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Abstract

For complex data sets, the pairwise similarity or dissimilarity of data
often serves as the interface of the application scenario to the machine
learning tool. Hence, the final result of training is severely influenced by
the choice of the dissimilarity measure. While dissimilarity measures for
supervised settings can eventually be compared by the classification error,
the situation is less clear in unsupervised domains where a clear objective
is lacking. The question occurs, how to compare dissimilarity measures
and their influence on the final result in such cases. In this contribution,
we propose to use a recent quantitative measure introduced in the con-
text of unsupervised dimensionality reduction, to compare whether and
on which scale dissimilarities coincide for an unsupervised learning task.
Essentially, the measure evaluates in how far neighborhood relations are
preserved if evaluated based on rankings, this way achieving a robustness
of the measure against scaling of data. Apart from a global comparison,
local versions allow to highlight regions of the data where two dissimilarity
measures induce the same results.

1 Introduction

In many application areas, data are becoming more and more complex such
that a representation of data as finite-dimensional vectors and their treatment
in terms of the Euclidean distance or norm is no longer appropriate. Examples
include structured data such as bioinformatics sequences, graphs, or tree struc-
tures as they occur in linguistics, time series data, functional data arising in
mass spectrometry, relational data stored in relational databases, etc. In conse-
quence, a variety of techniques has been developed to extend powerful statistical
machine learning tools towards non-vectorial data such as kernel methods using
structure kernels, recursive and graph networks, functional methods, relational
approaches, and similar [9, 12, 5, 27, 6, 26, 10, 11]. One very prominent way
to extend statistical machine learning tools is offered by the choice of problem-
specific measures of data proximity, which can often directly be used in machine
learning tools based on similarities, dissimilarities, distances, or kernels. The
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latter include popular techniques such as the support vector machine, other ker-
nel approaches such as kernel self-organizing maps or kernel linear discriminant
analysis, or distance-based approaches such as k-nearest neighbor techniques
or distance-based clustering or visualization, see e.g. [23]. Here, we are inter-
ested in dissimilarity-based approaches in general, treating metric distances as
a special case of (non-metric) dissimilarities.

With the emergence of more and more complex data structures, several
dedicated structure metrics have become popular. Classical examples include
alignment for sequences in bioinformatics [22], shape distances [21], or measures
motivated by information theory [4]. Often, there exists more than one generic
possibility to encode and compare the given data. In addition, dissimilarity
measures often come with parameters, the choice of which is not clear a priori.
Hence, the question occurs how to choose an appropriate metric in a given
setting. More generally, how can we decide whether a change of the metric or its
parameters changes the data representation which is relevant for the subsequent
machine learning task? Are there possibilities to compare whether and, if so, in
which regions two metrics differ if used for machine learning?

Many approaches which are used in machine learning for structures have
been proposed in the supervised domain. Here, a clear objective of the task is
given by the classification or regression error. Therefore, it is possible to evalu-
ate the difference of dissimilarities by comparing the classification error obtained
when using these different data representations. A few extensive comparisons
how different dissimilarities influence the outcome have been conducted; see,
e.g. [18] for the performance of different dissimilarities for content-based im-
age retrieval, [19] for an according study in the symbolic domain, [2] for the
comparison of distances for probability measures, or [3] for the performance of
classifiers on differently preprocessed dissimilarities to arrive at a valid kernel.

The situation is less clear when dealing with unsupervised domains. Un-
supervised learning is essentially ill-posed and the final objective depends on
expert evaluation. The primary mathematical goal is often to cluster or visu-
alize data, such that an underlying structure becomes apparent. Quite a few
approaches for unsupervised learning for structures based on general dissimilar-
ities have been proposed in the past: kernel clustering techniques such as kernel
self-organizing maps (SOM) or kernel neural gas (NG) [34, 24] or relational
clustering such as proposed for fuzzy-k-means, SOM, NG, or the generative to-
pographic mapping (GTM) [13, 7, 8]. Further, many state-of-the art nonlinear
visualization techniques such as t-distributed stochastic neighbor embedding are
based on pairwise dissimilarities rather than vectors [31, 15].

In this contribution, we will investigate how to compare dissimilarity mea-
sures with regard to their influence on unsupervised machine learning tasks, and
discuss different possibilities in Sec. 2. Thereafter, we will focus on a principled
approach independent of the chosen machine learning technique, rather we will
propose a framework which compares two dissimilarity measures based on their
induced neighborhood structure in Sec. 3. This way, it is possible to decide
prior to learning whether and, if so, in which regions two different dissimilarity
measures or different choices of parameters lead to different results, which we
will demonstrate on examples in Sec. 4 and 5, concluding with a discussion in
Sec. 6.
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2 How to compare dissimilarity measures?

We assume that data xi are sampled from some underlying data space. These
data are input to an unsupervised machine learning algorithm by means of
pairwise comparisons dij = d(xi,xj). These values constitute dissimilarities,
as given by the squared Euclidean distance, provided data are vectorial. We
assume that d refers to a general dissimilarity measure for which Euclidean
properties are not necessarily guaranteed, maybe even the constraints of a metric
are violated. Note, that the dual situation, similarities or kernels, can easily be
transferred to this setting, see [23].

Interestingly, albeit the chosen dissimilarity structure crucially determines
the output of any machine learning algorithm based thereon, no framework of
how to compare different dissimilarities for unsupervised domains is commonly
accepted in the literature. The question occurs what is the relevant information
contained in a dissimilarity which guides the output of such an algorithm? In-
terestingly, even slight changes of the dissimilarity such as a shift can severely
influence the result of an unsupervised algorithm, as shown in [8]. Apart from
generic mathematical considerations, indications for the answer to this ques-
tion may be taken from attempts to formalize axioms for unsupervised learning
[1, 17, 33, 14]. Here, guidelines such as scale-invariance, rank-invariance, or in-
formation retrieval perspectives are formalized. Now, we formalize and discuss
different possibilities how to compare dissimilarity measures. We assume that
pairwise dissimilarities d1ij and d2ij , which are to be compared, are given.

Matrix comparison:

The pairwise dissimilarities d1ij and d2ij give rise to two square matrices D1 and
D2 respectively, which could directly be compared using some matrix norm.
This possibility, however, is immediately ruled out when considering standard
axioms for clustering [1], for example. One natural assumption is scale-invariance
of the unsupervised learning algorithm. Scaling the matrix, however, does affect
the resulting matrix norm. More generally, virtually any matrix norm severely
depends on specific numeric choices of the representation rather than the global
properties of the data.

Induced topology:

An alternative measure which ignores numerical details but focuses on basic
structures could be connected to the mathematical set-theoretic topology of a
data space. Every distance measure induces a topology. Hence, it is possible
to compare whether the topological structure induced by two metrics is equiv-
alent. In mathematics, two metrics are called topologically equivalent if the
inequality c · d1(xi,xj) ≤ d2(xi,xj) ≤ c′ · d1(xi,xj) holds for all xi,xj for some
constants 0 < c ≤ c′, since they induce the same topology in this case. It can
easily be shown that any two metrics in a finite-dimensional real vector space
are topologically equivalent. However, this observation shows that this notion
is not appropriate to compare metrics with respect to their use for unsuper-
vised learning: topologically equivalent metrics such as the standard Euclidean
metric and the maximum-norm yield qualitatively different clusters in practical
applications, as we will demonstrate in an example in Sec. 4.

Rank preservation:

One axiom of clustering, as formalized in [1], is the invariance to rank-preserving
distortions. Indeed, many clustering or visualization techniques take into ac-
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count the ranks induced by the given dissimilarity measure only, this way achiev-
ing a high robustness of the results. Examples include algorithms based on
winner-takes-all schemes or extensions such as vector quantization, NG, SOM,
or similar approaches. Also, many visualization techniques try to preserve local
neighborhoods as measured by the rank of data. How can rank-preservation
be evaluated quantitatively? One way is to transform the matrices D1 and
D2 into rank matrices, i.e. matrices which contain permutations of the num-
bers {0, . . . , N − 1}, N being the number of data points. Then, these two
matrices could be compared by their column-wise correlation. However, usu-
ally the preservation of all ranks is not as critical as the preservation of a local
neighborhood for most machine learning tools, such that different scales of the
neighborhood size should be taken into account. In Sec. 3, we will explain the co-
ranking framework which can be seen as a way to observe this rank-preservation
property according to various neighborhood sizes of interest.

Information retrieval based comparison:

Information retrieval constitutes a typical application area for unsupervised
learning. Therefore a comparison of dissimilarity measures based on this per-
spective would be interesting. Assume a user queries a database for the neigh-
borhood of xi. What is the precision/recall, if d2 is used instead of d1? When
defining the notion of neighborhood as the K nearest neighbors, precision and
recall for a query xi are both given by the term |{xj |d1(xi,xj) ≤ K∧d2(xi,xj) ≤
K}| normalized by K. Summing over all xi and dividing by N yields an average
of all possible queries. In fact, this instantiation of a quality measure coincides
with an evaluation within the co-ranking framework which will be introduced
in Sec. 3.

3 The co-ranking framework

One very prominent tool in unsupervised learning is given by nonlinear dimen-
sionality reduction and visualization [15]. Although many of the most relevant
nonlinear dimensionality reduction methods have been proposed in the last years
only, the question of what are appropriate quantitative evaluation tools is still
widely unanswered. Interestingly, as reported in [32], a high percentage of publi-
cations on data visualization evaluates results in terms of visual impression only
– about 40% out of 69 papers referenced in [32] did not use any quantitative
evaluation criterion. In the last years, a few formal mathematical evaluation
measures of dimensionality reduction have been proposed in the literature. We
argue that one of these measures, the co-ranking framework proposed in [14, 16],
is directly suitable as a highly flexible and generic tool to evaluate the preser-
vation of pairwise relationships in different dissimilarity measures.

In this section, we give a short overview about the co-ranking framework.
Assume points xi are mapped to projections yi using some dimensionality re-
duction technique. The co-ranking framework essentially evaluates, in how far
neighborhoods in the original space and the projection space correspond to
each other. Let δij be the distance of xi and xj and dij be the distance of
yi and yj . The rank of xj with respect to xi is given by ρij = |{k | δik <
δij or (δik = δij and k < j)}|. Analogously, the rank of rij for the projec-
tions can be defined based on dij . The co-ranking matrix Q [14] is defined by
Qkl = |{(i, j) | ρij = k and rij = l}|. Errors of a dimensionality reduction corre-
spond to rank errors, i.e. off-diagonal entries in this matrix. Usually, the focus
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of dimensionality reduction is on the preservation of local relationships. In [14],
an intuitive measure of rank-preservation has been proposed, the Quality

QNX(K) =
1

KN

K
∑

k=1

K
∑

l=1

Qkl.

where N denotes the number of points. This summarizes all ‘benevolent’ points
which change their rank only within a fixed neighborhood K. Essentially, it is
the average ratio of all points which stay in a K-neighborhood in the original
and the projection space. To get an overall impression of the quality in dif-
ferent neighborhood regimes, usually a curve is plotted for a all possible K or
a range thereof. A qualitatively good visualization w.r.t. all K-neighborhoods
corresponds to the value QNX(K) approaching 1. Interestingly, this framework
can be linked to an information theoretic point of view as specified in [33]
and it subsumes several previous evaluation criteria, see [14, 20]. It is possi-
ble to extend this framework to a point-wise evaluation as introduced in [20].
Here, all neighborhood sizes are considered for one fixed point xi only, lead-

ing to the local quality curve Qxi

NX
(K) = 1

KN

∑K

k=1

∑K

l=1
Qkl(xi). Obviously,

QNX(K) =
∑

xi
Qxi

NX
(K).

How can this technique be used to compare two dissimilarities? Since
QNX(K) essentially evaluates in how far a rank-neighborhood induced by δij
coincides with a rank-neighborhood induced by dij , we can directly apply this
measurement to two given dissimilarity measures d1 and d2, and obtain a quan-
titative statement about the rank-preservation of d2 given d1. Since QNX(K) is
symmetric, the ordering of the dissimilarities is not important.

4 Comparison of metrics for the Euclidean vec-

tor space

We start with an illustrative example which shows that the measure QNX(K) al-
lows to identify situations where dissimilarities induce similar/dissimilar results.
We restrict to the two-dimensional Euclidean vector space where data are dis-
tributed uniformly or in clustered form, respectively, see Fig. 1. For these data,
we compare the Euclidean distance to the Lk norm, with k ∈ {1, 3, 6} as well
as the maximum-norm as the limit case. We can see the effect of these choices
by using a metric multidimensional scaling (MDS) to project the data to the
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Figure 1: Original data in the two-dimensional plane with uniform distribution
(a) or clustered distribution (b).
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MDS mapping of L1 distances
MDS mapping of L3 distances MDS mapping of L6 distances MDS mapping of Linf distances

Figure 2: Comparison of Lk-norms on uniform square data. (L1, L3, L6, L∞

l.t.r.)

Euclidean plane, see Figs. 2 and 3. Obviously, if data is distributed uniformly,
a smooth transition from L1 to L∞ can be observed, as expected, whereby the
global topological form does not change much. This observation is mirrored in
the co-ranking evaluation, see Fig. 4. The quality curves change smoothly and
have a value near 1, indicating a good agreement of the topologies. Note that
these metrics are topologically equivalent in the mathematical sense, which is
supported by the observation made in this case.

The situation changes if more realistic settings are considered, i.e. if structure
is present in the data. We consider three clusters and the same setting as before.
Here, the metric L1 and L∞ yield very different behavior, as can be seen in the
projection in Fig. 3 as well as in the evaluation in Fig. 4. Thus, mathematical
topology equivalence does not imply that the overall topologies are similar for
realistic settings displaying structure. The co-ranking framework mirrors the
expected differences in these settings. Note, that due to the choice of K, also
differences at different scales are displayed. In Fig. 4, clearly the underlying
structure with cluster sizes of 100 can be recovered from the quality curves.

5 Comparison of non-Euclidean settings

In the previous sections, we introduced a mathematical approach to compare
two dissimilarity measures, and demonstrated it on artificial data sets. In this
section, we use two real world data scenarios as a first proof-of-concept study,
to show the usefulness of our approach given domain-specific – and possibly
non-Euclidean – dissimilarity measures.

App description texts

Current research in the area of semantic web utilizes state-of-the-art machine
learning and data visualization techniques, in order to automatically organize
and represent vast data collections within user-friendly interfaces. Here, sophis-
ticated data dissimilarity measures for textual content play an important role.

MDS mapping of L1 distances

MDS mapping of Linf distances

Figure 3: MDS projection using Lp-norms on three clusters data. (L1, L∞)
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Figure 4: Comparison of the dissimilarities using the co-ranking framework:
uniform square (top) and three clusters (bottom).

Our first experimental scenario relates to a typical machine learning task in this
context. It consists of descriptions from 500 randomly collected applications,
available on the online platform Google Play (http://play.google.com). Google
Play is a large distribution service for digital multimedia content which currently
offers about 450.000 downloadable programs (commonly referred to as apps) for
the mobile operating system Android. Each app is attributed to one of 34 cate-
gories, while every category belongs to one of the two major branches “Games”
or “Applications”. The content of every app is summarized in a textual de-
scription of about 1200 characters on average. Our 500 apps come from two
categories: 293 from “Arcade & Action” (in Games), and 207 from “Travel &
Local” (in Applications). In the following they will be referred to as class 1 and
2, respectively. We consider three different measures to calculate dissimilarities
between the descriptions:

(I) Euclidean distances on the tf-idf weights, where weight vectors are calcu-
lated from the frequencies of the appearing terms (tf) and their inverse
frequency of occurrence in all documents (idf), see [25],

(II) the Cosine distance on the term frequencies, which is calculated as c(a,b) :=

1−
(

(~a⊺~b)/(π ‖~a‖
∥

∥

∥

~b
∥

∥

∥
)
)

, where ~a and ~b are vectors of term frequencies for

the two respective documents,

(III) the normalized compression distance (NCD), which is a string dissimilarity
measure based on the Kolmogorov complexity [4], in our case using the
Lempel-Ziv-Markov chain compressor (LZMA).

While the first two measures are based on basic word statistics, the NCD also
takes structural aspects into account implicitly, since the lossless compressor
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utilizes recurring patterns in the texts to reduce the description length. Prior to
applying the dissimilarity measures, we used a standard preprocessing workflow
of stopword reduction and Porter stemming.

Fig. 5 shows MDS visualizations of the three different dissimilarities, as well
as evaluation curves from the comparison of Euclidean distances versus the Co-
sine and the NCD measure. For the visualizations in Fig. 5a, 5b, 5d, we used
non-metric MDS with squared stress. From the evaluation curves in Fig. 5c we
see that the agreement of the Euclidean distances to the Cosine and NCD mea-
sure is low in general, with values below 0.6, even for very small neighborhood
sizes. Although the visualizations indicate a qualitatively similar structure, the
overall ranks seem to be rather different, which is also reflected in the visual-
izations to some extent: Fig. 5a shows a small number of outliers, while there
are fairly distinct clusters in Fig. 5d; and Fig. 5b shows both characteristics:
similarly dense regions and some widespread outliers. In this real world data
set, every pair of measures showed a low agreement when compared with the
evaluation framework, with QNX(K) < 0.6 for all K < 100.

nmMDS map of Euclidean on tf−idf
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(a) MDS map of Euclidean distances
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(b) MDS map of Cosine distances

50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Q
ua

lit
y

Neighborhood sizes K

Reference distances: Euclidean on tf−idf

 

 

Cosine on tf
NCD on texts

(c) QNX(K) of Euclidean dist. vs. Cosine & NCD

nmMDS map of NCD on texts

 

 
1
2

(d) MDS map of NCD distances

Figure 5: Comparison of the three dissimilarity measures in our first real world
showcase scenario consisting of 500 textual descriptions of Android apps.
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Java programs

The second example is related to current challenges in the research of intelligent
tutoring systems (ITS). In general, these educational technology systems are
intended to provide intelligent, one-on-one, computer-based support to students
in various learning scenarios. Especially in situations where this type of learning
support is not available due to scarce (human) resources, the benefits of ITSs
become apparent. Since traditional ITSs rely on an exact formalization of the
underlying domain knowledge in order to judge whether a given answer from
a student is correct or not, they are today mainly applied in well-structured
and comparably narrow domains. In order to make future ITSs more flexible,
current approaches suggest the application of machine learning techniques to
automatically infer models from given sets of student solutions, see [28]. The
structural aspects of such data is hard to represent in vectors of numerical
features, which would yield an embedding in a Euclidean vector space. Instead,
a crucial ingredient of such approaches are domain-specific, and possibly non-
metric dissimilarity measures, by which the data can be represented in terms of
pairwise relations only. The analysis and development of dissimilarity measures
in this area makes a framework for quantitative comparison necessary.

Our data scenario is related to this domain and consists of 169 short Java
programs which represent student solutions, originating from a Java program-
ming class of first year students at Clausthal University of Technology, Germany.
We used the open source plagiarism detection software Plaggie [29] to extract
a tokenized representation (a token stream) from each given Java source code.
Based on the token streams, we consider four different dissimilarity measures:
(I) Euclidean distances on the tf-idf weights like in the previous data set,

however, tf and idf now refer to the occurrence of each token instead of
term,

(II) the Cosine distance on the token frequencies,

(III) the normalized compression distance (NCD) on the token streams,

(IV) Greedy String Tiling (GST) which is the inherent similarity measure that
Plaggie uses to compare the given sources [29, 30]; since GST yields a
matrix S of pairwise similarities s(xi,xj) ∈ S, where values are in (0, 1)
and self-similarities equal 1, we converted S into a dissimilarity matrix by
taking D :=

√
1− S, as proposed in [23].

Fig. 6 shows the quality QNX(K) when comparing Euclidean distances to Co-
sine, GST, and NCD dissimilarities. The curves show the highest similarity
to the Cosine distances, especially high in small neighborhood ranges, which is
expected due to the fact that both are based on token frequencies. Interest-
ingly, the curves of the Cosine and the GST measure show a similar shape in
comparison to Euclidean distances, which may indicate a similar response to
certain structural aspects in the data, in contrast to the steadily growing curve
for NCD.

Fig. 7 demonstrates our proposed framework for the pointwise comparison
of dissimilarity measures on the same data scenario. The coloring in 7c and 7d
refers to Qxi

NX
(20), which is the agreement of the 20-neighborhood for every

point xi as compared to the other dissimilarity measure. To link the coloring
scheme to the evaluation curves, K = 20 is highlighted on the graphs in Fig. 6.
The pointwise evaluation clearly reveals a region of data which is very close in
the Euclidean case, but was considered very dissimilar by the GST measure.

9



20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

Q
ua

lit
y

Neighborhood sizes K

Reference distances: Euclidean on tf−idf

 

 

← K = 20

Cosine on tf
GST on tokens
NCD on tokens

Figure 6: QNX(K) when comparing Euclidean distances to Cosine, GST, and
NCD dissimilarities used on our second showcase data set consisting of 169
student solutions from a Java programming class.
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Figure 7: Pointwise comparison of dissimilarity measures used on a data set
of 169 student solutions from a Java programming class. The dissimilarities
from two measures (Euclidean and GST) are mapped to 2D using non-metric
MDS. The different symbols for points in the visualizations do not correspond to
semantical data classes, but to the quadrants of the cartesian coordinate system
in (a), to give some indication of how the point locations differ to the map of
GST in (b). The pointwise coloring in (c) and (d) shows for each point, how
much the neighbor ranks in the Euclidean case differ to the ranks given by GST.
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6 Discussion

We have discussed possibilities to compare dissimilarity measures for unsuper-
vised machine learning tasks. We argued, that rank-preservation or, alterna-
tively, an information retrieval perspective seem very suitable and can be for-
malized by means of the co-ranking framework taken from the evaluation of
dimensionality reduction. We have demonstrated the usefulness in one illus-
trative artificial example referring to Euclidean vector spaces, as well as two
real world examples with problem-specific metrics. The results show that this
proposal offers a promising step towards the evaluation, in how far different
dissimilarity measures or different choices of metric parameters can lead to sub-
stantially different results, when used for unsupervised machine learning.

Naturally, further evaluation techniques are possible such as an evaluation
based on the mutual information of the dissimilarities, for example. We conjec-
ture, however, that an information theoretic perspective leads to results which
are similar to the co-ranking framework. This is the subject of ongoing work.
Further, it is necessary to test whether this a priori comparison of dissimilarity
measures coincides with their behavior in typical unsupervised machine learning
tasks. Actually, we have already evaluated this behavior to some extent, when
visualizing the data in this contribution. The test of further visualization and
clustering techniques will be the subject of future work.
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