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Abstract

This thesis develops a system, based on Web images, for the detection
of domestic objects in images of indoor home environments. Images
from ten different domestic object categories (apple, bottle, bowl, cup,
handbag, laptop, light switch, potted plant, shoe and toaster) are down-
loaded and annotated from the Web. This results in complex training
sets for each category, which are divided unsupervised into sub-sets ac-
cording to the extracted principal views. The principal views are also
employed to learn class- and view-specific, data-tuned hierarchical tes-
sellations of the 2D image plane. The 2D tessellations are used along
with a class-independent data-tuned hierarchical tessellation of a high-
dimensional descriptor space to realize a view-tuned approximate par-
tial matching kernel. A view-tuned kernel implements a fine-to-coarse
matching of Bag of Words-based object parts, while paying attention
to the structure of the object and the relative positions of its parts.
Both the tessellation of the image plane and the high-dimensional de-
scriptor space are learned with a hierarchical Growing Neural Gas, the
lbTreeGNG. View-tuned kernels are used efficiently with Support Vector
Machines in a sliding window approach to train view-tuned experts for
the different sub-sets. Finally, the outputs of various experts are fused
to determine a final detection result. The proposed system shows a
state-of-the-art recognition performance on the image database cre-
ated, and is able to detect unseen object instances in unknown environ-
ments.
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Chapter 1

Introduction

Category Detection vs. Instance Detection

This thesis deals with the problem of object/category detection, where
an object in a category should be located in an image (cf. [195],[167]).
For instance, consider a detector for the category “cup”, as shown in
figure 1.1 (left). Here, as a result the cup detector provides rectangu-

Figure 1.1: (left) Detection results of a detector for the category cup. (right)
A detection result of an instance detector for the blue flower cup.

lar bounding boxes, that tightly enclose the cup objects. The object
detection problem differs from the related problem of instance detec-
tion. In instance detection, it is the goal to learn and detect a specific
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object (cf. [195],[167]), like the “blue flower cup” seen in figure 1.1
(right). This means that the instance detector should only detect the
blue flower cup while a cup detector should ultimately detect any cup,
no matter what the cup looks like. When I talk about categorisation,
it should be understood as being directly appearance-based, because no
other semantic or haptic cues are employed. Obviously, category detec-
tion is a much harder problem than instance detection. However, both
problems are very interesting in the context of mobile service robots, as
discussed next.

1.1 Motivation

Motivation for Detecting Domestic Objects

Service robotics is a fast growing field of research (e.g. [3]), where
different kinds of ability need to be engineered in order to create systems
that interact smoothly with humans and perform tasks in regular home
environments. For example, those abilities subsume safe navigation
(e.g. [233]), the understanding of dialog (e.g. [159]), the recognition
of interaction partners (e.g. [10]) and also the recognition of domestic
objects (e.g. [135]). In this context, I use the term domestic objects to
refer to any objects which can be found in regular home environments
and which are used by humans in daily living. In addition, the considered
objects should be manipulatable by a robot in some way. For example,
a light switch can be turned on or a bottle can be carried.

In the future, when a service robot like Biron/ ToBI (e.g. [86], [218])
is delivered to an apartment, the robot should have a basic knowledge
about the world, but should also be able to learn new specific things in
its novel environment. With respect to the robot’s object recognition
capabilities, this means the following. On the one hand, the robot
should be able to learn to detect the blue flower cup of figure 1.1, since
it is specific in a new environment and most likely the robot hasn’t seen
it before. This instance detection capability allows a user to delegate
tasks w.r.t. a specific object instance, e.g.: “Find my blue flower cup!”
On the other hand, the ability to detect objects in a category is also
very useful in a range of different scenarios:
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• Category Level Tasks. In some cases, the human does not want
to tell the robot what specific object should be used in a specific
task. For instance, when giving commands like “Get me a cup of
coffee!” or “Clean the cups on the dining table!”

• Inference. Detecting an object in a category can allow the robot
to infer the function or manipulation possibilities of a novel object,
i.e. what can be done with the object.

• Exploration. When the robot is new to an environment it could
try to detect objects, for instance during an home tour (e.g. [196])
or in an autonomous exploration (e.g. [226]). Subsequently, the
robot could initiate a dialog with the human in order to clarify
uncertain detection results, as stated next.

• Robot Initiative. Here, the basic idea is that the category detec-
tion system will never be perfect and produces errors. However, to
deal with uncertain stimuli the robot could ask the human in se-
lective situations to clarify things, similar to [158]. For instance,
while presenting an image on the screen the robot could ask “I
have seen this object today and I think it is one of your cups. Is
this true?”

• Environmental Adaption. When a robot takes initiative and asks
for clarification, it’s possible that the robot found an important
specific object instance. For example, the robot found the blue
flower cup of figure 1.1 and it should remember this specific cup,
because it is my favorite cup. In this scenario, category detection
can be used in order to initiate the learning of instance detection.

From this small set of examples it can be seen that a working detection
system for domestic objects is a basic building block of future research
in service robotics. But an important question is on what basis should
this basic detection ability for domestic objects be trained and tested?

Motivation for Training and Testing on Web Images

In this work I follow the de-facto standard for acquiring training and
testing samples for category detection systems, i.e. by employing im-
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ages from the Web (e.g. [45], [197], [39], [48], [204], [82], [203]).
The fact that employing Web images is the most common method to
acquire samples for training and testing of object detectors results from
the following. First of all, it is easy to acquire a large number of images
by using textual queries. Further, the objects found in Web images are
very diverse w.r.t. their appearance and pose. Also the background of
the objects is very diverse. Beyond that, domestic objects can often
also be found in product images, where they had been photographed in
front of a homogeneous background, and which may provide additional
cues for learning.

Besides, I think that testing the generalisation abilities of a category
detector with robots in real environments is very costly. In order to
make a reasonable statement about the generalisation abilities of the
system, it would be necessary to place hundreds or thousands of objects
in different environments. This is usually not feasible, e.g. when testing
a detector for TVs. And I think the same argument of intractability
holds for the training phase of the system. It is usually not possible to
present to a robot thousands of different objects (e.g. TVs) in different
environments and poses. However, the good news is, by using Web
images the desired diversity and quantity of training and test images
can be provided at a feasible cost. In the next section, the scope of the
work is specified and the contributions of the thesis are stated.

1.2 Objective and Contribution

Objective

Building an object detection system is a lot of work, e.g. compare
[54]. But the integration of a detection system in the architecture and
behavior of a specific robot is also a lot of work, e.g. compare [135].
Certainly, both aspects are too much to handle within a single thesis.
Therefore, this thesis focuses on the first part:

The goal of my thesis is the development of a system which
is able to detect domestic objects in images on the basis of
Web images.
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Figure 1.2: This figure sketches the main stages of the detection system with
view-tuned SVM ensembles.

In this context, I introduce the following additional constraints to the
recognition system in order to specify the objective of this work. First,
the detection system should not depend on any robot-specific processes
or functionalities. The detector should be trained and evaluated as a
self-contained component. Second, the detector should operate locally
on single low-resolution (i.e. 640 × 480) color 2D images and should
not require any additional context information like the 3D structure or
a memory of detection results over time. These constraints make the
detection system more flexible and reusable, since it avoids coupling to
other components.

Contribution

The overall contribution of my thesis is the development of a novel
object detection system for domestic objects, which is trained on Web
images and which yields state-of-the-art results. A sketch of the differ-
ent stages of the detection system is given in figure 1.2. On a more fine
granular level, the contribution is given as follows. First of all, a large
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novel database of ten different domestic object categories is created as
part of this thesis. Further, this thesis proposes an approach to split
complex training sets unsupervised according to “principal views”. In
addition, this work contributes a method for learning view-tuned match-
ing kernels for the sub-sets, which realize a tuned fine-to-coarse com-
parison of the samples in a set. Moreover, this thesis proposes method-
ology for applying view-tuned kernels very efficiently in the framework
of Support Vector Machines (SVMs). Also, an approach for esembling
the detection results of different view-tuned experts is presented. The
proposed procedures are evaluated within the different stages of the
system, but also w.r.t. the total detection performance of the system.
Beyond that, a robust and efficient method for constructive online one-
shot learning of hierarchical vector quantisation is contributed. The
method is used as a basic ingredient in several stages of the system.

1.3 Document Structure

The document is structured linearly along the different stages of the
detection system, as outlined in the last section. For that purpose, the
details of the hierarchical vector quantisation approach are explained
self-contained in the appendix A. In chapter 2, an overview of related
work in the fields of object classification and object detection is pro-
vided. Other related work is also discussed locally within some chapters.
In chapter 3, a number of 10 domestic categories is selected. Then,
the process of data acquisition and annotation is discussed and the re-
sults are presented. Afterwards, the method for extracting principal
views and splitting training sets, as well as the results are discussed in
chapter 4. Subsequently, chapter 5 explains the learning of view-tuned
approximate partial matching kernel and presents the results. Further
on, chapter 6 explicates the distinctive training of view-tuned SVMs.
Also an efficient computation scheme for the decision function is pre-
sented in the same chapter. After that, in chapter 7 the ensembling of
view-tuned experts for detecting domestic objects is explained and the
overall detection system is evaluated. Finally, chapter 8 presents a final
conclusion and an outlook to future work.
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Chapter 2

Related Work

This chapter provides a brief overview of work related to category detec-
tion and presents some of the major directions and recent approaches.
For a more comprehensive view on category recognition see [163], [167],
[40], [50] and [195]. Note that I also provide directly related work in
some specific sections of the thesis.

Figure 2.1: Example results of an object classification for the category “cup”.

In chapter 1 the difference between instance detection and category
detection has already been explained. To recap, a cup detector localises

7



all occurrences of cups in an image, while an instance detector only lo-
calises a specific cup, like a blue cup with flowers. In this chapter,
category detection is also distinguished from object/category classi-
fication. A category classifier determines whether any instance of a
category is present in an image or not. The classification does not pro-
vide any information about the location of the instances. For example,
a cup classifier determines whether any cup is present in an image and
can return a binary answer or a confidence score. Consider figure 2.1
for an example. Of course, a category classifier can be used to build
a category detector, e.g. when evaluating a classifier at local image
regions [110]. Also note, that category classification is quite similar to
scene recognition, where the question is, whether an image shows an
instance of a scene category (e.g. “Does the image show a kitchen?”).

Since classification and detection are linked and detection ideas are
inspired by classification techniques, the main directions in category
classification are discussed first in section 2.1. Subsequently, category
detection is reviewed in section 2.2. Finally, section 2.3 presents major
datasets and recognition competitions in the area of category recogni-
tion.

2.1 Category Classification

This chapter presents some related category classification approaches,
distinguished according to the following principles: Bag of Words (BOW),
Visual Words with Spatial Location, Part-based Models and other methods.
Note that the approaches presented are organised roughly under these
headings. It is not intended to be fully correct, as some approaches use
multiple or modified principles and do not allow a clear cut distinction.

Bag of Words (BOW)

The bag of words (BOW) technique is known from text mining (e.g.
[122]), where a document is represented by a histogram of word counts
over a dictionary. In doing so, the order of the words in the text gets
lost, but tasks like classification can still be performed reasonably well
(e.g. [12]). BOW has also widely been applied in category classification,

8



Figure 2.2: Sketch of the bag of words approach.

where an image is represented by a histogram over clustered descriptors
of local image regions. See figure 2.2 for a sketch of the principle. Some
approaches that use variants of this technique are given in the following.

Early versions of BOW-like approaches are mostly concerned with
the recognition of texture, e.g. [120] and [112]. An early applica-
tion of the mentioned text mining approach in computer vision is e.g.
[190], where an object matching for searching video frames is proposed.
Also using BOW representations, [36] compares SVM with naive Bayes
classifiers and concludes that SVMs clearly show a better performance.
When using a BOW scheme one question is how to get good code-
books. The publication [99] discusses different quantization methods
to create efficient codebooks. The work of [160] discusses the idea of
learning class-specific codebooks and representing an image by a set
of histograms (one for each class). In another way, the authors in
[225], [228], and [143] use class-specific information in the construc-
tion of visual vocabularies in order to enhance the distinctiveness of the
visual words. Another direction of creating codebooks is explored in
[231], where a set of vocabulary trees is incrementally learned in order
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to enhance indexing and recognition performances. Beyond that, the
efficient use of hierarchical codebook trees [148],[104] and variants of
randomised forests [161], [143], [188] are investigated, in different con-
texts like large instance recognition or image classification. An efficient
way to compute an SVM kernel by matching unordered feature sets is
the pyramid match as introduced in [78] and [81]. The authors propose
to represent the feature sets as multi-resolution histograms and to use
a weighted histogram intersection to get an efficient Mercer Kernel.
This pyramid match has been employed in [79] to automatically learn
category models from partially matching sets of local visual features.
Various other kernels are also explored for their performance in clas-
sification tasks, e.g. [237] evaluates different kernels to compare the
probability distribution of word count histograms. The work of [5] is
an example, where bag of words is employed to learn a few discrim-
inative similarity metrics from training data for image categorisation.
The BOW technique is also used in classification with local neighbors:
[28] proposes an improved learning of local distance functions for a bet-
ter classification of categories. It is also possible to use their work for
object categorisation approaches with a localised kernel, e.g. [236].
Seeing the learning of local distance functions as an approximation of
the geodesic distance of a metric tensor, the paper [170] proposes a
taxonomy and comparison of such learning methods. Besides, BOW is
employed as part of probabilistic models: In [51], the authors propose to
learn a Bayesian hierarchical model for classifying categories of natural
scenes. Also a generative model is proposed in [48]. Here, the method
is used to incrementally train a Bayesian models and it is evaluated on
101 object categories. In [189], the authors use two types of gener-
ative statistical model, that are known from text mining with BOW
representations. They show that it is possible to discover categories
in collections of images unsupervised using the methods on bags of vi-
sual features. Also hybrid learning approaches based on visual words
have been proposed. For example, [94] explores the combination of
generative with discriminative methods for object recognition by using
Fisher Kernels. Another type of combination, i.e. the combination of
visual and textual cues and slight supervision, is employed in the work
of [9] to produce large visual datasets of animals from the Web. Fully
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automatic harvesting of image databases from the Web is also studied
in [183]. Here, the proposed method makes use of visual and textual
cues for classification, as well. Also using datasets from the Web, the
work in [124] proposes an incremental learning scheme for a probabilistic
graphical model in order to learn from the datasets with minimal human
effort. In the same manner, [214] employs multiple-instance learning on
bags of Web images to learn categories from weakly supervised data.
Besides, [31] also employs BOW features to actively learn object cat-
egories with minimal supervision fromWeb image search results. In [80],
the mentioned pyramid match has been extended by using a hierarchy
of non-uniformly spaced bins in the feature space. The authors propose
to compare sets of features of arbitrary size with a vocabulary guided
pyramid match, where non-uniform bins allow a better approximation
of the optimal correspondence. An evaluation of different BOW setups
for scene category classification is studied in [227]. The authors discuss
how different design choices, like the dimensionality and the weighting
of visual words, affect the overall classification performance.

A large variety of feature detectors and feature descriptors can be
used with the bag of words technique. For example, a common choice is
the usage of the difference of Gaussians keypoint detector together with
a SIFT [127] descriptor. Aside from that, other examples for keypoint
detection methods are Kadir’s saliency operator [100], Multiscale-Harris
[139], MSER [133] and SURF [7]. For a comprehensive study of interest
point detectors see [181], [137], [140] and [208]. As well, some works
leave out the detection step and place the local feature on a regular
grid over the image (e.g. [51]). Some additional examples for local de-
scriptors are GLOH [138], HOG [37], PCA-SIFT [103] and spin images
[111]. For a performance evaluation of different local descriptors con-
fer [138]. Also colored versions of local features have been proposed
- e.g. see [210] and [72] - or for a comparison of methods see [19]
and [209]. Beyond that, researchers have studied techniques to reduce
the dimensionality of the descriptors for the purpose of a more efficient
matching, e.g. [96], [136] and [23]. But not only the dimensionality
is also an interesting property, the informativeness of local features is
also studied, e.g. in [213]. Note, that also the combination of different
kinds of features is intensively studied, e.g. [76], [154].
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Figure 2.3: This figures sketches one possible way to add spatial information
to visual words. In this way BOW histograms are computed for different image
regions and fused to an overall representation.

Visual Words with Spatial Location

One problem of the BOW representation is that information about the
positions of the local descriptors gets lost. There are several extensions
to overcome this limitation and to add spatial information to visual
words. One way to encode spatial information is by using a (hierarchi-
cal) spatial binning. Here, each bin can still be represented by a BOW,
but through a concatenation of the feature vectors, the overall repre-
sentation encodes information about the location of the features to a
certain extent. This idea is sketched in figure 2.3. But also the direct
incorporation of location information into the features or the models is
possible. Some instances of these approaches are presented next.

For the purpose of scene categorisation, the authors of [113] extend
the BOW method as a spatial pyramid histogram and propose a pyramid
match kernel to compare images. They show, that an incorporation of
the spatial information does significantly improve the results of classi-
fiers compared to global BOW representations. Also [14] proposes to
use a spatial pyramid to implement matching with a pyramid kernel.
The authors learn the weights of the levels and combine shape and ap-

12



pearance kernels. A performance gain is demonstrated when using this
spatial structure. As well as picking up the idea of [113], the authors of
[13] generalise the global representation to regions of interest. Further,
they propose an idea to suppress background and use random forests
as a multi-way classifier, which reduces the cost of training and testing.
In [230], the authors show how the spatial pyramid matching [113] can
be employed as a kernel for an incremental learning SVM, applied in the
context of interactive categorisation. Another way to introduce spa-
tial information to BOW is by using a weighting scheme: The authors
in [132] propose to utilise the object boundaries in order to mitigate
weights for background features, while boosting the weights of object
features. In doing so, they are able to estimate approximate segmen-
tation masks and thus to perform object detection. To get a better
test time complexity than typical BOW SVM systems, [232] proposes
to store an inverted index lookup from visual words to the training im-
ages and perform a SVM based voting for the final classification. The
authors demonstrate improvements in speed and scalability. In [192],
[193] and [219], different ways of introducing spatial relations in hierar-
chical graphical models are explored. This realises a hierarchical model
of scenes or objects with spatial parts. Another direction is to incor-
porate location information on the feature level, as explored in [180].
Besides, the authors of [128] proposes to represent images of a cat-
egory as 2D sequences of visual words. The authors introduce a spatial
mismatch kernel, that captures the spatial structure of the image for
classification of natural and historical images with kernel machines.

Part-based Models

A part-based model represents objects by parts, which have a certain
geometric relationship and appearance. For instance, a face can be seen
as consisting of several parts: eyes, a nose, a mouse and so forth. And
each of these parts has a certain appearance, but also a certain relative
location - for example the nose is over the mouth and under the eyes.
See figure 2.4 for a basic sketch of this type of model. The idea of
recognising objects by geometrically constrained parts has a quite long
history, e.g. [101], [68], [234] and [18]. Since part-based models can be
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Figure 2.4: (left) Sketch of a part-based model for faces (right) Sketch of the
Pictorial Structure Model [55] for human detection

used for both category classification and detection, they are discussed
here. However, some additional remarks are also given in the detection
section. According to the authors in [50], basic questions for part-based
models are:

• How is appearance represented?

• How are geometric relationships modeled?

• How can learning and recognition be realised with such represen-
tations?

The parts themselves can be considered in a sparse or dense manner
(pixels vs. regions). Using sparse parts avoids a modeling of the global
variability and is more tractable than dense representations. However,
while throwing away a large amount of visual information, the sparse
regions must be distinctive in order to allow separation of different cat-
egories. When using a part-based model to recognise an object, the
parts of the model need to be aligned to the picture. This is called
the correspondence problem. In general, solving the correspondence
problem can be very costly. For instance, given a model with P parts
and M possible candidate regions in the image, there are PM possible
combinations for a one to one mapping. Thus, researchers have intro-
duced various ways to reduce the complexity of learning and inference
methods.

In the last decade, various probabilistic models have been proposed
for realising the part-based notion. Thereby, geometric spatial priors
are proposed in different topologies and result in different inference
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complexities. In [25] some prior topologies and their complexities are
compared. The previously discussed bag of words approach can also be
seen as a graphical model in which the geometry of parts is indepen-
dent given the model [36], [25]. This model can be trained fast, but it
doesn’t pay attention to the relative positions of parts. The extreme
in the other direction is given by the constellation model, which models
the full joint distribution of location of parts [60].This model is able to
capture a lot of information, but the learning becomes intractable quite
quickly, as the number of parts goes up (exponentially growth of param-
eters). There are various approaches between these two extremes. The
general idea is to restrict the topology of the geometric prior in order to
allow more efficient learning and inference. The star shaped model [34],
[62] and hierarchical models [56], [16] are examples of this strategy. All
these models contain a special node, which facilitates more efficient
inference (e.g. the center node of the star model). In embedded hierar-
chical models [16] up to hundreds of parts can be used. The geometric
prior proposed in [34] has a less restricted geometry where each model
component depends on the location of the k nearest neighbors. In [56]
and [55] also distance transformations are used to further increase the
efficiency of the probabilistic inference by avoiding an exhaustive search
for the positions of parts. Later on, [57] and [54] efficiently make use
of a star-graph (or 1-fan) model to discriminatively train multi-scale
deformable part models (DPMs). The authors demonstrate very good
results on challenging data (like the PASCAL dataset [45]) by using
HOG features [37] and a latent SVM formulation with a data mining
approach for finding hard negative examples. Here, a coarse global filter
and high resolution part filters are used in a multi-scale pyramid with
a sliding window. The spatial relationship is captured by a deforma-
tion cost for the parts. The method is among the best state-of-the-art
algorithms and the fact that the authors made their implementation
public renders it very suitable for comparing novel detectors against
the state-of-the-art. The same method has since then been improved
w.r.t. efficiency. In [53], the authors introduce the notion of cascades
for DPMs and demonstrate massive speedups without altering precision
or recall. Other work of [116] implicitly realises a star-shaped geomet-
ric prior by using a visual word based probabilistic voting model for the
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center of an object. The mentioned constellation model is originally pro-
posed in [20]. This technique is also extended for unsupervised learning
[222]. A further extension is described in [63], where appearance and
shape are simultaneously learned. An extension of this constellation
model was used in [61] to re-rank the results of Google’s image search.
Also by using Google’s Image Search, [59] showed that Web images
can be used directly in order to train category classifiers, here with an
extension of the probabilistic latent semantic analysis (pLSA) model.
Also learning categories from a small number of samples is studied with
part-based models: e.g. [49] takes advantage of the knowledge gained
from previously learned categories. In [8] object classification is studied
in a deformable shape matching framework. Here, the correspondence
problem is solved as an integer quadratic programming problem. Be-
sides, the work of [119] encodes the relations between local feature
as cliques of interconnected parts. Using this representation, the au-
thors demonstrate the ability to localise and classify object categories.
In hierarchical representations, objects not only consist of parts, but
the parts can also be considered as several layers of “groupings” start-
ing from pixels. Sophisticated hierarchical part-based models can be
realised with the notion of stochastic grammars (e.g. [16], [239]). An-
other type of hierarchical representation is is proposed in [66] and [67].
Here, the authors propose a cross-layered compositional representation
for category classification. The layered network encodes the notion of
scales and allows feature sharing between classes. The approach in
[151] decomposes objects unsupervised into a hierarchy of parts and
learns a composed representation. The compositions allow the sharing
of features and are combined in a graphical model.

Other Related Methods

There are also some methods which don’t really fit under the headings
used here. For instance, object classification approaches that are biolog-
ically inspired or employ neural networks for learning features. In [185]
novel features are introduced which are inspired by the visual cortex.
Their recognition system demonstrates good performance, even when
learning from a small number of examples. Besides, [145] uses sparse

16



features with limited receptive fields to recognise and localise objects in
images. On a common image dataset, the algorithm shows competitive
performance, even when detecting cars in real world scenes. Another
approach is taken by [171]. Here, a gated Markov Random Field is used
as a generative model of natural images and is taken as the lowest level
of a Deep Belief Network (DBN) which includes several hidden layers.
The method demonstrates a comparable recognition performance for
facial expressions without the need for well-engineered SIFT [127] fea-
tures. Also [102] proposes to learn feature extractors unsupervised in
a filter and pooling framework. This method creates topographic maps
of similar filters, which are pooled to an invariant result. The authors
show that their features work as well as or even better than SIFT [127]
in a recognition scenario.

2.2 Category Detection

This section presents an overview of related category detection work.
Also in this chapter, the approaches are structured roughly under a
number of headings.

Detection with Visual Words

As stated in the last section, visual words are a common technique used
for classification that can also be employed for detection, e.g. by appli-
cation in a sliding window framework [110]. The basic sliding window
detection scheme is sketched in figure 2.5. Given a classifier trained
on in-class and non-class images, the red window of the size w × h is
moved across the image and the classifier is applied to each local image
region. In doing so, an offset of dx pixels is used in the x-direction,
and an offset of dy pixels is used in the y-direction. An exhaustive
search uses dx = 1 = dy . However, to keep the computational com-
plexity tractable, the search space is truncated by setting dx and dy
to a larger number of pixels. Then the displacement can be written as
a fraction of the window width and height, e.g. dx = xs · w = .3w

and dy = ys · h = .3h. The green window depicts a position, where
the classifier assigned the label “in-class”. To be invariant to the scale
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Figure 2.5: Sketch of the sliding window approach for detecting objects with
classifiers.

of the object, sliding windows are normally used at different scales
σ = {σ1, . . . , σN} of the image. To be applicable in a sliding window
approach, the classification method must be efficient, because usually
a lot of windows need to be evaluated. Since various visual word based
approaches were already mentioned in the last chapter, I only state a
few additional examples here.

Building on the principle of boosting, the approach in [152] explores
the learning of a discriminative set of descriptors for local regions (weak
hypothesis) from weakly supervised data. These weak hypotheses are
then combined into a final hypothesis for each class. Thereby, the
authors show that the ensembling of multiple extractors and descriptors
yields improved performance, without considering the relative location
of features. Further, [2] represents an object using clusters of local
rectangular regions, sampled from the object images. In the exemplar
model learning approach of [30], objects are localised using a sliding
window approach with a SVM based on a spatial pyramid kernel with
visual words and edge features. The authors demonstrate that their
model is scale and translation invariant.
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Figure 2.6: (left) This figure by Viola and Jones [215] shows the Haar wavelets
chosen for face detection and which can be efficiently computed with integral
images. (middle) A visualisation of [37] showing a HOG descriptor for an
image and the positive and negative weights learned for human detection.
(right) This figure sketches the sparse, part-based representation used for car
detection (image by [2]).

Detecting Faces, Pedestrians and Cars

A lot of the early work in object detection is concerned with the prob-
lem of face detection, pedestrian detection and car detection. Often,
the developed algorithmic principles or features are not restricted to a
specific object class and can be adapted to other categories as well.

Early approaches in face recognition worked with good illuminated
frontal face images. Later on, more sophisticated recognition setups
were considered and included changes in pose, bad illumination and
side-views of faces. A large number of face detection approaches have
been developed over the years. In [229] a survey on earlier work is
provided and in [201] and [195] some more recent work is discussed.
According to the authors in [229], face detection approaches can be dis-
tinguished accoding to whether they are template-based, feature-based
or appearance-based. The most exhaustive way to do face recognition
is to apply a classifier at every location and scale in an image, but this
is way too slow for real applications [141]. Appearance-based principles
make use of this basic sliding window idea, but apply it in a more effi-
cient manner. One way to make this principle more tractable is to use a
coarser grid of positions and scales, where the classifier is applied rather
than evaluating every possible location and scale. Another idea is to
use cascaded structures. Here, efficient and weak classifiers are applied
first and complex classifiers are only considered on face-like regions that
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passed the weak classifiers. The two ideas can also be combined. To
be able to detect faces on multiple scales, a sub-octave image pyramid
[195] can be constructed, where the scanning is performed at each scale
using a fixed sized window. Examples for appearance-based methods
are [70], [175] and [215]. The work of Viola and Jones [215] proposes
the idea of training a chain of increasingly discriminating weak classi-
fiers and ensembling the output to realise a complex decision boundary.
In doing so, they learn distinctive features from a large pool of possi-
ble features (compare figure 2.6 (left)). Today, there are even more
efficient ways for realising the widely used technique of cascades (e.g.
[17]). In another direction, template-based methods are able to deal
with big changes made to the pose and the facial expression. One ex-
ample is the the active appearance model [32]. Often, template-based
methods rely on a good initialisation close to a real face and they are
not applicable for fast detection of faces. Besides, the feature-based
approaches aim at finding the positions of distinctive visual features
(e.g. the mouth, the nose, etc.) and try to validate the presence of
a face w.r.t. geometrical constraints. Early versions of this part-based
principle are e.g. [68], [234] and [101]. Later works employ eigenspaces
[141], local filter jets [121], support vector machines [87] and boosting
[182]. In very unconstrained situations (e.g. with bad lighting condi-
tions), face detection can still be challenging today. However, in general
the problem is solved quite well and developed methods can be found
embedded in modern digital cameras. Using face detection, a cam-
era can for instance automatically set the focus on the person being
photographed.

Also, the detection of humans (pedestrians) and cars is receiving a
lot of attention, e.g. [75], [142], [1] and [37]. Such methods are par-
ticularly interesting for surveillance or driver assistance systems. Today,
the detection algorithms are applied in the industry, e.g. in embedded
systems for driver assistance. The topics addressed in reasearch often
focus on either efficiency, accuracy or precision. In [2] and [1] a vi-
sual vocabulary is used to represent informative parts of a car. Also
the spatial relationships among the parts are captured and a framework
for robustly detecting side views of cars is presented (see figure 2.6
(right)). A survey with a special focus on on-road vehicle detection
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Figure 2.7: This figure depicts object detection as a shape matching problem.

is presented [235]. A well-known detection method for pedestrians is
presented in [37]. As a feature the authors proposed a histogram of
oriented gradients (HOG) which are classified by a SVM. HOG features
are similar to SIFT features [127], as they represent the local gradient
structure in an image by a histogram, but HOG is computed at a sin-
gle scale using a regular overlapping grid with local normalisation. See
figure 2.6 (middle) for a visualisation of the HOG feature. A survey
for pedestrian detection can be found in [144]. Here, the authors con-
clude that methods using local receptive fields and SVMs show the best
performance.

Detecting Shape

Most methods presented so far consider the shape of an object (the
outer edges) in an implicit manner, e.g. the BOW representation. How-
ever, shape can also be used more explicitly as it provides a strong cue
for recognition performed by humans [156]. The common problem is to
robustly match a shape prototype against the edges found in an image,
as sketched in figure 2.7.

According to [173], shape based models can be sorted into the fol-
lowing groups:

• learning codebooks of contour fragments (e.g. [153], [187])

• approximating contours by piecewise line segments (e.g. [172],
[64])
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• using local description of the contour at selected interest points
(e.g. [8], [130])

• assigning entire edges to either foreground or background (e.g.
[84],[238])

The work of [173] itself detects objects by partially matching edge con-
tours with a single prototype. In this case, no preprocessing of the edges
is needed and the notion of “connectedness” is exploited. In [153], cat-
egory detectors are trained using Boosting on a visual vocabulary of
reusable shape fragments and appearance. The resulting descriptors
vote for the centroid of an object. The authors demonstrate robust de-
tection results using this boundary fragment model, despite changes in
scale and viewpoint. Further, [187] proposes a two-step partially super-
vised learning process for contour-based object detection. The method
learns location sensitive classifiers via boosting and employs a discrim-
inative set of features from a contour fragment dictionary. Besides,
the authors of [172] make use of the observation that deformations
often appear at high curvature points. Using these points, a curvature
is decomposed to several fragments, which are matched via dynamic
programming for detection in cluttered real-world scenes. The work in
[130] proposes an approach that involves employing the Hough trans-
form together with a max-margin SVM to detect objects in images.
The authors demonstrate improved performance through the use of
weights learned in their discriminative framework, as opposed to uni-
form or naive-Bayes weights. Further, [84] introduces a system for de-
tection, classification and segmentation that employs region features.
The method creates a robust bag of regions and represents regions
through several cues, i.e. color, shape and texture. In doing so, also a
max-margin Hough transform followed by a verification is used to pro-
vide final detection results. In another approach, [75] proposes to use
Chamfer distance matching to compare edges in images to a hierarchy
of templates for detecting pedestrians in real time.
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Figure 2.8: This figure of [178] shows different segmentations of an image.
The green regions stand for the category “building” and the yellow regions for
the category “car”. The regions are discovered unsupervised.

Detection and Segmentation

In principle, the more sophisticated version of category detection is cat-
egory segmentation. Here, the locations of the detected object should
be specified more precisely than by a bounding box, e.g. through a bi-
nary segmentation mask which distinguishes foreground and background
pixels. Hence, when doing a segmentation of an image, this can also be
considered as a detection. In the following I will sketch some approaches
which combine detection and segmentation.

In [115] the learning of visual vocabularies is combined with the
learning of an implicit shape model that captures the relative locations
of visual words. By using a voting scheme, an object hypothesis in
the image is created, which leads to a segmentation mask for an ob-
ject and which can again be used as an input, to truncate visual words.
The authors demonstrate detection and segmentation capabilities in the
presence of significant occlusion as well. Another way to automatically
discover objects and their extent in images is proposed in [178]. The
algorithm uses multiple segmentations as input to probabilistic docu-
ment analysis in order to learn the appearance of objects. On the fea-
ture level, each region is represented as a BOW over clusters of SIFT
[127] descriptors. See figure 2.8 for a sketch of this idea. A proba-
bilistic object model (POM) for object classification, segmentation and
recognition is proposed in [29]. The algorithm learns structures by com-
bining complementary features and employs knowledge propagation. A
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system called Object Category Specific Markov Random Field is pro-
posed in [107]. The authors segment images by minimising the energy
function of the model in an expectation-maximisation (EM) framework.
The paper demonstrates robust segmentation of animals like cows de-
spite occlusion and intra-class variance. In [205], holistic properties of
the object shape are used for the detection and segmentation of ob-
jects. To that end, the authors introduce a figure/ground segmentation
method which extracts regions that have a boundary structure simlar
to that of the model and that are salient. The segmentation is solved
as an integer quadratic programming problem. Further, [84] provides
a framework for object detection, classification and segmentation, that
uses regions and does not employ a sliding window. Thereby, an image
is represented by a robust bag of overlaid regions and the regions them-
selves are represented by multiple visual cues. Then a Hough voting
procedure is employed to generate hypotheses of the object location at
different scales. Subsequently, a verifying classifier and a constrained
segmentation are applied.

In addition, there is literature in a sub-field concerned with “pictures
and words”. These approaches are for instance considered in the context
of image retrieval or segmentation. One ultimate goal is to automat-
ically provide accurate labels for all segments of a scene. Therefore,
learning algorithms try to make use of available text, like tags, in an
intelligent way. For a survey on related retrieval methods see [38]. One
example where segmented images and associated text are learned jointly
in a graphical model is [6]. The authors study different ways to extend
existing statistical methods with multi-modal information and discuss
the problem of measuring the performance. A more recent example is
[123], where a hierarchical generative model is proposed that performs
classification, annotation and segmentation in an automatic framework.
Within this framework, images are explained through a visual model and
a textual model. The model robustly learns from noisy Flickr tags and
shows promising performances in all three tasks.

24



Detection and Context

If a classifier considers not only a local part of an image for detection,
but the entire image, the classification performance can be improved.
This is also quite true when the recognition is performed by humans
[200], and as indicated by figure 2.9. As another example, in a street
scene it is much more likely to perceive a car rather than a bed. Context
does change the interpretation of an object and also defines what an
unexpected event is [50]. The integration of contextual information is
often realised with a probabilistic graphical model.

Putting objects in perspective is explored in [92]. Here, the authors
see the detection of objects in relation to their 3D visual surroundings.
In this case, a set of locations and scales can be truncated from the
search space, which provides benefits for detection (e.g. more efficient
detection and fewer false positives). Further, [179] proposes a proba-
bilistic model to consider the scene for detecting objects, based on GIST
[150] features. Given a large image set of scenes with many labeled ob-
jects, the authors map a novel input image to a scene in the database
and then use specific priors learned for this scene cluster in order to
transfer knowledge from old scenes to the detection process. In [88],
context is automatically learned as clustered “stuff” and is shown to
improve object detection performance. Here a probabilistic method is
proposed that represents the contextual relationships between “things”
and “stuff”. Also [169] make use of the object context in a post-process
of object recognition. Thereby a conditional random field is used to in-
corporate the contextual labels for maximising the label agreement. In
another work, [194] models categories as a distribution over 3D loca-
tion and appearance features. To that end, context is considered in a
transformed Dirichlet process to effectively learn the 3D object struc-
ture of offices from 2D segmentations. The work in [41] provides an
empirical study of context in object detection on the PASCAL VOC
2008 dataset. This allows the comparison of context-based methods
with top-scoring context-free approaches. Also different ways of using
context are compared. The authors conclude that the use of context
reduces detection errors and that using multiple types of context makes
for better performance.
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Figure 2.9: When looking at the left image, people recognise objects like a
monitor, a mouse and a telephone. However, as the second picture reveals,
people use context to make this inference, since the objects are to blurred too
be recognised in isolation. These pictures are taken from [50].

Multi-view Detection

If a detection system should be able to recognise objects from different
view-points, it becomes a basic the question how to realise this. In some
of the approaches discussed so far, views are considered implicitly. The
training set is supposed to be representative and is expected to contain
different views of an object. Therefore after learning, the detector
should be invariant to the viewpoint, to a certain extend. If the training
set is labeled with viewpoints, different classifiers can be trained for
different views. For instance, a face detector could be trained on frontal
faces and also for left and right profiles of faces. Instead of heaving
multi-view models, it is also possible to employ a full 3D model of an
object for multi-view detection.

In [221], part-based detectors for human heads are trained for dif-
ferent viewing angles. The proposed system demonstrates an improved
recognition rate by combining different orientation tuned models. Also
the above-mentioned deformable part model [54] learns several com-
ponents for realising a mixture model that is more invariant to the
viewpoint of the object. In figure 2.10, two components of a mixture
models for cars are shown. Further, in [199], the implicit shape model
[115] is combined with a multi-view recognition system [65]. At first, a
set of single view codebooks is trained which are connected by tracking
regions across different images. Together, these codebooks can be used
to vote for the location and scale of an object. The authors show that
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Figure 2.10: This figure by [54] shows a mixture model with two components
for the category car (side view and frontal view).

their system outperforms single-view approaches. Also [184] extends
the implicit shape model [115] to deal with multiple viewpoints. The
approach requires a relatively small number of training samples and can
detect pedestrians under different articulations and view-points. The
different viewpoints or articulations are learned unsupervised by cluster-
ing silhouette images with the Chamfer distance. Besides, [93] exploits
the availability of a rough 3D model of the object in an object detection
and segmentation task. The paper describes a probabilistic framework
to allow reasoning about occlusion, part consistency and pixel-level ap-
pearance. The method shows robust results for recognition of arbitrary
views of cars in real-world scenes. In [125], mixture models are learned
from synthetic 3D data in order to describe the geometry of a class.
Then, the appearance and parts are learned from a set of 2D images
and represented within a spatial pyramid. Both sets of information are
linked and can also be used to estimate the 3D pose. The work in [95]
presents a probabilistic model for mixing 3D and 2D primitives, and the
learning of mixed templates to realise a viewpoint-invariant recognition.
As primitives the authors propose robust stick-like elements in 2D and
3D, which are implemented by Garbor filters. The problem of object de-
tection can also be extended by the task to simultaneously estimate the
viewpoint. This problem is studied in [191], where a part-based prob-
abilistic representation is employed to learn a 3D model from a dense
multi-view representation of the viewing sphere. The method presented
in the paper can also be used to generate synthetic views of an object.
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The work in [85] also aims at simultaneous detection and 3D viewpoint
estimation. The proposed model learns a set of holistic templates for
this task and allows the use of different levels of supervision. Also, here
the authors were able to demonstrate significant benefits from using
their discriminative mixture-of-templates approach.

Efficient Detection

Some works in the field of object detection do not focus directly on
visual features and their application in classifiers, rather they try to
formulate general efficient principles for detection algorithms.

As stated before, many approaches make use of the sliding window
principle in conjunction with an SVM-based classification. In an inter-
esting work of [110] an efficient scheme for localising objects in images
is proposed, called the efficient sub-window search (ESS). Thereby, a
branch and bound scheme ignores large parts of the search space and
converges to the optimal solution. The method can be used with a
variety of kernel-based SVMs, e.g. the spatial pyramid kernel [113]. In
[109], an efficient divide-and-conquer cascade for nonlinear object de-
tection is proposed, called the efficient subwindow cascade (ESC). The
mentioned ESS scheme can be directly integrated in this approach and
allows very efficient detection with kernel machines. Another work of
[4], also builds on the ESS scheme. The authors argue that ESS fairly
often shows slow convergence, when no target object is in the image.
Therefore, the paper proposes an algorithm with a better worst-case
complexity, and also an approximation of that algorithm which is again
much faster. In another work, [129] show an efficient way to compute
the decision function for kernlised SVMs. For a set of kernels, e.g. the
minimum intersection kernel, an approximate classifier with constant
time and space complexity can be achieved, independent of the number
of support vectors. This allows the authors to realise large improve-
ments w.r.t. time and space complexity, while having the same classifi-
cation performance. The authors of [212] generalise this idea of [129]
and present fast approximate solutions for a family of additive kernels,
that are often employed in computer vision. The results show signifi-
cant speedups for train/test time, without altering the performance.
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Going in another direction, the authors of [22] propose a system for
faster object detection that is inspired by object search as performed by
humans. Thereby, the authors implement a digital fovea and schedule
eye fixations to maximise the information gain via stochastic optimal
control. They demonstrate an increase in speed by a factor of two while
reporting little loss in accuracy. Besides, [177] proposes an alternative
to the sliding window approach by first segmenting an image and then
selecting a small number of regions to which a classifier is applied. The
segmentation is realised as an approximate solution of a directed Steiner
tree optimisation problem. Other studies does not try to minimise the
cost of computation, but the cost of annotation, because labeling train-
ing images is often expensive. The work of [118] proposes a way for
semi-supervised boosting. The authors demonstrate an improved object
detection of faces and vehicles when incorporating unlabeled samples.
The efficiency of training and testing is also discussed for other specific
techniques. For example, a method for fast deformable object detec-
tion was proposed very recently in [157] and realises a additional speed
for cascaded DPMs [53]. The basic idea is to minimise the number of
part-to-image comparisons by using multiple-resolution parts alongside
a coarse-to-fine inference procedure.

Embodied Detection

There are also some approaches for embodied category detection, i.e.
the category detection is performed by (mobile) robot. Category detec-
tion with mobile robots is actually a part of robot competitions today
(cf. the Semantic Robot Vision Challenge (SRCV) [197] described in
section 2.3). If fast enough, common recognition methods - as pre-
sented in this or the previous section - can be employed by the robots.
However, due to the limited resources and computing power this is often
not directly possible.

The 2007 version of Curious George [89], the winner of the SRVC
challenge, uses SIFT features and a direct matching on ranked images
similar to [127] to recognise objects. To focus the classification to in-
teresting regions in the scene, a special attention system and saliency
computation is employed. In a later version of the system [135], the
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attention system of the robot also employs structural information be-
longing to the 3D environment. At this juncture, the 3D information
also allows the detection of pop-outs, like a bottle on a table. For
learning category-level objects (e.g. frying pan), the deformable part
models (DPM) [57] is employed. An integrated vision system has a
closed loop to the world. This fact can explicitly be used in order to
improve the quality of the detection process. For instance, the robot
could move to another viewpoints and aggregate the information of
multiple views, e.g. [240], [134] and [90]. In [134] and [90], category
detection with a mobile robot is considered a sequential recognition
problem. The authors propose a probabilistic approach to plan the
next optimal viewpoints and were able to demonstrate benefits for the
recognition process. In addition, new labeled data sets for evaluating
multiple viewpoint recognition algorithms are provided. Other robotics
scientists also explore the problem of multimodal object categorisation.
For instance, [146] presents an unsupervised categorisation approach
based on the probabilistic latent semantic analysis (pLSA), which em-
ploys audio-visual and haptic cues. The authors validate their approach
in an experimental setup.

2.3 Datasets and Challenges

In this section, some common datasets and challenges for object recog-
nition are presented. There has been a lot of progress w.r.t. datasets,
especially in recent years, when scientists have employed Web images
and had large collections of images annotated. In the process, reason-
able data for benchmarking recognition systems have been created. The
development of performance measures is ongoing work and incorporates
critical remarks from previous databases, like [166] and [162].

• Columbia Object Image Library [147]. The COIL image database
was established in 1996 and consists of 100 objects which are pho-
tographed in front of a black background. Each object is recorded
in different poses by fully rotating a table in five-degree steps,
resulting in 72 images per image.

• ETH Database [117]. The ETH database was created in 2003
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and is composed of 8 categories. For each category there are 10
different objects. These objects are photographed in front of a
homogeneous background from 41 different viewpoints, which are
equally distributed over the viewing hemisphere. Also segmenta-
tion masks are available.

• Caltech-101 [48]. The Caltech-101 database was introduced in
2003 and consists of 101 categories. For each category 40 to 800
images have been collected from the Web. The images have a
resolution of approx. 300× 200. Also the outlines of the objects
have been annotated. The total number of images is 9, 144.

• ESP [217]. The ESP game was proposed in 2004 with the basic
idea of getting images labeled, as part of a fun online game. It has
been shown that people are willing to annotate images for free,
because it is fun to play. The game results in a dataset of Web
images labeled with words.

• Amsterdam Library of Object Images [77]. The ALOI database
was contributed in 2005. It subsumes images of 1000 different
objects. Each object has been placed in front of a black back-
ground, with changes made to the viewing angle (72 directions),
illumination angle (24 configurations) and illumination color (12
configurations). This results in a collection of 110, 250 images.
Also wide-baseline stereo images are available.

• Caltech-256 [82]. Due to some issues with the 101 dataset (e.g.
[166], [162]), the Caltech-256 dataset was provided in 2006. The
dataset is composed of 256 object categories, where each category
contains 80 to 827 objects. The images are much less restrictive
and the objects appear in a much more variable pose and size.
The overall number of images is 30, 607.

• MIT Tiny Images [203]. The MIT Tiny Image database was
introduced in 2008 and consists of 80, 000, 000 tiny (32×32) im-
ages that have been harvested from the Web by - loosely speaking
- performing an image search for all words in a dictionary. The
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Figure 2.11: (left) Both categories (“bottle“) and concrete objects (“Lay’s
Classic Potato Chips”) should be learned from the Web and detected in the
arena of the Semantic Robot Vision Challenge 2009 [197] (image source
[223]). (right) At the RoboCup@Home 2010 in Singapore [174], instance
detection (“Original Pringles“) was also a sub-problem as part of the shopping
mall task, which was carried out in a real Toys“R”us shop.

entire dataset also provides GIST features [150] for each image
and has an overall size of approx. 400 GB.

• LabelMe [204]. The LabelMe framework and dataset was pre-
sented in 2008. The database contains more than 500 different
categories with a total number of over 400, 000 closed polygon
annotations. Usually large parts of the scenes have been labeled,
which allows inter-object relationships to be studied.

• ImageNet [39] ImageNet was introduced in 2009 and is an on-
going effort to create a large visual dataset of Web images that
is organised according to the WordNet [52] hierarchy. In doing
so, the notion of synsets allows the mapping of multiple words or
phrases to a semantic concept. Over 12, 000, 000 images have
been already been collected for over 17, 000 synsets1. Also some
bounding box annotations are available and are continuously added
to the images.

1April 30, 2010: http://www.image-net.org/about-stats
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• PASCAL [46]. Each year, the datasets of the PASCAL Challenge
are released (2005–today) and provide training and testing data
for category detection, category classification and segmentation.
The PASCAL challenge serves as a benchmark for algorithms in
the field. The 2010 version of the datasets for category detec-
tion consists of 20 classes, 10, 103 images and 23, 374 annotated
bounding boxes.

Besides these major datasets for object recognition, there are also some
more specialised datasets. A large database for indoor scenes was pre-
sented in 2009 by [168]. Further, there is also a rich fund of datasets
for pedestrians (e.g. [155]), faces (e.g. [83]) and cars (e.g. [1]). The
PASCAL challenge has already been mentioned as an important compe-
tition for category detection algorithms. However, category detection
is also part of the Semantic Robot Vision Challenge [197]. Here the
robots get a list of both specific items (“Gladiator DVD”) and category
level items (“bottle”), which they should detect in a semi-realistic envi-
ronment after learning from the Web. Thus, additional challenges are
e.g. the learning of object models from the Web and the navigation of
the robot in order to find the objects in the environment. See figure
2.11 (left) for the setup. As already stated in the embodied detection
section, Curious George [89], [135] is a leading system. It was also able
to detect category-level objects in the environment. In contrast, other
robotic competitions like the Robocup@Home have demonstrated that
instance recognition can still be a challenging problem today, e.g. when
detecting an object in a real shop under unknown lighting conditions.
See figure 2.11 (right) for a Robocup setup. In the next chapter, the
process of acquiring and annotating data for the domestic objects in
this thesis is discussed.

2.4 Relation to this Thesis

As seen in this chapter, category recognition is a very large and highly
dynamic field, where a vast variety of principles and techniques is stud-
ied. In the following, I want to provide a short overview, which basic
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concepts are employed and extended by the system developed in this
thesis. The details are provided later on in the respective sections of the
document. At the very basis, the method developed builds on the idea
of Bag of Words – i.e. representing an image region by an unordered
set of local features. BOW is chosen, because it has been shown to be
a powerful representation with respect to its capacity and distinctive-
ness, e.g. when local features sets are mapped to a multi-resolution
histogram. However, the loss of location information (since the feature
bags are unordered) has been identified as a major drawback of the
BOW approach. Static, object independent tessellations of the image
plane have been proposed in the literature as one way to deal with this
problem. Alongside, the usage of pyramid structures has been proposed
in order to create an improved representation, that can be matched
more efficiently. The work of this thesis uses these ideas as a basis and
further generalises them to allow a better alignment to the underlying
structure of the object. It has already been shown that aligned tessel-
lations perform better than static ones, when employed in the domain
of the feature space. The work presented here introduces a way to
additionally align the tessellation in the image plane. Here, a tuning of
the pyramid structure according to underlying topology of the object
is proposed. Further, this tuned tessellation is realised hierarchically in
order to implement a coarse-to-fine matching of local BOW-based rep-
resentations. The resulting matching is called view-tuned kernel, and it
matches parts of objects from coarse-to-fine by approximately match-
ing local feature sets. To a certain extend, the proposed kernels can be
seen as moving the BOW idea closer to the of idea part-based models,
since the Voronoi cells are adapted to the structure of the objects, and
the matching in the local Voronoi cells can be interpreted as a match-
ing of the objects parts. This notion is then combined with the idea of
decomposing complex training sets, in order to train different experts
for different basic views of an object. In doing so, I propose a novel
method for splitting the training set, which is unsupervised and which
doesn’t automatically produce mirrored model components like other
approaches. A lot of the methodology that is developed subsequently
in the thesis is dealing with the challenge to apply the proposed kernels
efficiently in a SVM-based object detection framework. Note, that a lot
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of the BOW and spatial BOW related groundwork has “only“ been ap-
plied to category classification problems, and the additional challenge of
object detection is often not discussed. As will be seen throughout the
document, the application of the view-tuned category classifiers for ob-
ject detection is not a plug-and-play process. Techniques like cascades,
ensembling, or the improved computation of the decision function need
to be specifically adapted to work with the proposed methods efficiently.
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Chapter 3

Data Acquisition and
Annotation

This chapter describes the data acquisition and annotation process.
First, section 3.1 describes the set of domestic object categories that
has been selected for investigation in this thesis. Then, section 3.2
presents an approach for retrieving images from the Web. Section 3.3
explains the procedure of data annotation, including the annotation
format and the developed user interface. Finally, the results of the
downloading and annotation step are presented and discussed in section
3.4.

3.1 Category Selection

In this section, the domestic object categories that are studied in this
thesis are introduced. Overall, I decided to use 10 object classes that
can be found in virtually every household today. The objects are from
the following fields.

• Clothing: handbag, shoe

• Vessels: bottle, bowl, cup

• Electronic devices: laptop, light switch, toaster

• Biological items: apple, potted plant
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Figure 3.1: A prototypical instance of each selected domestic object category
(first row: apple, bottle, bowl, cup, handbag; second row: laptop, light switch,
potted plant, shoe, toaster).

Figure 3.1 shows prototypical examples for every selected category. The
mentioned categories are selected for different reasons. First, the fact
that humans use instances of these classes on a daily basis renders
the categories interesting in the context of domestic service robots, as
described in the introduction. In addition, these categories are chosen,
because they are quite general and thus very challenging to recognise –
for example, two different handbags could look very unsimilar. I think
these general categories are much more challenging to recognise than
e.g. faces. In addition, the visual appearance of the selected categories
makes different demands on the abilities of the recognition system. For
instance, a laptop keyboard is quite textured in comparison to an apple
and the shape of a cup is quite well defined in comparison to a potted
plant.

As seen in the related work section, two basic directions can be
distinguished in the literature: One the one hand, there are methods
trained and evaluated on datasets that incorporate many different classes,
but have a relatively low number of images images per class. For exam-
ple, methods using the Caltech-101 [48] or Caltech-256 database [82].
On the other hand, there are approaches that work with few categories,
but with many images for every class (e.g. in the PASCAL VOC chal-
lenge [45]). In this thesis, I decided in favour of the latter approach, i.e.
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using a small number of categories, while having large amount of avail-
able data. I did this, because I think the problem of learning a classifier
for the selected categories is very complex and needs a large number
of training examples. Beyond that, the generalisation abilities of the
system can only be assessed using a reasonably large number of testing
examples, as argued in the introduction. Also, the processing of a large
quantity of data provides a more detailed insight into the problem and
the existence of large datasets facilitates the benchmarking of different
recognition engines for domestic objects.

Looking ahead, the dataset I use in this thesis should (a) contain
approx. ten domestic object categories, (b) contain images from differ-
ent providers (shops, image search and photo collections), (c) provide
a large number of samples per class, (d) contain bounding box annota-
tions for the objects and (e) provide an extra tag, if an object appears
in a home environment (for creating realistic test sets). To the best of
my knowledge, no database was able to satisfy all of these requirements
when I started this thesis in 2008. Therefore, I decided to acquire and
annotate a new dataset for training and testing of the detection system
that I developed, and which is the subject of this thesis.

3.2 Web Image Retrieval

Today, the Web can be considered the most comprehensive collection of
images from our visual world. For instance, a single website like Flickr
purports to host more than 6, 000, 000, 000 photos.1 And the number
of Web images is continuously growing. e.g. Flickr states that the
number of uploads increases yearly by 20%.1 And as mentioned before,
it has become the common paradigm in category learning to make use
of these images in order to create suitable data for the training and
evaluation of recognition methods. Within that context, this section
explains the fundamental step of receiving Web images for the selected
domestic categories. The results are discussed in section 3.4.

1April 8, 2011: http://blog.flickr.net/en/2011/08/04/6000000000/
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Figure 3.2: Sketch of the multi-language retrieval from a provider.

Approach

First of all, I want to distinguish three different kinds of Web image
source: (1) image search engines, (2) photo portals and (3) online
shops. This is done in order to differentiate the precision of the different
sources in section 3.4. The images from the different sources are of a
quite different nature and are merged at the end. For instance, images
from photo portals are usually high resolution photographs of real world
scenes, whereas images from online shops show isolated products in
front of a homogeneous background. Besides, the image search engine
output often contains images from photo portals and online shops, but
also other images that are embedded in web pages. Thus a joined image
pool will provide the most diverse training set, which usually facilitates
the generalisation ability of a trained classifier.

For all kinds of stated source, text-based queries are used as an
interface to retrieve images from a concrete provider. For example, the
string “apple” is used as a search key to retrieve images for the category
apple. In fact, all presented category labels directly serve as the query
for an English language search.

For every kind of source (1), (2) and (3), a leading image provider
was selected from the market, denoted as P1, P2 and P3 respectively.
The image search provider P1 has the limitation of returning a maximum
of 1, 000 results for a given query – as most image search providers
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do. Therefore, a multi-language retrieval is employed (e.g. [59], [31]).
That means, the English search key is translated into different languages
and the translated string is used for querying the image search engine.
For instance, “apple” is passed to the English provider P en1 and the
translated French word “pomme“ is passed to the French provider P fr1 .
The multi-language retrieval is sketched in figure 3.2. Because the
providers internally use different indexes for different languages, the
number of found images can be greatly extended without the risk of
producing duplicated results. Translated queries are also only employed
if the translated string is different from all other languages. For the
provider P1, I use a multi-language retrieval to gather a total number
of 10, 000 images per category. Although, technically a maximum of
1, 000 images can be returned for a single query by provider P1 in reality
the number of gathered images is usually between 700 and 900. This is
because either some of the images are not available anymore or because
they are filtered (see below). The photo portal provider P2 restricts the
number of returned images to a maximum of 2, 000 images. Also here, I
use a multi-language retrieval to gather a total of 8, 000 images. For the
online shop provider P3 a single language retrieval is employed, because
usually multi-language translations just refer to the same underlying
product and images. The number of returned images for P3 includes
everything that is available, but at most 5, 000 images. At the end, the
joined image pools consist of 18, 000 to 23, 000 images per category.

When an image is retrieved by the system, a set of meta-data is
also stored. The meta-data includes the following information: the
associated category, the English search key, the translated search key,
the language of the translated key, the image provider, the provided
image URL, the rank of the result image, the retrieval date, the image
filename, the size of the image, as well as the image type. The meta-
data is stored in the same XML scheme that is used for annotation
(described in section 3.3). For an example of a meta-data block see
listing B.1 in the appendix.

After downloading, all images are converted to RGB 8-bit JPG im-
ages. If images exceed 307, 200 pixels, they are scaled to that number
of pixels. In addition, images with a size smaller than 100 × 100 are
filtered out. Images are also filtered if they are non-color images or
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Figure 3.3: Sketch of some prominent types of object annotation in images.

have the GIF format. For the technical realisation of the process an
extendet version of the retrieval framework of [126] is used.

3.3 Web Image Annotation

In this section, the annotation of Web images is described. First, the
selection of the annotation type and format is presented. Then the user
interface for bounding box annotation is explained. The results of the
annotation process, including the statistics on the annotation time, are
presented and discussed in section 3.4.

Annotation Type and Format

Depending on the problem at hand, objects in images can be annotated
with different types of annotation (e.g. cf. [195]). Some prominent
examples are described as follows and are also sketched in figure 3.3.

• Image Level Annotation. An image level annotation states whether
an instance of a category is present in the image or not. It does
not include information about the location or size of the objects.
This kind of annotation is usually employed in the context of clas-
sification.

• Bounding Box. A bounding box annotation is an axis-aligned box
that tightly encloses the object of interest. The bounding box can
be defined by (x, y , w, h), where (x, y) is the position of the upper
left corner, w is the bounding box width and h the height of the
box. Bounding boxes are often used in the context of detection.
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• Ellipse. Similar to the bounding box, an axis-aligned ellipse can
be used to enclose the object of interest.

• Closed Polygon. A closed polygon is a flexible way to describe
the boundary shape of an arbitrary image region. It is defined by
a closed chain of connected points.

• Segmentation Mask. A segmentation mask stores the exact pixel
coordinates of foreground pixels of an object. For example, it can
be represented by a binary image, where 1 denotes the foreground
(white) and 0 the background (black).

By specifying a rotation angle, bounding boxes and ellipses can also be
rotated in order to allow non axis aligned bounding shapes. Within this
work, I decided to use axis aligned-bounding boxes for the annotation
of class instances in images. This is done for the following reasons.
The first and most important reason is that bounding box annotations
can be produced quite quickly. In comparison, the annotation of large
datasets with complex polygons, like in the LabelMe Database (e.g.
[204]), would either need a huge amount of time or a lot of volun-
teers. A second aspect is that the learning from bounding boxes and
the detection of bounding boxes is a common procedure in detection
challenges, like the PASCAL VOC challenge (e.g. [45]). Another as-
pect is that bounding boxes are suitable for common feature extraction
methods that work on rectangular image regions and allow application
in a sliding window detection scheme [110].

Of course, bounding boxes can be represented in different formats,
e.g. plain text, XML or binary. In this thesis, XML is used to represent
the annotations of an image and the corresponding meta-data. The
XML is created on the basis of a validateable XML Schema Definition
(XSD). For an example of an XML annotation file confer listing B.1 in
the appendix. In doing so, the XML is structurally compatible with the
widely used PASCAL (e.g. [45]) annotation format, i.e. the important
fields are present. XML is used because of its extensibility and because
it can be parsed and converted into any other format effortlessly.

While annotating the images, i.e. labeling objects of a category with
a bounding box, several aspects which are considered. Most important
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Figure 3.4: All of these images actually contain a bottle, but the annotater
does not label them, because the bottles are in a very untypical configuration
w.r.t. a service robot.

Figure 3.5: Samples of class instances that are ignored during annotation.

is the fact that the annotation is restricted to samples that appear in
a typical configuration w.r.t. a service robot like BIRON (e.g. [86],
[218]). To make this clear, figure 3.4 shows some images with un-
typical configurations of the category bottle. In the context of service
robots, I focus on upright standing objects and thus can ignore very
different examples. To a certain extent, the knowledge of the applica-
tion domain makes life easier by posing a more specific objective than
in the arbitrary and ill-posed ”detect any bottle“ scenario. Further, the
annotaters ”ignore“ some samples entirely, by not labeling them. For
instance, getting a makro perspective or a top-down view of a cup is
quite unlikely, while 90-degree side views are very likely to be perceived
by the robot. In other situations samples are ignored as well: if a sample
is very small, if major parts are occluded or if the object is very hard to
recognise (e.g. in case of low contrast or bad lighting). Visual examples
for the situations mentioned are provided in figure 3.5.
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Figure 3.6: User Interface for bounding box annotation.

Beyond that, images that show samples in a regular home environ-
ment are labeled with an additional @HOME tag. Only images tagged
with @HOME are used later on for the evaluation of the detection sys-
tem. This is important, since it allows the composition of a suitable
test set with samples from the domain of application, i.e. with samples
from real environments.

User Interface

This chapter describes the user interface that has been developed for the
purpose of bounding box annotation in this thesis. A main goal within
this context is to facilitate the fast creation of accurate bounding boxes.
Later on, in section 3.4, both the results of the annotation process as
well as the time required will be presented and discussed.

The user interface employed for bounding box annotation is shown
in figure 3.6. As is clear, it does not contain any buttons. It is designed
for use with one hand on the keyboard and one hand on the mouse. The
mouse is used to create add, delete, resize and move bounding boxes.
The keyboard is used for going through the images sequentially, either
with or without automatically saving the XML file. Also ignoring an
image is done via keyboard, e.g. when pornographic or offensive con-
tent is displayed. Ignored images are excluded from the statistics and
from further processing. When switching through the images sequen-
tially with the keyboard, the corresponding bounding boxes are displayed
as defined in the automatically loaded XML file. Thus, when no cat-
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egory instance is present in the image, it can be annotated very quickly
by simply switching to the next image. One of the most important
features of the interface is that, when configuring the program at the
beginning of an annotation session, a bounding box pool and the as-
sociated category must be specified. This category label is then used
during the process of annotation as a label for all bounding boxes that
are created. This means that, the error-prone and time-consuming step
of typing in labels is completely avoided. In addition, since only one cat-
egory is annotated during a single session, the user can focus solely on
this task and doesn’t need to switch between categories mentally.

3.4 Results and Discussion

The multi-language retrieval and the annotation were performed as
stated in the last sections. The results from these steps are shown in
figure 3.7 for each of the domestic object categories and are discussed
in the following. The chart (a) shows the number of retrieved images.
For the providers P1 and P2, the number of retrieved images was set to
10, 000 and 8, 000 respectively, to allow a fair comparison of their preci-
sion. For the provider P3, a single language retrieval was used, to avoid
retrieving duplicated product images. This allowed as many images as
possible to be acquired for the provider P3, with the maximum set at
5, 000 images. The results show that in an online shopping portal with
a very broad range of products, the number of retrievable images can
vary quite a lot. For instance, there are many more images returned
for the keywords shoe, cup and handbag than there are for light switch,
apple and potted plant. This is not surprising, since shops with a broad
range of products are not specialised for items like light switches that
sell less often. This result means that if many product images were
needed for a large range of domestic object categories, it would be ne-
cessary to implement additional interfaces to other specialised online
shops (e.g. a special light switch store), as well. On average approx.
2,500 images were retrieved from the provider P3 for the categories
specified. Further, the plot (b) shows the annotation time in minutes
for each provider and category. For the annotation, the previously pre-
sented user interface (UI) and procedure has been employed. Labeling
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Figure 3.7: Results from the downloading and annotation step for each cat-
egory. The colored lines depict the mean values.
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overall
# downloaded images 205644

# in-class images 51621
# in-class samples 62593

precision .251
effective precision .304
annotation time 7408 [min]

Table 3.1: The overall results from the downloading and annotation process.

10, 000 images for provider P1 took approx. 330 minutes on average
and annotating 8, 000 images for provider P2 took approx. 300 minutes
on average. The labeling for P3 took approx. 110 minutes on average.
Of course, the annotation time is directly connected to the number
of processed images and to the number contained in-class samples, as
presented next. In plot (c), the number of in-class images is displayed.
As is obvious, for some categories it is much easier to retrieve in-class
image than for others. Again, this is connected to the ”popularity“ of
the items. On average 2, 200 in-class images were found for provider
P1. For provider P2 and P3, approx. 1, 400 and 1, 600 in-class images
were found on average. Figure (d) shows the number of in-class sam-
ples that were annotated for each category and provider. The number
of in-class samples is always equal to or higher than the number of in-
class images. At least one sample is found in an in-class image, but
some images also contain more than one category instance. Note that
there are also some images that show in principle a massive number of
in-class samples in one image. For instance, images showing a large ta-
ble full of apples or shoes. However, for those images only a few good
samples were usually annotated, because these scenes are often very
cluttered and the objects were quite occluded. Also, if an image con-
tains 100 examples of the same cup, only a few instances at different
poses are annotated, because this specific instance should not acquire
excessive influence in the learning process. Comparing the averages of
the number of in-class images and in-class samples, P1 contains approx.
1.3 samples per in-class images, P2 contains approx. 1.2 and P3 has
approx. 1.13 samples per image. In chart (e), the precision is given for
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each provider and category. The precision is computed as follows

precision =
# number of in − class images

# downloaded images

and describes how many retrieved images actually contained (at least
one) object instance. As can be seen, the direct downloading from the
shopping Website provider P3 produces many fewer false positives than
the other providers P1 and P2. Further, the observation from before,
that images for some categories can be retrieved more easily, is also
directly reflected in the precision scores (compare handbag vs. light
switch). On average, the provider P1 has a precision of approx. .21, P2

and P3 have a precision of approx. .17 and .6. The figure (f) presents
the effective precision for the categories and providers. The effective
precision is a measure for a category that relates the number of in-
class samples to the number of downloaded images and is computed as
follows:

ef f ective precision =
# number of in − class samples

# downloaded images
.

Thus, the effective precision is higher than the precision when multiple
object samples are found in the download images. The average effective
precision for the providers P1, P2 and P3 is approx. .29, .21 and .7
respectively. The plot (g) shows the number of home samples for each
category, i.e. how many images have been tagged with the @HOME tag
after merging the images from all providers. In addition, the ”home
sample percentage“ (hsp) is plotted, which is computed also on the
merged image sets as follows:

hsp =

[
# number of home samples

# number of in − class samples

]
· 100.

The hsp relates the number of home samples to the total number of
samples for a category. Remember, the @HOME tag was introduced to
be able to create test sets with images from the domain of applica-
tion. However, as visible here, both the number of home samples (mini-
mum=217, maximum=804) and the hsps (minimum=5.1, maximum=12.5)
are surprisingly low. That means that the vast majority of samples
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found in the images does not consist of photographs of the domestic
objects taken at 1-3 meters’ distance in real home environments. In
other words, it can be said that getting test data from the Web for the
purpose of testing detectors that should work in regular home environ-
ments is quite hard. For instance, you can get many images of laptops
in front of a homogeneous background from (shopping) Websites, but
the number of people who upload a usable picture of a laptop on their
desk is quite smal. In fact, since the number of test samples is so small,
I decided to use all @HOME images solely for the purpose of testing. If
more home images had been available I would have divided the sets for
for training and testing. So, the challenge and question at this point is,
how good detection systems can get, when training on samples that do
not come directly from the domain of application. As I will later show,
it is possible to come quite far with this kind of training data. Finally,
the chart (g) merges all providers and shows the total annotation time,
the total precision and the total effective precision for each category.
As is clear, the average total effective precision and the average total
precision are quite similar, what means that in the overall image pool
the majority of images contain only one category instance. The aver-
age annotation time for a class-associated image pool is approx. 750
minutes. An additional summary of the results can be found in table
3.1, where the numbers are merged again globally over the categories.
The total number of downloaded images is 205644 and where 62593
in-class samples were found and annotated in 51621 in-class images.
The overall precision is .251 and the overall effective precision is .304.
The total annotation time is 7408 minutes, i.e. approx. 123 hours of
work.

Overall, using the proposed procedure for acquisition and annota-
tion of Web images from the three different sources, it is possible to
create large and diverse sets of bounding box-annotated samples at a
relatively low cost. The next chapters explain how the resulting sets
of samples can be used to train a system that is able to detect novel
object instances in unknown domestic environments.
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Chapter 4

Principal View Extraction

This chapter describes a method for the extraction of principal views
from a set of in-class images and for decomposing a training set ac-
cording to those principal views. Figure 4.1 sketches the overall setup.
Section 4.1 introduces the problem and goals, and section 4.2 presents
the developed approach for view extraction and training set decompo-
sition. Finally, section 4.3 states and discusses the results for the 10
domestic object categories of this thesis.

Figure 4.1: Sketch of the principal view extraction and training-set splitting.

4.1 Introduction

In the previous step, the images were downloaded from the Web and
class instances were labeled with bounding boxes. Cutting out the an-
notated image regions results in a set of images for each category. This
means that the resulting sample images usually do not have the same
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size or width-height-ratio. Taking this set of arbitrary-sized images, the
goals of the view extraction are as follows. A number of principal views
should be extracted unsupervised (since the views are not labeled) from
the training set, and the training set should be decomposed into sev-
eral sets. Further, the principal views should be visualizable (e.g. as
an image) to allow interpretation by humans. In addition, the princi-
pal views should statistically capture the appearance of common shape
and texture parts, in order to allow a training of the view-tuned ker-
nels [105] in the subsequent processing step. After that, a view-tuned
SVM is trained using the learned kernel for each of the extracted prin-
cipal views. Finally, all view-tuned classification experts are fused into
a robust detector for a category. In the process, the unsupervised view-
extraction aims at breaking down very complex learning problems by
splitting the training sets into several easier subsets and by training an
expert for each set. This “divide-and-conquer“ practice involving local
experts has been employed and studied by various authors in the Ma-
chine Learning community (cf. [108] for a survey). For instance, [24]
uses a self-organising feature map (SOM) to first partition the input
space, and then train and optimise local SVM experts for each partition.
The authors demonstrate a significant improvement in the generalisa-
tion performance, when using ensembled SVMs for time-series forecast-
ing. Further, this basic idea of multiple experts has also been adopted by
other authors for multi-view category detection, as presented in chapter
2. It has been shown that considering different view models does pro-
vide better performances for category detection, e.g. [221], [54], [199]
and [184]. Since no 3D information or labeled views are given in the
framework of this thesis, the view extraction method here must work
solely with the 2D image samples.

4.2 Approach

This section explains the details of the approach used in the principal
view extraction and the training-set decomposition. A visual survey of
the method can be found in figure 4.2.

1. Mirroring. As a first step, all images in the dataset are mirrored

51



Figure 4.2: This figure shows the basic steps of the principal view learning
pipeline.

along the x-direction. This is very useful for enlarging the training
set with real-world samples from different poses and doubles the
number of training samples. A similar step is also performed in
[54]. Note that, although only the mirroring is applied, it would
also be possible to generate more training data with other trans-
formations like small rotations, as e.g. proposed in [176].

2. Scaling. Because the target resolution of the detection algorithm
is 640 × 480, and the objects of interest are quite small and ex-
pected to be distant from the camera, I choose to use a sliding
window of width w and height h, such that max(w, h) = 128. Ac-
cordingly, the sample images are scaled proportionally such that
the longest side is equal to 128 pixels.

3. Gradient Magnitude. In this step, the gradient magnitude image
is used as a feature to capture the shape and texture information
of the objects. The gradient magnitude is chosen as a feature,
because in some publications averaged gradient magnitude images
of in-class images reasonably capture the average shape and tex-
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ture of similar objects (e.g. in [37], [14] and [105]). The gradient
magnitude image is computed with the Sobel operator [97].

4. Centering. The gradient magnitude image is now centered on a
128× 128 image. This is done in order to be able to get mathe-
matical vectors of the same size for images of different sizes.

5. Tiny Image. In this step, the gradient magnitude images are
tinyfied, i.e. scaled to 64×64 pixels. This is done in order to pool
the gradient magnitude image information and to make it more
invariant to small shifts. Beyond that, it has been shown that tiny
images of objects can serve as holistic features and capture quite
a large amount of the visual information (e.g. [203], [202]).

6. Normalised Vectors. The tinyfied gradient magnitude images are
converted to a column-vector of the dimensions 64× 64 = 4096.
By normalising the magnitudes to the range [0, 1], the final vectors
are in [0, 1]4096.

7. Vector Quantisation. Here, a method for vector quantissation is
employed to create a small set of principal views. In doing so, the
limited branching tree Growing Neural Gas (lbTreeGNG) [104] is
employed. The lbTreeGNG is an extension of the Growing Neu-
ral Gas [73] and it is used because it allows efficient one-shot
online quantisation of vectors sampled from an unknown proba-
bility distribution. Moreover, the lbTreeGNG is used because the
learned codewords can be interpreted as supporting points of the
learned principal manifolds. For that reason, I refer to the code-
words as “principal views”. The lbTreeGNG captures the topo-
logical structure of the input space by using a Hebbian learning
scheme. Strictly speaking, it is not needed to pre-define the num-
ber of codewords for the lbTreeGNG. Given an error threshold, the
network stops learning at a certain point and thus avoids overfit-
ting. The details of the lbTreeGNG method are presented in the
appendix A. The lbTreeGNG is used with the default parameters
and b = INF .

8. Decompose Training Set. Given a trained codebook {c0, . . . , cK−1}
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from the last step, the training set can now be decomposed as fol-
lows. For each image of the training set, a normalised vector ξ
is computed as mentioned before. The vector is assigned to its
nearest neighbor s, i.e.

s = argmin
i=0,...,K−1

‖ ξ − ci ‖2

and the image sample is added to the set of the principal view s.
With a probability of p = .2, the vector ξ is also added to the set
of the second nearest codeword t, i.e.

t = argmin
i=0,...,K−1,i 6=s

‖ ξ − ci ‖2 .

The second assignment is useful for softening the partitioning of
the feature space and for allowing some degree of sample overlap
between the experts. The decomposition of the feature space is
not expected to be perfect on a semantical level anyway. A right-
handed cup may be assigned to a codeword that represents mostly
left handed cups. However, this is not a problem at all, because
the learned matching kernel in the next section only realises a view-
tuning. That means samples from the same view can be matched
very well, but also samples from different views can be matched
reasonably well.

9. Normalisation & Cropping. In order to provide the input for the
next processing step, i.e. the learning of view-tuned kernels, a
normalisation and cropping operation is performed. The learned
codewords are re-shaped to 2D images and normalised, such that
the minimum and maximum values are mapped to integers in the
range [0, 255]. The cropping operation considers the statistics of
columns and rows. Starting in column 0 and column 128, the
number of foreground pixels is counted in each column. A pixel
is considered as foreground if the its value is < θ1. If the number
of foreground pixels is not big enough > θ2, then the columns
are removed and the new columns are 1 and 127. The same
procedure is applied in the y-direction by considering rows. As
a result, white and very light gray regions around the centered
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average object gets removed. Empirically, the parameters have
been set to the following values: θ1 = 205 and θ2 = 15. Note,
that the gradient magnitude image is stored inverted here.

4.3 Results and Discussion

Figure 4.3: Learning six principal views for each category.

In this section the results from the principal view extraction and the
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Figure 4.4: Learning three and nine principal views for each category.
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training-set splitting are presented and discussed. The most critical par-
ameter at this step in the pipeline is the parameter m of the lbTreeGNG,
which directly affects the number of learned codewords or views. To
allow a comparison between the models of the different categories and
to lay common ground for the comparison with related work, m is cho-
sen such that the number of codewords becomes equal to three, six and
nine. The results for the extraction of six views is shown in figure 4.3,
and the results for three and nine extracted views can be seen in figure
4.4. Note that the effect of the number of principal views on the overall
system performance will be discussed in the evaluation in section 7 of
the overall detection system.

As expected, all codewords of a category show a locally averaged
instance of that category. For some categories, using three views pro-
duces quite clear principal views, e.g. for apple and bottle. This in-
dicates that the elements of these training sets have a quite similar
appearance and shape. However, for other classes the three extracted
principal views are quite cluttered, e.g. for potted plant or cup. This
indicates a more variable appearance and shape in the training samples.
Going from three extracted views to six views, it can be observed that
the clutter becomes effaced in some classes and the underlying views
are revealed as the mixed clusters are decomposed (e.g. see laptop
or light switch). For classes like apple, the codewords do get clearer
and look reasonable, but no really new view is revealed compared with
the previous views. Thus, using many views may not always be ne-
cessary when the samples in the training set have a similar appearance
and shape. Because the method proposed for view extraction in this
thesis allows the learned codewords to be rendered from the feature
space as images, it is possible to gain an impression of the quality and
reasonableness of the learned codebook. But not only principal views
are revealed by the vector quantisation approach. It also seems to be
possible to distinguish basic latent types of object, i.e. different types
of handbag, bowl or show. This can be beneficial, since it also allows
a tuning towards different basic object types. In general, when going
from six to nine views, it can be seen that these tuning towards different
types of object does occur more frequently. Although not shown here
by example, this trend continues when using even more codewords. In
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this thesis, the codewords are thought of as representing the different
views and the view-tuned SVM models are thought of as representing
the different types. Therefore no larger codebooks are considered here,
although the lbTreeGNG seems interesting for discovering latent types
or sub-classes in a training set.

The decomposition of the complex training sets according to the
extracted principal views is also an interesting thing to look at. Here,
two major questions are addressed: First, what does a concrete example
of a decomposition look like? Second, how are the training sets dis-
tributed over the different views? Figure 4.5 answers the first question,
by showing six extracted principal views for the category cup along-
side with 60 assigned training samples. The samples often match the
viewing direction of the principal views, but samples from other viewing
directions are sometimes assigned to the principal views. However, as
stated before, this is not a problem, because the kernel that is intro-
duced in the next chapter is able to match a left-handed cup with a
right-handed model. In fact, the proposed method tries to mix up the
models to a certain extent by assigning a sample with the probability
.2 to the second winning principal view. The basic notion here is that
the optimisation of the SVM will figure out what a good positive and
negative sample is (given the kernel), if the training set is not mixed
up too much. It can also be seen that a single viewing direction can be
split (compare the 3rd and the 5th view in figure 4.5), while a mixed
codeword remains undecomposed (compare 6th view). This is obviously
a side effect from using an unsupervised method, as no high level se-
mantic knowledge is available to support the decomposition. Although
it has not been explored in this thesis, it may be interesting to think
about some amount of user interaction here, since the extracted code-
words are designed to be interpretable by humans. For instance, one
could think about letting a human select semantically reasonable prin-
cipal views. The second question that has been mentioned is, how are
the training samples distributed over the principal views quantitatively.
To allow a comparison of sets of different sizes, the relative ratio of the
assigned samples is stored for each principal view. For example, if there
are 1000 samples in total and a view gets 100 samples assigned, the
relative ratio of the assigned samples is 100

1000
= 0.1. Since the views do
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Figure 4.5: This figure shows the six extracted principal views for the cat-
egory cup alongside with 60 assined training samples (randomly picked from
all assigned samples).
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Figure 4.6: This figure shows the relative ratio of the assigned samples for six
extracted principal views (explanation in the text).

not have a particular order, they need to be ordered to be comparable
among different classes. This is done by sorting the views according
to the relative ratio of the assigned samples in decreasing order. For a
model with six principal views, node1 is used to refer to the view with
the highest relative count and node6 refers to the view with the lowest
relative count. With the bins in a particular order, the relative ratios
of node1, node2, etc. can be compared among the different classes.
For a model with three, six and nine views, the average ralative ratio
of assigned samples is plotted in figure 4.6. Interestingly, on average
the relative ratios seems to be similar to an exponential decay function.
That means means that a fraction of the views embraces a majority
of the training samples. I think this distribution is an effect of using
photographs from the Web, because it is known that people prefer to
take photos of objects from certain canonical perspectives (cf. [156]).
Further, the chosen approach of ignoring irrelevant perspectives, like
macros, may increase this effect. Although in this work full ensembles
are considered, this observation may be useful for the selection and trun-
cation of ensembles (similar to choosing the first principal components
in principal-component analysis). In addition to the rendered principal
views, this type of plot does provide a hint on how many nodes may be

60



reasonable to choose for a specific category and training set. For many
classes, using more than six views seems only to lead to the creation
of experts with quite small positive training sets. And it is not compu-
tationally expensive to explore different parameters for m at this stage:
On a modern Intel Core i7 processor with 3.2 GHz the lbTreeGNG and
training set splitting takes a few seconds. In the next section I will
explain how the extracted principal views can be used in order to learn
view-tuned matching kernels for the different categories.
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Chapter 5

View-tuned Kernel

This chapter presents a method for learning view-tuned approximate
partial matching kernel from hierarchical Growing Neural Gases. For
the sake of brevity, these kernels are called view-tuned kernels within
this thesis. Major parts of this chapter have also been published in
[105]. Section 5.1 provides the basic intuition behind view-tuned ker-
nels. Subsequently, section 5.2 formally introduces the optimal partial
matching and empirically shows that lbTreeGNGs can be used robustly
to approximate this matching. Section 5.3 introduces the view-tuned
approximate partial matching and empirically shows that it improves the
separability of the classes. Finally, section 5.4 employs the extracted
principal views of the last chapter and discusses the kernel learning re-
sults for the 10 domestic object categories. For an introduction to
the limited branching tree Growing Neural Gas (lbTreeGNG) please see
chapter A in the appendix.

5.1 Introduction

As already mentioned in the related work chapter, local visual features
are often employed to compute the similarity between images or image
regions. In doing so, an image can be represented by a set of d-
dimensional real descriptors, e.g. SURF descriptors [7], where each
vector robustly represents the distribution of gradients in a local image
patch. Thus, comparing two images can be considered as the problem
of comparing to vector sets of unequal cardinality. The optimal partial
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Figure 5.1: (a) Three different images are shown: two cups and one “abstract”
image. The cup in the middle is compared to the other two images. The
green squares, blue triangles and red circles depict some local image regions
for which visual features are computed. The gray lines sketch the alignment
of the feature sets with the minimal cost. (b) The basic idea of the work is
to learn a (hierarchical) decomposition of the image plane (indicated by black
lines) and to match features only locally in the Voronoi cells. In doing so, the
cup and the abstract image get more dissimilar, because only one of the global
minimal alignments is preserved when taking the positions of the local features
into account.

matching (detailed in section 5.2) aligns the elements of the smaller set
to the elements of the other set, such that the pairwise distances are
minimised. The basic notion is sketched in figure 5.1 (a). As shown by
[80], the optimal partial matching cost between two sets of local visual
features is often a good similarity measure between the images. How-
ever, since the feature sets are unordered – like in the BOW approach
– the sets’ similarity can be high despite a dissimilar composition of the
parts, as seen in figure 5.1 (a) when comparing the cup and the ab-
stract image. In this thesis, a hierarchical Growing Neural Gas, namely
the lbTreeGNG [104] is used as an efficient Mercer kernel that approx-
imates the optimal partial matching cost. Further, this unordered set
matching idea is extended and a kernel that matches sets of features
in a more structured way is introduced. To that end, an additional hi-
erarchical codebook (lbTreeGNG) is trained in the 2D image plane to
build a view-tuned matching kernel that takes the relative positions of
the features into account. The idea is illustrated in figure 5.1 (b).
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Figure 5.2: This figure sketches a hierarchical codebook tree (lbTreeGNG) in
a feature space F with a branching factor k = 3 and a depth L = 2. Further,
two feature sets X and Y are painted in the feature space and the histogram
counts for the tree bins are shown. Finally, a two-dimensional indexing scheme
for the nodes is presented.

5.2 Approximate Partial Matching with lbTreeGNGs

First, the optimal partial matching and the original vocabulary-guided
pyramid match are introduced, as presented in [80]. LetX = {x1, . . . , xm}
and Y = {y1, . . . , yn} denote two sets of local visual features extracted
from two different images or image regions. In this connection, let
be m ≤ n and all xi , yj ∈ F = Rd . A partial matching is defined
as M(X, Y ;π) = {(x1, yπ1

), . . . , (xm, yπm)}, where π : {1, . . . , m} −→
{1, . . . , n} is an injective mapping of the indexes. The cost of a par-
tial matching is defined as C(M(X, Y ;π)) =

∑
xi∈X ‖xi − yπi‖2. An

optimal partial match π∗ is given by the assignment with the minimal
matching cost, i.e. π∗ = argminπ C(M(X, Y ;π)). The cost of the
optimal partial matching can be used to measure the similarity between
two sets and it defines an alignment of the sets’ elements. The compu-
tation of the optimal partial matching is an instance of the assignment
problem and can be solved optimally with a modified version of the
Hungarian method [106] in O(n3). Before the vocabulary-guided kernel
is stated, which approximates the optimal partial matching, it is im-
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portant to discuss how a vector set can be represented by a histogram
over a hierarchical codebook tree. Given a hierarchical codebook in a
high dimensional feature space F that was trained on a representative
training set. Figure 5.2 illustrates a codebook with L = 2 levels and a
tree branching factor of k = 3. One way to assign indexes to the nodes
of a tree is by using unique two-dimensional indexes (i , j), where i is
the level of the node and j is a unique node number in the level i . This
indexing scheme is also sketched in figure 5.2. Note that, to enhance
the understandability, there are some changes in the notation of [105].
When a feature x ∈ X is encoded by the tree, it is passed down the
tree. This means, starting at level 0, the node with the nearest ref-
erence vector is found and then the vector is passed to its successor.
Here, again the nearest node is found and the input vector moves to
its successor. This is repeated until a leaf node is reached. Thus each
input vector moves along a path of nearest nodes from level 0 to level
L − 1. For each node the input vector passes, the histogram count of
the respective bin is increased by 1. Examples for encoding two sets
can be seen in figure 5.2.

In [80], the codebook is created via hierarchal k-means and the (ori-
ginal) vocabulary-guided pyramid match is defined as C(Ψ(X),Ψ(Y )) =

L−1∑
i=0

k i+1∑
j=1

wi j [

# new matches in bin j at level i︷ ︸︸ ︷
min(ni j(X), ni j(Y ))︸ ︷︷ ︸

# matches in bin i,j

−
k∑
h=1

min(ch(ni j(X)), ch(ni j(Y )))︸ ︷︷ ︸
# matches in bin i,j’s children

].

(5.1)
Thereby, Ψ(X) = [H0(X), . . . , HL−1(X)] is a vector of histograms,
where each histogram Hi(X) = [< p, n, d >1, . . . , < p, n, d >k i+1] is
a k i+1 dimensional histogram encoding X in the level i of the codebook
tree. Here, p is denotes the bin index, n denotes the histogram count
and d the maximal distance to the center. The ni j refers to the j-th
histogram count in Hi(X). Further, ch(ni j) refers to the count of the
child node of the node associated to ni j . The authors in [80] show that
C(Ψ(X),Ψ(Y )) yields an efficient approximation of the optimal partial
matching score with linear time complexity w.r.t. n. The authors sug-
gest a proof showing that C(Ψ(X),Ψ(Y )) is a Mercer kernel, which
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makes it usable in kernel-based classification methods like SVMs. How-
ever, in my view the argument made in [80] for C(Ψ(X),Ψ(Y )) being
a kernel does not hold. The authors rewrite the original C(., .) equation
as

C(Ψ(X),Ψ(Y )) =

L−1∑
i=0

k i+1∑
j=1

(wi j − pi j)min(ni j(X), ni j(Y )) (5.2)

without formally stating what pi j is. But it can be inferred that pi j is
the following

pi j =
wi j
∑k

h=1min(ch(ni j(X)), ch(ni j(Y )))

min(ni j(X), ni j(Y ))
(5.3)

to be equal to the original equation. The authors now argue that C(., .)

is a kernel for wi j ≥ pi j , because the minimum intersection is a Mercer
kernel [149] and kernels are closed under summation and scaling with
a positive constant [186]. However, (wi j − pi j) can not be treated as a
constant, because it be can seen in the above equation (5.3) that the
term pi j does depend on the input of the kernel and thus can not be
constant, i.e. pi j = pi j(Ψ(X),Ψ(Y )). As I did not find a correction for
the proof, I propose a simplified version that drops the subtraction of the
second part in equation (5.1), which is what causes the problem. In fact,
the subtraction only cleans the histogram counts by removing matches
that have already been found in deeper levels of the tree. Having a
Mercer kernel is important for the optimisation of the SVM, because
the optimal point of the convex optimisation problem may not be found
if the Gram matrix is not positive semi-definite and symmetric.

In this thesis, a limited branching Tree Growing Neural Gas (lb-
TreeGNG) [104] with a branching factor k and a depth of L is used
to learn hierarchical codebooks. As known from the last chapter, the
lbTreeGNG is an efficient hierarchical method for one-shot online vector
quantisation, that keeps track of the topological structure of the input
space and avoids over fitting. Figure 5.2 sketches a lbTreeGNG learned
on the elliptic input distributions. Based on the histogram encoded fea-
ture sets Ψ(X) and Ψ(Y ), the (simplified) vocabulary-guided pyramid
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Figure 5.3: (a-c) Approximation quality of the original C(., .) [80] and the
simplified version K(., .) w.r.t. the optimal partial matching under different
parameter settings (for details see text). (d) Optimal costs versus approxi-
mated costs.

match kernel is defined as a weighted minimum intersection:

K(Ψ(X),Ψ(Y )) =

L−1∑
i=0

k i+1∑
j=1

wi jmin(ni j(X), ni j(Y )) (5.4)

Here, wi j is a node dependent constant weighting factor with wi j >
0∀i , j . Similar to [80], the weights are set to 1

di j
, where di j is learned

for each node j in the level i of the lbTreeGNG as the average distance
of samples in the bin. K(Ψ(X),Ψ(Y )) is a Mercer kernel, because the
minimum intersection is a Mercer kernel [149] and kernels are closed
under summation and scaling with a positive constant [186].

Experiments

The experiments investigate two things: First, I compare the simplified
kernel K(., .) and the originally matching C(., .) with the optimal match-
ing cost. Second, using the standard parameters of the lbTreeGNG as
stated in [104], I show how strongly the matching performance of K(., .)

depends on the choice of the residual lbTreeGNG parameters m, b and
the training set. The experiments are done on real image data from the
ETH-80 database [117] as proposed in [80]. For each of 100 images,
256 128-dimensional SURF descriptors are computed on a grid. Then
the resulting 100 descriptor sets are compared, which produces 10, 000

matching costs. As a baseline, the cost of the optimal assignment π∗
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is computed (using GLPK [224]). As in [80], the quality of an approxi-
mation is assessed by the Spearman Rho, when comparing the optimal
ranks to the approximative ranks. The Spearman Rho is defined as

ρ = 1−
6
∑N

i=1(i − r̂(i))2

N(N2 − 1))
(5.5)

where i is the optimal rank and r̂(i) is the corresponding rank in the
approximation. The Spearman Rho of K(., .) is compared with the ori-
ginal C(., .) for different parameters m ∈ {m1 = .15, m2 = .015, m3 =

.0015}, b ∈ {3, 5, 10}, and S ∈ {101, 256}. Here, S denotes the
training set, which is used to train the lbTreeGNG and 101 refers to
the CalTech 101 database [48] (9144 images) and 256 refers to the
CalTech 256 database [82] (30607 images).

Results

The results are summarised in figure 5.3. As can be seen, the intro-
duced simplification is not problematic, because the approximation per-
formance of K(., .) and C(., .) is very close. In addition, the results sug-
gest that the performance is very robust to the concrete choice of the
parameters, because there are no large differences w.r.t. the Spearman
Rho. The fact that the Spearman Rho in the experiments is approx.
.05 smaller than in [80] (with global weights) may be a consequence
either of using SURF instead of SIFT features, or of not training the
codebook on the test images.

5.3 View-tuned Approximate Partial Matching

This section introduces the view-tuned vocabulary-guided pyramid match
kernel. The kernel employs two hierarchical codebooks (lbTreeGNGs):
one class-independent GNG in the d-dimensional feature space F (as
explained in the last section) and one class- and view-specific GNG in
the 2D image plane. To learn the 2D lbTreeGNG, points are sampled
from the unit image plane ξ ∈ [0, 1]2 according to a distribution P (ξ).
Thereby, P (ξ) should have high values for locations where relevant ob-
ject parts occur, w.r.t. a specific feature type and view-point. At this

68



Figure 5.4: Two examples of view-tuned kernels for the categories car and
horse (explanation given in the text).

point, the principal views from the last chapter come into play. By de-
sign, an extracted principal view can be employed as a P (ξ) distribution,
when sampling 2D pixel locations

ξ = (
x

w
,
y

h
) ∼

[
255− g(x, y)

255wh

]
(5.6)

for a principal view of width w and height h. Here, x and y are the
pixel locations and g(x, y) is the inverted gray-scale value at the pixel
coordinates of the normalised averaged gradient magnitude image. In
doing so, pixels from darker regions are sampled more often than pixels
from brighter regions. Remember, that the results for the domestic
objects categories are presented in section 5.4. Here, I want to stay
at the image data from ETH-80 database, because it has been used
by [80] and has already been employed for the evaluation in the last
section. Figure 5.4 column (a) shows two principal views of cars and
horses from the ETH-80 database. Column (b) illustrates points sam-
pled according to those distributions and the coordinates are used as 2D
input vectors to train the 2D lbTreeGNG. Further, column (c) and (d)
show the first and the second level of the trained lbTreeGNGs with a
branching factor b = 3. The thin circles indicate the average point dis-
tance estimation, as known from the weighting in K(., .). Subsequently,
column (e) presents the hierarchal Voronoi tessellation induced by the
2D codebook trees. Finally, column (f) shows key point locations that
are also sampled according to P (ξ) and which are associated with the
class-specific 2D lbTreeGNGs. When comparing images for a specific
class, e.g. cars, the associated key point set is used and at each key
point location a descriptor is computed. An alternative way is to define
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key point locations on a static grid, as sketched in figure 5.4 column
(g). When comparing two descriptor sets, the learned 2D tessellation
is employed as follows to incorporate the relative locations of the local
features.

Given a trained hierarchical codebook (lbTreeGNG) in 2D, which is
associated with a class and view ω, and with a depth R and a branching
factor b. This lbTreeGNG is associated with the above-mentioned key
points set and each key point can be assigned to a hierarchical bin (as
indicated in figure 5.4 column (f) and (g)). Following the same principle
as in the last section, each node q in the level p of the 2D tree can be
associated with a histogram Ψpq(Xω

pq) over the tree in feature space,
where Xω

pq is the set of descriptors from the key points that belong
to bin (p, q) in the 2D lbTreeGNG of class ω. In other words, each
local feature set in the 2D Voronoi cells (descriptors computed for the
yellow dots in the gray region in figure 5.4 (f.1)) is represented by a
histogram over a the codebook tree in the feature space. Again, this
single histograms can be concatenated into one large vector, i.e.

Ξω(X) =
[
Ψ0,1(Xω

0,1), . . . ,ΨR−1,bR(Xω
R−1,bR)

]
. (5.7)

By using this notation, the view-tuned vocabulary-guided pyramid match
kernel is defined as

T (Ξω(X),Ξω(Y )) =

R−1∑
p=0

bp+1∑
q=1

w̃pq K
(

Ψpq(Xω
pq),Ψpq(Y ωpq)

)
.(5.8)

In this equation, w̃pq is a node-dependent constant weighting factor
with w̃pq > 0∀p, q. As before, the weights are set to 1

d̃pq
, where d̃pq

is learned for each node of the 2D lbTreeGNG as the average distance
of samples in the bin q in level p. Since K(., .) is a Mercer kernel, the
same argument a made for (5.4) can be used to prove that (5.8) is a
kernel as well, i.e. kernels are closed under summation and scaling with
a positive constant [186].

The proposed kernel T (., .) implements a tuned fine-to-coarse match-
ing of local image parts for similar views of instances of a class ω. The
kernel locally matches BOW like representations with an approximate
partial matching, while paying attention to the structure of the object
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and the relative positions of the BOW-based parts. Due to the hierar-
chal form of the matching in 2D, the proposed method is intended to
be robust to small deformations and rotations. In addition, the mini-
mum intersection is intended to be robust to clutter and occlusion, to
a certain extent. Due to the fact that the presented matching is a
Mercer kernel, it is directly suitable for kernel-based machine learning
techniques, like the Support Vector Machines (e.g. [186]). Beyond, the
matching kernel is theoretically independent of the particular type of the
local feature, i.e. color-, appearance- or shape-based local descriptors
could be used.

The space complexities are as follows: O(bR) for a saving a pyramid
structure in 2D, O(kL) for a saving pyramid structure in F , O(nL) for
storing a sparse histogram Ψ(.), and O(RnL) for storing a Ξω(.). The
time complexities w.r.t. distance computations are as follows: O(nL)

for creating a histogram Ψ(.) for K(., .) and O(2RnL) for creating
both tree embeddings Ξω(X) and Ξω(Y ) for T (., .). Thus, the time
complexity of the proposed kernel is still linear w.r.t. n and allows
efficient matching of images or regions.

Experiments

The experiments presented here are an extended version of the exper-
iments in [105]. The basic idea is to evaluate a learned kernel by its
ability to separate the classes, as has been employed by other authors
to find optimal parameters for learned kernels (e.g. cf. [220], [198]). In
this notion, the optimal kernel parameters maximised the class separa-
bility in the induced feature space. Here, the class separability is formally
measured via averages of intra- and inter-class sample distances. Intu-
itively, a good kernel would be given if all class elements are very similar
to each other and at the same time very dissimilar to the elements of
all other classes. This can be formalised as follows.

Let there be a K classes Ω = {ω1, . . . , ωK} and one set of samples
for each class Z = [Z(ω1), . . . , Z(ωK)]. The average in-class distance
for a class ωi is given by

Dk(ωi , Z) =
1

|Z(ωi)|2
∑

x∈Z(ωi )

∑
y∈Z(ωi )

k̃(x, y) (5.9)
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where |·| denotes the cardinality of a set and k̃(., .) is a normalised1 ver-
sion of a kernel k(., .) such that k̃(., .) ∈ [0, 1]. The average between-
class distance between a class ωi and a class ωj is given by

Dk(ωi , ωj , Z) =
1

|Z(ωi)||Z(ωj)|
∑

x∈Z(ωi )

∑
y∈Z(ωj )

k̃(x, y). (5.10)

Further, the average between-class distances can be averaged over the
classes by

D̃k(ωi , Z) =
1

K − 1

K∑
j=1,j 6=i

Dk(ωi , ωj , Z). (5.11)

The separability score for a kernel k(., .) can now be written as

Sk(Z) =
1

K

K∑
i=1

‖Dk(ωi , Z)− D̃k(ωi , Z)‖ ∈ [0, 1], (5.12)

where ‖.‖ denotes the absolute value. As stated before, the best kernel
(or kernel parameters) from a set of learned kernels is the one that
maximises the separability score.

In the conducted experiments different view-tuned kernels should be
compared, and an obvious question is, what are good values for the
branching factor b and the depth R of the 2D codebook tree. There-
fore, the learned view-tuned kernels T (., .) with different values for
b ∈ {3, 4, 5, 6} and for R ∈ {2, 3, 4} are compared in the experiments
to find an optimal global setting. The other lbTreeGNG parameters are
set to the default [104]. Using more than 4 levels in the presented setup
does not make sense from a theoretical point of view, because bR with
R > 4 (and b > 3) will result in more Voronoi-cells than key points,
which then results in no matches in deeper levels. If no matches (or
very few) are found in deep levels of the tree, the corresponding match-
ing score for that level will be very small and only marginally affect the
overall score. Further, two types of local visual feature are compared:
128-dimensional SURF features [7] and 72-dimensional HOG features

1In the case of a weighted minimum intersection over a fixed number of key points, the
normalisation can e.g. be achieved by dividing by the highest possible intersection value.
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Figure 5.5: This figure shows the gain of the separability score for the ETH-80
classes under view-tuned kernels with different parameter settings compared
with the baseline, i.e. the simplified vocabulary-guided pyramid match.

[37]. This is a special HOG feature, that uses 3× 3 blocks and 8 gra-
dient directions (for a more through explaination see figure B.1 in the
appendix). Basically, both types of feature encode the gradient struc-
ture around a key point location. However, the major difference is that
SURF descriptors are rotation invariant and HOG descriptors are not.
Moreover, the experiment compares sampled key point locations (as
seen in figure 5.4 column (f)) to key point locations defined on a static
grid (cf. figure 5.4 column (g)). Here, for a 128× 128 pixel image up
to 30 × 30 = 900 key points locations are employed. However, since
the principal view images are cropped, the actual number of key points
can be lower. As a baseline, the separability score of the simplified vo-
cabulary guided pyramid match kernel K(., .) is used. For each class in
the in the ETH-80 database, the side views (090 images) of the objects
are used to compose the respective training sets and to learn principal
views. Then the separability score is computed under a set of param-
eters and compared to the baseline score. That means, all HOG scores
are compared with the baseline KHOG(., .) and the SURF scores are com-
pared with KSURF(., .). As discussed in the last section, the lbTreeGNGs
in the feature space F are learned on the respective descriptors from the
CalTech 101 database [48] with default lbTreeGNG parameters [104],
and a branching factor of 10, as well as an error parameters of .015.
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Results

Figure 5.5 shows the absolute gain of the separability score compared
to the baseline scores, when using view-tuned kernels under different
parameters. The first interesting aspect that can be observed is that
– independent of the type of feature or key point generation method –
all view-tuned kernels (with levels R ∈ {2, 3, 4}) provide a clear gain in
the class discrimination compared with the simplified vocabulary guided
pyramid match K(., .). These results are in line with the observations
of various other authors, which state that using information about the
spatial structure makes it possible to significantly enhance bag-based
kernels. Another aspect is that in the majority of runs, the HOG features
work better than the SURF features. A possible explanation is, that in
the scenario of a view-tuned kernel the additional rotation invariance
removes information from the representation, that is actually beneficial
for matching objects under similar views. Further, the experiments
show that in the view-tuned matching scenario the usage of key points
defined on a static grid usually works slightly better than using sampled
key point locations. One possible explanation for this is that the grid-
based representations allow a better encoding of the objects’ shape,
texture and background, since each location in the images is covered
and key points can not get too dense. Taking a look at the performance
w.r.t. the number of tree levels R, it is clear that using too few levels
is not beneficial. Also for b > 3 it’s obvious that that too many levels
do not enhance the performance either. The best performance can be
observed with R = 3. One explanation of this may be as follows. On
the one hand, having too few levels creates large bags of features, which
representations have a large amount of flexibility. On the other hand,
having too small Voronoi-cells results in tiny feature sets which can not
be matched good in the deepest level of the tree. Thus, with R set to a
value “in the middle”, the feature sets of the Voronoi cells are reasonably
large w.r.t. flexibility and comparability. Another interesting parameter
is the branching factor b of the 2D lbTreeGNG. Note, that the branching
factor directly influences the size of the Voronoi cells in the different
levels. That means that the higher b is set, the smaller the Voronoi
cells become. As stated before, if the Voronoi cells get too small the
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corresponding key points sets get too small and are hard to match.
Again,Voronoi cells that are too large can also degrade performance, as
larger unordered BOW sets are matched. Also here, good choices of the
parameter – in conjunction with the depth of the codebook tree – seem
to be in the middle of the tested spectrum, i.e. b = 4, 5. Finally, among
different good working parameter settings, the best global parameter
settings are [b = 4;R = 3; HOG_grid]. Therefore, these parameters
will be used for the training of view-tuned kernels and the matching in
the subsequent chapters.

Figure 5.6: This figures shows the learned view-tuned kernel for the three
principal views of every class.

75



Figure 5.7: This figures shows the learned view-tuned kernel for the six principal
views of the classes apple, bottle, bowl, cup, handbag and potted plant.
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5.4 Results and Discussion

Figure 5.8: This figures shows the learned view-tuned kernel for the six principal
views of the classes laptop, toaster, light switch and shoe.

As mentioned before, this chapter presents and discusses the learned
view-tuned kernels for the ten domestic object categories of this thesis.
For each principal view of each object class a multi-layered 2D codebook
tree is learned, as presented in the last section. In this process the found
optimal 2D lbTreeGNG parameters ([b = 4;R = 3; HOG_grid]) are
used for all classes, which produces comparable results. The results for
three principal views can be found in figure 5.6. Moreover, the results
for six principal views are shown in figure 5.7 (apple, bottle, bowl, cup,
handbag and potted plant) and in figure 5.8 (laptop, toaster, shoe and
light switch). Note that the results for nine principal views are not
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included, because they are structurally very similar to the results of six
and three principal views and would require a lot of space (9 · 4 · 10 =

360 images). In the result figures, a principal view is presented at
the beginning. Then the corresponding first and second levels of the
learned 2D codebook are sketched in red and green respectively. Finally,
the corresponding third level of the tree is painted in random colors.

Overall, the learned view-tuned kernels realize a hierarchal decompo-
sition from rough to fine of relevant object parts. The first level of the
tree decomposes the overall principal view into four regions. In doing so,
the lbTreeGNG adapts to the underlying structure for the gradient and
texture of the principal view, e.g. the first level for bottles and shoes
look very different. But also for some views, the learned first levels look
quite similar (e.g. compare the first levels of bottle). The second level
refines this initial decomposition and introduces a tessellation of those
regions, again into four cells each. For untextured objects, like apple,
these regions roughly describe parts of the shape. But for more textured
classes as well the second level introduces a rough notion of sub-parts’,
e.g. the four new subregions decompose a plant pot or a handle of
handbags. Finally, the third levels make it possible to capture details
of the sub-parts shape and texture during matching. This supports the
discrimination of roughly similar looking parts. As stated before, the
learned kernel only realises a view-tuning. For instance, take a look at
the first view-tuned kernel for cup in figure 5.7. It is clear that the ker-
nel is tuned towards a left-handed cup. However, due to the structure
of the kernel it is also be possible to match a right-handed cup with this
kernel. It may not be as good as the view-tuned kernel for right-handed
cups, but – as turns out when used with an SVM classifier in the next
chapter – the discrimination is often good enough to separate in-class
and background images.
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Chapter 6

View-tuned Support Vector
Machines

This chapter presents the way in which view-tuned kernels can effi-
ciently be used in the learning framework of Support Vector Machines
(SVMs) [33] for the purpose of object detection. In this context the
detection of objects is considered to be a two-class classification prob-
lem in a sliding window scheme (cf. chapter 2). One class represents
the object category (using the acquired in-class images) and the other
class subsumes negative sample images from the background class or
other classes. When a window slides over the image, a trained SVM is
used to classify whether or not an image region contains an object or
not. First, the C-SVM formulation and the optimisation of unbalanced
learning problems is presented in section 6.1. Here, unbalanced means
that it is easy to get a large number of negative images, while having a
fixed number of positive in-class images. For example, the background
patches can easily be sampled from a database of images. This kind of
learning problems, where the number of samples for one class is much
higher than for the other class, need special training to achieve reason-
able solutions and without giving preference to the bigger class. After
that, section 6.2 discusses how to extract the local visual features effi-
ciently, by using aligned key points and window offsets to avoid multiple
computations of the local descriptors. Once there is a trained model,
it can be applied to images as a detector. Thereby, the runtime of the
detector is critically dependent on the number of support vectors in the
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model, i.e. the time complexity for classifying an input vector is O(MD)

where M is the number of support vectors and D is the dimensionality
of the feature space. This problem is addressed in section 6.3. Using
the results of [129], I show that the decision function for view-tuned
kernels can be rewritten in such a way, that the classification complexity
becomes independent from the number of support vectors (i.e. O(D)).
Using a special caching scheme, it is possible to compute the exact
value of the decision function very efficiently. On the one hand, this
result supports the efficient application of view-tuned SVMs, and on the
other it supports the application of large models. In a common object
detection scenario, the majority of windows are non-class regions, and
in order to classify them, a full kernel needs to be evaluated on each of
those regions. Due to the introduced computation of the decision func-
tion (section 6.3) these kernel evaluations are efficient, but still not free
of cost. To minimize the number of computations further, cascades are
brought into play. The basic idea is to use a simple classifier first and to
use more complex classifiers only on “interesting” image regions, that
have been classified as in-class by the simple classifiers. In this process,
large parts of the image are classified with only a cheap classifier and
the evaluation of more complex classifiers is done only on few image
regions. In section 6.4, I show how view-tuned kernels can be used in
a cascaded scheme. In this scheme, deeper levels of the kernels are
evaluated only on promising image regions which makes the detection
with view-tuned kernel SVMs even more efficient. Further, as already
mentioned, the learning problem is unbalanced and in the detection sce-
nario negative images could be gathered. As has been shown (e.g. in
[57]), to get a good detector it is very important to train on negative
samples that are difficult to classify, i.e. near the decision boundary.
However, initially it is not clear which negative samples from the giant
pool of possible negative patches are hard negatives. Therefore, it has
been suggested that a classifier should be trained on simple negative ex-
amples first and that the simple detector should be applied to find more
difficult negative images (e.g. [57]). This procedure is then repeated
several times in order to get very hard negatives. Section 6.5 explains
the sequential discriminative optimisation that is employed for training
strong view-tuned SVM detectors. So, a view tuned Support Vector
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Machine is a C-SVM used with a view tuned kernel that is trained dis-
criminatively as an efficient cascaded classifier for detection. Sample
results are discussed in some of the relevant sections. However, note
that the detection performance of the trained classifiers is evaluated as
a part of the detection ensembles in the next chapter. Finally, section
6.6 concludes this chapter.

6.1 SVM Formulation and Optimisation

This section presents the formulation of two-class C-SVMs [15][33]
and their optimisation in an unbalanced learning problem for training
of view-tuned classifiers. For a more comprehensive introduction of
Support Vector Machines e.g. confer [35].

Let xi ∈ RD denote the training vectors for the learning problem,
with i = 1, . . . , N. Further, let the class indication be denoted by
y ∈ RN with yi ∈ {1,−1}. The Support Vector Machine maps an
input vector x ∈ RD with a non-linear function φ(x) into a high di-
mensional feature space and classifies the vectors there with a linear
decision boundary f (x) = wTφ(x) +b. The resulting decision boundary
in the input space can be highly non-linear and can be represented as a
linear combination of the transformed training examples, i.e.:

f (x) = wTφ(x) + b =

N∑
i=1

αiyiφ(xi)
Tφ(x) + b =

N∑
i=1

αiyik(xi , x) + b.

(6.1)
As seen in the last term, it is possible to use a kernel function k(., .)

to compute the dot product of the two transformed samples without
explicitly computing the expensive transformations φ(xi) and φ(x). The
decision boundary is chosen such that the error on the training data
and the generalisation error are optimised at the same time. Based
on learning theory [211], these errors are minimised, when the margin
between training examples and the class boundary is maximised. When
the margin is optimising, the capacity of the classifier is tuned and over-
fitting is avoided. Formally, the C-SVM [15] [33] optimisation problem
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for two classes is given as follows.

minimise
w,b,ξ

1

2
wTw + C

N∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi , i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

(6.2)

Here, C > 0 is a regularisation parameter and the slack variables ξi are
introduced to handle the optimisation for non-linear-separable classes.
This minimisation problem is convex and has linear constraints. By using
the Kuhn-Tucker-Theorem [69], the optimisation problem is easier to
solve in the dual form, and can be written as follows

maximise
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi , xj)

subject to
N∑
i=1

αiyi = 0

αi ≥ 0, i = 1, . . . , N.

(6.3)

An obvious issue for the optimisation of this problem is that the kernel
matrix Ki ,j = k(xi , xi) is a dense matrix with N2 elements, which may
be too large to be stored in memory. Therefore, to solve the problem
(6.3) for large kernel matrices, decomposition methods have been intro-
duced. A decomposition method defines a working set B as a subset
of all α variables, and modifies only this subset in one iteration. Thus,
only some columns of the matrix are needed. The so called Sequential
Minimal Optimisation (SMO) [164] considers minimal working sets of
size two. In this thesis, I use the optimisation included in LIBSVM [71]
[27], that employs a special SMO-like decomposition method (details
in [47]). During the optimisation, the current working set αi and αj is
chosen heuristically, while the resulting optimisation problem is solved
analytically. After optimising problem (6.3), the optimal w satisfies
w =

∑N
i=1 yiαiφ(xi) and the samples with αi 6= 0 are called support

vectors. For a new sample x , the predicted class is given by the sign of
the decision function, i.e. sgn (f (x)).
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Using the presented scheme with view-tuned kernels is straight for-
ward. For example, say a classifier using the first view-tuned kernel of
apples (apple_1) should be learned. Here, I assume the lbTreeGNG in
the HOG feature space has already been learned. The positive training set
is composed of the apple images that have been assigned to the corres-
ponding first principal view of apple, as described in chapter 4. At first,
the negative images can simply be sampled as random patches from an
image dataset, when it is quite certain that no apples are contained in
the images. The training images of the apple class are scaled to the
width and the height of the according principal view, and the training
images of the other class are directly sampled with that size. For com-
paring two images XIMGi and XIMGj , the key point grid associated to the
apple_1 principal view is used to generate the HOG descriptors sets
Xi and Xj . By using the 2D lbTreeGNG and considering the key point
locations, the HOG descriptors sets can be mapped to histogram vectors
Ξapple_1(Xi) and Ξapple_1(Xj). So, in the presented SVM formulation
the kernel function for comparing two samples is the view-tuned kernel
for a specific class and view that matches the encoded descriptor sets
of the sample images, i.e.:

xi ≡ Ξω(Xi), xj ≡ Ξω(Xj), k(xi , xj) ≡ T (Ξω(Xi),Ξω(Xj)). (6.4)

The optimal value for the meta-parameters C is found by using a
10-fold cross-validation [11]. That means, the dataset is split into 10

chunks, where nine of the chunks are used for training with a concrete
parameter C and one chunk is used for testing. To estimate the per-
formance under a concrete C, the performances of the 10 different test
runs are averaged. The values for C are chosen in a two-step process.
First, a number of {1 values is sampled in a broad range [R1, R2]. Let
C∗ denote the optimal C parameter in that range. In a second step, an
additional number of {2 samples is drawn from [C∗−R3, C

∗+R3] to opti-
mise the parameter further. As concrete values for the C-optimisation,
the first interval is set to [R1 = .000001, R2 = 1000] (because the
maximum has always been found in this interval), and a total number
of {1 = 100 samples are used. For each local sub interval, 10 points
are sampled, e.g. in [.000001, .00001], in [.00001, .0001] and so forth.
For the second interval a total number of {2 = 25 values is sampled in
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[C
∗

10
, C∗ · 10], where C∗ is the optimal value found in the first interval.

However, the parameters do not need to be chosen very carefully, since
the score has not been observed to be peeked and good classifiers can
be found for a broad range of C values.

What has not yet been addressed is what concrete performance
measure is used for the optimisation of the C parameter. Training
classifiers for object detection in the sliding window scheme is an unbal-
anced problem, i.e. there are many more negative examples available
than positive examples. For example, let there be 1, 000 samples for the
first principal view of apple and 9, 000 sampled non-apple patches. A
common measure for optimising the C parameter for balanced problems
is the precision prec = tp

tp+f p
, where tp is the number of true positives

and f p is the number of false positives. However, optimising C w.r.t.
the precision value is very problematic for unbalanced problems. The
optimisation will often choose a classifier that classifies all samples as
belonging to the bigger class, because this model has a high precision,
here prec = 9,000

9,000+1,000
= .9. In principle, there are two ways for tack-

ling this problem. First, a balanced performance measure for optimising
the C could be used. In the experiments in this thesis, the balanced
true positive ratio of the classes + and − has been used, i.e.:

btpr = .5

[
tp+

tp+ + f n+
+

tp−

tp− + f n−

]
. (6.5)

In the case of the above example, the balanced true positive ration is
btpr = .5[ 0

1,000
+ 9,000

9,000
] = .5. So an optimal score of 1 means that no

errors are made in both classes. In the example, allowing nine errors
for the bigger class counts equally to classifying one item of the smaller
class correctly, i.e. .5[ 1

1,000
+ 8881

9,000
] = .5[ 0

1,000
+ 9,000

9,000
]. A second way to

deal with unbalanced problems is to reformulate the SVM optimisation
problem to have two regularisation parameters C+ > 0 and C− > 0,
i.e. one for each class. For a C-SVM, the minimisation formulation can
then be written as

minimise
w,b,ξ

1

2
wTw + C+

∑
yi=1

ξi + C−
∑
yi=−1

ξi (6.6)

subject to the same constraints as before in problem (6.2). The two C
values are chosen in such a way that their values reflect the ratio of the
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training set sizes. For this thesis, I empirically compared both methods
mentioned, in order to deal with unbalanced problems by using the
balanced true positive ratio of the optimal parameters. As it turns out,
for learning view-tuned kernels, the first method – i.e. using a C-SVM
with a balanced performance measure – provided better results and is
therefore used in all subsequent experiments. During the optimisation
of the dual problem, the shrinking and caching options of LIBSVM [71]
[27] were enabled. The caching stores some amount of the already
computed kernel values for faster reuse. The shrinking technique tries
to remove bounded elements from the optimisation problem to allow
faster solving of smaller problems.

Up to this point the discussion has concerned the way how C-SVM
with view-tuned kernels can be optimised. In the example, a randomly
sampled negative image set was used, which results in a simple initial
classifier. By using a better negative training set, a better classifier
can be trained. Section 6.5 describes a method for sequentially training
better classifiers by using hard negative examples (i.e. negative exam-
ples near the decision boundary). Using a simple classifier, the negative
examples are harvested from a dataset of images. However, to harvest
a negative training set of sufficient size, many image patches need to
be processed. This procedure – and of course the context of a robotic
application – demand both an efficient feature extraction and efficient
evaluation of the decision function. Both aspects are addressed in the
next sections.

6.2 Efficient Feature Extraction

This section discusses how to extract the local visual features efficiently,
because it is a crucial aspect for efficient detection. Up to now, the
key point extraction has only been performed on in-class and non-class
images for building the representations used in the training phase of the
SVMs. This allowed the grid of key points from the principal view to be
applied directly to the in-class and non-class images, because they are of
the same size. Then, for each key point a HOG descriptor is computed.
The naive application of this scheme in the sliding window approach
can be inefficient. The naive way to extract the key points for a current
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Figure 6.1: This figure shows two ways for implementing the feature extrac-
tion: (i) a naive solution, that causes multiple re-computations of very similar
descriptors and (ii) an aligned version, where the descriptors need to be com-
puted only once.

window is to compute the key point locations in the current window and
then compute the local descriptors at each key point location. The key
point locations in the current window can simply be calculated by using
the current window origin as an offset for the key point grid defined
on the principal view. Figure 6.1 shows the basic problem. The red
window depicts the current detection window, and the blue box is the
next detection window after shifting the red window by an offset dx .
Usually, dx is quite small and both boxes do have a large overlapping
region. However, in the naive approach the descriptors in that region
need to be computed multiple times, because the key points are not
aligned and have distinct locations. A better way to do this is shown in
figure 6.1 (ii). Here, the key points are aligned, i.e. the offset in the x
direction is chosen, in such a way that the key points after shifting lie
above the old key point positions. Thus, all descriptors in the grey region
need to be computed only once. Of course, the same principal can be
applied in the y -direction to the offset dy . Taking both directions and
the size of the view-tuned kernel into account, all key point locations
can be specified on a grid for the entire image and be computed only
once. Hence, no feature in any image region is computed more than
once.

On the implementation side, the aligned key points are realised as
follows. As stated before, the view-tuned kernel uses 900 key points for
a view tuned kernel of size 128×128. That means a grid of 30×30 key
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points is employed and the key point have a grid distance of b 30
128
c = 4px

pixels in x- and y-direction. The offset parameters dx and dy for the
sliding window search are not specified directly, but they are determined
by two other parameters xs and ys, which state by what percentage of
the width bw and height bh of the view-tuned kernel the box is moved,
i.e.:

dx = xs · bw xs ∈ (0, 1] (6.7)

dy = ys · bh ys ∈ (0, 1]. (6.8)

The concrete offsets are then transformed such that that the key points
are aligned. That means they are set to the nearest integer that is
divisible by 4 without a remainder, i.e.

dx ←− argmin
i∈N+,i mod 4=0

|dx − i | (6.9)

dy ←− argmin
i∈N+,i mod 4=0

|dy − i |. (6.10)

In particular for small values of xs and ys, this alignment drastically
reduces the complexity. For example, with xs = .1 and ys = .1 the
aligned implementation is up to 10× faster. The presented feature
extraction scheme is used implicitly from now on in this thesis. With an
efficient feature extraction, another issue is how the decision function
can be computed efficiently. This is discussed in the next section.

6.3 Efficient Computation of the Decision Function

Given a trained view-tuned SVM model, it can be used in a sliding win-
dow framework as a detector. In doing so, the runtime of the detector
is dependent on the number of support vectors in the model. This
means that each patch in the image must be compared with each of
the support vectors and the kernel distance must be computed. Thus
the time complexity for classifying a single pattern is O(MD) where
M is the number of support vectors and D is the dimensionality of the
representation. Here, this calculation is made more efficient by using
the results of [129] as a basis. The work of [129] shows, that (i) a his-
togram intersection kernel can be exactly computed in logarithmic time
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(as opposed to linear) and (ii) that an approximation can be computed
in constant time (with negligible loss in accuracy). I extend this result
to view-tuned kernels, and show that – due to the special design of
view-tuned kernels – it is possible to compute the exact solution of the
decision function in constant time. This means that the complexity of
the decision function becomes independent from the number of support
vectors and only depends on the dimensionality of the representation,
i.e. O(D).

First, some of the notation of the variables is introduced. Let M
denote the number of support vectors, let R denote the number of
levels of the 2D lbTreeGNG and let b denote the branching factor of
the 2D lbTreeGNG. Further, let L denote the number of levels in the
d-dimensional lbTreeGNG and let k denote the branching factor of that
dD codebook tree. The used view-tuned kernel for a specific class and
view ω is written as k(x, y) ≡ T (Ξω(X),Ξω(Y )). Moreover, for a node
q in the level p of the 2D lbTreeGNG the count according to a node v in
the level u of the dD lbTreeGNG is denoted as xpquv ≡ nuv(Xω

pq). Also,
let x1, . . . , xM denote the support vectors. Using the support vectors,
the decision function can be written as follows:

f (x) =

M∑
i=1

αiyik(x, x i) + β. (6.11)

Note that only the support vectors are used in this equation. This
represents a slight difference from the notation used before, where all
training examples were present and the non support vectors had a coef-
ficient αi = 0. Plugging in the view-tuned kernel the function is written
as:

f (x) =

M∑
i=1

αiyi

[
R−1∑
p=0

bp+1∑
q=1

w̃pq

L−1∑
u=0

ku+1∑
v=1

wuvmin(xpquv , x
i
pquv)

]
+ β.

(6.12)
The first two sums in the squared brackets iterate over the indexes of
the hierarchical codebook nodes in 2D and the second two sums iterate
over the nodes of the hierarchical codebook in the d-dimensional feature
space. By moving the coefficients inside, the equation can be written
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as follows:

f (x) =

M∑
i=1

R−1∑
p=0

bp+1∑
q=1

L−1∑
u=0

ku+1∑
v=1

αiyi w̃pqwuvmin(xpquv , x
i
pquv) + β. (6.13)

Now, the outer sum with the iterator i can be pulled inside and the
decision function is written:

f (x) =

R−1∑
p=0

bp+1∑
q=1

L−1∑
u=0

ku+1∑
v=1

M∑
i=1

αiyi w̃pqwuvmin(xpquv , x
i
pquv) + β (6.14)

The inner sum iterates over the support vectors indexes i and provides
a weighted minimum intersection for a specific bin, between the input
vector and the i-th support vector. This sum can be expressed as a
function of the bin indexes and the values of the input vector at that
bin index, i.e.:

f (x) =

R−1∑
p=0

bp+1∑
q=1

L−1∑
u=0

ku+1∑
v=1

hpquv(xpquv) + β. (6.15)

The counts for the bins are integers, i.e. s ∈ N0, and the h.(s)-function
in is given thus:

hpquv(s) =

M∑
i=1

αiyi w̃pqwuvmin(s, x ipquv). (6.16)

Obviously, the value of the h.(s)-function for a specific s is independent
from a concrete input vector of the kernel and can be pre-computed.
For view-tuned kernels, the maximal count for a specific bin xpquv is
bounded by the total number of key points G and bounded even much
tighter by the number of key points Gpq that fall into the 2D bin pq,
i.e.:

(i) 0 ≤ xpquv ≤ G (6.17)

(ii) 0 ≤ xpquv ≤ Gpq (6.18)

This fact makes it possible to pre-compute tables of a feasible size for a
trained model once, and to store the exact solutions for a specific bin.
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Technically, the cached h.(.)-functions are implemented to work on
models that have been learned via LIBSVM [71] [27]. The worst-case
space complexity of the cache depends on the size of the 2D and dD
codebook trees. The total number of bins is obtained by multiplying
the number of 2D nodes by the number of dD nodes, i.e.:

O(R ·
∑R

i=1 b
i · L ·

∑L
i=1 k

i). The total number of bins of the rep-
resentation is quite high, e.g. a few hundred thousand dimensions.
However, note that these representations are very sparse and actually
need much less storage than this upper bound. The representations
are implemented via sparse vectors of OpenCV [216] and store only the
count for non-zero bins. Beyond that, when computing the decision
function, a sparse iterator is used, such that the h.(s)-function lookup
is performed only for non-zero bin counts (s > 0). The speed-up from
using the cached h.(.)-function for computing the decision function is
directly proportional to the number of support vectors. In the prototypi-
cal implementation of this thesis, the speeded up version was up to 20×
faster. By using the scheme presented here, the efficiency of classifi-
cation with view-tuned kernels is significantly improved. Moreover, the
results render view-tuned kernel SVMs suitable for efficient application
of very large models, since the runtime is independent of the number of
supports patterns in the model.

6.4 View-tuned SVM Cascade

For an object detector in the sliding window approach, it can often be
observed that the vast majority of tested windows do not contain a
class instance. As a result, in the case of an view-tuned SVM, all of
the windows are evaluated with a full kernel in order to classify them.
The computation of the decision function has already been improved
to a large extent (see section 6.3), however, it is still not free of cost.
In order to minimise the residual amount of processing, I introduce
cascaded classification for view-tuned SVMs in this chapter. Classifier
cascades are a widely used technique (e.g. [215] [195]) for boosting
the performance of detection systems. The basic idea is to define a
sequence of classifiers (C1, . . . , CW ), starting with simple classifiers that
can be evaluated efficiently. On the other end of the sequence there

90



Figure 6.2: This figure sketches the basic idea of the cascaded view-tuned
SVM. The input vector gets passed to the next classifier only if it is classified
as in-class. The decision function f0(x) only uses the level 0 of the associated
2D codebook. The decision function f1(x) uses the result from level 0 and
uses the level 1 of the codebook. The decision function f2(x) uses both results
of the previous levels and additionally employs the level 2 of the hierarchical
codebook.

are more precise, but also more complex classifiers that need more time
for evaluation. Given an input x , the simple classifier C1(x) is used
first. If the input is classified as in-class, i.e. sgn(C1(x)) = +1, the
input gets passed to the next classifier in the sequence, in this case
C2. If the input is classified as non-class, i.e. sgn(C1(x)) = −1, this
is taken as a final result and the input is not passed to any further
classifier. The complex classification operations are computed only for
“promising” samples, which have been classified by simpler models as
in-class. A sample is only classified as in-class if sgn(C1(x)) = . . . =

sgn(CW (x)) = 1. If a sample is kicked out of the classification pipeline
early, a large number of computations could be omitted for that sample.
This is particularly useful in a detection scenario with a sliding window,
because the vast majority of image patches do not even look close to
an in-class sample. To that end, large parts of the image could only
be classified with a cheap classifier and the evaluation of more complex
classifiers is performed only for a few interesting image regions.

The basic idea for cascaded view-tuned SVMs is to the evaluate
decision function piecewise by computing a decision function for each
level. An input is passed to the next level only if it is classified as in-
class. This scheme is sketched in figure 6.2. The cascade implements a
rough to fine matching, and only promising image regions are processed
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further. In the example in figure 6.2, the first level has 4 bins, the second
level has 16 bins and the third level has 61 bins. Obviously the cost of
constructing a decision value from 61 nodes is much higher than for 4

nodes. For a trained cascade, the goal is to let all background image
patches be kicked out of the pipeline as early as possible, while letting
all in-class image patches pass through the entire pipeline.

Repeating the result of the last chapter, the cached version of the
decision function has been written as:

f (x) =

R−1∑
p=0

bp+1∑
q=1

L−1∑
u=0

ku+1∑
v=1

hpquv(xpquv) + β. (6.19)

In this equation, the first sum iterates over levels of the 2D codebook
tree. The goal is to compute each level separately, and to reuse the
already computed sums. Therefore, the sum over the p variables is is
decomposed into R single f -functions as follows.

f 0(x) =

b∑
q=1

L−1∑
u=0

ku+1∑
v=1

h0quv(x0quv) (6.20)

. . .

f i(x) =

bi+1∑
q=1

L−1∑
u=0

ku+1∑
v=1

hiquv(xiquv) + f i−1(x) (6.21)

. . .

f R−1(x) =

bR∑
q=1

L−1∑
u=0

ku+1∑
v=1

hR−1,quv(xR−1,quv) + f R−2(x) (6.22)

The cascade can now be defined by R classifiers, one for each level. In
this process the f -functions are employed as follows:

f0(x) = f 0(x) + β0 (6.23)

. . .

fi(x) = f i(x) + βi (6.24)

. . .

fR−1(x) = f R−1(x) + βR−1. (6.25)

Obviously, the original decision function f (x) for the overall view-tuned
SVM is given by the equation (6.25), i.e. f (x) =

∑R−1
p=0 f p(x) + βR−1.
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Figure 6.3: This figure shows the image regions (turquoise overlay) that are
processed by the different classifier in view-tuned SVM cascade for the category
apple on three input images.

Further, it is visible that the learning problem has been decomposed into
R learning problems, which are themselves trainable in the view-tuned
SVM framework of the last sections.

Although I have not yet explained the sequential discriminative op-
timisation, I want to show some exemplary results of a cascaded SVM
that was trained with this technique, because it fits this section best.
Figure 6.3 shows a view-tuned SVM cascade in as a sliding window de-
tector for apples. The turquoise overlay shows what image regions are
processed by the classifiers corresponding to the different levels of the
cascade. In level 0 the entire image is processed. However, in the sub-
sequent levels, the number of processed image regions could largely be
reduced, because only patches that look somehow similar to the contour
of an apple are passed through the cascade. Practically, because the
decision function is already computed very efficiently, for the prototypi-
cal implementation “only” a speed-up factor 3− 6× has been observed.
One question that is still open, is how to train the cascaded view-tuned
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SVMs with “good” negative examples. This topic is discussed in the
next section.

6.5 Sequential Discriminative Optimisation

As stated before, learning a view-tuned SVM classifier for object de-
tection in a sliding window approach is an unbalanced learning problem.
Given an image database, there is a very large number of image patches
that can in principle be employed as negative examples for the train-
ing of a classifier. On the other hand, there is only a relatively small
and fixed number of positive examples that is available for the training.
As has been shown by other authors (e.g. [54] [195]) for training a
good classifier it is important to use “good negative examples”. Good
negatives are often considered to be negative samples that are hard to
classify, i.e. the samples are close to the decision boundary. Since it is
not initially clear what negative samples from the large pool of possible
image patches are good negative samples, bootstrapping approaches
have been proposed (e.g. [57]). Bootstrapping in this case works as
follows: Initially a model is trained using the positive samples and a ran-
dom set of negative images. Then this model is applied as to a dataset
of negative images, and samples that are falsely classified as in-class
are collected. After that, a new classifier is trained using the positive
samples and the newly collected negative examples. This sequence of
training a classifier and collecting negative samples is usually repeated
several times. The practice is also called data-mining hard negative
examples and is related to methods for working set selection (e.g. [98]
[47]).

To train a level of a view-tuned SVM cascade in this thesis, boot-
strapping is applied as well. Algorithmically, the bootstrapping approach
is formalised as follows. Let S denote the overall set of negative sam-
ples and let S1 ∪ . . . ∪ ST−1 = S denote a decomposition into T − 1

chunks of data. One chunk of data Si is used for the i-th training of
the classifier. Further, let P denote the fixed set of positive samples
and let Ni denote the set of samples, that is harvested in the iteration
i . The algorithm for sequential discriminative optimisation is stated in
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Figure 6.4: This figure shows an exemplary run of sequential discriminative
optimisation (SDO) algorithm for the first cascade level of an view-tuned
SVM and the category apple.

95



Algorithm 1 SDO Algorithm
Require: T > 0; P ; S = S1 ∪ . . . ∪ ST
1: init N0 with random negative samples from S

2: for i = 1 to T do
3: modeli ←− train(P,Ni−1)

4: if i < T then
5: Ni ←− harvest(modeli , Si)
6: Ni ←− negative_support_vectors(modeli) ∪ Ni
7: end if
8: end for

pseudo-code in algorithm (1).
The harvesting process uses a current model modeli on a chunk

Si and collects samples that are falsely classified, i.e. {x ∈ Si :

sgn(f modeli (x)) = +1}. The function negative_support_vectors(.)
returns the set of support vectors for a given model. In line 3 of algo-
rithm (1), the training is performed as stated in section 6.1, i.e. includ-
ing the 10-fold cross-validation-based optimisation of the parameter C
under the balanced true positive ratio. Because the set of positive ex-
amples is fixed and because the support vectors are kept in the working
set, a solution can only improve if new training negative samples end
up as support vectors.

Since the initial models are trained with random negative samples,
they are usually quite weak and classify a lot of samples of Si as in-class.
Therefore, it is reasonable to choose the chucks to be of increasing size,
i.e. |S1| < . . . < |ST−1|, and to apply a well trained model to the largest
amount of data, where |.| denotes the cardinality of the set. In this
thesis, I use 10, 000 negative images from the indoor scene database
[168] for sampling the negative image patches. Another 5, 000 images
from the indoor scene database are used later on for the evaluation
of the detector. The indoor scene database is employed because it
provides training and testing samples from the domain of application,
i.e. images of domestic environments like kitchens, offices, garages
etc. During learning, images are excluded from the database if they
obviously contain target objects, e.g. the indoor scenes of a shoe shop
are excluded from the dataset when harvesting negative images for the
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Figure 6.5: These plots show the average number of support vectors for the
different SVMs of the sequential discriminative optimisation after training, and
also the average balanced true positive rate (btpr) of SVMs after optimising
C via cross-validation. The averages are calculated over the categories and
over six extracted principal views.

shoe model. Beyond that, the database is quite large and contains a
rich pool of relevant patterns. The images have been scaled in order to
have approx. 640×480 = 307200 pixels. Empirically, a sequence length
of T = 5 worked out quite well. Besides, it has been found to work well
to double chunk size each time, because a simple model produces a lot
of false positives and does not need much data, while a model that is
already quite good needs much more data to find a sufficient number
of negative samples. Formally, this is captured as

|S2| = 2·|S1|, |S3| = 2·|S2| = 4·|S1|, , |S4| = 2·|S3| = 8·|S1|, (6.26)

where the initial size S1 = b10,000
15
c = 666. Figure 6.4 sketches an ex-

emplary run of the sequential discriminative optimisation for the first
cascade level of a view-tuned SVM and the category apple. As can be
seen, from a visual point of view, the harvested negative images make
sense, because the sets of negative images in later iterations contain
various patterns that are round in shape. All of those hard negative
were harvested from the indoor scene database. Beyond that, figure
6.5 shows the average number of support vectors and the average bal-
anced true positive ratio for the different SVMs in sequential discrimina-
tive optimisation. The values are averaged over six extracted principal
views and over the categories. The number of support vectors can be
observed to increase for SVMs that occur later in the sequence. This
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can be explained by the fact that the SVMs need to enhance the model
complexity, as novel hard negative images are found in the training set.
Further, it is clear that the average balanced true positive ratio (from
the optimal C parameter of the cross validation) decreases for later
SVMs in the pipeline. This may also be explained by the presence of
the very hard negatives in the training set: the positive and the negative
samples just become more difficult to separate and a trade-off between
precision and recall is optimised. However, although the btpr of a sin-
gle view-tuned SVM decreases when learned via SDO, the ensembling
of different experts increases both the precision and the recall of the
system since results from diverse experts are coupled. In a prototypical
implementation, the training time for a complete run of the sequential
discriminative optimisation for a single view-tuned SVM takes approx.
5-10 hours on a modern multi-core CPU like the Intel Core i7. An in-
teresting opportunity for future work would be the integration of the
harvesting process into the working set selection approach of [47], as
it could improve optimization and the time needed for the harvesting
procedure.

After considering the efficiency of the classifier, sequential discrim-
inative optimisation is the last element in the training of view-tuned
Support Vector Machines. The next chapter finally applies the view-
tuned SVM for detection and presents a method for ensembling the
results of several view-tuned SVMs.

6.6 Summary

As seen in this chapter, using SVMs with non-standard kernels and for
the application in the sliding-window scheme is not a plug-and-play pro-
cess. The essential questions are: How to do the processing efficiently?
And, how to train good classifiers? In this chapter I have proposed a
methodology for addressing both objectives. I have proposed an efficient
approach for feature extraction, which avoids multiple computations of
local descriptors by aligning the key points. Further, I have presented a
caching scheme that makes the evaluation of a kernel independent from
the number of support vectors and allows very efficient computation of
the decision function of a view-tuned kernel. Beyond that, I have shown
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how to optimize a unbalanced problems in a C-SVM formulation with
view-tuned kernels. Finally, I have presented a method for sequential
discriminative optimization, which allows strong classifiers to be trained
successively. The next chapter provides the methods for ensembling the
results of different view-tuned SVMs and evaluates the overall system
performance.
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Chapter 7

Detection with Ensembles of
View-tuned SVM Cascades

This chapter applies view-tuned SVMs for detecting domestic objects in
images. In doing so, it is an important aspect, how to fuse the results of
different view-tuned SVMs into a final detection result. In section 7.1,
the concept of classifier combination is introduced. After that, section
7.2 formally introduces the problem of combining different bounding box
detection results and discusses a set of different combination methods.
Further, the section 7.3 introduces the methodology used for evaluation
of the proposed detection system, and discusses results of set-ups with
different parameter settings. Thereby, view-tuned models with a differ-
ent number of principal views are compared, and also different ensemble
methods. As a baseline, the results are compared with the performance
of a state-of-the-art detection system trained on the same data.

7.1 Introduction

First of all, the output of the latest chapters is recapped. Initially,
there is a data acquisition and annotation step, where category-related
images are downloaded from the Web and class instances are annotated
with bounding boxes in the images. This results in a pool of annotated
training images for each of the selected domestic object categories.
After that, the quite complex and large training sets are decomposed
into several subsets, by employing a small number of extracted principal
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views. This associates the training images with principal views, which
results in the association of one training set with each principal view.
Subsequently, each principal view and its associated training set is used
to train a view-tuned matching kernel, that structurally adapts to the
training samples in the set and allows a tuned rough to fine matching
of the class instances. These specific kernels are then used to train
cascades of view-tuned SVMs via SDO. So, for a specific category, there
is a set of view-tuned SVM cascade classifiers, which are employable for
detection in a sliding window framework. However, a crucial question is
how to combine the results of the cascades into a coherent detection
result for an image.

Basically, after providing an input to a set of classifiers, an ensem-
ble aggregates the different outputs of the classifiers into a final result.
First of all, let us shortly look at the motivation for doing such a com-
bination of classifiers. For a comprehensive view on classifier ensembles
see e.g. [108]. There is a shared belief that, that for matters of great
importance in our life, the aggregation of answers from different experts
should allow a better and more informed decision. According to [108],
there are three types of reason for combining single classifiers. The first
reason is statistical. Assume there is a set of good classifiers with differ-
ent generalisation performance on a data set. If a single classifier should
be picked, there is the risk of picking a bad one. “Averaging” the results
of all classifiers might not provide a better performance, but mitigates
or eliminates the risk of picking an inadequate classifier. The second
reason is computational. If a training algorithm uses approximative or
heuristic components, the optimisation might lead to different local op-
tima. When results are aggregated the combined classifier can end up
closer to the optimal classifier. The third reason is representational.
The optimal classifier for a problem may lie out of the function space
that can be represented by a classifier. A combination of classifiers can
allow learning to occur in a more suitable space. For example, a com-
bination of linear classifiers can produce a non-linear decision boundary.
Here, it is considered to be easier to learn a set of simpler classifiers,
rather than to learn a single classifier of very high complexity directly.
Another reason for classifier combination is stated in [165]. In the case
of large datasets, the training of a single classifier with a large amount
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of data is commonly not feasible or scalable. A decomposition of the
training set into smaller subsets of data, followed by a fusion of sev-
eral classifiers follows the divide-and-conquer principle, that is usually
more efficient and scalable. Beyond that, there is particular evidence
in the field of object detection, showing that the combination of differ-
ent detectors is beneficial for multi-view detection and provides better
performance than single detectors (e.g. [199] [54]).

An important requirement to the single classifiers of an ensemble is
that the classifiers make different errors. If the single classifiers pro-
duce the same errors, then a fusion of the results cannot reduce the
total error. This notion is also called diversity of the classifier outputs.
Therefore, the goal during ensemble design is to produce classifiers that
are individual as possible and provide different decision boundaries [108]
[165]. This principle of diversity is also applied in other places. For
example, in safety-critical applications, different independent comput-
ers and implementations are used to compute a result and an action
is performed only when all results agree. Since the individual software
versions produce independent errors, the overall error can be largely
reduced for the combination. In this thesis, the diversity, that is neces-
sary to make the combination of individual classifiers work is ensured
through two elements.

1. Different Training Sets. The class-associated image pools are de-
composed into several different training sets, one for each principal
view. By design, the training sets are intended to contain similar
patterns and have only little overlay.

2. Different Kernels. For each subset, a view-tuned kernel is learned
that defines a specific way to compare two samples. These kernels
are used by the SVM classifiers. This adds another degree of
diversity, since the different kernels compare training examples in
their own ways.

Both aspects facilitate the diversity of the classifiers’ outputs and cre-
ates different decision boundaries. The next section explains the ensem-
bling of classification results for a detection framework in more detail.
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Figure 7.1: This figure sketches a (i) sample-based ensemble (ii) and a set-
based ensemble for combining the classifiers in a sliding-window-based object
detection approach.

7.2 Classifier Ensembles for Detection

Depending on the input and output specification of the classifiers and
the combination, different types of ensembles could be distinguished.
In the classical view, sketched in figure 7.1 (i), a single feature vector
is passed to a set of classifiers {C1, . . . , Cm}, which all produce a single
result. These results are the input of the ensemble E, which aggregates
the results into a final classification result (cf. e.g. [108]). The out-
puts of the single classifiers are either considered to be class labels or
continuous values. Therefore, methods for the fusion of labels and the
fusion of continuous values are distinguished (cf. e.g. [165]). For two
reasons, this scheme can not be applied directly for ensembling classifi-
cation results in a sliding window detection framework. First of all, the
scheme implicitly assumes that the samples are independent i.e., that
knowing the predicted class of one image region does not provide any
information for classifying another. This is obviously not true, for neigh-
boring bounding boxes in an image that are overlapping. Knowing the
predicted class of the one box could confirm or weaken the prediction of
the neighboring window. The second reason is that, technically, there
are multiple concurrent ensmbling problems: the fusion of the bounding
boxes, the fusion of the class labels and the fusion of reliability scores.

103



This is because the final result of a detection ensemble has to be a
set of pairs {(bi , ri)}, where bi represents a bounding box, ri represents
a reliability score of the prediction. Here the bounding boxes that are
elements of the result set are implicitly in-class, because windows that
are classified with non-class are not to be contained in the final result
set. The reliability score is mandatory, as it is needed for the evaluation
of the detection system (cf. section 7.3). In the following, I present
a set based ensembling scheme and a generic ensembling framework
for dealing with the two stated aspects. This lays the ground for the
coherent definition of several ensembles for detection results.

The first issue can be tackled, by considering a set-based ensembling
problem w.r.t. the entire image, as outlined in 7.1 (ii). Here, a sliding
window process on an image scale space defines a set of feature vectors
(one for each window) and the feature sets are passed to the classifiers.
Thus, the output of a classifier is a set of results. These sets are then
combined by the ensemble in order to produce a final set of classifica-
tion results. Using this scheme makes it possible to consider a merging
of boxes, e.g. when one bounding box is contained in another box. In
the classic scheme, this kind of information is not represented for the
ensembling and can only be determined in post-processing (but some
boxes may have already been rejected at that stage). Mathematically,
the set-based formulation is introduced as follows. The decision func-
tions of the view-tuned cascaded SVM from the last chapter are again
denoted as fi(x). Here, an additional superscript j is introduced in
f ji (x), which represents the index of the corresponding principal view.
For example, f 0

1 (x) is the decision function in level 0 of the cascade
that belongs to the principal view number 1. Further, let Z denote
the overall number of principal views (usually three, six or nine in this
thesis). Further, let Γ be the multi-set of all features vectors, belonging
to all windows at all scales, with a total size of |Γ|. When processing
the set of all features vectors Γ with the cascades, the sets of results
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can be written for each view-tuned cascade as follows.

f 0
0 (x), . . . , f 0

R−1(x), x ∈ Γ 7−→ G0 =
{

(b0
i , q

0
i , r

0
i )
}
i=1,...,|Γ|

...

f Z−1
0 (x), . . . , f Z−1

R−1 (x), x ∈ Γ 7−→ GZ−1 =
{

(bZ−1
i , qZ−1

i , rZ−1
i )

}
i=1,...,|Γ|
(7.1)

Here, bji ∈ N4 represents the bounding box coordinates, qji ∈ {−1,+1}
represents the predicted class label and r ji ∈ R is a reliability value,
given by the distance of the sample to the decision boundary. As an
example, the set G1 is the set of results when processing the set of all
features Γ with the view-tuned SVM cascade of the principal view 1.
Using the vector notation ~qi = [q0

i , . . . , q
Z−1
i ]T and ~ri = [r 0

i , . . . , r
Z−1
i ]T

these result sets can summarised across the different cascades, and be
written as the joined set

G
′

=
{

(bi , ~qi , ~ri)
}
i=1...,|Γ|

. (7.2)

This set does still contain all bounding boxes, even those in which all
classifier cascades agreed that the corresponding image patch is non-
class. The set G

′
is now condensed to a set that only contains bounding

boxes that are predicted to be in-class by at least one classifier cascade,
i.e.:

G =

{
s = (bi , ~qi , ~ri) : s ∈ G ′ ∧

Z−1∑
j=0

qji > −Z

}
. (7.3)

A classifier ensemble can now be written as a function E that transforms
a set of predictions G into a final set D of pairs, i.e.:

E(G) 7−→ D =
{

(b1, r1), . . . , (b|D|, r|D|)
}
. (7.4)

Here, again bi ∈ N4 represents the bounding box coordinates and ri ∈ R
represents a reliability score for the prediction. As was pointed out be-
fore, the reliability value is mandatory for each bounding box, because it
is needed for the evaluation as part of the precision-recall curve compu-
tation. For Support Vector Machines, the reliability can be interpreted
as being proportional to the distance r ji ∈ R of a sample to the decision
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(i) no intersection (ii) too small intersection

(iii) sufficent intersection (iv) contained

Figure 7.2: This figure sketches the results of the REDUCE method on pairs
of bounding boxes. If two boxes are (i) not overlapping or (ii) have too lit-
tle overlay, the tuple (bi , ~qi ,~r i) remains untouched. Only if (iii) two boxes
have a sufficient intersection or (iv) one box is contained within the other the
respective tuples become merged.

hyperplane, given by wTw . However, for different classifiers with dif-
ferent kernels the distance values may be in different ranges. Therefore
it is better to consider a transformed distance value r ji ∈ [0, 1]. The
values r ji can then be interpreted as the “level of support” from the clas-
sifier j to the class qji of the sample i . The new support scores can be
computed with the softmax model [43], i.e.:

r ji =
exp(r ji )∑Z−1
k=0 exp(r ki )

. (7.5)

The vector of normalised reliability scores is written as~r i = [r 0
i , . . . , r

Z−1
i ]T .

The second issue is that there are multiple ensembling problems,
when fusing a set G with an ensemble. Hence, the ensembling can be
considered as a two step process:

1. Reduction. In the reduction step, overlapping bounding boxes are
merged. At the same time, the corresponding class labels and the
reliability scores need to be merged. Formally, the reduction can
be written as a function that transforms the set of results G into
another set of results Gr :

REDUCE(G; (B,Q,R)) 7−→ Gr =
{

(bi , ~qi ,~r i)
}
i=1...,|Gr |

. (7.6)
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The second parameter of the method is a tuple of functions. The
function B : N4×N4×{−1, 1}Z×{−1, 1}Z× [0, 1]Z× [0, 1]Z −→
N4 implements the merging of two bounding boxes b1 and b2 into
a single box. The function Q : {−1, 1}Z × {−1, 1}Z × [0, 1]Z ×
[0, 1]Z −→ {−1, 1}Z implements the merging of two class label
vectors ~q1 and ~q2 into a single class label vector. Further, the
function R : [0, 1]Z × [0, 1]Z × {−1, 1}Z × {−1, 1}Z −→ [0, 1]Z

implements a merging of two reliability vectors ~r 1 and ~r 2 into
one. The basic results of applying the REDUCE method to pairs of
bounding boxes is sketched in figure 7.2. A triple (bi , ~qi ,~r i) boxes
is not altered, if the bounding box does not intersect any other
box, or if the intersection is too small. Two boxes bi and bj (and
their corresponding ~qi , ~qj and ~r i , ~r j vectors) are merged only if the
boxes have a have a sufficient overlap or one box is contained in the
other box. The pseudo code of the REDUCE method can be found
in algorithm 2 in the appendix. Technically, the area of overlap
threshold, which determines whether two boxes are considered as
overlapping, is a parameter as well. However, in this thesis the
threshold has been statically set as to the same value as in [46]
(see algorithm 3 in the appendix).

2. Fusion. As the name suggests, this step fuses the elements of the
reduced set Gr into a final set of detection results. In effect, the
fusion operation acts like a filter, because weak hypothesis should
be rejected by the ensemble and not be part of the final result set.
The fusion can be formulated as follows:

FUSE(Gr ;F ) 7−→ Gf =
{

(bi , r i)
}
i=1...,|Gf |

. (7.7)

The second parameter of the method is a function F : N4 ×
{−1, 1}Z× [0, 1]Z −→ N4× [0, 1], that fuses the class label vector
and the reliability vector into a single reliability score. By conven-
tion, boxes with a fused reliability score equal to 0 are not added
to the final result set Gf . The pseudo-code for the FUSE function
can be found in algorithm 4 in the appendix.

By using the presented notation, a general ensemble for sets of detec-
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minimumintersection

(i) Minimum-Intersection-Majority (MIM) Ensemble:

(ii) Maximum-Union-Selection (MUS) Ensemble:

union maximum maximum select maximum

(iii) Weighted-Average-Majority (WAM) Ensemble:

weighted
average weighted maximum average

weighted majority

minimum majority

Figure 7.3: This figure shows three different ensembles of detection results
(details in the text).

tion results can be written as

E(G; (B,Q,R, F )) 7−→ D = FUSE(REDUCE(G; (B,Q,R));F ). (7.8)

The benefit here is that different approaches for fusing the detection re-
sults can easily be defined by a tuple of functions (B,Q,R, F ). Further,
for implementing the single functions in the tuple, common ensembling
approaches for fusion of labels and fusion of continuous values can be re-
alised. In the following, I introduce three different ensembling methods,
which are compared for their overall performance later on.
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The Minimum-Intersection-Majority (MIM) Ensemble

The MIM-Ensemble is associated with the function tuple (BMIM, QMIM, RMIM, FMIM).
These functions implement a “cautious fusion” and are seen in figure
7.3 (i). First, if the intersection of two bounding boxes is big enough,
BMIM computes the new bounding box as the intersection of both boxes.
That means that the function trusts only the image region that both
boxes have in common. The QMIM functions computes a new vector of
labels component-wise via the minimum operation. This means that
the agreed label is chosen only if both labels agree, and in case of any
disagreement, the negative class is chosen. The behavior of an R func-
tion has to play hand in with the results of a Q function, to produce
semantically correct results. Here, RMIM is realised via a component-wise
minimum, but the minimum is only taken for the components where the
corresponding labels in ~q1 and ~q2 agree. Since QMIM maps non-agreeing
components to the minimum −1, the reliability score in the resulting
component is set to the corresponding reliability value of the minimum
(.3 and .3 in the example). Finally, the FMIM is realised with a majority
vote. That means the box is classified as non-class (by setting the relia-
bility to 0), if more than 50%+1 of the predicted class labels in ~qnew are
−1. If the majority of labels is positive, the function returns (~qnew, r new),
where r new is the minimum of the reliabilities in ~r new that belong to the
positive components of ~qnew. In the result, the MIM ensemble behaves
rather pessimistic and tends to classify bounding boxes as in-class only
if the ensemble shares a unified prediction.

The Maximum-Union-Selection (MUS) Ensemble

The MUS ensemble can be considered the opposite of the MIM en-
semble. It implements an optimistic behaviour and classifies bounding
boxes as in-class, even if they have little unified support. The ensemble
is represented by the function tuple (BMUS, QMUS, RMUS, FMUS). The func-
tions are seen in figure 7.3 (ii). The function BMUS merges two bounding
boxes airly by using their union. The merging of two label vectors ~q1 and
~q2 is implemented with a component-wise maximum operation. That
means, if both labels agree, the result component is set to that label.
If the labels disagree, it is set to in-class. The RMUS is implemented as
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a maximum function, if both labels agree. If the labels do not agree,
the reliability score of the component is set to those of the respective
positive label (.2 and .2 in the example). Finally, FMUS is implemented
as a classifier selection mechanism and selects the class with maximal
reliability. So the result is set to (bnew, 0) if a negative class has the
highest reliability value and to (bnew, r new) otherwise, where r new is the
maximal positive reliability value. In this context, even if a positive class
has only one vote, it can be picked if it has the highest reliability score.

The Weighted-Average-Majority (WAM) Ensemble

The WAM ensemble implements a behaviour between the MIM and the
MUS ensemble. The combination is represented by means of a function
tuple (BWAM, QWAM, RWAM, FWAM), and the functions are shown in 7.3 (iii).
The BWAM function is implemented as a weighted average, where the
weight of each box is assigned the average of the reliabilities belonging
to the positive labels. This kind of merging reduces the risk of mov-
ing parts of the box from reliable to unreliable image regions. Further,
the function QWAM is realised as component-wise weighted maximum. In
each component, the functions assigns the label, which has the highest
corresponding reliability score. The function RWAM implements an aver-
aging of the reliability values, if the two corresponding labels agree. If
the two labels don’t agree, the component is set to the maximum of
the two reliability values (.3 and .3 in the example). Finally, the FWAM
function is computed as follows. If the sum of the reliability values
belonging to the negative components is bigger than the sum of the
reliability values belonging to the positive components, then the result
is (bnew, 0). Otherwise, the result is (bnew, r new), where r new is the av-
erage of the reliability scores of the positive components. In the next
section the three different detection ensembles are compared, as used
with view-tuned SVMs in a sliding window approach.

7.3 Results & Discussion

This section evaluates the proposed system for the detection of domes-
tic objects, i.e. ensembles of view-tuned SVM cascades. Ensembles
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with a different number of components are compared. Further, the
performance of several combination methods is compared. A state-
of-the-art detection system is employed to produce an experimental
baseline.

Data

For the training and testing of the ensembles of view-tuned SVM cas-
cades, the following positive and negative samples are employed.

• The positive training samples for a category are given by the an-
notated objects in the Web images. The data is processed into
feature vectors and used for learning view-tuned SVM cascades as
stated in the respective sections.

• The negative training samples are harvested in the sequential dis-
criminative optimisation for a view-tuned SVM cascade from a set
of 10, 000 images of the indoor scene database [168], as discussed
before.

• The positive testing samples are also given from the annotation
phase. A special @HOME tag was used to label all images, which
show class instances in a domestic environment (like a toaster on
a kitchen table). All @HOME images are employed as positive test
images.

• As negative testing samples, a set of 5, 000 images from the indoor
scene database is used [168]. The set is distinct from the image
set used for training, and again the images are scaled to approx.
640× 480 = 307, 200 pixels. This image set is used to determine
to what extent a detection system confuses background patterns
with the patterns of objects.

Using the @HOME images as positive test samples and the indoor scene
images as negative test samples is important, because both aims at the
same thing: The applicability and generalisation ability of the proposed
detection system should be assessed as realistic as possible. Therefore,
the testing data should explicitly come from the domain of application,
i.e. domestic home environments or more general, common indoor
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.44    0
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Figure 7.4: This figure presents a sketch of the evaluation scheme.

places. The indoor scene database is very large (67 categories; 15,620
images), and contains virtually every indoor scene category a domestic
service robot may appear in, in the near future. Therefore, the indoor
scene database provides a rich pool of patterns that can be used for
training, but also for testing false positives in realistic environments.

Methodology

For the evaluation of a detection system, this thesis employs the same
methodology as used in the evaluation of the well-established PASCAL
detection challenge [46]. Each domestic object in the test images is
annotated with a ground truth bounding box Bgt . Given a predicted
bounding box Bp, the area of overlap ao is computed as follows:

ao =
area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

. (7.9)

If the area of overlap ao is greater than .5, the predicted bounding
box is counted as a true positive. Since each ground truth box can
be counted only once as a true positive, in the case of multiple boxes
overlapping with the ground truth box, only one of them is counted
as a true positive and the other boxes are counted as false positives.
For each predicted box, this results in a tuple (ri , vi), where ri ∈ R is
a reliability score belonging to the bounding box and vi ∈ {0, 1} is 1,
if the box is counted as a true positive and 0 otherwise. The basic
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scheme is sketched in figure 7.4. The list of pairs is sorted according
to the reliability values. From the sorted list of length Y, a vector of
sorted reliability scores ~r and a binary vector ~v of the corresponding
vi ’s can be defined. These sorted vectors are now used to compute the
precision-recall curve as follows. First, lets recap the general definition
of precision and recall. The precision score is defined as prec = tp

tp+f p

and the recall score is obtained through the formula rec = tp
tp+f n

, where
tp is the number of true positives, f p is the number of false positives
and f n is the number of false negatives. Here, the precision and recall
values for the i-th component of the vector is computed as:

preci =
tpi

tpi + f pi
(7.10)

reci =
tpi
X . (7.11)

Here, i > 0 and tpi =
∑i−1

j=0 vj is the number of true positives until com-
ponent i . Further, f pi =

∑i−1
j=0 ¬(vj) is the number of false positives

until component i , where ¬(.) denotes the logical negation. Further X
denotes the total number of ground truth bounding boxes. Obviously,
if for a ground truth bounding box there is no predicted bounding box
with ao > .5, then this is counted as a false negative. So, the precision
can be interpreted as a measure of exactness, where the recall can be
seen as a measure of completeness. Then, the precision-recall curve is
given by computing the precision-recall values for each predicted com-
ponent, i.e. by the graph {(reci , preci) : i = 1, . . . ,Y}. However, to
get a principal quantitative measure of the performance, the average
precision (AP) is then employed, as in the PASCAL detection challenge
[46]. Given a precision-recall curve with monotonically decreasing pre-
cision, the AP is computed by numerical integration of the area under
the curve. The AP value boils the shape of a single precision-recall
curve down into a comparable quantity between 0 and 1. This value is
employed when comparing two detection systems for a single category.
For a set of categories, an averaged AP (APP) provides the average
score over different categories and makes detection systems comparable
globally.
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#principal views
three six nine

MIM ensemble .381 .362 .110
MUS ensemble .354 .303 .223
WAM ensemble .409 .477 .134

Table 7.1: This table shows the overall system performance of cascaded view-
tuned SVM ensembles – measured by the AAP score – for a different number
of principal views and with different ensembling procedures. The best score is
written in bold, the second best is written in italics.

Baseline

As mentioned in chapter 2, the Deformable Part Model (DPM) [54]
has been among the best performing object detection systems at the
PASCAL object detection challenge [44] [46]. Beyond that, is has also
been successfully applied for object detection by the mobile robot Curi-
ous George [135], which has been among the top performing systems of
the Semantic Robot Vision Challenge [197]. Further, the Deformable
Part Model has a publically available implementation, and as [46] states,
the DPM detector “would form a reasonable state-of-the-art baseline
for future challenges”. For all of this reasons, the DPM is employed
as baseline detection system for the evaluation in this thesis. Specif-
ically, the Deformable Part Model Release 4 [58] is employed with a
total number of six components (there are three models, which are
mirrored along the x-direction and which results in a total number of
six components). Comparing the proposed object detection system of
this thesis with DPM also provides a relation to various other detection
systems, because the DPM has been compared with them. For a vi-
sualisation of the learned DPMs, please see figures B.2, B.3, B.4 and
B.5 in the appendix. As visible in the figures – and also indicated by
the AP scores later on – the DPM learns very reasonable detectors out
of the box, when used with the large datasets described in this thesis.
Note that the cascaded version of the DPMs were published in 2010
so, roughly stated, their development was carried at the same time as
the development of the method in this thesis.
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apple bottle bowl cup hand- laptop light potted shoe toaster AAP
bag switch plant

DPM .451 .589 .513 .638 .686 .561 .32 .397 .274 .391 .482
WA_6 .346 .569 .535 .709 .657 .556 .235 .451 .351 .367 .478

Table 7.2: This table compares the six-component DPM model with the best-
performing cascaded view-tuned SVM ensemble. The average precision (AP)
and is shown for each category, as well as the averaged AP (APP) over all
categories.

Evaluation

The evaluation compares ensembles of view-tuned SVM cascades with
three, six and nine extracted principal views. In addition, for each of
those view-tuned cascades, the three different ensembling strategies of
section 7.2 are compared. The overall system performance is compared
by means of the AAP score. This means that if the APP score of
one detection system is higher than the score of another system, it
implements a better detector in total. The APP results of the detec-
tors can be found in figure 7.1. The best performing set-up is given
by a model with six principal views and with the WAM ensemble. The
second best score is achieved by the model with three principal views
and the WAM-ensemble. It can be observed that the performance for
systems with nine principal views are considerably lower for all ensem-
bling methods, compared with the residual scores. One explanation for
MIM_9 and WAM_9 is that the majority and weighted majority vot-
ing does not work properly for larger ensembles, because as it turns
out, the majority of classifiers predict a non-class label most of the
time. Only in a few cases do most experts seem to agree when pre-
dicting an in-class label. Further, for the MUS_9 model (which selects
the class with the maximum reliability score) when more classifiers are
present the maximum can more often be found for a classifier that
predicts non-class. In contrast to that, the (weighted) majority vote
does work, when the number of principal views is lower, i.e. equal to
six or three. For three and six principal views, the WAM ensemble
works best. An explanation for this is given by the following observa-
tion. In practice, the MIM ensemble reduces the recall of the system
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Figure 7.5: This figure shows the precision-recall curves of the DPM baseline
and the best performing cascaded view-tuned SVM ensemble (WA_6) for each
domestic object category.

by rejecting the boxes, which have inadequate support. This reduces
the false-positive-rate (which is good), but at the same this process
reduces the precision of the system. The MUS ensemble behaves the
other way round in practice. It increases the recall of the system by
classifying in-class more often than the WAM-ensemble. However, this
also increases the false-positive rate of the system, what then reduces
the precision. Thus, resulting from the experiments, the WAM en-
semble shows the best trade-off between precision and recall for cas-
caded view-tuned SVM ensembles. Note, that although the table looks
quite “inconspicuous”, it took a long time to be computed, since over
3·3·3·5·10+6·3·3·5·10+9·3·3·5·10 = 8100 classifiers need to be opti-
mised via 10-fold cross-validation. Above, a single summand is given by
#v iews ·#ensembles ·#cascades ·#SDO_seequences ·#classes.

Table 7.2 shows the AP score of each category for the optimal
cascaded view-tuned SVM ensemble (WAM_6). Also the scores of the
DPM baseline models are stated. As can be seen, the overall system
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Figure 7.6: Example results of apple and bottle detections (green=̂true
positive; red=̂false positive; yellow=̂false negative).
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Figure 7.7: Example results of bowl and cup detections (green=̂true positive;
red=̂false positive; yellow=̂false negative).
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Figure 7.8: Example results of handbag and laptop detections (green=̂true
positive; red=̂false positive; yellow=̂false negative).

119



Figure 7.9: Example results of light switch and potted plant detections
(green=̂true positive; red=̂false positive; yellow=̂false negative).
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Figure 7.10: Example results of shoe and toaster detections (green=̂true
positive; red=̂false positive; yellow=̂false negative).
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performance – measured by the average AP (AAP) – of the optimal
WAM_6 model is comparable to those of the DPMs. This result shows
that cascaded view-tuned SVM ensembles can achieve state-of-the-art
detection performance. Looking at the scores for the different classes,
it is clear that the DPM show the better performance for apple, bottle,
handbag, laptop light switch and toaster. The WAM_6 model performs
better for the categories bowl, cup, potted plant and shoe. Roughly
speaking, it seems to be the case that the WAM_6 model works better
for classes in which instances are cluttered or texture-rich (e.g. potted
plant or shoe). On the other hand, the DPM seems to work better for
classes with a well constrained edge-structure (e.g. apple or bottle).
The categories that are most difficult to detect are light switches and
shoes. One reason that light switches fall into this category might
be that light switches are usually just white and do not provide may
distinctive features, when viewed from a certain distance. Shoes may
be difficult to detect because they can appear in quite unconstrained
poses (e.g. when thrown on the floor), and the category has a huge in-
class variability as well. The best detection performance can be found
for the classes cup and handbag.

In figure 7.5, the precision-recall curves are provided for the DPM
and WAM_6 model, for each of the domestic object categories. One
interesting aspect, that can be observed for both models is that preci-
sion is usually quite high for the point with the maximal recall. In the
PASCAL challenge [46], for some models precision drops significantly,
when the recall increases. I suspect that this is the effect from using the
large positive and in particular very large negative training sets during
learning, because the system is forced to optimise the recall and preci-
sion at the same. This seems to lead to more cautious detectors, as
opposed to detectors trained on smaller datasets. A similar effect can
usually be achieved by increasing the detection threshold of the system
(e.g. the confidence must be > .8), but it is obviously a good property
of both detection systems that they optimise this objective implicitly.
As expected from the results in table 7.2, the most different precision-
recall curves can be found for apple, cup, shoe, potted plant and light
switch. For the DPM, the lowest precision value at the highest recall
value can be found for apple, cup, potted plant, shoe and light switch.
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However, the precision values are always ≥ .6. For the WAM_6 model,
the lowest precision values at the highest recall can be observed for
apple, bowl, light switch and shoe. Also here, the precision values are
always ≥ .6.

Examples of true positive, false positive and false negative detec-
tion results of the WAM_6 model for all categories are shown in the
figure 7.6 (apple and bottle), 7.7 (bowl and cup), 7.8 (handbag and
laptop), 7.9 (light switch and potted plant) and in figure 7.10 (shoe
and toaster). The true positive detection results illustrate that the de-
tection of novel object instances is possible in novel environments. The
trained detectors are able to detect object instances, even at different
scales, despite different appearances, poses, lighting conditions. On the
one hand, for some false negatives it is not really clear, why the detec-
tor has not localised them, because they look quite similar to some of
the true positive samples. On the other hand, there are also false neg-
atives that obviously seem harder to detect, because of bad lighting,
occlusion or small size. The false positives give an impression of what
is learned. A rule of thumb is that a reasonable detector should pro-
duce false negatives that make sense visually. That means, the errors
should occur on patterns that are similar to those of the samples. In
the case of the cascaded view-tuned SVM ensembles, most of the neg-
atives make sense that way. One can imagine that the miss-classified
pattern provided feature vectors that are similar to the feature vectors
of some samples. To a certain extent the false positives shown in the
figures indicate where the limit of purely local detection methods might
be. A rubbish bin have a shape just like that of a cup. However, to be
able to distinguish between the two, additional features or information
are needed. An interesting next step of future work is to integrate add-
itional cues, e.g. of the object size and of the visual context, to be able
to significantly enhance the results.

Remarks on the Systems Parameters and Runtime

Of course, the overall system has various parameters. However, only
very few parameters are critical for the performance of the system. The
choice of the concrete parameters is stated in the respective sections.
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Often it was possible to use default parameters, because similar perfor-
mances can be achieved with a range of different parameter settings.
As seen in this section, an important parameter is the error variable
m of the vector quantisation method in the principal view extraction,
because it directly influences the number of extracted principal views.
When comparing results for different numbers of principal views, the
best and second best performance is found for six and three principal
views respectivly. So, for new categories I suppose the usage of three
or six principal views will produces reasonable results. Beyond that, as
seen in this chapter, the choice of the ensembling method can be seen
as an important parameter for the detetion with view-tuned SVM cas-
cades. In this thesis, three different ensembling methods for the fusion
of detection results have been compared, and the best performance has
been achieved with the WAM ensemble. Thus, this ensembling scheme
seems to be the best choice for novel categories. However, the study of
other ensembling mehods is also an interesting topic for future research.
The parameters for the sliding window search in this chapter are set as
follows. The offset in x- and y-direction is set as .2 of the bounding
box width and height respectivly, i.e. xs = .2 = ys. The scale space
parameters are choosen heuristically and the following set of scales is
employed: σ = {.25, .3, .35, .45, .6, .8, 1, .1.2, 1.4, 1.6, 2}. Also here,
an interesting question for future research is how to choose the sliding
window parameters such that the computation time is minimised, while
retaining a reasonable performance at the same time.

The implementation of the view-tuned SVM cascade ensembles, as
created as part of this thesis, is a prototype, that has been devloped
as part of ongoing research. Although efficient algorithmic schemes are
implemented (e.g. the efficient computation of the decision function),
the code is not optimised by any means. This is because code optimisa-
tion is quite time consuming, and it should be done only after finishing
the design of an algorithm (not as part of ongoing studies). As an ex-
ample, the parallelisation of the prototype is only implemented sparsely
at the process level. Therefore, all statements with respect to the com-
putation time and the gained speed-up factors need to be considered
with caution. Depending on the content of the image, the detection on
a 640× 480 image with a single view-tuned SVM cascade takes approx
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.5 − 1s on a single Intel Core i7 processor with 3.2 GHz. However, by
employing multiple threads and an optimised implementation, I think
it would be possible to achieve a (semi-)real-time performance. The
next chapter concludes this thesis and provides an outlook on future
reasearch.
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Chapter 8

Final Conclusion and Outlook

This thesis deals with the problem of localizing domestic objects in im-
ages. The detection of domestic objects is motivated by the fact that
various complex tasks that service robots may be engineered to perform
in the future, require category detection abilities. For instance, domes-
tic object detection allows a robot to perform category-level commands,
to infer knowledge about novel objects, or to initiate interaction with
humans in order to clarify things, in selective situations. Thus, the
detection of domestic objects in images is a cornerstone of future re-
search in the field of service robotics. This thesis contributes a novel
system for the detection of domestic objects in images, which achieves
state-of-the-art detection performance. The system demonstrates suc-
cessful object detections, despite different scales, appearances, poses
and lighting conditions. There are several aspects, by which the in-
variance of the model is implemented. First, the scale invariance is
given by using the sliding-window approach at different scales of an in-
put image. Second, there are invariances w.r.t. little occlusions, little
pose changes and deformations, that are put forth by the coarse-to-
fine matching of feature sets in the view-tuned kernels. For a single
single SVM, the invariance is produced by storing support patterns of
training examples with different appearances, poses and lighting condi-
tions. Finally, the esembling of several view-tuned SVM experts adds
invariance w.r.t. to different view-points of the objects. The system
is trained on a newly created database of annotated domestic objects,
which uses images from the Web. A distinct feature of this work is
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that the training and testing of the detection system concentrates ex-
clusively on domestic objects. For example, a special @HOME tag is used
for collecting tailored test image sets that show object instances in real
home environments. Besides, an unsupervised method for decompos-
ing complex training sets according to principal views is proposed. In
addition, a method for learning specific view-tuned matching kernels is
presented. Also, the application of the view-tuned kernels, in a C-SVM
formulation and a sliding-window-based cascade is detailed. Finally,
the ensembling of the detection results of different view-tuned SVM
cascades is presented. Major contributions are made by the proposed
system in the principal view extraction method and also the learning
of view-tuned kernels, which generalises the pyramid matching of fea-
tures sets. Other practices, like cascades, efficient computation of the
decision function, and bootstrapping are then specifically adapted to
be applicable with these kernels. Further, an efficient scheme for the
extraction of local features on a grid is presented. In particular, the
efficient exact computation of the decision function is a distinct feature
of the system I propose. In contrast to other approaches, the efficient
computation scheme guarantees the scalability of the method, even in
the case of a very large number of support patterns. By allowing a
large number of support patterns to be stored in the model, the learner
offers an enormous capacity in practice (in other methods an increased
capacity often comes along with an increased computational complex-
ity). Scalability and efficiency are important properties, in particular in
context of mobile robots with limited resources. Another feature of the
approach outlined in this thesis is, that it is independent of the choice
of the local visual features. That is to say, it allows to use other lo-
cal feature descriptors within the same view-tuned kernel framework,
which is not directly possible with other models like the DPMs. For
instance, color features are interesting for domestic object detection,
as many false positives (e.g. for apple or potted plant) should easily be
avoidable by considering color information.

There are many topics in this thesis that are interesting for further
work – some of them are mentioned in the thesis. Here, I want to state
some directions, which I consider to be particularly important. First
of all, I think there should be a systematic effort to create datasets
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with a large number of domestic object categories for training and for
testing domestic of object detection systems within the context of ser-
vice robotics. In particular, the images used for testing should come
from the domain of application (e.g. photographs in indoor environ-
ments that are taken from a certain distance), to be able to assess the
generalisation performance of different category detection systems. As
shown in this thesis, even by using Web images, reasonable test data
for domestic objects is hard to get, so an interesting question is: How
can this data acquisition and annotation process be crowdsourced? Be-
yond that, I think it is important to incorporate additional cues into the
object detection system. On the one hand, the false positives detection
results presented in this thesis made sense because they often occurred
on patterns that are similar to in-class patterns. On the other hand,
for humans it is very easy to see that these patterns are false posi-
tives, because they incorporate knowledge about the object size, about
the scene and so forth. In order to significantly improve the result of
state-of-the-art detectors, the notion of purely local detectors should be
discarded and the incorporation of additional cues for recognition should
be considered. There is already some promising work being done in this
direction. As a last aspect, it may be important for future systems to
consider category learning with a human in the loop. The proposed
system has interesting interaction possibilities at several stages. For
instance, the results of the unsupervised principal view extraction could
be used for interaction with a human tutor. Also the sequential discrim-
inative optimisation in this thesis shows that the learning of powerful
detectors can be considered as a sequential learning problem. By using
an active learning loop, where the learner asks a human to label difficult
examples, the system should be able to learn more quickly and be able
to adapt to future unknowns.
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Appendix A

A Limited Branching Tree
Growing Neural Gas

This chapter presents the limited branching tree Growing Neural Gas
(lbTreeGNG). Main parts of this chapter have already been published
in [104] and [207]. At first, section A.1 shortly introduces the problem
and sketches the basic idea of the algorithm. Subsequently, A.2 presents
the the proposed approach in more detail. Finally, section A.3 provides
and discusses the results of the algorithm an a variety of synthetic and
real-world data sets.

A.1 Introduction

The Growing Neural Gas [73] (GNG) is a method for unsupervised on-
line one-shot vector quantization of samples from an unknown distri-
bution. By employing a Hebbian learning scheme, the GNG is able to
learn codebooks while preserving the topological structure of the input
space. Thus, the approach seems attractive for unsupervised learning
problems in the field of computer vision, e.g. the learning of visual
vocabularies. However, w.r.t. the large quantity of data that usually
needs to be processed in vision tasks, two drawbacks of the GNG can be
identified. First, the GNG keeps growing as long as new input samples
are presented, which can lead to over-fitting. Second, the mapping of
an input vector to a reference vector is quite expensive and requires
an iteration to the entire codebook. Here, an hierarchical extension of
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Figure A.1: (First Row): In this example, the input vectors for the lb-
TreeGNG are uniformly sampled from the gray regions. After training with
20,000 samples, the first three levels of the lbTreeGNG are shown subse-
quently. Then the overall lbTreeGNG is presented, followed by the hierarchical
Voronoi-Tessellation induced by the learned tree. (Second Row): The second
row shows the growth process of the lbTreeGNG during online learning. The
corresponding iterations (from left to right) are 50, 125, 175, 250, 525, 750,
1975 and 3400. In the figure, colors of the GNGs are random. Further, points
stand for nodes and lines between points stand for topological edges.

the GNG is proposed, called limited branching tree GNG (lbTreeGNG).
The lbTreeGNG method allows to map input vectors to their reference
vectors in sub-linear time and avoids over-fitting, while locally keeping
track of the topology of the input space. Further, the lbTreeGNG con-
tains the common GNG as a special case, and it keeps all of the normal
GNG parameters. Within this chapter, it is shown that the algorithm
works well on a variety of synthetic and real-world datasets, and even
of non-stationary data. In doing so, input samples are mathematically
represented by vectors ξ in a high dimensional feature space F = Rd .
Any feature ξ that is processed is sampled from an unknown distribution
P (ξ), i.e. the overall distribution of all possible features in F .

The Basic Idea

To get a first intuition of the outcome of the lbTreeGNG algorithm,
consider the example in figure A.1. The first row shows a lbTreeGNG
after processing 20,000 input signals uniformly sampled from the gray
regions. Snapshots from the process of growth can be seen in the
second row. Given a maximum branching factor b = 3, the method
starts with a single GNG in the first level of the tree. This GNG grows
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until it has b nodes. Subsequently, each of these nodes initializes a
new local GNG in it’s Voronoi-Cell. Then the GNGs in the second
level grow until they reach a size of b. The initialization and growing
of GNGs in successive levels continue until a predefined node error m
for the approximation is reached. Hence, GNGs in the third level are
only created at positions that are not approximated well enough by the
second level. The last two images in the first row show the overall
lbTreeGNG and the hierarchical Voronoi-Tessellation induced by the
codeword tree. In processing, the sampled input vectors are passed from
the root GNG through the tree down to it’s nearest leaf node. Thereby,
an input vector induces a major adaption in it’s corresponding leaf GNG
and also propagates slight adaptions along the path up to the root
GNG. As visible, the hierarchical space tessellation directly supports an
efficient mapping from input vectors to the codewords. In this simple
example with 21 leaf nodes, the number of distance computations is
O(b · depth) = 9 in worst-case.

A.2 Approach

In this chapter, the details of the lbTreeGNG are provided. In doing
so, a notation similar to the the original one of [73] is used. For a
node x , the associated reference vector is denoted with wx . Note,
that b and m are the newly introduced parameters. The parameter b
limits the maximal branching factor of the learned codeword tree and
thus controls the complexity of the method. The parameter m is the
error threshold that effects the quantization error and guards the learner
against over-fitting. The original GNG parameters remain untouched
and could be used with the following default values as proposed in [73]:
εb = .2, εn = .006, amax = 50, α = .5, d = .995 and λ = 100. All
parameters in the method are used globally for all GNGs and do not
change over time.

Main Loop

The lbTreeGNG is initialized with a single GNG. In the main loop of the
algorithm, an input ξ is generated according to P (ξ) and it is passed
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from the root level GNG l = 0 to a leaf GNG on level l = L following
the nearest reference vectors. For each level l = 0, · · · , L it is kept
track of the winner nodes s1,l and second winner nodes s2,L. Thereafter,
adaptions are done on the winning leaf GNG of s1,L and the intermediate
GNGs of s1,l with l = 0, . . . , L − 1. This strategy of passing vectors
down a hierarchical tree, yields to very efficient (sub-linear) runtime
complexity and is inspired from related work in computer vision [148]
[31].

Adapt Winning Leaf GNG

Using s1,L and s2,L the algorithm does the same steps as the GNG algo-
rithm [73], i.e. increment the edge age, increase the node error, move
s1,L and s2,L towards the input, check the edge connectivity and the
edge age. Then, every λ iteration some some extended processing is
performed. First, to continue growth only in poorly approximated re-
gions, a check is added whether the maximum node error of the leaf
GNG is bigger than the parameter m. Only if this condition is true, the
method continues to refine the current codeword tree. The strategy to
stop growing, is inspired by the work of [131]. Going on in the process,
a point is reached where one wants to create a new node and where
the following three basic situations are discriminated. Note, that the
maximal branching factor of the resulting codeword tree is controlled
to keep track of the worst-case runtime. Again, this is inspired from
works using hierarchical k-means with a fixed branching factor in com-
puter vision [148]. The explicit restriction of the branching factor to
impose the worst-case complexity is also a major feature of the pre-
sented method in comparison to other hierarchical GCS [21] [91] and
GNG [42] approaches. In the following, let q denote the node with the
highest error in the GNG of s1,L and f the node with the second highest
error f .

Create a New Node

If the GNG of s1,L has less than b nodes, a new node r is created in
the common way [73] halfway between the node with the highest error
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Figure A.2: Different cases in the node creation process. The variable q
denotes the node with the highest error in a GNG, f is the neighbor node of
q with the highest error and g the neighbor with the second highest error (if
existing). Further, a and b are the initial nodes of a new child GNG that is
inserted in the Voronoi-Cell of q. For any node x , wx denotes the corresponding
reference vector. (a) shows how a new node r is inserted in common GNGs.
(b) and (c) visualize the two cases in which initial nodes a and b are created
on q’s topological edges within the Voronoi-Cell of q.

q and the node with the second highest error f . This case is visualized
in figure A.2 (a). The corresponding equation is:

wr = .5(wq + wf ). (A.1)

Create a New GNG

If the branching factor of the GNG is equal to the parameter b, it
becomes necessary to insert a new child GNG for the node with the
highest error. For a new GNG, two initial nodes must be created. Like
the creation of new nodes in common GNGs [73], this follows the prin-
ciple of accumulated error minimization and places these initial nodes
on the topological edges of q inside the Voronoi-Cell of q. Thereby, q
has either one neighbor f or more neighbors. Let g 6= f denote the
neighbor node of q with the second highest error, if it is existing. The
two different cases that arise can be seen in figure A.2 (b) and (c). The
corresponding equations are:

wa = .875wq + .125wf wb = .625wq + .375wf (A.2)

wa = .750wq + .250wf wb = .750wq + .250wg. (A.3)

Adapt Intermediate GNGs

Since the global tree should remain flexible at any time, it is necessary
to adapt the GNGs of intermediate nodes as well. These nodes were
traveled while passing the input vector down the tree and while walking
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through the nearest node in each GNG. The adaption is done in a
winner-takes-all fashion and all winner nodes s1,l of intermediate levels
l = 0, . . . , L− 1 are moved towards the input ξ:

∆ws1,l
= β(ξ − ws1,l

). (A.4)

For a reasonable choice of β the following aspects must be considered.
On the one hand, β should be sufficiently smaller than εb (the factor for
the adaption of a winning node in a leaf GNG) to avoid pulling nodes out
of their enclosing Voronoi-Cells in higher levels. On the other hand, the
number of adaptions that are received in upper layers grow exponentially
with b, e.g. in a balanced tree a node at level l can receive up to bL−l

updates. Hence, β should incorporate this by allowing gradually less
movements in higher levels of the tree. The following choice of β takes
both discussed aspects into account:

β = εnb
−(L−l+1). (A.5)

A.3 Results and Discussion

This subsection demonstrates the behavior of the algorithm on differ-
ent artificial and real world datasets. The results are related to other
methods and especially show the influence of the introduced parameters
b and m.

Experiment 1: Stationary Artificial Data.

In this experiment the input distribution known from the example in
figure A.1 is used. Also, the default values for the GNG parameters as
stated in section A.2 are used and either b or m is varied to demonstrate
the resulting effects. The visual summary can be found in figure A.3.
The number of iterations is 20, 000. In a second experiment, the output
of the algorithm is presented on two other simple input distributions in
figure A.4, with b = 3 and m = 1.33.

In the left part of figure A.3 the effect of altering the maximum
branching factor b can be seen, while keeping all other parameters con-
stant. If b = INF , then the algorithm only has one GNG in the root
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Figure A.3: On the new lbTreeGNG parameters. (left:) Shows the effect
of changing the parameter b while keeping all other parameters constant.
(right:) Shows the effect of changing the parameter m while keeping all other
parameters constant.

Figure A.4: Results of the lbTreeGNG algorithm on other simple distributions.
(row-wise:) The Input examples are sampled from the gray regions. The four
levels of the learned lbTreeGNG are shown subsequently. Then the complete
lbTreeGNG is shown, followed by the hierarchical Voronoi-Partition.

level. Smaller values like 2, 6, 10 induce different hierarchical Voronoi-
Tessellations. It can be seen, that the parameter b effects the size of
the local topologies and results in trees ranging from binary trees up
to flat GNGs. The parameter is essential for the worst-case runtime
complexity: Finding the nearest corresponding codeword for an input
vector ξ takes at least O(bL) distance calculations, where L is the max-
imum depth of the tree. The other parameter m controls the degree
of approximation that is reached by the leaf nodes of the lbTreeGNG.
The effects of varying m can be seen in the right part of Figure A.3. A
low error threshold leads to a large number of leaf nodes which realize
a dense approximation of the seen input data. A high error threshold
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leads to a more sparse approximation by few codewords.

Experiment 2: Stationary and Non Stationary Artificial Data.

As stationary artificial input distribution, a two-dimensional data dis-
tribution copying the one used for the evaluation of SOINN [74] was
chosen. It comprises two Gaussian components (A and B), two ring-
shaped components (C and D), and a sinusoidal component (E) com-
posed from three subcomponents (E1, E2, and E3). Each component
encompasses 18,000 individual samples. Additionally, the input distri-
bution includes uniformly distributed random noise amounting to 10%
of the total sample number (10,000 samples). This dataset was used
to train four different types of networks: Fuzzy ART [26], lbTreeGNG,
SOINN [74], and TopoART [206]. Figure A.5 depicts the applied data
distribution and the respective results.

As Fuzzy ART constitutes the basis of TopoART, it was analysed
first. For comparison reasons, β was set to 1. Therefore, the weights
of the best-matching neurons are adapted in the same manner as with
TopoART. ρ was selected in such a way as to roughly fit the thickness
of the elliptic and inusoidal components of the input distribution. As
this network does not possess any means to reduce the sensitivity to
noise, virtually the whole input space was covered by categories.

In contrast to Fuzzy ART, both TopoART components created rep-
resentations reflecting the relevant regions of the input distribution very
well. This is remarkable since the value of ρa was equal to the value
of the vigilance parameter ρ of the Fuzzy ART network. The repre-
sentation of TopoART was refined from TopoART a to TopoART b:
While TopoART a comprises one cluster, TopoART b distinguishes five
clusters corresponding to the five components of the input distribution.
By virtue of the filtering of samples by TopoART a and due to the fact
that ρb is higher than ρa, the categories of TopoART b reflect the input
distribution in more detail. This property is particularly useful if small
areas of the input space have to be clustered with high accuracy. Here,
TopoART a could filter input from other regions and TopoART b could
create the desired detailed representation.

The lbTreeGNG network was trained with the default values for the

136



Figure A.5: Data distribution and results of several types of neural networks.
Due to the noise contained in the data, Fuzzy ART covered virtually the
complete input space with its rectangular categories. In contrast, TopoART
learned a noise-insensitive representation in which the categories were sum-
marised to arbitrarily shaped clusters. The representation of TopoART a was
refined by TopoART b. Here, all categories of an individual cluster are painted
with the same colour. The first level of the lbTreeGNG network represents the
input space globally. At the second level, the representations are locally refined
and the topological structure is locally maintained. Noise regions are repre-
sented by the lbTreeGNG network as well. But the node density is much lower
than in the relevant regions of the input space. Finally, the data distribution
was successfully clustered by SOINN. Here, the representation is refined from
SOINN 1 (first layer) to SOINN 2 (second layer). Reference vectors belonging
to the same cluster share a common colour and symbol.
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parameters εb, εn, amax, α, d , and λ as stated in [104]. In addition,
the parameter b for the limiting branching factor is set to 90 and the
error threshold m is set to .0001. Here, the branching factor is chosen
relatively large in order to produce a two-layered codeword tree providing
results comparable to TopoART and SOINN. As can be seen in Fig. A.5,
the levels 1 and 2 of the lbTreeGNG network, denoted by lbTreeGNG
1 and lbTreeGNG 2 respectively, reasonably capture the topological
structure of the input space. Since noise is a significant part of the
input distribution, the lbTreeGNG system learns codewords in those
noisy regions as well. However, the learnt GNG networks show a much
higher resolution in relevant parts of the input distribution. Due to the
hierarchical space partitioning of the network, a single GNG network in
the second layer only encodes local topological structures within a single
Voronoi cell of the first layer. In contrast to SOINN and TopoART,
lbTreeGNG does not directly provide a labeling of clusters. Rather the
labels are implicitly represented by the hierarchical taxonomy.

For SOINN, the values of λ, agedead, and c were selected in such a
way that results comparable to those published in [74] were achieved.
Here, individual parameter settings for both layers (SOINN 1 and SOINN
2) were allowed. Furthermore, the settings for α1, α2, α3, β, and γ
were directly adopted from [74] for both layers (1/6, 1/4, 1/4, 2/3,
3/4). Figure A.5 shows that SOINN, was able to create a hierarchical
representation of the input distribution: The three clusters of SOINN
1 were refined by SOINN 2 which distinguishes five clusters. Similar to
TopoART b, SOINN 2 exhibits a reduced sensitivity to noise.

In a second experiment, TopoART, lbTreeGNG and SOINN are com-
pared regarding to their ability to represent changing data distributions.
In doing so, the respective networks were successively trained with
samples from the subdistributions A+E3, B+E2 and C+D+E1 (cf.
Fig. A.5). As in the previous experiment, the subdistributions include
10% of uniformly distributed random noise as well. Each row in Fig.
A.6 depicts snapshots of the different networks after training with the
corresponding data.

In this experiment the lbTreeGNG uses the same parameters that
has been used for the stationary input data. Figure A.6 shows that
the lbTreeGNG system creates and maintains a reasonable codebook
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Figure A.6: Training results for a changing data distribution. In order to simu-
late non-stationary data, the networks were successively trained with samples
from the subdistributions A+E3, B+E2, and C+D+E1, which are depicted
in the leftmost column. Each row shows the formed representations of all
considered networks after finishing the respective training period. Here, each
cluster of SOINN and of TopoART as well as each connected component of
lbTreeGNG has been drawn using an individual colour. All networks were able
to incrementally incorporate the new data. The representations created by
SOINN and by TopoART are stable; i.e., learned structures are not forgot-
ten if the input distribution changes. In contrast, representations learned by
lbTreeGNG is still altered during the learning process, for instance, the repre-
sentation of subdistribution E3 created by lbTreeGNG 2.

over time. Similar to the results for stationary data, it can be observed
that the topological structure of the input space is locally preserved
and that relevant regions are represented with a much higher resolution
than noise regions. As the data distribution changes over time, the
node density is adapted accordingly. As a result, lbTreeGNG can learn
novel or modified data distributions and already represented structures
may be altered. This effect can be observed by comparing the different
representations of E3 created by lbTreeGNG 2, for example. However,
for deeper lbTreeGNGs the upper levels get more and more stable since
the adaption rule of intermediate winning nodes allows gradually less
plasticity in higher levels of the tree. In comparison to the results of
the previous experiment, the size of the leaf GNGs in the regions A and
E3 has decreased. The explanation for this is that the network tries to
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grow in breadth before it grows in depth. Thus, while learning A+E3

the network creates a higher resolution in the first layer since it has
capacity left. As a consequence, smaller leaf GNGs are produced at the
second level.

As the second layer of SOINN can only be trained after the first layer
has finished learning, only the first layer (SOINN 1) could be applied to
learn the non-stationary data. The results resemble the results obtained
in the previous experiment (cf. Fig. A.5). But here, the respective
clusters were incorporated subsequently, depending on the current data
distribution. Learned representations remained virtually stable and were
only slightly modified due to noise.

Finally, figure A.6 shows that both components of TopoART incre-
mentally learned the presented input. Similar to SOINN, already created
representations remained stable when the input distribution changed.
As in the stationary case, TopoART b performed a refinement of the
representation of TopoART a. But here, the sub-regions E1, E2, and
E3 were separated, since the corresponding input samples were pre-
sented independently and could not be linked. TopoART a was able
to compensate for this effect, as its lower vigilance parameter ρa al-
lowed for larger categories which could form connections between the
sub-regions.

Experiment 3: Real World Global Descriptors.

This experiment aims at two things. First of all, it tries to show that the
effects of the parameters b and m (that was seen in experiment 1) also
transfer to learning in high dimensional spaces. Second, the experiment
tries to relate the outcome to a well known baseline method. The
experiment employs a pseudo-streams of global descriptors from the
following well known datasets.

The MNIST training data set [114] is used which contains 60,000
images of handwritten digits. For each gray-scale image of size 28×28×
1 a column vector v ∈ R784 is constructed with normalized intensities
in [0, 1]. Further, the 1.5 mil. tiny images data set provided by [203]
is used. The data set contains 1.5 · 106 color images of size 32 ×
32 × 3. Roughly speaking, the images have been gathered from the
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Table A.1: Results on real data sets. avRecErr: average reconstruction error for a pixel;
avRecErrVar: variance of avRecErr; numOfLeafs: number of leafs/ codebook size; maxDepth:
maximum depth of codebook tree; wcRT: worst-case runtime for mapping a vector to a leaf code-
word O(maxDepth · b); numOfGNGs: number of GNGs in the lbTreeGNG; avBrachFac: average
branching factor of the codebook tree.

lbTreeGNG
Data MNIST 1.5 Mil. Tiny Images
b 3 6 INF 3 3 3 3 6 INF 3 3
m 10 10 10 30 50 70 150 150 150 70 80 120

avRecErr .0066 .0065 .0062 .0069 .0076 .0084 .0031 .0031 .0030 .0030 .0030 .0031
avRecErrVar .0022 .0021 .0015 .0019 .0015 .0014 .0021 .0021 .0021 .0020 .0020 .0021
numOfLeafs 478 505 602 316 120 26 2769 2802 3066 9509 8570 4673
maxDepth 12 22 1 12 9 7 18 28 1 19 18 17
wcRT 36 132 602 36 27 21 54 168 3066 57 54 51
numOfGNGs 297 180 1 193 72 15 1714 1004 1 5817 5286 2866
avBrachFac 2.6 3.8 602 2.6 2.7 2.7 2.6 3.8 3066 2.6 2.6 2.6

k 478 505 602 316 120 26 2769 2802 3066 9509 8750 4673
avRecErr .006 .006 .0059 .0062 .0065 .0073 .0029 .0029 .0029 .0028 .0029 .0029
avRecErrVar .0017 .0018 .0017 .0018 .0017 .0015 .0021 .0021 .0021 .0020 .0020 .0020

k-means

Web by pumping a dictionary of English words into different image
search engines. Thus, the tiny images contain a huge diversity of scenes
and objects. For each image a column vector in R3072 is created with
normalized intensities in [0, 1].

As before, the default parameters for the GNGs are used and the
values for parameter b and m are varied respectively. The quality of the
structure of hierarchical codebook is assessed in terms of different key
numbers, e.g. the average pixel-wise reconstruction error on a data set
given a learned codebook (avRecErr). Further, in order to provide a
baseline for the reconstruction error results are presented on the data
sets using an offline learning k-means. For the overall view at the
experiments and the results see table A.1. The results in each column
of the table are averaged over 10 runs of the algorithms and rounded
appropriately.

On the simulated data, it is clear that the maximum branching fac-
tor b directly effects the worst-case mapping runtime. For b = INF the
algorithm produces a flat non-hierarchical GNG. The real data supports
the observations by the numerical values in table A.1. It can be seen,
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that for both data sets that the worst-case runtime wcRT for mapping a
vector to a leaf codeword grows as b goes up. The computational ben-
efit from the hierarchical structure gets bigger when the codebooks are
larger, especially in comparison to flat GNGs. Also before, it has been
shown on the simulated data that the m parameter effects the approxi-
mation of the input distribution. On the real data sets this is measured
in terms of avRecErr and avRecErrVar in table A.1. Given a constant
b, it can be seen for both data sets that avRecErr and avRecErrVar
increase as m gets larger. The performance in terms of avRecErr and
avRecErrVar is comparable to k-means. The difference between lb-
TreeGNG and k-means reconstruction error is usually not large in terms
of image gray-scale values, e.g. less than a single gray-scale value per
pixel for the first column of the table. Overall, the results show that the
introduced parameters can be used to control the underlying trade-off
between speed and accuracy, while maintaining reasonable codebooks.
Figure A.7 shows some exemplary visual codewords.

Experiment 4: Real World Global Descriptors

This experiments aims at assessing the behavior of the lbTreeGNG al-
gorithm on local image descriptors over time. Therefore, three different
Web-image datasets together [44] [183] [82], resulting in a collection
of approx. 90,000 images. The images were scaled to approx. 100, 000

pixels. From the overall image collection, we use 75,000 images as a
training set and sample 15,000 images as a test set. Totally, a pseudo-
stream of approx. 44 million SURF [7] descriptors is processed while
learning. During training, we repeatedly measure the reconstruction
error on a the test set and the current number of leaf nodes. The
results are averaged over multiple runs.

In the plot in figure A.7 we see the characteristic progress of the
test reconstruction error and the number of leaf nodes during learning
on a stream of 4.4 · 107 SURF descriptors. In the beginning, by adding
few nodes the learner yields a large drop down of the reconstruction
error. After that, on a trained lbTreeGNG much more nodes need to
be added to the codebook to realize relatively small error reductions.
Finally, a saturation of the growth and of the reconstruction error can
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Figure A.7: (left-side) The left plot shows the characteristic progress of the
test reconstruction error (green) and the number of leaf nodes (red) during
learning on a stream of approx. 4.4 · 107 SURF descriptors. (right-side) The
right side exemplary shows vizualisations of some topologically neighbored leaf
codewords on the different datasets: MNIST (top), Tiny Images (middle),
merged SURF (bottom).

be seen. Figure A.7 exemplary presents some visual codewords.
In this chapter, a hierarchical extension of the GNG [73] has been

presented. The method added two additional parameters b and m,
while preserving all of the original GNG parameters. As presented, the
parameter b limits the branching factor codebook tree and allows an
efficient assignment of input vectors to codewords. Further, as shown,
the parameter m is an error threshold, that affects the quantization
error and guards the learner against over-fitting. The influence of the
parameters s been discussed using a variety of synthetic and real-world
datasets. Overall, the approach locally preserves the topological struc-
ture of th input space and allows efficient classification of novel input
signals.
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Appendix B

Supplementary Material

Listing B.1: Example of a XML annotation for a retrieved image.
< t n s : A n n o t a t i o n x s i : s c h emaLo c a t i o n="OwnDataType . x sd ">
<tn s : Image− I n f o >

< t n s : C a t e g o r y>CUP</ t n s : C a t e g o r y>
< t n s : E n g l i s h −Search−Key>cup</ t n s : E n g l i s h −Search−Key>
< t n s : T r a n s l a t e d −Search−Key>beke r</ t n s : T r a n s l a t e d −Search−Key>
<tn s : Language>DUTCH</ tn s : L anguage>

< t n s : P r o v i d e r >P1</ t n s : P r o v i d e r >
< t n s : P r o v i d e r −URL>

h t t p : //www. s t y l e − f i l e s . com/ images / b e k e r s i k e a 500 x 333 . j p g
</ t n s : P r o v i d e r −URL>
<tn s :Rank>93</ tn s :Rank>
< t n s : R e t r i e v a l −Date>2010−8−31T2:54 :53</ t n s : R e t r i e v a l −Date>

< t n s : F i l e n am e>b89c0c9 :12ac7888154 : −7ec3 . j p g</ t n s : F i l e n am e>
< t n s : S i z e He i gh t="333" Width="500" Depth="3"/>
<tn s :Type> j p g</ tn s :Type>

</ tn s : Image− I n f o >

< t n s :Anno t a t i o n − I n f o >
<tn s :Me tada t a Name="CUP"/>
<tn s :Bound i ng−Box X−Min="281" X−Max="457" Y−Min="109" Y−Max="307"/>

</ t n s :Anno t a t i o n − I n f o >

< t n s :Anno t a t i o n − I n f o >
<tn s :Me tada t a Name="CUP"/>
<tn s :Bound i ng−Box X−Min="153" X−Max="310" Y−Min="68" Y−Max="243"/>

</ t n s :Anno t a t i o n − I n f o >
</ t n s : : A n n o t a t i o n >
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Algorithm 2 REDUCE(G; (B,Q,R))
1: Gr ← G

2: intersect ← true
3: while intersect do
4: for i = 1 to |Gr | do
5: for j = i + 1 to |Gr | do
6: intersect ← BOXES_INTERSECT(bi ,bj)
7: if intersect then
8: bnew ← B(bi , bj , ~qi , ~qj ,~r i ,~r j)

9: ~rnew ← R(~r i ,~r j , ~qi , ~qj)

10: ~qnew ← Q(~qi , ~qj ,~r i ,~r j)

11: REMOVE(Gr ,(bi ,~qi ,~r i))
12: REMOVE(Gr ,(bj ,~qj ,~r j))
13: ADD(Gr ,(bnew,~qnew, ~rnew))
14: break
15: break
16: end if
17: end for
18: end for
19: end while
20: return Gr

Algorithm 3 BOXES_INTERSECT(b1, b2, θ ← .5)

1: ao ← AREA(b1∩b2)
AREA(b1∪b2)

2: if ao > θ then
3: return true
4: end if
5: return false

Algorithm 4 FUSE(Gr ;F )

1: Gf ← {}
2: for i = 1 to |Gr | do
3: (bnew, rnew)← F (bi , ~qi ,~r i)

4: if rnew > 0 then
5: ADD(Gf , (bnew, rnew))
6: end if
7: end for
8: return Gf
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Figure B.1: This figure sketches the 72-dimensinoal HOG features that are
used as to describe the gradient structure in an image patch aroung a key
point location.
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Figure B.2: This figure visualizes the DPMs of apple, bottle and bowl.
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Figure B.3: This figure visualizes the DPMs of cup, handbag and laptop.
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Figure B.4: This figure visualizes the DPMs of light switch, potted plant and
shoe.
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Figure B.5: This figure visualizes the DPMs of toaster.
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