
An Incremental Multimodal Realizer for Behavior
Co-Articulation and Coordination

Herwin van Welbergen1, Dennis Reidsma2, and Stefan Kopp1

{hvanwelbergen,skopp}@techfak.uni-bielefeld.de
d.reidsma@utwente.nl ?

1 Sociable Agents Group, CITEC, Fac. of Technology, Bielefeld University
2 Human Media Interaction, University of Twente

Abstract. Human conversations are highly dynamic, responsive interac-
tions. To enter into flexible interactions with humans, a conversational
agent must be capable of fluent incremental behavior generation. New
utterance content must be integrated seamlessly with ongoing behavior,
requiring dynamic application of co-articulation. The timing and shape of
the agent’s behavior must be adapted on-the-fly to the interlocutor, result-
ing in natural interpersonal coordination. We present AsapRealizer, a BML
1.0 behavior realizer that achieves these capabilities by building upon, and
extending, two state of the art existing realizers, as the result of a collabo-
ration between two research groups.

1 Introduction

Human conversations are highly dynamic, responsive interactions. In such set-
tings, extended utterances are not pre-planned and then executed, but are pro-
duced by a speaker incrementally. This incremental delivery enables the speaker,
first, to decompose a complicated intended message into a series of fragments
and, second, to perceive the addressee’s behavior and to adapt a running contri-
bution in order to ensure the success of the communicative activity. Notably, such
utterances still exhibit a high degree of synchrony between multimodal behav-
iors like speech, gestures, or facial expressions [1]. One mechanism with which
incremental production of utterances is facilitated is co-articulation between ad-
jacent behaviors. Co-articulation, for example, occurs when the retraction phase
of one gesture and the preparation phase of the next one become fused into a
direct transition [2]. In this way, co-articulation helps to create (or is a conse-
quence of) fluently connected utterances and increases the flexibility for creating
multimodal synchrony.

At the same time, conversation between humans is characterized by inter-
personal coordinations on several levels. Bernieri et al. [3] define interpersonal
coordination as the degree to which behaviors in an interaction are non ran-
dom, patterned or synchronized in both timing and shape. They categorize in-
terpersonal coordination in behavior matching or similarity and interactional
? This work was partially supported by the DFG in the Center of Excellence ”Cognitive

Interaction Technology”.



synchrony. Behavior matching includes mimicry such as interlocutors adapting
similar poses. Interactional synchrony includes alignment of movement rhythm
(e.g. alignment of postural sway or breathing patterns), synchronization of be-
havior (e.g. simultaneous posture changes by a listener and speaker) and smooth
meshing/intertwining of behavior (in conversation these are, e.g., smooth turn-
taking and backchannel feedback such as head nods or uttering “uh huh”).

We aim to develop conversational agents that can make use of all these fea-
tures of human conversational behavior: multimodal synchrony, flexible inter-
personal coordination, and fluently connected, incrementally produced utter-
ance with natural co-articulation. Thus far, no single virtual human generation
platform features all of these capabilities. Therefore, we have developed Asap-
Realizer, a BML behavior realizer for virtual humans that builds on two exist-
ing realizers that have focused on either incremental multimodal utterance con-
struction [4] or interactional coordination [5] as isolated problems. By combin-
ing the realization capabilities for incremental multimodal behavior construction
and interactional coordination in a single realizer, we can enable interaction sce-
narios that go beyond the capabilities of these individual realizers.

A key feature of AsapRealizer is its ability to continuously and automatically
adapt ongoing behavior while retaining its original specification constraints. This
affords incremental processing in two ways: First, the behavior planner can issue
behavior requests early on and then send detailed parameters later on. Second,
the realizer can rely on predicted events and then adapt as new, possibly al-
tered status information about these events arrive. An example of the former
is a behavior that needs to be fluently connected to an ongoing behavior and
might partly co-articulate with it, or when a sudden parameter change (e.g. in-
crease in gesture amplitude) results in changed shape and timing of the ongoing
and subsequent gesture phases. An example of the latter is when a behavior is
synchronized to an external event (e.g. the interlocutor’s head nod), or when
behavior execution cannot be reliably predicted (as with a robotic body [6]). In
case of updates to the timing of this behavior, continuous adjustment of other,
synchronized, modalities may be needed to achieve specified time constraints.
The AsapRealizer provides a way to cope with these challenges by interleav-
ing scheduling and execution freely. This paper presents AsapRealizer’s design
and implementation, explains how it allows for incremental adaptive scheduling
of behavior, and demonstrates how its implementation is applied specifically to
achieve gestural co-articulation.

2 Related Work

It is increasingly acknowledged that, to achieve a more natural dialog, social
agents require incremental (dialog) processing [7]. Such incremental process-
ing enables social agents to exhibit interpersonal coordination strategies such
as backchannel feedback, smooth turn-taking, or an alignment of movement
rhythm between interlocutors. One prerequisite for this is a flexible behavior



generation algorithm that is able to change the timing and shape of ongoing
behavior on the fly and in anticipation to the movement of an interlocutor [8].

Most existing behavior realizers comply with the SAIBA Framework [9], in
which the BML markup language provides a general, realizer-independent de-
scription of multimodal behavior that can be used to control a virtual human.
BML expressions (see Fig. 1 for a short example) describe the occurrence of
certain types of behavior (facial expressions, gestures, speech, and other types)
as well the relative timing of the involved actions. Synchronization among be-
haviors is done through BML constraints, included within a BML block, that link
synchronization points in one behavior (like “start”, “end”, “stroke”, etc; see also
Fig. 1) to similar synchronization points in other behaviors.

��������	

��������	���
��

����������	��	��������
��

������������������

������ �������	���
!�����	���������� 
��

�����"��#���$�����������%���%�����%&

����"��

������� �

������

�
������

����������������

����������

Fig. 1: Left: an example of a BML block. Right: the standard synchronization
points of a gesture.

Several BML realizers have been implemented by different research groups
[10,11,12,13], while other research groups have expressed their intent to join
the SAIBA effort (e.g. the authors of [4,14]). Of these realizers, ACE [4] and
Elckerlyc [13] are especially relevant for AsapRealizer, because unlike the other
realizers, they are specifically designed to allow incremental behavior construc-
tion and interactional coordination, respectively.

For the present work, it is necessary to fluently stream the execution of be-
haviors from different BML blocks. However, a specification for co-articulation
constraints between subsequent BML blocks is currently lacking: BML blocks can
be only specified to start instantly, merging with ongoing behavior, or to start af-
ter all currently ongoing behavior blocks are completely finished. Furthermore,
while BML provides a clear-cut specification of the internal multimodal synchro-
nization of the behavior of a virtual human, it lacks the expressivity to specify the
interaction of this behavior with other (virtual) humans. AsapRealizer provides
a BML extension BMLa to address these shortcomings. To this end, BMLa adopts
Elckerlyc’s interactional coordination specification mechanisms (see below). In
addition to that, BMLa provides novel mechanisms to specify the combination of
BML blocks. These mechanisms provide a Behavior Planner or other authors of
a BML stream with specific control over whether or not co-articulation between
gestures or other behaviors in two or more BML blocks may occur.

The ACE (Articulated Communicator Engine) [4] realizer was the first be-
havior generation system that simulated the mutual adaptations between the



timing of gesture and speech that humans employ to achieve synchrony between
co-expressive elements in those two modalities. It also pioneered the incremen-
tal scheduling of multimodal behavior for virtual humans. ACE’s incremental
speech-gesture production model is based on McNeill’s segmentation hypoth-
esis [2]: speech and gesture are produced in successive chunks. Each chunk
contains one prosodic phrase in speech and one co-expressive gesture phrase.
Gesture movement between the strokes of two successive gestures (in two suc-
cessive chunks) depends on their relative timing, ranging from retracting to an
in-between rest position, to a direct transition movement. A flexible silent pause
in speech was inserted to create enough time for the preparation phase of the
second gesture. To achieve this production flexibility, ACE uses an incremental
scheduling algorithm that plans part of the chunk in advance and refines it when
the chunk is actually started, by setting up each chunk’s inter-chunk synchrony
with its predecessor. This starting time is decided in a bottom-up process, where
the current hand and body positions influence the actual duration and trajectory
of the preparation and retraction phases of two adjacent gestures. There is no
continuous adaptation in ACE after the initiation of a chunk.

Elckerlyc [5], a more recent realizer, pioneered new ways of BML specifi-
cation (using its BML extension BMLT ) and an implementation of several be-
havior generation mechanisms that are essential for interactional coordination.
These mechanisms include graceful interruption, re-parameterization of ongo-
ing behavior and synchronization to predicted interlocutor behavior. For this,
Elckerlyc provides a flexible behavior plan representation that can continuously
be modified, while retaining the constraints specified in BML. The construction
and representation of Elckerlyc’s multimodal plan is discussed in detail in [5].
Thus far, updates to Elckerlyc’s multimodal plan were mostly guided through
top-down processes (e.g. by specifying them in BML) and by directly aligning
the timing of synchronization points to (maybe predicted) interlocutor events.

In sum, the two different realizers provide useful concepts for enabling the
kind of flexibility needed to simulate natural coordination and co-articulation
in behavior realization. AsapRealizer builds upon both approaches, combines
them into a coherent architectural framework and adds new concepts. Asap-
Realizer’s design generalizes ACE’s incremental scheduling mechanism to one
that supports behavior specification in BML blocks. It further provides the abil-
ity to do bottom-up adaptation of ongoing behavior. For example, AsapRealizer
implements the bottom-up gesture modification that is employed in ACE, and
combines it with Elckerlyc’s flexible plan representation and its approach to en-
able the specification and implementation of interactional coordination.

3 Design Considerations

AsapRealizer should enable both inter-personal coordination and inter-behavioral
synchrony through incremental behavior construction and flexible scheduling.
As a realizer component within the SAIBA framework, it should be easy to use



in many virtual human applications and experiments. To achieve this, Asap-
Realizer’s design satisfies the following requirements:

1. Generate multimodal behavior specified in BML.
2. Generate behaviors incrementally and link increments fluently, with natural

co-articulation between the increments.
3. Process underspecified BML behavior specifications that constrain only those

features the author or Behavior Planner is really interested in achieving; that
is, keeps all valid realization possibilities open for as long as possible. Figure
out unspecified timing or shape (e.g. trajectory, hand shape, amplitude) of a
motor behavior in a biologically plausible way.

4. Allow last minute changes in shape and timing of behavior, even when the
behavior is currently ongoing; check for and maintain validity of the con-
straints specified in BML.

5. Enable top-down (through BML) and bottom-up processes (e.g. changing
predictions, co-articulation with new behavior) to adapt a behavior.

We make use of several design elements and implementations from both Elcker-
lyc and ACE to satisfy these requirements. Req. 1 is satisfied by building Asap-
Realizer on top of the Elckerlyc BML Realizer. To satisfy Req. 2, we have designed
novel algorithms for both the specification (in BMLa) and the implementation
of incremental construction of behavior using BML blocks. In Section 5.1 we
explain these algorithms in detail. Req. 3 is behavior-specific. We adopt mecha-
nisms from ACE to automatically construct preparation and retraction phases of
gestures that provide biologically plausible timing. The timing of these gesture
retractions and preparations is updated on the fly. Req. 4 and 5 are satisfied by
combining Elckerlyc’s flexible behavior plan representation with ACE’s behavior
and chunk state management. The latter allows flexible bottom-up changes of
the ongoing behavior plan, while the first assures that all adaptations are sub-
ject to the constraints specified in BML. The implementation of this functionality
is discussed in Section 4. AsapRealizer also supports all of Elckerlyc’s top-down
behavior adaptations to achieve interpersonal coordination.

Fig. 2 illustrates how we have incorporated design features from ACE and
Elckerlyc into AsapRealizer. We make use of BML to specify behavior, enhanced
to allow the specification of whether or not behavior co-articulation may occur
between BML blocks. The scheduling of specified behaviors results, as in Elcker-
lyc, in a flexible behavior plan representation –the PegBoard– that allows one
to do timing modifications to the behavior plan in such a way that the BML
constraints remain satisfied and no expensive re-scheduling is needed. An Exe-
cutionEngine executes the constructed plan and, like ACE, continuously makes
modifications to this ongoing plan. These modifications are split into shape mod-
ifications that modify the form of behaviors and time modifications that directly
act upon the PegBoard. These bottom-up time modifications thus do not invali-
date the time constraints as specified in BML. In addition, like Elckerlyc, Asap-
Realizer can align (and continuously update) the timing of behavior to antici-
pated events and exert top-down plan or behavior modifications (e.g. interrup-



BehaviorPlanner

BML BML

BML

BML

Scheduler

Execution

Engines

flexible behavior plan

peg board

plan additions/modifications

Anticipators

“BehaviorPlanner”

chunk chunk

Scheduler

Execution

Engines

plan additions
coarticulation

bottom-up 

modifications

chunk

utterance utterance

BehaviorPlanner

BML BML

BML

BML

Scheduler

Execution

Engines

flexible behavior plan

peg board

bottom-up shape 

modifications

composition

bottom-up

time modifications

coarticulation

plan additions/modifications

Anticipators

flexible behavior plan

Elckerlyc AsapRealizerACE

Fig. 2: The design of Elckerlyc, ACE and AsapRealizer

tion and parameter changes in ongoing behavior). Finally, we have implemented
a novel gesture co-articulation strategy that extends the strategy used in ACE.

4 State-Based Behavior Scheduling

AsapRealizer realizes a stream of BML blocks, each of which specifies the timing
(e.g. sync points X of behavior A and Y of behavior B should occur at the same
time) and shape (e.g. behavior A should be performed with the left hand) of the
desired behaviors. Generally, BML blocks are under specified and leave realizers
freedom in their actual realization. Realizers can make use of this to achieve nat-
ural looking motor behavior, e.g. by setting a biologically plausible duration of
a gesture preparation. However, most realizers [10,14,11,12] exploit this free-
dom only for behavior plan construction/scheduling. After scheduling, no more
changes can be made and the plan is executed ballistically. AsapRealizer em-
ploys Elckerlyc’s plan representation [5] that allows changes even when being
executed, while retaining the specified BML constraints.

The generation of a BML block and its individual behaviors are managed by
two state machines as shown in Fig. 3. These state machines are adopted from
Elckerlyc but extended according to the phases of ACE’s incremental production
model: The behavior state machine (Fig. 3, left) 1) adds a SUBSIDING state,
and 2) supports continuous bottom-up adaptation of ongoing behavior using
the updateTiming function. The BML block state machine (right) 1) provides a
SUBSIDING state and 2) has a mechanism to delay the start of a BML block until
all its chunk targets are either retracted or finished. These two machines work



entry/interrupt interrupt targets

IN_PREP

PENDING

scheduling finished [preplan] 

LURKING

block activated 

scheduling finished [not preplan] 

IN_EXEC

append targets DONE and chunk targets SUBSIDING / realign,activate onStarts

DONE

all behaviors in DONE 

interrupt 

interrupt interrupt 

SUBSIDING

all behaviors in SUBSIDING or DONE 

IN_PREP

PENDING

scheduler.addBMLBlock() 

LURKING

scheduler.startblock(time) / updateTiming(time)

engine.play(time) / updateTiming(time)

IN_EXEC

engine.play(time) [time > startTime] / start(time)

SUBSIDING

engine.play(time) [time > retractionTime] 

DONE

engine.play(time) / updateTiming(time)

engine.play(time) [time > endTime] 

engine.play(time) / updateTiming(time)

engine.interrupt() 

engine.interrupt() 

engine.interrupt() 

Fig. 3: The behavior (left) and BML block (right) state machines in AsapRealizer.

as follows: Behaviors start out in the IN PREP state. Once all behaviors of a BML
block are scheduled, they move into the PENDING state. This transition is trig-
gered by the central scheduler. At the same time, the block machine moves into
the LURKING state. BML blocks can contain ordering constraints that require
them to start (fluently) after other blocks. Once these constraints are satisfied,
the block moves into the IN EXEC state. The scheduled plan might already not be
the most suitable anymore since the behavior context (e.g. hand position, rest-
ing posture) might have changed during scheduling or while waiting for other
blocks to finish. Therefore this state transition triggers a light-weight behavior
realignment step, in which the timing of each behavior is re-evaluated.

Once the new timing is set, all behaviors in the block move to the LURKING
state. Behavior state updates are then managed in a bottom-up fashion, through
the playback loop of a specific execution engine (e.g. SpeechEngine, Animatio-
nEngine, FaceEngine). Within an animation loop, each playback step is generally
executed on an Engine by calling its play function with the current time. This
first invokes a timing and shape update on the behavior, using the updateTiming
function. If the start time of the behavior is greater than the current time, the
behavior will be started, moving it to IN EXEC state. Some behaviors (e.g. ges-
tures) contain a SUBSIDING state. The SUBSIDING state is held while moving
the behavior back to a resting position after some meaningful motor behavior
was executed within its IN EXEC state. During the IN EXEC and SUBSIDING
stages, the behavior is executed on the virtual character. While the behavior
is being executed, its shape and the timing of its sync points are continuously
updated using its updateTiming function. Once its end time is reached, the be-
havior moves to the DONE state. The IN EXEC, SUBSIDING and DONE phases of
a BML block represent the cumulative state of all behaviors in the block. A BML
block enters the SUBSIDING state when all of its behaviors are either SUBSID-



ING or DONE and moves to the DONE state when all its behaviors are DONE.
Behaviors and BML blocks may (gracefully) be interrupted at any time after they
are scheduled.3 Interruption can be triggered both top-down (e.g. by specifying
in new BML blocks that certain behaviors must be interrupted) or bottom-up
(e.g. when the execution of a behavior fails). When behaviors are interrupted
they move into their SUBSIDING phase and are gracefully retracted. The exact
implementation of this retraction is behavior-specific; Section 5.2 discusses the
implementation used for gesture.

5 Results

AsapRealizer adheres to the new BML 1.0 standard.4 Compliance to this stan-
dard is tested using the RealizerTester framework [15]. We have supported this
compliance testing effort by providing several new BML 1.0 test cases.

Through the combination of key features from ACE and Elckerlyc, Asap-
Realizer provides two main capabilities that go beyond other realizers. Firstly,
AsapRealizer improves upon ACE by providing more generic co-articulation mech-
anisms. Section 5.1 explains how this co-articulation can be specified using BML,
as well as how the mechanisms are implemented. Secondly, AsapRealizer pro-
vides novel, highly flexible capabilities for specifying and executing graceful in-
terruption of ongoing behaviors, as discussed in Section 5.2.

5.1 Simulating Gesture Co-articulation

AsapRealizer’s state-based scheduling and planning allow for simulating inter-
actions between successive behaviors. This, in addition to the interpersonal co-
ordination capabilities of Elckerlyc, makes it suitable for the fluent incremental
generation of behavior in which natural co-articulation effects emerge. In this
section we demonstrate how the implementation and specification of gesture
co-articulation (as shown in Fig. 4) is achieved within our architecture.

Specifying Gesture Co-articulation in BML The occurrence of gesture co-
articulation (or the lack thereof) can well have a communicative function (e.g.
marking information boundaries) [1] and is not a matter of simply ‘gluing to-
gether gestures’ in a realizer. Therefore, we allow the Behavior Planner to have
control over whether or not gesture co-articulation should occur. This means
that some manner of expressing gesture co-articulation has to be provided in
BML. We achieve this using the BML composition attribute, which allows for
merging a BML block into the ongoing behavior plan (i.e. starting it instantly)
and for appending a BML block to the behavior plan (i.e. starting it after all

3 AsapRealizer also provides functionality to forcefully stop a behavior or BML block
at any time. This functionality is mainly used to exit or reset the realizer. For clarity
reasons it is not show in Fig. 3.

4 http://www.mindmakers.org/projects/bml-1-0/wiki

http://www.mindmakers.org/projects/bml-1-0/wiki


speech

gesture

bml1

bml2
speech

gesture

speech

gesture

bml1

bml2
speech

gesture

current time

current time

speech

gesture

bml1

bml2
speech

gesture

current time

time

time

time

Fig. 4: An example of gesture co-articulation: First BML block bml1 is being ex-
ecuted and a preliminary plan for bml2 is being created (top plan graph). As
bml1 is subsiding, bml2 is re-aligned to fit the current behavior state (middle).
This involves shortening the gesture preparation since the hand is still in gesture
space. As the gesture of bml1 is being retracted, it has a lower priority than the
preparation of the gesture of bml2 and is overridden by it (bottom plan graph).
Since bml2’s gesture acts only on the left hand, a cleanup motion is generated
for the right hand part of bml1’s gesture.



ongoing behavior). BMLa adds two new composition attribute values that allow
us to specify the relation of our block with the ongoing behavior plan in more
detail: append-after(X) and chunk-after(X). append-after(X) specifies the
BML block to start after all behavior in the set of BML blocks X is finished.
chunk-after(X) specifies the BML block to start as soon as all behavior in the
set of BML blocks X are either finished or in retraction (i.e. the blocks are SUB-
SIDING). BML Example 1 illustrates the use of this attribute.

BML Example 1 Expressing gesture co-articulation in BML.
<bml id="bml2" composition="chunk-after(bml1)">

<speech id="speech1">

<text>At <sync id="s1"/>6 pm you have another appointment</text>

</speech>

<gesture id="gesture1" lexeme="BEAT" stroke="speech1:s1"/>

</bml>

Implementation of Gesture Co-articulation To allow gesture co-articulation
between BML blocks, a realizer needs information on when the new BML block
can be started and requires an animation system that allows a new gesture to
fluently overtake a retracting old gesture. To fulfill the first requirement, Asap-
Realizer keeps track of each BML block’s state using the block state machine
(Fig. 3). The state transition from LURKING to IN EXEC is triggered for a new
BML block only if all chunk targets of the block are either SUBSIDING or DONE.

AsapRealizer’s AnimationEngine builds upon Elckerlyc’s mixed dynamics ca-
pabilities [16], allowing a mix of the physical realism provided by physical sim-
ulation and the control (in timing and limb placement) provided by procedural
animation or motion capture. These capabilities are integrated with the bottom-
up re-planning and adaptation provided by ACE. In addition, AsapRealizer pro-
vides a novel animation conflict resolution solver that employs a dynamic rest-
ing state rather than specifying the resting state only implicitly using the now
deprecated BML behavior persistence (as in Elckerlyc) or as a preset joint con-
figuration (as in ACE). Here we highlight how this functionality is employed for
gesture co-articulation.

In AsapRealizer’s AnimationEngine each behavior is executed using a Timed-
MotionUnit (TMU, henceforth), which specifies (among other things) the state
of its behavior, a priority and the set of skeletal joints it controls. Whenever a
TMU is played back, it can set joint rotations, apply a physical controller to the
physical part of the body model, or set a new RestingTMU. The latter is a spe-
cial TMU that creates motions leading into and managing a dynamic ‘resting
state’ of the virtual human. Implementations of a RestingTMU could, e.g., model
balanced lower body movement using a physical balance controller or slightly
move the body using Perlin noise. There is only one RestingTMU and it is always



executed with the lowest priority, i.e., the other TMUs take precedence over it.
Such a precedence may be partial (e.g. only on limbs steered by other TMUs).

Gesture co-articulation is achieved using a conflict resolution mechanism
within the AnimationEngine. TMUs that execute gesture behaviors automati-
cally reduce their priority when the behavior enters the retraction phase. The
AnimationEngine executes TMUs in the order of their priority. Whenever a TMU
needs to control joints that are already controlled by higher priority TMUs, this
specific TMU is interrupted by the AnimationEngine. Such a TMU might how-
ever have previously exerted control upon joints that are not taken over by the
higher priority TMUs. These joints need to be gracefully moved back to their
resting state. This is automatically taken care of by the AnimationEngine: a new,
low priority ‘cleanup’ TMU is created and inserted in the animation plan.

Bottom-up adaptive timing is crucial in gesture preparation and retraction,
since the start position of the preparation, the hand position at the start/end
of the stroke and the posture state at the end of the gesture are all subject
to change during gesture execution. The hand position may vary by previously
executed motion and/or posture changes, the hand position at the start/end
of the stroke may vary by parameter adjustments in the gesture, and the rest
posture state may change during execution. We have implemented an adaptive
timing process for the preparation and retraction of gestures. It makes use of
Fitts’ law to dynamically determine a biologically plausible duration of the hand
movement trajectory from the current position to the hand position at the start
of the stroke phase (for the preparation), or from the end of the stroke to the
current rest position (for the retraction).

5.2 Graceful Interruption

AsapRealizer allows one to specify graceful interruption of ongoing behavior,
including, when desired, replacement behavior that is fluently connected to the
interrupted behavior. The mechanisms used for this are based on the handling of
graceful interruption in Elckerlyc [17]. In Elckerlyc, this was handled completely
in a top-down fashion (see also BML Example 2). Assuming we want to interrupt
a BML block bml1 containing some speech and a gesture gesture1, a Behavior
Planner using Elckerlyc had to adapt the following interruption strategy:

1. If gesture1 did not start yet, interrupt everything in bml1 (BML Exam-
ple 2a).

2. If gesture1 is already finished or retracting, there is no need to interrupt it;
only interrupt all other behaviors in bml1 (BML Example 2b)

3. If gesture1 is currently being executed, replace it by a movement that moves
it back to the rest pose (BML Example 2c)

This verbose interruption strategy requires the Behavior Planner to have
knowledge on the state the gesture is in, on the current resting state of the
virtual human and on how a graceful interruption behavior can be selected that
moves the virtual human towards this state. In AsapRealizer, all this knowledge



BML Example 2 The specification of graceful interruption in Elckerlyc.

(a) Interrupt all behavior in bml1

<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1"/>

</bml>

(b) Interrupt all behavior in bml1 excluding gesture1.
<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1" exclude="gesture1"/>

</bml>

(c) Interrupt all behavior in bml1. Insert a behavior (relaxArm) that gracefully moves the
gesturing arm back to its rest position.
<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1"/>

<bmlt:controller id="relaxArm" class="CompoundController"

name="leftarmhang"/>

</bml>

and functionality is available in the AnimationEngine. Therefore, the Behavior
Planner can achieve graceful interruption using BML Example 2a, regardless of
the state the gesture is in. This interrupt request is then handled by the Ani-
mationEngine, which generates an automatic retraction motion to the rest pose
(using functionality provided by the RestingTimedMotionUnit), if needed. When
full control over the exact retraction motion is required, retraction motions can
still be specified manually. Such a specified retraction will have a higher priority
than the automatically generated one, and as such simply overrule it. The inter-
rupted gesture (that is now in its retraction phase) can also be overwritten by a
new gesture, using the AsapRealizer’s gesture co-articulation mechanisms.

In summary, the combination of ACE’s co-articulation and bottom-up adap-
tation capabilities, Elckerlyc’s top-down interruption specification and any-time
adaptability, and the new dynamic pose specification, gives AsapRealizer a novel,
highly flexible mechanism for specifying and executing graceful interruption of
ongoing behavior, and (when desired) insertion of new co-articulated gestures.

6 Discussion

We have introduced AsapRealizer, a new, BML 1.0 compliant –as tested using the
RealizerTester framework [15]– realizer. AsapRealizer’s unique capability to con-
tinuously and automatically adapt ongoing behavior while retaining its original
specification constraints makes it eminently suitable for virtual human applica-
tions that require interactional coordination and incremental, fluent behavior
generation. Its flexibility is achieved by implementing a fusion of the state of the
art multimodal behavior generation features of ACE and Elckerlyc. In this pa-
per, we illustrated how AsapRealizer goes beyond other realizers by discussing



its more generic co-articulation mechanisms and its novel, highly flexible capa-
bilities for specifying and executing graceful interruption of ongoing behaviors.
AsapRealizer allows us to realize interaction scenarios that go beyond the capa-
bilities of each the individual realizers.

The co-articulation mechanism generalizes ACE’s incremental generation of
chunks into a mechanism that uses BML blocks as increments instead of chunks
–which can also describe many other synchronization possibilities. The interrup-
tion scenario illustrates a capability for highly responsive interaction that cannot
be realized through either of the contributing systems alone.

Another scenario of responsive interaction enabled by the combination of
ACE and Elckerlyc is that of interactional coordination. Elckerlyc, and therefore
AsapRealizer as well, provides BML specification mechanisms to synchronize the
behavior of the virtual human to (anticipated) time events in interlocutor behav-
ior. This functionality has been used to make micro-adjustment to the timing of
behavior, for example to align the movement of a virtual fitness trainer to that
of the user she exercises with [18], or to delay the start of an utterance after
receiving user feedback in an attentive speaker [17]. There are other interaction
coordination scenarios that cannot be satisfied by Elckerlyc’s time adjustment
mechanism alone, but also require (bottom-up) shape adjustments and/or the
insertion of new behavior segments. For example, the virtual human could point
at an object, wait for the interlocutor to gaze at this object –achieving joint
attention– and then retract the pointing gesture and continue speaking. This re-
quires the insertion of a hold motion if the user is not yet gazing at the object
as the gesture finishes its stroke, and the automatic, fluent, continuation after
a hold motion once joint attention is achieved.5 Such larger plan adaptations
cannot easily be realized with Elckerlyc, since Elckerlyc requires the content and
timing of any adaptation to be fully specified in a top-down fashion by the Be-
havior Planner. AsapRealizer can use its bottom-up adaptation mechanisms to
automatically insert fillers and adjust motion shape on the basis of changes in
the prediction of time events of interlocutor behavior it synchronizes to. Thus,
the combination of Elckerlyc’s synchronization to predicted interlocutor events
with ACE’s bottom-up last minute shape adaptation thus allows us to address an
even wider range of interactional coordination scenarios.

References

1. Kendon, A.: Gesticulation and speech: Two aspects of the process of utterance. In
Key, M.R., ed.: The relation of verbal and nonverbal communication. Mouton (1980)
207– 227

2. McNeill, D.: Hand and Mind: What Gestures Reveal about Thought. University of
Chicago Press (1995)

5 Goodwin describes another example of such adjustments in conversation: when a lis-
tener utters an assessment feedback, the speaker, upon recognizing this, will slightly
delay subsequent speech (e.g. by an inhalation or production of a filler) until the lis-
tener has completed his assessment [19].



3. Bernieri, F.J., Rosenthal, R.: Interpersonal coordination: Behavior matching and in-
teractional synchrony. In Feldman, R.S., Rimé, B., eds.: Fundamentals of Nonverbal
Behavior. Studies in Emotional and Social Interaction. Cambridge University Press
(1991)

4. Kopp, S., Wachsmuth, I.: Synthesizing multimodal utterances for conversational
agents. Computer Animation and Virtual Worlds 15(1) (2004) 39– 52

5. Reidsma, D., van Welbergen, H., Zwiers, J.: Multimodal plan representation for
adaptable BML scheduling. In: Intelligent Virtual Agents. Volume 6895 of LNCS.,
Springer Berlin / Heidelberg (2011) 296–308

6. Salem, M., Kopp, S., Wachsmuth, I., Joublin, F.: Towards an integrated model of
speech and gesture production for multi-modal robot behavior. In: Symposium on
Robot and Human Interactive Communication. (2010) 649 – 654

7. Schlangen, D., Skantze, G.: A general, abstract model of incremental dialogue pro-
cessing. Dialogue & Discourse 2(1) (2011) 83–111

8. Nijholt, A., Reidsma, D., van Welbergen, H., op den Akker, H., Ruttkay, Z.M.: Mutu-
ally coordinated anticipatory multimodal interaction. In: Verbal and Nonverbal Fea-
tures of Human-Human and Human-Machine Interaction. Volume 5042 of LNCS.,
Springer (2008) 70– 89

9. Kopp, S., Krenn, B., Marsella, S.C., Marshall, A.N., Pelachaud, C., Pirker, H.,
Thórisson, K.R., Vilhjálmsson, H.H.: Towards a common framework for multimodal
generation: The Behavior Markup Language. In: Intelligent Virtual Agents. Volume
4133 of LNCS., Springer (2006) 205– 217

10. Thiebaux, M., Marshall, A.N., Marsella, S.C., Kallmann, M.: Smartbody: Behavior
realization for embodied conversational agents. In: Autonomous Agents and Mul-
tiagent Systems, International Foundation for Autonomous Agents and Multiagent
Systems (2008) 151– 158

11. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and
realization. Applied Artificial Intelligence 24(6) (2010) 510–529

12. Čereković, A., Pandžić, I.S.: Multimodal behavior realization for embodied conver-
sational agents. Multimedia Tools and Applications (2010) 1–22

13. van Welbergen, H., Reidsma, D., Ruttkay, Z.M., Zwiers, J.: Elckerlyc: A BML realizer
for continuous, multimodal interaction with a virtual human. Journal on Multimodal
User Interfaces 3(4) (2010) 271– 284

14. Mancini, M., Niewiadomski, R., Bevacqua, E., Pelachaud, C.: Greta: a SAIBA com-
pliant ECA system. In: Troisiéme Workshop sur les Agents Conversationnels Animés.
(2008)

15. van Welbergen, H., Xu, Y., Thiebaux, M., Feng, W.W., Fu, J., Reidsma, D., Shapiro,
A.: Demonstrating and testing the BML compliance of BML realizers. In: Intelligent
Virtual Agents. Volume 6895 of LNCS., Springer Verlag (2011) 269–281

16. van Welbergen, H., Zwiers, J., Ruttkay, Z.M.: Real-time animation using a mix of
physical simulation and kinematics. Journal of Graphics, GPU, and Game Tools 14(4)
(2009) 1– 21

17. Reidsma, D., de Kok, I., Neiberg, D., Pammi, S., van Straalen, B., Truong, K.P., van
Welbergen, H.: Continuous interaction with a virtual human. Journal on Multimodal
User Interfaces 4(2) (2011) 97– 118

18. Reidsma, D., Dehling, E., van Welbergen, H., Zwiers, J., Nijholt, A.: Leading and
following with a virtual trainer. In: Workshop on Whole Body Interaction, University
of Liverpool (2011)

19. Goodwin, C.: Between and within: Alternative sequential treatments of continuers
and assessments. Human Studies 9(2-3) (1986) 205– 217


	ASAP

