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Abstract—The ability to manipulate deformable objects, such
as textiles or paper, is a major prerequisite to bringing the
capabilities of articulated robot hands closer to the level of
manual intelligence exhibited by humans. We concentrate on
the manipulation of paper, which affords us a rich interaction
domain that has not yet been solved for anthropomorphic
robot hands. Robust tracking and physically plausible modeling
of the paper as well as feedback based robot control are
crucial components for this task. This paper makes two novel
contributions to this area. The first concerns real-time modeling
and visual tracking. Our technique not only models the bending
of a sheet of paper, but also paper crease lines which allows
us to monitor deformations. The second contribution concerns
enabling an anthropomorphic robot to fold paper, and is
accomplished by introducing a set of tactile- and vision-based
closed loop controllers.

I. INTRODUCTION

Complex bi-manual coordination is a routine capability
for humans and is achieved through many years of practice
with a large variety of different objects and situations.
The availability of anthropomorphic robot hands poses the
challenge of realizing similar capabilities on future robots.
Besides being a fascinating challenge for basic research, the
realization of dexterous manipulation with anthropomorphic
robot hands can make future robots more versatile and
useful when dealing with the numerous objects in household
environments that have been primarily designed to be used
and manipulated by human hands. It also can contribute to
making future prosthetic hand devices easier to control for
their wearers by providing them with a considerable part of
“autonomous interaction intelligence” to carry out the many
tasks that become disturbingly complex when the dexterity
of our natural hands is no longer available.

Due to the high complexity of the required coordination
of vision, touch and motor action in an actuator system
with typically several tens of degrees of freedom, most
current work is focused on the manipulation of rigid objects,
often with rather regular shapes, such as spheres, cylinders
or brick-shaped blocks, which allows for classical planing
approaches. However, to cope with the objects found in a
typical household, such as food items, clothing, laundry, or
articulated tools, requires us to extend these approaches to
make them able to deal with non-rigidity and objects that
can change their geometry during handling.
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Fig. 1.

Two Shadow Dexterous Hands folding a sheet of paper. The paper
is tracked from visual input for fitting a deformable soft-body-physics model,
which can also reproduce crease lines

To create a systematic, yet manageable route towards the
handling of such objects we have initially focused on the
manipulation of deformable 2D surfaces, such as sheets
of paper. Handling of such objects is relevant to several
application domains and poses already an interesting subset
of challenges that can pave the way to the manipulation
of more general non-rigid objects: manipulation under high
shape variability, the need for continuous 3D visual feedback,
the involvement of elasticity, “material memory” as a result
of bending and folding, and the possibility of complex
construction sequences exploiting these properties.

Thus we believe that a thorough understanding of manipu-
lation strategies for paper-like objects and their replication in
multi-fingered robot hands will be a significant step towards
a synthesis of the “manual intelligence” [1] that we see at
work when handling non-rigid objects with our own, human
hands. While we have already dealt with visually guided
manipulation to enable the grasping of a flat-lying sheet of
paper as a first step towards richer manipulation [2], we
now wish to demonstrate a next step: enabling the real-time
observation of manual paper folding sequences and the use
of this capability, together with proprioception and tactile
feedback, to control the necessary robot actions for paper
folding under visuo-tactile feedback.

Our demonstration on a 54-DOF bimanual system (see
Fig. 1), involving two anthropomorphic Shadow Hands
mounted on a pair of 7-DOF Mitsubishi arms, extends
our earlier work [2] in several important respects. A major
novel element is an object model that combines bending and
folding in a physical model driven by visual input. Another



extension is the combined use of proprioceptive and tactile
feedback to complement the visual feedback with important
contact information for guiding the different movement phases.
Finally, we improved the robustness of the vision framework
and created two new hand controllers to enable folding.

The paper is organized as follows. In Sec. II, an overview
of related work is provided. Sec. III introduces the used
physical model and how it models memorized deformations
and creases. In Sec. IV we focus on the visual tracking of
the paper model by introducing a new control law for linking
the model to the current observation. The capabilities of
the modeling and tracking frameworks are demonstrated by
tracking a sheet of paper that is folded into a paper airplane
by a human. After giving a concise system overview in Sec.
V, the robotic folding experiment is presented in Sec. VL
Finally, Sec. VII, summarizes and discusses the results and
provides an outlook for future work.

II. RELATED WORK

Robotic paper manipulation has often been addressed from
the perspective of origami folding. Balkom and Mason’s work
on “Robotic Origami Folding” [3] provides a fundamental
basis for robotic paper manipulation. However, Balkom and
Mason used a robot that was especially designed for such
folding. A specialized robot for spreading a piece of cloth was
also used by Saul et. al. [4], who presented a mathematical
model of the cloth that they used for predicting the outcome
of certain actions. Folding paper with anthropomorphic
robot hands gives rise to many additional and still unsolved
challenges. Dexterous manipulation of deformable objects
has recently been reviewed in [5], in which the discussion
of the major challenges in this area was presented and a
set of references which try to solve them was provided. A
major statement from the review is that it is necessary to fuse
all available sensory input such as force-, tactile- and visual
feedback.

Mathematical simulation of paper and also origami folding
has been a field of research for decades [6]. However, these
models are very complex and hard to extend [7]. Mathematical
models are also commonly used in computer graphics. State
of the art approaches use thin shell models based on discrete
differential geometry that allows for impressive physical
modeling of flexible materials [8]. With the availability of
free and open-source physics engines, we can bypass the
low level implementation of a paper model and instead work
with physical models. Additionally, these approaches are not
concerned with explicitly establishing a link from real world
observations to the model.

Anthropomorphic systems, able to apply certain manipula-
tions to deformable objects have been reported only recently.
Kita et al. [9] presented a robot system which was able to
spread clothes. Based on dense depth information from a
trinocular camera, they fit a physical model to represent the
object surface. A similar system to fold towels, that focuses
on the visual detection and grasping of towel corners [10]
was presented by Maitin-Shepard et. al. Manipulating cloth
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Fig. 2. Bending constraint structure (a) without and (b) with a defined
crease line. If a crease line is defined, all bending constraints (green lines)
that intersect the crease line (orange line) are deactivated by lowering their
stiffness coefficient.

was also addressed by Bersch et. al [11], who presented a
system for autonomous laundry folding. They use fiducial
markers for estimating the deformation of a T-shirt.

Even though these approaches produced impressive results,
they use a simple jaw-gripper instead of coordinating a
multitude of finger joints. Furthermore, their visual detection
systems cannot easily be ported to dexterous manipulation
due to the presence of occlusions.

Marker aided object detection and tracking is a common
technique to circumvent visual detection and registration
problems. Even though there are several free marker tracking
libraries available [12], [13], [14], we decided to produce
our own marker detection framework because none of the
available systems met our requirements in terms of speed,
accuracy, false-positive rate and integrability.

There are also approaches that use common key-point
detection methods such as SIFT or SURF [15] features
for estimating the surface shape of deformable objects [16].
However, these approaches are only applicable to rich scenes
that provide enough texture for robust feature tracking.

III. PHYSICAL MODELING OF FOLDABLE PAPER

While humans can carry out amazing manual actions with
haptic feedback alone, more complex operations, including
paper folding, necessitate visually guided alignment oper-
ations and thus require substantial visual feedback to be
successful. The realization of a sufficiently capable vision
system is, therefore, a key element for advanced manipulation
capabilities. While there exist good state-of-the-art solutions
for rigid objects, the implementation of real-time vision
frameworks that can track articulated or deformable objects
still poses many challenges. One such challenge is the proper
modeling and integration of elasticity with permanent shape
changes due to strong bending and folding.

In our previous work [2] we used the Bullet physics
engine [17] to model elastic bending of paper sheets during
manipulation. In the following, we report on an extension
of this approach to include non-elastic bending that leads to
permanent folds when they becomes spatially localized along
1D lines.

As in [2], we model the paper geometry with a discrete
regular 2D-grid of nodes np,p € {1,..,W} x {1,..,H} (in
our case, W = 15 and H = 21). In the physics engine,
neighbored nodes (located at grid positions p and q) are
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Fig. 3. Physical paper model. (a) Creaseless model fixed at one point (red
sphere). (b) Same model, but with diagonal crease line (orange line). (¢) An
example of memorized deformation.

connected by links cpq specifying bending constraints. Each
constraint has two parameters: the resting distance dpq of
the two nodes, and a stiffness coefficient spq. Controlling
the range across which nodes are connected allows us to
shape the bending behavior of the sheet (for our model, we
found a physically satisfactory bending behavior by providing
constraints for all node pairs whose city-block distance in
grid coordinates is 3 or 4, resulting in 8722 constraints (see
Fig. 2a)).

We use this representation to model folds in the following
way (see Fig. 3): A fold is considered to be a straight line
through the model. Each bending constraint intersecting this
line is modified in its parameters to create a physical behavior
that mimics the mechanical characteristics of a fold. This has
two components: reducing the stiffness spq to account for
the weakened elasticity of the material and “memorizing” the
bending action to account for plastic deformations. The latter
is achieved by adapting the resting distances dpq of bending
constraints across the fold (see Fig. 2b).

To automatically adapt the model according to observed
folds, a method to identify fold lines from visual input would
be necessary. This could be done by detecting persistent
deviations of the model and real sheet of paper, because such
deviations typically indicate crease lines. However, in our
application we are able to anticipate the location of fold lines
beforehand, such that we can trigger appropriate modifications
to the model programmatically, which slightly simplified the
visual recognition task.

IV. VISUAL TRACKING OF MANUAL FOLDING ACTIONS

We use the proposed paper model to visually track
manual folding actions. Our vision system employs five Point
Gray Flea2G fire-wire cameras with quad-VGA resolution
(1280 x 960), along with fiducial markers printed on the
paper surface to identify and locate 3D key-points. A robust
feedback controller ties the motion of the model nodes to
the motion of the identified key-points. Our approach, which
is detailed in the following subsections, works whenever the
motion of the paper is slow in comparison to the processing
frame rate of 15Hz.

A. Marker Tracking

We rewrote our previous marker detection framework to
remove any dependencies on special marker types. The new
framework (which is available with our open source computer
vision library ICL [18]) allowed us to systematically compare
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Fig. 4. (a) Overlay of a real image with the physical model (red lines)
and the detected key-points (green crosses). Each detected marker provides
five key-points, its center and its corner positions. (b) The paper model
is above the current detected paper position and must be moved towards
the detected key-point kj“. The key-point’s model coordinates k™ are
used to estimate the interpolated model surface position ¢}’ (k}™) in world
coordinates. The displacement between the nearest node positions nq, and
c;’ (k) is weighted w.r.t. the node distances to the key-point on the model
surface in order to estimate the final node velocity updates.

a wide range of common fiducial marker designs in terms
of accuracy, robustness and real-time detection performance.
We found that BCH-code markers [12] were best suited for
our purposes, allowing fast and robust detection, automatic
error-correction and a very low false positive rate.

For the estimation of 3D key-point locations we use
standard N-camera triangulation methods, i.e. only key-points
that are detected in at least two cameras are used. Even though
the markers are well suited for single view 3D detection, we
do not rely on this because of the resulting poor z-position
and x/y-orientation accuracy.

B. Vision-based Model Control

An important aspect of our previous work [2] was to
establish a link between the physical model and the visual
input. It was shown that a simple P-controller acting on
the velocities of model nodes provides very good stability.
However, this approach was limited to controlling certain
model nodes only. By introducing a new control algorithm
(which will be outlined below), we are now able to control
arbitrary model positions, which allows for decoupling the
complexity of the simulation from the number of tracked
key-points. This is an important step to replace the current
fiducial marker detection with arbitrary, markerless key-point
detection methods in the future. Fig. 4a visualizes the density
and distribution of model nodes and key-points.

In order to present the control algorithm, we need to
introduce some notation. We denote 3D world points by
the superscript x* and 2D model surface coordinates by
the superscript x"*. At each time step, the marker tracking
provides a set of key-points {k;} that associate the currently
observed world position ki’ € R3 with a point on the paper
model surface kj™ € R?. In our case, k}” denotes 3D estimates
of marker center and corner positions. The corresponding k;"
coordinates are derived from the well defined marker layout
on the sheet of paper. The corresponding 3D position in the
model, which is interpolated from surrounding model nodes, is
denoted as ¢ (kj™). On the model side, with each node ngq we



Fig. 5.

can associate fixed surface coordinates ng’ = q = (Gzrqy)7s
a time-varying world position ng' and a targeted velocity
vector nflel.

The key idea of the control algorithm is to adapt the
model such that the model position ¢* (k]") associated to a
key-point k; moves towards the observed world position £;°.
This is accomplished by imposing a common velocity vector
v € R3 to the four model nodes ng; surrounding the model
coordinates k;" of the key-point (see Fig. 4b). This velocity

vector is calculated using a P-controller:
viP = A - e (K)). (1)

The gain X is weighted by influence factors oy, to adjust the
contribution of the surrounding model nodes n,, according to
their distance to the key-point in the model space as follows:

@

This finally yields the following target velocities ngfl for the
model nodes ng,:

ngfl - aq7)‘(klw - Cw(klm)) = QQiV;U .

g = max(1 — k" —ng |, 0).

3

For the special case that the key-point coordinates k;" exactly
match model node coordinates ng', we obtain our previous
control law from [2], which moved a single node only:

ngel =AMk’ —ng).

“)
Naturally, individual velocity contributions obtained from
different key-point updates are accumulated before being
applied in the physics engine.

The controller gain A was tuned manually (A ~ 10 yielded
good results for a simulation step of 1/60 seconds for the
physics engine, which we found to be best to achieve high
simulation stability). In each single time step, the control
law Eq. 3 is applied to all detected key-points in 10 iteration
cycles. This enables the physics engine to move model nodes
corresponding to detected key-points successively towards
their target positions while smoothly interpolating invisible
nodes using the constraints of the underlying physical model.

C. Monitoring a Manual Folding Sequence

We demonstrate the capabilities of the detection and
modeling framework with a typical folding sequence to create
a “paper airplane”. While the paper is manipulated, crease
lines are manually added to the model and memorization of
folds is triggered. Fig. 5 depicts typical key-frames of the

Different steps needed to fold a paper airplane. The whole sequence is also shown in the video attachment to this paper. The images show the
original images overlayed with the two faces of the model (red and blue grid), the origin of the model coordinate frame (red sphere) and manually added
crease lines (orange lines). (a) The paper is folded in the middle, (b) diagonal folds are added for the wings, (c) left wing is made, (d) right wing is made,
(e) final adjustment folds are made, and (f) shows the final paper airplane.

sequence. In Fig. 5a, a center crease line has been added to
the model. The center fold is perfectly reflected by the model
deformation. Also diagonal creases are approximated very
well (Fig. 5b). The model is explicitly set up to memorize
the current deformation, to avoid diagonal folds being lost
while the paper is rotated off plane during the next steps.
In Fig. Sc, the first wing is created, for which extra crease
lines were added before. Here the physics engine’s collision
handling (self collision of the model cells as well as model
to ground collision) is needed. Otherwise, the invisible parts
of the model would slowly go back to their rest configuration.
When the second wing is created (Fig. 5d), only a few
markers remain detectable due to occlusions. While the
relative configuration of the model remains overall good,
it’s orientation tracking is weak. This can be explained by
the rotation inertia of the physical model that is not well
compensated by controlling a single or just a few key-points.
The most difficult part of the sequence is when the fold-angles
are adjusted. Fast marker-movements and massive occlusions
temporarily lead to implausible modeling results (Fig. 5e).
However, once the finished paper airplane is presented without
hand occlusions (Fig. 5f), the remaining detectable markers
are sufficient to resume the correct tracking of the model.

V. ROBOT SYSTEM

For the manipulation tasks, two redundant 7-DOF Mit-
subishi PA-10 robot arms, each equipped with a 20-DOF
Shadow Dexterous Hand, are used. For better similarity to
the kinematic arrangement of human arms, both robot arms
are attached in downward orientation from the ceiling. Both
hands are equipped with different types of tactile sensors. The
right hand’s fingertips are equipped with a tactile sensor matrix
comprising 34 tactels, providing a spatial resolution of 3mm,
however at the expense of a rather limited sensitivity. On the
left hand we employ PST sensors from the Shadow Robot
Company. A cavity in each fingertip is used to transform
contact forces into an air pressure signal, which is highly
sensitive to small forces. Therefore, we make asymmetric
use of the hands and employ the right hand for fixating the
paper and the left hand for manipulation actions. Additionally,
we added rubber finger covers to the right hand to decrease
slippage of the foam-covered fingertips, and fabric covers to
the left hand to decrease friction of the rubber-covered tips.

The whole robot setup is controlled by a hierarchical state
machine (HSM), which coordinates numerous processes that
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on a single PC. The 2D detection results are fed into the 3D estimation
and modeling unit that conducts multi-view 3D estimation for the marker
key-points for updating the internal physical model. The current model status
is published to the Active Memory component [19]. Finally, the controlling
HSM module uses active memory to control the robot’s hands and arms.

are distributed over several PCs using the XCF middle-ware
toolkit [19] (see Fig. 6).

VI. BI-MANUAL PAPER FOLDING BY A ROBOT SYSTEM

We now demonstrate the interaction of all components
allowing a robot to bi-manually create a fold line in a standard
A4 sheet of paper. This constitutes a key element for building
longer action sequences that can lead to more complex paper
configurations (the demonstration of such action sequences
will be the subject of future work). To realise this initial step,
the visual information needs to be complemented with tactile
sensing from the finger tips and force information from the
fingers, obtained by evaluating joint-sensor feedback from
the robot hands.

Two basic hand-arm controllers serve as our building blocks
for the coordination of the required actuator movements, using
visual, tactile and proprioceptive feedback.

A. Hand-Arm Controllers

The first controller, Ceonact, allows force-feedback-
controlled establishment of contact with an object. Although
our robots lack explicit force-torque sensors, we achieve
this by monitoring the joint sensors of the compliant Shadow
Robot hand during a contact motion. As soon as the deviation
of selected joint angles @ from their relaxed reference pose
O, exceeds a predefined threshold A@0.,.y, the contact
motion of the arms is interrupted, i.e.

stop motion if |0 — Oe||p > AOpax ,

&)

where ||-||p denotes a norm weighted by a diagonal selector
matrix P. Due to the passive compliance of the muscle-
actuated hands, joint deviations directly correspond to an
applied force according to a (nonlinear) spring law. The
controllable joint stiffness and the employed threshold can
be used to indirectly select an appropriate contact force.
Additionally, sufficiently sensitive tactile sensors can be used
to detect contact. However, often they respond to restricted
sensor areas only, such that contact sensitivity is restricted to
certain contact situations. On the left hand, which is equipped
with highly sensitive tactile sensors, we combine both joint-
and tactile-based contact detection.

The second controller, Ciorce, takes over as soon as contact
has been established. Its task is to maintain a certain contact

force on the touched surface based on the hand’s tactile sensor
outputs. It is realized as a simple P-controller driving the
flexion of the fingers (excluding the thumb) based on the
observed tactile force error:

Ae?ex =q; kp- (ftarget — fourrent) » (6)

where the «; denote joint-specific gain modulation factors
to accomplish stronger flexion of proximal joints. Otherwise
fingers would tend to curl in, thus loosing contact with the
tactile-sensitive palmar surfaces of the fingertips.

Because the controller acts on hand joints only, it can be
easily combined with independent arm movements tangential
to the touched surface. We note an interesting integration
of visual and tactile feedback: the tangential movement is
controlled using visual feedback, while the motion normal to
the object surface is controlled using the tactile sensors.

B. The Folding Sequence

We begin by placing a sheet of paper flat on the surface of
the robot’s workspace. The paper needs to be moved by the
robot to allow a corner to be picked up. In [2] we showed
that picking up a sheet of paper lying on a flat surface is a
very challenging task involving bi-manual operations. Here
we follow a different strategy, shifting the paper to a suitable
position for direct grasping. Humans often do this when
objects are too flat to otherwise pick up. The paper is shifted
by sequencing the controllers Ceopaer and Cioree (see Fig. 7a).
Once correctly positioned, the paper is fixed by the right
hand and pinch-grasped by the left hand (see 7b). To realize
the bending motion, the robot follows a predefined trajectory
formed from several points defined relative to the current
paper coordinate frame. During this motion, the paper model
is modified by adding the desired crease line in order to
allow a higher bending curvature of the model (see 7c¢ and d).
Otherwise, it would not be able to adapt to the strongly bent
sheet of paper. Instead the lower layer, whose markers are
occluded and thus cannot constrain the motion of the model
anymore, would begin to unfold again. After the bending
motion, the back of the left hand’s finger tips are used to
fixate the paper on the table.

Even though we do not use closed-loop feedback during
the bending motion, we track the deformation of the paper
to know where the different parts of the paper are in the
next step. Here, the right hand is released in order to be
able to fixate the now folded top layer of the paper onto the
bottom layer. Again, Conaer 18 used here (see Fig. 7e). We
are now able to generate a crease, which is performed in
two sub-steps. First, a coarse swiping motion with the left
hand is performed to better define the actual crease line (see
Fig. 7f). This motion is technically identical to the initial
shifting motion of the right hand, so a sequence of Cionact
followed by Clyree is used once more. However, this time, the
motion is applied with the left hand whose fingertip friction
is low, while the paper is fixated strongly with the right hand.
For the second step, the actual crease line is estimated by the
vision-system to compute the fingertip trajectory for the final



Fig. 7.
Pinch grasp with left hand. (c) Paper is bent with left hand. (d) The center crease is inserted to allow higher curvature. The left hand temporarily fixates the
paper. (e) Right hand is released and is now used to fixate both paper layers. (f) The left hand performs a swiping motion to produce a crease in the paper.
(g) The left hand then performs a precise creasing motion in order to harden the crease. (h) The folded sheet of paper and its associated model are shown.

crease making motion. For higher precision, the crease line
is hardened with two fingers (see Fig. 7g). Again, we derive
appropriate contact points with the paper from the model.
Once the crease line is created, the paper model memorizes
it’s deformation and can be released by the hands (Fig. 7h).

VII. DISCUSSION AND FUTURE WORK

We proposed a method for real-time detection and physical
modeling of paper. The system runs very robustly even in
presence of heavy occlusions and fast paper movements. We
also demonstrated that crease lines and memorized creases can
be represented plausibly by altering the bending constraints of
the physical model. The detection and modeling capabilities of
the system were demonstrated during an interaction sequence
in which a piece of paper was folded into an airplane. Utilizing
our detection and modeling framework, we were able to endow
a bi-manual anthropomorphic robot with the ability to fold a
piece of paper in two. For this complex manipulation task,
closed-loop tactile-, force- and visual-feedback controllers
were devised and successfully demonstrated.

The most obvious drawback of the presented system
is the necessity of having fiducial markers for key-point
estimation. By introducing a new flexible control law for
model updates, we have already prepared our system for a
future replacement of marker detection by common general
image features, such as SURF [15]. However, most sheets
of paper we deal with are either blank or contain machine
written text calling for methods, that do not rely on paper
textures. 3D cameras such as the Microsoft Kinect are good
candidates to acquire reliable 3D information at a low cost.
However, since the Kinect device only provides 3D positions
without corresponding 2D paper coordinates, the model update
mechanism would need to be adapted. Even though modeling
creases by altering bending constraints was shown to work
very accurately even in situations with intersecting folds
as occurred during the creation of the paper airplane, we
would like to be able to define crease lines more precisely.
This can be achieved by inserting new model nodes and
bending constraints where a crease line intersects with the
model grid. This adaption would release the necessity for a
fine-grained initial model grid, because crease lines would
no longer need to be approximated by a set of model cells.
Currently, folds have to be added explicitly by the user, which
is acceptable in case of active folding. However, it makes it
very difficult to detect a divergence between intended and
performed creases. A possible relaxation of this is to use a set
of model hypotheses/particles, e.g. with parameters randomly

Robotic paper folding sequence, also available in the video attachment to this paper. (a) The paper is shifted for pinch-grasping its corner. (b)

drawn around the intended one, which would enable us to
select the model that best reflects the current observation. It
would also be possible to derive the parameters of a crease
line from the forces applied to the paper.

Using online visual feedback to estimate parameters of
the motion sequence, the folding task is successful in 4 out
of 5 trails. By enabling our robot to fold paper, we have
provided a promising basis for more complex manipulation
patterns. However, we hope to get more insights into the
inherent structure of the problem of manipulating paper by
tackling more difficult interaction sequences. This would
enable use to create an interaction toolkit with building blocks
for manipulating paper and also other deformable objects.
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