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A complete understanding of male reproductive success, and thus sexual selection, often requires an insight into male success in

sperm competition. Genuine conclusions on male sperm competitiveness can only be made in real competitive situations. How-

ever, statistical analyses of sperm competitiveness from fertilization success data have been shown to be problematic. Here, I first

outline a comprehensive general description of the different additive and nonadditive elements relevant for the outcome of sperm

competition staged between two males. Based on this description, I will highlight two main problems that are frequently encoun-

tered in experiments aiming at estimating sperm competitiveness. First, I focus on potential problems when using standardized

competitors versus random mating trials, because trials with standardized competitors do not allow generalization if male–male

interactions are important. Second, I illustrate the necessity to analyze data on the logit scale rather than on raw proportions,

because only the logit scale allows a clean separation of additive and nonadditive effects (i.e., male × male and female × male

interactions).
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Sperm competition is a strong selective force that has been shown

to have considerable effects on many aspects of male reproductive

biology (Birkhead et al. 2009; Birkhead and Møller 1998; Parker

1970; Simmons 2001). When females mate with more than one

male and sperm from rival males compete to fertilize the ova,

male reproductive success will not only be affected by a male’s

ability to achieve matings, but also by the success of his sperm

in the subsequent competition for fertilizations. Thus, in addition

to conspicuous male weaponry and secondary sexual ornamenta-

tion alleged to have evolved through intra- and intersexual selec-

tion (Andersson 1994), female polyandry will instigate selection

on male ability to outcompete the sperm of other males (Parker

1970; Simmons 2001). Similar to variation in male mating success

(Andersson 1994; Andersson and Simmons 2006), it seems that

males in many species also differ in their sperm competitive ability

(Dziuk 1996; Engqvist et al. 2007; Garcı́a-González and Simmons

2005; Keller and Reeve 1995; Lewis and Austad 1990; Sherman et

al. 2009; Simmons and Parker 1992). To fully understand sexual

selection and the relative contribution of pre- and postcopulatory

processes to the variation in male reproductive success, we need

to be able to quantify sperm competitiveness.

Differences in sperm competitive ability can be manifested

in various traits such as for instance sperm number, velocity,

or viability (Engqvist et al. 2007; Gage and Morrow 2003;
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Garcı́a-González and Simmons 2005; Snook 2005). However, ul-

timately what matters for male reproductive success is the actual

outcome of sperm competition. A male’s ability to outcompete

others males’ sperm is thus often measured in actual competitive

situations, that is by assigning paternity to offspring of females

that have mated with several males (e.g., Engqvist et al. 2007;

Fricke et al. 2010; Sakaluk and Eggert 1996). Sperm competition

success is often quantified as P2, defined as the proportion of

offspring sired by the second mating partner of a given female in

double mating trials (Boorman and Parker 1976). Alternatively,

one can also analyze the P1-value, which quantifies the propor-

tion of offspring sired by the first of the two mates. The average

values of P1 and P2 across males reflects the population level

sperm precedence pattern (Simmons and Siva-Jothy 1998) and

P2 inevitably will equal 1 − P1. Sperm precedence values for

individual males do not follow this constraint. A male can in

principle be relatively successful both when mating first and last.

Or, for instance, have a disproportionately high success when

mating last but lower relative success when mating first. Thus,

male sperm competitive ability is not always a single specific at-

tribute, but needs to be specified regarding mating sequence. In

this respect, individual P1-values quantify males’ sperm compe-

tition “defense” abilities and P2 measures the sperm competition

“offence” abilities of males (see, e.g. Fricke et al. 2010). For

example, a typical offense characteristic is a male’s ability to dis-

place the sperm from previous female mating partners, whereas

the ability to resist such displacement would be a defense charac-

teristic (Clark 2002). An important consequence is that an assay of

males’ offensive sperm competitiveness will be influenced by the

sperm defense properties of the male competitors and vice versa.

This is an inevitable consequence of the fact that the competi-

tion outcome can only be measured in the interaction of multiple

individuals, and this will potentially reduce the statistical con-

fidence in the estimates of sperm competitiveness considerably

(Garcı́a-González 2008b; Garcı́a-González and Evans 2011). In

fact, the outcome of sperm competition between two males will

be affected by quite a number of different factors such as (i) the

species’/populations’ average sperm precedence (Simmons and

Siva-Jothy 1998); (ii) variation across females in their influence

of sperm precedence across males (Clark and Begun 1998); (iii)

between-male differences in sperm competitiveness (Lewis and

Austad 1990; Prout and Bundgaard 1977; Sherman et al. 2009;

Simmons and Parker 1992); (iv) between-male variation in or-

der effects, that is whether different males are relatively superior

in defense or offence functions (Fricke et al. 2010; Michalczyk

et al. 2010); (v) female × male interactions (Bjork et al.

2007; Clark 2002; Clark et al. 1999; Miller and Pitnick 2002;

Wilson et al. 1997); (vi) male × male interactions (Bjork et al.

2007; Clark et al. 2000; Prout and Bundgaard 1977); and

even (vii) female × male × male interactions are possible

(Bretman et al. 2004; Tregenza and Wedell 2002). To increase sta-

tistical power and minimize potential confounding effects, it has

been suggested to perform sperm competition assays using stan-

dardized competitors (Droge-Young et al. 2012; Fricke et al. 2010;

Garcı́a-González 2008b; Garcı́a-González and Evans 2011). The

presented arguments in favor of using standard competitors in the

estimation of sperm competition ability have been twofold: First,

to minimize the sampling variation induced by picking competi-

tors that differ in their overall effects and/or their relative qual-

ities in defensive/offensive sperm competition (Garcı́a-González

2008b; Garcı́a-González and Evans 2011); second to minimize

variation induced by male × male or female × male interactions

(Droge-Young et al. 2012; Fricke et al. 2010; Garcı́a-González

and Evans 2011).

The aim of this article is to further dissect these unexpect-

edly complex aspects of sperm competitiveness and how they

relate to fertilization success. I will start with the formulation of

a general framework that captures additive effects as well as the

interaction effects. I will focus on the simplified situation of only

two mating partners, because this is the classical situation that

is most frequently analyzed, but the results can easily be gen-

eralized to more than two males. This formalization alone will

reveal some new interesting insights. I will then use this model

to assess the pros and cons of some of the presently suggested

and used methods to estimate sperm competitiveness and genetic

variability of this trait. We will for instance see that standardiz-

ing mating trials regarding females and competing males indeed

increases the precision in estimates of sperm competitiveness,

but will also potentially introduce more severe systematic errors,

as the estimated sperm competitiveness is not generalizable to

all mating constellations. We will also see that data needs to

be analyzed on an appropriate scale, otherwise purely additive

male effects can easily be mistaken for nontransitive interaction

effects.

TRANSFORMATIONS AND ADDITIVE EFFECTS

As described earlier, the outcome of sperm competition between

two males will be affected by a number of transitive and non-

transitive effects (i.e., effects that are either general or affected

by the specific combination of males and females involved). The

first problem encountered when attempting to predict the result-

ing fertilization pattern as a combination of these different factors

is that paternity, the proportion of offspring sired, is inherently

nonlinear (Eggert et al. 2003; Garcı́a-González 2008b; Parker

et al. 1990). Fertilization success will often depend on the amount

of sperm, or other aspects of sperm competitiveness, in relation

to that of other competitors. The most natural way to linearize

paternity values, and thus to simplify analyses, is therefore to ex-

press it as the logarithm of the odds ratio, and thus to transform

paternity values to a logit scale: that is P̃2 = log[P2/(1 − P2)].
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Most commonly, we are interested in characterizing the overall

sperm competitiveness of individual males, that is a male’s com-

petitiveness across all mating situations. In the simplest case, this

will be the only factor affecting the outcome of sperm compe-

tition. Nevertheless, the outcome of sperm competition will be

influenced of the competitiveness of both males involved. Let M

be a vector of length n that describes the sperm competitiveness

of all n male types in the population (e.g., different individuals

or genotypes). The expected outcome of sperm competition be-

tween male j mating first and male k mating second can then

be described by (P̃2)jk = µ − M j + Mk . Here µ describes the

expected second male precedence if the males are equal competi-

tors and corresponds to what has been termed the loading factor

(Parker 1990). The simplicity of this function originates from the

symmetry of the log odds ratio; note that P̃2 = −P̃1. The function

can also be deduced directly from sperm competition in terms of

a fair/loaded raffle: P2 = rs2/(rs2 + s1) (Parker 1990). Here s1

and s2 corresponds to the ejaculate investment (sperm competi-

tive ability) of the first and second male to mate and r the (dis)-

advantage of the second male (loading factor). If we transform this

to a logit scale, we get P̃2 = log(r ) − log(s1) + log(s2) (see also

Eggert et al. 2003), which is equivalent with the equation shown

above.

Until now we have ignored that males might differ in their

offence and defense abilities (i.e., they might not be as good

being the second male to mate as they are as the first male to

mate and vice versa). One way to resolve this is to define two

properties represented by the vectors M1 and M2 describing male

competitiveness in the first and second role respectively. Then

(P̃2)jk = µ − M1
j + M2

k . Alternatively, if we choose to focus more

on overall sperm competitiveness, we can do this with M and

additionally let M O define whether a male is relatively better in

the defense or the offence role (the index O refers to order of

mating). In that case (P̃2)jk = µ − (M j + M O
j ) + (Mk + M O

k ).

Finally, we can assume that individual females differ in the

way second males are favored (and first males disfavored), and this

is described by F . We get (P̃2)ijk = µ + Fi − M1
j + M2

k , alterna-

tively (P̃2)ijk = µ + Fi − (M j + M O
j ) + (Mk + M O

k ), for a male

j mating first and male k mating second with a female i. To see how

we get this, we can think about a loaded raffle in which the param-

eter describing the advantage of the second male to mate is specific

for each female (i.e., ri ): P2 = ri s2/(ri s2 + s1). After transform-

ing this to logit scale we get (P̃2)ijk = log(ri ) − log(s1) + log(s2),

where log(ri ) can be portioned into an overall effect µ, represent-

ing the expected second male precedence if two equal competitors

mate with an “average” female and Fi , representing female spe-

cific deviations from this. Note that until now we have an entirely

additive model. We now can start thinking about the possible

interactions and how they need to be implemented.

FEMALE × MALE INTERACTIONS

A female × male interaction implies that certain female–male

mating combinations results in a different outcome than expected

from the purely additive model described earlier. Let the matrix

I F×M describe the way certain female–male combinations result

in a biased outcome. However, females mate with two males;

thus, we have to take two female–male interactions into account.

Analogous to the additive model, we then get the expression

[−I F×M
ij + I F×M

ik ] describing a simple female × male interaction

scenario. Nonetheless, female × male interactions may be dif-

ferent depending on whether the male is mating first or second.

Thus, theoretically there are two distinct female × male interac-

tions. If we also want to account for this possibility, we again

have two alternatives how to denote it. Either we can capture it

by [−I F×M1

ij + I F×M2

ik ], where I F×M1
and I F×M2

are two sepa-

rate female × male interactions describing the female × male

interaction with the first and second male to mate, respectively.

Alternatively the matrix I F×M describes the overall female ×
male interaction and I F×M O

the deviance from this due to mating

order. Then we get −(I F×M
ij + I F×M O

ij ) + (I F×M
jk + I F×M O

jk ).

One important comment needs to be appended. Previously

the vectors F, M, M1, and M2 were introduced to describe dif-

ferent additive female and male effects. Thus, all the weighted

row and column sums of the matrices describing the possible

female × male interactions will necessarily equal zero because

otherwise Fi Mi etcetera would not adequately describe these

overall male and female effects. It needs to be the weighted sum

to account for the possibility that different male and female types

occur at different frequencies in the population. As a specific ex-

ample: consider the term
∑

i pi I F×M
ij , where pi is the frequency

of type i females. This term thus describes the summed deviation

of male j’s sperm competitiveness due to female × male interac-

tions. If this term deviates from zero, then M j would no longer de-

scribe the sperm competitiveness of male type j, but instead M j +∑
i pi I F×M

ij .

MALE × MALE INTERACTIONS

A male × male interaction implies that male sperm competitive-

ness will depend on the male competitor. Note that this is distinctly

different from the additive model, where male fertilization suc-

cess will depend on the capability of the male competitor but not

the male’s competitiveness per se. The important distinction be-

tween male sperm competitiveness and fertilization success has

already been pointed out by others (Garcı́a-González 2008a,b;

Garcı́a-González and Evans 2011), but needs to be emphasized

here again. Male fertilization success is in principle always

nontransitive—paternity in sperm competition against a poor

competitor will not be similar to success in competition against

superior competitors (Garcı́a-González 2008b). However, an
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interaction effect on sperm competitiveness would indicate that

the relative success will change depending on male competitor.

We will return to this distinction later on. Let us first describe

the male × male interaction by the following matrix I M×M . Each

element I M×M
jk in this matrix describes the deviation from the ex-

pected outcome between a male j mating first and male k mating

second based on male j’s and k’s overall sperm competition de-

fense and offense, respectively. In contrast to the female × male

interaction, this matrix thus fully describes all potential outcomes

including order effects, and there is no need for any additional de-

scription. Note, however, that in the absence of any order effects,

a male j’s competiveness against male k must be the opposite of

male k’s competiveness against male j, thus, I M×M
jk = −I M×M

k j

including the special case I M×M
j j = 0. Deviance from this would

indicate order effects. Yet again, the weighted row and column

sums of the male × male interaction matrix are constrained to

equal zero.

FEMALE × MALE × MALE INTERACTIONS

Treatments of interactions in the outcome of sperm competition

are usually limited to descriptions of female × male and male ×
male interactions (Bjork et al. 2007; Clark 2002; Clark et al. 1999,

2000; Miller and Pitnick 2002; Wilson et al. 1997). Yet in sperm

competition there are at least three parties involved, and therefore

a three-way interaction needs to be considered as well (see, e.g.,

Bretman et al. 2004; Tregenza and Wedell 2002). A female ×
male × male interaction would mean that the male × male in-

teraction described above depends on the female they are mating

with, or equivalently, that any female × male interaction can be

different depending on the identity of the other male competitor.

Let I F×M×M describe this interaction. This interaction will have

to share the same characteristics as the male × male interaction

I M×M described above.

We can now finally describe the outcome of sperm competi-

tion with the expression

(P̃2)ijk = µ + Fi − M1
j + M2

k − I F×M1

ij + I F×M2

ik

+ I M×M
jk + I F×M×M

ijk ,

or alternatively

(P̃2)ijk = µ + Fi − (
M j + M O

j

) + (
Mk + M O

k

) − (
I F×M
ij

+ I F×M O

ij

) + (
I F×M
ik + I F×M O

ik

) + I M×M
jk + I F×M×M

ijk .

In the following, I will use the former notation. Furthermore,

the description here is in the perspective of the second male to

mate, but we could equally well have chosen to describe this with

emphasis on the first males’ success as (P̃1)ijk = −(P̃2)ijk.

EXPECTED VALUES AND VARIANCES IN

STANDARDIZED AND NONSTANDARDIZED ASSAYS

Now we can turn our attention to the important question how es-

timates of individual sperm competitiveness and their variances

will be influenced by different experimental designs. For illus-

trative purposes, we limit our considerations to offensive sperm

competition ability; however similar analyses can be performed

for sperm competition defense with identical conclusions. If we

start with assays using random male competitors and random fe-

male mating partner, the expected value of male k’s offensive

sperm competitiveness can be computed as

E〈(P̃2)k〉 =
∑

i, j

pi q j
(
µ + Fi − M1

j + M2
k − I F×M1

ij

+ I F×M2

ik + I M×M
jk + I F×M×M

ijk

) = µ + M2
k ,

where pi andq j gives the frequency of type i females and

type j males, respectively. Thus, this gives (as anticipated) a

completely unbiased estimate of male k’s sperm competitive-

ness in the offensive role (see also Fig. 1). The observed sam-

pling variance of male k’s offensive sperm competitiveness will

equal

Var〈(P̃2)k〉 =
∑

i, j

pi q j
((

P̃2
)

ijk
− (

µ + M2
k

))2

= Var〈M1〉 + Var〈F〉 + Var〈I F×M1〉 + Var
〈
I F×M2

∗k

〉

+ Var
〈
I M×M
∗k

〉 + Var
〈
I F×M×M
∗∗k

〉 + Cov〈. . .〉
The Cov〈. . .〉-term refers to all possible covariances between

male and female (interaction) effects, which we can safely ignore

here and henceforward, because these should be negligible in an

experimental arrangement. (However, they may be important in

a natural setting where females and males mate non-randomly.)

Furthermore, we have ignored any residual variance attributable

to any measurement errors but these should be independent of any

of the causal sources of variation.

In a mating design with a standardized rival male (sm =
standard male) the expected value of male k’s sperm competitive-

ness will be given by

E〈(P̃2)k |sm〉 = µ + M1
sm + M2

k + I M×M
sm k ,

which must not necessarily provide an unbiased estimate of

M2
k . Thus, dependent on the magnitude of the male-by-male

interaction, this can represent a strongly biased estimate of

true male sperm competitiveness (see Fig. 1B). Yet, in the

absence of any nontransitive effects the expected value will

equal

E〈(P̃2)k |sm〉 = µ + M1
sm︸ ︷︷ ︸

=µ′

+M2
k = µ′ + M2

k ,
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Figure 1. Illustration of expected estimates of offensive sperm competitiveness (points) and their variances (SD: grey bars) in relation

to true offensive competitiveness in assays using (A) random rival males, (B) standardized rival males, (C) random females, and (D)

standardized females. The plots show simulated values for 100 males, respectively. In all simulations an average overall fair raffle was

assumed (µ = 0), and the variation in male offensive competitiveness (Var〈M2〉) equaled 1. In (A) and (B), the remainding parameter

values were as follows Var〈F 〉 = 0.1; Var〈M1〉 = [0, 0.5, 2] (from top to bottom); Var〈 I M×M〉 = [0, 0.5, 2] (from left to right); Var〈F × M〉 =
0; Var〈F × M × M〉 = 0. In (c) and (d), µ = 0 (fair raffle); Var〈M1〉 = 0.1; Var〈F 〉 = [0, 0.5, 2] (from top to bottom); Var〈 I F ×M〉 = [0, 0.5, 2]

(from left to right); Var〈M × M〉 = 0; Var〈F × M × M〉 = 0. Note that using random males and females will introduce variation in estimates

but no bias, whereas standardized matings will reduce estimate variation but may result in strongly biased estimates when female–male

or male–male interactions are present. Please also note that the effect of the female × male interactions on estimate variation is larger

than the effect of the male × male interactions because in these particular examples the female × male interactions are not specific to

male ordering (i.e., I F ×M1 = I F ×M2
) and thus will affect both offensive and defensive males.

and hence be unbiased, because the term µ′ will be equal

for all males and we can generalize trials using a standard

male competitor to the population of all possible competitors.

Then such a mating design will give more precise estimates of

males sperm competitiveness (cf. Fig. 1A,B), because the vari-

ance will be devoid of any components attributable to the first

male: Var〈(P̃2)k |sm〉 = Var〈F〉 + Var〈I F×M1

∗sm 〉 + Var〈I F×M2

∗k 〉 +
Var〈I F×M×M

∗sm k 〉 + Cov〈. . .〉 (In case of no male-by-male
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Figure 2. A schematic illustration of the impact of male–male in-

teractions on the variance in sperm competitiveness. The dark solid

lines represent the genuine sperm competitiveness of five male

types across all matings, and the grey points represents the sperm

competitiveness of these types in all different combinations. One

can clearly see that if we limit our attention to specific rival males

(as in a design with standard competitors) male–male interactions

(deviations from the solid lines) will generally increase the vari-

ance in sperm competitiveness. However, this must not always be

so. With male four as rival male, there is a negative covariance

between male sperm competitiveness and the male–male interac-

tion (strong competiors do relatively poor and poor do relatively

good). This will reduce the variance in competitiveness. However,

if there is strong positive covariance between male sperm com-

petitiveness and the interaction effect (as with male two as rival),

this will increase the variance even more. (These are simulated

data where the interaction variance is 40% of the total variance.)

interactions, the interaction variation—Var〈I M×M
∗k 〉—will of

course also be zero.).

The choice of experimental design will not only have an effect

on the point estimates of sperm competitiveness from individual

males/male types and their variances. The estimates of variation

across males, such as genetic variation, will also be affected.

The mean second male sperm competitiveness across all males

against a standardized competitor will be given by Ē〈P̃2|sm.〉 =
µ + M1

sm . Thus, the estimated variance across all males can be

computed as

Var〈P̃2|sm〉 =
∑

i

pi (E〈(P̃2)i |sm〉 − Ē〈P̃2|sm〉)2

= Var〈M2〉 + Var
〈
I M×M
sm∗

〉 + 2Cov
〈
M2, I M×M

sm∗
〉
.

Hence in case of noteworthy male × male interactions, this is

thus generally an overestimate of the true variance across males

given by Var〈M2〉, because it will be inflated by the interaction

variance (Fig. 2, see also Fig. 1B). However it is not always an

overestimate: it can also be an underestimate if the covariance in

the expression above is strongly negative (see Fig. 2 for details).

We have also seen that whenever we have female variation in

precedence, this term (i.e., Var〈F〉) will inflate the variance of the

estimator, E〈(P̃2)k〉. It can therefore be tempting to perform sperm

competition assays in standardized female environments, by for

instance using females from identical isogenic lines for all mat-

ing experiments. This approach, however, has the same potential

drawback as the mating design with standardized rival males. Con-

sider a mating design using standardized females (sf = standard

f emale). The expected value of male k’s sperm competitiveness

will then be given by E((P̃2)k |s f ) = µ + Fs f + M2
k + I F×M2

s f k .

This estimate will only represent true sperm competitiveness as

long as I F×M2

s f k = 0 for all k. Any existing female × second-male

interaction will bias these estimates (see Fig. 1c,d). (Correspond-

ing assays of male defense sperm competition abilities will be

biased by the female × first-male interaction, and using both

standard rivals and females will introduce bias from any female

× male × male interaction.) Furthermore, variance estimates will

generally be overestimates because, as shown above, using stan-

dardized female environments will include the female × male

interaction variation Var〈I F×M2

s f ∗ 〉 (see also Fig. 1D).

DIFFICULTIES WITH ADDITIVE VERSUS INTERACTION

EFFECTS

The presented model can be used to identify separate additive

and interaction effects regarding both sperm male offense and

defense competitiveness and female tendency to bias paternity

towards males based on mating order. The crucial step in this

procedure has been to transform paternity values to a logit scale.

This is the natural scale when the outcome (here paternity) will

be a probability distribution depending on the relative values of

predictors, as is the case in a sperm competition raffle. As we

have seen, both male sperm competitiveness and genuine female

effects can be seen as additive effects on this scale. Neverthe-

less, most sperm competition studies have been analyzed as male

fertilization success on the ordinary Pi-scale. Yet unfortunately,

independent male and female sperm competition effects will not

operate additively on this scale. Thus, the fertilization success of

a male in relation to other males will be inherently nontransitive

to other situations if rival males’ sperm competitiveness or the

sperm precedence pattern of females varies. In a statistical anal-

ysis, male and female additive effects on sperm competitiveness

will instead appear as male × male and female × male interac-

tions. This is illustrated in Figure 3. In competition with a male

with poor sperm competition defense abilities, both good and in-

termediate offense males will achieve similarly high fertilization

success, much higher than males with poor sperm competition

offense. In contrast, in competition with a male with very good

sperm competition defense abilities, intermediate and poor males

will be similar and have much lower fertilization success than

males with superior offense abilities (Fig. 3A). Although in this

example the difference in male sperm competitiveness remained
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Figure 3. A comparison of P2-values with the respective values after logit transformation P̃2 ( = logit[P2]). Shown are the expected

outcome with a fundamental raffle based assumption: P2 = rs2
s1+rs2

. Poor, medium, and strong sperm competitiveness (SC) refers to the

offensive capability (i.e., s2) of three distinct male types and equals 0.1, 1, and 10, respectively. In (A) and (B), sperm precedence is

constant and equals r = 1 (fair raffle). In (C) and (D), r varies between females but male defense is constant and equals s1 = 1. Note

that although the differences in male sperm offense remains constant, this is only visible using the logit scale. Also note that there will

be a linear relationship between logit-tranformed P2-values and log-transformed male competitiveness, and log-tranformed values for

female r-values (female-driven bias toward second males), respectively.

constant across situations, the difference in fertilization success

did not. The true pattern of sperm competiveness will emerge

only when analyzing the results on a logit scale (Fig 3B). Ana-

lyzing the data conventionally as paternity share (i.e., Pi values)

will not change the ordering of males with regard to sperm com-

petition abilities, but such analyses will be much more prone to

finding nonexisting interaction effects, in this case a male × male

interaction.

A similar effect will arise when females vary in the way

second males are favored/disfavored in relation to first males.

Consider a female with a very strong bias in paternity toward the

first male to mate. In that case, poor and intermediately strong

second males will have comparably low paternity. Conversely, in

mating trials using females with a very strong second male bias,

intermediate males will almost be as successful as strong sperm

competitors and much better than poor ones (Fig. 3C). Again in
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a situation where male and female effects act additively, analyses

using fertilization success would reveal them as female × male

interactions. Thus, to disentangle additive from interaction effects,

it is essential to transform fertilization success, measured as Pi, to

a different scale before proceeding. In this example, we see that a

logit scale would be an excellent choice (Fig. 3D).

Another major benefit of working with logit-transformed Pi-

values is that their variance is independent of the underlying sperm

precedence pattern. In contrast, the variance in Pi-values will al-

ways be smaller when there is strong sperm precedence (see also

Fig. 3). Thus, everything else being equal, estimates of genetic

variance in paternity success (Pi) will always be larger when there

is a fair rather than a loaded raffle. Nevertheless, one must also be

aware that there are some potential complications associated with

transformations to logit scale. First, the rational for using it, is

that the mechanism of sperm competition is based on a raffle (i.e.,

the outcome can at least approximately be described by the for-

mula P2 = rs2/(rs2 + s1)). In cases of strong violations from this

assumption, for instance a “winner takes it all”-scenario, where

a superior competitor will fertilize the majority of offspring irre-

spective of the rivals’ competitiveness, the model described here

might not be ideal. Yet this does not necessarily mean that such

situations call for an analysis on conventional Pi-values, but sim-

ply that other transformations than the logit might provide a better

fit. Second, if one is interested in quantitative genetic parameters,

such as the heritability of sperm competitiveness, it is impor-

tant to note that transformations will change the estimates and

interpretations of these parameters (see, e.g., Garcı́a-González

et al. 2012). However, this is not a big concern here, as measuring

sperm competitiveness (conventionally) as a Pi-value involves a

transformation itself. Actually, the suggested logit transformation

is an attempt to retransform these values to a more natural and

meaningful scale. Nevertheless, when interpreting and compar-

ing these estimates, one should be aware that following a logit

transformation of paternity values, we end up with an estimate of

sperm competitiveness that is on a log-scale (see also Fig. 3).

Discussion
In this contribution, the aim has been to resolve some unclear

issues and highlight a few difficulties when analyzing data related

to male sperm competitiveness. Three topics have been empha-

sized: (i) the occurrence of more female × male interactions

than generally acknowledged; (ii) the potential drawback of using

standardized males and females in experimental assays aiming

at quantifying sperm competitiveness if interaction effects ex-

ist; and (iii) the need to transform Pi-values to the logit scale to

disentangle additive from interaction effects.

It has been accepted for some time that male success in

sperm competition may be nontransitive from one female to the

next (Clark et al. 1999; Wilson et al. 1997). Yet although, for

instance, a female type may bias paternity toward certain males

when in their offensive role, it must not necessarily follow that

these males are favored in their defense role as first males. Thus,

female × male interactions have the potential to be specific to

mating order. Most female × male interactions have been de-

scribed for Drosophila (Bjork et al. 2007; Clark 2002; Clark

et al. 1999; Miller and Pitnick 2002), a taxon in which sperm

displacement is a major feature in sperm competition. Hence,

naturally many studies have focused on second males’ success,

and a female × male interaction on second males’ displacement

success is consequently truly a female × second-male interac-

tion (I F×M2
). Identifying and disentangling the exact nature of

female × male interactions in sperm competition will thus pro-

vide a future challenge for empiricists. This is also true for

female × male × male interactions. Indeed, female × male ×
male interactions have been demonstrated (Bretman et al. 2004;

Tregenza and Wedell 2002), but they are generally not included

in typical sperm competition studies. In addition, we must also

be aware that this relatively complicated description of sperm

competition can nonetheless only provide an accurate picture in

the simple case with two male competitors. On an experimental

level, it still remains to be investigated how offense, defense and

interaction effects are affected by adding more competing males

(see, e.g., Drnevich 2003; Lewis and Jutkiewicz 1998; Morrow

et al. 2005; Zeh and Zeh 1994).

It was shown here that sperm competition assay procedures

using standardized males (and females) can lead to very biased

estimators of male sperm competitiveness and inflate estimates

of genetic variability, in contrast to recent arguments (Fricke

et al. 2010; Garcı́a-González 2008b; Garcı́a-González and Evans

2011). These effects can exclusively be attributed to the presence

of either male × male or female × male interactions. In such cases,

sperm competitiveness measured under a specific condition can

unfortunately not be generalized to sperm competitiveness under

other conditions. Moreover, estimates of genetic variation will be

inflated, because the interaction variance will be pooled within

the variation across genotypes. However, in the absence of such

interactions, the best approach is indeed to use a standardized

approach, which effectively reduces the residual variation (see

also Garcı́a-González and Evans 2011). This will increase the

precision of estimates of individual sperm competitiveness. Fur-

thermore, it will provide more accurate estimates of heritability,

because it will be prevented that a part of the variation in sperm

competitiveness (from the rival male) will be pooled within the

environmental variance (Garcı́a-González and Evans 2011). The

problem is that researchers seldom have prior knowledge of the

magnitude of the interaction effects, but they need to be esti-

mated in the same experimental process. In such cases, introduced

uncertainty of sperm competition measures due to variation in
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rival males’ sperm competitiveness and individual females’ sperm

precedence patterns might simply be something we have to live

with. However, a resolution can be achieved by inserting male

type (e.g., individual, genotype, etc.) as a random factor in a

mixed model analysis, and thereby effectively control for this

variance. Indeed, such an analysis would nevertheless be neces-

sary if the aim is to estimate the variance parameters described

here and simultaneously extract point estimates of the random

effects (e.g., BLUPs) characterizing male offense and defense

abilities. A further inclusion of interaction random effects would

be an elegant possibility to estimate the interaction variances, and

thereby for instance attain separate estimates of additive and inter-

action genetic variation. With sufficient data, one would be able

to estimate all variance components, including main effect and

interactions. A fully crossed design will frequently be imprac-

ticable, but at least partially crossed designs should be possible

to achieve in some study systems. If one is interested in individ-

ual phenotypic variation, this will presumably still present some

problems. It would require at least some repetitive matings of

the same individuals. One would therefore need to additionally

control for confounding factors such as age or mating history,

unless special conditions apply (e.g., broadcast spawning). If the

interest is focused on genetic variance parameters, this problem

can be circumvented because individuals within the sib-groups

will be the repeated measures. Thus, for each sib-group, there

would be a possibility to stage sperm competition assays using

several different “standard” males (and possibly females), for in-

stance by using different isogenic lines (see, e.g., Clark et al. 1999;

Dowling et al. 2010). In case of interaction effects, this would en-

able generalization of breeding values for sperm competitiveness

to situations beyond just one standard competitor, and simultane-

ously allow for the separate estimates of additive and interaction

genetic effects.

In any case, an adequate separation of additive and interaction

effects essentially requires a transformation of sperm competition

success, usually measured as the proportion offspring sired. The

necessity to transform Pi-values to draw conclusions on sperm

competition patterns is not a novel insight as such (Eggert et al.

2003; Neff and Wahl 2004; Parker et al. 1990). In fact, the logit

transformation advocated here is merely an extension of the ap-

proach suggested by Eggert et al. (2003). Transformations can

either be performed prior to the analysis. Alternatively, in situa-

tions where paternity can be assigned to a small offspring number

only, a normal approximation of the inherently binomially dis-

tributed data may be inappropriate. In such cases generalized

models will be indispensable; fortunately a logit transformation

is often an inherent feature of data transformation with a binomial

error structure (see, e.g., Venables and Ripley 2002). Thus, an-

alyzing the data using a generalized linear model with binomial

errors using a logit-link function (see Michalczyk et al. 2010 for an

example related to sperm competitivenes) spontaneously resolves

one of the major obstacles with fertilization success data men-

tioned here and elsewhere (see Garcı́a-González 2008b). Another

benefit of working with generalized models is that they provide

algorithms for dealing with extreme values (i.e., zero or complete

paternity), which otherwise cannot be transformed meaningfully

to a logit scale. A comprehensive analytical methodology to sperm

competition data would thus require a generalized linear mixed

model (possibly with crossed random factors), which might be a

challenging but absolutely feasible approach if used thoughtfully

(Bolker et al. 2009; Gelman 2005; Gelman and Hill 2007).
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