
Grasp Point Optimization by Online Exploration of Unknown Object Surface

Qiang Li, Robert Haschke, Bram Bolder and Helge Ritter

email: {qli,rhaschke,helge}@cor-lab.uni-bielefeld.de bram.bolder@honda-ri.de

Abstract—In order to realize in-hand manipulation of un-
known objects, we introduce an extension to our previously de-
veloped manipulation framework, such that long manipulation
sequences, involving finger regrasping, become feasible. To this
end, we propose a novel feedback controller, which searches
for locally optimal contact points (suitable for regrasping),
employing an online exploration process on the unknown object
surface. The method autonomously estimates and follows the
gradient of a smooth objective function. More concretely, we
propose to dynamically switch between manipulability and
grasp stability depending on the grasp stability level.

Physics-based simulation experiments, involving artificial
noise to model real-world sensor readings, prove the feasibility
of our approach by rotating an object while readjusting the
grasp configuration with all fingers in turn.

I. INTRODUCTION

A major challenge to exploit the potential of multifingered

robot hands for dexterous manipulation is the ability to

realize controlled regrasping to enable large-range in-hand

object movements. Even if the geometry of the object, the

kinematics of the hand, and the friction conditions at all

contact points are accurately known, the planning and control

of regrasp sequences constitutes a difficult task. Since in

most practical cases such information is at best available

only partly, recent work has focused on the development of

solutions that remain feasible even in the absence of detailed

information about the object, the contact friction, and the

hand kinematics.

Many of these approaches are based on ideas of robust

control, i.e. methods that are little affected by deviations

from their underlying model assumptions. Here, we present

a novel approach that differs from these lines of research in

that it integrates active exploration into the determination

of a regrasp sequence: regrasping is split into successive

repositionings of a free finger that identifies a suitable next

contact point by small exploratory movements across the

object’s surface in the vicinity of its current contact while

simultaneously monitoring a quality measure that combines

grasp stability and manipulability in such a way that it can

be evaluated under very weak information requirements.

In addition, readily available information from tactile

fingertips and joints is used for a feedback controller to

compensate deviations between the actual and the modeled

motion such that a very simple model with only few as-

sumptions beyond local surface smoothness is sufficient. We
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demonstrate the feasibility of the approach within a physics-

based simulation employing a 22-DOF anthropomorphic

Shadow Hand manipulating a spherical object (without using

this geometry information in the control method).

The paper is arranged as follows. In section II we discuss

how our approach is positioned w.r.t. existing work. In

section III, we shortly summarize our manipulation strategy

composed of a local manipulation controller and a global

finger gait planner as introduced in our previous work [1].

Subsequently, in section IV, we introduce a new control

scheme for online exploration of the object surface aiming

for an optimization of a given objective function, which is

evaluated in section V employing a physics-based simulation.

Finally, section VI summarizes our work.

II. STATE OF THE ART

Roughly, there are three different lines of research to

cope with the dexterous manipulation problem. The first

line follows an analytic approach, requiring rather strong

assumptions and detailed knowledge about the situation: the

hand kinematics, object properties like shape, mass and mass

distribution, the contact locations and friction coefficients,

and the local surface geometry of both the object and

fingertips. Based on this knowledge it is possible to compute

joint-level finger trajectories in an offline fashion [2].

The second line is based on the idea of forward control,

using a simulation of object-hand interaction [3] to model the

grasping and manipulation processes. Grasp poses optimized

w.r.t. certain quality criteria [4] become arranged in a pose

graph [5] to plan manipulation sequences using state-of-

the-art motion planning methods like RRT [6] or PRM [7],

tackling e.g. the problem of screwing a light bulb [8].

The third line – in spirit closest to our method – uses

feedback as a central mechanism. Ishihara et. al [9] devised

a controller that is capable to spin a pen of known shape

at an impressive speed. Platt et. al [10] proposed hybrid

force/position controllers to realize unknown object grasping

by sliding the fingers on the object surface to optimize grasp

stability. Tahara et. al [11] point out a method to manipulate

objects of unknown shape. They employ a virtual object

frame determined by the triangular fingertip configuration

of a three-fingered hand to derive a control law to manip-

ulate the object’s pose. However, without explicit sensory

feedback, their method is limited in accuracy.

III. OBJECT MANIPULATION STRATEGY

Reactive feedback-based strategies for object manipulation

appear most suitable as a starting point for our approach,

because we aim to tackle unknown object manipulation,
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Fig. 1: Force planner employs centroid p̄ of contact locations.

rendering deliberative planning approaches infeasible due to

missing object models. Furthermore, we can more directly

account for real-life deviations from the planned trajectory:

The object pose might be estimated incorrectly, fingers might

unpredictably slide or roll or even loose contact at all. To

realize manipulation planning in situations where no object

model is available, we devise a control strategy to slide an

active finger over the object surface to find a new grasp point

locally optimizing a given quality measure. Although the

gradient-based method cannot find the global optimum, it

turns out to be highly sufficient to solve the task.
We divide the manipulation process into two stages: a local

manipulation controller and a global finger gait planner. In

our previous work we used a set of local controllers from a

manipulation control basis [12], [13] to realize small object

motions which were sequenced using a finite state machine

to realize large-scale in-hand movements of an object [1].

The present paper extends this work with an online control

strategy to actively explore the object surface with an active

finger, searching an optimal grasp point, while using the other

fingers to stably hold the object.

A. Local Manipulation Controller – Position Part
In contrast to traditional planning methods, we aim for

unknown object manipulation, expecting as little knowledge

as possible. More concretely, we assume point contacts and

the availability of coarse contact positions, normals and

normal forces, which can be obtained from modern tactile

sensor arrays and visual object tracking methods. More

detailed properties like friction coefficients are not required.
In order to realize a small object motion M = O−1 · O′

from the current object pose O to the targeted pose O′, we

need to determine appropriate finger joint motions. To avoid

the need for a detailed object model, we make the essential

assumption that contact positions po
i do not move relative

to the object within a control cycle. Of course, this is only

an approximation. However, the sensor feedback available in

the next control cycle will allow us to recognize and correct

for undesired contact motion, e.g. due to slipping or rolling.

Denoting the current contact positions w.r.t. the object frame

by po
i , we can easily compute the contact positions p′

i (w.r.t.

the palm) targeted in the current control cycle as follows:

p′
i = O′ · po

i = O ·M ·O−1pi . (1)
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Fig. 2: Low level, local manipulation control scheme.

From this we can compute the required positional changes

Δpi = p′
i−pi for all contact points. Because the object and

fingertip geometries are not explicitly taken into account,

contacts might have moved due to sliding or rolling after

applying the computed hand pose. We might even loose a

contact. However, we tolerate such changes and use fast

feedback to correct for these unmodeled deviations.

B. Local Manipulation Controller – Force Part

This is achieved by complementing the position control

with a suitable force control strategy. Conventional contact

force planners strive for a globally optimal contact force

distribution to maximize grasp stability under the constraints

that (i) all contact forces stay within friction cones, (ii) the

total applied force compensates external forces (e.g. gravity),

and (iii) local contact forces stay within preset limits.

This general solution is meaningful only if the contact

force is controllable. However, we wish to work under the

more parsimonious assumption that there is no directional

(3D) contact force feedback available, but only a scalar force

magnitude along the contact normal.

Following the approach from [11], we plan the force

direction such that the resultant moment will be zero by

ensuring that the contact force directions of all fingers

intersect in one point, which is chosen to be the centroid

p̄ of contact locations (cf. Fig. 1). Subsequently we can

prescribe force magnitudes along these directions such that

the resultant force becomes zero as well. Hence, the force

planner calculates desired contact force magnitudes along

the contact directions, from which we can obtain force

errors. Both, the force and positional errors (Δpi) are fed to

a composite position/force controller, which calculates the

effective contact position error, which in turn is fed to an

inverse hand kinematics module to compute joint velocities.

To ensure, that the force error converges to zero, we apply a

PI-controller for force and a P-controller for position. Fig. 2

summarizes this control scheme. For more details on the local

manipulation controller we refer to [12].

C. Regrasp Planner

Joint limits restrict the amount of object motion achievable

by a local method. To realize large-scale motions, we need

to regrasp before continuing the local manipulation process.

Finding a suitable regrasp is the task of the regrasp plan-

ner. We use a strategy that is loosely inspired by human

manipulation skills: While three passive fingers realize the

object motion, the fourth finger takes the role of actively

exploring the object to identify an optimal next contact point.



Fig. 3: High level, global regrasp planner.

Subsequently, the fingers switch their active and passive roles

and the process is seamlessly repeated. This static finger gait

is described by the state machine shown in Fig. 3, ensuring

that all fingers explore the object surface, taking the active

role in turn. To this end, we distinguish the following states:

Snone: TFMR are all grip fingers
SR: TFM grip fingers and R exploration finger
SM : TFR grip fingers and M exploration finger
SF : TMR grip fingers and F exploration finger
ST : FMR grip fingers and T exploration finger

Fingers are abbreviated as follows: T: thumb, F: forefin-

ger, M: middle finger; R: ring finger. State transitions are

accompanied by a common sequence of object manipulation

and exploration motions as follows: After holding the object

with all fingers in the initial state Snone, an individual finger

becomes the actively exploring finger, contacting the object

with very small force. In this state, the three remaining,

passively holding fingers move the object. After this local

manipulation is performed, the active finger slides over the

object surface to find the next feasible contact point. Finally,

the active finger reestablishes object contact with a contact

force determined by the force planner (sec. III-B), thus re-

turning to the state Snone. Please note, that the contact force

planner considers only the passively grasping fingers and

assumes zero contact force for the actively exploring finger.

State transitions are triggered by an external process cycling

through the states Snone −SR −Snone −SM −Snone − . . .

IV. FINDING OPTIMAL REGRASP POINTS

For rotary object manipulation studied in our previous

work [1] we could employ precomputed contact points for

regrasping. However, for more general object shapes we

require a more elaborate search process to find a suitable

new contact point to regrasp the object, which subsequently

allows to continue the object manipulation motion.

We formalize the contact point selection as an optimiza-

tion problem by considering two quality criteria, the grasp

stability and the manipulability, as an objective function to be

maximized in an exploratory search process. Both measures

can be easily calculated from the available kinematic and

contact information.

A. Grasp Stability and Manipulability

Classical grasp planning theory aims for force-closure

grasps which can resist external disturbance wrenches from

arbitrary directions without slipping or rolling. Grasp quality

measures rely on an analysis of the grasp wrench space, i.e.

the set of wrenches applicable to an object through a set

of normalized contact forces, which is closely related to the

grasp matrix G [2]. The most popular methods employ (i)

the minimal singular value of G or (ii) the determinant of

G. While the former method yields a worst-case criterion

measuring the distance to an unstable grasp configuration

along the worst wrench direction, the latter evaluates the

volume of the wrench space, which averages over all possible

wrench directions. We employ the latter criterion:

φstability =
√

det(GpassiveGt
passive) (2)

Because the exploration phase aims for a recomposition of

the group of fingers passively holding the object in the next

exploration phase, grasp stability is evaluated considering

only contacts of those fingers (which are known beforehand

due to the fixed finger gait), which is denoted by Gpassive.

The manipulability [14] measures the distance of the

current hand pose to a singular configuration and thus

expresses the capability of the current pose to actively

move all fingertips into an arbitrary Cartesian direction. The

manipulability is calculated from the Jacobian matrix of the

robot hand, which is a block-diagonal matrix formed from

the finger Jacobians Ji, assuming uncoupled finger motion.

Because during exploration only the Jacobian and thus the

manipulability of the active finger changes, we can reduce

calculations to the appropriate sub matrix Ji:

φmanipulability =
√

det(JiJ t
i ) (3)

Both criteria are complementary: while the grasp stability

criterion only considers the contact configuration, the manip-

ulability focuses on the finger motion range, avoiding singu-

lar configurations. Hence, both criteria need to be combined

effectively. However, a simple linear superposition of both

measures is not promising, because often both criteria are

conflicting with each other: an increase of stability generates

a decrease of manipulability and vice versa, such that a

linear superposition would find the least compromise only

(see section V for an example). Additionally, it would be

difficult to find a suitable weighting of both components,

because they are not normalized.

Hence, we employ a hierarchical combination of both

criteria, which are chosen in an adaptive fashion. Because

we aim for in-hand object manipulation, we propose to

normally use manipulability as the primary criterion which

is optimized as long as the grasp stability criterion fulfills

a given minimal threshold. Hence, if the grasp stability is

larger than the threshold, we generate active finger motion

following the estimated gradient of the manipulability, thus

maximizing this criterion. Otherwise, if grasp stability is

below the threshold, finger motion will be generated along



the gradient of grasp stability in order to increase stability

to the necessary level first.

B. Object Surface Exploration Controller

Given a selected objective function φ, the task of the

exploratory motion controller is to generate a sliding motion

over the (unknown) object surface which finds and follows

the objective’s gradient ∇φ. Because both quality criteria are

complex non-linear functions of the contact point motion ċ,

we do not try to find a closed-form solution of the gradient,

but aim for its online estimation.

For a number n of control cycles, the exploratory motion

follows the estimated gradient ∇̃φ, which is projected onto

the tangential plane at the current contact point:

ċr = η · T r
c · P (c) · (T r

c )
−1 · ∇̃rφ , (4)

where η is the gain factor, T r
c the homogeneous transfor-

mation from the contact frame (subscript c) to the global

reference frame (subscript r), and P (c) = diag(1, 1, 0, 1)
a projector mapping onto the tangent plane at the contact

point c. This targeted contact velocity is fed into a hybrid

position/force controller (cf. [12]), which tries to realize this

motion in the tangent plane while simultaneously maintain-

ing a (small) normal contact force onto the object. After n
control cycles we re-estimate the gradient ∇cφ from the slope

of the objective function during motion Δc from c to c′. This

procedure is iterated until convergence or until a predefined

number of Nmax control cycles have been executed.

The complete control algorithm is summarized in Alg. 1.

In order to obtain a smooth estimation of the gradient, in line

8 we apply a sliding average using a smoothing coefficient

of λ=0.9. Please note, that the estimated gradient ∇̃φ is

represented w.r.t. the time-constant global reference frame.

The contact reference frames which are used to compute

∇φ change over time and thus are not suitable for a time-

consistent representation.

Further note, that the targeted motion is restricted to the

tangent plane of the contact point in order to maintain

contact. Of course, due to approximation errors and foremost

due to the unknown object shape, the real contact motion

Algorithm 1 Object surface exploration, maximizing φ

1: i = 0 {initialize cycle count}
2: ∇̃φr ∝ N (0, σ = 0.15) {randomly initialize gradient}
3: while ++i≤ Nmax and ‖P · (T r

c )
−1 · ∇̃φr‖ � ε do

4: if i mod n = 0 then {update ∇̃φr every n cycles}
5: Δcc = P (c) · T c

r · (c′r − cr)

6: ∇φc = [φ
′−φ
Δcc

x
, φ′−φ

Δcc
y
, 0]t

7: limit norm of ∇φc to ∇max

8: ∇̃φr ← λ · ∇̃φr + (1− λ) · T r
c · ∇φc

9: φ′ ← φ , c′ ← c
10: end if
11: ċr ← η · T r

c · P (c) · (T r
c )

−1 · ∇̃φr

12: end while

Fig. 4: Shadow Hand model rotating a sphere using 4 fingers.

might also have a normal component, thus changing the

contact force or loosing contact at all. However, the hybrid

position/force controller accounts for these deviations from

the planned motion by maintaining a given contact force.

Obviously this control algorithm only assumes that the object

surface changes smoothly along every contact trajectory, such

that gradient estimates can be computed and small motion

deviations along the surface normal can be compensated.

V. SIMULATION AND DISCUSSION

The object manipulation algorithm is validated in a physi-

cal simulation experiment. We use the Vortex physics engine

to obtain real-time contact information (contact position and

normal force magnitude) and the object’s pose (position and

orientation). The former information will also be accessible

in real world, exploiting modern tactile fingertip sensors pro-

viding a moderate spatial resolution. Exploiting the known

sensor shape and kinematic model of the hand, we can

calculate contact positions relative to the hand and correlate

them to a visually tracked, coarse object model.

In order to model noisy real-world sensors, artificial white

noise is superimposed on the feedback provided by the

physics engine. Particularly, the standard deviations of added

Gaussian noise for the contact positions is 0.3cm, and 0.1
for the contact forces. Hence, the positional noise resembles

the spatial resolution of tactile sensors in the Shadow Hand.

Note that we do not model calibration errors, which usually

result in systematic deviations.

As the algorithm assumes a smooth object surface, we test

one exemplary object – a sphere of 5cm diameter, which has

to be rotated in-place by a 22-DoF Shadow Hand model

(see Fig. 4). Note, that the shape of the object as well as

other parameters like friction properties are not available to

the manipulation strategy. For initial grasping, we assume

that the object is located in a suitable pose relative to the

hand and desired grasp points are known. The simulation is

resembling our real robot setup to facilitate future transfer

into real world, once the required tactile feedback is robustly

available from fingertip sensors. The whole manipulation

process comprises three phases:

• Grasp the object while it is fixed in the world, which is

necessary to avoid that the object is kicked off.

• Unfreeze the object and stabilize the grasp employing

active force control in order to prepare manipulation.



(a) Contact force magnitudes along the contact normals

(b) Object pose: x, y, z position and x-axis rotation

Fig. 5: Force and motion trajectories while rotating the object

• Actually manipulate the object:

– Choose an active finger, releasing the grip, i.e.

reducing contact force (transition to state SX ).

– Rotate the object by a small amount, e.g. 5◦ using

the three remaining, passive fingers.

– Explore the object surface according to algorithm 1.

– Reestablish grip with all fingers (trans. to Snone)

and continue manipulation with next active finger.

We focus the evaluation on the last item, the active

exploration process to find improved contact points. The

realization of a stable grasp, which is the objective of the

first two stages, is reported in our previous work [12], [15].

a) Relaxing grip and rotating the object: The first

experiment shown in Fig. 5, illustrates the actions Atouch
R and

Amove
TFM , i.e. the ring finger relaxing the grip (phase 2), and

subsequent rotation of the object around the x-axis using

the remaining fingers (phase 3). The first phase shown in

the figure corresponds to the state Snone, where all four

fingers hold the object employing the active force controller

described in sec. III-B.

In Fig. 5a, the contact force evolution during all three

Fig. 6: Evolution of quality measures when ring finger is

exploring the object surface: manipulability, average grasp

stability, smallest singular value of G, superimposed criteria.

phases is shown, while Fig. 5b shows the motion trajectories

of the object position (x, y, z) and its rotation angle around

the x-axis. Target trajectories are visualized as red solid lines,

while actual trajectories are depicted as blue dotted lines.

Note that the noisy force trajectories are mainly due to the

artificially superimposed sensor noise, which should model

real-world conditions.

At the transition from phase 1 to phase 2, the desired

contact force for the ring finger (last sub graph) is lowered

to 0.1. The other fingers slightly adapt their contact forces

to account for the omission of the fourth contacting finger.

The transition to phase 3 doesn’t change the force profile,

but only realizes the object rotation (cf. [12]). The simulation

results show, that the object position error is less than 0.1cm,

and the orientation error is less than 0.01rad.

b) Object surface exploration: Fig. 6 shows the evolu-

tion of the quality measures during two different exploratory

motions of the ring finger (action Aexp
R ): The red solid lines

result from the motion, when only the manipulability is

optimized, while the blue dotted lines result from the motion

when both quality criteria are optimized simultaneously us-

ing a linear superposition with weights 1
2 each. Both motions

start from the same initial configuration.

As can be seen from the graphs, both criteria are conflict-

ing with each other, resulting in only minor changes to the

overall quality measure in the superimposed case. However,

when the optimization focuses onto a single criterion, the

proposed control strategy can successfully estimate the gra-

dient direction after a few iteration steps and subsequently

follow this gradient for maximization. The decrease of the

manipulability during the first 75 time steps is due to a
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(a) Contact point cloud generated by object exploration
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(b) Evolution of manipulability and grasp stability

Fig. 7: Results of a complete manipulation sequence involv-

ing all states, i.e. exploring with all fingers in turn.

poor random initialization of the gradient direction (line 2

of alg. 1), which is only slowly overcome due to the sliding

average (line 8). As can be seen from the stability graphs, the

grasp is stable during the course of manipulation, although

stability may decrease. Repeating the exploratory motion 50

times using different initial gradient directions, always leads

to a successful maximization of the objective function.

c) Continuous Object Manipulation: Finally, Fig. 7

shows the evolution of the contact points w.r.t. the object

frame (a) and the corresponding quality criteria (b) during

a continuous rotation of the object following the finger gait

pattern as defined by the state machine in Fig. 3: exploring

with ring, middle, index finger, and thumb in this order.

As can be seen from the evolution of the objective func-

tions, the algorithm always maximizes the manipulability of

the exploring finger – except in state SF , where the grasp

stability is chosen as the objective function. In this state, the

grasp stability – evaluated for the group of passive fingers

– drops below the chosen threshold, because the thumb

becomes active and is thus excluded from the holding task.

The complete manipulation sequence is illustrated in the

accompanying video to this paper.

Please notice, that the exploration process also reveals

valuable shape information of the object as illustrated by

the contact point cloud in Fig. 7a. If object manipulation is

continued, more and more contact points are sampled and

can serve as a basis to reconstruct the object shape [16].

VI. SUMMARY AND OUTLOOK

The proposed, novel control algorithm to search the maxi-

mum of a given smooth objective function in an exploratory

motion process, sliding a fingertip over an unknown object

surface, provides another missing puzzle piece to realize

complex in-hand manipulation.

Our algorithm makes as little use of prior knowledge

as possible. Neither the object shape, nor detailed contact

properties need to be known. The controller relies on tactile

feedback to obtain the current contact point, contact normal

(which is known from the local finger geometry), and contact

force magnitude. Vision feedback can be employed to track

the object pose. Due to its closed-loop characteristics, the

approach is very robust to sensor noise and small devia-

tions from the planned motion, which was demonstrated in

physics-based simulation experiments.

In future, we will speed up the gradient estimation process,

which is slowed down using averaging methods to overcome

random fluctuations of the objective functions. Also, we will

apply the algorithm to more complex object shapes, which

is easily possible, because only smoothness constraints have

to be fulfilled.
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