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1. Introduction

In 1993, Sessoli et al. discovered that the molecule Mn12 shows a slow relaxation
of the magnetization and a hysteresis loop of molecular origin at sufficiently low
temperatures [1]. This discovery gave rise to the hope that it might be possible to use
such molecules for high-density information storage devices and led to an increased
interest in the investigation of magnetic molecules [2]. Magnetic molecules have
already been investigated before the 1990s, but to this day Mn12 remains the most
famous molecule [3]. Mn12 is a so-called single-molecule magnet. Antiferromagnetic
molecules with non-magnetic ground states are another class of magnetic molecules
being the subject of extensive theoretical and experimental investigations, and there
exist some highly symmetric and truly giant molecules such as Mo72Fe30 [4], which
has a diameter of about 2.5 nm and is thus called a “mesoscopic system”. Mesoscopic
magnetic molecules offer the possibility to study the region between microscopic and
macroscopic systems.

Magnetic molecules are in most cases modeled using simple spin Hamiltonians.
The calculation of thermodynamic expectation values or energy spectra of spin
Hamiltonians is often hindered by a too large Hilbert space dimension which grows
exponentially with the number of spins. Analytical solutions are only possible for
very small or few special systems so that numerical methods or (semi-)classical ap-
proximations are often necessary. Several quasi-exact numerical methods exist that
can be applied to spin Hamiltonians. However, large antiferromagnetic and geomet-
rically frustrated magnetic molecules such as Mo72Fe30 (N = 30 spins with s = 5/2)
are extremely challenging since the prohibitively large Hilbert space excludes exact
diagonalization methods and the geometrical frustration leads to severe problems
for Quantum Monte Carlo methods.

In this work, density matrix renormalization group (DMRG) techniques [5,6] are
applied to very large spin systems such as Mo72Fe30. These advanced numerical
techniques rely on an efficient truncation of the Hilbert space and allow us to obtain
information on the low-energy spectrum that are currently not accessible by other
methods. Although DMRG can in principle be applied to arbitrary spin systems,
it is most accurate for one-dimensional systems and for the calculation of ground
state properties. In the field of one-dimensional or quasi-one-dimensional systems,
DMRG has become a standard numerical technique. However, this method is only
very rarely applied to magnetic molecules. Since in most magnetic molecules the
spins are not arranged one-dimensionally, it is a priori not clear how accurate DMRG
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1. Introduction

is for these systems and the accuracy needs to be checked carefully. We use DMRG
and DDMRG (dynamical DMRG [7, 8]) to calculate static and dynamical prop-
erties of icosidodecahedral spin systems (including Mo72Fe30 with a Hilbert space
dimension of the order of 1023) and the ring molecule Fe18 [9, 10] (Hilbert space
dimension of the order of 1014) based on the full Heisenberg Hamiltonian. Up to
now these systems have mostly been treated with classical or semi-classical methods
such as spin-wave theory [11,12] or classical Monte Carlo [4,13–15], or on the basis
of simplified Hamiltonians which result from the so-called rotational band approxi-
mation [4,10,16–18]. An exception is the icosidodecahedron with s = 1/2 which can
still be treated using quasi-exact Lanczos techniques [19–22]. Quantum Monte Carlo
calculations on the icosidodecahedron can only be performed at high temperatures
due to the negative-sign problem [23,24].

DMRG and DDMRG allow us to obtain detailed information on the low-energy
spectrum and, moreover, yield transition matrix elements which are related to the
simulation of inelastic neutron scattering (INS) spectra. We compare our data for
the molecule Fe18 with experimental results [25], and for one parameter set we
obtain a very good agreement between all theoretical and experimental data. In our
calculations for the icosidodecahedral spin systems with spin quantum numbers up
to s = 5/2 we focus on features that are typical for geometrically frustrated spin
systems [26], and we study the transition to the classical (i.e., s→∞) regime. We
furthermore test the accuracy of DMRG throughout this work.

This thesis is organized as follows: In chapter 2 an introduction to magnetic
molecules and spin Hamiltonians is given. In chapter 3 the DMRG technique and
the extension to calculate dynamical properties (DDMRG) are introduced, and the
program that was developed for this thesis is described. In chapter 4 the (DMRG)
results for antiferromagnetic icosidodecahedral systems are presented. We have fo-
cused on the calculation of zero-temperature magnetization curves for different spin
quantum numbers and compare the results with the predictions of the classical (i.e.,
s → ∞) and the rotational band approximation. Furthermore, the accuracy of the
DMRG method when applied to these systems is tested and a dynamical correla-
tion function for the s = 1/2 case is calculated using DDMRG. In chapter 5 we
investigate antiferromagnetic spin rings with a focus on the 18-membered ring-like
molecule Fe18. We have used DMRG and DDMRG to calculate (zero-temperature)
inelastic neutron scattering (INS) cross sections and magnetization curves for sev-
eral parameter sets and compare the results with experimental data [25] for Fe18

in this chapter. We also check the accuracy of the rotational band approximation
and spin-wave theory for spin rings (as a function of the number of spins and the
individual spin quantum number) in that chapter. In chapter 6 the main results of
this work are summarized and conclusions are drawn.
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2. Theoretical background: Magnetic
molecules and spin Hamiltonians

2.1. Introduction

Magnetic molecules are chemical compounds that contain several interacting mag-
netic ions, in most cases transition metal or rare earth ions. The number of magnetic
centers in such a molecule can be as large as 84 [27]. However, the usual number
is of the order of 10. Interactions within such a molecule are usually much stronger
than interactions between different molecules so that measurements of magnetic
properties performed on macroscopic samples, i.e., crystals or powders, reflect the
properties of a single molecule [28]. Up to now, there exists an abundance of different
magnetic molecules with a large variety of geometries such as dimers [29], icosidodec-
ahedra [4], rings [10,30] (see Fig. 2.1), or tetrahedra [31]. Magnetic molecules show
many fascinating effects, e.g., quantum steps of the magnetization [30], hysteresis
loops [1], quantum tunneling of the magnetization [32], or quantum phase interfer-
ence [10, 33]. Potential applications of magnetic molecules are, e.g., high-density
information storage [2], quantum computing [34], or magnetic refrigeration [35,36].

Magnetic molecules are also interesting because they show in some aspects classical
behavior and in some aspects quantum mechanical behavior so that the transition
from the classical to the quantum world can be studied [4, 13,37–39].

The magnetic properties of these molecules can in most cases be well described by
spin Hamiltonians like the Heisenberg model with additional anisotropic terms and
Zeeman interaction. In the following sections, an introduction to spin Hamiltonians
and techniques to deal with such models is given.

2.2. Spin Hamiltonian of magnetic molecules

The magnetic properties of magnetic molecules originate in most cases from the
spins of the unpaired electrons of the magnetic centers and very often the magnetic
properties can be described by simple spin Hamiltonians [3]. A spin Hamiltonian
is, of course, not an exact description of the entire system. From the theoretical
point of view, the possibly complicated chemical structure is boiled down to a spin
lattice, modeling the spins of the magnetic ions and interactions between them (cf.
Fig. 2.1). The parameters of the spin Hamiltonian are usually not known and have
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

Figure 2.1.: Left: Fe18 molecule [25]. Right: Structure of the underlying spin system.
The black circles denote the spins and the black lines the interaction paths.

to be determined by a comparison with experimental data. For a system containing
N spins, the most general (zero-field) spin Hamiltonian that contains only two-spin
terms can be written as [40,41]

Hspin = HHeisenberg +Hantisymmetric +Hanisotropic , (2.1)

where

HHeisenberg =
∑
i<j

Jij~si · ~sj (2.2)

denotes the isotropic Heisenberg Hamiltonian1 with Jij = Jji and

Hantisymmetric =
∑
i,j

~dij · (~si × ~sj) , (2.3)

Hanisotropic =
∑
i,j

~si ·Dij~sj . (2.4)

~dij is an antisymmetric vector and Dij denotes a traceless symmetric tensor [40].
~si denotes the vector operator for spin i. If Jij > 0, the interaction between the
spins ~si and ~sj is antiferromagnetic and if Jij < 0, the interaction is ferromag-
netic. Higher-order interaction terms can be biquadratic terms [42] or higher-order
anisotropy terms [3]. The microscopic origin of all these interaction terms is rather
complicated (see, e.g., [40]) and will not be discussed further. However, the most
obvious interaction term, the magnetic dipole-dipole interaction, very often plays no
role and can in many cases be neglected. Instead, so-called “exchange interactions”
(which lead to the terms Jij~si · ~sj) are dominant [3]. The ab initio calculation of

1When we use the term “Heisenberg system” in the following, we always mean a Heisenberg
Hamiltonian which has the form (2.2).
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2.2. Spin Hamiltonian of magnetic molecules

the spin Hamiltonian parameters is very difficult and often not very accurate, see,
e.g., Refs. [43, 44]. Spin Hamiltonians are usually used as an ansatz with unknown
parameters. Experiences with similar systems, magneto-structural considerations,
experimental data, and the symmetry of the molecule are used to choose a suitable
ansatz. The magnetic parameters have to be determined by comparing with exper-
imental data, such as inelastic neutron scattering spectra or magnetization curves.

In many cases, the dominant contributions to the spin Hamiltonian are the Heisen-
berg Hamiltonian and the i = j terms of Hanisotropic. The coupling matrix Jij often
has a form with Jij = J if the spins at positions i and j are nearest neighbors
and Jij = 0 otherwise. In addition, for many systems a simple uniaxial single-
ion anisotropy of the form

∑
iDi(s

z
i )

2 is sufficient [3, 39], so that we arrive at the
simplified Hamiltonian

H = HHeisenberg +Hsingle−ion , (2.5)

with

Hsingle−ion =
∑
i

Di(s
z
i )

2 . (2.6)

Furthermore, for many systems the isotropic Heisenberg term dominates over the
anisotropy term which can then be regarded as a perturbation [28, 39]. Typical
values for J are of the order of 10 K (≈ 1 meV).

If a magnetic field ~B is applied to the molecule, an additional Zeeman interaction
of the form

HZeeman =
∑
i

giµB ~B · ~si (2.7)

has to be added to the spin Hamiltonian. µB is the Bohr magneton and gi denotes
the spectroscopic splitting factors (usually ≈ 2) of the individual spins. In general,
it is also possible to have a tensor instead of scalars gi. This might be needed for
the description of some systems [3]. However, we only use the simple version with
gi being a scalar and having the same value for all i.

In the following, we mainly use the simple Heisenberg Hamiltonian with an addi-
tional Zeeman term to calculate properties of magnetic systems. Furthermore, only
antiferromagnetic systems (Jij ≥ 0) with all spins having the same quantum number
si = s are investigated. The influence of a small anisotropy is discussed in one of
the later chapters (see Sec. 5.3.3).

2.2.1. Classical spin systems, bipartiteness, and geometrical
frustration

In this subsection, some terms that are used in this and later chapters are introduced.
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

Although spins are quantum mechanical objects, the concept of classical spin
systems is sometimes helpful and can serve as an approximation for the quantum
mechanical problem. If we have a quantum mechanical Heisenberg Hamiltonian
HHeisenberg, the corresponding classical Hamilton function is obtained by replacing
the vector operators ~si by classical vectors

√
si(si + 1)~ei, where ~ei denotes a unit

vector [45, 46]. The “classical limit” is approached for s → ∞ and the classical
system is expected to be a good approximation for large s values [13,47]. The scaling
with

√
s(s+ 1) is in some sense not optimal, since it leads to a wrong saturation

magnetization for any finite s. The classical systems are in most cases much easier to
handle than the quantum systems and standard numerical methods such as classical
Monte Carlo can be used [13,46].

We define a bipartite Heisenberg system in the following way: If it is possible to
divide the lattice (defined by the coupling matrix Jij) into two sublattices A and
B such that JiAjA = 0 for all spins on sublattice A, JiBjB = 0 for all spins on
sublattice B, and JiAjB ≥ 0 for spins on different sublattices, the system is called
bipartite. Bipartiteness thus means that only spins on different sublattices interact.
For bipartite systems the ground state of the classical Heisenberg system is very
simple. Let Nb be the number of bonds and Jij = J for every bond. Then the
ground state is a simple Néel state with all spin vectors on the same sublattice
being parallel and the spin vectors on the different sublattices pointing in opposite
directions. In this way it is possible to simultaneously minimize all bond energies,
and the ground state energy is Eclassical

0 = −JNbs(s+ 1).
In the context of classical spin systems it is possible to introduce the term geomet-

rical frustration [48, 49]. If we have a Heisenberg Hamiltonian with an interaction
matrix Jij and it is not possible to find a ground state for the corresponding clas-
sical system such that all bond energies are simultaneously minimized, the system
is called frustrated. An example for geometrical frustration is the antiferromagnetic
Heisenberg triangle with

Htriangle = J(~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s1) . (2.8)

It is clearly not possible to find a classical spin configuration that minimizes all bond
energies (see Fig. 2.2), and hence the system is frustrated.

2.2.2. Basis and good quantum numbers

The comparison of theory (based on a spin Hamiltonian) to experiment (in the form
of experimental data) requires in many cases the calculation of several or all eigenval-
ues and the corresponding eigenvectors of the Hamiltonian that is used as an ansatz.
If an analytical calculation is not possible, one has to resort to approximations or
numerical techniques. All these numerical techniques require the Hamiltonian to be
represented by a matrix, and in order to represent it by a matrix, a basis has to be
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2.2. Spin Hamiltonian of magnetic molecules

?

Figure 2.2.: Illustration of geometrical frustration for the antiferromagnetic Heisen-
berg triangle. Left: It is not possible to find a classical “up-down” configuration
where all bond energies are minimized. Right: One of the possible classical ground
state configurations. The angle between adjacent spins is 120◦ and thus the bond
energy is not −Js(s+ 1) as would be the case for an unfrustrated system [26].

chosen. The basis dimension for a cluster consisting of N spins (each having the
spin quantum number s) is (2s + 1)N . The choice of basis depends on which sym-
metries shall be exploited. The Heisenberg Hamiltonian HHeisenberg is isotropic and

has SU(2) symmetry. It commutes with all components of the total spin ~S ≡
∑

i ~si,

i.e., [H, ~S] = 0. Furthermore, the square of the total spin, ~S2, commutes with the
z component of the total spin, Sz ≡

∑
i s
z
i , i.e., [~S2, Sz] = 0 [50]. Therefore it

is possible to find simultaneous eigenstates of HHeisenberg, ~S2, and Sz. We denote

the eigenstates of ~S2 and Sz as |SMα〉, so that ~S2|SMα〉 = S(S + 1)|SMα〉 and
Sz|SMα〉 = M |SMα〉.2 α denotes intermediate quantum numbers that result from
the coupling of the individual spins to the total spin. This basis is called “vector-
coupling basis” [51].

The matrix elements 〈SMα|HHeisenberg|S′M ′α′〉 are zero for M 6= M ′ or S 6= S′ so
that the representation of HHeisenberg in this basis has a special block form. Exploit-
ing point-group symmetries leads to even smaller blocks [51]. The diagonalization
can then be performed separately on each block. Having small effective matrix
sizes is highly desirable for all numerical diagonalization techniques. Also, since the
energy eigenvalues for Heisenberg systems are degenerate with respect to M [52],
not all eigenspaces of Sz have to be considered. However, employing the vector-
coupling basis is rather complicated, especially for numerical techniques such as
DMRG (cf. [53, 54]).

Another possible basis is the simple product basis. If {|simi〉} denotes the local
basis for spin i with szi |simi〉 = mi|simi〉, the product basis (for a system of N

2Natural units are used, i.e., ~ is absorbed into the respective units.
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

spins with each spin having quantum number s) is given by {|m1m2 . . .mN 〉} ≡
{|s1m1〉|s2m2〉 · · · |sNmN 〉}. These product states are not eigenstates of ~S2 but still
eigenstates of Sz:

Sz|m1m2 . . .mN 〉 = M |m1m2 . . .mN 〉 , M =
∑
i

mi . (2.9)

If one sorts the product states according to their M quantum numbers, the Hamil-
tonian can be represented by a matrix in block form, where each block corresponds
to a subspace with a specific M quantum number. Furthermore, if one rewrites the
Heisenberg Hamiltonian as

HHeisenberg =
∑
i<j

Jij

{
szi s

z
j +

1

2
(s+
i s
−
j + s−i s

+
j )

}
, (2.10)

the matrix elements in the product basis can easily be calculated, since [50]

szi |m1m2 . . .mN 〉 = mi|m1m2 . . .mN 〉 (2.11)

and

s
+/−
i |m1m2 . . .mN 〉 =

√
s(s+ 1)−mi(mi ± 1)|m1m2 . . .mi ± 1 . . .mN 〉 . (2.12)

For the vector-coupling basis, the calculation of matrix elements is more complicated
and requires rewriting the Hamiltonian using irreducible tensor operators (ITOs)
[51]. Also, point group symmetries such as cyclic invariance can more easily be
exploited within the product basis [55]. The S quantum number of the resulting
eigenvalues can very often still be deduced from the degeneracy with respect to M .
The commutation relation [HHeisenberg, ~S] = 0 has the consequence that all energy
eigenvalues are (2S + 1)-fold degenerate with respect to M [52]. Every eigenstate
has a representative in the M = 0 subspace (if Ns is an integer) so that the ground
state can always be calculated in this subspace. This degeneracy is lifted if a Zeeman
term is present. The Zeeman interaction Hamiltonian is diagonal in both bases and
leads to an additional contribution of gµBBM to the energy of a state with quantum
number M .

Once the matrix representation of the Hamiltonian has been set up, the goal is to
calculate eigenvalues and eigenvectors. In the following some numerical methods to
treat spin Hamiltonians are described.

The idea of complete exact diagonalization is to calculate all eigenvalues and –
if needed – all eigenvectors of the Hamiltonian. This means that the matrix rep-
resentation of the Hamiltonian, H, has to be transformed to diagonal form. There
exist standard algorithms and implementations that can be used for this task. If

14



2.2. Spin Hamiltonian of magnetic molecules

symmetries are exploited, the Hamilton matrix H can be transformed into a block-
diagonal form. These blocks can then be diagonalized separately. Since the Hilbert
space dimension of a spin system with N spins with quantum number s is (2s+1)N ,
it is clear that at some point complete exact diagonalization cannot be used any-
more. Today, complex matrices with dimensions up to O(105) can be completely
diagonalized [56]. However, such a calculation takes a very long time (of the order
of days).

There also exist numerical methods such as the Lanczos algorithm [57] which allow
for the calculation of several extremal eigenvalues and the corresponding eigenvec-
tors. Since these methods are virtually numerically exact, they are also included
in the class of the exact diagonalization methods. The great advantage of, e.g., the
Lanczos method is, that one only needs the matrix-vector product (apart from simple
vector operations) and that the matrix does not need to be explicitly stored in the
RAM. With the Lanczos algorithm, eigenvalues and eigenvectors of matrices with
dimensions of the order O(1011) can be calculated [55]. However, very large systems
such as the previously mentioned Fe18 and Mo72Fe30 still cannot be treated with
exact diagonalization methods. DMRG effectively reduces the matrix dimension so
that very large systems can be treated using this method.

Quantum Monte Carlo methods such as the stochastic series expansion [58] allow
for an approximate, but very accurate calculation of thermodynamic expectation
values of very large unfrustrated spin systems. Properties of frustrated systems can,
however, only be calculated in the high-temperature regime, cf. Ref. [59].

2.2.3. Spectra of antiferromagnetic spin Hamiltonians

In this subsection, we discuss typical properties of the spectra of (isotropic) antifer-
romagnetic Heisenberg systems. The effect of a small anisotropy will be discussed
later in Sec. 5.3.3. As a first example we calculate the spectrum of an exactly solvable
system, the antiferromagnetic Heisenberg square with the Hamiltonian

Hsquare = J(~s1 · ~s2 + ~s2 · ~s3 + ~s3 · ~s4 + ~s4 · ~s1) , (2.13)

with all spins having the quantum number s. Alternatively, this system can be
regarded as a spin ring with four spins. Fig. 2.3 shows a schematic representation
of the system.

We can now rewrite this Hamiltonian using ~S13 ≡ ~s1 + ~s3, ~S24 ≡ ~s2 + ~s4, and the
total spin ~S ≡ ~S13 + ~S24:

Hsquare =
J

2
(~S2 − ~S2

13 − ~S2
24) . (2.14)

One can see that the vector coupling states |S13S24SM〉3 are eigenstates of this

3S13 and S24 are intermediate quantum numbers for this system that were summarized by α in
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

Figure 2.3.: Schematic representation of the antiferromagnetic Heisenberg square.
The circles denote the individual spins and the lines denote the interactions between
the spins.

Hamiltonian. The energy eigenvalues are:

E(S, S13, S24) =
J

2
(S(S + 1)− S13(S13 + 1)− S24(S24 + 1)) , (2.15)

with S13, S24 ∈ {0, 1, . . . , 2s} and S ∈ {|S13 − S24|, |S13 − S24| + 1, . . . , S13 + S24}.
An example of the complete spectrum is shown in Fig. 2.4.

This spectrum has some properties that are typical for many antiferromagnetic
Heisenberg systems. In the following, we discuss some aspects. We always assume
that we have an even number of spins that all have the same quantum number s.

Ordering of energy levels and ground state spin quantum number

Lieb and Mattis have rigorously proved in 1962 for antiferromagnetic Heisenberg
systems which fulfill condition (2.16) that the ground state is a singlet (i.e., S =
0) and that the minimal energies in the S subspaces, denoted as Emin(S), obey
Emin(S) < Emin(S + 1) [52]. This behavior can also be seen in Fig. 2.4. The
condition is that the system can be divided into two sublattices A and B with a
constant g2 ≥ 0 such that for all lattice positions

JiAjA ≤ g
2 , JiBjB ≤ g

2 , and JiAjB ≥ g
2 (2.16)

holds. Here, iA and jA denote positions on sublattice A, and iB and jB denote
positions on sublattice B. The condition with g2 = 0 thus means that spins on
different sublattices interact either antiferromagnetically or not at all, i.e., the system
is bipartite in the sense of the previously given definition.

the previous subsection. ~s1 and ~s3 are coupled to ~S13, and ~s2 and ~s4 to ~S24. Then, ~S13 and ~S24

are coupled to the total spin ~S.
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2.2. Spin Hamiltonian of magnetic molecules

Figure 2.4.: Spectrum of the antiferromagnetic Heisenberg square with s = 5/2.
The red background marks the lowest rotational band (L band) and the next-higher
rotational band (also called E band [37]) is marked blue (see text).

Rotational bands

The ordering of energy levels as stated above was proved by Lieb and Mattis only
for systems obeying condition (2.16). However, numerical investigations show that
such an ordering also exists for many other systems. Furthermore, the dependence
of the lowest energy eigenvalues on S is often approximately parabolic as for the
square [19,20,30,37,39,60–65], i.e.,

Emin(S)− E0 ≈ const.× S(S + 1) , (2.17)

This structure is called “rotational band” [64], “L band” [37], or is described as
following the Landé interval rule [30]. The spectrum of antiferromagnetic Heisenberg
systems which fulfill the Lieb-Mattis condition with g2 = 0 and JiAjB = J ∀iA, jB
(“Lieb-Mattis model”) can be calculated analytically in the same way as for the
Heisenberg square and the energy eigenvalues are ELieb−Mattis(S, SA, SB) = J

2 (S(S+
1)−SA(SA+1)−SB(SB+1)) [52]. SA is the spin quantum number of sublattice spin
~SA ≡

∑
iA
~siA and likewise for SB. The parabolic dependence on S is also exact for

systems where each spin interacts with every other spin with the same strength, since
then the Hamiltonian can always be rewritten as H = J

∑
i<j ~si ·~sj = J

2 (~S2−
∑

i ~s
2
i ).

Also, many classical spin systems show an exact parabolic dependence of that form
[66].

17



2. Theoretical background: Magnetic molecules and spin Hamiltonians

For quantum systems that do not belong to the Lieb-Mattis-type models, a
“derivation” of the (approximate) parabolic dependence and justification for us-
ing an approximation based on rotational bands can be given as follows [64,67, 68].
In the Lieb-Mattis model, the system can be divided into two sublattices, and the
sublattice spins couple to their maximum value for the (relative) ground states as a
function of S. The idea of the rotational band approximation is to use these states
as approximations of the relative ground states also for other models. Let us first
consider a bipartite antiferromagnetic Heisenberg system with N spins, e.g., a simple
spin ring with the Hamiltonian

Hring = J

N∑
i=1

~si · ~si+1 , N + 1 ≡ 1 , (2.18)

with J > 0. We couple the sublattice spins to their maximal values, SA = Ns/2
and SB = Ns/2, and the approximations for the relative ground states are given
by |SASBSM〉. This state is a kind of “quantum Néel state”, but not a classical
“up-down” Néel state, which is not an ~S2 eigenstate. Within this basis, the spin
ring Hamiltonian is equivalent to the two-spin Hamiltonian [67,68]

HAB = a1J ~SA · ~SB = a1
J

2
(~S2 − ~S2

A − ~S2
B) , (2.19)

i.e.,

〈SASBSM |HAB|SASBSM〉 = 〈SASBSM |Hring|SASBSM〉 , (2.20)

with a1 = 4/N . The energy eigenvalues of the two-spin Hamiltonian HAB are
EAB(S) = a1

J
2 (S(S+1)−SA(SA+1)−SB(SB +1)), i.e., they depend quadratically

on S. Because of the variational principle, the energy 〈SASBSM |Hring|SASBSM〉
is always bounded from below by the true (relative) ground state energy of the
full N -spin Hamiltonian Hring. The two-spin Hamiltonian HAB has a much smaller
Hilbert space dimension ((Ns + 1)2) than the original Hamiltonian and can even
be solved analytically unless anisotropic terms are included. It is therefore used as
an approximation if the full Hamiltonian cannot be treated numerically, see, e.g.,
Refs. [10, 67]. It is also possible to include anisotropic terms or to use other values
for the constant a1 in order to get better approximations for small spin quantum
numbers [68]. The rotational band states are expected to be good approximations
especially for large s and small N [37]. This will be analyzed in Sec. 5.2.1.

For a three-colorable system, i.e., a system that can be divided into three sublat-
tices A, B, and C such that spins on different sublattices do not interact, one can
devise a similar strategy by using states of the form |SASBSCSM〉, or equivalently
a three-spin Hamiltonian of the form HABC = cJ(~SA · ~SB + ~SB · ~SC + ~SC · ~SA), as
an approximation [12,16,64].
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2.2. Spin Hamiltonian of magnetic molecules

The procedure can be extended by also using states where the sublattice spins are
not coupled to their maximum values. If the sublattice spins are coupled to their
maximal value and the energies EAB(S) or EABC(S) are minimal, the corresponding
energy values are called first (or lowest) rotational band or L band. If one of the
sublattice spins is coupled to the maximal value minus one and the other sublattice
spins to their maximal values, the corresponding energy eigenvalues are called second
rotational band (cf. Fig. 2.4) [16,37].

The rotational band approximation has been used with some success for different
antiferromagnetic spin systems, see, e.g., Refs. [10, 16,17,39,63,67,68].

Shift quantum numbers of spin rings

In this paragraph we focus on uniform antiferromagnetic isotropic rings with N spins
and the same spin quantum number s for all spins. Some of the properties that are
listed below will be used in chapter 5. We always assume that the Hamiltonian
has the form Hring, see Eq. (2.18). Spin rings with a Hamiltonian of this form are
translational invariant, i.e., Hring commutes with the shift operator T [69]. The shift
operator T can be defined by its action on a state of the product basis:

T |m1m2 . . .mN 〉 ≡ |mNm1m2 . . .mN−1〉 . (2.21)

T also commutes with ~S2 and Sz. All eigenstates of a spin ring can be labeled
according to S, M , and the shift quantum number k. The shift quantum number k
can take the values k = 0, 1, . . . , N − 1 and labels eigenstates of T according to

T |k〉 = e−
2πik
N |k〉 . (2.22)

If the ring has an even number of spins, the theorem of Lieb and Mattis applies, so
that the ground state is a singlet and the lowest energy levels in the S subspaces
are ordered according to Emin(S) < Emin(S + 1). Furthermore, rigorous results for
the shift quantum numbers of these relative ground states can be derived [70] (we
assume here an even N):

1. If s is an integer or Ns is even, the shift quantum number of the ground state
is k = 0.

2. If s is half-integer and Ns is odd, the shift quantum number of the ground
state is k = N/2.

3. The lowest energy eigenstates in the eigenspaces of S have the shift quantum
numbers 0, N/2, 0, N/2, . . . for S = Ns,Ns − 1, Ns − 2, Ns − 2, . . . , i.e.,
starting from the subspace with the largest possible S.

If k 6= 0, N/2, energy eigenstates with k and N − k have the same energy, i.e., are
degenerate [37].
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

2.3. Typical observables and experimental techniques

Measurements of the magnetization as a function of the applied magnetic field and
temperature, and inelastic neutron scattering (INS) are very powerful techniques
that are often applied to magnetic molecules [3, 28]. Other typical techniques are,
e.g., nuclear magnetic resonance (NMR), measurements of the specific heat, or elec-
tron paramagnetic resonance [3]. We focus on the formulas needed for the calcu-
lation of the magnetization and the simulation of INS experiments in the following
subsections. The DMRG and DDMRG techniques, which we mainly use for the the-
oretical calculations in this work, are very well suited to make predictions relevant
for magnetization measurements and INS experiments.

2.3.1. Magnetization

The magnetization of magnetic molecules can, e.g., be measured with SQUIDs (see
chapter 3 of Ref. [3]). On the theory side, the thermal expectation value of the mag-
netization operator as a function of magnetic field ~B and temperature T ≡ 1/(kBβ)
has to be calculated for the comparison with experimental data. The magnetization
operator is defined as −gµB ~S [71]. The (thermal equilibrium) expectation value of
the magnetization, ~M, can then be calculated as

~M(T, ~B) = −gµB
Z

Tr { ~S e−βH( ~B) } , (2.23)

with Z = Tr { e−βH( ~B) }. If we have an isotropic Heisenberg Hamiltonian, the di-
rection of the magnetic field does not matter and we can, e.g., choose ~B = B~ez. In
this case, the magnetization has only a non-vanishing z component, i.e., ~M =M~ez.
The expectation value can then be calculated as

M(T,B) = −gµB
Z

Tr {Sz e−βH(B) }

= −gµB
Z

∑
i

Mie
−βEi(B) , (2.24)

where Ei(B) = Ei + gµBBMi denotes the energy eigenvalues (Ei is the energy
eigenvalue of the Heisenberg Hamiltonian without Zeeman interaction) and Mi the
Sz eigenvalues of the corresponding eigenstates.

Although measurements at exactly T = 0 are, of course, not possible, very low
temperatures can be reached so that in some cases it is reasonable to compare the
simulated T = 0 magnetization with experimental low-temperature data. At T = 0,
the system is always in the ground state. Let again Emin(S) denote the minimal
energy for a fixed S without magnetic field. If B > 0, an additional energy of
gµBBM has to be added, so that the energies

E(S,M,B) = Emin(S) + gµBBM (2.25)
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2.3. Typical observables and experimental techniques

becomeM -dependent. To find the state with minimal energy for a givenB, Eq. (2.25)
has to be minimized with respect to M and S. The energy is minimal with respect to
M for M = −S (for B > 0). If we have a system for which Emin(S) < Emin(S + 1),
the magnetic fields at which the ground state spin “jumps” from S to S + 1 are4

BS→S+1 =
Emin(S + 1)− Emin(S)

gµB
. (2.26)

This means that one only needs the minimal energies in the S subspaces of the un-
perturbed system (i.e., without external field) to calculate the T = 0 magnetization
curve for an isotropic Heisenberg system.

This procedure is visualized in Fig. 2.5 for the antiferromagnetic Heisenberg
square. We only show the eigenvalues of the states with M = −S, since only
these states are relevant.

In general, if the minimal energies depend quadratically on S, the resulting T = 0
magnetization curve always shows equidistant steps until the saturation magnetiza-
tion is reached.

2.3.2. Inelastic neutron scattering (INS)

Neutrons are almost ideal for spectroscopy experiments on magnetic molecules.
Since they have a magnetic moment, but no charge, they only interact with the
nuclei and the magnetic moments of the unpaired electrons (i.e., the spins) in
the sample [73]. INS allows to probe transitions to excited states so that direct
conclusions about the spectrum can be drawn. In inelastic neutron scattering ex-
periments, changes in the kinetic energies and the momenta of the neutrons are
measured [3, 73, 74], see Fig. 2.6. The energy of a neutron with wave vector ~q is
E = ~2q2/(2m), so that the transferred energy is given by5

ω =
~2

2m
(q2 − q′2) = E − E′ . (2.27)

Here, ~q ′ denotes the wave vector of the neutron after leaving the sample. The
transferred momentum ~ ~Q is given by

~ ~Q = ~(~q − ~q ′). (2.28)

Measurements of the fraction of neutrons that are scattered with momentum transfer
~ ~Q and energy transfer ω allow for a comparison to theoretical calculations. It is
possible to derive an equation for the calculation of the double differential cross
section d2σ/dΩdω for inelastic neutron scattering. We do not describe the derivation

4Also, the energies Emin(S) need to be convex [72].
5Here and in the following, ω has the dimension of energy.
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Figure 2.5.: Lowest energies in each S sector as a function of gµBB (top) and T =
0 magnetization curve (bottom) for the antiferromagnetic Heisenberg square with
s = 5/2. The numbers above the lines denote the S quantum numbers of the
corresponding eigenstates. The red line shows the ground state energy as a function
of gµBB.

here; it can be found in standard textbooks on neutron scattering, see, e.g., Refs. [73,
74]. d2σ/dΩdω describes the number of neutrons scattered per second into the
infinitesimal solid angle dΩ, with energy transfers between ω and ω + dω, divided
by the number of incoming neutrons per second. The derivation is based on Fermi’s
golden rule. The final result for the double differential cross section for inelastic
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sample

detectors

neutron source

Figure 2.6.: Schematic illustration of inelastic neutron scattering. An incoming
neutron with wave vector ~q and energy E is scattered in the sample and leaves
with wave vector ~q ′ and energy E′.

neutron scattering on magnetic systems is [73,74]

d2σ

dΩdω
= const.× q′

q
e−2W (Q,T )F 2( ~Q)

∑
α,β

(
δαβ −

QαQβ
Q2

)
Sαβ( ~Q, ω) , (2.29)

where α, β = x, y, z, exp[−2W (Q,T )] is the Debye-Waller factor, and F ( ~Q) is the
form factor of a magnetic ion which is assumed to be the same for all magnetic
centers. In the following, we only consider the limit T = 0. Apart from the Debye-
Waller factor and the magnetic form factor, the only system-dependent part of
equation (2.29) is the dynamical correlation function Sαβ( ~Q, ω), also called magnetic
scattering function, which is defined as [73]

Sαβ( ~Q, ω) =
∑
j,j′

ei
~Q·(~Rj−~Rj′ )

∑
m,n

e−βEm

Z
〈m|sαj |n〉〈n|s

β
j′ |m〉 δ(ω−En+Em) , (2.30)

where Z denotes the partition function. For zero temperature, this expression sim-
plifies to

Sαβ( ~Q, ω) =
∑
j,j′

ei
~Q·(~Rj−~Rj′ )Sαβjj′ (ω) , (2.31)

with

Sαβjj′ (ω) ≡
∑
n

〈0|sαj |n〉〈n|s
β
j′ |0〉 δ(ω − En + E0). (2.32)

Here, |n〉 denotes an energy eigenvector with energy En. |0〉 is the ground state. If
the ground state was degenerate, one would have to sum over all degenerate states
with equal weight. ~Rj denotes the position of the jth magnetic ion. As already men-
tioned before, we only consider the zero-temperature dynamical correlation function
in the following.
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2. Theoretical background: Magnetic molecules and spin Hamiltonians

Selection rules and isotropic systems

In this thesis, the cross section is only calculated for isotropic systems. This leads to
some simplifications and to selection rules. The selection rules for matrix elements
of the form 〈S′M ′|sαj |SM〉 are (the matrix element is zero, if the selection rules are
not fulfilled) [73]

∆S ≡ S′ − S = 0,±1 and ∆M ≡M ′ −M = 0,±1 . (2.33)

However, S = 0 → S′ = 0 transitions are also not allowed [75], so that for systems
with a singlet ground state only transitions to S = 1 states are possible.

Furthermore, it can be shown that one only has to consider Szzjj′(ω) in the differ-
ential cross section formula. Terms with α 6= β cancel out and Sααjj′ (ω) = Szzjj′(ω)
∀α. This has the consequence that∑

α,β

(
δαβ −

QαQβ
Q2

)
Sαβ( ~Q, ω) = 2Szz( ~Q, ω) , (2.34)

and the differential cross section formula acquires a much simpler structure.

Powder samples

Since inelastic neutron scattering experiments in the field of molecular magnetism are
usually performed on powder samples, the orientation of the molecules is essentially
random and one has to average over all directions of ~Q [76]:

Szz(Q,ω) ≡ 1

4π

∫
dΩ
∑
j,j′

ei
~Q·(~Rj−~Rj′ )Szzjj′(ω)

=
∑
j,j′

sin(QRjj′)

QRjj′
Szzjj′(ω) , (2.35)

with Rjj′ ≡ |~Rj − ~Rj′ | and Q = | ~Q|.

Integration over all ~Q

To obtain a function that is independent of ~Q and the positions of the ions, ~Rj , we

can average over all ~Q [77]:

Sz(ω) ≡
∫
d3QSzz( ~Q, ω)∫

d3Q
=
∑
j

Szzjj (ω) ≡
∑
j

Szj (ω) . (2.36)

Here we have used
∫
d3Qei

~Q·(~Rj−~Rj′ )/
∫
d3Q = δjj′ [73]. We get the same result if

we calculate
∫
dQSzz(Q,ω)/

∫
dQ and omit a factor Q2, which we would have for
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2.3. Typical observables and experimental techniques

a three-dimensional averaging. If we have a translational invariant system, e.g., a
uniform spin ring, the sum over j simplifies to NSzj (ω) with an arbitrary j.

For INS experiments performed with time-of-flight spectrometers, the integration
over all scattering angles is not equal to the expression above and the detector
geometry is relevant [78]. This will be analyzed below. Note that the form factors
and the Debye-Waller factor are ignored if one uses Eq. (2.36) for a direct comparison
with experimental data.

For highly symmetric systems such as rings, the function Szj (ω) and the knowledge
of the spacial quantum numbers of the participating energy levels are sufficient to
reconstruct the momentum dependent function Szz( ~Q, ω) [76].

The integration over all ω leads to a useful sum rule for the dynamical correlation
functions Szj (ω) for the case of an isotropic system:∫ +∞

−∞
dω Szj (ω) =

∑
n

|〈0|szj |n〉|2 = 〈0|(szj )2|0〉

=
1

3
s(s+ 1) . (2.37)

Simulation of time-of-flight INS data

To properly simulate INS data that were obtained by summing over all detector
banks, the formulas introduced above need to be modified [78–80]. The reason is
that if the data are collected over a range of scattering angles, the range of possible
Q values depends not only on the the detector geometry, but also on the energy
transfer. At first, we give the formula for the momentum transfer as a function of ϑ
(the scattering angle, i.e., angle between ~q and ~q ′, in degree), ω (energy transfer, in
meV), and λ (wavelength of the incoming neutrons, in Å−1):

Q(ω, ϑ, λ) =

√
8π2

λ2
− 4π cosϑ

λ

√
4π2

λ2
− 0.4826ω − 0.4826ω . (2.38)

This equation can easily be derived using the scattering triangle (see Fig. 2.6).

In Ref. [78] the following formula was given to simulate time-of-flight data:

I(ω) =

∫ Qmax(ω)

Qmin(ω)
dQg(Q)F 2(Q)Szz(Q, ω) , (2.39)

where g(Q) is the density of detectors per Q interval, and Qmin/max(ω) are the
minimum/maximum Q value for fixed ω and can be calculated via Eq. (2.38) by
inserting the minimum/maximum scattering angle. This equation will be used in
chapter 5.

25



2. Theoretical background: Magnetic molecules and spin Hamiltonians

Application to the Heisenberg square

As an example, we explicitly calculate Szj (ω) for the spin-s Heisenberg square with
Hamiltonian (2.13). The energy eigenvalues of this system are E(S, S13, S24) =
J
2 (S(S+1)−S13(S13+1)−S24(S24+1)) and the eigenstates have the form |S13S24SM〉
(see Eq. (2.15)). This means, we have to calculate the matrix elements

〈S′13S
′
24S
′M ′|szj |S13S24SM〉 . (2.40)

In addition to the standard INS selection rules (2.33), we have the following selection
rules for the intermediate quantum numbers [37,42]:

∆S13 = 0 and ∆S24 = 0,±1 , (2.41)

or

∆S13 = 0,±1 and ∆S24 = 0 . (2.42)

The ground state has S13 = S24 = 2s. Since E(S, 2s, 2s− 1) = E(S, 2s− 1, 2s), only
two distinct transitions contribute to the dynamical correlation functions Szj (ω): a
transition within the lowest rotational band (L band) and a transition to the second
rotational band (E band). These transitions are shown in Fig. 2.7. The squared
matrix element for the transition to the first excited state is (see appendix A.1 and
Refs. [42, 73] for details of the calculation):

|〈2s, 2s, S′ = 1,M ′ = 0|szj |2s, 2s, S = 0,M = 0〉|2 =
1

3
s

(
s+

1

2

)
. (2.43)

The weight of the transitions to the states with S13 = 2s − 1 (and S24 = 2s) or
S24 = 2s− 1 (and S13 = 2s) can then be deduced using the sum rule (2.37):

[weight of all other transitions] =
1

3
s(s+ 1)− 1

3
s

(
s+

1

2

)
=

1

6
s . (2.44)

The excitation energies are ∆E1 = J and ∆E2 = (1+2s)J . The resulting dynamical
correlation function for s = 5/2 is shown in Fig. 2.8.

Rotational band approximation

As a second example, we calculate the dynamical correlation function Szj (ω) in the
rotational band approximation (cf. Sec. 2.2.3) for antiferromagnetic spin rings with
an even number N of spins. The idea of the rotational band approximation for such
systems was to use the states |SASBSM〉 as approximations of the true eigenstates,
or alternatively to use an effective two-spin Hamiltonian HAB ∝ ~SA · ~SB instead of
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Figure 2.7.: Low-energy part of the spectrum of the spin-5/2 Heisenberg square (cf.
Fig. 2.4). The arrows mark the transitions from the ground state which are relevant
for INS, i.e., which have nonzero weight. The red arrow shows the transition within
the L band, and the blue arrow shows the transition to the E band.

the full Hamiltonian. SA and SB are the sublattice spin quantum numbers. For
the lowest rotational band we have SA = SB = Ns/2. To determine the dynamical
correlation function in this approximation, we need the squared matrix elements
|〈S′AS′BS′M ′|szj |SASBSM〉|2.

The states |SASBSM〉 are exact eigenstates of the Heisenberg square, so that
the calculation of the matrix elements is completely analogous to that case, see
appendix A.1. In addition to the standard INS selection rules we again have selection
rules for the sublattice spin quantum numbers:

∆SA = 0 and ∆SB = 0,±1 , (2.45)

or

∆SA = 0,±1 and ∆SB = 0 . (2.46)

As for the Heisenberg square, only two distinct peaks can appear in the dynamical
correlation function. The matrix elements can be calculated in the same way as for
the Heisenberg square and the final result is (SA = SB = Ns/2)

|〈SA, SB, S′ = 1,M ′ = 0|szj |SA, SB, S = 0,M = 0〉|2 =
1

3
s

(
s+

2

N

)
. (2.47)
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Figure 2.8.: Zero-temperature dynamical correlation function Szj (ω) for the spin-5/2
Heisenberg square. For visualizing purposes, the delta functions were replaced by
Lorentzians η/π(x2 + η2) with η = 0.1 J . The roman numerals mark the peaks
corresponding to the transition within the L band (“I”) and the transition to the E
band (“II”), see Fig. 2.7.

The weight of all remaining peaks is 1
3s(1−

2
N ). The excitation energies are ∆E1 = J

and ∆E2 = ( 4
N + 2s)J . However, a comparison with spectra of the “full” Hamil-

tonians shows that the rotational band approximation is too simple for excitations
beyond the lowest rotational band for spin rings with N > 6 [37]. This will also be
shown in chapter 5.
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3. The density matrix renormalization
group (DMRG)

3.1. Introduction

The aim of this chapter is to give an overview of the basics of the density matrix
renormalization group (DMRG) method and to present some details of the imple-
mentation that was developed for this work. The DMRG technique is a rather recent
numerical technique and was introduced by S. White in 1992 [5] to overcome prob-
lems that occurred when the numerical renormalization group (NRG) [81, 82] was
applied to quantum lattice models such as the Heisenberg or the Hubbard model [83].
The DMRG technique is a very efficient and, at least for many one-dimensional quan-
tum lattice systems, also a very accurate numerical method. Since its invention in
1992 it has evolved into a widely-used, almost standard numerical method mostly
applied to one-dimensional and quasi-one-dimensional systems [6, 84].

The calculation of properties such as the ground state energy, ground state expec-
tation values, or energy gaps of quantum lattice models (e.g., the Heisenberg model
or the Hubbard model) is always hindered by the exponentially growing dimension
of the underlying Hilbert space. For a spin chain (with open boundary conditions)
consisting of L spins with an individual spin quantum number s and the coupling
constant set to one, the Heisenberg Hamiltonian looks like

Hchain =
L−1∑
i=1

~si · ~si+1 . (3.1)

In the following, we use this simple system as an example to demonstrate how
the method works. The Hilbert space dimension is (2s + 1)L. This exponential
dependence on the number of spins has the consequence that, if complete exact
diagonalization techniques are used, one is limited to rather small systems, even if
all symmetries are used [51]. One solution to this dilemma are Monte Carlo methods
[58], which, however, suffer from the so-called negative-sign problem for fermionic or
frustrated spin systems [85]. NRG and DMRG are approximate numerical techniques
that are based on a truncation of the Hilbert space and can thus be applied to rather
large systems. They do not suffer from the negative-sign problem.

In the following section, the principles of basis truncation in the NRG and DMRG
method are introduced and compared to each other. In sections 3.3 and 3.4, the
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DMRG algorithm and the implementation as developed for this thesis are described.
In section 3.5, the connection to so-called matrix product states (MPS) is briefly
discussed. The first sections use the simple open spin chain (Eq. (3.1)) as an example.
In section 3.6, it is described how to apply the DMRG method to spin systems
that are not one-dimensional. Section 3.7 covers the dynamical DMRG (DDMRG)
technique. The last section contains some tests of the basic properties of the DMRG
algorithm and of the program that was developed for this work. The first sections of
this chapter are in large parts based on the excellent and comprehensive introduction
to the DMRG technique in Ref. [6].

3.2. Basis truncation

The density matrix renormalization group is a numerical method which relies on an
effective truncation of the Hilbert space of quantum lattice models. The variational
theorem states that the ground state energy that is calculated in a reduced Hilbert
space is always higher or equal to the exact ground state energy [50]. This means
that the lower the calculated ground state energy within the reduced space, the
better is the approximation. In some sense, the DMRG basis truncation is optimal,
as will be shown later. However, we first describe the simpler basis truncation used
in the NRG.

3.2.1. Real-space NRG truncation

Let us assume we are interested in calculating ground state properties of the spin
chain (3.1), but using only a limited number of basis states. A simple basis trunca-
tion scheme, which is used in the NRG method, is the following: One starts with a
very small system and does a piecewise enlargement while truncating the basis after
each enlargement step. The spin chain Hamiltonian in Eq. (3.1) can recursively be
constructed in the following way (Hl denotes the Hamiltonian for the chain with
l ≤ L spins):

Hl = Hl−1 + szl−1s
z
l +

1

2

(
s+
l−1s

−
l + s−l−1s

+
l

)
. (3.2)

This step enlarges the chain by one spin and the underlying Hilbert space by a
factor of dS = 2s + 1. Since we are interested in calculating the ground state, we
might think of a truncation scheme based on keeping the energy eigenvectors with
the smallest eigenvalues as basis vectors for the next step. To do so, we could set a
threshold basis dimension m and as soon as Hilbert space dimension for the chain
with l spins, Dl = (2s+1)l, is larger than this value, Hl is replaced by T †HlT , where
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3.2. Basis truncation

T contains the m eigenvectors of Hl with the smallest eigenvalues:

T =

Dl∑
n=1

m∑
n′=1

|n〉〈n′| , (3.3)

where both |n〉 and |n′〉 denote energy eigenstates of Hl. The eigenstates are assumed
to be ordered such that the corresponding eigenvalues obey En ≤ En+1 ∀n. The
operators szl , s

+
l , and s−l have to be likewise transformed for the next step, of

course. Then, T †HlT and T †s
z/+/−
l T (represented by m × m matrices) are used

for the construction of Hl+1 and the basis is truncated again. This procedure (see
Fig. 3.1) is repeated until the desired system size is reached.

Figure 3.1.: Depiction of the NRG basis truncation procedure. The red circle shall
illustrate a site with the basis dimension dS that is added to the system (illustrated
by the blue circles) with the basis dimension m. After diagonalization, the basis is
truncated from mdS to m states.

This truncation procedure, however, yields unreliable results for many uniform
systems such as the Hubbard model or the Heisenberg model (see Ref. [86] for a
discussion of applications of this scheme). The unreliability of this procedure is
often explained on the basis of a simple single-particle tight-binding model [6]. At
the position where the site is added to the chain, the chain had a fixed boundary
in the previous step and the basis states were chosen according to these boundary
conditions. This results in wrong features of the wave function at the position
where the site is added. For the single-particle model, fixed boundary conditions
translate to nodes of the wave function at the boundary [6]. However, the ground
state wave function of the enlarged system should have nodes only at the ends. A
detailed discussion can be found in Ref. [83]. NRG was, however, originally not
developed for uniform Heisenberg or Hubbard systems. It was developed for the
solution of the Kondo problem [81]. In the Kondo model, the addition of a site is
a small perturbation (because of a small relative coupling strength) and neglecting
high-energy states turns out to have only a small effect on the low-energy spectrum.
For the uniform Heisenberg or Hubbard model, the coupling strength between the
sites stays constant and thus neglecting states on the basis of their energy is an
“uncontrolled approximation”, as pointed out by Costi in Ref. [84].
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3. The density matrix renormalization group (DMRG)

White and Noack were the first to notice that it is possible to overcome these
problems by embedding the system that is enlarged and whose basis is truncated in
a larger system [83]. This is the core idea of DMRG and improvement compared to
NRG. It is discussed in the following subsection.

3.2.2. DMRG truncation

Let us again assume that we are interested in calculating the ground state of a
quantum lattice system, e.g., a simple spin chain as in Eq. (3.1). Let us now divide
the system into two subsystems which we call “block A” and “block B”. For each
of these blocks we have a complete orthonormal basis, {|i〉} for block A and {|j〉}
for block B (see Fig. 3.2). The basis dimension of block A (B) is DA (DB).

Figure 3.2.: Division of the system into two blocks. The red circles mark the “sites”,
i.e., the spins.

A normalized state |ψ〉 of the complete system, also called “superblock” (because
it consists of two “blocks”), can be expanded in the following way:

|ψ〉 =

DA∑
i=1

DB∑
j=1

ψij |i〉|j〉 ,
∑
i,j

|ψij |2 = 1 . (3.4)

The state |ψ〉 can, e.g., be the ground state of the system, but the following state-
ments are true for an arbitrary (normalized) superblock state. Before we proceed
with the derivation of the “optimal” truncation scheme, we shortly recapitulate the
concept of reduced density matrices [87].

Reduced density matrices: If we have a system divided into two blocks (sub-
systems) A and B, and the system is in a general mixed state ρ, the reduced density
matrices ρA and ρB are defined as [87]

ρA ≡ TrB ρ and ρB ≡ TrA ρ , (3.5)

where TrB{·} denotes a partial trace over all basis states |j〉 of block B, i.e., TrB{·} ≡∑
j〈j| · |j〉, and likewise for TrA{·}. This procedure yields an operator that acts only
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3.2. Basis truncation

on the Hilbert space of subsystem A or B. ρA and ρB both have the standard
properties of a density matrix [88]. The expectation value of an operator O that
also only acts on one of the subsystems, e.g., subsystem A, can then be calculated
as [87]

Tr { ρO } = TrA { ρAO } . (3.6)

If the system is in a pure state |ψ〉 =
∑

i,j ψij |i, j〉 with |i, j〉 ≡ |i〉|j〉, so that
ρ = |ψ〉〈ψ| =

∑
i,i′,j,j′ ψijψi′j′ |i, j〉〈i′, j′| (we assume here and in the following real

coefficients), the reduced density matrices are calculated as follows:

ρA = TrB { |ψ〉〈ψ| } =
∑
i,i′,j

ψijψi′j |i〉〈i′| ,

ρB = TrA { |ψ〉〈ψ| } =
∑
i,j,j′

ψijψij′ |j〉〈j′| . (3.7)

As will be shown later, both density matrices have the same nonzero eigenvalues.

The problem of finding the optimal approximation

|ψ̃〉 =
m∑
a=1

DB∑
j=1

ψ̃aj |a〉|j〉 (3.8)

of |ψ〉 with only m < DA basis states for block A has a solution [86] as will be shown
in the following. Mathematically, we are solving the following problem (we closely
follow the derivation in Ref. [6]): We look for a transformation Uai to orthonormal
states

|a〉 =
∑
i

Uai|i〉 ≡
∑
i

〈i|a〉|i〉 , 〈a|a′〉 = δaa′ (3.9)

and coefficients ψ̃aj , so that the square of the distance,

||ψ〉 − |ψ̃〉|2 , (3.10)

is minimal. Inserting (3.4), (3.8), and (3.9) yields (again assuming real coefficients)

||ψ〉 − |ψ̃〉|2 = 1 +
∑
a,j

ψ̃2
aj − 2

∑
a,i,j

ψ̃ajUaiψij . (3.11)

Minimizing this expression with respect to ψ̃aj leads to the condition ψ̃aj =
∑

i Uaiψij ,
so that

||ψ〉 − |ψ̃〉|2 = 1−
∑
a,j

ψ̃2
aj . (3.12)
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3. The density matrix renormalization group (DMRG)

Finding the minimum of this expression is equivalent to finding the maximum of∑
a,j

ψ̃2
aj =

∑
a,i,i′,j

UaiUai′ψijψi′j ≡
∑
a,i,i′

UaiUai′(ρA)ii′ , (3.13)

where (ρA)ii′ are the matrix elements of the reduced density matrix (see Eqs. 3.7)
of block A in the basis {|i〉}. This means that the eigenvalues wa of ρA have the
properties 0 ≤ wa ≤ 1 and

∑DA
a=1wa = 1. The equation can now be rewritten using

Uai = 〈i|a〉:∑
a,j

ψ̃2
aj =

m∑
a=1

〈a|ρA|a〉 . (3.14)

This expression is maximal if we choose the |a〉 to be the eigenvectors of ρA with the
largest eigenvalues [6, 86]. Summarizing, if we want to keep only m basis states for
block A, ||ψ〉− |ψ̃〉|2 is minimal and hence the wave function approximation optimal
if we approximate

|ψ〉 =

DA∑
i=1

DB∑
j=1

ψij |i〉|j〉 (3.15)

by

|ψ̃〉 =

m∑
a=1

DB∑
j=1

ψ̃aj |a〉|j〉 , (3.16)

with ψ̃aj =
∑

i〈i|a〉ψij and |a〉 being the m eigenvectors of ρA with the largest
eigenvalues wa. The error of this approximation is

||ψ〉 − |ψ̃〉|2 = 1−
m∑
a=1

wa ≡ ∆w . (3.17)

The quantity ∆w is called “truncated weight” [6] and is a measure for the error
due to the truncation. For many systems, the error of the energy per site that was
calculated within the truncated basis using DMRG is approximately proportional
to the truncated weight [6, 89].

Using the so-called Schmidt decomposition [87,90,91] leads to a more direct deriva-
tion of the optimal truncation procedure. If we again start from Eq. (3.4), the sin-
gular value decomposition of the matrix ψij leads to the Schmidt decomposition of
|ψ〉 [6, 87,90]:

|ψ〉 =

DSchmidt∑
α=1

√
wα|αA〉|αB〉 , (3.18)
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3.2. Basis truncation

with |αA〉 (|αB〉) being the eigenvectors of the reduced density matrix of block A
(B) and wa being the eigenvalues, i.e.,

ρA =

DSchmidt∑
α=1

wα|αA〉〈αA| , ρB =

DSchmidt∑
α=1

wα|αB〉〈αB| , (3.19)

with DSchmidt ≤ min(DA, DB). Both reduced density matrices have the same
DSchmidt nonzero eigenvalues (the remaining DA − DSchmidt eigenvalues for block
A and DB − DSchmidt eigenvalues for block B are zero). Since 0 ≤ √wα ≤ 1, it is
immediately clear, which block basis states contribute most to the state |ψ〉, namely
the eigenvectors of the reduced density matrices with the largest eigenvalues. The
Schmidt decomposition is furthermore enlightening because it reveals the degree of
entanglement between the two blocks for the state |ψ〉. The von Neumann entropy
of the reduced density matrices can be used as a measure for the entanglement [92]:

SvN = −
∑
α

wα lnwα . (3.20)

If the superblock is in a product state, only one of the eigenvalues of the reduced
density matrices is nonzero, i.e., equal to one for this case, and the entanglement is
zero. If all reduced density matrix eigenvalues have the same value, the entanglement
is maximal [87]. Keeping the m density matrix eigenvectors with the largest eigen-
values thus also means maintaining the maximum amount of entanglement between
the blocks [6]. We can furthermore define the truncated entropy,

∆S = −
DSchmidt∑
α=m+1

wα lnwα , (3.21)

which can also be used as a measure for the accuracy of a calculation [93–95].
A reduction to m normalized density matrix eigenvectors leads to a state |ψ̃〉

which is not normalized, since
∑

a,j ψ̃
2
aj = 1 − ∆w. However, since ∆w � 1, the

estimation of the error in Eq. (3.17) still approximately holds for a normalized state

|φ〉 ≡ 1√
1−∆w

|ψ̃〉 =
m∑
α=1

√
wα√

1−∆w
|αA〉|αB〉 (3.22)

as a more detailed calculation shows:

||ψ〉 − |φ〉|2 =
m∑
α=1

(
√
wα −

√
wα√

1−∆w

)2

+

DSchmidt∑
α=m+1

wα
1−∆w

= 2−∆w − 2
√

1−∆w +
∆w

1−∆w
. (3.23)
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If we now use
√

1−∆w ≈ 1−∆w/2 and ∆w/(1−∆w) ≈ ∆w, we arrive at

||ψ〉 − |φ〉|2 = ||ψ〉 − 1√
1−∆w

|ψ̃〉|2 ≈ ∆w , (3.24)

which holds for small ∆w. ∆w is indeed usually very small in calculations, often
much smaller than 10−4.

The statement about the error is in general, however, only true if the block bases
are complete before the truncation. In practice, one works with truncated bases
for both blocks. This induces the so-called “environmental error” [6, 89]. The envi-
ronmental error can, however, be minimized by employing the finite-size algorithm
with its “sweeps” (see Sec. 3.3). Before we proceed to the description of the DMRG
algorithm, we introduce the notion of “target states”.

Target states: The states that are to be approximated are called target states.
This can, e.g., be the ground state or the lowest energy eigenstate in some symmetry
subspace. It is important to note that a target state does not need to be an energy
eigenstate. It is possible to target more than one state at the same time. In this
case, there are two possible strategies for how to build the reduced density matrices
(with |ψk〉 denoting the target states):

• One might build and diagonalize the reduced density matrices separately for
the individual target states and then choose several of the eigenstates of the
individual density matrices as the new basis states [96].

• One can build a weighted density matrix

ρ =
∑
k

pk|ψk〉〈ψk| ,
∑
k

pk = 1 , (3.25)

which is used for the calculation of the reduced density matrices (3.7). Then,
the m eigenstates of the reduced density matrices with the largest eigenvalues
are chosen [86]. The states |ψk〉 need not be orthogonal [88].

We have always used the second approach in our implementation. The weights were
chosen equal, if |ψk〉 are energy eigenstates. For the dynamical DMRG (DDMRG)
method (see Sec. 3.7), the weighting is slightly different.

3.3. Algorithms

We can now use the knowledge about the optimal basis truncation to formulate
the DMRG algorithm [86]. The algorithm is divided into two parts: the “warm-
up phase”, also called “infinite-system algorithm”, and the “finite-system” algo-
rithm [86]. In the warm-up phase, the system (i.e., the superblock) size is gradually
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increased until the desired size is reached. Then, the finite-system algorithm sets in.
During the finite-system algorithm, the system size is kept constant while the basis
of one block is optimized. In the following, we frequently use the notion of a block.
It has already been described in the previous section that a block is a part of the
system that is analyzed. In an implementation of the DMRG algorithm, a block is a
collection of representations (i.e., matrices) of the Hamiltonian of the block and rel-
evant operators. For example, operators that are needed for the construction of the
interaction term between a block and a site and between both blocks are “relevant”.
In Sec. 3.4 the steps are described in more detail.

3.3.1. Infinite-system algorithm

The infinite-system algorithm consists of the following steps which are repeated until
the desired system/superblock size L is reached [86]:

1. Start with small blocks A and B, each consisting of only one site. The Hamil-
tonians are HA and HB (with block lengths lA = 1 and lB = 1).

2. Enlarge both block A (length lA) and block B (length lB) by one site. For the
spin chain with open boundary conditions (Eq. (3.1)), this step corresponds to
calculating Hnew

A = Hold
A + szlAs

z
lA+1 + 1

2s
+
lA
s−lA+1 + 1

2s
−
lA
s+
lA+1, and in the same

way Hnew
B .

3. Build the superblock consisting of the enlarged blocks A and B and calculate
the target states and the expectation values of interest (e.g., the ground state
energy) in the superblock basis.

4. Build and diagonalize the reduced density matrices for block A and B using
the states obtained in the previous step.

5. If necessary (i.e., if the block dimensions are larger than the predefined thresh-
old value m), truncate both bases to m states and transform the block Hamil-
tonians as well as the block operators using the m density matrix eigenvectors
which have the largest weight as new basis states.

6. Go to step 2.

The infinite-system algorithm is depicted in Fig. 3.3. A more detailed illustration of a
single iteration is shown in Fig. 3.4. It is important to note that both block bases are
incomplete. This means that the truncation error (measured by the truncated weight
∆w, see Eq. (3.17)) is not the only error. There is an additional “environmental
error” that is not captured by the truncated weight ∆w [6, 89].
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3. The density matrix renormalization group (DMRG)

Figure 3.3.: Schematic representation of the infinite-system algorithm: Two exactly
represented sites (red circles) are added to the existing blocks at each step. After
that, both block bases are truncated. Blue circles indicate sites that are already
included in the blocks.

Figure 3.4.: Detailed graphical illustration of a single iteration in the infinite-system
algorithm: Blocks A and B (with m basis states each) are both enlarged by one
site. The two enlarged blocks then form the superblock. The states of interest
and afterwards the reduced density matrices are calculated. Both block bases are
finally truncated to m states again. The resulting blocks are then used for the next
iteration.

3.3.2. Finite-system algorithm

The environmental error can be reduced and the block bases optimized by conducting
the so-called “sweeps” of the finite-system algorithm [86]. Whereas the system
(superblock) size is increased in each iteration of the infinite-system algorithm, the
system size is kept constant in the finite-system algorithm. Again, two sites of the
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system are represented exactly. Before starting with the finite-system algorithm,
the infinite-system algorithm is iterated until the desired system length is reached.
The representations of block A and B have to be saved for each block size. The
finite-system algorithm consists of the following steps that are repeated until the
quantities of interest have converged:

1. Enlarge block A by one site, so that the size of this block increases from lA to
lA + 1. A previously stored block B with the proper number of sites is taken
from memory and also enlarged by one site. “The proper number of sites”
means that the total number of sites, lA+ lB + 2, equals the predefined system
size L.

2. Build the superblock consisting of the enlarged blocks A and B. Then, the
states and expectation values of interest (e.g., the ground state energy) are
calculated.

3. Build and diagonalize the reduced density matrix for block A using the (target)
states obtained in the previous step.

4. Truncate the basis of block A and represent the block Hamiltonian as well as
the block operators using the m density matrix eigenvectors which have the
largest weight. Store the block. If block A now contains less than L− 2 sites,1

go to 1. Otherwise go to 5.

5. Repeat steps 1-4 with the roles of the blocks A and B interchanged, i.e., block
B grows at the expense of block A. If block B has reached its maximum size,
repeat steps 1-4 with block A growing again until blocks A and B have the
same size. Then, a complete sweep has been conducted. For the next sweep,
start with 1.

One complete sweep is depicted in Fig. 3.5. We have described the so-called
two-site scheme, i.e., two sites are represented exactly before the states of the su-
perblock are calculated. In our implementation, we have only used this scheme.
Other schemes with only one exactly represented site are also possible [97, 98]. If
the system possesses reflection symmetry, a reflected block A can be used as block
B [86]. We have not used reflection symmetry in our implementation in order to be
able to treat more complicated systems that do not possess this symmetry. Also, for
systems with periodic boundary conditions a slightly different scheme is sometimes
used [86]. We have always employed the scheme in which the sites are added at the
center.

The m value, i.e., the maximal block basis dimension after truncation, can be
increased from sweep to sweep. This is usually done in order to obtain results

1The sweep direction can be reversed earlier, see the note at the end of this section.
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3. The density matrix renormalization group (DMRG)

Figure 3.5.: Schematic illustration of a complete sweep in the finite-system algorithm.
In each superblock configuration, two sites are represented exactly (red circles). One
block is taken from the previous step while the other block is taken from memory.
The truncation procedure is only applied to one block.

for different m values. This is, besides using the truncated weight as a control
parameter, important for judging the convergence.

The minimal block size, i.e., the size lA or lB (without counting the “exact sites”)
at which the sweep direction is reversed (cf. Fig. 3.5), does not need to be one. In
our implementation, we choose the minimal block size such that the Hilbert space
dimension of this minimal block is as large as possible with the restriction of being
smaller than the m value that is used for the warm-up sweep. One therefore looks
for the largest lmin so that (2s+ 1)lmin ≤ m still holds. In this way, computing time
can be saved.

As already mentioned in Sec. 3.2, the error of the ground state energy often
depends linearly on the truncated weight so that an extrapolation to ∆w → 0
(or m → ∞) can be possible. However, for systems with long-range interactions or
varying coupling strengths, the truncated weight is position dependent, i.e., depends
on the position of the two “exact sites”. One possible solution is to sum over all
truncated weights of a complete sweep to get a value that is independent of the
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current position of the two exactly represented sites that are added to the blocks [99].
For most of the systems that we have investigated, an extrapolation to ∆w → 0 (or
m→∞) was either not needed or not very useful.

3.4. Implementation and technical details

In this section, technical details of the algorithm and some parts of the DMRG
implementation that was developed for this work are described in detail. The im-
plementation was done in C++ [100]. The usage of an object-oriented programming
language allows for an elegant and simple handling of “blocks” and “superblocks”
and makes the code very readable. As already mentioned before, the notion of
blocks, sites, and the superblock is an important part of the DMRG technique. A
block is simply a collection of matrices and is represented by a C++ class. We store
the block Hamiltonian representation and the szi and s+

i representations for all sites
that are contained in the block. The matrices representing szi and s+

i are needed for
the construction of the enlarged blocks and the superblock. Since Sz symmetry is
used in the program, the matrices have a special form, as is discussed later on. The
block class also provides several functions which allow to add a site to the block.
Furthermore, if observables other than the total energy shall be calculated, the corre-
sponding operator representations also have to be saved. A superblock is composed
of blocks and the corresponding class provides functions for the calculation of states
and the reduced density matrices.

3.4.1. Operators, states, and quantum numbers

For the isotropic Heisenberg model, Sz =
∑L

i=1 s
z
i commutes with the Hamiltonian.

This has the consequence that all eigenstates of the Heisenberg Hamiltonian can be
labeled according to the magnetic quantum number M , and the Hamiltonian of the
complete system as well as the “block Hamiltonians” and the operators szi , s

+
i , and

s−i have a block structure (see Fig. 3.6). Exploiting this symmetry leads to a great
reduction of memory requirements and an acceleration of the program. Furthermore,
we can directly calculate energy eigenstates in Sz subspaces. It is also possible to
exploit other symmetries such as mirror symmetry, spin-flip symmetry [6, 101], and
the SU(2) symmetry (if S is a good quantum number) [53]. However, we have only
used the Sz symmetry. Using SU(2) symmetry is very helpful, of course, but would
also lead to a significantly more complicated code and was beyond the scope of this
work.

We denote the M quantum number of a block state |a〉 by M(a). Then, the block
HamiltonianHA and the szi operators for all sites are block diagonal, i.e., 〈a|HA|a′〉 =
0 and 〈a|szi |a′〉 = 0 for M(a) 6= M(a′). Since s−i = (s+

i )†, there is no need to store
the s−i operator representations. For the s+

i operators we have the selection rule
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〈a|s+
i |a′〉 = 0 for M(a) 6= M(a′)− 1, which results in an off-diagonal block structure

(if the basis states are ordered according to their M quantum numbers). The same
considerations apply for block B, of course.

Figure 3.6.: Schematic illustration of the block structure of the operator representa-
tions. Submatrices that can contain nonzero elements are highlighted in gray. Left:
Block-diagonal structure (szi , HA/B, and ρA/B). Right: Off-diagonal block structure

with the nonzero submatrices below the main diagonal (s+
i ). The values Mi denote

the M quantum numbers of the Sz subspaces and are ordered so that Mi < Mi+1.

Adding a site to a block results in an enlargement of the basis. The block structure
mentioned above still exists for the enlarged blocks if the basis states are properly
ordered. The addition of a site with the basis {|α〉} to the block A with the basis
{|a〉} results in the product basis {|a〉|α〉} for the enlarged block. Since M is an
additive quantum number, the state |a〉|α〉 has the quantum number M(a) +M(α).

If a superblock (two blocks and two sites) state

|ψ〉 =
∑
a,α,β,b

ψaαβb|a〉|α〉|β〉|b〉 ≡
∑
i,j

ψij |i〉|j〉 (|i〉 ≡ |a〉|α〉, |j〉 ≡ |β〉|b〉) (3.26)

is an Sz eigenstate with the magnetic quantum number M0, then this state has a
block structure, since ψaαβb = 0 for M(a) +M(α) +M(β) +M(b) 6= M0 (or ψij = 0
for M(i) + M(j) 6= M0). The reduced density matrices calculated using this state
then also have a block structure. The reduced density matrix for block A is defined
as ρii′ =

∑
j ψijψi′j . Nonzero entries can only occur if M(i) + M(j) = M0 and

M(i′)+M(j) = M0. Combining these conditions leads to M(i) = M(i′). Therefore,
the reduced density matrices are also block-diagonal, provided the enlarged bases
are sorted so that M(i) ≤M(i+ 1) or M(i) ≥M(i+ 1).

Operators, states, and the reduced density matrices can be efficiently represented
by “sparse block matrices”, i.e., one only saves the submatrices for which the corre-
sponding selection rules are fulfilled (see Fig. 3.6).
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3.4.2. Detailed description of the basic DMRG steps

The main steps needed for the implementation of the algorithm are:

1. Adding a site to a block,

2. forming the superblock,

3. calculating the target state(s), and

4. truncating the basis, i.e., transforming the operators according to T †OT , where
T is represented by a rectangular mdS ×m matrix.

Figure 3.7.: Numbering of the sites in the superblock. For the finite-system algo-
rithm, we have lA+ lB +2 = L so that L− lB = lA+2. Otherwise, the system grows
from both ends with the blocks always being connected in the warm-up phase (cf.
Sec. 3.6).

These steps are described in detail in the following (for the spin chain example
(3.1)):

1. Again, lA (lB) denotes the length of block A (B) before the addition of a
site. The site operators are szlA+1 (szL−lB ) and s+

lA+1 (s+
L−lB ) and the site basis

states are denoted by |α〉 (|β〉). The basis states of the enlarged block A are
|i〉 ≡ |a〉|α〉. We choose the mapping i(a, α) such that the states |i〉 are ordered
according to the magnetic quantum number with M(i) ≤ M(i + 1) ∀ i. The
basis states of the enlarged block B are |j〉 ≡ |β〉|b〉 and likewise ordered. Using
the basis transformations i(a, α) and j(β, b), all operator representations can
then be transformed to the enlarged bases, i.e., Oaa′ → Oaa′δαα′ → Oii′ for a
block operator and Oαα′ → δaa′Oαα′ → Oii′ for a site operator (i′ ≡ i(a′, α′)).
The Hamiltonians of the enlarged blocks are calculated according to

(Hnew
A )i(a,α)i(a′,α′) = (Hold

A )aa′δαα′

+ (szlA)aa′(s
z
lA+1)αα′

+
1

2
(s+
lA

)aa′(s
−
lA+1)αα′

+
1

2
(s−lA)aa′(s

+
lA+1)αα′ (3.27)
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and

(Hnew
B )j(β,b)j(β′,b′) = δββ′(H

old
B )bb′

+ (szL−lB )ββ′(s
z
L−lB+1)bb′

+
1

2
(s+
L−lB )ββ′(s

−
L−lB+1)bb′

+
1

2
(s−L−lB )ββ′(s

+
L−lB+1)bb′ . (3.28)

For systems with long-range interactions, more terms would appear.

2. For efficiency reasons, the superblock Hamiltonian is not explicitly constructed.
The matrix elements of the superblock Hamiltonian can be calculated as

(Hsuper)ii′jj′ = (Hnew
A )ii′δjj′ + δii′(H

new
B )jj′

+ (szlA+1)ii′(s
z
L−lB )jj′

+
1

2
(s+
lA+1)ii′(s

−
L−lB )jj′

+
1

2
(s−lA+1)ii′(s

+
L−lB )jj′ . (3.29)

Here, lA + 1 is the index of the site that was added to block A, and L − lB
is the index of the site that was added to block B, cf. Fig. 3.7. Again, the
generalization to systems with long-range interactions or periodic boundary
conditions is straightforward.

3. For the calculation of the ground state and low-lying excited states the Lanczos
algorithm [102] is used. The Lanczos algorithm only needs – apart from simple
vector operations – the operation |φ〉 = H|ψ〉 for the calculation of these states.
The algorithm is described in more detail in the next subsection. For the
calculation of dynamical properties via the correction vector, we use the CG
algorithm [103] (see Sec. 3.7).

4. The reduced density matrices for the two blocks are defined as (represented in
the bases of the enlarged blocks and for real coefficients)

(ρA)ii′ =
∑
j

ψijψi′j

(ρB)jj′ =
∑
i

ψijψij′ , (3.30)
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where |ψ〉 is the target state. There can be more than one target state. Then
the density matrices are calculated according to Eq. (3.25). These operations
are simply matrix-matrix products:

ρA = ΨΨT ,

ρB = ΨTΨ . (3.31)

The submatrices of the density matrices are then diagonalized using a LA-
PACK routine [104], so that ρA|ã〉 = wã|ã〉 and ρB|b̃〉 = wb̃|b̃〉. The eigenvalues
are ordered so that wã ≥ wã+1 and wb̃ ≥ wb̃+1. The transformation matrices
for the basis truncation of block A and B have the elements

TAiã = 〈i|ã〉 and TB
jb̃

= 〈j|b̃〉 , (3.32)

with 1 ≤ ã ≤ m and 1 ≤ b̃ ≤ m, i.e., the m eigenvectors of the reduced
density matrices with the largest eigenvalues are the columns of the mdS ×m
transformation matrices. The block Hamiltonians and block operators are
transformed to the truncated bases according to O := TTOT.2 Of course,
all these operations have to be performed such that the block structures are
maintained, and the lists with the corresponding M quantum numbers have
to be updated.

3.4.3. Superblock diagonalization: Lanczos procedure and
matrix-vector product

For the calculation of the ground state or low-lying excited states (and the corre-
sponding eigenvalues), we use the Lanczos algorithm [102]. (An alternative, which
is also well suited for this purpose, is the Davidson algorithm [86].) The Lanczos al-
gorithm is an effective numerical method for the calculation of extremal eigenvalues
and the corresponding eigenvectors of a matrix, e.g., the representation of a Hamil-
tonian H. Starting with an initial vector |φ0〉, the Lanczos algorithm generates a
Krylov subspace Ki(H, |φ0〉) ≡ span {|φ0〉, H|φ0〉, H2|φ0〉, H3|φ0〉, . . . , H i−1|φ0〉}.
Within this subspace, H is represented by an i× i matrix which is called the Lanc-
zos matrix. The extremal eigenvalues of this matrix are approximations of the
extremal eigenvalues of H. These approximations are already very good for a value
of i that is much (often several orders of magnitude) smaller than the dimension of
the underlying Hilbert space.

The success of the Lanczos algorithm can be understood by examining the power
method [105]. This method consists of a repeated application of the Hamiltonian to

2“:=” means that the right hand side is assigned to the left hand side.
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a trial state |φ0〉, i.e., one calculates Hk|φ0〉. An expansion of this state with respect
to the eigenstates |n〉 of H yields

Hk|φ0〉 =
∑
n

E k
n 〈n|φ0〉|n〉 . (3.33)

For large k, the eigenstate that belongs to the eigenvalue with the largest absolute
value gets the largest weight, i.e., the method converges for k → ∞ towards this
state, apart from a normalization factor. In the Lanczos procedure one also keeps
the vectors from previous steps. This leads to a much faster convergence of the
Lanczos algorithm compared to the power method [106].

The Lanczos algorithm is very easy to implement since the orthonormalized basis
vectors of the Krylov subspace can be generated using a simple three-term recurrence
relation so that only three states have to be saved [102]:

βi+1|φi+1〉 = H|φi〉 − αi|φi〉 − βi|φi−1〉 , αi = 〈φi|H|φi〉 . (3.34)

Furthermore, the matrix (the “Lanczos matrix” Li) generated by this procedure
after i steps (the projection of H onto the Krylov subspace) is tridiagonal:

Li =



α0 β1 0 · · · 0
β1 α1 β2

0 β2 α2
. . .

...
. . .

. . . βi−2

βi−2 αi−2 βi−1

0 βi−1 αi−1


. (3.35)

Our implementation of the algorithm follows Ref. [102], starting with a normalized
initial vector |φ0〉 and i = 0 (|φ−1〉 ≡ 0, β0 ≡ 0). The following steps are carried out
until convergence3 is reached:

1. |φ̃i〉 = H|φi〉 − βi|φi−1〉.

2. αi = 〈φ̃i|φi〉. The tridiagonal Lanczos matrix Li (see Eq. (3.35)) is updated
and diagonalized using a LAPACK routine. If |ELanczos

i −ELanczos
i−1 | < ε1, stop.

ELanczos
i is the smallest eigenvalue of the Lanczos matrix Li.

3. |φ̃i〉 := |φ̃i〉 − αi|φi〉 and furthermore explicit reorthogonalization against pre-
viously calculated Lanczos vectors and other vectors, if needed.

3The convergence criteria in our implementation are |ELanczos
i − ELanczos

i−1 | < ε1 or |βi+1| < ε2
(ε1 > 0 and ε2 > 0), where ELanczos

i is the smallest eigenvalue of the Lanczos matrix Li. We
have usually chosen ε1 = 10−10 and ε2 = 10−9.
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4. βi+1 =
√
〈φ̃i|φ̃i〉. If |βi+1| < ε2, stop.

5. |φi+1〉 = 1
βi+1
|φ̃i〉.

6. i := i+ 1 and go to 1.

Although in principle only three vectors have to be saved, we save all previously
calculated Lanczos vectors in our implementation. This leads to a simple construc-
tion of the (approximate) eigenstates of H. If only three vectors are saved, one
has to start a second run of the algorithm to construct the eigenvectors [106]. The
three-term recursion relation in Eq. (3.34) leads to orthogonal states only in exact
arithmetics. On a computer, most real numbers cannot be represented exactly. This
leads to a loss of orthogonality of the Lanczos vectors after some iterations [107].
We explicitly orthogonalize (see step 3 of the algorithm) the newly created Lanczos
vector against all previously created ones after some iterations (usually 10).

If one has a good guess for the initial vector |φ0〉, as is the case for the finite-system
DMRG algorithm (see subsection 3.4.5), one often needs less than 10 iterations of
the Lanczos algorithm to obtain converged results. If one does not have a good
guess, it is convenient to use a normalized initial vector with random entries [107].
With a random vector as the initial state, usually O(100) Lanczos iterations are
needed to get converged results.

In the form presented above, it is not possible to resolve degenerate eigenstates
of H [57, 108]. We have used the following approach to overcome this problem
[57]: First, we calculate the ground state of H. For the calculation of the next
state we again start the Lanczos algorithm and explicitly orthogonalize the initial
vector against the previously calculated ground state. Additionally, in each iteration
(see step 3 of the algorithm) we explicitly orthogonalize the current Lanczos vector
against the ground state. For the calculation of a third state, we proceed similarly
and orthogonalize against the previously calculated eigenstates, etc. In this way, it
is easily possible to calculate eigenstates of degenerate eigenvalues using the Lanczos
algorithm. Another possibility to resolve degeneracies is the band Lanczos method
[108] which we have, however, not tested in our implementation.

Apart from simple vector operations, the Lanczos algorithm requires only the
application of H to a state. For the DMRG algorithm, this has the advantage that
the superblock Hamiltonian Hsuper does not need to be explicitly constructed as a
matrix. Instead, the matrix-vector product can be traced back to simple matrix-
matrix products [109]. We start from the form of the superblock Hamiltonian as
shown in Eq. (3.29). The structure of the superblock Hamiltonian is:

Hsuper =
∑
k

AkBk , (3.36)
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where Ak denotes operators acting on the block A and Bk operators acting on block
B. The product of Hsuper with the state |ψ〉 can then be written as

ψ′ij ≡ 〈i, j|Hsuper|ψ〉 =
∑
k

∑
i′,j′

(Ak)ii′(Bk)jj′ψi′j′ , (3.37)

where |i〉 denotes the basis states of the left block and |j〉 those of the right block.
The terms

∑
i′,j′(Ak)ii′(Bk)jj′ψi′j′ are matrix-matrix products [109]:

Ψ′ =
∑
k

Ak

(
ΨBT

k

)
, (3.38)

where Ψ′ and Ψ denote the representations of state vectors in the superblock product
basis, Ak is the representation of the operator Ak in the current basis of block A,
and Bk is the representation of the operator Bk in the current basis of block B.
Therefore, the product of the superblock Hamiltonian with a superblock state can
be traced back to simple matrix-matrix products with a cost of O(m3d 3

S). The
eigenstate calculation is usually by far the most time-consuming part of the DMRG
algorithm so that the overall numerical complexity of DMRG as described here is
O(m3d 3

S), too. The reformulation of the operation Hsuper|ψ〉 as described above
allows for the usage of the BLAS library [110]. As previously noted, the matrices all
have a special block structure due to the Sz symmetry, so that the matrix product
is a product between block-sparse matrices and the BLAS routines are used on the
level of the dense submatrices. At this point, it is also possible to parallelize the
algorithm using OpenMP. This can be done by hand or simply by linking the program
with the highly optimized BLAS routines of the MKL [109]. We have used the latter
approach in our program. However, since the dense submatrices are rather small, it
is not advisable to run the program on many cores for a single calculation. We have
normally used not more than 4 CPU cores for a parallel calculation. The operation
Hsuper|ψ〉 can be further unrolled by not explicitly constructing the enlarged blocks,
see [6]. This probably leads to a faster, but also more complicated code. We have
implemented the simpler variant as described above.

3.4.4. Calculation of expectation values

The expectation value of some operator O, which only acts on either the left or the
right block, such as the local magnetization in a spin chain can easily be calculated
using DMRG. For the calculation of the expectation value with respect to |ψ〉 (e.g.,
the ground state or an excited state), which is represented in the superblock basis,
we need the representation of the operator in the current block basis, i.e., we need
the matrix elements Oii′ . We assume here that the operator acts on the left block.
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Then the expectation value is calculated as

〈ψ|O|ψ〉 =
∑
i,i′,j

ψijOii′ψi′j . (3.39)

The generalization to an operator acting on the right block or to nonlocal operators
as needed for, e.g., correlation functions is straightforward, see [6].

3.4.5. Target state transformation

In the finite-size algorithm, the system is only changed insofar as the position, at
which the exactly represented sites are added, is moving (cf. Fig. 3.5). It is possible
to transform the target states from one step to the next step using a transformation
that was developed by White in 1996 [111]. This transformation does not lead
to an exact eigenstate of the superblock Hamiltonian, but is still very useful in
most cases [6]. If one has a good starting vector for the Lanczos algorithm, the
number of steps needed for convergence can be greatly reduced. Since the superblock
diagonalization is the most time-consuming step in the whole algorithm, the use of
White’s target state transformation usually accelerates the program by a factor of
about 10. For the wave function transformation, the transformation matrices (see
Eq. (3.32)) for all steps and for both blocks have to be saved.

Up to now, the notation was as follows. The basis states of block A were denoted as
|a〉 and those of block B as |b〉. The site that is added to block A has the basis states
|α〉, and the site that is added to block B has the basis |β〉. The bases of the enlarged
blocks were denoted as {|a〉|α〉} = {|i〉} and {|β〉|b〉} = {|j〉}. Following Refs. [6,111],
we now slightly change the notation and introduce the position dependence of the
bases. Let the indices (or positions) of the sites that are added to the blocks A and
B be l + 1 and l + 2 (i.e., l ≡ lA compared to Fig. 3.7). We then change the basis
notation to |al〉, |σl+1〉 (instead of |α〉), |σl+2〉 (instead of |β〉), and |bl+3〉.

If we have calculated the state |ψ〉 with the coefficients

ψalσl+1σl+2bl+3
= 〈alσl+1σl+2bl+3|ψ〉 (3.40)

at some point in the algorithm and if the sweep direction is from left to right (i.e., the
size of block A is increased), we can use these coefficients to get a good approximation
of the state for the next step. At the next step, the coefficients take the form
〈al+1σl+2σl+3bl+4|ψ〉. Since the bases {|al〉} and {|bl+3〉} are incomplete, we can
only find an approximate transformation:

〈al+1σl+2σl+3bl+4|ψ〉 ≈
∑

al,σl+1,bl+3

〈al+1|alσl+1〉〈σl+3bl+4|bl+3〉〈alσl+1σl+2bl+3|ψ〉 .

(3.41)
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The coefficients 〈al+1|alσl+1〉 are the matrix elements of the transformation operator
TAl+1 at the point where the basis is truncated from {|al〉|σl+1〉} to {|al+1〉}, i.e.,
from the previous step. Similarly, the coefficients 〈σl+3bl+4|bl+3〉 are the elements of
a transformation matrix that has been used at an earlier step to truncate the basis
of block B after it was enlarged by one site. The wave function transformation can
be traced back to matrix-matrix products. First, one calculates

ψtmp
al+1jl+2

≡
∑
il+1

T
Al+1

il+1al+1
ψil+1jl+2

, (3.42)

where il+1 = il+1(al, σl+1) and jl+2 = jl+2(σl+2, bl+3). Then, one calculates

ψapprox
il+2jl+2

≡
∑
bl+3

ψtmp
il+2bl+3

T
Bl+3

jl+2bl+3
, (3.43)

where il+2 = il+2(al+1, σl+2) and again jl+2 = jl+2(σl+2, bl+3).
If the sweep direction is from right to left, i.e., block B grows at the expense of

block A, the transformation is given by

〈al−4σl−3σl−2bl−1|ψ〉 ≈
∑

al−3,σl−1,bl

〈al−4σl−3|al−3〉〈bl−1|σl−1bl〉〈al−3σl−2σl−1bl|ψ〉 ,

(3.44)

which can again easily be formulated using two successive products of matrices.

3.5. Connection to matrix product states

For a spin-s system with L spins, a general state |ψ〉 can be written as

|ψ〉 =
∑

σ1,σ2,...,σL

ψσ1σ2...σL |σ1σ2 . . . σL〉 , (3.45)

where |σl〉 denotes the local basis states of the spin at position l. For the calculation
of the ground state one has to find the minimum of 〈ψ|H|ψ〉/〈ψ|ψ〉 (or solve the
eigenvalue equation) in a (2s+1)L-dimensional parameter space. The idea of matrix
product states is to rewrite the coefficients ψσ1σ2...σL of the state |ψ〉 as a product
of matrices [112]:

|ψMP〉 =
∑

σ1,σ2,...,σL

Mσ1Mσ2 · · ·MσL |σ1σ2 . . . σL〉 , (3.46)

where Mσl are m×m matrices, except for l = 1 and l = L, where we have 1×m and
m×1 matrices, so that the product of the matrices results in a scalar. Such a state is
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called a matrix product state (MPS). Now we have m2 · (2s+1) ·L free parameters.4

If we choose m large enough, any state of the system can be written exactly in
matrix product form. If m is, however, not large enough to exactly represent an
arbitrary state, such a matrix product state can be used as a variational ansatz
and the energies calculated with this ansatz always lie above the true ground state
energy. For some Hamiltonians (not for Heisenberg systems as considered in this
chapter), it is even possible to construct the exact ground state with m = 2 [112].

It was first noted in 1995 that there exists a connection between DMRG and
matrix product states [113]. DMRG consists of enlargements of the blocks and
a subsequent basis truncation: We have a block with m basis states |al〉 which is
enlarged by one site, so that the enlarged block has mdS basis states |il〉 ≡ |al〉|σl+1〉,
and after the calculation of, e.g., the ground state and the reduced density matrix,
the basis is truncated to m states again according to

|al+1〉 =
∑
al,σl+1

T
Al+1
al+1alσl+1 |al〉|σl+1〉 . (3.47)

The next DMRG iteration leads to

|al+2〉 =
∑

al+1,σl+2

T
Al+2
al+2al+1σl+2

∑
al,σl+1

T
Al+1
al+1alσl+1 |al〉|σl+1〉|σl+2〉 , (3.48)

etc. The summation over al+1 corresponds to a product of matrices, so that the
DMRG procedure leads to states with coefficients that are obtained as products of
matrices. This has led to DMRG algorithms which explicitly use matrix product
states and operate strictly variationally on the space of these states [112]. For the
traditional “two-site” DMRG, as it has been described earlier in this chapter (section
3.3) and used for this work, it can be shown that the approximation of the ground
state energy is not guaranteed to decrease from iteration to iteration [6, 114, 115].
This can be seen in calculations if one compares the energies in a particular sweep
and investigates inhomogeneous systems, but at least the convergence from sweep
to sweep turns out to be rather smooth in practice. In contrast to this, in the
single-site DMRG the energy is guaranteed to decrease from iteration to iteration
[6, 97, 116]. However, two-site DMRG seems to be better suited to avoid being
trapped in metastable states [117].

The MPS formulation of DMRG has clear advantages for the calculation of spec-
tral functions, as pointed out in Refs. [118, 119]. One only needs to simultaneously
target real and imaginary part of the correction vector and not additionally the
states |0〉 and |B〉 as in the standard DMRG approach (see Sec. 3.7). Also, the MPS
formulation allows to compute, e.g., the overlap between wave functions obtained in

4Strictly speaking we have only m2(2s+ 1)(L− 2) + 2m(2s+ 1) parameters because of the smaller
matrices at the positions l = 1 and l = L.
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different calculations [120]. With traditional DMRG, which has been used for this
work, this is only possible for wave functions that are targeted simultaneously in the
same calculation.

3.6. General spin lattices

Up to now we have described the DMRG steps for a simple spin chain with open
boundary conditions and nearest-neighbor interactions (see Eq. (3.1)). In this sec-
tion we briefly describe how to use the DMRG algorithm for general Heisenberg
systems with Hamiltonians of the form

H =
∑
i<j

Jij~si · ~sj . (3.49)

We can rewrite this equation as

H =
∑
i

~si ·
∑
k>0

Ji,i+k~si+k , (3.50)

so that we can see that every Heisenberg system can be treated as a one-dimensional
chain with long-range interactions. The DMRG algorithm can then be applied to
such a chain. This is the usual way DMRG is applied to systems that are not one-
dimensional [84,121]. We have also followed this way in this work. There exist other
possibilities for, e.g., the Heisenberg model on the square lattice (see [122–124]), but
the standard approach with a mapping to a chain seems to be the method that is
most often used [6, 125, 126]. However, DMRG has fundamental difficulties when
applied to systems that are not one-dimensional or quasi-one-dimensional [6]. Fur-
thermore, DMRG is most accurate when applied to systems with open boundary
conditions. For one-dimensional spin chains, White found out that if m density
matrix states are kept for a system with open boundary conditions, m2 states are
needed to achieve the same accuracy for the system with periodic boundary condi-
tions [86]. For systems with periodic boundary conditions, the truncated weight is
usually much larger than for a system with open boundary conditions (see Sec. 3.8).
For two-dimensional systems with a dimension of L×L, Liang and Pang found out
that the number of kept density matrix eigenstates has to grow exponentially with
L in order to approximately keep the accuracy constant [127]. For two-dimensional
systems with periodic boundary conditions in both directions, DMRG is clearly at
or beyond its limits [128]. However, often an application of DMRG to complicated
systems still makes sense since it is possible to give error estimates based on the
truncated weight and calculations for various m values.

There are extensions based on the variational formulation with matrix product
states for two-dimensional systems [129] and for one-dimensional systems with peri-
odic boundary conditions [130] that overcome some of these fundamental difficulties.
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However, compared to standard DMRG, the numerical complexity of these tech-
niques is much larger. Recently developed techniques such as correlator product
states (CPS) in combination with variational Monte Carlo seem to be a promising
alternative [131,132].

The question remains how to map a system to a one-dimensional chain (i.e., how
to number the spins) to get the best results with the DMRG method. Long-range
interactions seem to decrease the accuracy of DMRG so that it is reasonable to
number the spins such that long-range interactions are minimized as far as possible.
We come back to this question in chapter 4. Furthermore, it is not clear how to grow
the system during the warm-up phase (cf. Fig.3.3). In our implementation, we grow
the system from both ends and treat the spin interactions according to the coupling
matrix Jij with the exception that we always explicitly connect both blocks with an
antiferromagnetic interaction of strength one. Otherwise, we would have for, e.g., a
one-dimensional system with only nearest-neighbor interactions two isolated blocks
in the warm-up phase, and the superblock would not resemble the “final” system.

3.7. Dynamical DMRG

It is also possible to calculate zero-temperature dynamical correlation functions us-
ing extensions of the DMRG technique. There already exists an extension of the
Lanczos algorithm to calculate dynamical correlation functions [133]. The idea of
the Lanczos approach is to rewrite the dynamical correlation function in the form of
a continued fraction. This technique can be built into the DMRG algorithm [134],
but the accuracy is rather limited for many systems [7]. We have implemented and
used the more accurate, but also more time-consuming dynamical DMRG (DDMRG)
technique [7, 8, 135]. We do not distinguish between the DDMRG and the correc-
tion vector DMRG (which is sometimes done in the literature, see [6, 8]) in this
work, since the differences are very small and we use parts of both variants in our
implementation.

In the following, we focus on the calculation of zero-temperature dynamical cor-
relation functions such as

GA,B(ω + iη) = − 1

π
〈0|A† 1

E0 + ω + iη −H
B|0〉 , (3.51)

where |0〉 denotes the ground state with the energy E0. A and B are some tran-
sition operators, e.g., the spin operators for inelastic neutron scattering (INS, see
Sec. 2.3.2). For the comparison to a spectroscopic experimental method such as
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INS, the important part of this function is the imaginary part

ImGA,B(ω + iη) =
1

π
〈A| η

(E0 + ω −H)2 + η2
|B〉

=
∑
n

〈A|n〉〈n|B〉δη(ω + E0 − En) , (3.52)

where δη(x) = (η/π)/(x2 + η2) is the Lorentzian function with lim
η→0

δη(x) = δ(x),5

|A〉 ≡ A|0〉, and |B〉 ≡ B|0〉. En denotes the energy eigenvalue belonging to the
eigenstate |n〉. Determining the matrix elements 〈A|n〉 and 〈n|B〉 by directly cal-
culating the excited states |n〉 using standard DMRG [136] is possible only for low
energies or simple systems since all energy eigenstates up to the desired state have
to be included as target states in the reduced density matrix. Using many target
states, however, decreases the accuracy of a DMRG calculation [86]. Furthermore,
states that do not contribute to the dynamical correlation function would possibly
still be targeted. The DDMRG method solves these problems and requires only four
target states.

The basic idea of the DDMRG method is a reformulation of equation (3.52) using
the so-called correction vector, which is defined as [7]

|C(ω + iη)〉 =
1

E0 + ω + iη −H
|B〉 . (3.53)

If one splits the correction vector into |C(ω + iη)〉 = |Cr(ω + iη)〉 + i|Ci(ω + iη)〉
with

|Ci(ω + iη)〉 =
−η

(E0 + ω −H)2 + η2
|B〉 (3.54)

and

|Cr(ω + iη)〉 =
H − E0 − ω

η
|Ci(ω + iη)〉 , (3.55)

a direct calculation of ImGA,B(ω + iη) is possible as [8, 137]

ImGA,B(ω + iη) = − 1

π
〈A|Ci(ω + iη)〉 . (3.56)

Within the reduced DMRG basis, |Ci(ω + iη)〉 is calculated as the solution of the
linear equation system

[(E0 + ω −H)2 + η2]|Ci(ω + iη)〉 = −η|B〉 . (3.57)

5In practice, one always runs calculations with a finite η, of course.
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Solving this linear equation system is equivalent to minimizing the functional [8,138]

WB,η(ω, ψ) = 〈ψ|[(E0 + ω −H)2 + η2]|ψ〉
+ η〈B|ψ〉+ η〈ψ|B〉 . (3.58)

There are many possibilities for solving the linear equation system (3.57) or mini-
mizing the functional, see, e.g., [139–141]. We have used a simple conjugate gradient
(CG) algorithm without preconditioning as described in Refs. [103,138] for the cal-
culation of the correction vector. The CG method is an effective numerical method
for solving symmetric positive linear equation systems. Like the Lanczos method,
it also belongs to the Krylov subspace methods [102] and only needs the operation
|φ〉 = [(E0 + ω − H)2 + η2]|ψ〉 (besides simple vector operations such as addition,
etc.). Since we only have an approximation of H, but not of H2, in the current
(reduced) superblock basis, we make the approximation [8]

[(E0 + ω −H)2]eff ≈ (E0 + ω −Heff)2 . (3.59)

Here, the subscript “eff” means the representation of the operator in the reduced
superblock basis. The construction of [(E0 + ω − H)2]eff is numerically much too
expensive for, e.g., Heisenberg systems with many spins. However, the squaring
of a matrix leads to a slowdown of the convergence [6]. The convergence strongly
depends on the condition number of the matrix (the representation of the operator
on the left hand side of Eq. (3.57), to be more precise). The condition number (of a
normal matrix) is defined as κ = |λmax|/|λmin|, where λmax is the eigenvalue of the
matrix with largest and λmin the eigenvalue with smallest absolute value, respec-
tively [142]. A smaller condition number usually leads to a better convergence of
the algorithm, which means that squaring the matrix slows down the convergence.
Here, preconditioning techniques might help [102, 142]. We have not used precon-
ditioning, but have employed the wave function transformation (see Sec. 3.4.5) for
the correction vector to speed up the algorithm.6 A good guess for the solution
of the linear equation system leads to less iterations of the CG algorithm that are
needed for convergence. It is also clear that the convergence strongly depends on
the broadening parameter η. The limit η →∞ would lead to a condition number of

6Here, a minor difficulty emerges: Let |0′〉 be the state that is obtained as the transformation of
the ground state from the previous DMRG step. This state is then used as a starting point for
the Lanczos algorithm and the “correct” ground state |0〉 is obtained. Since the phase of the
ground state does not matter, it might be that 〈0′|0〉 ≈ −1, i.e., the phase is changed in the
Lanczos calculation. If the imaginary part of the correction vector is also transformed, one has
to take care of this phase change, since |0〉 and not |0′〉 is used for the linear equation system
that is solved. We deal with this problem by checking if the functional (3.58) is smaller for
|Ci′(ω + iη)〉 or −|Ci′(ω + iη)〉, where |Ci′(ω + iη)〉 denotes the transformed imaginary part of
the correction vector from the previous DMRG step.
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one and thus optimal convergence. Therefore, the larger the value of η, the better
is the convergence of the CG algorithm.

The target states for the reduced density matrix are |0〉, |B〉, |Ci(ω + iη)〉, and
|Cr(ω + iη)〉 [7, 8]. Although not needed for the calculation of the imaginary part
of the dynamical correlation function, |Cr(ω + iη)〉 is also included in order to
minimize the error in the calculation of (3.59) [6,8]. As in Ref. [140], we weight the
ground state with 0.4 and each of the other states with 0.2 in the density matrix (cf.
Eq. (3.25)). However, only the ground state is normalized. We normalize the other
states when we include them in the density matrix. Otherwise, the density matrix
(3.25) would not have trace one.

If the correction vector has been calculated, the value of the dynamical correlation
function for a specific frequency can be calculated using equation (3.56). If A = B,
we can also use the functional (3.58). Inserting |Ci(ω + iη)〉 leads to

WB,η(ω,C
i) = η〈B|Ci(ω + iη)〉 = −πη ImGB,B(ω + iη) . (3.60)

Using the functional for the calculation of the dynamical correlation function should
lead to a smaller error than using equation (3.56) if we have only approximately
calculated the correction vector [8]. If the error in the calculation of the correction
vector is ε, the error in the dynamical correlation function is also of order ε if
Eq. (3.56) is used. In contrast, if Eq. (3.60) is used, the error is only of order ε2 [8].
However, this statement is not strictly true if one uses the approximation (3.59).
For the systems that we have analyzed with DDMRG, we have found no significant
differences between the two approaches or the differences did not matter. We have
always calculated both values for dynamical correlation functions with A = B.

Summarizing, the DDMRG method consists of the following steps that are carried
out for fixed ω and η within the (reduced) superblock space, i.e., in step 2 of the
algorithm described in Sec. 3.3.2: The ground state |0〉 and the ground state energy
E0 are calculated using the Lanczos method as described in Sec. 3.4.3. The state
|B〉 is determined by applying the operator B to the ground state: |B〉 = B|0〉.
|Ci(ω + iη)〉 is calculated using the CG algorithm and |Cr(ω + iη)〉 is obtained via
Eq. (3.55). Then, the reduced density matrix is formed using these four states.

It has to be noted here that the procedure has to be repeated separately for every
frequency ω. For this reason, the DDMRG method is numerically very expensive.
Also, depending on the value of ω, sometimes more than 1000 CG steps are needed
for convergence so that the calculation of the correction vector is usually numerically
much more demanding than the calculation of the ground state. However, the
complete independence of the calculations for different values of ω gives rise to a
trivial parallelization of the program. Therefore, DDMRG is very well suited for
high-performance computers.

56



3.8. Basic properties of the algorithm and tests

3.8. Basic properties of the algorithm and tests

In the following, we test the DMRG program for several antiferromagnetic Heisen-
berg systems with the coupling constant J set to one in all cases. The goal of this
section is to study the basic properties of the DMRG algorithm as well as the relia-
bility and accuracy of our DMRG implementation. For these purposes we apply the
DMRG program to several “test systems” for which numerically exact or analytical
results are available.

3.8.1. Haldane gap

As a first test of our DMRG program we calculate the lowest energy eigenvalues of
s = 1 spin chains with open boundary conditions and of various lengths. The s = 1
chain is of special interest since Haldane conjectured in 1983 that a gap between the
ground state energy and the energy of the first excited state exists in the thermody-
namic limit [143, 144]. However, for finite systems with open boundary conditions,
the gap between the lowest M = 0 and the lowest M = 1 energy eigenvalue goes to
zero when the chain length is increased. Instead, the Haldane gap opens between the
lowest M = 1 and M = 2 energy eigenvalues [145, 146]. This behavior is attributed
to so-called boundary excitations in open s = 1 chains so that the first “bulk excita-
tion” occurs in the M = 2 subspace [5,145–148]. White and Huse have obtained the
value ∆H = 0.41050(2) for the Haldane gap of the infinite s = 1 chain using highly
accurate DMRG calculations [146]. Using our DMRG program we have calculated
the lowest energy eigenvalues in the M = 0, M = 1, and M = 2 subspaces for open
s = 1 chains. These eigenvalues are called E0, E1, and E2 in the following. Based
on the above picture we expect E1 − E0 to go to zero and E2 − E1 to go to 0.4105
when the chain length N is increased. The results are shown in Fig. 3.8 and fully
confirm the expectations.

3.8.2. Ground state energy of the infinite s = 1/2 chain

As a second test (similar to Ref. [140]) we compute the ground state energy per spin,
E0(N)/N , of periodic s = 1/2 chains with different lengths N . The Bethe ansatz
allows for an exact calculation of this quantity for the infinite chain and the result
is e0 = 1

4 − ln 2 [149, 150]. Furthermore, an exact formula for the leading finite-size
corrections of the ground state energy per spin is known [151,152]:∣∣∣∣E0(N)

N
− e0

∣∣∣∣ =
π2

12N2

(
1 +O

(
1

(lnN)2

))
. (3.61)

The results for periodic chains with lengths up to N = 200 are shown in Fig. 3.9.
It can be seen that the behavior for increasing N (decreasing 1/N2) is excellently
reproduced by Eq. (3.61).
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Figure 3.8.: The energy gaps E1−E0 and E2−E1 as obtained by DMRG calculations
for open s = 1 chains of different lengths N . E0 denotes the ground state energy, and
E1 and E2 are the energies of the first and second excited state. The dashed lines
show the expected results for the thermodynamic limit. Up to m = 200 density
matrix eigenstates have been kept for these calculations resulting in a truncated
weight smaller than 10−10.

3.8.3. Convergence and reduced density matrix spectra

In this paragraph, the convergence properties of the DMRG algorithm as imple-
mented for this work are tested in a similar way to Ref. [86]. As pointed out in
Ref. [86], DMRG results become more inaccurate the more states are targeted. Also,
periodic boundary conditions decrease the accuracy compared with open boundary
conditions [86]. On the other hand, keeping more density matrix eigenstates should
result in more accurate results since the variational space becomes larger. As an
example we consider a chain with N = 16 spins of s = 1. For this chain size, the
Lanczos algorithm still allows for a numerically exact calculation of low-lying energy
eigenvalues and eigenstates [153]. We have used the ALPS sparsediag code [154,155]
to calculate the ground state energy for the N = 16 chain with open and peri-
odic boundary conditions. The exact values are Eopen

0 = −21.250217994164 and

Eperiodic
0 = −22.446807281173.

In Fig. 3.10 the absolute error of the ground state energy as calculated using
DMRG for periodic and open boundary conditions is shown as function of m. It can
be seen that for fixed m the error is several orders of magnitude larger for periodic
boundary conditions compared to the case of open boundary conditions. This can
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Figure 3.9.: Difference between the ground state energy per spin of finite periodic
s = 1/2 chains (calculated with DMRG) and the exact infinite system value plotted
against 1/N2. The line shows the finite-size behavior as expected from Eq. (3.61).
We have kept up to m = 500 density matrix eigenstates for the N = 200 ring so
that the truncated weight is at most of the order of 10−7.
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Figure 3.10.: Error of the ground state energy of an s = 1 and N = 16 Heisenberg
chain with open and periodic boundary conditions as calculated with DMRG for
different m values.
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be understood by looking at the spectrum of the reduced density matrix for one half
of the chain. The spectra for the open and periodic system are shown in Fig. 3.11.
For the periodic chain the eigenvalue spectrum of the reduced density matrix decays
much more slowly.
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Figure 3.11.: Reduced density matrix spectrum of an s = 1 and N = 16 Heisenberg
chain with open and periodic boundary conditions as calculated with DMRG for
a symmetric partition of the system (i.e., both blocks have the same size). The
reduced density matrix eigenvalues are ordered such that wα ≥ wα+1 ∀α. We have
kept m = 140 density matrix eigenstates in the calculation.

The accuracy of the results for a varying number of simultaneously targeted energy
eigenstates is shown in Fig. 3.12 and Tab. 3.1 (for a periodic Heisenberg chain with
N = 16 and s = 1). For this purpose, the lowest n energy eigenvalues (with
n = 1, 2, 4) in the M = 0 subspace were calculated. The exact eigenvalues (E0 =
−22.446807281173, E1 = −22.004011719815, and E2 = E3 = −21.380099425721)
were again calculated using the ALPS sparsediag program [154, 155]. It can be
seen that a larger number of simultaneously targeted eigenstates leads to a slower
decay of the reduced density matrix spectra and consequently to a lower accuracy
of the results for fixed m.

3.8.4. Comparison with exact diagonalization and ALPS DMRG:
The icosidodecahedron

As a more complicated example we consider the s = 1/2 Heisenberg icosidodecahe-
dron (N = 30, see Fig. 4.1 in chapter 4) which can still be treated using the Lanczos
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Figure 3.12.: Spectra of the reduced density matrices of an s = 1 Heisenberg spin
ring with N = 16 for a varying number of simultaneously targeted energy eigenstates
in the M = 0 subspace, calculated with m = 300 for a symmetric partition of the
system (i.e., both blocks have the same size).

n 1 2 4

EDMRG
0 -22.446807157967 -22.446806594872 -22.446804447681

error 1.232 · 10−7 6.863 · 10−7 2.833 · 10−6

EDMRG
1 - -22.004011004224 -22.004008692221

error - 7.156 · 10−7 3.028 · 10−6

EDMRG
2 - - -21.3800927350638

error - - 6.691 · 10−6

EDMRG
3 - - -21.380094563956

error - - 4.862 · 10−6

Table 3.1.: The n lowest energy eigenvalues for a periodic Heisenberg chain (s = 1,
N = 16) were calculated by simultaneously targeting the corresponding states in
the M = 0 subspace with equal weights. m = 300 has been used for all calculations.
The more states are targeted, the higher is the absolute error for fixed m. However,
the agreement with the exact values (see text) is still excellent, and furthermore the
degeneracy of E2 and E3 causes no trouble for our DMRG implementation. The
truncated weights at the last step of the DMRG calculations are 8 · 10−9 (n = 1),
5 · 10−8 (n = 2), and 5 · 10−7 (n = 4).
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algorithm [19,20]. We have used the mapping to a one-dimensional chain according
to Ref. [121]. This system will be analyzed in more detail in chapter 4. The DMRG
energies as a function of the sweep number are shown in Fig. 3.13.
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Figure 3.13.: Lowest energy eigenvalues of the antiferromagnetic Heisenberg icosi-
dodecahedron with s = 1/2. The results have been obtained in three different
calculations: a calculation of the lowest energy eigenvalue in the M = 0 and M = 1
subspaces (one target state for each calculation) and a simultaneous calculation of
the two lowest eigenvalues in the M = 0 subspace. The same m sequence has been
used in all three calculations. The numbers in the upper part of the figure indi-
cate the values of m that were used for the different sweeps. For the last 6 sweeps,
m = 1500 states were kept. The dashed lines indicate the exact results, taken from
Ref. [20].

From sweep to sweep, we have increased the number of retained density matrix
eigenstates. It can clearly be seen that the energies converge towards the correct
results for increasing m. However, this system is already very hard to treat with
DMRG and many density matrix eigenstates are needed to get sufficient convergence.

In Tab. 3.2, the DMRG energies obtained at the end of the last sweep are pre-
sented and compared with both exact diagonalization results and results of the ALPS
DMRG program7 [154]. The ALPS program uses a different weighting scheme for
the target states when several states are simultaneously targeted. This explains the
small differences in the case that the two lowest energy eigenstates in the M = 0
subspace are calculated.

7ALPS DMRG is a freely available DMRG program, see http://alps.comp-phys.org.
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self-written program ALPS DMRG

M = 0 lowest state (1 target state) -13.2301675711 -13.2301677929
truncated weight 8.762 · 10−5 8.756 · 10−5

M = 1 lowest state (1 target state) -13.0104914709 -13.0104911717
truncated weight 1.245 · 10−4 1.241 · 10−4

M = 0 lowest state (2 target states) -13.2276866784 -13.2294884014
M = 0 first excited state -13.17963752313 -13.1753087703

truncated weight 3.087 · 10−4 2.160 · 10−4

Table 3.2.: Comparison of the results of our own program with the results of the
ALPS DMRG code. Energy eigenvalues of the s = 1/2 icosidodecahedron from the
last sweep of three different calculations are compared (see Fig. 3.13): the lowest
eigenvalue in the M = 0 subspace, the lowest eigenvalue in the M = 1 subspace, and
the two lowest eigenvalues in the M = 0 subspace (i.e., two states were simultane-
ously targeted). m = 1500 states were kept in the last sweep. The ALPS program
uses a different weighting if several states are simultaneously targeted. This explains
the differences when two states are targeted in the M = 0 subspace.

3.8.5. Test of the DDMRG implementation

In order to test our implementation of the DDMRG method, we investigate the
zero-temperature dynamical correlation functions

Szj (ω) =
∑
n

|〈0|szj |n〉|2δη(ω − En + E0) (3.62)

and

Sz(k, ω) =
∑
n

|〈0|Sz(k)|n〉|2δη(ω − En + E0) , (3.63)

where δη(x) is the Lorentzian function and

Sz(k) ≡
∑
j

e
2πijk
N szj . (3.64)

|n〉 denotes an energy eigenstate with eigenvalue En and |0〉 is the ground state. For
uniform spin rings, the transition operator Sz(k) can be replaced in the dynamical
correlation function (3.63) by

S̃z(k) = C cos

(
2πkj

N

)
szj , (3.65)

with C = 1 for k = 0, N/2 and C =
√

2 otherwise without changing the result
[7,156]. We consider a uniform antiferromagnetic Heisenberg spin ring (i.e., periodic
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boundary conditions are applied) with N = 18 spins with s = 1/2. This system can
also be treated using exact diagonalization. The low-energy spectrum (with quantum
numbers k and S) is shown in Fig. 3.14. The use of Sz(k) as the transition operator
leads to the selection rule ∆k = k + Nz (z is an integer number) for the matrix
elements 〈0|Sz(k)|n〉 [75]. ∆k denotes the difference between the shift quantum
number of the ground state and that of the excited state. For both transition
operators we have the selection rule ∆S = 1 since the system has an S = 0 ground
state. This means that only transitions to S = 1 states can be observed at T = 0.
Furthermore, Sz(k, ω) allows for an investigation of the k quantum numbers of the
excited states.
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Figure 3.14.: Low-energy spectrum of a Heisenberg spin ring (N = 18, s = 1/2)
as obtained by exact diagonalization. (These calculations were performed by J.
Schnack [157].) The numbers next to the energy levels denote the corresponding
shift quantum numbers and the arrows show the three lowest transitions that we
can expect to observe in the dynamical correlation functions Szj (ω) and Sz(k, ω). The
labels next to the arrows indicate for which value of k the corresponding excitation
can be observed in Sz(k, ω).

The dynamical correlation functions were calculated in two different ways (cf.
Sec. 3.7):

• One possibility is to target several eigenstates in the M = 0 subspace and
directly calculate the transition matrix elements [136, 158]. This variant is
called standard DMRG in the following.

• Another possibility is an effective calculation via the correction vector. This

64



3.8. Basic properties of the algorithm and tests

variant is denoted as DDMRG.
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Figure 3.15.: Dynamical correlation functions Szj (ω) (left) and Sz(k, ω) (right), cal-
culated both with the standard DMRG code (solid lines) and the DDMRG code
(symbols). For the standard DMRG calculations 20 eigenvectors in the M = 0 sec-
tor were simultaneously targeted with m = 250 retained density matrix eigenstates.
The transition matrix elements were then calculated and used for the calculation of
Szj (ω) and Sz(k, ω). In the DDMRG calculations, m = 128 states were kept. The
Sz(k, ω) data is normalized so that the maximal value is 1 for each curve and the
broadening is chosen as η = 0.05. The dashed lines show the exact energy differences
between the lowest three excited states and the ground state, cf. Fig. 3.14.

The results of both approaches are compared in Fig. 3.15. For the DDMRG
calculation we have chosen j = 15, i.e., the center of the chain, but the dynami-
cal correlation function should be independent of j for this system. An excellent
agreement is observed and the peaks of the dynamical correlation functions further-
more lie at the correct positions, which can be deduced from the exact spectrum in
Fig. 3.14 and the selection rules. In particular for higher energies, it can be seen in
Fig. 3.15 that the symbols, i.e., the DDMRG results, always lie above the continu-
ous curve (the standard DMRG results). This is because of the limited number of
energy eigenstates that were calculated with the standard DMRG code. For a finite
broadening η, high-energy states also contribute to the spectrum at lower energies
so that the dynamical correlation functions calculated with standard DMRG always
lie below the true function, unless all contributing states are taken into account.
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icosidodecahedron

4.1. Introduction

In this chapter, we present DMRG results for the antiferromagnetic Heisenberg icosi-
dodecahedron. Fig. 4.1 shows the structure of the icosidodecahedron. It is a polyhe-
dron with 12 pentagons and 20 triangles [159], which means that it is geometrically
frustrated. There exist several icosidodecahedral magnetic molecules: Mo72Fe30 [4],
W72Fe30 [15] (both s = 5/2), Mo72Cr30 [23] (s = 3/2), Mo72V30 [59, 160], and
W72V30 [24] (both s = 1/2). These molecules are some of the largest magnetic
molecules synthesized to date [3] and there are a lot of experimental and theoretical
studies on these systems [4, 11–14, 16–20, 22, 64, 161–166]. Icosidodecahedral mag-
netic molecules are of special interest because they are highly symmetric, frustrated,
exist with different spin quantum numbers, and are a kind of finite-size version of
the Kagomé lattice [20].

Figure 4.1.: Structure of the icosidodecahedron: The black bullets correspond to the
spin positions and the lines to interaction paths between them. The right part of
the figure shows a two-dimensional projection.

Experimental investigations of the magnetic properties of these molecules focus
in most cases on measurements of the susceptibility as a function of temperature
[4,15,23,24,59,160] or applied magnetic field [14,166], or magnetization as a function

67



4. The antiferromagnetic Heisenberg icosidodecahedron

of magnetic field [4, 16, 166]. These experiments show that the icosidodecahedral
magnetic molecules have antiferromagnetic interactions and a nonmagnetic ground
state. Other experimental techniques that were applied to these molecules are NMR
and µSR [162, 163, 165], INS [17], diffuse (elastic) neutron scattering, and specific
heat measurements [18].

These molecules are usually modeled using a simple uniform Heisenberg model
[4,12,13,15,17,18,21–24,59,161,164,167]. However, more complicated models were
also studied: Additional anisotropic terms were considered in Refs. [164] and [11],
and bond disorder and distortions (i.e., more than just one exchange constant in the
Heisenberg Hamiltonian) were investigated in Refs. [14] and [21]. Since the icosi-
dodecahedral molecules comprise N = 30 spins, a numerically exact calculation of
T = 0 properties is only possible for the s = 1/2 case [19,20,168]. Zero-temperature
magnetization curves for the similar, but smaller cuboctahedron were already calcu-
lated in Refs. [19] and [20] for different spin quantum numbers. In Ref. [19], parts of
magnetization curves were also calculated for the icosidodecahedron with s > 1/2,
but only the smallest subspaces for large M can be treated due to the limitations of
the Lanczos method. For s = 1/2, thermodynamic properties can also be calculated
quasi-exactly for T > 0 using the finite-temperature Lanczos method [21, 22, 167].
Quantum Monte Carlo suffers from the negative-sign problem so that calculations
for small temperatures are not feasible [23,24,59]. For the calculation of ground state
and low-temperature properties for s > 1/2, approximative methods are therefore
needed. For s = 3/2 and s = 5/2 systems, the classical Heisenberg model was used
as an approximation [4, 13–15, 161, 164, 169], for which efficient Monte Carlo algo-
rithms are available. However, it is not clear how good this classical approximation
is for very low temperatures. This is also true for the rotational band approxi-
mation which was used in Refs. [4, 12, 16–18, 64]. Furthermore, there are features
of frustrated systems such as magnetization jumps and plateaus, or low-lying sin-
glets in the spectrum [19], for which it is known that they are not captured by the
rotational band approximation. Another approximation which was applied to the
icosidodecahedron and whose accuracy is unclear is spin-wave theory [11,12].

Although there exist many theoretical studies on the icosidodecahedron with
s > 1/2, it has to be emphasized here that accurate numerical calculations for the
full Heisenberg model and without (semi-)classical approximations are very rare.
The DMRG method allows to treat the full Heisenberg Hamiltonian in a reduced
Hilbert space. As discussed in chapter 3, it relies on a controlled truncation of the
Hilbert space and allows for an estimation of the accuracy. In Ref. [121], the DMRG
method has already been applied to the Heisenberg icosidodecahedron with s = 5/2.
However, a maximum of only m = 120 density matrix eigenstates was used so that
the accuracy of the results is rather limited for such a complicated system with a
geometry that is not favorable for the DMRG method.

We also apply the DMRG method to the antiferromagnetic Heisenberg icosido-
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decahedron and focus on the approximate calculation of the lowest energies in the
subspaces of magnetic quantum number M . These eigenvalues allow for a calculation
of the T = 0 magnetization curve and also of energy gaps which can be probed by
spectroscopic methods such as INS. For the case s = 1/2, we also calculate the dy-
namical correlation function Szj (ω) using DDMRG. A very recent calculation of the
low-energy spectrum using variational Monte Carlo applied to so-called correlator
product states (CPS) was carried out by Neuscamman and Chan in Ref. [170]. This
method seems to be very promising for an accurate calculation of zero-temperature
properties. In Sec. 4.2.3 we compare our DMRG results with the CPS results and
the previous DMRG results.

Since we calculate magnetization curves for different spin quantum numbers, the
transition to the classical limit can furthermore be studied. We always use a simple
antiferromagnetic Heisenberg Hamiltonian HHeisenberg (see Eq. (2.2)) with Jij = J
if the spins at positions i and j are nearest neighbors and Jij = 0 otherwise (cf.
Fig. 4.1). Before we discuss the DMRG results, we summarize basic properties of
frustrated systems such as the icosidodecahedron, as well as results of the classical
and rotational band approximations.

4.1.1. Properties of systems with corner-sharing triangles

The icosidodecahedron consists of 12 corner-sharing triangles. Antiferromagnetic
frustrated spin systems with corner-sharing triangles, e.g., the Kagomé lattice or
the cuboctahedron, have special properties such as [19,20,26,168,171]:

• low-lying singlets below the first triplet, i.e., there exist several excited S = 0
states with lower energies than the energetically lowest S = 1 state;

• magnetization plateaus in the T = 0 magnetization curve at one-third of the
saturation magnetization;

• magnetization jumps to saturation.

The magnetization jumps can be attributed to localized independent magnon states,
which are exact eigenstates of the Heisenberg Hamiltonian [168, 171]. Starting
from the ferromagnetic state, it is possible to place some localized excitations with
|∆M | = 1 on the Kagomé lattice, the cuboctahedron, or the icosidodecahedron.
Since these excitations are localized and do not interact, the total energy depends
linearly on their number and thus on the magnetization. This linear dependence
results in a jump to saturation of the (zero-temperature) magnetization. However,
the number of localized independent magnon states that can be placed on a finite
lattice is limited, of course. In the case of the icosidodecahedron, three localized ex-
citations can be placed on the lattice without interaction, so that the magnetization
jump to saturation has a height of ∆M/(gµB) = 3 [168].
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4. The antiferromagnetic Heisenberg icosidodecahedron

4.1.2. Classical limit and the rotational band approximation

The classical ground state (in the limit s→∞) as a function of the magnetic field ~B
was calculated in Ref. [161]. The icosidodecahedron is three-colorable, which means
that it is possible to divide it into three sublattices A, B, and C such that spins on the
same sublattice do not interact with each other and only interactions between spins
on different sublattices occur. The classical ground state for zero magnetic field
has a simple structure: Spins on the same sublattice point in the same direction
and the angle between spins on different sublattices is 120◦. For a finite magnetic
field B, the ground state energy has a parabolic dependence on B, which leads to
a (zero-temperature) magnetization curve that is linear in B up to the saturation
magnetization [161]. The zero-temperature susceptibility for fields smaller than the
saturation field is thus simply a constant. For finite temperature an interesting
effect occurs: The susceptibility shows a dip near one-third of the saturation field
[13]. This effect is attributed to magnetically stiff “up-up-down” configurations that
contribute to the partition function. At the field where the dip occurs, the ground
state as described above (i.e., the 120◦ configuration) has the same energy as the
configuration where the spins on each triangle have a “up-up-down” structure. This
dip in the susceptibility has also been measured in several experiments but the
explanation on the basis of a classical system is rather unsatisfactory since the
temperature in the experiments was very low [13,14].

The rotational band approximation [16, 64] leads to very similar results for the
zero-temperature magnetization. It is expected to be a good approximation only for
large s quantum numbers. The idea of the rotational band approximation is to use
states of the form |SASBSCSM〉 as approximations of the energetically lowest states
in the S subspaces (cf. Sec. 2.2.3). Here, SX denotes the spin quantum number of
sublattice X with X = A,B,C. In the subspace of states with SA = SB = SC =
Ns/3 (N = 30 is the number of spins) the full Heisenberg Hamiltonian is equivalent
to the three-spin Hamiltonian [12]

HABC =
J

5

(
~SA · ~SB + ~SB · ~SC + ~SC · ~SA

)
=

J

10

(
~S2 − ~S2

A − ~S2
B − ~S2

C

)
. (4.1)

The energy eigenvalues of HABC are then given by

EABC(S, SA, SB, SC) =
J

10
(S(S+1)−SA(SA+1)−SB(SB+1)−SC(SC+1)) . (4.2)

For SA = SB = SC = Ns/3, the eigenvalues of the lowest rotational band are ob-
tained. For SA = Ns/3− 1, SB = SC = Ns/3 and permutations thereof, we get the
energy eigenvalues of the next-higher rotational band [17]. The zero-temperature
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magnetization curve in the rotational band approximation is a staircase with con-
stant step width up to the saturation magnetization. The dynamical correlation
function Szj (ω), which is related to INS spectra, shows only two peaks at T = 0
in this approximation [17]. One peak corresponds to a transition within the lowest
rotational band (∆E1 = J/5) and the other peak corresponds to transitions to the
next-higher rotational band (∆E2 = J

5 +2Js). It is expected that the level structure
that is predicted by the rotational band model is too simple to accurately describe
the excitations of the full 30-spin Hamiltonian and is only a good approximation for
the lowest energies in the S subspaces [12, 17]. For example, the rotational band
approximation cannot fully explain results of INS experiments that were obtained
for the s = 5/2 system Mo72Fe30 [17].

In Refs. [16, 121] a modified rotational band approximation with “quantum cor-
rections” has been proposed in order to better reproduce measured magnetization
curves. In the modified version, an additional parameter γ and the overall prefactor
a are introduced as parameters:

Emod
ABC(S, SA, SB, SC) = aJ

{
S(S + 1)− γ(SA(SA + 1)

+SB(SB + 1) + SC(SC + 1))
}
. (4.3)

Based on a comparison to magnetization measurements for Mo72Fe30 (s = 5/2),
the values a = 0.1038 and γ = 1.07 were obtained [16]. The DMRG calculation in
Ref. [121] yielded a = 0.1028 and γ = 1.05. Both results are actually very close to
the simple rotational band model with a = 1/10 and γ = 1. We will compare our
new DMRG results with these numbers at the end of this chapter.

4.2. DMRG results

The DMRG technique is best suited for open one-dimensional chains, but can be
applied to systems with an arbitrary geometry. The icosidodecahedron can be viewed
as a two-dimensional lattice on a sphere (similar to the Kagomé lattice, see [20]), i.e.,
a lattice with periodic boundary conditions. This means that no numerically exact
results can be expected when DMRG is applied to such a system. However, the
accuracy of calculated quantities can be estimated by varying the number of kept
density matrix eigenstates and watching the changes in the quantity of interest.
Since DMRG is a variational method, it is clear that the lower the energy, the
better is the approximation of the ground state (or the energetically lowest state in
a subspace). Furthermore, the truncated weight ∆w offers the possibility to judge
the quality of the results, and an extrapolation to zero truncated weight (or m→∞)
is possible if enough data are available.
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4. The antiferromagnetic Heisenberg icosidodecahedron

4.2.1. Numbering of the spins

When DMRG is applied to spin systems that are not one-dimensional, the usual
way is to map the system on a one-dimensional chain with long-range interactions.
This is done by numbering the spins in a certain way [126]. However, for complex
system it is not clear, which numbering produces the best results [172]. A similar
problem occurs when DMRG is applied in the field of quantum chemistry, where
models similar to the Hubbard model with long-range interactions are used and the
orbitals have to be ordered in some way [114,172–175]. Since long-range interactions
diminish the accuracy of the DMRG method (cf. Ref. [127]), it is clear that a
good ordering needs to minimize long-range interactions as much as possible. In
Ref. [114], the reverse Cuthill-McKee algorithm [176,177] was proposed to obtain a
“good” ordering. In Ref. [172], a genetic algorithm was used to get good orderings
for a specific system. However, employing a genetic algorithm is very costly since
calculations for many different orderings have to be performed.

We have tested several orderings for the icosidodecahedron. The coupling matrices
Jij resulting from the different numberings of the vertices of the icosidodecahedron
are shown in Fig. 4.2. This system has already been treated with DMRG by Exler
and Schnack in Ref. [121]. The numbering used by Exler and Schnack (see top
left of Fig. 4.2) gives a very regular “interaction pattern” with rather short-ranged
interactions. However, the periodic boundaries, i.e., the interactions between the
first and the last spins, are clearly not optimal for the DMRG algorithm with two
center sites. As proposed in Ref. [114], we have also tested a variant of the reverse
Cuthill-McKee algorithm [176, 177], the RCMD algorithm, which aims to number
the vertices such that the bandwidth of the matrix is minimized. In addition, we
have applied the Sloan algorithm [178], which minimizes the “envelope size”, i.e.,
the sum of the “row bandwidths”. (The bandwidth is the maximum of the row
bandwidths.) These algorithms were used as implemented in Mathematica [179].
Fig. 4.2 also shows an unoptimized numbering for comparison.

Results of DMRG calculations (using the ALPS DMRG code [154]) for the differ-
ent spin numberings are presented in Fig. 4.3. We have calculated the ground state
energy of the s = 1/2 icosidodecahedron with an increasing number of retained den-
sity matrix eigenstates m so that the convergence can be investigated by comparing
with the exact ground state energy (see Ref. [20]). One can see that the different
optimized numberings (Exler/Schnack, RCMD, and Sloan) give almost identical re-
sults whereas the convergence properties of the unoptimized numbering are much
worse. These results show that it is essential to use an optimized numbering of the
spins when the DMRG method is applied to a spin system with a complicated struc-
ture. For the remaining results in this chapter, we have always used the numbering
proposed by Exler and Schnack.
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Exler/Schnack
1

10

20

30

1 10 20

RCMD

1 10 20 30

1

10

20

Sloan

1 10 20 30

1

10

20

no optimization

1 10 20 30

1

10

20

Figure 4.2.: Depiction of the coupling matrix Jij for four different numberings of the
vertices of the icosidodecahedron. Nonzero entries are indicated by orange squares.
Top left: numbering according to Exler and Schnack (see Ref. [121]); top right:
result of the RCMD algorithm; bottom left: result of the Sloan algorithm; bottom
right: unoptimized numbering.

4.2.2. Lowest energy eigenvalues and magnetization curves

As the next step, we have calculated the lowest energies in the M subspaces for the
icosidodecahedron with s > 1/2 using DMRG. The results for the s = 1/2 system
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Figure 4.3.: Comparison of DMRG results for different numberings (see Fig. 4.2) of
the s = 1/2 spins at the vertices of the icosidodecahedron. The plot shows the error
of the ground state energy as obtained by DMRG and as a function of the sweep
number. The exact energy is taken from Ref. [20]. The numbers above the symbols
denote the number of density matrix eigenstates that were kept for the sweep. We
have used the ALPS DMRG code [154] for these calculations.

already demonstrated that DMRG is still able to produce accurate results for this
system with a relative error smaller than 10−3. However, the accuracy is much worse
than in the ideal case of one-dimensional chains with open boundaries (cf. Fig. 3.10
in chapter 3).

Fig. 4.4 shows the lowest energy eigenvalues in the subspaces of total magnetic
quantum number M for the icosidodecahedron with s = 1 and s = 3/2 as obtained
by DMRG. Note that for subspaces with large M (M > 18 for s = 1 and M > 33
for s = 3/2) results from Lanczos calculations performed by J. Schnack [180] are
used. We have kept up to m = 2500 density matrix eigenstates for the s = 1 case
and up to m = 2000 for the s = 3/2 case. An error estimate for the results of
the s = 1 system is given in subsection 4.2.3. The largest truncated weight is of
the order of 7 · 10−4 for the M = 0 subspace (which is the largest subspace) of the
s = 1 icosidodecahedron and of the order of 4 · 10−4 for the s = 3/2 case. Although
more states have been kept, the truncated weight for the s = 1 icosidodecahedron
is larger than for the s = 3/2 system. This indicates that, at least in this case, it
cannot be a reliable quantitative measure for the error, possibly because the results
are not yet fully converged for the values of m that we have used. However, these
calculations are very time-consuming. For example, the calculation of the ground
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Figure 4.4.: Lowest energy eigenvalues in the subspaces of total magnetic quantum
number M as obtained by DMRG calculations for the s = 1 (left) and the s = 3/2
(right) icosidodecahedron. The insets show the energies as a function of M(M + 1).
The eigenvalues for the smallest subspaces, i.e., for large M , were calculated by J.
Schnack with the Lanczos algorithm (see text). For the DMRG calculations, the
ALPS DMRG code was used [154]. For the s = 1 system, m = 2500 density matrix
eigenstates were kept in all DMRG calculations. For the s = 3/2 system, we have
kept m = 2000 states for the subspaces with M ≤ 4, m = 1500 states for the
subspaces with 5 ≤M ≤ 23, and 1000 states for the subspaces with M > 23.

state energy (M = 0) of the s = 1 icosidodecahedron with 60 sweeps and m = 2500
states took about 4 weeks so that obtaining fully converged results for a fixed value
of m is nearly impossible for the icosidodecahedron with s > 1.

The rotational band model predicts a behavior of the form Emin(M) − E0 =
aM(M+1), i.e., a parabolic dependence onM . The insets of Fig. 4.4 show that this is
a good approximation for the lowest energy eigenvalues of the full Heisenberg model.
The simple rotational band approximation predicts a proportionality constant of
a = 0.1 (cf. Eq. (4.1)). The linear fits as shown in the insets give the values
a = 0.111 for s = 1 and a = 0.108 for s = 3/2, which are quite close to the
simple rotational band approximation. However, if one uses the DMRG data to
calculate the zero-temperature magnetization curves, it becomes clear that there
are some crucial deviations from the ideal parabolic dependence. If there was an
ideal parabolic dependence, the resulting magnetization curve would consist of steps
of constant width. Fig. 4.5 shows the resulting zero-temperature magnetization
curves calculated from the DMRG data. Again, the exact diagonalization data for
s = 1/2 is taken from Ref. [20]. One can see that the magnetization curves do
not consist of steps with constant width. There are some anomalies as expected for
frustrated systems. In particular, plateaus atM/Msat = 1/3 are clearly visible. The
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Figure 4.5.: Zero-temperature magnetization curves of the icosidodecahedron with
s = 1/2, 1, and 3/2. The data for s = 1/2 is taken from Ref. [20], whereas the
data for s = 1 add s = 3/2 are obtained by DMRG calculations (cf. Fig. 4.4). The
dashed line shows the classical result [161]. The data is normalized to the saturation
field and the saturation magnetization.

magnetization jumps to saturation due to the independent magnons (see Sec. 4.1.1
and Ref. [168]) are also visible. Since the jump has a fixed height of ∆M = 3, it
is clear that this effect vanishes in the plot for s → ∞ because the magnetization
is normalized to the saturation magnetization Msat = 30gµBs. For s → ∞, the
classical result, i.e., a strictly linear magnetization curve, is expected to be reached.
However, the plateau seems to be very stable even for large s (see below). A similar
behavior was already observed for the cuboctahedron, see Ref. [20].

For the cases s = 2 and s = 5/2 we have calculated the lowest energy eigenvalues
only in some M subspaces, including those subspaces that are relevant for the cal-
culation of the plateau width. We have kept m = 2000 density matrix eigenstates
in these calculations. The magnetization curves are shown in Fig. 4.6. The plateau
is clearly visible, even for s = 5/2. However, it is not clear if these plateaus can be
measured in experiments. It was shown in Ref. [22] for the s = 1/2 system that the
plateau disappears rather quickly with increasing temperature. Fig. 4.7 shows the
plateau width for different values of s as obtained by the DMRG calculations and the
exact diagonalization for s = 1/2 [20]. The figure also contains an extrapolation to
s→∞ using the data for s > 1/2 and the ansatz a+ b/(x− c), where x denotes the
plateau width and a, b, and c are constants. The extrapolated value for the plateau
width of 0.013Bsat is not exactly zero, but rather close to the expected value. It
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Figure 4.6.: Zero-temperature magnetization curves of the icosidodecahedron for
s = 3/2, 2, 5/2 as obtained by (ALPS) DMRG calculations. We have kept m =
2000 density matrix eigenstates in these calculations. The dashed line shows the
classical result [161]. As before, the data is normalized to the saturation field and
the saturation magnetization.

has to be emphasized here that the plateau widths calculated using DMRG (i.e., for
s > 1/2) are not numerically exact. The accuracy of the results is analyzed in the
next subsection.

4.2.3. Estimation of the accuracy and comparison with CPS and
previous DMRG results

A reasonable extrapolation in m (the number of kept density matrix eigenstates) or
∆w (truncated weight) is only possible if the results are fully converged for each m
value. Fig. 4.8 shows the ground state energy and the lowest energy in the M = 1
subspace of the s = 1 icosidodecahedron as calculated using DMRG for different
values of m. We have carried out 12 sweeps for each value of m.

An extrapolation to m → ∞ with an exponential ansatz a + b exp(−cm) (a, b,
and c are constants) yields Eextra

min (M = 0) = −41.97(2)J and Eextra
min (M = 1) =

−41.76(1)J .1 In Ref. [121], an extrapolation using an ansatz of the form a + b/m,
where a and b are constants, was proposed. However, this ansatz does not work very
well for our data, which is calculated with much larger m values than in Ref. [121].
The right part of Fig. 4.8 shows the estimated relative error (using the extrapolated

1The errors given in the brackets are the standard errors of the fitting procedure.
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(s > 1/2) and exact diagonalization (s = 1/2) calculations. The exact diagonaliza-
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using the data for s > 1/2. The extrapolated value for the plateau width is 0.013.
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Figure 4.8.: Left: DMRG results for the lowest energy eigenvalues of the M = 0
and the M = 1 subspace of the s = 1 icosidodecahedron. m denotes the number of
kept density matrix eigenstates. The lines are exponential fits to the data. Right:
estimated relative error as a function of m.

ground state energy) as a function of m. For m = 2500, the relative error of the
DMRG M = 0 energy is estimated as about 10−3, which corresponds to an absolute
error of approximately 0.04J . This is a rather large value considering that the gap
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to the next-higher state is about 0.2J . For s > 1 such an extrapolation was not
possible since it is too time-consuming and thus practically impossible to obtain
converged energies for sufficiently many values of m.
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Figure 4.9.: The plateau width of the s = 1 icosidodecahedron as a function of the
number of density matrix eigenstates that were kept in the DMRG calculations.

Fig. 4.9 shows the convergence of the width of the Msat/3 plateau of the s = 1
icosidodecahedron as a function of m. One can see that the plateau width decreases
with increasing m so that DMRG seems to overestimate the width of the plateau.
We find similar effects for s > 1, but since the calculations are extremely time-
consuming, it was not possible to produce enough data for a more systematic study
of this effect. Looking more carefully at the truncated weights, we find that the
DMRG calculations of the lowest energy in the M = 10s(=Msat/(3gµB)) subspace
result in smaller values of the truncated weight than the calculations in the adjacent
subspaces with the samem. However, the order of magnitude of the truncated weight
is still the same. This indicates that DMRG leads to more accurate results exactly
at one-third of the saturation magnetization which apparently has the consequence
that the method systematically overestimates the plateau width if one works with
the same m value for adjacent M subspaces.2

For many one-dimensional systems DMRG can be considered as a numerically
exact method. This is clearly not the case for the icosidodecahedron. However, if
we assume that the errors of the energy eigenvalues as obtained from the DMRG
calculations are approximately the same for adjacent M subspaces, then we can still

2The positions of the magnetization steps are calculated using the differences Emin(M + 1) −
Emin(M), see Sec. 2.3.1.
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regard the magnetization step widths as reliable. Since the subspace dimensions
become smaller for increasing M , it is clear that calculations with fixed m are
more accurate for the large-M subspaces. Nevertheless, we suppose that the main
features of the magnetization curves as predicted by our DMRG calculations are
not decisively affected by these considerations since the order of magnitude of the
truncated weights is the same for energy eigenvalues in adjacent M subspaces.

The case s = 5/2

In this paragraph we focus on the s = 5/2 case and compare our calculations with
previously obtained results. Fig. 4.10 shows the ground state energy as a function
of the DMRG sweep number. The number of kept density matrix eigenstates in-
creases with the sweep number. It can be seen that no convergence is achieved and
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Figure 4.10.: Ground state energy of the s = 5/2 icosidodecahedron as a function of
the DMRG sweep number. The ALPS DMRG program was used for this calculation.
The numbers next to the symbols indicate the number of retained density matrix
eigenstates for the different sweeps.

that probably much larger m values are needed to get converged results. Also, an
extrapolation to m→∞ would not be reliably possible because it is not feasible to
carry out enough sweeps for each m value.

For m = 2000 we obtain the value EDMRG
0 ≈ −216.5J , which can be compared

with previous results. The DMRG result of Exler and Schnack for the ground state
energy (with m = 120) is approximately −211.1J [121], a value that is much higher
and thus, since DMRG is a variational method, much more imprecise than our
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result. The very recent result of Neuscamman and Chan using correlator product
states (CPS) in combination with variational Monte Carlo is −216.3J [170], which is
also higher than our DMRG result. Furthermore, a comparison of the lowest energies
in the M subspaces that are relevant for the calculation of the plateau width shows
that our DMRG calculations with m = 2000 are more accurate than the CPS ansatz
used in Ref. [170] (see Tab. 4.1). From this comparison we expect that our s = 5/2

M EDMRG
min (M)/J ECPS

min (M)/J

24 -158.43 -154.42

25 -153.78 -149.76

26 -147.91 -144.40

Table 4.1.: Comparison of the DMRG energies to the CPS energies for the M = 24,
25, and 26 subspaces of the s = 5/2 icosidodecahedron. For the DMRG calculations,
m = 2000 states were kept. The CPS data is taken from Ref. [170].

DMRG data for the part of the T = 0 magnetization curve that includes the plateau
is more accurate than the results of Ref. [170].

In Ref. [16], low-temperature magnetization data for Mo72Fe30 (s = 5/2) was
analyzed on the basis of the modified rotational band approximation (see Sec. 4.1.2).
Using these results gives a ground state energy of approximately −216.6J , which is
very close to our DMRG result.

4.2.4. Dynamical correlation function for the s = 1/2
icosidodecahedron

To gain information about higher-lying excitations in the s = 1/2 system, we have
calculated the dynamical correlation function Szj (ω) using DDMRG. Due to the sym-
metries of the system and since the ground state is nondegenerate [20], this function
should be independent of j. For s > 1/2 such a calculation was not feasible with
our program. The main problem is that DDMRG requires a rather accurate calcu-
lation of the ground state, which is one of the four target states. A large part of the
spectrum of the s = 1/2 icosidodecahedron has already been calculated in Ref. [20],
but only the energy levels and no transition matrix elements were considered. The
function Szj (ω) also contains information about the transition matrix elements and
is thus related to INS spectra.

We have kept m = 2000 density matrix eigenstates, which results in very time-
consuming calculations. The broadening was chosen as η = 0.15J . The resulting
dynamical correlation function is shown in Fig. 4.11.3 It shows a rather sharp peak at

3A comparison with not yet published numerically exact Lanczos results for the same system by
A. Läuchli [181] shows a nearly perfect agreement.
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Figure 4.11.: The dynamical correlation function Szj (ω) of the s = 1/2 icosidodec-
ahedron as obtained by DDMRG calculations. We have used m = 2000 and a
broadening η = 0.15J . The gray dashed lines indicate the excitation energies at
which the simple rotational band model predicts the peaks (see subsection 4.1.2).

approximately 0.35J and a very broad shoulder which falls of at approximately 2J .
The rotational band approximation predicts a two-peak structure of the dynamical
correlation function (see Sec. 4.1.2 and Ref. [17]). This is clearly not the case since
the spectrum of the full model is much broader and shows only one distinct peak.
However, for such a large s = 1/2 system, we cannot expect the rotational band
model to be a good approximation. It is expected to be most accurate for small
systems with large spin quantum number s (see Ref. [37] and subsection 5.2.1.)

As already noted before, the s = 1/2 system can still be treated with the Lanczos
method so that the DMRG and DDMRG techniques are not really needed for this
system. DMRG, however, also allows for the calculation of magnetization curves for
the icosidodecahedron with spin quantum numbers larger than 1/2 on the basis of
the full Hamiltonian. This is not possible with the Lanczos technique. It would be
an important progress if the dynamical correlation functions could also be calculated
for the icosidodecahedron with s > 1/2. This is, however, not reliably possible with
our DDMRG program. The main problem is that a rather accurate ground state
needs to be calculated for the DDMRG method. For the s = 1 icosidodecahedron,
the estimated error of the ground state energy is of the order of 0.1J for m = 2000.
This inaccuracy would be too large for a broadening of η = 0.15J [182] and either
a much larger broadening would have to be chosen or more states would be needed.
However, keeping more states strongly increases the computational cost and a much
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larger broadening would probably blur the spectrum too much. A better parallelized
DDMRG code and much computing time on a supercomputer would be needed to
make such calculations feasible.
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5. Antiferromagnetic spin rings

5.1. Introduction

Antiferromagnetic molecules with a ring-like arrangement of the spins have attracted
considerable attention since the measurement of quantum steps in the magnetization
in such a system in 1994 [30]. Many of these systems consist of an even number
of antiferromagnetically coupled FeIII ions with s = 5/2. There exist realizations
with N = 6 [63, 183], 8 [183], 10 [30], 12 [67], and 18 [9, 184] FeIII centers. For
these systems, there exist numerous experimental and theoretical studies [10,38,68,
185–191]. Many recent studies focus on the transition from quantum to classical
behavior [37, 38, 191] and the possibility to observe quantum tunneling of the Néel
vector [10,68,186,187,189,190].

The numerical treatment of antiferromagnetic spin rings is hindered by the large
Hilbert space dimensions. The Hilbert space dimension of a spin-5/2 system with
N spins is 6N so that complete diagonalization is currently possible only for N ≤ 10
[51]. For N > 10 other numerical methods such as QMC or DMRG are needed. In
this chapter we use DMRG and DDMRG to calculate static and dynamical proper-
ties of (antiferromagnetic) spin rings and focus on the molecule Fe18 [9] (N = 18,
s = 5/2). Variants of the rotational band approximation are also often applied to
antiferromagnetic spin rings [10,67,68,190] and some studies indicate that spin-wave
theory (SWT) is a good approximation for some excitations of these systems (see
Refs. [37, 38,192]). We compare our DMRG results with these approximations.

This chapter is organized as follows. In the next two subsections (5.1.1 and 5.1.2),
the spin models for antiferromagnetic ring molecules are introduced and spin-wave
theory and the rotational band model, are briefly described. In Sec. 5.2, the results
of (D)DMRG calculations for uniform Heisenberg rings with different lengths and
spin quantum numbers are presented. The DMRG results are compared with the
predictions of SWT and the rotational band approximation. In Sec. 5.3, the Fe18

molecule and results of INS measurements [25,193] are described. These INS data are
compared with our DDMRG simulations. Furthermore, simulated zero-temperature
(local and total) magnetization curves are presented for this molecule.
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5.1.1. Spin model for antiferromagnetic spin rings

Many magnetic properties of antiferromagnetic ring molecules can be described very
well by the Hamiltonian [10,38,39,68]

H = HHeisenberg +Hsingle−ion +HZeeman , (5.1)

with

HHeisenberg =
N∑
i=1

Ji,i+1~si · ~si+1 , N + 1 ≡ 1 , (5.2)

Hsingle−ion = D
N∑
i=1

(szi )
2 , (5.3)

and

HZeeman = gµB ~B · ~S . (5.4)

For many systems, Ji,i+1 = J (giving a uniform model) and |D/J | � 1 [10,38,39,68],
so that D can be neglected in some calculations. In the first part of this chapter we
focus on the uniform Heisenberg Hamiltonian with only one exchange constant and
also neglect the anisotropy.

5.1.2. Rotational band approximation and spin-wave theory

We briefly recall here the basic results of the rotational band approximation and spin-
wave theory [194]. The rotational band approximation has already been described
in a previous chapter (see section 2.2.3). It has been used with some success in the
past, with high accuracy for small bipartite systems such as Fe12 [67]. Since spin-
wave theory and effective Hamiltonians based on the rotational band approximation
are much easier to handle than the full N -spin Hamiltonian, it is of fundamental
interest to test the applicability and accuracy of these approximations.

The basic idea of a rotational band approximation for isotropic antiferromagnetic
spin rings is to use the states |SASBSM〉 as approximations of the true energy
eigenstates. SA and SB are the sublattice spin quantum numbers. In the subspace
with SA = SB = Ns/2 the full Heisenberg Hamiltonian is equivalent to the two-spin
Hamiltonian

HHeisenberg
AB = a1J ~SA · ~SB , (5.5)

with a1 = 4/N . The energies of this Hamiltonian are then given by

EAB(S) =
2J

N

(
S(S + 1)− Ns

2
(Ns+ 2)

)
. (5.6)
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This approximation (of the low-energy spectrum) was shown to be accurate for large
s values and small system sizes [37]. Better results can be obtained if one uses a
“renormalized” a1, which can be found by comparing the low-energy spectrum of the
full Heisenberg Hamiltonian with the spectrum of HHeisenberg

AB [68]. It is also possible
to include a uniaxial single-ion anisotropy of the form Hsingle−ion (see Eq. (5.3)).
This leads to an additional term

Hsingle−ion
AB = b1D

(
(SzA)2 + (SzB)2

)
, (5.7)

where b1 can be calculated either numerically or using first-order perturbation theory
[68]. The Hamiltonian HHeisenberg

AB +Hsingle−ion
AB operates in a Hilbert space with the

dimension (Ns + 1)2. For N > 2, the dimension is much smaller than the Hilbert
space dimension associated with the full Hamiltonian, which is (2s + 1)N , so that
the effective two-spin Hamiltonian is much easier to handle.

If one also uses the approximation with states |SASBSM〉 where SA and SB are
not coupled to their maximum values, the following analytical results can be derived
for the isotropic model in this approximation (see Secs. 2.2.3, 2.3.2 and Ref. [37]).
The dynamical correlation functions Szj (ω) =

∑
n |〈0|szj |n〉|2δ(ω−En+E0), which are

related to the simulation of INS measurements, show only two peaks: an excitation
within the lowest rotational band, i.e., from the S = 0 (SA = SB = Ns/2) ground
state to the lowest S = 1 (SA = SB = Ns/2) state, and an excitation to the
next-higher (energetically degenerate) S = 1 states (SA = Ns/2 − 1, SB = Ns/2
or SA = Ns/2, SB = Ns/2 − 1). The excitation energies are ∆EAB1 = 4J/N and
∆EAB2 = ( 4

N +2s)J . The corresponding transition matrix elements Wn ≡ |〈0|szj |n〉|2,
i.e., the heights of the peaks of the dynamical correlation function, are given by

WAB
1 =

1

3
s

(
s+

2

N

)
, WAB

2 =
1

3
s

(
1− 2

N

)
. (5.8)

Here, a summation over the matrix elements of transitions from the ground state to
energetically degenerate excited states |n〉AB1 is assumed, i.e.,

WAB
2 =

∑
n: EABn =EAB2

|AB〈0|szj |n〉AB |2 . (5.9)

It must be noted here that the large degeneracy which exists in the rotational band
approximation cannot be expected for the real eigenvalues (cf. Refs. [12, 37]). This
simple picture is a useful approximation only for the lowest states in the S subspaces
and for N ≤ 6. The higher-lying S = 1 energy levels of the full N -spin Hamiltonian,
i.e., the S = 1 excitations above the lowest triplet, have a much richer structure and
are better describable in terms of spin waves for N > 6 [12, 37, 192]. In the linear

1|n〉AB denotes a state of the rotational band approximation, i.e., a state of the form |SASBSM〉.
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spin-wave theory, which starts from the assumption of an ordered ground state, the
excitation energies ω = E−E0 of the lowest S = 1 states are given by [37,194,195]

ωLSWT(N, s, k) = 2sJ

∣∣∣∣sin(2πk

N

)∣∣∣∣ , (5.10)

where k = 0, 1, . . . , N−1 denotes the shift quantum number. However, this approach
neglects the singlet-triplet gap which is present in the spectrum of any finite ring
and disappears for half-integer s only in the thermodynamic limit. In Ref. [37] it was
proposed to correct equation (5.10) using the singlet-triplet gap ∆AB ≡ EAB(S =
1)− EAB(S = 0) = 4J/N predicted by the simple rotational band model:

ωLSWT+RB(N, s, k) ≡ ωLSWT(N, s, k) + ∆AB . (5.11)

It is furthermore possible to include higher-order effects that are neglected in the
linear spin-wave theory via the Oguchi correction factor (1+r/s) with r = 1/2−1/π
[196,197]:

ωRSWT+RB(N, s, k) ≡
(

1 +
r

s

)
ωLSWT(N, s, k) + ∆AB . (5.12)

Linear spin-wave theory also allows for a calculation of the dynamical correlation
function Sz(k, ω) =

∑
n |〈0|Sz(k)|n〉|2δ(ω−En+E0) (also called dynamical structure

factor), with Sz(k) =
∑

j exp(2πijk/N)szj [195]:

SzLSWT(k, ω) =
Ns

3

∣∣∣∣tan

(
πk

N

)∣∣∣∣ δ(ω − ωLSWT(N, s, k)) . (5.13)

In the following section we calculate energy levels and transition matrix elements of
uniform antiferromagnetic Heisenberg rings using DMRG and analyze the accuracy
of the rotational band approximation and the spin-wave theory results described
above. We particularly focus on the case N = 18 and s = 5/2, which is relevant for
Fe18.

5.2. DMRG calculations for uniform antiferromagnetic
Heisenberg rings

5.2.1. Accuracy of the rotational band approximation for spin rings

Using DMRG, we have calculated the energies of the ground state and the first
excited state, and the corresponding transition matrix elements of antiferromagnetic
Heisenberg rings for several lengths N and spin quantum numbers s. The results
are summarized in Tab. 5.1.
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N
s 6 12 18 24 30

-2.803 -5.387 -8.023 -10.670 -13.322 E0/J
1/2 0.685 0.356 0.241 0.183 0.147 ∆E/J

0.491 0.276 0.194 0.150 0.123 norm. weight

-8.617 -16.870 -25.242 -33.641 -42.046 E0/J
1 0.721 0.484 0.432 0.417 0.413 ∆E/J

0.614 0.406 0.298 0.231 0.187 norm. weight

-17.393 -34.131 -51.031 -67.968 -84.919 E0/J
3/2 0.705 0.407 0.300 0.242 0.205 ∆E/J

0.691 0.520 0.430 0.371 0.328 norm. weight

-29.165 -57.408 -85.873 -114.390 -142.927 E0/J
2 0.697 0.391 0.284 0.229 0.195 ∆E/J

0.742 0.598 0.519 0.465 0.425 norm. weight

-43.935 -86.679 -129.703 -172.793 -215.909 E0/J
5/2 0.692 0.378 0.268 0.211 0.176 ∆E/J

0.779 0.654 0.585 0.538 0.503 norm. weight

-61.704 -121.948 -182.532 -243.197 -303.893 E0/J
3 0.688 0.370 0.259 0.202 0.167 ∆E/J

0.807 0.697 0.636 0.594 0.564 norm. weight

-82.473 -163.217 -244.361 -325.601 -406.877 E0/J
7/2 0.685 0.364 0.253 0.196 0.161 ∆E/J

0.828 0.730 0.676 0.638 0.611 norm. weight

-106.241 -210.486 E0/J
4 0.683 0.360 ∆E/J

0.846 0.757 norm. weight

-133.010 -263.754 E0/J
9/2 0.681 0.357 ∆E/J

0.860 0.779 norm. weight

-162.778 E0/J
5 0.679 ∆E/J

0.871 norm. weight

Table 5.1.: Ground state energy E0, energy gap to the first excited state ∆E,
and normalized weight of the transition from the ground state to this state, i.e.,
|〈0|szj |1〉|2/1

3s(s + 1) as calculated using standard DMRG. The two lowest eigen-
states in the M = 0 subspace were targeted for these calculations. Up to 2500
density matrix eigenstates were kept so that the discarded weight is at most of the
order of 10−7. For the calculations on chains with s > 5/2 and N > 12 less density
matrix eigenstates (around 1500) were kept (otherwise, the calculations would have
taken too much computing time). For this reason, the truncated weight is of the
order of 10−6 so that probably not all digits that are shown in the table are accurate
for these parameters.
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5. Antiferromagnetic spin rings

The investigations in this subsection are very similar to those in Refs. [37,191,198].
The gaps were already calculated (quasi-exactly) in Ref. [198] with QMC. Some of
the gaps were also calculated in Ref. [37] using exact diagonalization. In Ref. [191],
the overlap of the rotational band wave functions and the exact wave functions was
calculated. However, in Refs. [37, 191] only rather small systems were investigated
using exact diagonalization whereas Ref. [198] focuses on gaps only (calculated with
QMC) and no transition matrix elements were calculated.

The DMRG results shown in Tab. 5.1 are compared with the predictions of the
rotational band model in the following. Fig. 5.1 shows the relative difference between
the rotational band prediction for the singlet-triplet gap, which is ∆AB = 4J/N , and
the DMRG result ∆DMRG for the full N -spin Heisenberg Hamiltonian.

0 1 2 3 4 50 . 0 1

0 . 1

1

 

 

(∆
DM

RG
−∆

AB
)/∆

DM
RG

s

 N  =  6
 N  =  1 2
 N  =  1 8
 N  =  2 4
 N  =  3 0

Figure 5.1.: Relative difference of the singlet-triplet gap as predicted by the simple
rotational band approximation (∆AB = 4J/N) and the quasi-exact gap as obtained
from DMRG calculations (∆DMRG) as a function of the single-spin quantum number
s. The calculations were performed for several ring lengthsN . The parameters which
were used for the DMRG calculations are described in the caption of Tab 5.1. The
lines are a guide to the eye.

It can be seen for s > 1/2 that the smaller the system size and the larger the
spin quantum number, the better is the rotational band approximation. For N = 4
the rotational band approximation is exact. These results reproduce the findings
of Refs. [37, 198]. In most cases, the DMRG results can be considered as quasi-
exact with the errors being smaller than the symbol size. For s = 1, the rotational
band approximation is particularly inaccurate. This behavior is a consequence of
the Haldane gap [143, 144], i.e., the finite spin gap of the s = 1 spin ring in the
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5.2. DMRG calculations for uniform antiferromagnetic Heisenberg rings

thermodynamic limit (cf. Sec. 3.8.1). In the rotational band approximation, the
gap always goes to zero in the thermodynamic limit.

In Ref. [198], the approximation ∆ ≈ ΩN−α was proposed for the singlet-triplet
gap of half-integer spin chains as a function of the number of spins. This formula was
found to give a very good approximation for large system sizes N and half-integer
s > 1/2. For small N , deviations from this behavior occurred. Ω and α are functions
of the spin quantum number s (Ω = 2.73J and α = 0.781 for s = 5/2). The simple
rotational band approximation predicts Ω = 4J and α = 1.

4 8 1 2 1 6 2 0 2 4 2 80 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1

s  =  5 / 2

∆/J

N

 D M R G  d a t a
 Ω N - α

Figure 5.2.: Singlet-triplet gap as obtained by DMRG calculations for s = 5/2 as a
function of the number of spins N . The line shows the function ∆(N) = ΩN−α with
Ω = 2.73 J and α = 0.781 that was proposed in Ref. [198] to describe the behavior
of the gap as a function of the chain length. The parameters which were used for
the DMRG calculations are described in the caption of Tab 5.1.

In Fig. 5.2 we compare our results for s = 5/2, the case that is relevant for FeIII

spin rings, with the function ∆(N) = ΩN−α that was proposed in Ref. [198]. For
N > 10, the results nearly perfectly coincide. This can be expected since both
DMRG and QMC are very accurate numerical methods for spin rings with an even
N .

As a next step we test predictions of the rotational band approximation for the
squared transition matrix element W1 = |〈0|szj |1〉|2, see Eq. (5.8). Here, |1〉 denotes
the first excited state, i.e., the lowest triplet state. The results are shown in Fig. 5.3
As for the singlet-triplet gaps, the rotational band approximation yields better re-
sults for small system sizes and large spin quantum numbers. For s = 5/2 and
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Figure 5.3.: Relative deviation of the squared transition matrix elements W1 =
|〈0|szj |1〉|2 predicted by the simple rotational band model (WAB

1 ) from the DMRG

results (WDMRG
1 ). The left part of the figure shows the relative error as a function of

s for different chain lengths. The right part shows the relative deviation as a function
of N for fixed s = 5/2. For the parameters used for the DMRG calculations, see the
caption of Tab 5.1. The lines are a guide to the eye.

N = 18, the relative deviation of WAB
1 (i.e., the rotational band model result) from

the (quasi-exact) DMRG result is 27 %. In Ref. [191] it was shown for spin rings
that the overlap between the exact wave functions and those of the rotational band
approximation is already smaller than 0.7 for s = 5/2 and N = 8 and decreases with
increasing N , so that for N = 18 and s = 5/2 accurate results cannot be expected
anymore. For the singlet-triplet gaps the rotational band approximation yields bet-
ter results than for the transition matrix elements, but the deviation is still 17 % for
N = 18 and s = 5/2. However, the rotational band approximation can be modified
to give more accurate results for the gap (see Refs. [10, 68] and the introductory
section of this chapter).

5.2.2. Calculation of the low-energy spectrum using standard and
dynamical DMRG

In this subsection we first describe the procedure we have used to calculate the
S = 1 low-energy spectrum (which can be probed with INS) and to infer the quan-
tum numbers of the energy levels of the (uniform and antiferromagnetic) spin ring
with s = 5/2 and N = 18 using DMRG and DDMRG. We then compare our results
with spin-wave theory. We focus exclusively on the case s = 5/2 and N = 18, but
everything that follows is also transferable to spin rings with other spin quantum
numbers or lengths. In the previous subsection only the lowest two energy eigenval-
ues were calculated using standard DMRG. In this subsection we calculate further
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(higher-lying) energy levels. Dynamical DMRG (DDMRG) allows for the calculation
of dynamical correlation functions also in the higher-energy regime using only four
target states (cf. chapter 3), but with a separate run for every ω. On the other hand,
standard DMRG allows for the direct calculation of low-lying energy levels and the
corresponding wave functions, but the states for all energy eigenvalues up to the
desired one have to be simultaneously targeted unless they lie in different symmetry
sectors and the DMRG algorithm employs these symmetries. The DMRG algorithm
developed for this thesis and the ALPS DMRG program [154] both use only M as
a good quantum number. This has the consequence that standard DMRG can (at
least for the s = 5/2, N = 18 system) only be used for the calculation of very few
of the energetically lowest S = 1 excitations (cf. Fig. 5.4). The more states are si-
multaneously targeted, the more density matrix eigenstates have to be kept (which
increases the computing time) in order to obtain sufficiently accurate results.

Before we proceed, we describe some properties of spin rings and the dynamical
correlation functions that are considered in the following. Many of these properties
were already described in the previous chapters (cf. Secs. 2.2.3 and 3.8.5). Besides
S and M , the shift quantum number k is also a good quantum number of spin rings.
The mirror symmetry enforces a k ↔ N − k symmetry for k 6= 0, N/2 [37]. For the
(D)DMRG calculations, we consider the following dynamical correlation functions
(at zero temperature):

Szj (ω) =
∑
n

|〈0|szj |n〉|2δ(ω + E0 − En) (5.14)

and

Sz(k, ω) =
∑
n

|〈0|Sz(k)|n〉|2δ(ω + E0 − En) , (5.15)

where

Sz(k) =
∑
j

e
2πikj
N szj . (5.16)

|n〉 denotes the energy eigenstate belonging to the eigenvalue En. The nondegenerate
ground state |0〉 of an antiferromagnetic Heisenberg spin ring with N = 18 and
s = 5/2 has S = 0 and k0 = N/2 = 9 [69]. For the matrix element 〈0|Sz(k)|n〉, the
following selection rules hold [75]:

∆k = k +Nz , z ∈ Z , (5.17)

∆S = 1 , (5.18)

where ∆k = kn−k0. kn denotes the shift quantum number of energy eigenstate |n〉.
For the matrix elements 〈0|szj |n〉 only the second selection rule holds. Additionally
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we have the selection rule ∆M = 0 since we use (sums of) sz operators as the
transition operators. Therefore, each peak of the dynamical correlation functions
Szj (ω) and Sz(k, ω) corresponds to a transition from the ground state to an S = 1
state, and the excitation energies and the transition matrix elements can be inferred
from the peak positions and heights. |〈0|szj |n〉|2 and |〈0|Sz(k)|n〉|2 are related via2

|〈0|Sz(k)|n〉|2 = N2|〈0|szj |n〉|2 , (5.19)

if kn − k0 = k +Nz, z ∈ Z, so that

Szj (ω) =
1

N2

∑
k

Sz(k, ω) . (5.20)

Furthermore, the following sum rules hold, cf. [37, 75]:∫ +∞

−∞
dω Szj (ω) =

∑
n

|〈0|szj |n〉|2 =
1

3
s(s+ 1) =

35

12
(5.21)

and ∑
k

∫ +∞

−∞
dω Sz(k, ω) =

N2

3
s(s+ 1) = 945 . (5.22)

These sum rules also hold if the delta functions are replaced by Lorentzians with a
finite broadening η, as will be done in the following, since in DDMRG calculation a
finite broadening is always imposed.

In order to test the accuracy of our results in the low-energy sector, we compare
the dynamical correlation functions as obtained from standard DMRG and DDMRG
calculations (as already done in chapter 3 for a numerically much less demanding
s = 1/2 chain). We use the standard DMRG method for the calculation of the lowest
excitation energies and the transition matrix elements |〈0|szj |n〉|2 and |〈0|Sz(k)|n〉|2
in the M = 0 subspace. We also calculate the lowest energy eigenstates in the
M = 1 and M = 2 subspaces. Although we do not use S or k as a good quantum
number, it is possible to infer these quantum numbers for the excited states due to
the knowledge of the ground state quantum numbers, the selection rules, and the
degeneracies of the eigenvalues.

The S quantum numbers of the energy levels shown in Fig. 5.4 can be deduced
from the degeneracies of the energy levels with respect to the M quantum numbers.
An energy eigenstate with the quantum number S appears in all M subspaces with
|M | ≤ S. Furthermore, the transition matrix elements indicate which energy levels
are S = 1 states.

2This relation can be derived using Eq. (4) of Ref. [37].
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Figure 5.4.: The low-energy spectrum of an antiferromagnetic spin ring with N = 18
and s = 5/2 as obtained by DMRG calculations. We have used both the ALPS
DMRG and our self-written program for these calculations. The lowest 8 energy
eigenvalues were calculated in the M = 0, 1, 2 subspaces. The arrows indicate the
transitions from the ground state to the lowest S = 1 states, and the gray boxes
mark the lowest S = 1 triplets. For these calculations up to m = 3000 density
matrix eigenstates were kept and the truncated weight is of the order of 10−8. The
numbers next to the energy levels denote the shift quantum numbers of the states.

k ω/J W

9 0.2683 553.08
8,10 1.9718 77.08
1,17 2.0083 2.07

Table 5.2.: Transition matrix elements W ≡ |〈0|Sz(k)|n〉|2 and energy differences
ω ≡ En − E0 between the ground state and the lowest S = 1 states. 8 energy
eigenstates had to be simultaneously targeted in the M = 0 subspace to get these
results (cf. Fig. 5.4). k = (kn−k0 +18) mod 18 is the shift quantum number relative
to the ground state. k0 denotes the shift quantum numbers of the ground state and
kn the shift quantum numbers of the excited states.

If the transition matrix elements are known, the dynamical correlation functions
can be calculated according to their definitions (see Eqs. (5.14) and (5.15)), with the
delta functions replaced by Lorentzians with finite width η. We can then compare
these results with the results of DDMRG calculations. The DDMRG method directly
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5. Antiferromagnetic spin rings

calculates the value of a dynamical correlation function with finite broadening for
a fixed value of ω. Fig. 5.5 shows the dynamical correlation functions Sz(k, ω) for
k = 1, 8, 9 resulting from standard and dynamical DMRG calculations.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 50 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 

 

no
rm

aliz
ed

 Sz (k,
ω

)

ω/ J

k  =  9 k  =  1k  =  8

Figure 5.5.: Dynamical correlation functions Sz(k, ω) (see Eq. (5.15)) for the N = 18,
s = 5/2 spin ring as calculated using standard DMRG (solid lines) and DDMRG
(symbols) with a Lorentzian broadening η = 0.1J . For clarity, the results are nor-
malized to their respective maximum value. The dashed lines indicate the energies
as obtained from standard DMRG. The standard DMRG curves are based on the re-
sults shown in Tab 5.2. In the DDMRG calculations, 800 density matrix eigenstates
have been kept and the truncated weight is at most of the order of 10−5.

The correlation functions are normalized to one since otherwise their heights would
differ by several orders of magnitude. One can see a nearly perfect agreement be-
tween the two approaches. The DDMRG method has the great advantage that
one can also gain information about higher-lying S = 1 excitations. The standard
DMRG method is limited to low-lying excitations because otherwise too many states
would have to be simultaneously targeted.

As a next step the DDMRG method was used to calculate the dynamical corre-
lation functions Sz(k, ω) for the other relevant k values and several ω values with
the goal to extract the excitation energies and the corresponding transition matrix
elements. The results are shown in Fig. 5.6. The DDMRG data points were then
fitted with Lorentzians of the form

fη,x0,W (x) =
W

π

η

(x− x0)2 + η2
(5.23)

to obtain the transition matrix elements and the positions, i.e., the excitation ener-
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Figure 5.6.: The symbols show Sz(k, ω) which was calculated for several ω values
and several shift quantum numbers k using DDMRG for the N = 18, s = 5/2 spin
ring. The lines show Lorentzians with a fixed width η = 0.1J (see Eq. (5.23)) that
were used to fit the DDMRG data. These fits yield the excitation energies and the
squared transition matrix elements. Note that in Fig. 5.5 the lines were the result of
a separate standard DMRG calculation and not the result of a fit. For the DDMRG
calculations, up to m = 800 density matrix eigenstates were kept and six complete
sweeps per frequency point were carried out.

gies. However, this procedure yields reliable results only if the spectrum is not too
dense, i.e., if there is only one significant excitation for a specific k or a large enough
gap to the next excitation. It turns out that this is the case for the system that we
investigate here. Otherwise, it would be necessary to use fits with more than one
Lorentzian.

Another possibility to calculate Sz(k, ω) using DDMRG is to calculate the Fourier
transformation of the dynamical correlation functions

Szzjj′(ω) =
∑
n

〈0|szj |n〉〈n|szj′ |0〉δ(ω − En + E0) (5.24)

for all j and j′, since

Sz(k, ω) =
∑
j,j′

e
2πi(j−j′)k

N Szzjj′(ω) . (5.25)

This approach (i.e., calculating Szzjj′(ω) and Fourier transforming the data) has the
advantage that one only needs to consider a fixed j and can obtain the values of
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the dynamical correlation functions (for fixed ω) for all j′ in a single DDMRG
calculation. For a uniform ring, only one j needs to be considered. When Sz(k) is
used as the transition operator, a separate calculation is needed for every k. However,
we expect the approach with Sz(k) as the transition operator to be more accurate.
We have compared both approaches to validate the results for the energy levels of
the spin ring as a function of k. The relative deviation between both approaches
was smaller than 6 % for the transition matrix elements and smaller than 0.5 % for
the excitation energies.

We note here that using DDMRG to obtain the energy spectrum can only un-
cover excitations for which the transition matrix elements from the ground state are
nonzero and which are not hidden by other transitions with larger weight. However,
only those excitations with nonzero weight are relevant for INS simulations. For the
calculation of, e.g., the heat capacity one would need all energy eigenvalues.

The results of the fitting procedure are summarized in Tab. 5.3. As before, the
k quantum numbers shown in that table are not the absolute quantum numbers of
the excited states, but the quantum numbers relative to the ground state.

k ω/J W

2,16 3.64 4.68
3,15 4.86 7.79
4,14 5.51 11.64
5,13 5.50 16.98
6,12 4.84 25.13
7,11 3.60 39.53

Table 5.3.: Relative k quantum numbers, excitation energies ω = E−E0 and squared
transition matrix elements W (for the transitions from the ground state) for the
uniform N = 18, s = 5/2 spin ring as obtained by DDMRG calculations. The
table summarizes the results of the fitting procedure shown in Fig. 5.6. The errors
are difficult to estimate. The results are of course not numerically exact, but we
estimate the relative errors of the energies to be much smaller than 1 % and the
relative errors of the weights to be smaller than 10 %. These estimates are based on
a comparison of the two DDMRG approaches described in the text and calculations
with different m values.

Summing up all weights shown in Tabs. 5.2 and 5.3 gives
∑

kW (k) ≈ 923. Com-
paring this with the sum rule, Eq. (5.22), shows that approximately 98 % of all
weight is captured by the excitations shown in these two tables. However, the esti-
mation of the error of this quantity resulting from the (D)DMRG approach is rather
difficult.

The excitation energies as function of the (relative) shift quantum number are
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5.2. DMRG calculations for uniform antiferromagnetic Heisenberg rings

shown in Fig. 5.7. We have found additional excitations resulting in more than
one peak for a fixed k, but these excitations have much smaller weights, i.e., much
smaller transition matrix elements with respect to the ground state. We will come
back to these features in the next subsection.
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/J

k
Figure 5.7.: S = 1 excitation energies of the uniform N = 18, s = 5/2 antiferromag-
netic spin ring as a function of the shift quantum number (relative to the ground
state) as obtained by standard and dynamical DMRG calculations (symbols). The
lines show some simple spin-wave theory results (see subsection 5.1.2). The gray
symbols denote excitations of the system that cannot be described by the simple
spin-wave approaches presented in Sec. 5.1.2.

In Fig. 5.7, we also show the predictions of the different spin-wave approaches
described in subsection 5.1.2. The best agreement is obtained if the Oguchi correc-
tion and the singlet-triplet gap as predicted by the simple rotational band model
are taken into account [25].

The comparison of the weights (the squared transition matrix elements) with the
linear spin-wave theory result is shown in Fig. 5.8. Apart from the divergence at
k = 9, an excellent qualitative agreement can be seen. We can conclude that the
S = 1 excitations in the uniform spin chain with N = 18 and s = 5/2 show many
features of spin waves [25]. These results are in full agreement with the findings of
Ref. [37], where the following general structure of the spectrum of antiferromagnetic
spin rings was proposed:

• The energetically lowest states in the S subspaces are well described by the
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Figure 5.8.: Squared transition matrix elements for the transitions from the ground
state to the lowest S = 1 states as obtained by standard and dynamical DMRG
calculations (symbols). The line shows the result from linear spin-wave theory [195].

rotational band approximation. They have the quantum numbers k = 0 or
k = N/2.

• The N − 2 energetically next-higher states in the S = 1, 2, . . . subspaces with
quantum numbers k = 1, 2, . . . , N/2− 1 (and the corresponding N − k states)
are well described by spin-wave theory.

• The states which lie energetically above the spin-wave states are not relevant
for low-temperature INS spectra since the squared transition matrix elements
are much smaller than for the rotational band or spin-wave states.

Fig. 5.9 shows a comparison of the dynamical correlation function Szj (ω) as cal-
culated by DDMRG with a result from a combination of SWT and the rotational
band model. Since N2Szj (ω) =

∑
k S

z(k, ω), we use the following approach:

Szj (ω) ≈ Aδ (ω −∆AB) (5.26)

+
∑

k: k 6=0N/2

s

3N

∣∣∣∣tan

(
πk

N

)∣∣∣∣ δ(ω − ωRSWT+RB(k)) ,

where A is chosen such that the sum rule (5.21) is obeyed and N = 18, s = 5/2.
This ansatz can be explained as follows. The energy of the lowest S = 1 excitation
is approximated by the simple rotational band model (∆AB = 4J/N). For the other
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Figure 5.9.: Comparison of the dynamical correlation function Szj (ω) for the s = 5/2,
N = 18 spin ring as calculated using DDMRG (black) and as obtained using a
combination of spin-wave theory and rotational band approximation (red), see text
for more details about this approximation. For the DDMRG calculations up to
m = 850 density matrix eigenstates were kept (depending on ω) and the broadening
is η = 0.1J .

excitations (with k 6= 0, N/2) we use the spin-wave theory result, Eq. (5.13), with
ωRSWT+RB (see Eq. (5.12)) instead of ωLSWT.

The agreement of the DDMRG results based on the full Hamiltonian and the
approximate dynamical correlation function as proposed above is not perfect but
nonetheless very good. This good agreement suggests that an approach that com-
bines the rotational band model and spin-wave theory is well suited for large spin
rings.

5.2.3. Additional excitations

A detailed analysis of the dynamical correlation functions Sz(k, ω) for the s = 5/2,
N = 18 spin ring reveals additional peaks, i.e., small peaks that appear in addition
to the large peaks that are well described by the simple spin-wave approaches. How-
ever, it is difficult to distinguish between numerical artifacts and “real” excitations.
Fig. 5.10 shows two additional peaks that are found for k = 8 and k = 9 and clearly
not numerical artifacts.

A fit with a sum of two Lorentzians yields ω = 5.47J , W = 1.93 for k = 8 and
ω = 3.76J , W = 3.91 for k = 9. These excitations have much less weight than
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Figure 5.10.: Details of the dynamical correlation function Sz(k, ω) for k = 8 and
k = 9. The dynamical correlation functions were obtained by Fourier transforming
the Szzjj′(ω) data. For the DDMRG calculations up to 850 density matrix eigenstates
were retained. The arrows indicate the additional peaks that cannot be described
by the spin-wave theory results described in the text.

the main k = 8 and k = 9 excitations for which the weights are 77.08 and 553.08.
Adding these weights to the sum of the weights of all previously found excitations
(see Tabs. 5.2 and 5.3) leads to

∑
kW (k) ≈ 935. The sum rule predicts a value of

945, so that approximately 99 % of all excitations that have nonzero weight have
been found using the procedure described in this and the previous subsection.3

5.2.4. Dynamical correlation function for an excited reference state
(S = 2 excitations)

Up to now we have calculated the dynamical correlation function for the s = 5/2,
N = 15 spin ring at zero temperature, i.e., with the ground state |0〉 as the “reference
state”. “Reference state” means that only transitions from this state are accounted
for in the dynamical correlation functions. Since the ground state of spin-s antiferro-
magnetic Heisenberg rings with an even number of spins has S = 0, only transitions
to states with S = 1 and M = 0 contribute to the dynamical correlation functions
Szj (ω) and Sz(k, ω). To gain information about excitations from states other than
the ground state, we use an excited state as the reference state. Such excitations are

3This value is based on the assumption that the (D)DMRG results are exact. The error of the
results is, however, difficult to estimate.
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5.2. DMRG calculations for uniform antiferromagnetic Heisenberg rings

relevant for dynamical correlation functions at temperatures T > 0. We consider
the M = 0 and M = 1 components of the lowest S = 1 energy eigenstate for this
purpose and employ the DDMRG technique to calculate

Sz,rj (ω) =
∑
n

|〈r|szj |n〉|2δ(ω − En + Er) , (5.27)

where |r〉 denotes the reference state with the energy Er. As in all previous cal-
culations, a finite broadening is introduced. Choosing the M = 0 component of
the energetically lowest S = 1 state as the reference state yields different results
than choosing the M = 1 component as the following calculations show. Let the
reference state |r〉 have the quantum numbers S and M . We denote a state with
these quantum numbers |SM〉. Using the Wigner-Eckart theorem, we can calculate
for which S′ and M ′ the matrix elements 〈SM |szj |S′M ′〉 are zero.

The Wigner-Eckart theorem tells us that [73]

〈SM |szj |S′M ′〉 = (−1)S−M
(

S 1 S′

−M 0 M ′

)
〈S||szj ||S′〉 , (5.28)

where 〈S||szj ||S′〉 denotes a reduced matrix element (which is independent of M and

M ′) and

(
S 1 S′

−M 0 M ′

)
is a 3j symbol. If we now consider the case S = S′ =

1, M = M ′ = 0 and calculate the 3j symbol explicitly, we find that it is zero.
Furthermore, only transitions with ∆M = 0 are possible. This has the following
consequences: If we use an energy eigenstate |S = 1,M = 0〉 as the reference state,
we only probe transitions to states from the S = 0 and S = 2 subspaces (i.e.,
∆S = ±1). Transitions to S = 0 states are not possible for a S = 1, M = 1
reference state. Transitions to S = 2 states are possible for both reference states.
We can calculate the ratio of the squared transition matrix elements for transition
from the two reference states to the same S = 2 multiplet:

|〈S = 1,M = 0|szj |S′ = 2,M ′ = 0〉|2

|〈S = 1,M = 1|szj |S′ = 2,M ′ = 1〉|2
=

4

3
. (5.29)

Using the S = 1, M = 0 state as the reference state requires the DDMRG program
to be slightly modified. One needs to simultaneously target both the ground state
and the first excited state in the M = 0 subspace. In our calculations, both energy
eigenstates are targeted with equal weight. The first excited state is then used for
the calculation of the state szj |r〉 and of the correction vector. The results of the
DDMRG calculations are shown in Fig. 5.11.

It was found in Ref. [37] for smaller spin rings that the S > 1 energy levels have
virtually the same structure as the S = 1 energy levels. Fig. 5.11 also contains
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Figure 5.11.: Dynamical correlation functions of the N = 18, s = 5/2 spin ring for
different “reference states” (see text). The arrows indicate transitions to S = 2
states. That these peaks of the correlation function for the S = 1,M = 0 reference
state have more weight than those of the function with the S = 1,M = 1 reference
state can be explained using Eq. (5.29). For the assignment of the other peaks, see
text and Fig. 5.12. The gray dashed curve is the same as the black curve in Fig. 5.9.

the dynamical correlation function with the (S = 0) ground state as the reference
state. One can see that for every peak of this function (corresponding to an S =
0 → S′ = 1 transition), the dynamical correlation function with the reference state
with S = 1, M = 1 has one peak on the left and one on the right. The peaks on
the left correspond to transitions from the energetically lowest S = 1 state to other
S = 1 states, since the peaks are approximately shifted by the value of the singlet-
triplet gap, which is ∆0→1 = 0.2683. The peaks shifted to the right correspond
to transitions from the lowest S = 1 state to S = 2 states. The gap between the
energetically lowest S = 1 and S = 2 states is ∆1→2 = 0.5339. This value can
easily be calculated using DMRG and is approximately twice as large as the singlet-
triplet gap. Based on these results the spectrum can be deduced, which is shown in
Fig. 5.12.

We mention that the dynamical correlation functions show some very small addi-
tional features, e.g., around ω = 3.3J , for which it is not clear whether they corre-
spond to real excitations or are numerical artifacts. Here, more extensive numerical
calculations would be needed to clarify this question. However, these features are
extremely small and would thus not be relevant for the simulation of INS spectra.
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Figure 5.12.: Schematic low-energy spectrum of the uniform antiferromagnetic
Heisenberg ring with N = 18 and s = 5/2. The arrows indicate the possible transi-
tions from the ground state (dashed gray arrows), the lowest S = 1, M = 1 energy
eigenstate (red), and the lowest S = 1, M = 0 state (black).

5.3. Fe18

In this section, we focus on the molecule [Fe18(pdH)12(O2CEt)6(NO3)6] (in short
Fe18, see Fig. 5.13) [9], which is the largest iron spin ring synthesized to date. Since it
consists of N = 18 spins with s = 5/2, the Hilbert space dimension is about 1014 and
thus much too large for exact diagonalization methods on present-day computers. In
Ref. [10] the effective two-spin Hamiltonian HHeisenberg

AB +Hsingle−ion
AB (see Eqs. (5.5)

and (5.7)) was used to calculate magnetic properties of this system in the low-energy
regime. Ref. [10] focused on an investigation of the lowest rotational band, i.e., on
the energetically lowest states in the total spin (S) subspaces. In contrast, the
experimental INS results [25, 193] that are shown in the next subsection focus on
higher-lying excitations. We use standard and dynamical DMRG methods (applied
to the full 18-spin Hamiltonian) to calculate the part of the energy spectrum that is
relevant for the simulation of INS experiments. The calculated energy spectra and
INS intensities are then compared with the experimental data. It turns out that a
uniform model as discussed in the previous section cannot explain the experimental
results. However, using a more general model with two different coupling constants,
we find a single set of parameters that leads to an excellent reproduction of the
experimental data [25]. All experimental data that are shown in this section were
provided by J. Nehrkorn from the “Molecular Nanomagnets” group of O. Waldmann,
Universität Freiburg.
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Figure 5.13.: Depiction of the molecule [Fe18(pdH)12(O2CEt)6(NO3)6], in short Fe18

(Fe: green, O: red, N: blue, C: gray, and H: white) [9, 25]. It consists of N = 18
antiferromagnetically coupled FeIII ions (s = 5/2). This molecule exhibits crystallo-
graphic C6 symmetry.

5.3.1. Experimental results

The Fe18 compound that is investigated in this chapter was first reported in Ref. [9]
and a singlet ground state was deduced based on susceptibility measurements. Fur-
ther experimental and theoretical investigations on this compound were carried out
in Ref. [10], where among other things the low-temperature magnetization curve, the
position of the magnetization steps, and low-energy INS data were measured and
analyzed. The low-energy INS spectrum shows two cold peaks, i.e., peaks which
result from transitions from the ground state to excited states. The peaks are lo-
cated at 0.3 meV (called “peak Ia” in the following) and 1.0 meV (“peak Ib”) and
correspond to transitions from the S = 0 ground state to the anisotropy-split lowest
S = 1 state. If anisotropic terms are present, S is not a good quantum number
anymore, of course. However, for small anisotropy D it is possible to approximately
assign a total spin quantum number S to a state.

Very recently, new high-energy INS and susceptibility measurements were per-
formed on Fe18 powder samples [25]. The high-energy INS data were measured at
the direct time-of-flight spectrometer FOCUS [199] at the Paul Scherrer Institut
(Villigen, Switzerland) with fixed incoming neutron wavelengths λ = 3.2 Å and
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2.26 Å. The experimental resolution is 0.43 meV for λ = 3.2 Å and 1.1 meV for
λ = 2.26 Å. The INS data are shown in Fig. 5.14.

An analysis yields cold peaks that are located approximately at 3.0 meV (II),
8.5 meV (III), and 12.0 meV (IV) [25]. The small feature at 6 meV is probably
a spurion or a phonon excitation. The background due to phonon scattering was
estimated using the so-called Bose correction which has already been successfully
applied to other magnetic molecules [192,200].

Effective two-spin Hamiltonian: As already noted in the introduction of
this section, the effective two-spin Hamiltonian HHeisenberg

AB + Hsingle−ion
AB was used

in Ref. [10] for Fe18 to simulate low-energy INS data (peaks Ia and Ib) and the
low-temperature magnetization curve. The parameters found in Ref. [10] are a1J ≈
0.44 meV and b1D ≈ 0.0018 meV. These values can be related to the parameters J
and D of the uniform ring Hamiltonian HHeisenberg + Hsingle−ion (with N = 18 and
s = 5/2, see Eqs. (5.2) and (5.3)). Using DMRG we have tried to find “optimal”

parameters a1 and b1, such that the low-energy spectra of HHeisenberg
AB + Hsingle−ion

AB

and the 18-spin Hamiltonian HHeisenberg +Hsingle−ion coincide.

For these calculations the ALPS DMRG and exact diagonalization codes [154,155]
were used. We have proceeded in two steps: a1 is determined by simply taking
the value of the singlet-triplet gap of the full Heisenberg Hamiltonian (without
anisotropy) with J = 1. For the estimation of b1, we directly compare (for fixed a1)

the spectra of the dimer Hamiltonian HHeisenberg
AB + Hsingle−ion

AB and the full Hamil-
tonian (with anisotropy) for several values of b1 and D. We obtain a1 = 0.26826,
calculated with up to m = 3000 density matrix eigenstates per block so that the
truncated weight is smaller than 10−9. Fig. 5.15 shows the results of calculations
for J = 1 and three different D values. (D = 0.016 corresponds to the |D/J | ratio
which was estimated for Fe18 in Ref. [10].) In the plot, the gaps between the ground
state and the two lowest excited states (∆E1 = E1−E0 and ∆E2 = E2−E0) of the
full Hamiltonian and of the effective two-spin Hamiltonian are compared.

It can be seen that for b1 ≈ 0.063 (rounded to two significant digits) a very
good agreement with absolute errors smaller than 0.005 is obtained. A perfect
agreement cannot be obtained for D 6= 0 since a1 has been fixed. As expected,
however, the agreement becomes better for smaller values of D. Our final results
are a1 = 0.26826 and b1 = 0.063. (The simple rotational band approximation would
give a1 = 2/9 ≈ 0.22222.)

Using the optimal values for a1 and b1, the parameters a1J ≈ 0.44 meV and
b1D ≈ 0.0018 meV, which were found in Ref. [10], correspond to J ≈ 1.64 meV, D ≈
0.029 meV for the uniform Heisenberg model with additional anisotropy. However,
as turns out in the next subsection, a uniform model cannot explain the high-energy
INS data.
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a) b)

c) d)

Figure 5.14.: a) Experimental INS spectra with incoming neutron wavelength
λ = 3.2 Å recorded at temperatures of 1.5 (blue symbols) and 75 K (red sym-
bols). The data were summed over all detector banks. The 75 K data are used
to estimate lattice scattering at 1.5 K (gray symbols) which is subtracted from the
1.5 K data to obtain lattice-corrected data (black symbols). The “II” marks an
observed transition and the asterisk a feature that is probably a spurion or a lattice
feature. b) Experimental INS intensity of the (uncorrected) 1.5 K data shown in a)
as a function of momentum and energy transfer. Blue indicates low intensity and
red high intensity. c) Experimental INS spectra with incoming neutron wavelength
λ = 2.26 Å recorded at temperatures of 1.5 (blue symbols) and 75 K (red symbols).
The data were again summed over all detector banks. The 75 K data is used to
estimate lattice scattering at 1.5 K (gray symbols) which is subtracted from the
1.5 K data to obtain lattice-corrected data (black symbols). d) Experimental INS
intensity of the (uncorrected) 1.5 K data shown in c) as a function of momentum and
energy transfer. The labels (“II”, “III”, and “IV”) indicate the observed transitions
and the asterisk a feature that is probably a spurion or a lattice feature. [25, 193]
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Figure 5.15.: Difference between the energy gaps resulting from the dimer Hamil-
tonian HHeisenberg

AB + Hsingle−ion
AB (see Eqs. (5.5) and (5.7)), which follows from the

refined rotational band model, and the energy gaps as obtained by DMRG calcu-
lations for the full 18-spin Hamiltonian HHeisenberg + Hsingle−ion (see Eqs. (5.2) and
(5.3)). ∆E1 denotes the gap between the M = 0 ground state and the energetically
lowest M = 1 state, and ∆E2 denotes the energy gap between the ground state and
the next-higher M = 1 state. For the calculations using the two-spin Hamiltonian
exact diagonalization was used. The lines are a guide to the eye.

5.3.2. Simulation of the high-energy INS data

In the following, we try to fit the experimental high-energy INS data obtained for
λ = 2.26 Å. A formula for the simulation of time-of-flight INS data [78] was given
earlier in this thesis in Sec. 2.3.2. That formula required an integration of the
scattering function over the momentum with the integration limits depending on
the minimum and maximum scattering angles and the energy transfer ω. For the
FOCUS spectrometer the minimum scattering angle is 10◦, and the maximum angle
is 130◦ [199]. We approximate the integral by a sum and use the following simplified
formula for the theoretical simulation of the INS intensity I(ω) [79,80]:

I(ω) ≈
∑′

i

F 2(Qi)S
zz(Qi, ω) , (5.30)

where the Qi are equally distributed with a constant step width ∆Q = Qi+1−Qi in
the interval [Qmin(ω), Qmax(ω)]. F (Q) denotes the form factor of an FeIII ion [80].
DDMRG was used to calculate the functions Szzjj′(ω) for all j, j′, which can then be
used to calculate Szz(Q, ω) (see Eq. (2.35)). The symmetries of the model can be
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5. Antiferromagnetic spin rings

exploited so that – depending on the ansatz for the Hamiltonian – not all j need to
be considered. For example, for the uniform ansatz it suffices to consider one fixed j.
We consider only T = 0 in our calculations and furthermore neglect the anisotropy.
As will be shown later, these approximations are justified.

As a first ansatz we use the uniform Heisenberg model (see Eq. (5.2)), i.e., with
only a single exchange constant J = 1.64 meV, as has been proposed in Ref. [10].
However, a direct comparison of the theoretical with the experimental results (see
Fig. 5.16) shows large discrepancies as regards the high-energy excitations. The
peaks of the simulated curve occur approximately at 0.27J , 2.0J , 3.6J , 4.8J , and
5.5J (cf. the previous section). Therefore it is not possible to find a single J for
which more than two INS peaks can be reasonably reproduced.
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Figure 5.16.: Comparison of the experimental lattice-corrected high-energy INS
data [25, 193] (symbols), which were obtained at T = 1.5 K, with the theoretical
(zero-temperature) INS intensity (black line) calculated on the basis of the uniform
Heisenberg model with J = 1.64 meV. Equation (5.30) was used for the calculation.
The broadening parameter of the theoretical curve is η = 0.1J and thus not adapted
to the experimental resolution. The calculation was performed for excitation ener-
gies up to 12 meV since the analysis of the previous section indicates that all major
peaks lie below 12 meV.

The peaks as calculated using DDMRG are at different positions than the exper-
imentally obtained features. Also, the DDMRG results show no sign of a large peak
at 12 meV. Furthermore, QMC simulations of the susceptibility were performed by
J. Schnack (see Ref. [25]). These calculations also indicate that a “single-J” Heisen-
berg model is not sufficient, since it cannot explain the experimental susceptibility
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5.3. Fe18

and the high-energy INS data.

Figure 5.17.: Part of the Fe18 molecule [25] and illustration of the “two-J model”
(see Eq. (5.31)). The thick blue and black lines shall illustrate the antiferromagnetic
couplings between the FeIII ions, i.e., the s = 5/2 spins. Two coupling constants are
used in this model: J1 (black lines) and J2 (blue lines).

As a next step we have considered a more general Heisenberg model with two
different coupling constants J1 and J2:

Htwo−J =

6∑
i=1

{J1~s3i · ~s3i+1 + J1~s3i+1 · ~s3i+2 + J2~s3i+2 · ~s3i+3} . (5.31)

This more general model is probably more appropriate for the molecule Fe18, which
has C6 symmetry [25], cf. Fig. 5.13. The coupling constants follow the sequence
J1 − J1 − J2 in this model, which has already been successfully used for an Fe18

molecule [184] different from the one that is investigated in this work. However, in
Ref. [184], only the results of susceptibility measurements were analyzed.

Spin-wave theory calculations were performed for this model by N. Ivanov with the
goal of finding parameters for which the experimental peak positions match the spin-
wave excitation energies [25]. In the previous section, we have shown that a combi-
nation of spin-wave theory (SWT) and the rotational band model can approximate
the excitations of the uniform model very well. However, it is a priori not clear how
accurate spin-wave theory is for the “two-J” model. The SWT calculations yielded
two equally good parameter sets, one with J1/J2 ≈ 0.3 and one with J1/J2 ≈ 3 [25].
These ratios were used as a starting point for the DDMRG calculations in which
several parameter sets were tested. However, since the DDMRG calculations are
extremely time-consuming and the calculations have to be performed separately for
each ω, we have, as a first step, calculated the INS intensity with a rather large
broadening η = 0.5 meV and only for some ω values in the regions around the peak
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5. Antiferromagnetic spin rings

positions as found in the experiments. The broadening corresponds to a FWHM
(full width at half maximum) of 1 meV and thus approximately to the experimen-
tal resolution (1.1 meV). Unfortunately, an automized fitting routine could not be
employed due to the complexity of the calculations. We have always tried to fit
the position of peak II very accurately and tested the influence of small parameter
variations from that starting point (and based on the SWT input). We discuss the
influence first for the case J1 > J2. A small variation of J2 affects the complete
spectrum and all peak positions depend approximately linearly on the variation,
whereas a variation of J1 mainly influences the peak positions of the high-energy
spectrum. The low-energy part is nearly unaffected. For the case J1 < J2 the results
are very similar with J1 and J2 simply interchanged in the discussion above.

For some parameter sets we have performed large-scale calculations for enough ω
values to get a nearly continuous curve. In the case J1/J2 ≈ 0.3, only a rather rough
qualitative agreement can be obtained (see left part of Fig. 5.18). The position of
peak II is matched, but the DDMRG spectrum shows an additional feature between
the experimental peaks III and IV. This “three-peak” structure of the high-energy
part of the theoretical spectrum is almost unaffected by small parameter variations.
The best-fit result for the model with J1 < J2 is J1 = 1.42 meV and J2 = 4.57 meV.
As already noted above, these parameters are not the result of an automized fitting
procedure, but were determined “by hand”.

The agreement is much better for the case J1/J2 ≈ 3 (see Fig. 5.18). We obtain
a very good quantitative agreement for the parameter set J1 = 2.88 meV and J2 =
1.02 meV.

Based on the results of parameter variations in the DDMRG calculations, our
error estimate is about 0.15 meV for J1 and about 0.05 meV for J2. The position of
the simulated peak II is mainly determined by J2 (for the case J1 > J2) so that the
smaller error for J2 results from the more precisely measured position of experimental
peak II compared to the positions of peaks III and IV (cf. Fig. 5.14). Within these
error bounds, the positions of all experimental high-energy peaks can be matched in
the DDMRG simulation. The magnetic susceptibility is also reproduced excellently
using these exchange parameters [25]. However, the susceptibility is equally well
reproduced with the parameters J1 = 1.42 meV and J2 = 4.57 meV, so that on the
basis of the susceptibility measurements alone it would not be possible to prefer one
parameter set over the other.

All theoretical spectra that are shown in this section are zero-temperature exci-
tation spectra. However, the high-energy INS experiments were carried out at a
temperature of 1.5 K. The gap between the ground state and the first excited state
was obtained as 0.3 meV in the experiments (peak Ia). For a temperature of 1.5 K
we estimate the ground state population to be larger than 90 %. A finite tempera-
ture leads to the appearance of additional peaks which result from transitions from
excited states. However, the positions of the peaks resulting from transitions from
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Figure 5.18.: Comparison of the experimental lattice-corrected high-energy INS
data [25, 193] (symbols), which were obtained at T = 1.5 K, with the theoret-
ical (zero-temperature) INS intensity (lines) calculated for the two-J model, see
Eq. (5.31). Eq. (5.30) was used for the calculation of the INS intensities. Two
corresponding Szz(Q,ω) plots are shown in appendix A.2. The broadening of the
theoretical curves is η = 0.5 meV, which results in a FWHM of 1 meV and thus
approximately corresponds to the experimental resolution (1.1 meV). The best-fit
results are shown, as well as the influence of small parameter variations (inset). For
the DDMRG calculations, m = 600 states were kept.

the ground state are not affected, only their heights. With such a large ground
state population, transitions from the ground state should clearly dominate and the
comparison of the zero-temperature DDMRG results with the 1.5 K experimental
data is justified.

Besides the finite temperature, we have so far also neglected the single-ion anisotro-
py in our calculations. It was shown in Ref. [192] for a ring molecule with N = 8
and s = 5/2 that the anisotropy mainly influences the lowest S = 1 multiplet and
that the influence on the higher-lying excitations is only very weak. The importance
of anisotropy in Fe18 is investigated in the next subsection.

5.3.3. Influence of the uniaxial anisotropy

Up to now no anisotropy was considered and the DDMRG calculations were per-
formed for an isotropic model. In this subsection, we calculate the low-energy spec-
trum ofHtwo−J+Hsingle-ion (for our best-fit result J1 = 2.88 meV and J2 = 1.02 meV)
for several values of D using the ALPS DMRG program.

To test the influence and find the correct value of D, we first calculate the gaps
between the energies of the ground state and the two next-higher-lying states (∆E1 =
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5. Antiferromagnetic spin rings

E1 − E0 and ∆E2 = E2 − E0). In the INS experiments the corresponding peaks
were observed at 0.3 meV (peak Ia) and 1.0 meV (peak Ib) [10]. Now, a value of D
has to be found such that ∆E1 ≈ 0.3 meV and ∆E2 ≈ 1.0 meV.

D [meV] ∆E1 [meV] ∆E2 [meV] χ2 [(meV)2]

0.029 0.29944 0.98401 2.56083 · 10−4

0.030 0.29736 1.00321 1.72479 · 10−5

0.031 0.29537 1.02233 5.20005 · 10−4

Table 5.4.: The excitations from the ground state to the next M = 0 state and the
lowest M = 1 state as calculated using DMRG for J1 = 2.88 meV, J2 = 1.02 meV,
and several D values (using Htwo−J +Hsingle-ion). The excitations are compared with
the experimentally obtained position of peaks Ia and Ib (see Ref. [10]). The measure
of deviation is defined as χ2 ≡ (∆E1 − 0.3 meV)2 + (∆E2 − 1.0 meV)2.

Clearly, the best result is obtained for D = 0.030 meV (see Tab. 5.4), which is
very close to the D value that has been obtained in the previous Fe18 study [10]
on the basis of the simplified two-spin Hamiltonian (D = 0.029, see also the end of
Sec. 5.3.1).

Next, we compare the spectra of the two-J Hamiltonian with D = 0 and D =
0.03 meV to estimate the influence of the anisotropy on the higher-lying excitations.
The comparison is shown in Fig. 5.19. The main S contributions to the energy
eigenstates in the case D > 0 were deduced from the degeneracies of the levels
and their behavior for different M and D values. This procedure is, however, only
possible if theD value is sufficiently small so that the spin multiplets can be identified
in the spectra. For D = 0.030 meV this is definitely the case.

It can be seen that the splitting of the lowest S = 1 state is 0.7 meV for D =
0.03 meV. This value is much larger than the splitting of the next two, nearly
degenerate S = 1 states, which is approximately 0.3 meV and thus smaller than the
experimental resolution. The experimental resolution was 0.43 meV and 1.1 meV,
respectively (see subsection 5.3.1). This result is a clear indication that for Fe18 the
influence of D on higher-lying states can be neglected in an analysis of high-energy
INS data and in accordance with the findings of Ref. [192] (where an iron spin ring
with N = 8 spin was investigated).

5.3.4. Magnetization curves

We have seen that the different models which have been considered so far – (J1, J2) =
(1.64 meV, 1.64 meV), (1.42 meV, 4.57 meV), and (2.88 meV, 1.02 meV) – led to very
different results for the high-energy spectrum. However, the low-energy spectrum
(which is relevant for the peaks Ia, Ib, and II) is very similar for all three models.
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Figure 5.19.: The ground state and the energetically lowest S = 1 triplets of the
two-J Hamiltonian with J1 = 2.88 meV and J2 = 1.02 meV as calculated using
standard DMRG. The black bars show the spectrum for D = 0 and the red bars for
D = 0.03 meV. For D > 0, S is no longer a good quantum number and the multiplets
are split into the M = 0,±1 components. The arrows indicate the experimentally
observed transitions. The transitions to the states around 3 meV appear as one
peak in the experimental INS spectra.

In this subsection we calculate the zero-temperature magnetization curves for the
three models mentioned above. We again neglect the anisotropy in this subsection
since it probably only affects the positions of the first magnetization steps. Fig. 5.20
shows the resulting zero-temperature curves for all three models.

The results are very interesting. The magnetization curves are virtually identical
up to 25 Tesla. The step widths of the single-J magnetization curve are approx-
imately the same for all steps (apart from the very last steps), as would also be
the case for the rotational band approximation. The magnetization curves for the
other two models deviate from this behavior. Up to approximately 100 T, the two
models with J1 6= J2 give very similar magnetization curves and considerable differ-
ences appear only at even higher fields. The magnetization curve for J1 = 1.42 meV
and J2 = 4.57 meV shows two magnetization plateaus at higher fields. Plateaus in
zero-temperature magnetization curves usually emerge in geometrically frustrated
spin systems [201]. This system is, however, not geometrically frustrated so that the
emergence of a plateau is an interesting effect.

We have also calculated the local magnetizations for the two models with J1 6=
J2. Local moments in spin rings can, e.g., be probed with NMR [202]. The local
magnetizations for the J1 = J2 model would simply be proportional to the total
magnetization curve. The results are shown in Fig. 5.21.
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Figure 5.20.: Comparison of the zero-temperature magnetization curves for three
different parameter sets as obtained by standard DMRG calculations for the N = 18,
s = 5/2 spin ring (see Eq. (5.31)). We have set D = 0 in all cases. We have kept
up to 3000 density matrix eigenstates for the J1 = J2 model and up to 1200 for the
J1 6= J2 models. The truncated weights are smaller than 10−8.

In both cases, the local responses strongly depend on the position of the spin,
i.e., whether the spin has two J1 couplings (“symmetric position”) or a J1 and a J2

coupling (“asymmetric position”), cf. Fig 5.17. For the model with J1 = 2.88 meV
and J2 = 1.02 meV, the magnetic field leads (for B < 75 T) to a “up-up-down”
magnetization profile, i.e., a kind of staggered magnetization profile. For the other
model, the local magnetizations point all in the same direction, but also with a
position dependence. To summarize, the local and total responses to an external
magnetic field lead to some interesting results. While the total magnetization shows
differences only for very high fields, the local responses are already very different
for small fields for the three models considered here. Measuring the local magne-
tization of the Fe18 molecule could thus further support our conclusion (which was
mainly based on the analysis of the high-energy INS data) that the model with
J1 = 2.88 meV and J2 = 1.02 meV is best suited for this system. However, we have
not considered the anisotropy in this subsection. A finite anisotropy could slightly
affect the local magnetizations.
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Figure 5.21.: Dependence of the z-component of the local magnetization (which is
proportional to −〈szj 〉) for two different parameter sets as a function of an external

magnetic field ~B = B~ez. The results were obtained using standard DMRG for
D = 0 and T = 0. The result for the uniform model is not shown because for
this model the local moments are simply proportional to the magnetization curve
presented in Fig. 5.20. “Symmetric position” denotes the local magnetization for a
spin between two J1 couplings. Accordingly, “asymmetric position” denotes a spin
position between a J1 and a J2 coupling.
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6. Summary and conclusion

The aim of this work was to apply standard and dynamical DMRG to very large
magnetic molecules which are too large to be treated with exact diagonalization
methods such as the Lanczos algorithm. Implementing the DMRG and DDMRG
programs is conceptually and technically very involved, and consequently, a large
part of this thesis (chapter 3) deals with the description of the algorithm and the
application to some test systems for which analytical or numerically exact results
are available.

We have then applied DMRG and DDMRG to some very large antiferromagnetic
molecules: icosidodecahedral molecules (N = 30) with single spin quantum numbers
up to s = 5/2 (Mo72Fe30, Hilbert space dimension of the order of 1023), and the
ferric wheel Fe18 (N = 18, s = 5/2, Hilbert space dimension of the order of 1014).
These calculations are the most advanced of its kind for magnetic molecules and
yield low-energy results with unprecedented accuracy for these systems.

For the icosidodecahedral systems (see chapter 4), we have calculated the energies
Emin(M) and zero-temperature magnetization curves for several single-spin quantum
numbers s with DMRG. We have modeled the systems using a Heisenberg model
with one exchange constant. The comparison with the predictions of the rotational
band model shows that the minimal energies in the subspaces of total magnetic
quantum number M are rather well described by this model. However, the magne-
tization curves have features (plateaus and jumps) that cannot be explained by this
simple model. Moreover, we have shown that the magnetization plateau, which is a
characteristic feature of geometrically frustrated systems, seems to be very robust
as a function of s and is still clearly visible for the s = 5/2 system. It is evident that
the DMRG technique is at its limits for this system and does not deliver quasi-exact
results. The truncated weights are very large and also the convergence behavior for
increasing m values indicates that it is extremely difficult to obtain accurate and
converged results. However, the comparison with previous results for the s = 5/2
system obtained by DMRG [121] and so-called correlator product states [170] shows
that our DMRG results are more accurate than the other available numerical results.

Using DDMRG, we have furthermore calculated the dynamical correlation func-
tion Szj (ω) for the s = 1/2 icosidodecahedron. The function displays a rather sharp
peak, but exhibits apart from that no clear features and only a very broad exci-
tation spectrum. This behavior is different from the predictions of the rotational
band approximation. The calculation of dynamical correlation functions for systems

119



6. Summary and conclusion

with s > 1/2 was not possible with the program that was developed for this thesis.
To this end, further optimizations (e.g., improved parallelization) of the extremely
time-consuming calculations would be needed.

In chapter 5 we have presented our DMRG and DDMRG results for the ring-
like molecule Fe18 which consists of N = 18 spins with s = 5/2. This molecule
was investigated earlier by O. Waldmann et al. in 2009 [10], but the theoretical
analysis relied on an effective two-spin Hamiltonian that is related to the rotational
band approximation. In contrast, we have performed our calculations for the full
18-spin Hamiltonian. As a first step, we have tested the accuracy of the rotational
band approximation as well as some simple spin-wave theory results for uniform
antiferromagnetic spin rings as a function of s and the number of spins N . The
investigations show that the rotational band approximation becomes more accurate
for larger s and smaller N , and that the s = 5/2, N = 18 uniform spin ring can be
well described by a combination of the rotational band approximation with spin-wave
theory [25]. This is in accordance with earlier findings on smaller spin rings [37,192].

In chapter 5 we have furthermore simulated the results of recent high-energy INS
measurements on Fe18 [25, 193]. The experimental INS results show several cold
magnetic transitions, i.e., excitations from the ground state. The DDMRG tech-
nique was used for the simulation of INS spectra. It turns out that a simple uniform
Heisenberg model with only one coupling constant J cannot properly describe the
experimental data so that the use of a more general model with two different cou-
pling constants was necessary. Using this so-called “two-J” model, it was possible to
fit the high-energy INS data very well. We have used the results of spin-wave theory
calculations [25] as an input for our search of the optimal parameters. Whereas
spin-wave theory predicts two equally good parameter sets, our DDMRG calcula-
tions reveal significant differences for the INS intensities between the two possible
parameter sets, with one parameter set leading to better results than the other. Fur-
thermore, the influence and magnitude of the single-ion anisotropy were investigated,
and we have found a single set of parameters that describes all experimental data
very well. Lastly, we have calculated and compared local (i.e., for a specific spin)
and total T = 0 magnetization curves for some parameter sets, including our best-fit
result of the high-energy INS results. The magnetization curves display interesting
features such as magnetization plateaus and an “up-up-down” local magnetization
profile for one parameter set.

In conclusion, our results show that DMRG is a very powerful numerical method
for the investigation of very large magnetic molecules. It allows to calculate energy
spectra, dynamical correlation functions, and magnetization curves of giant magnetic
molecules and thus to gain insight that is not accessible by methods such as exact
diagonalization which are typically applied to magnetic molecules.
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A. Appendix

A.1. Supplement to chapter 2

Here we show how to evaluate the matrix elements 〈SASBSM |szj |S′AS′BS′M ′〉 which
are needed for the calculation of the dynamical correlation function Szj (ω) in the ro-
tational band approximation (see Chap. 2.3.2). This calculation is rather straightfor-
ward with the help of irreducible tensor operators and the Wigner-Eckart theorem.

The components of a spin operator ~s and an irreducible tensor operator s
(1)
q of rank

1 are related via [203]

s
(1)
0 = sz , s

(1)
±1 ∓

√
1

2
(sx ± isy) . (A.1)

In the rotational band approximation (which is exact for the Heisenberg square)
the ground state has S = 0 and SA = SB = Ns/2. N denotes the number of spins
which is assumed to be even. Only two different transitions (apart from degeneracies)
from the S = 0 ground state contribute to the dynamical correlation function in the
rotational band approximation [37,42]:

1. ∆S = 1, ∆SA = ∆SB = 0 (within the first rotational band)

2. ∆S = 1, ∆SA = 0 and ∆SB = −1, or ∆SA = −1 and ∆SB = 0.

The weight of the first transition can easily be calculated. The weight of the other
transitions can then be calculated with the help of the sum rule. For the first
transitions we need to calculate

〈SA =
Ns

2
, SB =

Ns

2
, S = 1,M = 0|s(1)

0 (j)|S′A =
Ns

2
, S′B =

Ns

2
, S′ = 0,M ′ = 0〉 ,

(A.2)

with s
(1)
0 (j) ≡ szj . Since T 2|Ns2

Ns
2 SM〉 = |Ns2

Ns
2 SM〉 [37] and T 2s

(1)
0 (j) = s

(1)
0 (j −

2)T 2 (T is the shift operator), we can conclude that

〈SM |s(1)
0 (j)|S′M ′〉 = 〈SM |s(1)

0 (j + 2)|S′M ′〉 . (A.3)

We have omitted the intermediate quantum numbers SA = Ns/2 and SB = Ns/2

here. We now define s
(1)
0 (A) ≡

∑
even j s

(1)
0 (j) and s

(1)
0 (B) ≡

∑
odd j s

(1)
0 (j). If
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the sublattice spins are in each case coupled to there maximum value Ns/2 (i.e.,

SA = SB = Ns/2), s
(1)
0 (A) and s

(1)
0 (B) are simply spin-Ns/2 operators, so that

〈SM |s(1)
0 (j)|S′M ′〉 =

2

N
〈SM |s(1)

0 (A)|S′M ′〉 (even j) (A.4)

and

〈SM |s(1)
0 (j)|S′M ′〉 =

2

N
〈SM |s(1)

0 (B)|S′M ′〉 (odd j) (A.5)

are simply the transition matrix elements for a dimer. Using the Wigner-Eckart
theorem, we can at first “eliminate” the magnetic quantum number [73]:

〈SM |s1
0(j)|S′M ′〉 = (−1)S−M

(
S 1 S′

−M 0 M ′

)
〈S||s1(i)||S′〉 . (A.6)

Here, 〈S||s1(j)||S′〉 is the reduced matrix element, and

(
S 1 S′

−M 0 M ′

)
a 3j-symbol.

For S = 1, S′ = M = M ′ = 0, the value of the prefactor is

(−1)1−0

(
1 1 0
0 0 0

)
=

1√
3
. (A.7)

The result for the reduced matrix element can be found in textbooks, e.g., Ref. [73]:

〈S||s1(A)||S′〉 = (−1)Ns+S
′+1
√

(2S + 1)(2S′ + 1)

√
Ns

2

(
Ns

2
+ 1

)
×
{
S S′ 1
Ns
2

Ns
2

Ns
2

}
, (A.8)

〈S||s1(B)||S′〉 = (−1)S
′−S〈S||s1(A)||S′〉 . (A.9)

Here,

{
S S′ 1
Ns
2

Ns
2

Ns
2

}
denotes a 6j-symbol. For S = 1, S′ = 0 we get the following

results:

〈1||s1(A)||0〉 =
1

2

√
Ns(Ns+ 1) ,

〈1||s1(B)||0〉 = −1

2

√
Ns(Ns+ 1) , (A.10)

so that we can conclude:

|〈Ns/2, Ns/2, S = 1,M = 0|szj |Ns/2, Ns/2, S′ = 0,M ′ = 0〉|2 =
1

3
s

(
s+

2

N

)
,

(A.11)

which is, as it should be, independent of j.
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A.2. Supplement to chapter 5

The following plots display the functions Szz(Q,ω) (see Eq. (2.35)) for the “two-J”
Hamiltonian (5.31) which was used to model the magnetic properties of the molecule
Fe18. The results were obtained using DDMRG (with m = 600 kept density matrix
eigenstates and η = 0.5 meV), and two different parameter sets are shown. These
data were used for calculation of the INS intensities, see Fig. 5.18.
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Figure A.1.: Szz(Q,ω) for the “two-J” Hamiltonian (5.31) as obtained using
DDMRG for the parameters J1 = 1.42 meV, J2 = 4.57 meV.
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Figure A.2.: Szz(Q,ω) for the “two-J” Hamiltonian (5.31) as obtained using
DDMRG for the parameters J1 = 2.88 meV, J2 = 1.02 meV.
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[174] Ö. Legeza and J. Sólyom. Optimizing the density-matrix renormalization
group method using quantum information entropy. Phys. Rev. B, 68:195116,
2003.

[175] J. Rissler, R. M. Noack, and S. R. White. Measuring orbital interaction using
quantum information theory. Chemical Physics, 323:519, 2006.

[176] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric ma-
trices. In Proceedings of the 1969 24th national conference, ACM ’69, pages
157–172, New York, NY, USA, 1969. ACM.

[177] W. M. Chan and A. George. A linear time implementation of the reverse
Cuthill-McKee algorithm. BIT Numerical Mathematics, 20:8, 1980.

[178] S. W. Sloan. A FORTRAN program for profile and wavefront reduction.
International Journal for Numerical Methods in Engineering, 28:2651, 1989.

[179] Wolfram Mathematica Documentation Center. Graph utilities pack-
age tutorial, 2012. http://reference.wolfram.com/mathematica/

GraphUtilities/tutorial/GraphUtilities.html.

[180] J. Schnack. private communication, 2010.
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[190] O. Waldmann, C. Dobe, H. U. Güdel, and H. Mutka. Quantum dynamics of
the Néel vector in the antiferromagnetic molecular wheel CsFe8. Phys. Rev.
B, 74:054429, 2006.

[191] N. P. Konstantinidis, A. Sundt, J. Nehrkorn, A. Machens, and O. Waldmann.
Magnetism on a Mesoscopic Scale: Molecular Nanomagnets Bridging Quantum
and Classical Physics. J. Phys.: Conf. Ser., 303:012003, 2011.

[192] J. Dreiser, O. Waldmann, C. Dobe, G. Carver, S. T. Ochsenbein, A. Sieber,
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begutachten.

Für die sehr gute und ertragreiche Zusammenarbeit zum Thema Fe18 möchte ich
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Prof. Dr. Andreas Läuchli, Prof. Dr. Eric Jeckelmann, Peter Schmitteckert, Piet
Dargel und Stephan Langer.

Für das gründliche Korrekturlesen der Arbeit und viele wichtige Verbesserungs-
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