suitability of a descriptive language to qualitative

demands, most of them subjective, will be qualitative itself, asking the right questions

about a formalism, but without the means to judge their fulfillment quantitatively.

We will therefore use the measure proposed in the following with caution and revisit

the lessons we can learn from judging a formalism with this measure when we do so

in Sec. 3.4.

That being said, we will now formulate criteria relating to the three main consid-

erations of the hypothesis test cycle: criteria A1-A3 specify the required minimum

expressiveness for system design; criteria B1-B3 specify additional structural bias for

collaboration; criteria C1-C3 add structural bias for efficient implementation.

Flexible Description

A1: A formalism should not limit the range of architecture

hypotheses that can be expressed — the structural bias should di-

rect the way how hypotheses are expressed (see following criteria), but it

should not limit which hypotheses are possible.

Meaningful Description

A2: A formalism should not hide information necessary for un-

derstanding an architecture hypothesis but try to find an ap-

propriate level of granularity — to support the full hypothesis test

cycle, a design must be simple enough to transfer the main idea on the
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one hand and detailed enough to aid construction of the system on the

other hand.

Standardized Description

A3: A formalism should use a standardized, unambiguous and

intuitive notation to ease discussion and publication — important

both for publication of the architecture and for communication with the

scientists working on the system.

Description of Interfaces

B1: A formalism should allow the specification of the interfaces

of system elements (units) whenever they affect at least two col-

laborating scientists — following the arguments in Sec. 3.2.1, the main

purpose of the design can only be to describe what is between individual

scientist’s fields of work, most notably their interfaces.

Decomposition to Individuals

B2: A formalism should allow a decomposition of the architec-

ture to units for individual scientists — when it comes to imple-

mentation, a good formalism will allow individual scientists to work on

their units individually until they reach a state that can be integrated; a

granularity which is too rough will endanger this separation (this relates

to granularity, see A2).

Description of Dependencies

B3: A formalism should allow specifying the dependencies be-

tween collaborating scientists and identify tightly or loosely cou-

pled interaction — along the same lines as B2, each individual working

on a unit should be at least aware of the units required for his or her

work.
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Translation to Infrastructure

C1: The decomposed units of a formalism should translate into

decomposed units of the software infrastructure chosen for im-

plementation — important for both implementation and reuse: during

implementation, the translation allows a quick understanding and naviga-

tion of the system, during reuse it is always easier to salvage self-contained

units than to split them.

Exploitation of Infrastructure

C2: The dependencies and interfaces specified by the formalism

should be compatible with the chosen software infrastructure to

allow partial testing and graceful degradation, if available — if a

design can decompose to individuals (B2) and express their dependencies

(B3), it is a direct extension to ask for partial execution of subsets of

units in order to allow scientists to test their work in a reduced system

or to allow the system to stay functional when some units fail.

Subsystem Separation

C3: A formalism should allow separating an existing system into

subsystems and reusing or extending its subsystems by means

of the decomposition in the implementation (C1) and the formal

description of dependencies (B3) — reuse of single units is good, ex-

ploiting decomposition and dependencies to allow reuse of larger building

blocks is better.

3.4 Evaluation of Existing Formalisms

We will now proceed to validate the formulated formalism measure, as well as discuss

the range and merit of its application, on the example of four existing techniques for

formalizing EI systems: ‘Boxes and Arrows’ (as an example for the typical ad-hoc

approach, used in numerous publications), 3-Tier (as a popular example of technical

embedded system modeling, see [3, 12]), CogAff (as an example of a biologically

motivated design, see [4]) and Systematica (as a formal language for analysis of

hierarchical architectures, see [5]). We chose these candidates because we believe
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they cover a wide range of techniques of how systems are described; we will focus

only on this quality of description, not on the specific systems built with them.

As mentioned in Sec. 3.3, the application of each of the defined criteria is qualita-

tive. To allow comparability, we will apply them based on the following questions:

� Does the formalism explicitly require the information to satisfy the criterion?

� Does the formalism ask relevant questions towards satisfying the criterion?

� Does the formalism imply a bias for system architectures towards or against

the criterion?

3.4.1 The ‘Boxes and Arrows’ Formalism

A very common approach to system design is the ad-hoc style of drawing boxes and

arrows on paper, white board or any other structure-free medium. The first, and

valid, question about any more structured system formalism is therefore: “Why is

it better than arbitrary boxes and arrows?” Using the formalism criteria introduced

in Sec. 3.3 we can formulate the strong and weak points of this kind of ad-hoc

formalization (see Fig. 2.1 for an example).

Our evaluation of the Boxes and Arrows formalism thus looks as follows:

A1 (+) The range of expression with arbitrary boxes and arrows is limitless; this

is the main advantage of this approach.

A2 (+) The level of description may vary, but the flexibility of the approach allows

description at an appropriate level of detail.

A3 (?) Together with a precise description of the meaning of the used shapes,

the hypothesis can be discussed or published. Additional effort may also en-

sure intuitive presentation and remove ambiguities, but the formalism does not

provide tools to ensure this.

B,C (–) Generally speaking, the formalism does not enforce specifying details like

dependencies, interfaces or granularity — it does not even force the designer

to consider them. Due to the flexibility, a predefined way to translate design

units to the infrastructure cannot be ensured.

All these assessments are done for the general case of boxes. Although they are each

argumentative, all together give a view of the merits (high flexibility) and drawbacks

(limited focus on construction) of the given formalism. Naturally, most other, more

detailed formalisms also use specific boxes as the central means of expression — but,

by characterizing them more closely, ensure consideration of more criteria.
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Figure 3.3: Schematic view of the 3-Tier architecture skeleton as proposed by [3].

3.4.2 3-Tier Architectures

The class of 3-Tier architectures, as presented by Gat[3] and used more recently e. g.

in [12], is mainly used for robot control where reactive and deliberative systems work

together (see Fig. 3.3).

Our evaluation of the 3-Tier formalism thus looks as follows:

A1,2 (–) The decomposition is fixed to the three main layers for controller, sequencer

and deliberator; a different composition or finer description is not intended.

A3 (+) Since the original publication, the 3-Tier approach has been used and the

description can therefore be seen as standardized.

B1 (?) The language does not directly formalize the data transmitted between

layers, but the nature of all communications is implied by the concept.

B2 (–) The rough, three-part decomposition cannot express the separation of indi-

vidual scientist’s work packages.
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Figure 3.4: Example of an agent design in the CogAff framework[4].

B3 (+) Based on the original concept, a tight coupling from bottom to top and a

loose coupling from top to bottom are implied.

C1,2 (+) 3-Tier is traditionally used for robotic applications, therefore there are

many examples of implementations.

C3 (?) Although the design units can be translated to infrastructure units, their

rough granularity makes it unlikely that they can be reused without modifica-

tion in a subsequent implementation.
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3.4.3 CogAff

The CogAff architecture schema presented by Sloman et al.[10] is a framework for

embedding and relating integrated functionalities. Since the schema itself is not

mainly a means of specifying systems we look at an application based on CogAff[4]

to evaluate the power of this formalism, see Fig. 3.4.

Our evaluation of the CogAff formalism thus looks as follows:

A1,2 (+) The two-dimensional arrangement of units along the axes Sense-Process-

Act (horizontal) and Reactive-Deliberative-Meta (vertical) allows a flexible ar-

rangement of integrated functionalities with arbitrary detail. The formalism is

restricted to the CogAff domain, but this is not a major restriction for intelli-

gent artifacts.

A3 (?) Apart from their positioning, the description of units and connections is

not precisely specified, neither in the CogAff proposal[10] nor in the sample

application[4].

B1 (–) A specification of interfaces is not included.

B2,3 (+) Fine decomposition, focusing on single scientists is possible, dependencies

are not specified but can be derived from the positioning.

C1,2 (+) Although no specific infrastructure is mentioned in [4], a mapping of the

units and connections to a standard middleware like YARP or ROS seems

straightforward.

C3 (?) Design units translate to implementation units, missing interfaces and

implied dependencies make reuse of subsystems unpredictable.

3.4.4 SYSTEMATICA

The Systematica formalism introduced by Goerick[5] aims at providing a uniform

description language for hierarchical system architectures. It takes the idea of in-

cremental system layers (as also found in Subsumption[11]) and adds bottom-up

representation and top-down modulation channels, see Fig. 3.5.

Our evaluation of the Systematica formalism thus looks as follows:

A1,2 (?) The formalism decomposes systems into units, but each of these units is

required to present a full sensor-motor loop. This rough and one-dimensional

description allows the expression of arbitrary systems, but not in arbitrary

detail.

A3 (+) The formalism itself is mathematically formalized.
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R3: Representation
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T3,2: Top-down information T3,1: Top-down information

...
Figure 3.5: Schematic view of the Systematica formalism. Taken from [5].

B1 (+) Interfaces are specified by representation and top-down output; input ports

are implied.

B2 (–) The constraint of full sensor-motor loops is often too rough for a decompo-

sition to individual scientists.

B3 (+) Coupling and dependencies are specified by the top-down and bottom-up

channels.

C1,2 (+) A translation to the ToolBOS[25] infrastructure is presented in [9] and

allows partial execution along the bottom-up / top-down dependencies[54].

C3 (?) Design units translate to implementation units, rough decomposition makes

reuse without modification difficult.

3.5 Conclusion

This chapter has motivated, introduced and applied a set of criteria to evaluate the

suitability of a system notation for the Hypothesis Test Cycle. Major points of the

motivation were the difference between EI research and software engineering, the role

of structural bias and the descriptive powers of popular software infrastructures. The

formulated criteria focus both on the descriptive abilities of the evaluated formalism
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(general, standardized, meaningful, interfaces) as well as on the implementation-

orientation (decomposition to individuals, dependencies, mapping to / exploitation

of infrastructure, subsystem reuse). These criteria are qualitative, their application is

therefore a matter of argument, but even so they allow identifying the strong and weak

points of a given notation. Our basic question when evaluating a notation according

to each criterion was whether the notation explicitly enforces the specification of the

requested piece of information.

According to the introduced criteria, four popular EI system notations were evalu-

ated: ad-hoc ‘Boxes and Arrows’, 3-Tier, CogAff and Systematica. This evaluation

reveals different benefits and drawbacks. What strikes out is that most approaches are

not designed to allow an easy implementation of the described EI system, mainly for

one of three reasons: rough description granularity (3-Tier / Systematica), missing

description of interfaces and dependencies (CogAff) or lack of standardization (Boxes

and Arrows). On the other hand, as discussed in Sec. 3.2.3, software infrastructures

are not able to design the functional aspects of these systems, like communication

patterns, incremental construction, etc. Finally, established approaches from soft-

ware engineering to remedy these issues, such as UML or xADL, require a high level

of precision and predefinition in all elements of the design, which is not suitable for

the dynamic process of system integration in EI research (see Sec. 3.2.1).

We believe that the formulated criteria allow one to judge how well a given de-

sign language finds a compromise between these three poles: by asking for a flexible

and meaningful description (functional design) in parallel to the ability to map to

and exploit software infrastructure (fast construction) as well as define interfaces,

dependencies and decomposition to individuals (research flexibility). Based on this

understanding of benefits and drawbacks, the next chapter will introduce the Sys-

tematica 2d formalism for system design, which aims at combining a flexible system

description with a structural bias for system design and easy extendability in order

to satisfy the introduced criteria in all phases of the hypothesis test cycle.
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So far we have formulated and applied a set of criteria for system integration for-

malisms. Although we hope that the introduced measure is applicable and useful

beyond this work, this is not essential: we can already pinpoint the merits and draw-

backs of the evaluated existing formalisms. Arbitrary ‘Boxes and Arrows’ are very

flexible, but neither implementation-oriented nor standardized; 3-Tier is very focused

on implementation but too rough to describe collaboration; CogAff allows a flexible

and implementable organization of units but without description of interfaces or se-

mantics; Systematica in turn supports interfaces and semantic description but is

too rough and enforces a one-dimensional organization. In order to evolve a new way

of writing systems we want to combine the flexibility of boxes and arrows with the

implementation- and collaboration-orientation of CogAff and Systematica.

The result is the development and formalization of the new EI system design lan-

guage ‘Systematica 2d’ (short: ‘Sys2d’). The language is designed to support the

hypothesis test cycle along all three phases: to provide a flexible and standardized

description, allow a fast and uncomplicated implementation and improve decompo-

sition and reusability of both design and integrated system.

In this chapter we introduce the language with its formal and associated visual no-

tation and then discuss several related issues. Most notably, the language introduces

a small but effective structural bias which allows to derive and prove several prop-

erties of systems built according to a Systematica 2d design, e. g. the ability for

partial testing and global deadlock-free operation. The same structural bias changes

the way some design patterns are realized and we will discuss this impact on the

example of standard patterns (e. g. server-client and the ‘lateral support’ pattern).

To evaluate the new language we will show that it can express the three related

formalisms evaluated in Ch. 3 as well as relate it to the same criteria. In addition, we

will present the AutoSys design in Systematica 2d and discuss how this affected

the implementation process (since ALIS was not built based on a Systematica 2d

design, the comparison of both systems will follow in Ch. 7). Major parts of this

chapter were previously published in [40].
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4.1 SYSTEMATICA 2D Language Specification

A Systematica 2d system is a combination of descriptions on two levels: the func-

tional and the descriptive. This is beneficial for two reasons: First, in order to provide

a language which is both suitable for EI system hypothesis description and allows

efficient implementation, it is better to separate the description (especially the gran-

ularity) of functional and semantic system description. Second, the structural bias

can be imposed only on the functional description in order to remove design patterns

with negative impact while reducing design flexibility as little as possible.

In set notation, a system S = (U,A) is defined in Sys2d by a set of functional units

U , including interfaces, connections and dependencies, and a set of sub-architectures

A, including the description of their sensor and behavior spaces. Fig. 4.1 shows an

example design, all relevant elements will be detailed in the following.

4.1.1 Functional System Design

On the functional level, a Sys2d system is composed of the set U with N > 2

processing units un ∈ U, n = 1..N . There is always one unit u1 representing and

emitting sensor events from exteroception Se and proprioception Sp which together

form the full sensor space S = Se × Sp. A second predefined unit u2 represents

receiving and executing motor commands from the motor space M . S, Se, Sp and

M are vector spaces.

Formal Notation

Every unit un = (Dn, In, On, Pulln, Pushn), n = 1..N is described by the

following features (see Fig. 4.1):

� it has an internal dynamics Dn running independently and asynchronously

from all other units;

� it has an interface defined by a set of input ports In, where each element is

defined by its name, data type and input role (defined in the following), thus

In ⊂ {(name, type, role)} and a set of output ports On, where each element

is defined by its name and data type, thus On ⊂ {(name, type)};

� it specifies the properties of each input port by assigning one of three ‘roles’,

which we will call Driving, DrivingOptional or Modulatory — these roles

define dependencies between units as will be detailed below;
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Subarchitecture 1

Basic loop with sensor space S1 and behavior space B1
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Added loop with sensor space S2 and behavior space B2
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Figure 4.1: Visualization of a Systematica 2d description – The system is composed

of units which are arranged along the two axes according to processing flow and

build order. Black ports are outputs, light gray ports are Modulatory inputs,

white ports with solid line are Driving inputs and white ports with dashed lines

are DrivingOptional inputs.

� it may pull data from another units output port o′ to one of its input ports i,

specified by a set of pull operations Pulln ⊂ {(usource, o
′, i)};

� it may push data from one of its output ports o to another units input port i′,

specified by a set of push operations Pushn ⊂ {(utarget, i
′, o)}.

A description of a system as a set of units (with arbitrary granularity), communi-

cating over arbitrary connections is intuitively very flexible but does not enforce con-

sideration of unit dependencies, subsystem reusability or infrastructure exploitation.

Dependencies, and thereby structural bias, are expressed by two means: connections

can be formulated symmetrically as pull or push and each input port has a specific

role. We will discuss these language elements in the following before deriving system

properties and constraints, like incremental construction and global deadlock-free

operation, in Sec. 4.2.1.
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Input Roles & Dependencies

Two formal elements allow formulating dependencies: push/pull connections and in-

put roles. These two mechanisms are independent and can therefore be used to specify

dependencies along two independent dimensions: the difference between push/pull

defines the ‘build order’ dimension, the roles of input ports define the ‘processing

flow’ dimension.

Build Order: If unit un pulls data from or pushes data to unit um then un has

to be built after unit um — in other words: only the newer unit needs to know about

the connections it makes to older or preexisting units (although the older units must

provide the ports to accept these connections). Since every connection between ports

can be symmetrically formulated as either a push or a pull, this sorting by build

order is completely in the hands of the designer.

Processing Flow The concept of sorting units by their role or function in the

processing chain is old: from the Sense-Plan-Act models, over the Bottom-Up and

Top-Down channels in Systematica to the Controller-Sequencer-Deliberator sorting

in 3-Tier — not to mention the usage of these terms in neurological studies.

In the Sys2d functional model, we chose to model this quality locally, by specifying

the ‘role’ of input ports as one of the following three (see Fig. 4.2):

� Driving inputs are mandatory and indicate input data from units prior to the

recipient along the processing flow — this is typically used for sensor prepro-

cessing results, representations, etc.

Input Roles

Mandatory

Optional

Driving Modulatory

Driving

DrivingOptional Modulatory

(Input Data, Representations, …) (Parameters, Operation modes, …)

(Loose Coupling)

(Tight Coupling)

Figure 4.2: Input roles in Systematica 2d – Two criteria are interleaved: driving / mod-

ulatory inputs (sometimes referred to as bottom-up / top-down) and mandatory

/ optional inputs. Three of these combinations are supported by the designated

roles, the combination ‘mandatory and modulatory’ is excluded by design. See

text for details.
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� DrivingOptional inputs are similar to Driving but optional, i. e. the recipient

can function without receiving data on such ports — this is typically used for

inputs to data fusion units, motor commands, etc.

� Modulatory inputs are optional and indicate input data from units further

along the processing flow — this is typically used for modulation of parameters

or operation modes

One combination is intentionally missing: mandatory inputs from modules further

along the processing flow (i. e. mandatory modulation). This is perhaps the strongest

structural bias enforced by Systematica 2d; the main motivation is measure crite-

rion C3: if units can form mandatory connections to modulation sources, a decompo-

sition into independent subsystems is impossible. This constraint does not prohibit

processing loops in a system but only requires some links in a processing loop to be

declared as loosely coupled, i. e. DrivingOptional or Modulatory. Specific examples

of the impact of this constraint will be discussed in Sec. 4.2.2.

Sorting along the processing flow is now straightforward. If unit un receives (by

push or pull) data to a Driving or DrivingOptional input from unit um then unit un

is further along the processing flow than unit um. Conversely, if unit un receives data

to a Modulatory input from unit um then unit um is further along the processing

flow than unit un.

4.1.2 Functional vs. Technical Aspects

Both dimensions, build order and processing flow, could be interpreted as purely

technical categorizations to improve implementation. However, from a technical point

of view, there is no important difference between DrivingOptional and Modulatory

inputs (both are optional or ‘loosely coupled’). Even the definition of the build order

would be superfluous since relations like ‘build A before B’ can be derived directly

from the dependencies defined by input roles.

Our motivation for distinguishing push/pull connections and DrivingOptional/-

Modulatory inputs is therefore much more motivated by the goal of establishing a

functional relation between units in addition to the goal of using functional design

elements purely for a technical implementation. The distinction of DrivingOptional

and Modulatory inputs follows the distinction between sensor-near to sensor-far data

flow and vice versa, thus defining a dimension from sensor to internal representation

to actuator (‘processing flow’). The distinction of push and pull connections allows

subsystem separation in a much stronger way than by the unit dependencies alone,

namely into incremental construction blocks (definition follows in Sec. 4.2.1) similar
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to the phylogenetic evolution of the control structure of a biological organism. A dis-

cussion of the relation between functional behavior of a system and the positioning

of units in these two dimensions will be done in Ch. 6.

4.1.3 Descriptive System Design

In addition to the set of units, a definition of sensor and behavior spaces is important

for understanding and comparing system hypotheses.

We follow the understanding and motivation presented in [5]: The sensor space

of a unit or set of units describes which subset of sensory signals (proprioceptive or

exteroceptive) is accessible, the behavior space describes which range of behaviors can

be controlled (either by direct motor commands or by modulation of other units).

This allows understanding which subsystems have access to specific (e. g. visual)

sensory signals and which subsystems are able to trigger specific externally visible

behaviors.

Since this is an independent level of description whose granularity may not coincide

with that of the units, Systematica 2d allows the description of sensor and behavior

spaces in what we will call ‘sub-architectures’, composed of one or more units. In

this way, the definition of descriptive elements does not impose constraints on the

granularity of the functional decomposition.

In a Sys2d design S = (U,A), a sub-architecture ak ∈ A is a tuple ak = (name,

Uk, Sk, Bk) with Uk ⊂ U and ∀(k, l) : Uk ∩ Ul = ∅ (a unit may not belong to

more than one sub-architecture), where Sk describes the sensor space used by ak and

Bk describes the behavior spaces emitted by ak (see Fig. 4.1 for a complete Sys2d

design).

4.1.4 Visual Representation

To allow faster understanding and communication, a visual representation of the

Sys2d description, so far described in set notation, is clearly preferable. Fig. 4.1

shows a graph of such a system. Units are shown as large boxes with their input and

output ports arranged on the top and bottom sides. Sub-architectures are shown as

containers around sets of units, adding a name and descriptive properties. Ports are

colored as follows:

� Driving inputs are white with black, solid boundary,

� DrivingOptional inputs are white with black, dashed boundary,

� Modulatory inputs are light gray and
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� Outputs are black with white text.

Ports are sorted and assigned to unit top or bottom side so that crossing connections

are minimized, but this has no conceptual meaning. Connections are shown as dashed

lines for pulls and as solid lines for pushs. Thus, the visual representation can cover

all properties of Sys2d systems. Based on this visual representation, a visual editing

software was created, please see Appendix 1.

4.2 Structural Bias

4.2.1 Definition and Proof of System Properties

After introducing Systematica 2d in its general form we will now formulate con-

straints on the functional side of a Sys2d design (specifically, the set U) in order

to provide a structural bias towards the measure criteria A1-C3. The four system

properties discussed in the following are:

1. ‘Sortability’ along the build order (vertical) and processing flow (horizontal)

dimensions,

2. Ability for incremental construction,

3. Completeness of a subgraph in terms of necessary units to run the subgraph,

4. Global deadlock-free operation.

In the following we will describe the definition of each of these properties and then

derive the constraints it imposes on U .

Sortability means that the units ui ∈ U can be ordered, or sorted, along the

two dimensions of Systematica 2d, which are defined by two sorting relations, <v

for vertical sorting along the build order and <h for horizontal sorting along the

processing flow.

Definition 4.1 (Sorting Relations) A unit un ∈ U will be called ‘below’ um ∈
U (or: vertically smaller un <v um) iff there is a push p ∈ Pushm connecting

an output of um to an input of un or there is a pull p′ ∈ Pullm connecting an

input of um to an output of un. A unit un ∈ U will be called ‘left of’ um ∈ U
(or: horizontally smaller un <h um) iff there is a push or pull from an output of

un to a Driving or DrivingOptional input of um or there is a push or pull from

an output of um to a Modulatory input of un. To detect loops in these relations,

we define the transitive hulls <+
h and <+

v . The transitive hull of a relation < is

the smallest relation <+ which contains all elements of < and is transitive, i. e. if
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a <+ b and b <+ c then also a <+ c; it can be computed by starting with <+=<

and incrementally finding triples (a, b, c) and adding (a, c) to <+.

Definition 4.2 (Sortability) A system S = (U,A) will be called sortable iff for

every relation <∗∈ {<v, <h} it is possible to assign order numbers oi ∈ N to every

unit ui ∈ U , i = 1..N , such that

∀(i, j) : ui <
∗ uj ⇒ oi < oj

where < denotes the ‘smaller than’-relation on natural numbers.

Proposition 4.1 (Sortability of a SYS2D System) A system S = (U,A) is sor-

table iff the relations <+
h and <+

v are antisymmetric, i. e. if there is no pair (a, b)

with a <+ b and b <+ a in either relation.

In other words, sortability requires that the sorting relations be free of loops in both

dimensions: there should be no loops based on push/pull connections as well as no

loops based on connections to driving or modulatory inputs. Two examples of the

kinds of design this affects can be found in the discussion (see Sec. 4.2.2).

Proof 4.1 Since the sorting relations are defined independently, sorting in horizon-

tal and vertical direction can also be done independently and equivalently with <+

representing <+
h and <+

v . The weakest form of sorting or assigning order numbers is

provided by partially ordered sets[55], which are defined over relations which are tran-

sitive and antisymmetric. Since <+ is transitive and antisymmetric it can be used

as ordering relation in the partially ordered set (U,<+), thus making the system

S = (U,A) sortable (along the horizontal and vertical axes independently).

�

Several newer works define partially ordered sets on ≤ instead of < relations and

require them to be reflexive. The sorting relations introduced here do not define

‘equality’ between units, thus the <-sign was used; this also means that there is

no necessity for the relations <+
h and <+

v to be reflexive as it is not an essential

precondition for sortability of a partially ordered set[55].

Incremental construction, as the second property to be evaluated, requires that

mandatory, i. e. Driving, inputs are connected and come from preexisting, i. e. older,

units.
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Definition 4.3 (Incremental Construction) A system S = (U,A) will be said

to allow incremental construction if it is sortable and for every unit un, for every

Driving input port (i, t,Driving) ∈ In there is a pull connection (um, o, i) ∈
Pulln providing data to that port.

This property is formulated purely in the form of a constraint on the handling of

Driving inputs in order to achieve the third property, Completeness of subgraphs:

Definition 4.4 (Executable Subgraph) In a system S = (U,A), a subgraph

Uk ⊂ U will be called executable if all mandatory inputs of all units un ∈ Uk

receive data from within the subgraph.

Proposition 4.2 (Complete Subgraph) In a system S = (U,A) which allows

incremental construction, a subgraph Uk ⊂ U is executable if it contains the full

transitive subgraph under <v of each contained unit:

∀(un ∈ Uk, um ∈ U) : um <+
v un ⇒ um ∈ Uk

Proof 4.2 Incremental construction requires all Driving input ports to receive data

by pull connections. A pull connection between two units implies that the two units

are related with <v. By transitive completion from <v to <+
v , each unit is related

to all units required to provide all Driving and therefore all mandatory inputs.

�

In other words, by constraining the use of Driving inputs to pulling connections, we

can ensure that subgraphs are incrementally complete under <+
v , and thus also allow

‘incremental construction’ (they can be built and tested incrementally) and ‘graceful

degradation’ (they can function even if higher units fail).

The final property achieved by the constraints of sortability and incremental con-

struction is Global deadlock-free operation:

Definition 4.5 (Global deadlock-free operation) A system S = (U,A) will be

said to allow global deadlock-free operation iff it is composed of locally deadlock-free

units (i. e. given all mandatory inputs, all units will always produce outputs in finite

time) and contains no loops of mandatory connections.
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The reason for this way of defining global deadlock-free operation is that in a system

of locally deadlock-free, asynchronously running units, a deadlock on the system

level can only occur by a set of units waiting on each other, which implies a loop of

mandatory connections.

Proposition 4.3 (Global deadlock-free operation) Every system S = (U,A)

which is composed of local deadlock-free units and is sortable is globally deadlock-free.

Proof 4.3 Mandatory input is only permitted using Driving inputs, therefore all con-

nections (both push and pull) to a mandatory input from sending unit un to receiving

unit um imply un <h um. Since the system is to be sortable, the transitive hull <+
h

of <h is required to be antisymmetric, i. e. there is no pair (un, um) with un <
+
h um

and um <+
h un. Therefore, the system cannot contain loops of mandatory inputs.

�

Definition 4.6 (Valid Sys2d Design) A Sys2d system S = (U,A) is said to be

valid iff it is sortable and allows incremental construction.

The term ‘valid Sys2d design’ thus combines all formulated constraints (enforcing

the highest level of structural bias possible with Systematica 2d) and all derived

benefits (incremental construction, complete subgraphs and global deadlock-free op-

eration). All future discussions concerning the impact of structural bias and the

benefits of Systematica 2d in general will concentrate on valid Sys2d designs.

4.2.2 Impact of Structural Bias

After presenting the formalism itself and the benefits we believe it entails for research

system integration, we will now discuss the specific impact of the implied structural

bias and the constraints this imposes for system design. From an ADL point of view,

one could say that the Sys2d language provides pre-defined component (units) and

connector types (input roles) and uses those to enforce constraints on the explicit

architecture configuration chosen by the designer. By analyzing different commu-

nication and system patterns we will show in the following sections and in Ch. 6

that these constraints do not reduce the space of possible designs in practice, even

though they sometimes require a specific way of formulating them. In this section

we will present two technical communication patterns (Client-Server and Publisher-

Subscriber) and one popular artificial intelligence design pattern, ‘Lateral Support’,
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to illustrate the Sys2d constraints on real-world examples and show how they influ-

ence the formulation of these designs.

Server-Client

The typical way of connecting server and clients is by every client pushing requests to

the server and the server pushing responses back to each client — the resulting Sys2d

design is depicted in Fig. 4.3a. We see several drawbacks in this design: First, the

two-way push makes it unclear which unit could run without the other: both units

depend on each other, which makes independent development or testing difficult

(see measure criteria B2 and C2 in Sec. 3.3). Second, the use of Driving inputs

for both requests and responses (assuming server and client wait for these inputs,

which is the typical case) implies synchronization of both partners to each other,

thus undermining the idea of asynchronous processing and impairing the ability for

subsystem decomposition (criterion C3). Both objections are reflected in the Sys2d

constraints: the graph shown in Fig. 4.3a is sortable neither in horizontal nor in

vertical direction.

Fig. 4.3b shows an alternative interpretation of a Server-Client layout which is

compatible with the Sys2d constraints. The server is modeled as the base unit, re-

ceiving request via an optional, modulatory input and publishing — but not pushing

— the results. Clients thus push their requests to this modulatory server input and

pull back results from the server. This allows the server to run asynchronously, be

tested independently and be separated and reused.

We would like to point out that both designs, the non-compatible and the compat-

ible, have processing loops between server and clients. The structural bias in Sys-

tematica 2d does not prohibit loops but merely ensures that they are not tightly

coupled: in every processing loop there must be at least one connection with loose

coupling — this usually requires only a few design adjustments and allows the de-

scribed benefits.

Publisher-Subscriber

A Sys2d interpretation of this layout can be seen in Fig. 4.3c: The publisher asynch-

ronously generates messages which are pulled from the clients to their driving inputs.

In this interpretation, the actual ‘subscription’ process is implied in the setup of the

pull connection. With this design, the same properties of asynchronous operation,

independent testability and separability as described for the Server-Client layout also

apply here.
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a) Client-Server Model (Tight Coupling) b) Client-Server Model (Loose Coupling)

Server
Requests Responses

Client 1
ResponseRequest

Client 2
ResponseRequest

Server
Requests

Responses

c) Publisher-Subscriber Model

Subscriber 2
Messages

Subscriber 1
Messages

(Loose Coupling by default)

Client 1
RequestResponse

Client 2
RequestResponse

Publisher

Messages

Figure 4.3: Common interaction scenarios to illustrate and motivate the structural

bias of Systematica 2d. – a) Tight coupled Server-Client layout, where clients

push requests and the server pushes responses — this creates a build-order un-

sortability (a dependency loop) which makes incremental construction impossi-

ble. b) Alternative, Sys2d-compatible loose coupled Server-Client layout where

clients push requests to the server but pull results back once the server provides

them. c) Publisher-Subscriber layout, subscription is modeled by pull connec-

tions, thus ensuring separability and sortability.

Lateral Support

It is a popular technique to use (intermediate) results of one processing flow, e. g.

confidence ranges, to improve processing of a parallel processing flow (e. g. [56, 57, 58])

— this is commonly referred to as lateral support. In a straightforward modeling of

two units (see Fig. 4.4A), mutual modulation leads to a similar problem as discussed

for the ‘typical’ Server-Client layout in Sec. 4.2.2, just that the sortability violation

is in the ‘processing flow’ dimension.

We therefore propose an alternative layout, as shown in Fig. 4.4B: it is based on the

concept that the logic for performing each processing flow and the logic for applying

intermediate results as modulation to another processing should be separate. In

the proposed design, this second piece of logic is called ‘Decision’ unit. Using such

a processing/decision separation recovers several important properties: First, the

graph is sortable again by avoiding the two-way modulation; by extension it also
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Processing 2

Processing 1

Actuators
M

Sensors
S

Modulation 1

Representation 1

S M

Modulation 2

S M

Representation 2

Modulation 1Modulation 2

a)

Decision 2
Representation 2Modulation 1

Decision 1
Representation 1 Modulation 2

Processing 2
Modulation 2

S M

Representation 2

Processing 1
Modulation 1

S M

Representation 1

Actuators
M

Sensors
S

Modulation Layer
Optional decision making about modulation signals

Processing Layer
Mandatory forward processing

b)

Figure 4.4: Modeling of lateral support in SYSTEMATICA 2D – a) Straightforward

modeling of the lateral support pattern: the mutual modulation produces a pro-

cessing flow unsortability. b) Model of lateral support from a Systematica 2d

point of view. To ensure separability, processing and decision, or support gen-

eration, are separated. We see this as a general principle: in order to reduce

interconnectivity and improve robustness against failing units, processing units

are separate from decision units providing modulation signals.

allows incremental construction. Second, the separation into a basic processing layer

and an added decision layer helps with partial testing and ensures that processing can

go on if the decision layer fails (graceful degradation). Finally, in case a processing
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Controller

Deliberator

Sequencer

Deliberator
Task Description Planning Trigger

Sequencer

Task Description Planning Trigger

Behavior Activation Behavior Success

Sensors

S

Actuators

M

Controller
Behavior Activation Behavior Success

S M

Figure 4.5: Sys2d visualization of the 3-Tier example from Fig. 3.3.

module is to be used in a different context where this form of lateral support is

not possible, it can be used without the decision module specific for this purpose

(subsystem separation).

4.3 Evaluation

After the definition of the Systematica 2d system design and description language,

we can now discuss the applicability of the language and the comparison to the ex-

isting formalisms evaluated in Sec. 3.4. To this end, we will present ‘translations’ of

the evaluated formalisms 3-Tier, CogAff and Systematica to the new language, a

discussion of the full AutoSys Sys2d design will follow in Sec. 4.4.1 (a translation

of the ALIS design to Sys2d is presented later in Ch. 7). Based on these exam-

ples and the functional constraints formulated in Sec. 4.2.1 we will then evaluate

Systematica 2d with the measure criteria presented in Sec. 3.3.

4.3.1 Translation of existing formalisms

Figures 4.5, 4.6 and 4.7 show visualizations of Sys2d designs for the 3-Tier, Co-

gAff and Systematica examples, respectively. All three systems are sortable and

allow incremental construction; this is not a property of the ‘translation’ but shows
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Deliberative

Reactive

Planner
Belief State M

Belief Manager
Belief State

S Goals M

Goal Generator
Goals

S

Reactions
S M

Actuators

M

Sensors

S

Figure 4.6: Sys2d visualization of the CogAff example from Fig. 3.4.

that these qualities are important in other notations as well. The visualization can

therefore be done along the lines described in Sec. 4.1.4.

In the process of translating from the original formalism to Systematica 2d sev-

eral pieces of information had to be added to arrive at a complete system description.

For the 3-Tier case, this is the question of triggered or deliberative planning —

a question which is in general undecided in system theory but which still requires

a decision for every specific system instance. Fig. 4.5 shows the case of triggered

planning.

For the CogAff example, the interfaces had to be defined in more detail, which was

done based on explanations given in [4]; dependencies and input roles were chosen to

fit the two-dimensional arrangement already inherent in CogAff.

Finally, for the Systematica example, input ports had to be defined where the

original formalism only specifies representations and top-down outputs; because of

the one-dimensional nature of Systematica the units are arranged diagonally.

The examples not only show that Systematica 2d is able to express the evaluated

formalisms adequately but that it helps to ask questions necessary to complete their

notation.
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Loop 1

Loop 2

Loop 3

Actuators
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D1

T2,1 R1

S1 M1,P1

Sensors

S1 S3

D3

R3

S3 T3 M3,P3R1R2

Figure 4.7: Sys2d visualization of a Systematica example similar to Fig. 3.5.

4.3.2 Evaluation of SYSTEMATICA 2D in the Measure

Our evaluation of the Systematica 2d formalism thus looks as follows:

A1 (?) The formalism decomposes systems into units with inputs, outputs and

connections. The proposed functional constraints reduce this flexibility slightly,

which is a constructive bias for most EI systems but might limit the expres-

siveness in other domains (see discussion in Sec. 4.2.2).

A2 (+) The formalism allows a fine granularity in the description and it is therefore

up to the designer to choose which level of detail is needed — although it needs

to respect criterion B2 (Decomposition to individuals). Beyond the functional

units, a description of sub-architecture properties is also possible.

A3 (+) The formalism itself is mathematically formalized.

B1 (+) Interfaces are explicitly described by input and output ports.

B2 (+) The granularity can be matched to a per-scientist decomposition (see A2).

B3 (+) Coupling and dependencies are specified by input roles and push/pull con-

nections.

C1 (+) The formalism can be translated to any infrastructure which supports com-

municating units and the three used input roles (see [54]) — which is possible

in practically every infrastructure, from object-oriented platforms, over service-

and blackboard-oriented systems to data-flow engines (see Ch. 5).
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Figure 4.8: SYS2D design of the AutoSys system – The figure shows the complete de-

sign for AutoSys. All interfaces and dependencies are modeled, compare Fig. 2.3.

Please see text for details.

C2 (+) The functional properties of incremental construction and complete sub-

systems defined in Sec. 4.2.1 aim directly at utilizing infrastructure properties

of partial testing and graceful degradation.

C3 (?) The fine decomposition makes reusing single units possible without change

(at least when observing B2). In addition, systems fulfilling the incremental

construction constraint are very easy to decompose into reusable subsystems.

However, currently only units or sets of units can be reused without a means of

abstraction into larger building blocks (i. e.sub-architectures cannot be wrapped

into complex units).

4.4 Results

4.4.1 The AutoSys design

AutoSys was the first system built completely according to a Systematica 2d

design. The final design can be seen in Fig. 4.8, for comparison to the reduced

‘Boxes and Arrows’-like version chosen for publication see Fig. 2.3. It is apparent that
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the main processing blocks introduced in Sec. 2.2 are each represented as one unit:

Preprocessing (providing the sensory basis), Classifier and Stereo Cues (detecting

regions of interest), Proto-Object Fusion (merging and stabilizing detections), Scene

Context and Scene Model Learning (learning and applying filters to direct the cues’

focus) and finally the two task-specific evaluations: detection of cars and estimation

of time-to-contact.

In addition to the mandatory input (S) and output (M) units, the most important

difference between the system sketch from Ch. 2 and the Systematica 2d design

is the specification of transmitted data as unit ports with specific input roles. From

these input roles the ordering of units is derived. Since the reduced system sketch

was created based on the Systematica 2d design, it is not surprising that it reflects

this ordering, with the exception that task-specific processing is arranged at the top

to save space in the publication. A second significant difference between the two

formalizations of the AutoSys system is the added description of sub-architectures

in the Sys2d design, which in turn allows a specification of sensor and behavior

spaces, as will be discussed in Ch. 6.

Motivation of Used Input Roles

We would like to discuss the choice of input roles at several positions in the design

to illustrate their use. The use of ‘Driving’ inputs for sensory preprocessing results is

straightforward, as is the use of the same type for the list of merged Proto-Objects

used by task-specific post processing.

The Proto-Object Fusion unit uses ‘DrivingOptional’ inputs for the detections from

individual cues. This indicates that the unit will operate with the cues present at

the moment, but without depending on one specific cue to be present. The same is

true for the use of filter input by the cues: if present, the filter will be used. All four

of these ‘DrivingOptional’ inputs are not formulated as ‘Modulatory’ because data

along these channels arrives synchronized to the sensory input (if it arrives at all)

and thus is part of the processing flow: the Scene Context unit applies the current

model to the sensory input to provide a filter for each image and the cues process

the image and (potentially) the filter to provide detections for each image.

In contrast to this, the Scene Model Learning may have an internal dynamics

or a long-term learning rule and is not assumed to provide a new scene model with

every input image. Therefore, the provided scene model is received at a ‘Modulatory’

input by the Scene Context unit. As an example, the scene model contains a range

of heights above the ground where detections are acceptable. Although this height
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range may change slowly (Modulatory), the mapping from current ground distance

and height range to acceptable positions in the image must be done for each new

image (DrivingOptional).

Resulting System Details

The design itself shows that the AutoSys system can be expressed and designed in

Systematica 2d. The result is a valid Sys2d design, i. e. it satisfies all constraints

in order to be sortable and allow incremental construction. This is not to say that

the formalization process is a trivial one: interfaces and input roles have to be chosen

to match each other and avoid violation of formal constraints — but as with most

natural languages, the effort involved in following the grammar usually does not

reduce the space of ideas that can be expressed.

The beneficial impact of using Systematica 2d instead of currently existing sys-

tem formalization languages lies in the information that can be derived from the

design. We see three such derived details:

� Unit Dependencies resulting from the chosen input roles define which unit

requires which other unit, such that the dependencies are minimal (only along

Driving inputs) and have no loops (see proof for Sortability),

� Build Order resulting from the dependencies and their transitive partial order,

meaning that there is a clear order in which components are to be integrated

into the system,

� Partial Test Graphs resulting from the proof of complete subgraphs, meaning

that during the integration of every unit, the minimal set of units necessary to

test it is already present in the implemented system.

All three of these are derived from the theoretical, formal design of the system.

They are results of the structural bias enforced by Systematica 2d: specific input

roles, sortability and incremental construction. However, all three are important not

mainly for the design but for the construction of the system. As such, they demon-

strate the ability of the Systematica 2d language to enforce important constraints

in the earlier design phase — without limiting the range of expression —, constraints

which are then beneficial to the later construction phase.

A more detailed analysis of the possible decompositions of the AutoSys design,

the impact this has on the implementation process and the reduction of time needed

for system construction will follow in Ch. 7.
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4.5 Conclusion

This chapter has introduced, discussed and evaluated the Systematica 2d language.

The main elements of the language itself are the functional system design, focusing

on units, interfaces, input roles and connections, and the descriptive system design,

focusing on sub-architectures and sensor / behavior space description. While this

chapter has focused on the functional, a detailed analysis of the foundations and

implications of these descriptive elements will follow in Ch. 6.

The input roles (Driving, DrivingOptional and Modulatory) as well as the sepa-

ration of connections into push and pull are used to define dependencies between

units along two independent dimensions: push/pull connections sort units according

to Build Order (old-to-new), different input roles sort units according to Processing

Flow (sensor-processing-actuator). Based on these dependencies, the formal con-

straints of sortability and incremental construction were defined, which led to proofs

ensuring the completeness of a subgraph and the global deadlock-free operation of the

designed system. These two constraints, combined in the term ‘valid Sys2d design’,

impose a significant structural bias on the design process, therefore their impact on

the design of established software pattern was discussed.

To compare Systematica 2d to the related notations introduced in Ch. 3, these

designs were ‘translated’ into Sys2d designs and the new language was evaluated

along the measure criteria. The ability to translate existing system approaches shows

the expressiveness of Systematica 2d. In addition, the fact that all translations

resulted in valid Sys2d designs suggests that the constraints imposed are reasonable

for the target domain of EI systems. Together with the expression of standard de-

sign patterns as valid Sys2d designs, this supports the claim that every EI system

hypothesis can be rewritten in to a valid Sys2d design with the same functionality.

The evaluation of the new language shows that it satisfies most criteria well since

it both allows flexible and standardized description in the design phase and enforces

a structural bias which makes it very useful in the implementation phase. The two

open points are the influence of the structural bias on domains other than EI and the

missing ability to wrap sub-architectures into ‘composite units’ in order to abstract

towards more complex systems rather just to reuse building blocks. Both of these

will be the subject of future work.

In the last section of this chapter, the Sys2d design for AutoSys was shown and

explained. The beneficial properties of using Systematica 2d in the AutoSys sys-

tem as compared to the ad-hoc design used for ALIS will be discussed in Ch. 7.

In the next chapter, we will close the Hypothesis Text Cycle by presenting map-
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pings from Systematica 2d to common software infrastructure paradigms and thus

answering the question how to get from a design to an implemented system.
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5 From Design to System

A good design is by no means a guarantee for a working system. On the way to eval-

uating an intelligent system hypothesis (expressed by a design), the largest obstacle

is the phase of implementation, usually done as a collaboration of many scientists

and engineers. In short: a design is only as good as the system many people build

from it – and a great number of obstacles in the implementation process may lead

away from the design.

In this chapter, we will match the language elements of Systematica 2d to the

major software infrastructure paradigms (object-, service-, black-board-, data-flow-,

and bus-oriented) to show that a careful design improves the implementation phase

in two ways: First, it prevents or softens a set of recurring problems during imple-

mentation, such as high interdependency during testing as well as changes or delays

in the finalization of units. Second, it allows a set of generic and (mostly) paradigm-

independent system tools to be created such as reliable loose coupling of modulatory

data or system-wide status monitoring.

This amount of preparation is not often attempted: knowing that the implemen-

tation phase is challenging, many projects focus their entire effort on integration and

implementation rather than starting with a design. This is usually based on the

assumption that such a design would consume precious time, change too frequently,

and ergo not benefit the implementation phase at all. By looking at several infra-

structure paradigms, reoccurring problems and possible solutions, we aim to show in

this chapter that this is not the case.

We start by mapping Systematica 2d, its elements, constraints and properties,

to the most common infrastructure paradigms in Sec. 5.1. We then discuss a set

of generic system elements which fit into this combination of design language and

infrastructure and allow incremental construction and partial testing as well as system

monitoring in Sec. 5.2. Finally, in Sec. 5.3 we present the resulting process for the full

hypothesis test cycle, incorporating system formulation, implementation and revision.
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5.1 Mapping Design To Infrastructure

Two questions will be answered in this section.

1. Given a Systematica 2d design, what properties must a software infrastruc-

ture have to allow implementation of that system?

2. Given a Systematica 2d design and a specific infrastructure paradigm, how

does the design map to the infrastructure?

By starting with the first question we can evaluate different paradigms along these

properties when we discuss their mapping.

5.1.1 Infrastructure Prerequisites

Both the set of criteria for formalization languages (Ch. 3.3) and the Systematica

2d language itself (Ch. 4.1) have the expressed goal to improve the implementation

process just as much as the design process. In Systematica 2d, this improvement

is based on a number of theoretical results of the structural bias, most notably incre-

mental construction, partial testing and global deadlock-free operation. In order to

bring any of these properties from the theoretical to the practical, it must be possible

to map them into an infrastructure – and this mapping requires a set of infrastructure

elements to be present.

As a first step, the Sys2d language elements have to be separated into descrip-

tive and technically relevant constructs. Even though Systematica 2d uses terms

like ‘interfaces’, ‘asynchronously’ running units or ‘build order’, these are not de-

fined with a particular software engineering concept in mind but in order to pro-

vide a formal system description, including the constraints and proofs presented in

Sec. 4.2.1. In Sec. 4.1.2 the differences between functional and technical language as-

pects were discussed. Thus, the necessary technical concepts are units, connections

(without the push/pull distinction) and input roles (tightly or loosely coupled). Thus

the infrastructure has to support asynchronously running processes/threads/compo-

nents/etc., at least one way to exchange data between them and the ability for tight

and loose coupling.

The necessary infrastructure elements are derived mainly from the definition of

these technical Systematica 2d language elements (i. e. units and connections) and

their interplay in terms of tight/loose coupling, incremental composition (for con-

struction and testing) and subsystem decoupling for reuse:
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Definition of Units and Interfaces

I1: The infrastructure must allow expressing functionality in

terms of separate, self-contained processing units with a de-

scription of an interface in a standardized format – this will allow

mapping Systematica 2d units and ports.

Data Transmission between Units

I2: The infrastructure must provide a mechanism to transport

(i. e. push or pull) data from one unit’s interface to another – an

essential prerequisite for any kind of system decomposition into units.

Independent Execution of Units

I3: The infrastructure must execute units independent from

each other and from the (possibly non-trivial) processing of data

transmissions – this allows both asynchronous processing, incremental

composition (during construction) and decomposition (during reuse).

Support for the three SYS2D Input Roles

I4: The interfaces of units must allow ‘Driving’ (pull), ‘Driving-

Optional’ (push/pull) and ‘Modulatory’ (push/pull) input roles

with the associated hard/loose coupled behavior – this is the final

constraint to validate the proven system properties in the implemented

system.

Collaborative Development and Integration of Units

I5: The infrastructure must allow a number of scientists to col-

laborate, both in terms of unit development and in terms of

unit interconnection, composition and decomposition – this is a

requirement independent of any design language, simply for the purpose

of allowing collaborative construction of more complex EI systems.

Some of these items will seem self-evident; we specify them anyway, both to arrive

at a list which is as complete as possible and because mapping a Systematica 2d

design to an infrastructure paradigm can now be reduced to finding counterparts to

each of these required elements I1-I5.
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5.1.2 Mappings to Specific Infrastructure Paradigms

We will now apply the prerequisites to a set of infrastructure paradigms to show that

they can serve as the basis for implementing any valid Systematica 2d design, i. e.

a design following the sortability and incremental construction constraints as defined

in Sec. 4.2.1.

Object-oriented infrastructures

The class of object-oriented (OO) infrastructures is perhaps the most unconstrained,

just as most other infrastructures discussed in the following are based upon an object-

oriented language (such as Java, C# or C++) to establish their specific paradigm

(e. g. all service-oriented infrastructures implement services, communication, routing,

etc. as objects). As a result, the most we can say about requirements I1-I5 is that all

of them can be implemented in an object-oriented way: Objects serve as a straightfor-

ward mapping of units and the concept of interfaces is innate to most OO languages.

Communication between objects can be done based on simple method calls or us-

ing a more elaborate communication library, e. g. CORBA or XML-RPC between

processes. Independent execution of units can be done either using thread-based or

process-/machine-based separation of objects, with the appropriate communication

mechanism to support adding or removing units and their communication channels

at run-time.

The implementation of the three input roles requires the possibility for objects to

stop processing until they receive new data (‘Driving’ or connected ‘DrivingOptio-

nal’) and the possibility to accept modulation data asynchronously while waiting or

processing (‘Modulatory’). Since the latter mechanism is not trivial and also miss-

ing in most other infrastructures a generic solution will be presented separately in

Sec. 5.2.1.

Last but not least, the ability for collaborative development is typically addressed

by a separation of single unit development and the integration of units to (sub-)

systems.

There is, to the best of our knowledge, no software infrastructure which is purely

object-oriented, without exhibiting at least some traits of a more specific paradigm

(the only candidate being Player[24], but even there the service-oriented aspects

are not negligible). All of the previous remarks are equally true for the following

infrastructure paradigms, simply because they are all based on some understanding

of objects. By specifying some of the mentioned aspects, e. g. a specific understanding

of objects and interfaces (e. g. a data flow) or a specific communication pattern (bus,
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Systematica 2d Player[24] Microsoft Robotics Studio[14]

Units Devices / Nodes (processes) /
Clients Services

Connections Player Interface DSSP Messages
(push+pull) (local or networked) (local or networked)

Driving implicit for Devices Port
(upwards) + Arbiter

DrivingOptional implicit for Clients Port
Modulatory and Devices (downwards) + Mod. Switch

Table 5.1: SYS2D language elements mapped to service-oriented infrastructures –

The table shows mapping of technical language elements of Systematica 2d

to two service-oriented infrastructures. Player uses ‘Devices’ for composition of

units (all of which run in the same process) and has an understanding of tight

and loosely coupled communication very similar to Systematica 2d. Microsoft

Robotics Studio allows arbitrary composition of services into nodes (processes)

and has very flexible message-based communication channels that can be tuned to

perform all three input roles.

blackboard), they define a specific way to build systems. We will now look at these

specializations and how well the mapping of Systematica 2d designs can be done

there for the case of service-, blackboard-, data flow- and bus-oriented infrastructures.

Service-oriented infrastructures

Composing an EI system out of interacting services has arisen as a popular concept in

the robotics community because it makes adding and removing functionality to/from

the system very easy (I3). The most popular infrastructures using this paradigm

are Player[24] and the Microsoft Robotics Studio[14] (MRS). Both wrap each func-

tionality into a service object with a clearly defined interface (I1) and provide the

mechanisms for transmitting requests and responses between services (I2).

Integration of services can be done in two ways: In the case of Player, the designer

specifies which service uses which other service to fulfill lower-level operations (e. g.

an obstacle-avoidance service using odometry, laser and wheel control services). In

the case of MRS, each service is responsible for finding the partner services where

they wish to push data to or pull data from (supported by a service discovery service).

Both approaches are compatible with the basic sortability constraint of Systematica

2d in that they require services to know only of services below them.

For the case of I4, the argument presented for object-oriented infrastructures also
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Systematica 2d XCF[22] CAST[23]

Units Processes Processes (sub-architectures)
Components (units)

Connections Active Memory Working Memories
(push+pull) (XML-RPC) (CORBA)

Driving Subscription Pull from Memory
+ sync. + sync.

DrivingOptional Query Pull from Memory
Modulatory

Table 5.2: SYS2D language elements mapped to blackboard infrastructures – The

table shows mapping of technical language elements of Systematica 2d to two

blackboard infrastructures. The separation into units is more coarse-grain in

CAST since components with similar functionality are grouped into one ‘sub-

architecture’ running in a separate process. Both infrastructures feature one or

multiple shared data domains (the ‘blackboards’: for XCF called ‘Active Memory’,

for CAST called ‘Working Memory’) which are used for communication between

Sys2d units. In both cases, handling loosely coupled information is easier than

synchronizing to Driving inputs.

holds: ‘Driving’ and ‘DrivingOptional’ inputs are straightforward, ‘Modulatory’ in-

puts can be realized using the mechanism laid out in Sec. 5.2.1 below. Collaborative

development (I5) on the other hand is a direct result of the separation of systems

into services and therefore needs no further customization.

Blackboard-oriented infrastructures

As a special case of communicating services, blackboard infrastructures provide one

central data storage and access point across which all services exchange data (the

‘blackboard’). Examples are XCF[22], and (to some extent) CAST[23].

As the blackboard is mainly a specific mechanism for communication, other aspects

such as the separation of a system into units or services (I1) as well as the independent

execution (I3) and collaborative development (I5) of services map in the same way

as for service-oriented architectures.

By its very nature the blackboard provides a mechanism for data exchange (I2),

thus the only remaining interesting question is the handling of input roles (I4).

Typically, all communication through the blackboard is loosely coupled, in the sense

that data is provided by one side but without enforcing its usage in any way. In order

to implement a tightly coupled ‘Driving’ input role, the receiving (i. e. the pulling)
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Systematica 2d YARP[20] ROS[18] ToolBOS[25]

Units Processes Processes Processes

Connections YARP ports ROS BBDM / VFS
(push+pull) (XML-RPC)

Driving yarp-connect Subscription CML connections
+ sync. + sync. (implicit)

DrivingOptional Observer Subscription CML connections
Modulatory + Mod. Switch

Table 5.3: SYS2D language elements mapped to data flow infrastructures – The

table shows mapping of technical language elements of Systematica 2d to three

data flow infrastructures. The first two (YARP and ROS) use loose-coupled sub-

scriptions by default and therefore require synchronization on Driving inputs. The

last (ToolBOS) uses direct, synchronized communication by default and therefore

requires the ‘Modulation Switch’ (see Sec. 5.2.1) to allow reliable loose-coupled

inputs. All infrastructures support distribution of units to processes and commu-

nicate over some form of network protocol.

unit must internally add the logic to synchronize to the required data, i. e. to wait

and continually poll the blackboard, or use a subscription mechanism, as provided by

XCF. The implementation of ‘DrivingOptional’ needs the same kind of mechanism,

coupled with the information if a potential sender is present at all and/or a timeout

for falling back to loose-coupled operation. Finally, the easiest way to implement

‘Modulatory’ roles is to add an expiration date to the modulatory data when it is

sent so that the receiver can asynchronously check for non-expired modulation data

and incorporate it into the processing if it is present (see discussion in Sec. 5.2.1).

These relatively simple extensions turn the blackboard into a compatible channel of

communication for Systematica 2d designs, albeit by ignoring some of the specific

advantages of blackboard infrastructures (e. g. dynamic data lookup and inspection

or easy structural plasticity, which we think contradict the purpose of design-first

system implementation).

Dataflow-based infrastructure

The concept of designing systems as a set of units combined into a data flow can be

found in YARP[20], ROS[18] as well as in the ToolBOS platform[25] which was used

to implement both of the recurring example systems ALIS and AutoSys, presented

in Ch. 2.

All data flow infrastructures implicitly bring an understanding of units, interfaces,
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connections and data transmission (I1, I2). The ability for executing units in parallel

is given to most, and with the rapidly increasing amount of multi-core or multi-

processor computer hardware this percentage is sure to increase even more in the

future. This satisfies part of I3, but the demand for independent execution also

requires the infrastructure to be able to handle units dynamically joining or leaving

the system (in order to allow incremental construction and graceful decay). Although

not usually innate to data flow-oriented infrastructures, this property can usually be

recovered by using separate operating system processes for units or sets of units

and connecting them through proxy-units within each process responsible for data

transmission.

The handling of the different input roles (I4) requires a mapping to synchronization

mechanisms within the infrastructure. For the case of ‘Driving’ inputs, a mechanism

executing one unit once new data from another unit arrives at such an input is the

most basic, and thus the most commonly available one. Extending this to ‘Driving-

Optional’ inputs is straightforward, given that the infrastructure can make a unit

wait for new data given the input is connected (‘Driving’ case) and continue without

waiting if the input is not connected (‘Optional’ case). The last type, ‘Modulatory’,

is more demanding since it requires handling several circumstances, including per-

manent, initial or recurring absence of connected sending units and we again refer to

the generic solution that will be given in Sec. 5.2.1.

Finally, the ability for collaborative development (I5) of EI systems is addressed

differently by different infrastructures, but usually involves unit type libraries and/or

hierarchical unit definitions – all of which is made easy by the fact that units can

usually be developed separately by different scientists and then combined to form a

given system.

Bus-oriented infrastructures

We will look at bus-oriented infrastructures as the last class because of their rel-

evance for embedded intelligence in the automotive and small-scale robotics do-

mains. In the former, the CAN bus is a long established standard and the Au-

toSAR initiative[59] is on the way to establish a common infrastructure for interact-

ing (hardware-)components on a car. In the latter, several robot construction kits

(e. g. ‘Bioloids’[60] or ‘Kondo KHR’[61]) use a bus architecture to connect sensors,

actuators and one or more processing modules.

Bus-oriented systems are characterized by a set of hardware- or software-modules

(establishing a separation into units – I1) connected by a single, shared communica-
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tion bus (I2). Typically, modules publish their processing results onto the bus so that

all other modules can read and process them, if they so choose. Bus-oriented systems

are very well suited for dynamically adding or removing modules exactly because of

this loose-coupled all-to-all communication and modules typically run completely

independently because in most domains each module has a dedicated hardware (I3).

In terms of input roles (I4), bus-oriented systems behave similar to blackboard-

oriented systems: data cannot be sent directly to another module but the receiving

module has to actively listen for the sender to emit the data. Thus, tight coupled

communication can be built along the same lines. Just for the case of modulatory

information the lack of persistence of data within the bus makes the proposed ap-

proach infeasible, however the generic mechanism presented in Sec. 5.2.1 will be able

to overcome this problem.

Finally, the collaborative development of different system parts (I5) is made very

easy by the clear separation into separate modules. The only necessary central coor-

dination is the assignment of distinct names or identifiers to all bus messages of all

modules potentially connected to the system.

5.2 Generic System Elements

The mapping of Sys2d designs to software infrastructures has shown that most

technical language elements can be translated quite easily to a variety of technical

counterparts. One feature which Systematica 2d expects of the infrastructure is

slightly harder to archive: reliable modulation. The ideal behavior of a ‘Modulatory’

input port is that it should immediately react to incoming modulation signals, use

them as long as they are valid and fall back to default behavior if the sender of the

signals fails or is removed. This requires an understanding of validity of modulation

signals, which is usually considered a semantic quality of data by many infrastructures

(an exception being XCF, a blackboard-oriented infrastructure, where the ‘Active

Memory’ is able to keep track of the validity of stored signals). The following section

will lay out the basic elements for solving this issue in a general way.

In addition, we want to show that reliable modulation is just one example of a

generic system element for Systematica 2d systems. Such elements are imple-

mentable, simple additions to a system which are based solely on the structure of the

Systematica 2d language, not on any specific design. The reliable modulation is

such a generic element because it works with every Modulatory or DrivingOptional

input port, independent of the function of this input in the specific system. As an
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example for a second generic system element we will describe a ‘Sys2d Monitor-

ing System’, which is able to analyze the ‘heartbeat’ of a running system based on

Systematica 2d in order to identify failed units and, using the incremental con-

struction constraint, detect the root cause of the problem, i. e. the smallest subset of

failed units which can explain the failure of all other failed units.

5.2.1 Reliable Modulation

Modulatory inputs face several unique challenges which are not generally addressed

in implementation infrastructures (see Sec. 5.1 above): Since modulatory data is

usually pushed to these inputs from units built later, at the time of implementation

of the receiving unit it may not be clear where this data is coming from or even

how many units will send data to the port. Nonetheless, the unit should adapt

its processing immediately once modulatory data arrives. Finally, it is often not

favorable to apply a received modulation indefinitely, especially if the sending unit

does not send new data or disappears from the system altogether (this is strongly

related to the property of graceful decay). In short, reliable modulation means: the

receiving port must handle no input data, continuous input data as well as suddenly

appearing and disappearing input data from an arbitrary number of sources.

We propose to solve these requirements by the help of a ‘modulation switch’ as seen

in Fig. 5.1, a component which receives all modulatory data of one port, analyzes

their temporal behavior and sends a reliable modulation to the unit’s processing.

By placing the switch behind the port, and thus inside the unit, it is independent

from the infrastructure paradigm chosen in that it does not depend on the paradigm-

specific communication mechanism (only for the case of blackboard infrastructures

the handling of this problem using the blackboard is preferable).

The first step to providing reliable data is to determine which of the connected

modulation data is currently valid: this will prevent using empty data from units

not yet added to the system and using outdated data from units already detached

(deliberately or due to failure) from the system. Validity can be computed in many

ways, of which we will discuss two: For sparse or irregular data it is necessary to

embed an expiry date directly into the data, allowing an explicit check for expiration.

For periodically sent data, validity can be computed by comparing the time since

the last input signal from one specific sender, ∆t, to the typical temporal behavior

N∆t(µ, σ) of data arriving from the sending unit. Here, N∆t(µ, σ) is a normal

distribution with mean µ and standard deviation σ over acceptable ∆t and can be

specified or adapted at runtime based on the observed intervals between arriving
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Modulation

Switch

Pushed 

data

Default 

value

Reliable

modulation

Processing

Actuators

M

Sensors

S1 S2

Unit 1

Representation Modulatory

Driving Motor Command

Unit 2

DrivingOptional Represenation

Driving Modulation

Unit 3

Modulatory

Driving Representation

Modulatory
Motor Command

Figure 5.1: Schema of the proposed modulation switch – Situated within the unit and

behind each modulatory input port, the switch determines the validity (see text

for details) of received modulation data and selects or merges them into a reliable

output, possibly falling back to a default value if no valid data is present.

modulation messages. Given a scaling factor ν (in our systems, ν = 4), data can

now be considered valid if ∆t ≤ µ+ νσ.

Given the information about the validity of data from each sender, the switch

can select from or merge all valid inputs: for some kinds of input an addition or

multiplication of data is sensible, for others, especially for complex data types, a

selection is more reasonable. One possible means for selection is the relative position

of sending units along the processing flow (horizontal dimension), by selecting the

modulatory data from the unit furthest to the right. Finally, in case none of the

input data is valid, the switch must forward a default value to the processing.

This ‘modulation switch’ mechanism is similar to the ‘suppression’ mechanism

introduced in the subsumption architecture[11], but it i) allows a clear definition of

the modulatory interface (as part of the Systematica 2d design), ii) accepts an

arbitrary number of sending units and iii) adds a temporal adaptation mechanism.

5.2.2 SYS2D Monitoring System

One important aspect of system construction is debugging, i. e. the ability to detect

and isolate failures in the system. This a problem with very many facets, from

hardware failure to conceptual problems in the design. The one contribution to this

issue that is most prominent on the system level is to detect when units fail and to

decide whether they fail for internal reasons or because another unit failed.
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Actuators
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Unit 1
Representation Modulatory

Driving Motor Command

Unit 2
DrivingOptional Represenation

Driving Modulation

Unit 3
Modulatory

Driving Representation

Motor Command

Sensors

Unit 1

Unit 2

Unit 3

O.K.

Failed (Root)

O.K.

Failed

System Monitor

Figure 5.2: Schema of the proposed SYS2D monitoring system – The figure shows

the proposed ‘System Monitor’ connected to all output ports of monitored units.

By analyzing validity of received data (e. g. as done by the ‘Modulation Switch’,

see Sec. 5.2.1), the monitor can identify failed units, i. e. units which are not

running or send data at irregular intervals. In addition, the Sys2d design reveals

the dependencies of units, allowing to identify whether a unit is responsible for

the failure of other units (‘root cause’ analysis).

The mechanisms to check validity of incoming data packets presented for the Mod-

ulatory Switch can be adapted for this purpose: Assuming that any working unit

produces output and that the validity of this output can be tested (either because

it comes regularly or because it carries an expiration date), the decision whether a

unit is working or not requires only the monitoring of all output of the unit. The

proposed Sys2d Monitoring System (see Fig. 5.2) therefore requires access, i. e. pull

connections, to all outputs of all monitored units (this implies that the motor con-

trol unit u2 cannot be monitored unless it produces some status output). Since the

monitor does not depend on any specific data to arrive from the monitored units, it

can be interpreted as a Sys2d unit with DrivingOptional inputs pulling data from

all monitored outputs.

Using the proposed Modulation Switch at each of these inputs, the validity of

outputs o ∈ Oi of unit ui ∈ U can be determined using the mechanism described

in Sec. 5.2.1: By adapting normal distributions N∆t
o (µo, σo) for all outputs, failure

of a unit can be defined:

failed(ui)↔ ∃(o ∈ Oi) : ∆to > µo + νσo (5.1)

To decide whether a unit failed for internal reasons or not, the (valid) Sys2d design
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has to be evaluated in addition to the state of each unit. The sorting relations and

input roles of the design can answer the question whether all units uj responsible for

providing data to a Driving input of a failed unit ui are functional. We can therefore

define root failure of a unit:

root failed(ui) ↔ failed(ui) ∧ ∀(uj ∈ U) :

(∃(i, o′) : (uj, o
′, i) ∈ Pulli)→ ¬failed(uj) (5.2)

Thus, failed units can be split into two categories:

� Root Failures are units where all Driving inputs are supplied by functional

units — in this case it is clear that the failure must be internal — and

� Follow Failures are units where at least one Driving input receives data from

another failed unit — this does not imply that the unit is failure-free, but it is

not surprising that it is currently not functional.

Thus, the combination of validity checks and formal design analysis in a System

Monitor allows straightforward and generic detection of root unit failures.

5.3 Intermediate Summary: The Final Hypothesis Test Cycle

Up to this point, all necessary elements to support the hypothesis test cycle have

been presented: the Systematica 2d language, including its motivation through

the formalism measure, the functional properties derived from a structural bias on

such designs, a mapping of all design elements to a large variety of infrastructures

and finally a set of generic system elements to bring these systems to life. In this

section we will revisit the steps of the original cycle, match the presented techniques

to them and describe which properties improve them.

5.3.1 From Hypothesis to Design

The first step after the conception of a system idea or hypothesis is its formulation

and successive refinement, leading to a design. We use the words ‘hypothesis’ and

‘design’ to refer to two distinct things: the former is the roughly shaped idea as it

might appear in the head of a scientist or slowly takes shape in a discussion, the latter

is the formalized, specified – to some level of detail – description of an EI system

based on the hypothesis which allows to communicate to an outsider the essence of

the hypothesis, shows important elements and, most notably, is the first step towards

implementation and evaluation.
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It is therefore not surprising that the process of getting from a hypothesis to a

design in non-trivial. To give an example: for the AutoSys system, the initial hy-

pothesis was “Multi-cue detection, fusion and scene context filtering can provide a

superior automotive scene model.” To get from this idea to the system design shown

in Sec. 4.4.1 requires answering a phalanx of questions, including more detailed un-

derstanding what information cues detect, how and where the context filter operates,

how it is learned and what information a promising fusion technique requires.

Systematica 2d, as a formalization language, does not answer many of these

questions. However, by providing a formal system description, it enforces answering

all of them and in the process raises a set of new ones, most importantly the questions

of dependencies between units. As a result, the final design is sure to actually contain

all information necessary for system construction and evaluation – and this is not a

feature inherent to most other design languages as shown in Sec. 3.4.

In addition, the designer does not have to consider the implementation process

in general, as long as he or she considers the functional constraints for sortability

and incremental construction: they encapsulate the structural bias necessary for

easy implementation as seen in the following sections. These considerations can in

turn be handled automatically by a design software (see Appendix A), thus giving

immediate feedback during interactive design of the system.

5.3.2 Mapping Design to Infrastructure

Given a Systematica 2d design representing the initial hypothesis, in most cases

evaluations in the EI domain require an implementation of the design on a given

infrastructure, which may or may not be connected to a physical artifact, like a

robot or a car. This is usually a collaborative process and thus requires mapping

of the design to future infrastructure elements so that they can be distributed and

specific work areas can be defined. Important questions to answer here are what

dependencies exist between these elements, in what time frame they can be / have

to be constructed and how they can be tested.

A valid Systematica 2d design, including sortability and incremental construc-

tion, provides answers to all of these questions. Dependencies can be directly derived

from the sorting along the build order (vertical) axis, which in turn is derived from

push/pull connections. If a unit is not related to another unit under the transitive

hull <+
h then it is not depending on that unit, is not affected by changes to that

unit and can be built before that unit. The second constraint of incremental con-

struction together with the reliable modulation mechanism from the previous section
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allows definition and independent execution of complete subgraphs, thus enabling

the testing of units in a minimal but complete environment.

Finally, in case previously built systems are structured according to Systematica

2d designs as well, reusing units (or complete subgraphs) is straightforward.

5.3.3 Stepwise Implementation of the Mapped Design

Based on the mapping and the dependencies of infrastructure elements to be im-

plemented, the process of system integration is straightforward. Dependencies are

clearly specified, reducing unintentional side-effects of local changes to units. Partial

testing means that developers are not blocked by system elements which are not es-

sential to testing their unit. Not even changes to the design during implementation

are harmful, as long as they focus on extending the system and avoid drastically

changing the sorting (horizontal and vertical) of existing units amongst themselves.

The target system is constructed incrementally (given that it is a valid Sys2d sys-

tem) and can be continuously tested. Naturally, the fact that systems are globally

deadlock-free by definition helps to avoid a variety of time-consuming problems dur-

ing this phase as well.

5.3.4 Evaluation and Publication of Implemented System

Once major parts of the system are operational it is possible to return to the initial

problem, which is to perform experiments in order to evaluate the initial hypothesis.

One such experiment – and the one least influenced by the design – is the question

whether the system as a whole performs as expected. Equally important for the

argument of most hypotheses, however, is showing that it is the proposed new idea

which is responsible for this performance. To return to the example of AutoSys:

if the hypothesis is that multi-cue fusion and context filtering are crucial to scene

modeling then a valid experiment is to run the system without context filtering or

only with a single cue in order to show that these subsystems do not perform well.

The often mentioned property of partial testing, resulting from the structural bias

in Systematica 2d, allows such experiments by defining minimal but complete

subsystems and allowing them to be run separately. The introduced modulation

switch may even allow such adding or removing of system elements while the system

is running, thus showing graceful degradation. Results of such experiments will be

shown in Ch. 7.
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5.3.5 Decomposition of Final System and Revision of the Hypothesis

After evaluating and publishing the implemented system hypothesis, the way to new

ideas and new systems is open. On the one hand, decomposition of the implemen-

tation is useful for making well-working subsystems available to be used in other

systems. Also, individual algorithms can be optimized or substitutes can be tested

in the context of a full, integrated system, with the possibility for realistic data

collection, full sensory-motor coupling etc.

On the other hand, the fact that the system is reflected in a formal design eases the

development of variations of the original hypothesis, for instance, to stay with the

AutoSys example, by accepting that a valuable preprocessing was achieved which

can be integrated into future systems, and focusing on the next interesting challenges

such as scene prediction or behavior learning.

5.4 Conclusion

This chapter has addressed the essential problem of bringing a theoretical System-

atica 2d design to a practical, running system on a given software infrastructure.

On the examples of popular software infrastructures for intelligent systems we pre-

sented how the technical language elements of Systematica 2d can be mapped to

the concepts of each infrastructure and thus illustrated how a theoretical design can

be turned into practice. The elements of a Sys2d design which are relevant for this

mapping are units, connections and input roles. These were shown to match main

concepts of many software infrastructure paradigms, with a focus on service-oriented

(Player[24] and Microsoft Robotics Studio[14]), blackboard-oriented (XCF[22] and

CAST[23]) and dataflow-based (YARP[20], ROS[18] and ToolBOS[25]) infrastruc-

tures. Thus, this mapping provides a straightforward way of translating the technical

elements of a Sys2d design into a structure for system implementation.

One exception is the ability of a software infrastructure to provide means for re-

liable modulation, which we found to be present only in blackboard-oriented infras-

tructures. We therefore formulated a generic and practical method to handle loosely

coupled inputs (i. e. DrivingOptional and Modulatory) so that these can be used also

on the other software infrastructures. As a second example of such generic system

elements, a system monitoring concept, based on the concepts of reliable modulation

and the formal Sys2d property of incremental construction, was introduced.

Finally, in an intermediate summary of the previous chapters, both the mapping

and the generic elements were put into the context of the completed hypothesis test
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cycle to bridge the gap between theoretical hypothesis formulation and practical sys-

tem construction. Given this improved process for the hypothesis test cycle resulting

in formal designs on the one hand and in practical, measurable systems on the other

hand, the following chapter will look closer at the properties and types of these sys-

tems and thereby attempt a first step towards understanding the space of possible

systems.
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6 System Properties and Types

Designs in Systematica 2d are characterized by the set of units U , including its

two-dimensional ordering, and the additional description given by the set of sub-

architectures A. So far, in terms of system implementation and evaluation, only

the technical aspects of U , especially interfaces, dependencies and the ability for

incremental construction (which is related to the order of units) were relevant. In

this chapter we will discuss the meaning of sensor and behavior spaces, as specified

in each sub-architecture ak ∈ A, ak = (name, Uk, Sk, Bk), as well as the meaning

of the global two-dimensional pattern of units and what can be deduced about the

‘type’ of design it expresses.

This discussion follows a set of global system properties and is based on the set of

‘architecture properties’ introduced by Goerick in [5]. These properties are discussed

from scratch in the two-dimensional world of Systematica 2d, where especially the

layout of units allows more quantitative statements for the analysis of sensor and

behavior spaces than the one-dimensional description of Systematica.

Three system properties will be discussed in this chapter:

1. The sensor and behavior spaces must be defined in terms of their qualitative

meaning for system description (why they should be described) and their prac-

tical interpretation in the system design (which design elements are responsible

for implementing these spaces).

2. The question whether sensors are used to form incremental representations is

important to distinguish the mentioned ‘types’ of design.

3. An analysis of sensor and behavior spaces and corresponding units will show

the degree of sensory and behavioral confinement of each sub-architecture.

The introduction of these properties in Sec. 6.1 will provide a tool set which is

then used to propose a non-exhaustive set of ‘design types’ in Sec. 6.2, including an

overview of benefits and drawbacks and where existing systems fit into these.
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6.1 System Properties

The properties discussed in this section create a relation between the technical,

implementation-oriented features of the Systematica 2d units u1..uN and the de-

scriptive sub-architectures a1..aM , especially the sensor spaces S1..SM and behavior

spaces B1..BM . The fact that units and sub-architectures are specified separately

in any given Systematica 2d design may be understood to imply that there is no

direct connection between the two, but since all actual behavior of the full system

stems from the implementation, ergo from the units, there ultimately is some form of

redundancy in this description. The Systematica 2d language does not make as-

sumptions about the order in which design elements are specified, but we find it much

more likely that the description of sub-architectures follows the description of units

(or vice versa) than that both are independently and separately developed. Thus,

it is legitimate to ask how unit interfaces, dependencies and two-dimensional order

correlate with the sensor and behavior spaces, as well as with their interpretation in

terms of incremental representations and confinement.

6.1.1 Sensor and Behavior Spaces

The reason for specifying the sensor and behavior spaces of a sub-architecture ak

is to give an impression which aspects of the physical (visual, auditory, tactile) or

chemical world is consumed and which externally observable behaviors of the artifacts

are produced by this specific sub-architecture. Following the definition from [5], a

sensor space Sk is a subset of the full sensor space S = Se×Sp, the combination of

exteroception and proprioception, observed by the artifact. The behavior space Bk

contains the externally observable trajectories through the state space of the artifact

which are produced by motor commands or modulation information sent from ak.

Although Sk and Bk can be seen as theoretical, descriptive spaces, they are

brought to life by the set of units Uk within ak. The question therefore is: which

properties of these units create Sk and Bk?

For the case of Sk, the answer is relatively simple: Systematica 2d defines a

unit u1 to represent all sensors of the artifact by providing output ports with all

sensory information available. In other words, the set O1, the set of output ports of

u1, provides all information covered by the full sensor space S. The sub-space Sk

can now be derived from the set of sensor inputs Ik ⊂ O1 which are pulled directly

to a unit ui ∈ Uk:

Ik = {o, o ∈ O1|∃ui∈Uk∃i′∈Ii(u1, o, i
′) ∈ Pulli} (6.1)
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Since Ik is very technical in nature and Sk has to be useful for descriptive purposes, a

generalization from Ik to Sk is advised (e. g. Ik={left image, disparity}, Sk={visual

information}), but there is still a very clear relation between the two.

For the case of Bk, a similar argument based on the Systematica 2d ‘output

unit’ u2 and any data Ok ⊂ I2 pushed there could be made, but the mapping is

more complex for two reasons: First, units ui ∈ Uk can influence the behavior of

the artifact not just by pushing motor commands to u2 but also by pushing data to

‘Modulatory’ or ‘DrivingOptional’ inputs of lower units uj /∈ Uk, uj <v ui. Second,

the behavior space Bk is intended to describe the externally observable behavior

induced by ak, instead of the space of motor commands in Ok. We see no formal

method to bridge this gap and will therefore define a set Mk, in addition to Ok, with

all information pushed from units in Uk to lower units above u2. The generalization

from Ok and Mk to Bk now involves more theoretical consideration than from Ik

to Sk, but still has a clear grounding in the functional description of U :

Ok = {i′, i′ ∈ I2|∃ui∈Uk∃o∈Oi(u2, i
′, o) ∈ Pushi} (6.2)

Mk = {o, (uj, i
′, o) ∈ {Pushi, ui ∈ Uk}|j > 2} (6.3)

6.1.2 Incremental Representations

There are, in principle, two ways of constructing systems: either sub-architectures

independently perform increasingly complex behaviors or they interact in order to

use results of lower processing for higher functions. The first way can already be

considered hierarchical. The quality of incremental representations, however, requires

the ability of higher sub-architectures to create representations based on the existing

ones from lower sub-architectures.1

The question whether a given system creates incremental representations cannot

be answered by looking at the sensor and behavior spaces of the sub-architectures,

but by analyzing the communication of units ui ∈ Uk with lower units of other

sub-architectures. Since usage of lower representations is usually associated with

‘Driving’ inputs, this also leads to a horizontal ordering in most cases, i. e. higher

units using lower representations are right of those lower units. The set of these used

representations Rk can be formalized similarly to Mk:

Rk = {i′, (uj, o, i
′) ∈ {Pulli, ui ∈ Uk}|j > 2} (6.4)

1This definition differs from [5], where incremental systems mean “systems where lower layers can

already perform some meaningful behaviors without input from higher layers”.
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Thus, a system can formally be called to create incremental representation if ∃kRk 6=
∅.

6.1.3 Sensory and Behavioral Confinement

The concept of sensory and behavioral confinement, as laid out in [5] can now be

analyzed for Systematica 2d systems by using the previously defined quantities Ik

(the sensor inputs used by ak), Ok (the motor outputs produced by ak), Rk (the

lower representations pulled by ak) and Mk (the modulatory signals pushed by ak).

Sensory confinement describes the total space Ŝk of sensor information available to

a sub-architecture ak, including the sensor inputs Ik directly observed and the sensor

inputs observed through lower sub-architectures where representations of these are

used in Rk. For example, if a4 has no direct sensor input (S4 = ∅) and only uses

representations from a1 then the total observed sensor space is confined to S1. This

analysis allows the designer to evaluate whether a given sub-architecture has access

to the required sensor information (directly or through representations) and whether

an extension of the directly observed sensor space would increase the total sensor

input or not.

In the same way, behavioral confinement describes the total space of behaviors

B̂k which a sub-architecture ak can trigger, either by direct motor commands in Ok

or by modulation Mk of lower units which in turn have control over the behavior

space of their sub-architecture. For example, if only a1 has direct control of the

motors (B1 6= ∅, ∀k>1Bk = ∅), then the total behavior space of all higher sub-

architectures is confined to B1. This is usually not a desirable property since the

behavioral demands of a growing and potentially learning system may not be known

at the time of creation of a1, thus a confinement toB1 will limit the system’s abilities.

The obvious solution is to give higher sub-architectures some level of direct motor

control[5].

6.2 EI System Design Types

The system properties discussed in the previous section are all grounded in the units

and their connections, therefore the ordering of these units must reflect these prop-

erties to some extent. Although each specific system, based on a specific system

hypothesis, is unique, we want to discuss three types of designs, each characterized

by a combination of system properties and a closely related rough layout in the or-
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Figure 6.1: Schematic of the first discussed system-wide integration approach –

(Pre-)Processing steps are incrementally added until the internal representation

supports making complex decisions (reasoning, planning, . . . ), thus a motor com-

mand is produced by the top-most component.

dering of units. This set of types will not be exhaustive, but it does cover a large

area as relations to existing systems will show.

6.2.1 Incremental Processing

The first discussed system type we call ‘Incremental Processing’ since it is found

most commonly in systems with heavy sensory processing focus, usually following

the Sense-Plan-Act principle or some variant.

As an example, a system of this type could start with sensory (e. g. visual) prepro-

cessing, add cue fusion or another form of post-processing, proceed to scene analysis

and scene modeling and finally add a form of reasoning, prediction and planning to

derive motor commands. Thus, units are arranged along the secondary diagonal,

from lower left to upper right and into the top left corner, see Fig. 6.1.

Integrations based on this approach will require a sophisticated sensory processing

for the artifact to do anything at all: since the focus is on sensory processing, motor

control is added at the latest stage. The danger in this approach therefore is that the

integration process spends most available time on perfecting the pre-processing and

this latests stage is only implemented in a rudimentary way, if at all. However, once
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the sensory processing quality is achieved, it opens the door to powerful reasoning

and planning.

Relation to System Properties

Two properties are mainly related to this kind of system. First, representations are

very incremental: higher processing layers build on the representations of lower layers

(such as image filtering, cue fusion results, etc.) – this chain of ‘Driving’ inputs leads

to the arrangement of units on the secondary diagonal. Second, sensory confinement

is very low to non-existent (access to sensors is essential for most units) but the

behavior space of lower sub-architectures is small or empty (∀ak,k<MBk ≈ ∅).

Relation to Existing Systems

Figure 6.2: Schema of AutoSys design.

The ‘Incremental Processing’ system type can

be found in many architectures mainly in-

volved in sensory processing. The AutoSys

design is a textbook example, as can be seen

in Fig. 6.2. This is the case even though

AutoSys contains a considerable amount

of modulatory signals for context learning.

However, the very late production of motor

commands based on high-level sensory pro-

cessing is the main indicator that this design

type is used. Sec. 7.1.4 will discuss the cate-

gorization of AutoSys in more detail and compare it to the Sys2d design of ALIS,

which can also be said to fall in this category.

6.2.2 Hierarchical Behavior

The second type of design discussed we call ‘Hierarchical Behavior’ and is the exact

opposite of the one presented in the previous section. It is found in systems which

have a strong focus on behavior generation, especially on the generation of increas-

ingly complex behavior, as initially proposed in the Subsumption architecture[11].

As an example, a system of this type would start by adding simple behaviors

like standing or walking, add more complex behaviors based on the simple ones,

like searching and exploring, and proceed to even more complex, like search & res-

cue. As a defining characteristic, each behavior, or at least each set of behaviors of
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(Hunt, Build)

Figure 6.3: Schematic of the second discussed system-wide integration approach –

Separate system layers perform increasingly complex behaviors. Each of these

layers relies on a custom sensory pre-processing which is independent of other

layers.

similar complexity extract the relevant information from the sensor independent of

other behaviors. The result is a Systematica 2d design which covers the whole

two-dimensional plane: since units of different behavioral complexity are largely in-

dependent, they are distributed horizontally, see Fig 6.3.

Integrations based on this type of design require little coordination between differ-

ent scientists working on different behaviors and still manage to achieve reliable and

complex motor control. However, the quality of sensory pre-processing achieved by

individuals or small groups, focused on one specific behavior, will typically fall far

short of an incremental processing system as found in the previous type.

Relation to System Properties

In terms of system properties, the contrast to ‘Incremental Processing’ is obvi-

ous. First, sub-architectures do not use or produce incremental representations

(Rk = ∅), leading to a sensory confinement to the sensor directly provided to the

sub-architecture. Second, behaviors are generated at every level, possibly even by

modulating lower behavior, so the behavior spaces are not empty on any level.
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Relation to Existing Systems

The ‘Hierarchical Behavior’ system type can be found mainly in architectures focused

on behavior-oriented integrations, like the original Subsumption architecture[11] or

the newer, behavior-centered EGO architecture[62].

6.2.3 Incremental Behavior

The last presented system type, which we will call ‘Incremental Behavior’, will try to

find a compromise between the previous ones. Systems of this type create incremental

representations, but at the same time use the rough, intermediate preprocessing

results to create simple behaviors – until the higher representations are available and

allow more complex motor control.

As an example, a system of this type could start with a rough (typically multi-

modal) sensory processing to enable a quick selection of basic behaviors (e. g. ap-

proach / retreat), potentially even including behavior learning. More sophisticated

preprocessing and sensor fusion is added on top of that, necessitated by more com-

plex tasks and behaviors, finally resulting in symbolic storage and reasoning as a

necessary precondition for the most complex tasks. Thus, units form a pyramid of

increasingly complex processing on the left and increasingly complex behaviors on

the right, see Fig. 6.4.

Integrations based on this type will start with behavior generation (and possibly

learning) as the first step. The danger in this approach is that the integration is

forced to deal with toy scenarios for testing in the beginning and looses the focus on

real world applications. Once a sufficient level of complexity is reached, however, all

further processing layers are motivated and immediately evaluated in behaviors and

thus have a behaviorally grounded frame of reference.

Relation to System Properties

The goal of this approach is to combine the favorable properties of ‘Incremental Pro-

cessing’ and ‘Hierarchical Behavior’. First, incremental representations provide each

sub-architecture with the necessary combination of sensory input and/or information

from lower units, removing sensory confinement. Second, the behavior generation on

every level provides an increasingly complex, non-confined behavior space using direct

motor control and/or modulation of lower units.
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Figure 6.4: Schematic of the third discussed system-wide integration approach –

Simple behavior generation is built first and then enriched / modulated by more

complex preprocessing, decision making and behavior generation, motor com-

mands are produced during all phases of development.

Relation to Existing Systems

There are, as yet, not many architectures which aim at this form of compromise

between sensor-oriented and behavior-oriented designs. The only exception is the

CogAff model[10] and its implementations[4], where the arrangement of system com-

ponents in a two-dimensional grid spanning Sense-Process-Act on the horizontal and

Reactive-Deliberative-Meta in the vertical seems to imply (pending the publication of

running systems) that incremental representations in the ‘Sense’ and ‘Process’ areas

can support increasingly complex behaviors in the ‘Act’ area.

6.3 Conclusion

In this chapter, the relation between functional and descriptive language elements of

Systematica 2d was formally introduced, leading to a definition of three system

properties:

� ‘Sensor / Behavior Spaces’ characterize the information available to and in-

fluenced by a sub-architecture, based on the input-, output- and modulation-

spaces of that sub-architecture,
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� ‘Incremental Representations’, indicating the use of intermediate results (or

‘representations’) by higher units, based on the representation-spaces of sub-

architectures and

� ‘Sensory / Behavioral Confinement’, determining to which level of sensors and

actuators a sub-architecture can have access, based on the relation of all four

previously mentioned spaces from one sub-architecture to another.

All these system properties can be evaluated for existing systems also without Sys-

tematica 2d, as was done in [5]. However, when evaluating these rather theoretical

properties for a Sys2d design, the ‘type’ of system (i. e. the specific combination

of properties) has a specific impact on the sorting of units along the two Sys2d

dimensions.

This relation between theoretical system type and visual system structure was

demonstrated for three system types we find most interesting: ‘Incremental Pro-

cessing’ (common for sensor-heavy systems like AutoSys), ‘Hierarchical Behavior’

(related to the Subsumption architecture[11], common in robotics) and ‘Incremental

Behavior’ (a synthesis of both). For the first two, we discussed the defining sys-

tem properties, the visual structure resulting from the unit ordering and examples

among existing systems. The analysis of benefits and drawbacks led to the proposal

of the third, ‘Incremental Behavior’, as a promising framework for future system hy-

potheses, since it seems to combine the benefits of incremental representation from

‘Incremental Processing’ with the behavioral grounding of ‘Hierarchical Behavior’.

We are certain that these three system types do not cover the full space of possible

system hypotheses, other combinations of system properties can easily be imagined.

What we can say, however, is that the visual structure arising from the seemingly

‘purely functional’ description of units, together with the translation of existing no-

tations to Systematica 2d shown in Ch. 4, provide a powerful tool for system

comparison and categorization.
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7 Results

The central claims put forth in the introduction are that this work will present

methods to improve:

1. Hypothesis Formulation, i. e. discussion, collaboration and publication of

system hypotheses,

2. System Construction, i. e. the process of turning a design into a system,

including handling collaboration as well as mapping to software infrastructure

and

3. Hypothesis Evolution, i. e. reuse of theoretical concepts and system elements

as well as comparison and extension.

The previous chapters have introduced the methods and analyses to solves these

challenges, most prominent among them the Systematica 2d language. These

methods can now be assigned to the claims in the following way:

1. Hypothesis Formulation: discussion, collaboration and publication are sup-

ported using the flexible, meaningful and standardized Sys2d description,

2. System Construction: implementation of a system is supported using im-

provements to collaboration during integration (especially incremental con-

struction and partial testing) as well as by allowing an easy mapping of Sys2d

designs to a variety of software infrastructures and

3. Hypothesis Evolution: reuse of the system is supported on the one hand

using a formal analysis of system types to evolve and categorize the theoretical

hypotheses behind each system and on the other hand by allowing decomposi-

tion and reuse of implemented system elements based on explicit dependencies

in Systematica 2d.

This chapter will collect and extend the evaluations done in the previous chapters

to sustain these claims. To address claims 1 and 3, Sec. 7.1 will demonstrate the

expressiveness provided by Systematica 2d by applying the ability for translating

existing formalisms (as shown in Sec. 4.3.1) to the ALIS system. Based on this

translation, the system properties defined in Ch. 6 will be evaluated for both the
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ALIS and the AutoSys systems, resulting in a categorization and a set of possible

extensions for both systems.

To address claim 2, Sec. 7.2 will present experiments performed with the running

AutoSys system to give an example for mapping a Sys2d design to a software

infrastructure and to validate the system properties of incremental construction and

graceful decay, both of which are vital for efficient system construction but also

improve the system itself.

Finally, Sec. 7.3 combines all these qualitative measures to the single most impor-

tant quantity for system construction: the effort it takes to go from system design

to running system. By comparing the complexity and construction effort for a set of

systems, some of which built with Systematica 2d and other without, we can show

that Systematica 2d has a direct positive impact on this quantity.

7.1 Hypothesis Formulation and Evolution

Three aspects have to be investigated to validate the power for hypothesis expression

of Systematica 2d: the ability to describe a variety of abstract hypothesis concepts,

existing systems and new systems.

7.1.1 Description of Hypothesis Concepts

As for the first, the translations of existing EI approaches like 3-Tier, CogAff and

Systematica presented in Sec. 4.3.1 are a good indicator that the range of system

hypotheses which can be expressed is large enough to cover the currently most rele-

vant ones. This is not a trivial observation because of the structural bias enforced by

a valid Sys2d design, but all translations still led to such valid designs (see Fig. 7.1

for the original and translated form of a 3-Tier design). Finally, the reason for mak-

ing the translations is not just to show the expressiveness of Systematica 2d but

also allows a deduction of system properties and categorization into system types

(see Ch. 6), thus allowing a founded comparison of system hypotheses.

Based on these investigations done in earlier chapters, the following sections will

concentrate on the ability of Systematica 2d to describe existing systems (on the

example of ALIS, which was not built based on a Sys2d design) and new systems

(on the example of AutoSys). Finally, the system properties and types defined in

Ch. 6 will be applied to both systems to compare them and derive possible extensions.
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Figure 7.1: Translation of hypothesis concepts – The figure shows the original 3-Tier

Description from [3] and the translated Sys2d Design.

7.1.2 Description of Existing Systems

The ‘Autonomous Learning and Interacting System’ (ALIS) was constructed in three

phases (ALIS1[9], ALIS2[30, 28] and ALIS3[1]) over the course of three years.

Although the central concept behind the three phases evolved, the systems themselves

are quite different so only ALIS3 will be considered in this section. An introduction

to the system itself, the underlying hypothesis and the major components is given in

Ch. 2, together with a rough system notation, which is also shown in Fig. 7.2 in the

upper left corner.

It is clear that this ‘Boxes and Arrows’-diagram is not sufficient to produce a

detailed, valid Systematica 2d design, therefore additional material from [1] and

[28] was used. The Sys2d version of the ALIS3 system can be seen in Fig. 7.2. It is

not to be understood as a representation of the actual implemented system but as a

realistic interpretation of the final system in the Systematica 2d language. In the

lower sub-architecture ‘Reactive Loop‘, sensor information is preprocessed into Proto-

Objects from which one ‘active’ Proto-Object is selected and used to create motor

commands for interacting with an object presented by the tutor (either by gazing,

pointing or walking). The higher sub-architecture ‘Binding Loop‘ uses the features

(e. g. position, size or motion) of the active Proto-Object together with recognized

speech from the tutor to learn bindings between features, active behaviors and words

or to create and validate expectations. Such expectations are triggered by recognized,

previously learned words and are used to show confirmation (nod) or mismatch (shake

head) for binding to Proto-Object features or to directly activate a bound behavior

(e. g. grasping).

The main difference between the Sys2d design and the actual implementation is

that DrivingOptional or Modulatory inputs could have been implemented (without
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Figure 7.2: SYS2D design of ALIS – Top left corner: original ALIS notation, taken from

[1]; Main figure: Sys2d design of the system, based on the original notation and

additional description from [1] and [28]. The systems consists of a reactive and

a binding loop, the former mainly responsible for preprocessing and action gen-

eration, the latter mainly responsible for learning semantic associations between

features, behaviors and words. The shaded regions labeled Phase 1, 2 and 3 show

possible complete subgraphs as they could be derived from the Sys2d design

according to the definition in Sec. 4.2.1. Please see text for details.

affecting system behavior) as loosely coupled connections using the methods presen-

ted in Sec. 5.2.1, but since no explicit formulation of dependencies was done during

system construction, most connections in the real system are tightly coupled. The

benefit of such a dependency analysis is further demonstrated in Fig. 7.2 by the anno-

tation of three complete subgraphs (labeled Phase 1, 2 and 3) that were derived from

the design according to the definition in Sec. 4.2.1 and could have been used to incre-

mentally build and test the system. The following section will revisit the AutoSys

design from the same point of view and show incremental subgraphs. For the ALIS

case this separation and the Sys2d design as a whole remain pure interpretations.

However, the purpose of this ‘interpretation’ of the existing ALIS system in Sys-

tematica 2d is only partly to show that language flexibility is sufficient. Following

the short review of the AutoSys Sys2d design, Sec. 7.1.4 will compare both designs

along the Sys2d system properties defined in Sec. 6.1.
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Figure 7.3: SYS2D design of AutoSys with annotated subgraphs – The figure shows

the Sys2d design for the AutoSys system as already discussed in Sec. 2.2.2.

Annotated are three complete subgraphs (labeled Phase 1, 2 and 3) which are

derived from the design as defined in Sec. 4.2.1. These subgraphs were used

during system construction to incrementally compose and test the full system.

Please see text for details.

7.1.3 Description of New Systems

The full Sys2d design for AutoSys has already been introduced and discussed in

Sec. 4.4.1. With the aim of validating the expressiveness of Systematica 2d in this

section, the focus will now be on the derived subsystems and their impact on system

analysis and construction.

Figure 7.3 shows the design and three possible complete subgraphs following from

the dependencies between units and the ‘incremental construction’ constraint. There

are more such complete subgraphs of finer granularity: Technically, every unit in a

valid Sys2d design has its own complete subgraph, e. g. the ‘Classifier Cue’ could be

added to ‘Phase 1’ without the other units in ‘Phase 2’. The decomposition into the

specific three phases in Fig. 7.3 was chosen in order to allow experiments validating

the properties of incremental construction and graceful degradation in Sec. 7.2.

In summary, we can say that the Systematica 2d language was able to describe
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relevant details of the AutoSys system in terms of system hypothesis, system de-

composition and system construction. The subgraphs derived from the design were

directly beneficial to both system construction and run-time properties in terms of

incremental construction and graceful decay, as will be shown in Sec. 7.2. To discuss

the final benefit of system categorization and comparison, the following section will

apply the system types to the ALIS and AutoSys designs.

7.1.4 Comparison of ALIS and AutoSys System Properties

Based on the previous detailed presentations of Sys2d designs for ALIS and Auto-

Sys we can now evaluate the Systematica 2d language in terms of hypothesis

comparison and evolution by applying the system types introduced in Ch. 6. Ba-

sic elements for this evaluation are the system properties of each sub-architecture:

sensor/behavior spaces, incremental representations and sensory/behavioral confine-

ment. Please note that there is no direct relation of these properties, defined for

each sub-architecture, to the complete subgraphs, labeled ‘Phase 1’, ‘Phase 2’ and

‘Phase 3’, in both designs. Sub-architectures are defined by the designer while the

complete subgraphs can be derived from the design at any time.

We will use the following nomenclature: all elements of the ALIS system will be

denoted with a lower case r (for robotics), i. e. Sr = (Ur, Ar) , and all elements

of the AutoSys system will be denoted with a lower case a (for automotive), i. e.

Sa = (Ua, Aa).

Starting with ALIS, the sub-architectures are:

ar1 = (‘Reactive Loop’, Ur
1 , S

r
1, B

r
1)

ar2 = (‘Binding Loop’, Ur
2 , S

r
2, B

r
2)

To specify sensor and behavior spaces, the sets Irk, O
r
k, R

r
k and Mr

k (sensor input,

sensor output, representation and modulation) for k = {1, 2} can be derived from

the graph:

Ir1 = {Audio Samples, Images,Robot Pose,Tactile Sensing}

Or
1 = {Motor Commands}

Rr
1 = {Speech Segments,Motion,Position, Size,Active Behaviors}

Mr
1 = ∅

Ir2 = Or
2 = Rr

2 = ∅

Mr
2 = {Select Next PO,Behavioral Bias}
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From Ir1 and Ir2 it becomes apparent that the sensor space Sr
2 of ar2 is empty while

the sensor space Sr
1 covers all available sensors. The behavior spaces are harder

to separate: although only ar1 generates motor commands, ar2 can influence the

externally visible behavior using modulation. Based on the more detailed description

of the system in [1] we can define:

Sr
1 = {visual, auditory, tactile, proprioceptive}

Sr
2 = ∅

Br
1 = {gaze,point,nod,shake,approach,retreat,grasp}

Br
2 = {nod,shake,approach,retreat,grasp}

Looking at AutoSys, we follow the same process:

aa1 = {‘Core Loop’, Ua
1 , S

a
1 , B

a
1}

aa2 = {‘Context & Filter’, Ua
2 , S

a
2 , B

a
2}

aa3 = {‘Advanced Postprocessing’, Ua
3 , S

a
3 , B

a
3}

with:

Ia1 = {CAN,Images}

Ra
1 = {Disparity,Free Area,Ground Distance, Left Image, Egomotion}

Oa
1 = Ma

1 = ∅

Ia2 = Oa
2 = Ra

2 = ∅

Ma
2 = {Filter}

Ia3 = Oa
3 = Ra

3 = ∅

Ma
3 = {Detection Quality,TTC}

Sensor spaces are therefore similar to ALIS: only aa1 has access to the complete set

of sensors. Behavior spaces are harder to define in the driver assistance domain since

the result of the system is a visual signal to the driver, rather than a direct motor

command. As the system is designed and implemented, this signal is produced solely

by aa3 , thus we derive:

Sa
1 = {visual,proprioceptive}

Sa
2 = Sa

3 = ∅

Ba
1 = Ba

2 = ∅

Ba
3 = {car detections,time-to-contact}
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Figure 7.4: Comparison of ALIS and AutoSys System Structures – The figures show

the ALIS (left) and AutoSys (right) Sys2d designs without text to allow an

impression of the two-dimensional sorting of units based on the specified inter-

faces and dependencies. It is apparent that both systems perform incremental

processing (thereby sorting units along the secondary diagonal from bottom left

to top right), but in the case of ALIS, behavior generation is situated much lower

than in the AutoSys design. This can be used for system type categorization,

see text for details.

The second system property, incremental representations is easily answered

looking at the Rr and Ra sets: both systems define higher sub-architectures using

the representations generated by lower (in both cases: the lowest) sub-architectures.

Finally, sensory and behavioral confinement has to be evaluated: Sensory

confinement is very low for both systems since the lowest sub-architecture produces

a wide range of representations used by higher sub-architectures. Behavioral confine-

ment exists for both systems, but in different ways. While in ALIS, ar2 is confined to

the behavior space of ar1 because it has no direct motor output, both sub-architectures

still have a non-empty behavior space. In contrast, the AutoSys system has a non-

empty behavior space only for aa3 , all other sub-architectures are not able to trigger

externally visible behavior (in this case: visualization) at all.

This difference in behavioral confinement is also apparent in the comparison view of

both systems in Fig. 7.4. While the ALIS system closes the loop from sensor to actor

early and adds the ‘binding loop’ purely for modulation, AutoSys incrementally adds

processing modules and generates output from the highest sub-architecture.

In terms of categorization, Sec. 6.2 already classified AutoSys as a textbook

example for ‘Incremental Processing’. The ALIS system has characteristics of incre-

mental processing, but with a behavior space for the lowest sub-architecture. Goal

of the ‘Incremental Behavior’ system type was to combine incremental representa-
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tions with behavior generation at every level, thus ALIS could be said to be between

‘Incremental Processing’ and ‘Incremental Behavior’.

It is our strong belief that systems of the type ‘Incremental Behavior’ are more

robust, flexible and, above all, able to ground all sensory processing in directly re-

lated behavior generation. To conclude the analysis of ALIS and AutoSys, we can

therefore say that ALIS is closer to this goal than AutoSys. However, both sys-

tems could be extended to better allow behavior generation at all levels: In ALIS,

the behaviors ‘nod’ and ‘shake’ are implemented in ar1 although they are activated

exclusively by modulation from ar2 — moving these behaviors would naturally create

the intended behavior hierarchy. In AutoSys, results are currently only generated

based on the highest level of preprocessing — it might be possible to derive low-

latency signals from lower sub-architectures, i. e. to alert the driver to close obstacles

independent of their visual identity.

7.2 System Construction Process & Properties

In order to test whether the theoretical properties of incremental construction, par-

tial testing and graceful decay apply to the implemented system as well, we will

experiment with several decompositions of the implemented AutoSys in this sec-

tion. These experiments will show the theoretical properties in action, with two

implications for system construction: On the one hand, the ability to test subsys-

tems eases collaboration, even if the results of a subsystem are not as good as those

of the complete system (construction benefit). On the other hand, the same decom-

position, coupled with the reliable modulation techniques introduced in Sec. 5.2.1,

allows the complete system to continue operation if units in higher subsystems fail,

even if this graceful decay slightly reduces system performance (operation benefit).

Both properties are demonstrated by allowing units to be added and removed from

the system at run-time.

As discussed in Sec. 4.4, the system was implemented on a dataflow-based infra-

structure, observing the separation of units. All experiments are done with three

specific subsystems of the whole system, which are depicted as ‘Phase 1’, ‘Phase 2’

and ‘Phase 3’ in Fig. 7.3. All of them use the detection of cars as a benchmark for

an increasingly complex set of processing units, the time-to-contact computation is

not used for these expriments. By running different subsystems independently from

the rest of units, or even adding or removing units at run-time, we will show that

the decomposition has the properties predicted by the Systematica 2d design.
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Figure 7.5: Sample images with ground truth labeling used for AutoSys decompo-

sition experiments – The figure shows images from the stream used for eval-

uating the performance of AutoSys. White rectangles denote manually labeled

cars used for measuring quality.

Experiments for this analysis were done on a data stream (recorded on a prototype

vehicle) with additional hand-labeled ground-truth information. We chose a 70s data

stream, recorded at 10Hz during a typical drive on an inner-city road, with typical

lighting conditions and occasionally missing lane markings, on a cloudy day, but

without rain (see Fig. 7.5 for samples).

To evaluate system performance, we annotated the stream with ground-truth in-

formation, which can be seen in Fig. 7.5: for each image timestep t, all task-relevant

objects gti(t) = (x1, y1, x2, y2), gti(t) ∈ GT (t) were marked by a rectangular

region of interest (ROI). The car detection unit produces a set of detection regions

vj(t) = (x′1, y
′
1, x
′
2, y
′
2), vj(t) ∈ V (t).

By comparing the sets GT (t) and V (t), the set of ground-truth regions hit by

a detection GT ∗(t) ⊆ GT (t) and the set of detections which hit a ground-truth

region V ∗(t) ⊆ V (t) are computed.

We apply the standard measure ‘quality’ as proposed in [63] as q(t) = TP/(TP+

FP + FN), with TP = |GT ∗(t)|, TP + FN = |GT (t)| and FP = |V (t)| −
|V ∗(t)|, thus:

q(t) =
|GT ∗(t)|

|GT (t)|+ (|V (t)| − |V ∗(t)|)
(7.1)

An ideal system would have quality values near 1. The AutoSys system has one

cue (stereo) which is good at detecting many possible objects, of which not all are

interesting (low |V ∗(t)|/|V (t)|, high |GT ∗(t)|/|GT (t)|) and one cue (classifier)

which is very good at detecting interesting objects but misses the ones which do not

look ‘enough’ like a car (high |V ∗(t)|/|V (t)|, medium |GT ∗(t)|/|GT (t)|). The

Proto-Object fusion unit is responsible for finding a compromise between the two

while the scene context filter helps to reduce the false positive output of both cues.
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Figure 7.6: Car detection quality for different AutoSys subsystems – The figure

shows the car detection performance recorded over four separate runs of the sys-

tem. Three of them (dashed lines) were done with stable active subsystems.

Since the quality shows considerable jitter in raw data, measurements have been

smoothed. One interactive run (solid black line) demonstrates the system’s abil-

ity for graceful decay and recovery. The system is started with ‘Phase 3’ running,

after 7s is falls back to ‘Phase 2’, after 19s further down to ‘Phase 1’. As can

be seen, the performance drops to the level of the highest running subsystem.

After 35s the classifier cue is reactivated and after 55s the scene context follows,

leading to an almost complete recovery of detection quality.

We evaluate this quality once for the three functional subsystems, see Fig. 7.6. The

results for the individual subsystems show the ability to test parts of the full system,

as long as they adhere to the ‘complete subgraph’ property, as defined in Sec. 4.2.1.

The most interesting run of the system is the interactive run: in this case, the units

of the system are manually shut down (simulating a crash) and restarted during

runtime. The resulting performance shows that these crashes only reduce system

performance to the performance expected of the smallest remaining subsystem. This

is the result of loose-coupled input handling at the ‘DrivingOptional’ inputs for scene

context filters and processing cues. Furthermore, the restart of units in the running

system brings it back up to the performance of the full ‘Phase 3’.

These experiments show that the theoretical properties of the Systematica 2d

design translate directly into design-time (partial testing) and run-time (graceful

decay) properties of the implemented AutoSys system.
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7.3 Reduced System Construction Effort

The previous sections have presented theoretical and experimental evidence for spe-

cific beneficial properties gained by using Systematica 2d in the hypothesis for-

mulation, implementation and evolution phases. One claim, which is independent of

such specific properties and has not yet been supported by evidence is that using the

new language and the related methods actually reduces the effort of the hypothesis

test cycle as a whole.

This section will deal with this claim in the following way: The effort for hypothe-

sis formulation and hypothesis evolution is extremely difficult to measure because it

includes numerous unrelated activities like selecting a promising idea, project plan-

ning, writing publications etc. We will therefore focus on the effort spent on system

implementation and compare it between systems built based on a Sys2d design and

others built without. This comparison will require a definition of ‘effort’, in addition

to an estimation of the ‘complexity’ of the compared systems since the effort clearly

depends to a large part on the complexity of the built system.

Three robotics and three automotive systems are compared. On the robotics side,

these are ALIS1[9] from 2007, ALIS2[30, 28] from 2008 and ALIS3[1] from 2009.

On the automotive side, these are FIRST[64] from 2007, SECOND[54] from 2009

and AutoSys [2] from 2010. ALIS1, ALIS2, ALIS3 and FIRST were built without

a Sys2d design, SECOND was built based on a design language which later evolved

into Systematica 2d and AutoSys was built completely based on a Sys2d design.

All six systems were built at the Honda Research Institute Europe under delib-

erately similar conditions: They were designed and developed by strongly overlap-

ping groups of five to fifteen scientists and were all based on the ToolBOS software

infrastructure[25]. On the one hand, this restricts generalization from this evaluation,

on the other hand, these common points allow a comparison between systems and

construction processes which would not be possible across institute or infrastructure

boundaries.

The system complexity measure we use for comparison is directly based on this

common basis for all the systems. ToolBOS is a dataflow-based infrastructure, so

all systems are implemented as dataflow graphs composed of a certain number of

processing module instances. The granularity of these instances as well as the number

of new modules developed for each of the systems is comparable for all systems. The

complexity of each system is therefore estimated by the number of processing module

instances involved in each system’s data flow graph.

To estimate the effort of system implementation, we recorded the number of weeks
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Figure 7.7: Comparison of System Complexity and Implementation Effort for a

set of existing systems – The figure shows the system complexity and imple-

mentation effort for several existing EI systems. The systems in green were built

based on Sys2d designs, in contrast to the systems in blue. As can be seen,

the introduction of Systematica 2d significantly reduced implementation effort

despite quickly growing system complexity. Please see text for details.

spent on each system construction process and multiplied it with the number of

scientists involved, thus counting the number of ‘man-weeks’ per system. The result

of the comparison of system complexity and implementation effort can be seen in

Fig. 7.7.

First, it is obvious that system complexity grew dramatically — this growth is a

result of increasing man-power available for construction combined with easy reuse

of processing modules in the ToolBOS infrastructure. The growth of complexity is

matched by a steep, proportional growth of implementation effort for the four Non-

Sys2d systems (shown in blue). With the introduction of Systematica 2d (systems

shown in green), the effort is reduced significantly despite continually increasing com-

plexity, leading to a much lower effort-to-complexity ratio. Even without explicitly

considering the specific system properties achieved by a Sys2d design, this reduc-

tion of implementation effort is a strong indicator for the utility of the language for

intelligent system construction.

Two details of this study can be analyzed in more detail: One important question

is whether the improved effort-to-complexity ratio can be explained simply by better
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collaboration in the integration team, better software infrastructure or more reusable

building blocks (besides Systematica 2d). We believe that all of these can be

ruled out because of the linear relation of complexity and effort over the first four

considered systems (built without Systematica 2d). If a gradual improvement of

team or software infrastructure productivity had taken place, it would be visible in

the relation of effort and complexity, and thus in a deviation from the linear relation,

already for the first four systems. This makes the introduction of Systematica 2d

the only major difference in project organization.

The second question is which reasons the scientists involved in the system con-

structions give themselves for the improved construction speed. Since the study

covers several systems which were built before the introduction of Systematica 2d,

a continuous user survey capturing main problems faced during each integration was

not possible. However, discussions with scientists involved in both the ALIS3 and

AutoSys integrations revealed two interesting observations: First, the possibility

to test new algorithms in subsystems was considered the main improvement of the

AutoSys integration over ALIS3, where testing new functionality usually required

the whole system. This was made possible by the explicit description of dependencies

in the Sys2d design and greatly reduced interference from simultaneous changes in

the system. Second, several scientists indicated that the overall system decomposi-

tion, which was done initially based on the Sys2d design, did not affect their work

during system construction, even though this decomposition basically remained sta-

ble over the whole system construction phase. We believe this shows that benefitial

properties achieved because of the initial design do not require a detailed involvement

of each participating scientist in the design process and are thus easily applicable to

collaborative projects.

7.4 Conclusion

This chapter has collected and completed theoretical and experimental arguments to

support the three basic claims of this work:

1. Systematica 2d improves hypothesis formulation by providing a flexible

and standardized language — the expressiveness is shown for the large-scale

systems ALIS and AutoSys as well as on ‘translations’ of several existing

cognitive models (CogAff, Systematica and 3-Tier),

2. Systematica 2d improves the system construction process by enforcing

several beneficial properties using a structural bias during the design phase
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— this results in a construction benefit (partial testing), an operation benefit

(graceful decay) as well as an overall reduction in construction time,

3. Systematica 2d improves hypothesis evolution i) by defining important

system properties (incremental representations, sensory/behavioral confinement)

which allow comparison and categorization of Sys2d and (through transla-

tion) Non-Sys2d systems and ii) by enabling easy system decomposition into

reusable, functional subsystems (as was shown for AutoSys).

These properties, together with related methods introduced in this work, especially

mapping to numerous software infrastructures, reliable modulation and easy system

monitoring, allow large-scale, efficient and scientific hypothesis testing.
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8 Conclusion

This work has presented a novel way to design, implement, compare and evolve

system hypotheses for intelligent artifacts. Starting point and recurring motivation

has been the improvement of the ‘Hypothesis Test Cycle’, i. e. the process from the

first idea about a new system structure (the hypothesis) over the detailed design and

the implementation in a physical artifact to the hypothesis comparison and evolution.

At the heart of the proposed set of methods is the new formal design language ‘Sys-

tematica 2d’ which combines a specification of systems on two levels, the functional

and the descriptive, with a carefully chosen set of constraints. The combination of

these two achieves a variety of beneficial properties in all three phases of the hypoth-

esis test cycle, from flexible and standardized design over collaboration-friendly and

global deadlock-free implementation to hypothesis categorization and comparison.

The new language was compared to existing approaches from the domains of soft-

ware engineering, software infrastructure for intelligent artifacts and intelligent sys-

tem modeling by means of a set of measure criteria, proposed in this work explicitly

for this purpose. The criteria allow evaluation of a language’s ability to support

the full hypothesis test cycle and were applied to four existing design languages.

The evaluation showed that no current design language or software infrastructure is

suitable for the full hypothesis test cycle.

The new language was then introduced in detail, including the formal set nota-

tion, a visual notation and the constraints of sortability and incremental construction

which together form the elements of a valid Sys2d design. It was shown that the new

formalism is able to express and enrich the evaluated modeling languages together

with the two large-scale implemented systems ALIS and AutoSys and that the

structural bias imposed by the constraints does not impair the flexibility of the lan-

guage. Rather, several beneficial properties could be derived from these constraints,

including the ability to decompose a design into complete subsystems to allow partial

testing and incremental construction as well as proven global deadlock-free operation.

To provide evidence that the language is valuable for system implementation, a

mapping of the relevant language elements to a wide variety of software infrastruc-

tures and -paradigms used for intelligent artifacts was detailed. In addition, the
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analysis of the AutoSys system, built according to a Sys2d design, showed that

implementation is not only possible but benefits from the system properties derived

from the formal system description. Two generic system implementation techniques,

reliable modulation and system monitoring, add to the utility of the language.

To complete the hypothesis test cycle, several properties were derived from Sys-

tematica 2d to allow hypothesis categorization and comparison. By analyzing sen-

sor and behavior spaces, incremental representations and sensory / behavioral con-

finement, different systems could be categorized into system types. As an example,

three such types, ‘Incremental Processing’, ‘Hierarchical Behavior’ and ‘Incremental

Behavior’ were defined based on combinations of system properties and related to

existing systems, especially ALIS and AutoSys. This categorization is important

for hypothesis comparison and, since possible improvements to bring a system from

one system type to another can be derived, also for evolution.

All of these analyses together support the proposal that Systematica 2d is able

to significantly improve the hypothesis test cycle for intelligent artifacts and will

allow faster and more precise development of future system hypotheses.

Outlook

Several elements of the language and the surrounding methods leave room for im-

provement: First, the definition of sub-architectures is not yet in a way to allow

‘wrapping’ them into complex units, which may be a prerequisite for future, much

larger systems. Second, the mapping of system design to implementation would

benefit from an automated code generation for selected infrastructures. Third, Sys-

tematica 2d is an architecture description language in the software engineering

sense and may, as such, allow application to a wider range of domains, given that it

is formulated in a compatible way and the specific requirements of other domains are

well analyzed.

However, we see the more interesting area for future work in the intelligent arti-

facts domain. Systems for intelligent artifacts, especially human-related robots and

driver assistance systems, are being introduced at increasing speed, but without a

common description or implementation language. By applying Systematica 2d

to existing and new hypotheses presented in these domains we hope to provide a

better understanding of the directions and concepts followed at the moment, and,

ultimately, propose improvements to take intelligent systems forwards.
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Appendix

Visual Editing Software

Based on the visual representation described in Sec. 4.1.4, a software tool was devel-

oped to create, view and edit Sys2d designs (see Fig. A.1). Using the simple shapes

of units, ports and sub-architectures, it is possible to quickly combine systems while

automatically enforcing the sortability and incremental construction constraints and

utilizing them to support the positioning of units. Basis for the tool is an XML

format representing the set-notation of Sys2d models, enriched with tags carrying

visual data. The tool is platform-independent, allows interactive editing and is able

to verify the constraints of valid Sys2d designs. Graphs can be exported as PNG or

SVG for visual or vector-based post processing, respectively.

To get a copy of the tool, please refer to the electronic publication of this thesis or

send a short mail to bdittes@googlemail.com.

Figure A.1: Screenshot of the SYS2D Visual Editing Software – The tool allows edit-

ing of Sys2d designs, including all formal elements and validation of all con-

straints. See text for details.

105

mailto:bdittes@googlemail.com




Bibliography
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