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Summary

Proteins are the workhorses of life acting as molecular machines, structural elements, and

transporters. �ey receive and transmit signals in and between cells, help in the construction

of cell structures, and decompose our diets. Due to their omnipresence and importance, it

is no wonder that research activities in the �elds of biology, medicine, and biotechnology

focus on their analysis. Nowadays, developments in mass spectrometry provide researchers

with a comprehensive inventory of methods to gain qualitative and quantitative knowledge

about these integral components of life. Techniques such as liquid chromatography coupled

to tandem mass spectrometry in combination with isotopic labeling, �nally, paved the way

for the analysis of complete proteomes in a high-throughput manner. With the number of

mass spectra that are produced in such experiments running easily into the thousands, there

is, undoubtedly, a strong demand for appropriate processing and analysis strategies.

Aim of this work was to tackle this computational challenge in mass spectrometry-based

quantitative proteomics. In this work, therefore, the concept of a so�ware application for

quantitative proteomics experiments was devised and put into practice. �is envisaged

a platform, �rstly, to manage all data and meta data related to these experiments, and

secondly, to ease the development and integration of novel analysis methods. Based on the

capabilities of the system a variety of new methods has been designed and implemented,

starting from procedures for the assessment of protein identi�cations, to optimized but also

novel algorithms for protein quanti�cation, to the �rst-time derivation of a work�ow for the

multivariate statistical analysis of quantitative proteomics experiments.

�e resulting platform named QuPE has been developed as a rich internet application to

provide data management capabilities as well as analysis functionality for protein identi�ca-

tion, quanti�cation, and in particular statistical evaluation from any location in the world

via a standard web browser. It is one of the most characteristic features of the system that
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also locally dispersed users, once they have uploaded their data, can start and continue

their analysis in a collaborative manner, whenever an internet connection is available. �is

advantage of QuPE, which is best expressed by the concept of ’So�ware as a Service’ (SaaS,

Mell and Grance 2010), has led to cooperations, inter alia, in the frame of the BMBF-funded
QuantPro initiative with workgroups at the universities of Bochum and Greifswald [grant

0313812], with the Heart and Diabetes Center in Bad Oeynhausen, the University College

Cork in Ireland, and the Palacký University in the Czech Republic.

A signi�cant part of the work of this thesis was dedicated to the optimization and enhance-

ment of algorithms for the calculation of (relative) abundance values from isotope-labeled

protein samples. �is started with the implementation of a rather simple single-spectrum

based approach, which nevertheless achieves competitive results, and ended with a new

method that now allows to compare the abundances of two di�erentially labeled peptides,

i. e. a partially-labeled peptide and its fully-labeled or fully-unlabeled counterpart in a

high-throughput manner. Overall, the newly developed algorithms allow to accurately and

precisely determine relative abundance values of metabolically stable isotope-labeled data

and furthermore represent a signi�cant improvement in terms of quality in comparison to

other existing approaches.

�e next step a�er protein identi�cation and quanti�cation concerns the interpretation of

the data. �erefore, methods of statistics and data mining are indispensable. �e provision

of user-friendly and conceivable statistical analysis methods is, however, only ’half the

battle’—moreover, it is necessary to elucidate which statistical analysis strategy promises

success for stable isotope-labeled proteomics data, and allows to draw accurate and valid

conclusions from the data. �e two central questions posed in a multitude of quantitative

proteomics experiments are, �rstly, which proteins are di�erentially regulated regarding the

selected experimental conditions, and secondly, whether there are groups of proteins that

show similar abundance ratios and thus might have a similar turnover. To answer these

questions, a comprehensive evaluation was conducted within the scope of this work taking

into account three real-world datasets from recently published experiments. �is �nally led

to the derivation of a work�ow for quantitative proteomics data analysis.

Di�erent statistical analysis methods were evaluated regarding their suitability to identify

up- or down-regulated proteins in multivariate experimental data. In the same manner,

cluster algorithms were investigated and their outcomes compared to each other in order

to determine the method that best �tted to this type of data. �e evaluation assessed not

only the cluster algorithms itself but also their validation to obtain the optimal number of

clusters for a speci�c dataset. In this context, the inclusion of external information such as

functional categories turned out to be a key element to gain meaningful clusterings, both

from a biological and a computational point of view.

In summary, QuPE constitutes a comprehensive platform for the analysis of quantitative

proteomics experiments, especially of metabolic stable isotope labeling approaches. Due to

its extensible nature, the system can easily be extended to cope with future developments in

this �eld of research, e. g. with regard to the emerging interest in posttranslational protein

modi�cations or novel quanti�cation methods.
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Chapter 1

Introduction

1.1 Motivation

Since its invention in the middle of the 20th century mass spectrometry has been closely

linked with humankind’s interest in biomolecules, in particular proteins—the main actors of

life. But it was not until the end of the century that both �elds of research �nally found a way

together. �e invention of the so called so� ionization methods paved the way for a thorough

understanding of the localization and function of proteins in a cell (Karas et al. 1987; Tanaka

et al. 1988; Whitehouse et al. 1985). Today, mass spectrometry is probably the most important

method to characterize individual proteins extracted from a biological sample, and thanks

to high-throughput methods such as MudPIT (Wolters et al. 2001) it is nowadays possible to

identify hundreds of proteins simultaneously within a few hours.

When Wilkins introduced the concept of the proteome as “the entire PROTein complement

expressed by a genOME, or by a cell or tissue type” (Wilkins et al. 1996, p.20), he particularly

highlighted that in contrast to the genome—the entirety of all genes in an organism—the pro-

teome is highly dynamic showing changes under di�erent conditions and even in the course

of time. �ere is no better example to demonstrate this fact—that the state of an organism is

re�ected by the proteome—than the life of a butter�y, which starts as a rather inconspicuous

caterpillar and metamorphoses into a (predominantly) beautiful insect. “While genes funda-

mentally shape physiology and pathophysiology, proteins are the �nal executive force of all

cellular processes that �nally drive physiology and behavior in health and pathology” (Frank

et al. 2009, p.1), or in other words “there is more to paella than the recipe, more to Bach than
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ink on paper, and more to a society than its code of laws” (Anderson and Anderson 1998,

p.1854).

Four years ago, in one of the top-ranking scienti�c journals, it was admitted that “Mass

spectrometry (MS)-based proteomics has become a formidable tool for the investigation

of posttranslational modi�cations to proteins, protein interactions, and organelles”, and

furthermore questioned “Is it now ready to tackle comprehensive protein expression analysis?”

(Cox and Mann 2007, p.395). Today, in 2012, the answer to this question is certainly yes, and

it is in many ways the utilization of stable isotopes in mass spectrometry-based experiments

that opened the gates to a new era of quantitative proteomics. “Proteomics has shi�ed from

the analysis of small sets of proteins towards the comprehensive investigation of a much

larger number of proteins expressed in a cell, tissue, or organism” (Gouw et al. 2010, p.11).

Being one of the main building blocks of systems biology, current proteomics research

aims to uncover the functional networks of genes and proteins at the level of the whole cell

and to scrutinize the e�ects of changing environmental conditions on the concentration of

proteins (Wolters et al. 2001; Ong et al. 2002; Zhu et al. 2002; MacCoss et al. 2003; Hufnagel

and Rabus 2006; Bantsche� et al. 2007; Mueller et al. 2008; Mallick and Kuster 2010). A

wide �eld of applications has evolved ranging from medical diagnosis and the investigation

of pharmaceutical e�ects to the optimization of biotechnologically-relevant production

processes, e. g. of amino acids in the bacterium Corynebacterium glutamicum (Kalinowski
et al. 2003; Rehm 2006; Fränzel et al. 2010b; Poetsch et al. 2011).

1.2 Aims and objectives

A typical mass spectrometry-based proteomics experiment is characterized by three de�ning

steps: �rstly, protein identi�cation, secondly, protein quanti�cation, and thirdly and most

importantly, the generation of statistically valid conclusions from the data. Methods such

as the MudPIT approach produce enormous amounts of data and can easily encompass

several thousands of individual mass spectra, which in turn account for hundreds of proteins.

It seems obvious that a thorough analysis of these data masses demands computational

assistance and requires automatic processing of the data (Matthiesen 2007b).

In the frame of this work a so�ware application, named QuPE (d. v. ’Quantitative Proteomics

data Explorer’), was designed and implemented that presents a comprehensive and extensible

so�ware solution to support researchers in the analysis of quantitative proteomics data and

to gain thorough and in-depth analysis results (Albaum et al. 2009a). �e development was

made possible in the frame of the BMBF-funded QuantPro initiative [grant 0313812] and, in

particular, through the integrative character of the Center for Biotechnology (CeBiTec), an

academic institution at Bielefeld University.

Driven by a close cooperation with biologists located in Bielefeld but also at the universities

of Bochum and Greifswald, the weaknesses of existing so�ware solutions have quickly been

identi�ed, and manifested in the following requirements:
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1. A strong need for adequate data management capabilities to organize and structure

mass-spectrometry datasets but also associated meta data, such as descriptions of the

experimental setup or lists of identi�ed peptides.

2. In particular as a result of the rapidly advancing development in mass spectrome-

try, novel instruments place higher demands on algorithms for the calculation of

abundance values from isotopically-labeled protein samples. It is, for example, a

higher resolution of these instruments that needs to be re�ected in the quanti�cation

procedure.

3. To the end, datasets resulting from such quantitative proteomics experiments are o�en

very complex and consist of lists of measured abundance values for hundreds (or

thousands) of proteins. As a manual exploration of such large datasets is practically

impossible, there is a keen demand for computational approaches concerning statistical

data analysis and data mining in order to support experimenters.

�e devised QuPE system does not only provide data management capabilities but, moreover,

serves as a platform that eases the development and integration of novel analysis methods

starting from the assessment of protein identi�cations from mass spectra to multivariate

statistical analysis and data mining. Using the engineered platform, a wide range of methods

has been devised and evaluated which, in summary, contributed, on the one hand, to novel

computational approaches for the analysis of quantitative proteomics data, and on the other

hand, to a better understanding of regulation at the protein level (Albaum et al. 2011b;

Trötschel* et al. 2012).

In view of the distributed locations of users, it was, furthermore, a central objective of

this work to bring the developed tools and methods closer to the researcher. �erefore,

QuPE was created as a rich internet application, which addresses the limitations in “the

richness of the application interfaces, media and content“ (Allaire 2002, p.1) of classical web

applications. Based on Asynchronous JavaScript and XML (AJAX, Garrett 2005), the user

interface behaves similar to the user interface of a standalone so�ware application started on

a personal computer. Requiring only a standard-compliant web browser, the application is

independent from any operating system. Data stored in the system, such as mass spectra,

or analysis results may be accessed on any computer connected to the internet. A local

installation is self-evidently not necessary, either.

1.3 Structure of this work

�e thesis at hand describes the ideas and their implementations towards a comprehensive

and complete solution for the analysis of mass spectrometry-based quantitative proteomics

data. In the second chapter of this work, the biological processes underlying the synthesis

but also the degradation of proteins are brie�y introduced. Starting at the level of gene

transcription the focus is turned on the various in�uences that a�ect the total amount

of proteins in a cell. �ere then follows a target-oriented overview of mass spectrometry
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explaining structure and generation of the data including methods for protein identi�cation

as well as methods for protein quanti�cation. Chapter four is devoted to the current state of

the art in proteomics so�ware tools and applications. �is comprises, �rstly, the provision

of data management functionality to organize and structure experimental datasets, and

secondly, current algorithms and methods for data analysis, in particular regarding the

calculation of protein abundances from isotopically-labeled data. In the following chapter

�ve, the requirements that necessitated the development of the rich internet application

QuPE are formulated. �e considerations go a step further in chapter six, in which methods

for the analysis of quantitative proteomics data are introduced. Chapter seven describes in

detail the implementation of the system QuPE. Apart from the apparent user interface, the

various layers of the application are presented and portrayed. In this context, the extensibility

of the system that facilitates the integration of novel methods for the processing of stored

data shall particularly be highlighted. A signi�cant proportion of the work aimed at the

development and implementation of protein quanti�cation methods. �erefore, in chapter

eight, a comprehensive evaluation of the devised algorithms is elucidated. Based on the

�exible and extensible application programming interface of QuPE, a work�owwas contrived

to analyze quantitative proteomics experiments. �is work�ow is presented in chapter nine.

A �nal and critical re�ection of this work can be found in chapter ten.

1.4 Related publications

Publications as �rst author:

C. Trötschel*, S. P. Albaum*, D. Wol�, S. Schröder, A. Goesmann, T. W. Nattkemper, M. Rögner, and

A. Poetsch (2012). Protein turnover quanti�cation in a multi-labeling approach–from data calculation

to evaluation.Molecular and Cellular Proteomics 11.8. (*contributed equally), pp. 512–526
S. P. Albaum, H. Hahne, A. Otto, U. Haußmann, D. Becher, A. Poetsch, A. Goesmann, and T. W.

Nattkemper (2011). A guide through the computational analysis of isotope-labeled mass spectrometry-

based quantitative proteomics data: an application study. Proteome Science 9.1, p. 30
S. P. Albaum, H. Neuweger, B. Fränzel, S. Lange, D. Mertens, C. Trötschel, D. Wolters, J. Kalinowski,

T. W. Nattkemper, and A. Goesmann (2009). Qupe–a Rich Internet Application to take a step forward

in the analysis of mass spectrometry-based quantitative proteomics experiments. Bioinformatics 25.23,
pp. 3128–3134

Publications as co author:
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Construction and evaluation of a whole genome microarray of Chlamydomonas reinhardtii. BMC
Genomics 12, p. 579
H. Neuweger, M. Persicke, S. P. Albaum, T. Bekel, M. Dondrup, A. T. Hüser, J. Winnebald, J. Schneider,

J. Kalinowski, and A. Goesmann (2009). Visualizing post genomics data-sets on customized pathway

maps by ProMeTra—aeration-dependent gene expression and metabolism of Corynebacterium
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Chapter 2

From genomics to proteomics

�e aim of this chapter is to provide a brief insight into the biological processes underlying

the synthesis of proteins. Starting at the level of gene transcription the focus is turned onto

the various in�uences that a�ect the total amount of proteins in a cell.

2.1 Protein synthesis – from genes to proteins

With the bene�t of hindsight, it is rather remarkable that “for a long time, biologists thought

that ’genes’, the units of inheritance, were made up of protein” (McCarty 2003, Editor’s note).

Until the middle of the 20th century, the rumor that deoxyribonucleic acid (DNA) would

be “too limited in its diversity to carry genetic information” (McCarty 2003, p.1) remained

stubbornly. Interestingly, this was still widely believed a�er Avery and his colleagues at the

Rockefeller Institute had already proven that DNA is the true carrier of genetic information

(Avery et al. 1944).�e turning point and thereby the birth of molecular genetics is marked by

Watson and Crick and their identi�cation of the three dimensional structure of DNA (Watson

and Crick 1953). In half a century, many secrets of this sequence of chemical letters and the

(almost) inscrutable relationships between the genes, their transcripts and the proteins as well

as their products, the metabolites, have been revealed, yet many secrets are still undisclosed.

It was the regularity of the di�raction by the exposure to X-rays that led to the characteristic

double stranded structure of the DNA with its building blocks—the nucleotides. Although it

is nowadays known that DNA may also look like “a telephone cord a�er a kink” (Pearson

2003, p.310), the molecule, in its most common form, is �guratively shaped like a spiral
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Figure 2.1 –�e central dogma of genetic information transfer: through the process of transcription DNA
speci�es RNA, which in turn speci�es the proteins of a cell (Alberts 2003). �e molecules are taken from the

Protein Data Bank and depicted using Jmol (Jmol Entwicklerteam 2010); entries from le� to right: 1D28, Narayana

et al. (1991); 1S77, Yin and Steitz (2004); 2EU1, Cabo-Bilbao et al. (2006)

staircase wherein the oppositely placed nucleotides adenine and thymine as well as cytosine

and guanine each represent the stairs (Knippers 2001). During the process of transcription,

which is, in general, initialized by characteristic promoter regions, the genes of the DNA

are rewritten into a single-stranded ribonucleic acid (RNA). Utilizing the genetic code as its

conversion table the linear order of the nucleotides on this macromolecule termedmessenger

RNA (mRNA) encodes for the linear order of amino acids in a resulting protein. �is step of

translation takes place at the ribosomes—the location of proteins synthesis (see Figure 2.1).

Mulder (1839) introduced the word “protein” in a German journal, derived from the Greek

word “πρωτεις”, “primarius”, as he falsely suspected protein to be one, uniform substance,
universal for both animals and plants. Proteins are chains of on average 100 up to 800 amino

acids, which each consist of an amine group, a carboxylic acid group, and a variable side chain

together bonded to a central C-atom. Currently, 23 amino acids are known that constitute

the building blocks of proteins. Two important amino acids both belonging to a group of

alkaline amino acids are arginine (R) and lysine (K). �eir �nal amine groups are o�en

ionized and thereby positively charged (at normal pH level). �e primary structure of a

protein is made up from its sequence of amino acids, where the carboxylic acid group of

one amino acid covalently binds to the amine groups of its neighbor to form a so called

peptide binding. �us, the polypeptide chain is headed in a certain direction: from the

le� side with a free amine group (N-terminus) to the right side with a free carboxylic acid

group (C-terminus). While the secondary structure refers to inner shapes formed by alpha

helices and beta sheets, the correct folding of a protein, its tertiary structure, is essential for a

protein’s functionality. Protein domains are de�ned as the smallest units of a protein with

an unambiguous and independently folded structure, each consisting of up to 150 amino
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acids, and o�en responsible for a distinct reaction. Altogether, these domains characterize a

protein (Knippers 2001).

2.2 Protein turnover: degradation and synthesis

Whereas the genome—the entirety of all genes of an organism or a cell—constitutes a static

entity, the analogously de�ned transcriptome and proteome are highly dynamic. Depending

on the developmental stage of an organism and on reaction to changing environmental con-

ditions, a variety of regulatory mechanisms in�uence the rate at which genes are transcribed

and later on translated into proteins. A lot of attention is paid to uncover these di�erences in

the expression of genes and proteins, for example to optimize the industrial production of

amino acids in di�erentCorynebacterium glutamicum strains (Kalinowski et al. 2003; Fränzel
et al. 2010b).

Studies utilizing the Microarray technology to analyze the transcriptome of a cell give a

detailed picture of the rates at which the genes of an organism are expressed at the moment

of measurement. One might assume that thereby also the current amounts of proteins in the

cell might indirectly be determined. However, when the abundances of all protein in a sample

are directly measured and compared to transcriptome data, the observed correlations are

typically rather moderate. In a very early study on this topic, Anderson and Seilhamer (1997)

found a correlation coe�cient of only r = 0.48 between mRNA abundances, which were
measured by expressed sequence tag (EST) counting, and corresponding protein abundances

arising from two-dimensional electrophoresis. Jayapal et al. (2010) summarized the results of

Figure 2.2 –�is Figure displays a simpli�ed model of protein turnover describing its two opposing compo-
nents—synthesis and degradation. While the rate of protein synthesis is determined, mainly, by the amount of

mRNA but also other factors such as the ribosomal activity in terms of the rates of initiation of translation and

elongation, protein degradation is in�uenced, inter alia, by speci�c peptide modi�cations and protease activity.
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multiple comparative studies and yielded Spearman rank correlations ranging from r = 0.2
to 0.7. Anderson and Anderson (1998, p.1855), therefore, conclude that the “necessity to

measure protein levels is inescapable”.

�e observed di�erences between mRNA and protein levels are caused by the fact that two

opposing processes are responsible for the quantity of a protein in a cell—synthesis as well

as degradation (see Figure 2.2, Beynon 2005). While amino acids are, on the one hand,

assembled into new proteins at the ribosomes, these biomolecules are, on the other hand,

subject to intracellularly regulated degradation processes, e. g. via the ubiquitin pathway.

Protein synthesis is, �rstly, in�uenced by the concentration of mRNA in a cell but, obviously,

there are other prevailing circumstances that have an impact on this process. �is includes,

inter alia, the availability of tRNAmolecules as well as the overall ribosomal activity, which is
not least limited by the highest possible rate of translation initiation and elongation. Moreover,

gene expression can be modulated at the post-transcriptional level by small non-coding

RNAs (Eddy 2001; Storz 2002).

�e primary function of intracellular protein degradation is the elimination of old, irreg-

ular, damaged, or super�uous proteins. In several situations, this process is attenuated

or ampli�ed, e. g. in response to changing environmental conditions such as heat stress

(Araki 1992). Features of a protein that in�uence its stability are the N-terminal’s residue of

a protein (Tobias et al. 1991) or its C-terminal peptide tail as it was, for example, found in

Escherichia coli (Gottesman et al. 1998; Herman et al. 1998; Lies and Maurizi 2008). Degra-
dation is conducted by proteolytic enzymes, which can further be separated in exo- and

endoproteases depending on their starting point of destruction within a protein.

It can be summarized that, whenever quantities of proteins are measured directly, synthesis as

well as degradation as the two components of protein turnover both a�ect the measurement

and must, therefore, be taken into consideration.
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Chapter 3

Mass spectrometry-based proteomics

At �rst sight, the range of available mass spectrometry-based methods and technologies that

are used to investigate and scrutinize proteins seems to be immense. �is chapter wants to

shed light on the two main building blocks of mass spectrometry-based proteomics: the

identi�cation of proteins and their quanti�cation in a relative or absolute manner. �erefore,

selected methods, which are of particular importance for this �eld of research, are described

in detail.

Figure 3.1 –Mass spectrometry is the key technology for the analysis of proteins. �e idea originates from the
two scientists J. J. �omson and F. W. Aston. A replica of one of their �rst mass spectrometers is shown in this

picture (© Je� Dahl http://commons.wikimedia.org).
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3.1 A historical view onmass spectrometry

Since the 1960s mass spectrometers have been used in laboratories to determine the weight

of chemical compounds (Rehm 2006). �e underlying idea goes back to the beginning of the

20th century. At that time, the physicist Joseph J.�omson, better known for his discovery of

the ’corpuscles’, explored the e�ects of electromagnetic �elds on cathode rays (see glossary for

further details, Falconer 1987). Spurred by the �ndings, his research assistant Aston built the

�rst functional mass spectrometer (Figure 3.1 shows a replica of one of the �rst instruments).

�e mass spectrograph, as it was initially called, allowed him to successfully measure the

atomic weights of over 200 isotopes, for example of chlorine and bromine (Aston 1922), and

�nally earned him the Nobel prize.

In a commonly applied setup, gas chromatography is used to isolate molecules from a gaseous

mixture of compounds, which are then subjected to electrons emitted from a heating �lament.

With a typical energy of 70 eV, a moleculeM is ionized as described in the following reaction:

M + e− → M+ + 2e− (3.1)

While perfectly suitable for small organic molecules, the application of electron ionization to

large macromolecules such as proteins, peptides, or DNA proved to be elusive for a long time:

such big molecules are not volatile, apart from that the high energy results in a break-up

of the molecules into thousands of small pieces. From the perspective of proteomics, the

breakthrough in mass spectrometry (MS) was achieved with the invention of the two ion

sources matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization

(ESI, see next paragraph). �ese so called so� ionization techniques both allow for a fast and

accurate determination of protein and peptide masses.

3.2 Mass spectrometry for the identification of proteins

�e �rst step of any mass spectrometry-based proteomics experiment—an exception is intact

cell mass spectrometry (ICM, Feng et al. 2010)—is, doubtlessly, the isolation and extraction

of proteins from a sample under investigation. Necessary experimental steps involve the

puri�cation of proteins and their solubilization in sample bu�er. Here, it is important to take

into account di�ering solution behaviors e. g. of cytoplasmic and membrane proteins, or the

prohibition of protease activity to prevent unwanted digestion of proteins. Before extracted

proteins can then be analyzed in amass spectrometry instrument it is, inmost cases, necessary

to reduce the sample’s complexity, and to separate the proteins in a sample from each other.

Typical approaches for this purpose are 2D-electrophoresis or liquid chromatography.

�e invention of so� ionization methods marked the turning point in mass spectrometry-

based proteomics. Beginning with matrix-assisted laser desorption/ionization (MALDI)

and electrospray ionization (ESI) a variety of di�erent methods is nowadays available to

determine molecular weights of proteins and peptides. Simply put, all mass spectrometers
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consist of three parts: an ion source, one or more analyzers, and a detector. In general,

di�erent types of ion sources and analyzers can be combined. However, there are two setups

that are most o�en found: a MALDI ion source is commonly used in conjunction with a

time-of-�ight (TOF) mass analyzer, while an ESI is usually connected to one or more ion

trap or quadrupole analyzers.

Without loss of generality, and with the knowledge that this leaves a variety of experimental

setups unattended, in the following two mass spectrometry-based work�ows are exemplary

described in detail. �e two work�ows belong to the most commonly applied approaches and

are found in many proteome laboratories. First, there is presented the traditional approach

which combines two-dimensional electrophoresis (2D-electrophoresis) with MALDI-TOF

mass spectrometry. �e second work�ow aims at the usage of liquid chromatography (LC)

in combination with ESI. Beforehand, a few fundamentals regarding mass spectrometry data

processing are brie�y introduced.

3.2.1 Fundamentals of mass spectrometry data processing

3.2.1.1 Peak detection – profile vs. centroid data

In general, the raw data that is directly recorded by a mass spectrometer is available in form

of a continuous signal or spectrum (Hansen and Smedsgaard 2004). Preprocessing of raw

mass spectra, o�en referred to as peak detection, involves several steps, starting from the

application of a smoothing function such as a Savitzky–Golay smoothing �lter (Savitzky and

Golay 1964) to remove noise from the data, up to baseline correction and peak �nding. �e

purpose of baseline correction is to adjust for a potential o�set of recorded values over time.

It resets dri�ing values and results in a �attened baseline of a mass spectrum. Peak �nding

refers to the conversion of the raw signal from the mass spectrometer into a list of peak

values. In this context, the original signal that results from one ion is herein referred to as the

’pro�le’ peak (see Figure 3.2A). A�er “�nding the vertical line passing through the center of

gravity of the peak” (Matthiesen 2007a, p. 40), the result is a discrete value termed ’centroid’

peak (see Figure 3.2B). Several methods have been suggested for the purpose of peak �nding.

�ey base, for example, on the weighted average of each pro�le peak’s masses or the �rst

derivative of the function that describes the continuous signal of the mass spectrum and

its zeros (Matthiesen 2007a). Mass spectrometry vendors o�en provide own preprocessing

methods and allow the direct conversion of mass spectra during recording. A comprehensive

comparison of peak detectionmethods has been conducted by Yang et al. (2009).�e authors

recommend an algorithm based on continuous wavelet-transformation (Du et al. 2006).

In summary, the result of a mass spectrometry analysis can formally be described as a list

of (centroid) peaks, each consisting of an intensity i and a mass to charge (m/z) ratio. A
mass spectrum that consists of p discrete peaks, in other words p ions separated by the mass
analyzer, can therefore be de�ned with two vectorsm = {m1 . . .mp} and i = {i1 . . . ip}.
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Figure 3.2 – Comparison between a raw mass spectrum recorded in pro�le mode (A) and the same spectrum
a�er ’peak detection’ (B) using the continuous wavelet-transformation proposed by Du et al. (2006).

3.2.1.2 Resolution and accuracy

�e resolution of a mass spectrometer—measured in the unit �omson (�)—denotes the

minimal di�erence in mass, which has to be present between two ions, so that the peaks

of both ions will be clearly distinguishable in a recorded mass spectrum in pro�le mode.

Illustrated in Figure 3.3 is a similar measure, the resolution power R, which is calculated as
the ratio of a (pro�le) peak’s mass m to the peak’s width at half maximum ∆m (full width at
half maximum height, FWHM).

A second important measure that describes the characteristics of a mass spectrometer is

its accuracy. It is usually denoted in the unit ’parts per million’ (ppm). A MALDI system

such as Bruker™’s (Bruker Daltonics) ultra�eXtreme is, for example, capable to determine

the mass of an ion with an accuracy smaller than 1 ppm, hence, +/- 0.002 Da for a 2 kDa

molecule. �e resolution power of such a system is claimed to be higher than R = 40.000
(Schäfer 2009).

3.2.1.3 Purpose and function of mass spectrometry in proteomics

Resultant from any mass spectrometry analysis is a list of masses giving hint to the molecular

weights of the analytes under investigation. Based on these �ndings, the conclusion needs to

be drawn which molecules—proteins—may belong to these weights. Given an extracted and
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Figure 3.3 –�e resolution power R of a mass spectrometer is calculated as the ratio of a (pro�le) peak’s mass
m to the peak’s width at half maximum ∆m (full width at half maximum height, FWHM).

puri�ed protein sample, the basic principle of any experiment therefore is to separate the

proteins contained in the sample and then to determine each protein’s weight.

3.2.2 Two-dimensional electrophoresis in combination with
matrix-assisted laser desorption/ionization and time-of-flight mass
spectrometry

A classical approach to identify the proteins contained in a sample relies on two-dimen-

sional electrophoresis (2D-electrophoresis) to separate a mixture of proteins combined with

MALDI-TOFmass spectrometry for protein identi�cation. Technologies such as DIGE allow,

moreover, to compare two or more proteome samples and to gain a relative quanti�cation of

protein amounts. Figure 3.4 depicts the di�erent steps in the work�ow to gain the qualitative

and quantitative information of proteins and peptides. Starting from a puri�ed protein

sample, the mixture is �rst separated by two-dimensional electrophoresis. �e separated

proteins are then cut out assuming that at each spot in the gel only one protein is located.

If each picked-out protein is then subjected to a mass spectrometry analysis, this results in

lists of the proteins’ molecular weights. In many cases, the genome and thereby the amino

acid sequences of all proteins of an organism are known. It is, hence, possible to calculate an

expected molecular weight of each protein. A comparison of the expected and the observed

weight might then yield a protein’s identi�cation. �is is, however, not rarely ambiguous, and

becomes almost impossible if proteins have multiple charges. To circumvent this problem,
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Figure 3.4 –�is �gure illustrates the typical work�ow to identify the proteins contained in a sample utilizing
MALDI-TOF mass spectrometry. Starting from a puri�ed protein sample, the mixture is �rst separated by

two-dimensional electrophoresis. A�erwards, the proteins are tryptically digested and co-crystallized with

matrix compound on a plate. A�er ionization by MALDI, the molecular weights of the ionized peptide ions can

then be determined in the TOF analyzer.

a method called peptide mass �ngerprinting is utilized. Instead of complete proteins, the

analyte is therefore enzymatically digested. �e serine protease trypsin, for example, cleaves

the amino acid structure of a protein at the C-terminal end a�er arginine or lysine (as long as

no proline is following). As these enzymes produce a de�ned fragmentation of a protein, so

to speak its �ngerprint, they allow for a less ambiguous and improved protein identi�cation.

�e cleaved peptides are co-crystallized with matrix compound on a plate. A�er ionization

by MALDI, the molecular weights of the ionized peptide ions can then be determined in the

TOF analyzer and thus give hint to the analyzed protein.

3.2.2.1 Protein separation – two-dimensional electrophoresis

�e basic idea of two-dimensional electrophoresis (2D-electrophoresis) is to apply two

di�erent protein separation techniques on a mixture of proteins to spatially separate up

to a complete proteome in two dimensions. �e general approach goes back to the 1950s.

Kaltschmidt and Wittmann (1970) used the method to purify individual proteins. �e �rst
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Figure 3.5 –�is image of an DIGE experiment shows the comparison of the Sorangium cellulosum proteome
in exponential (labeled with Cy3, red) and stationary (labeled with Cy5, green) growth phase. Positions in the

gel where proteins have been identi�ed are numbered. �e experiment was performed by Alici (2007).

application of 2D-electrophoresis on complete proteome samples was performed by O’Farrell

(1975) on Escherichia coli as well as by Klose (1975) on mice proteins.

While there are certainly more than two protein separation methods available, the �rst

dimension of separation is typically isoelectric focussing (IEF). A mixture of zwitterionic

compounds (ampholytes) with two or more di�erently charged functional groups serves as

basis. Under the in�uence of an electric �eld the zwitterions tend to rearrange themselves in

such a way that each individual compound shi�s to a (spatial) position where it has a net

charge of zero. �ereby, a pH-gradient is formed. If a protein is added to this gradient it also

moves to that position where it reveals no electric charge, its so called isoelectric point. At

this position—as it has a zero net charge—any applied electric �eld has no e�ect, the protein

is focused in the gradient. An IEF-stripe typically corresponds to a certain pH range. �e

applied electric �eld ranges from 300 up to 5000V (Westermeier et al. 2008).

�e second dimension of separation is usually SDS gel electrophoresis. �is takes advantage

of the property of most proteins to bind the soap Sodiumdodecylsulfat (SDS). SDS and

protein form a complex with a constant ratio of about 1g protein to 1.4g SDS (given a typical

1% solution of SDS, cf. Rehm 2006). �is results in proteins having an equal net charge and

all proteins only di�ering in size. Moreover, SDS prevents interactions between proteins.

In SDS-page, the IEF-gel from the �rst separation is directly placed in an SDS-gel which

has a gradually increasing concentration e. g. of acrylamides—a substance o�en used as

water-soluble thickener. Subjected to a second electric �eld the mixture of SDS-protein-
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complexes is then separated by their molecular weight. In a typical work�ow, protein spots

in the 2D-gel are located and cut out. �ese “picked” spots are a�erwards analyzed using

mass spectrometry.

An improvement to this technology was made by Unlü et al. (1997) with the usage of �uo-

rescence dyes allowing for the comparison of protein patterns between two samples in one

gel. In di�erential gel electrophoresis (DIGE), two (or more) samples are each labeled with a

�uorescence dye such as Cy3 and Cy5. A�er a scan process with di�erent wavelengths in

analogy to the utilized dyes di�erences in protein expression then become visible (cf. Figure

3.5).

Although 2D-electrophoresis has many advantages, inter alia its cost e�ciency, the major
problem of this method is its relatively high workload in terms of the number of necessary

experimental steps, and hence many potential sources of error. Moreover, it is di�cult—if

not impossible using conventional methods—to investigate proteins with rather extreme

properties in terms of size, hydrophobicity, acidity or alkalinity, which also includes the

important group of membrane proteins (Rehm 2006).

Figure 3.6 –MALDI: proteins or peptides are built into crystals of UV-absorbing molecules. During crystalliza-
tion, protons are transfered to the sample ions. Irradiation with UV-laser explosively sets free matrix-compounds

as well as charged sample ions.

3.2.2.2 Ionization –matrix-assisted laser desorption/ionization

Matrix-assisted laser desorption/ionization (MALDI) was �rst introduced by Michael Karas

and Franz Hillenkamp (Karas et al. 1987) in the 1980s. At about the same time, a similar

method to ionize large macromolecules called so� laser desorption (SLD) was introduced by

Tanaka et al. (1988), and used to analyze, for the �rst time, an intact protein. �e Japanese

researcher won the Nobel prize for his invention, although it is, interestingly, the MALDI

approach which is nowadays mainly employed.
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�e basic principle of MALDI is the incorporation of the macromolecules of interest into

crystals built from acidic UV-absorbing molecules, called matrix. A solution consisting of

crystallized molecules, a solvent, and the proteins under investigation is spotted on a plate.

As the solvent vaporizes and the crystal growth, protons are transfered to the embedded

molecules, which are thereby positively charged. �e crystals are a�erwards put into high

vacuum and irradiated with an UV-Laser. During the laser pulse with a duration of 3-4

nanoseconds matrix compounds as well as charged protein ions are explosively set free as

illustrated in Figure 3.6.

3.2.2.3 Analyzer – time-of-flight

In the most common setup, a MALDI ion source is directly coupled to a time-of-�ight (TOF)

analyzer. In this setup, the explosively released cloud of charged protein ions is accelerated

by an electric �eld. Excited by the same �eld, each ion receives the same kinetic energy:

E = (m/z) × v2 (3.2)

�e velocity v of an ion is, thus, proportional to the ions mass to charge ratio: the lighter an
ion or the higher its charge the stronger the acceleration.

v ∝ 1√
m/z

(3.3)

To ensure that all ionized proteins leave the ion source at the same time point and from

the same location a technique called delayed extraction is employed. �is focusing of the

ion cloud is obtained by a delayed power up of the electric �eld that is responsible for the

acceleration. A potential gradient compensates di�erent starting energies and results in a

simultaneous movement of all ions into the vacuum of the analyzer.

It is the general principle of the TOF analyzer to measure the time each accelerated ionized

particle takes to cover a de�ned distance, until it �nally hits a detector. As soon as the ions

enter the apparatus, no further electric �eld has an e�ect on the ions. �us, their velocity

remains constant. All ions have to traverse the same distance and arrive at the detector

only dependent on their m/z value. �e detector is typically realized as a photomultiplier

consisting of a number of glass capillaries with a diameter of about 25 µm. �e inner surfaces
of the capillaries are coated with electron absorbing materials. If a protein ion impinges the

interior of a capillary, this triggers the release of electrons that can then be measured.

A substantial improvement of the TOF analyzer was the integration of a re�ectron, a kind of

mirror for ions. It may happen that two ions with the same mass to charge ratio leave the ion

source with a slightly di�erent kinetic energy. Aim of the re�ectron, a static electric �eld, is

to turn around all ions that dive into it. Due to the e�ect that ions travel into this �eld in

a depth according to their energy, the re�ectron causes ions with the same mass to charge

ratio to arrive simultaneously at the detector.
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A typical TOF has a length between 1 and 2 m, which results in a �ight time of ions from 5 to

100 µs. A MALDI-TOF provides the possibility to measure very large molecules in a range
up to 100.000 m/z.

3.2.2.4 Protein identification – peptidemass fingerprinting

Aim of peptide mass �ngerprinting (PMF) is to identify a protein based on a de�ned frag-

mentation pattern. �e method takes advantage of the fact that a proteolytic enzyme such

as trypsin cleaves an amino acid sequence at speci�c positions. Applied on a protein, the

resulting fragments characterize its source—they, so to say, represent the protein’s �ngerprint.

To take an example, Figure 3.7 shows a mass spectrum as it has been recorded for a protein

of the soil bacterium Sorangium cellulosum: based on the observed masses of the peptide
fragments it can be concluded that the analyzed sample contained a phosphoglycerate kinase

(sce7349). An algorithm to compare observed fragmentation patterns with the genome

Figure 3.7 –�emass spectrum shows the m/z and intensity values recorded for a protein of the soil bacterium
Sorangium cellulosum.

sequences of known organisms has, for example, been proposed by Perkins et al. (1999), and

is �own in the commercial so�ware product Mascot™ (see section 4.2.1).

Peptide mass �ngerprinting has the serious disadvantage that it is very sensitive against

missing or incorrect peaks in amass spectrum, especially if the fragments of two or evenmore

di�erent proteins are mixed in the same spectrum. As 2D-electrophoresis in combination

with MALDI-TOF mass spectrometry o�ers a good separation of individual proteins, it is

best suited for this way to identify proteins, in contrast to other techniques such as liquid

chromatography coupled to electrospray ionization. Nevertheless, tandemmass spectrometry

as it is described in the next work�ow delivers protruding advantages and considerably

outperforms the PMF approach.
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3.2.3 Liquid chromatography in combination with electrospray ionization

From today’s point of view, it was mainly the introduction of electrospray ionization that,

�nally, enabled the high-throughput analysis of proteins. Due to the possibility to directly

couple liquid chromatography (LC) to such an ion source, up to a complete proteome sample

may automatically be analyzed. A typical work�ow of such an LC-MS/MS experiment is

illustrated in Figure 3.8. Apart from the extraction and preparation of the sample under

investigation (including protein puri�cation, tryptic digestion, column preparation etc.) all

further steps starting from the separation by liquid chromatography to the generation of

mass spectra can be performed in a fully-automatic manner.

Figure 3.8 –A typical work�ow of an LC-MS/MS experiment. An extracted and puri�ed protein sample is
typically subjected to enzymatical digestion e. g. using trypsin. Starting from the separation by liquid chro-

matography, to the generation of mass spectra all further analysis steps are then performed in a fully-automatic

manner.

3.2.3.1 Protein separation – liquid chromatography

When a complete macromolecular complex from an organism with sequenced genome was

analyzed for the �rst time, instead of a 2D-electrophoresis-based approach, liquid chromatog-

raphy (LC) was utilized to purify the individual protein components (Neubauer et al. 1997).
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Figure 3.9 –Diagram showing the basic components of a high performance liquid chromatography system. In
a typical LC-MS/MS experiment, instead of (or in addition to) a detector a mass spectrometer is directly coupled

to the column.

In 1999, Link et al. proposed an approach based on two connected chromatography tech-

niques, called 2D-chromatography, to directly analyze complex protein mixtures. In general,

chromatography aims to separate proteins by their speci�c properties such as size, charge

or hydrophobicity. �e basic components of a high performance liquid chromatography

(HPLC) system as depicted in Figure 3.9 are a pump, which is able to generate pressures

of up to 400 bars, and a steel column with a diameter between a few millimeters down

to nano-meter scale. �e column is �lled with a material such as a silica gel wherein each

particle has a diameter of about 3-10 µm. �is is called the stationary phase. In the commonly
applied reverse phase (RP) HPLC, the particles are coated, leading to apolar and hydrophobic

surfaces. A�er protein samples are injected with a so called injection loop, the biomolecules

together with the eluent, an aqueous solution, pass through the column. In analogy to the

material in the column, eluent and sample constitute the mobile phase. A typical experiment

lasts up to one hour whereby the eluent’s ratio e. g. of acetonitrile to water is constantly

increased.

Apart fromRP chromatography, ion exchange chromatography (IEX) is frequently utilized for

the separation of proteins. �e technique, invented already in the 1960s, allows to distinguish

molecules that di�er only by one charged amino acid (Westermeier et al. 2008).

�e biggest advantage of liquid chromatography is its possibility to directly couple this protein

separation method to a mass spectrometer (McCormack et al. 1997).�is does not only avoid

additional experimental steps but also eliminates a possible source of errors.

3.2.3.2 Advanced separation –multidimensional protein identification
technology

Multidimensional protein identi�cation technology (MudPIT) is an enhanced version of the

liquid chromatography approach that �nally gave rise to shotgun proteomics (Wolters et al.

2001).�e separation technology is based on two di�erent columns. �e �rst utilizes a strong

cation exchange material (SCX), similar to the material used in IEX. At second, a reversed

phase (RP) material is used in the stationary phase. �e approach is characterized in that the

chromatography is conducted in cycles. In each cycle, a di�erent salt concentration causes
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speci�c peptides of the sample to pass the �rst column (SCX). A following eluent then allows

peptides to elute from the RP directly into a coupled mass spectrometer. Compared to other

approaches such as 2D-electrophoresis, MudPIT allows for a signi�cant higher number of

identi�ed and quanti�ed proteins (Netterwald 2007).

Figure 3.10 – ESI: a solution containing proteins is sprayed through a capillary. Due to an electric �eld between
the capillary opening and a counter electrode, charged ions are moved to the surface forming the so called Taylor

cone. Small drops separate from the cone, and supported e. g. by a nitrogen �ow the solvent evaporates. As

soon as the electrostatic repulsion within the droplets is bigger than their surface tension, the droplets explode

(Coulomb explosion). Only charged, free gas-phase ions survive and are further pulled into the mass analyzer by

the applied electric �eld.

3.2.3.3 Ionization – electrospray

When Koichi Tanaka was honored in 2002 with the Nobel prize for his invention of a so�

ionization method, he had to share this award with a second scientist, John Fenn, who

implemented a further method capable to ionize large biomolecules called electrospray

ionization (ESI). Figure 3.10 illustrates the process. A solution consisting of protein ions

and a solvent is sprayed through a capillary. �is allows the direct coupling of a HPLC

system, and thereby a continuous and automatic analysis of a complete proteome sample.

An electric �eld with a typical voltage of 2-3 kV is installed between the capillary opening

and a counter electrode at the entrance to the mass analyzer. Due to the applied electric

potential, charged ions move to the surface as soon as the solution leaves the capillary. At

this point, two contradicting forces interplay: the surface tension works against the electric

potential, which pulls the solution to the counter electrode. �is leads to a conical formation

of the solution’s surface, a so called Taylor cone. Small drops dissolve from the surface, and

in the most widely accepted theory the ionization process can be explained as follows: Due

to evaporation supported e. g. by a drying �ow of nitrogen gas the volume of the drops

decreases and included ions are crowded together. As soon as the Raleigh limit—given by

the electrostatic repulsion within the droplets extending the surface tension—is reached

the droplets break up in the so called Coulomb explosion. �e process repeats until any
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remaining solvent is evaporated. At the end, free gas-phase ions survive, and are further

pulled into the mass analyzer (Whitehouse et al. 1985; Kebarle and Verkerk 2009). Here, the

quadrupole as well as the ion trap and its variations are the analyzers that are most o�en

found in proteomics laboratories.

3.2.3.4 Analyzer – quadrupole

Figure 3.11 illustrates the principle of a quadrupole mass analyzer. Four metal rods, arranged

in parallel and in the same distance to each other give the analyzer its name (Paul and

Steinwedel 1960). �e rods located diagonally opposite are each operated with the same

direct voltage (U) and an additional high-frequency alternating voltage (V). Due to this
construction the analyzer has four poles characterized by the following two voltages at a time

point t:
U1(t) = −U + V sin (ωt) and U2(t) = U − V sin (ωt) (3.4)

While the ratio between U and V has to remain constant, the value of U (and accordingly
V) as well as those of the frequency ω are variable. During measurement, the polarity of
these poles is constantly �uctuating. �ereby, a charged ion entering the mass analyzer is

alternately pulled and pushed to the rods. �e main concept is now based on the following

principle: for each ion with a distinct m/z value there exists a particular value of U that
allows the ion to �y through the quadrupole on an oscillating path, whereas the trajectories

of other ions are instable. To record a full mass spectrum, e. g. in a range of 300 to 2000 m/z,

the voltage level is constantly raised while a continuous �ow of protein ions, commonly from

a directly coupled HPLC and ESI ion source, moves into the analyzer.

Figure 3.11 –�is �gure illustrates the principle of a quadrupole mass analyzer. Four metal rods are arranged
in parallel, whereby the two rods located diagonally opposite are each operated with the same direct current (U)
and an additional high-frequency alternating voltage (V ). Given a charged ion with a distinct m/z there exists a
corresponding value of U (and V) that allows the ion to pass the quadrupole. Due to �uctuating polarity the
ions do not move on a distinct path but oscillate with a �xed amplitude. During a full mass scan the voltages are

constantly raised allowing the successive measurement of all ions with a corresponding m/z value.
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3.2.3.5 Analyzer – ion trap

�e principle of the ion trap, also called quadrupole ion trap, is closely related to the

quadrupole mass analyzer with its four metal rods. It is also called Paul trap named af-

ter its inventor, Wolfgang Paul (Paul and Steinwedel 1953), who was therefore awarded with

the Nobel prize in 1989. As illustrated in Figure 3.12 the ion trap consists of a ring electrode

and a pair of hyperboloid-shaped end cap electrodes. Similar to the quadrupole a direct

voltage U superimposed with a radio frequency alternating voltage V is applied on the ring
electrode. �e resulting electric �eld forces incoming protein ions to traverse on a circular

path within the inner region of the ring electrode—the ions are trapped. �is is usually

supported by Helium gas in the inside of the analyzer leading to a deceleration of the ions

moving into the trap through a hole in the end caps. To measure the m/z values of the ions,

the amplitude of V is constantly raised. At a particular value of V the trajectory of all ions
having a speci�c m/z value gets unstable. �e ions are, �guratively speaking, thrown out

of the trap through a hole at the second end cap, and can then be measured at a detector

(McLuckey et al. 1994).

Figure 3.12 – Simpli�ed illustration of the principle of an ion trap. In the cross section view the ring electrode
as well as as the two hyperboloid-shaped end cap electrodes are shown. An electric �eld at the ring electrode

forces incoming protein ions to traverse on a circular path—the ions are trapped. At a particular voltage the

trajectory of all ions having a speci�c m/z value get unstable, and the ions are, �guratively speaking, thrown out

of the trap.

�ere are two further developments of this technology that have exerted a great in�uence

on mass spectrometry-based proteomics. �e Fourier transform ion cyclotron resonance

(FT-ICR) constitutes an improvement of the traditional ion trap in terms of accuracy with

an impressive resolution of up to R = 1, 000, 000. While Lawrence and Livingston already
introduced the basic idea of the method on a conference in 1931, the �rst applications of

FT-ICR-MS were made possible not before the 1970s (Comisarow and Marshall 1974). �e

technique allows to distinguish ions that di�er only by a few atoms, and is thereby ideally

suited for the detection of post-translational modi�cations. During measurement, ions are

trapped in a magnetic �eld and forced into an orbital (or cyclotron) movement. By the

application of a radio frequency pulse parallel to the magnetic �eld, ions are subsequently

forced into larger orbits, and �nally pass a detector, which then leads to the determination

of their masses. For this purpose, however, a strong magnetic �eld has to be applied that
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is typically achieved by the utilization of superconducting magnets. For that reason, this

kind of analyzer belongs to the most expensive types of mass spectrometers (Hamdan and

Righetti 2005).

A second important development in this �eld was the introduction of the so called Orbitrap

(Makarov 2000).�e operating principle of this analyzer is similar to the FT-ICR, but instead

of a magnetic �eld, ions are trapped in an electrostatic �eld, in which they orbit around an

electrode. As the system does not demand the expensive cooling e�ort of a superconducting

magnet, this type of mass analyzer is comparably less cost-intensive. Nevertheless, a compara-

bly high mass accuracy and resolution power of up to R = 150, 000 can be reached. �e LTQ
Orbitrap by�ermo Scienti�c is probably one of the most o�en found mass spectrometers

in laboratories that conduct high-throughput proteome experiments.

3.2.3.6 Fragmentation – collision-induced dissociation

An ESI or MALDI ion source coupled to any kind of analyzer delivers the m/z values of the

complete proteins or its peptides under investigation. �e structure of the protein in terms

of its amino acid composition and order is, however, not determined. �is is achievable by a

combination of di�erent mass analyzers. A �rst analyzer is used to �lter all ions having a

certain m/z value. As the �ltered ions pass a following chamber, usually a second analyzer, a

collision gas is induced that leads to a de�ned fragmentation of the ions. �is is referred to as

collision-induced dissociation (CID). A third mass analyzer then enables the measurement

of the molecular weights of the fragments. Typical combinations include two quadrupole

analyzers, one operated in scanning mode and used for �ltering and another one operated

onlywith radio frequency for fragmentation. In this so calledRF-onlymode any ion is allowed

to pass through while the collision gas causes the fragmentation. To scan the fragments’ m/z

values either a third quadrupole may be employed (Yost and Enke 1978) or a TOF analyzer

(Chernushevich et al. 2001). �e resulting mass spectrum is commonly referred to as MS/MS

or MS2 spectrum. In a typical setup, at �rst a full MS scan is performed from which, at

second, one or more of the most abundant ions are chosen for fragmentation—the so called

precursor ions. For this reason, the full scan is sometimes termed the parent spectrum.

3.2.3.7 Protein identification –MS/MS ion search

�e fragmentation pattern resultant from collision-induced dissociation (CID) provides a

fundamentally improved solution to identify the proteins contained in a sample in compari-

son to the peptide mass �ngerprinting approach. A �rst information that is known about

a protein is the exact weight of its peptide as its m/z value has been used for �ltering in

the �rst mass analyzer. In combination with the knowledge gained from the proteolytic

digestion this gives a �rst hint to the protein’s identi�cation. A second information is the

fragmentation pattern that has been induced by the collision gas. Figure 3.13 illustrates the

possible ’pieces of this puzzle’. Similar to peptide mass �ngerprinting the observed molecular

weights can be compared to expected fragment sizes of known proteins of the same or a
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related organism (Eng et al. 1994). �is is generally referred to as MS/MS ion search (MIS).

�e most sophisticated approaches promise to determine the sequence of amino acids based

solely on these fragment masses without taking any additional information such as sequence

data into account (Rehm 2006).

Figure 3.13 –Nomenclature for possible peptide fragments that result from desorption ionization methods
such as collision-induced dissociation (©Roepstor� and Fohlman 1984, p.1). In general, the backbone of a peptide

is cleaved at one of three distinct positions. Dependant on this position, each N-terminal fragment is denoted

with the letter “a”, “b”, or “c”, each C-terminal fragment with the letter “x”, “y”, or “z”. In the depicted example,

each potential fragment of a peptide consisting of four amino acids is shown.

3.3 Protein quantification

How wonderful it would be if the intensities recorded by a mass spectrometer would directly

mirror the abundances of the proteins contained in a sample. Obviously, it may be thought

that the more ions are in a sample the more ions may hit a detector. �is is however and

unfortunately not true. It is even worse: “Intensities can vary greatly across peptides from the

same protein” (Karpievitch et al. 2009, p.2028) and gets worser as “the same sample can result

in di�erences in the peak intensities of the peptides from run to run” (Zhu et al. 2010, p.1).�e

reasons therefore are manifold but are mostly caused by the fact that in both so� ionization

technologies, MALDI as well as ESI, the energy transfered in the ionization process may vary

between di�erent peptides—particular ions have a higher ionization e�ciency. Moreover,

some ions are even suppressed in the analysis (Tang et al. 2004).

As a solution to this problem it may therefore be bene�cial to add an internal standard, or

more generally, a second sample as a reference to the measurement. Accordingly, a protein’s

quantity is, thus, not measured in an absolute manner but relative to this reference. In mass

spectrometry, stable isotopes can be employed for this purpose. Other methods to gain

relative abundance values of proteins are based on 2D-electrophoresis and the utilization of

di�erent dyes.
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Figure 3.14 –�e three isotopes of hydrogen and their atomic nuclei.

3.3.1 Stable isotope labeling

Isotopes are atoms of the same chemical element having the same number of protons but a

di�ering number of neutrons. As illustrated in Figure 3.14 for the element hydrogen, this has

an in�uence on the atomic mass of an isotope. While some isotopes are radioactive, the so

called stable isotopes rarely show deviating chemical properties. Isotopes occur with varying

natural abundances. �e lightest isotope of the element nitrogen 14N, for example, has a

natural occurrence probability of about 99.63%, and only approximately 0.37% of all nitrogen

isotopes have a weight of ≈15 Dalton (15N). �e impact of isotopes in mass spectrometry
becomes apparent by the fact that the measurement of one ion does usually not only produce

one distinct signal but instead a series of signals. As the di�erence in mass between most

isotopes is approximately one Dalton in addition to the so called monoisotopic peak, which

is constituted of the most abundant isotopes, several isotope peaks occur at regular intervals

(see Figure 3.15 for an example). Due to this feature, it seems reasonable to utilize stable

Figure 3.15 –Mass spectrum of a single peptide (FNYDSVMQVPK) showing the peaks resultant from di�erent
isotopes.

isotopes for the labeling of two or more biological samples. A�er mixture of these di�erently

labeled samples their signals are then distinguishable in a mass spectrum. Among the most

frequently used strategies to incorporate an isotopic label are metabolic labeling (Oda et al.

1999), SILAC (Ong et al. 2002), and the iTRAQ (Ross et al. 2004) approach. �eir advantages
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and disadvantages are mainly characterized by the way in which a mass tag is incorporated—

either in vivo or in vitro—and their labeling e�ciencies in terms of the number of proteins

that may have the label built in. A special labeling approach that �nally allows to draw

conclusions on the absolute concentration of a protein in a cell is the so called AQUAmethod

introduced by Gerber et al. (2003).

3.3.1.1 Metabolic labeling using stable isotopes

�emetabolic incorporation of a label (Oda et al. 1999) is o�en termed the gold standard

of labeling (Haegler et al. 2009). Gouw et al. (2010, p. 13) constitute that “clearly, the best

place to introduce an internal standard is by metabolically incorporating the stable isotope

into living organisms or cells, thereby producing the lowest variation before any sample

processing occurs”. Frank et al. (2009, p.1) state: “For an accurate and sensitive comparative

proteome analysis metabolic labeling of one sample with a stable isotope is the preferred

approach. �is method results in an enrichment of the stable isotope in every protein in vivo,

which can be compared with an unlabeled proteome by combining the two samples prior to

MS analysis.”

Figure 3.16 –�is illustration gives a simpli�ed overview of the typical work�ow to gain relative abundance
values of two stable isotope labeled proteins. While a �rst sample is grown on media containing isotopes in

naturally abundances, a second sample has incorporated a stable isotope such as
15
N. A�er protein extraction

the samples are mixed and analyzed using LC-MS/MS.
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Figure 3.17 –�e shown example illustrates a subsection of a mass spectrum recorded for two peptides of the
protein lcl∣BSU00690. While the �rst peptide (red) is expected to have the natural occurring distribution of

isotopes, for the second peptide (green) the isotope
15
N is approximatively at 98 percent.

It is a crucial prerequisite for the applicability of metabolic labeling that there is a possibility

to metabolically incorporate the label in an organism. �is can be achieved by the addition of

isotopically-enriched amino acids or salts as for example 15N-labeled tryptophan or sulphate

to the growth medium (Otto et al. 2010). Although fast-growing organisms such as bacteria

are most suitable for this labeling strategy (Haußmann et al. 2009; Fränzel et al. 2010a)

the number of labeled organisms is steadily increasing. Fed with 15N-labeled bacteria or

yeast the list of labeled organisms includes the nematode Caenorhabditis elegans, the �y
Drosophila melanogaster as well as the mouseMus musculus (Frank et al. 2009; Krijgsveld
et al. 2003).

Figure 3.16 illustrates the typical work�ow of an experiment that compares two samples

utilizing stable isotope metabolic labeling. While a �rst sample is grown onmedia containing

isotopes in naturally abundances, a second sample has incorporated a stable isotope such as
15N. A�er protein extraction the samples are mixed and analyzed using LC-MS/MS. Protein

identi�cation is obtained by MS/MS ion search. A relative protein abundance value can

then for example be calculated if the intensities observed for both variants of a protein are

summed up and set in relation (see Figure 3.17 for an example mass spectrum).

3.3.1.2 Metabolic labeling using amino acids: SILAC

Ong et al. (2002) proposed awidely-applied labelingmethod that utilizes isotopically enriched

amino acids. As the name—stable isotope labeling by amino acids in cell culture (SILAC)—

suggests the label is metabolically incorporated in the cells during their cultivation. Common

amino acids used for this purpose are 13C6 arginine and
13C6 lysine both introducing a mass

shi� of six Dalton. In contrast to metabolic labeling employing e. g. a 15N-labeled salt, the

successful comparison of two SILAC-labeled samples depends on the replacement of a

speci�c amino acid by its heavy variant. Looking at this the other way around, this obviously

allows to analyze only those peptides that comprise the labeled amino acid. Furthermore, the

organism under investigation needs to be auxotroph for the targeted amino acid as otherwise
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a complete incorporation could not be guaranteed (Gouw et al., 2010). An advantage of

SILAC (in comparison to metabolic labeling using stable isotopes) is the fact that a labeled

peptide is shi�ed by a de�nite m/z value while the general distribution of the isotopic peaks

remains unchanged—a circumstance that facilitates the quanti�cation. �is is exemplarily

illustrated in Figure 3.18.

Figure 3.18 –�is Figure illustrates the di�erences in mass but also in the form of the isotopic distribution for
two di�erent metabolic labeling approaches: while on the le� side the heavier peptide (green) is labeled with

15
N

with a common enrichment of 98%, on the right side
13
C6

15
N4 arginine has been utilized for labeling.

3.3.1.3 Chemical tags: ICAT, ICPL, iTRAQ

With their proposal of a novel labeling approach based on a class of chemical reagents called

isotope-coded a�nity tags (ICAT) Gygi et al. (1999) belong to the pioneers in quantitative

proteomics. �e application of their reagent leads to a transformation of the side chains of

all cysteinyl residues in a protein. A�er extraction, proteins are labeled with a light and a

heavy form of the ICAT molecule containing either deuterium or ’normal’ hydrogen. �is

di�erential labeling results in a mass shi� of eight Dalton. �e samples are combined and

tryptically digested. A clear limitation of the labeling method is its speci�city to peptides

containing the amino acid cysteine. Prior to MS/MS analysis ICAT-labeled peptides are,

therefore, isolated by a speci�c a�nity chromatography to remove any bias from untagged

peptides.

An improvement to ICAT that circumvents this limitation was developed by Schmidt et al.

(2005). �e approach termed isotope-coded protein label (ICPL) causes a derivatization

reaction of the free amino group of proteins. It thereby allows to chemically label all proteins

contained in an extracted protein sample.

A third, commonly applied chemical labeling strategy constitutes iTRAQ (Ross et al. 2004).

While the original ICAT is practically limited to two labels, iTRAQ includes a set of up to

eight isobaric reagents. �ese chemically modify peptides at the N-termini as well as at lysine

side chains. In contrast to the aforementioned labeling methods quanti�cation is based on

the peptide’s fragmentation a�er CID. Each reagent yields individual signatures that are

distinguishable in the mass spectrum with mass shi�s ranging from 113 to 121 Dalton.

Both advantage and disadvantage of ICAT, ICPL as well as iTRAQ is the fact that proteins

have to be extracted before any labeling can be performed. While this allows the comparison
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of organisms that are di�cult to cultivate, it introduces at the same time an incalculable

source of variation due to potentially di�erent sample handling.

3.3.1.4 Absolute quantification: AQUA

While all aforementioned methods are only able to measure the relative abundances of

proteins contained in a sample, Gerber et al. (2003) introduced a strategy termed AQUA

to obtain an absolute quanti�cation. �eir idea is based on the utilization of arti�cially

synthesized peptides with incorporated stable isotopes as an internal standard. Following

protein harvesting, these synthesized peptides are added to the sample in a known volume.

It is the crucial point of this analysis that a measurement can only be performed if both a

labeled as well as an unlabeled variant of a speci�c peptide are available. �e applicability of

AQUA is therefore, in general, limited to a small number of proteins of interest.

3.3.2 Special application: analysis of protein turnover

Protein quanti�cation using a metabolically incorporated label such as heavy stable nitrogen

isotopes allows to determine protein abundance values by setting protein amounts, for exam-

ple, under two di�erent environmental conditions into relation. Since these measurements

are relative, they, however, do not allow to formulate any statement about the causes of

deviating protein amounts. An increased ratio, for instance, may originate from a faster

synthesis rate of a protein at one condition but it may also be resultant from a reduced protein

degradation. Pulse chase experiments allow to gain knowledge about the synthesis and degra-

dation rates of a protein, which is vital for an in-depth interpretation of the protein turnover

changes that occur during physiological adaptation processes or an emerging disease. In

such experiments, a label is impulsively introduced in a living organism or cell, for example,

in form of an essential nutrient such as 15N-labeled glucose. It is then investigated whether

and to what extent the label is incorporated in newly translated proteins. Already in the late

1940’s, Sprinson and Rittenberg (1949) employed 15N-labeled glycine as a diet to measure

the utilization of nitrogen for protein synthesis. �e analysis of protein degradation can

be conducted in a similar manner by comparing the amounts of a protein before and a�er

an induced pulse given that no newly synthesized protein in�uences the measurement, for

example, if cell cultures are grown in a chemostat at steady-state. Several experiments have

been devised and implemented to monitor protein synthesis to degradation rates, starting

from a 15N-algae diet for mice (Price et al. 2010), to 13C6-Arginine for the investigation of

human cells (Pratt et al. 2002; Doherty et al. 2009). A very interesting approach on this

issue was carried out by Jayapal et al. (2010) on Streptomyces coelicolor: �e transfer of 13C6
15N4-arginine-labeled cells into unlabeled medium allowed the tracing of newly synthesized

proteins. In addition, the chemical labeling method iTRAQ was employed to tag all SILAC-

labeled proteins at four time points a�er the chase, which in turn made it possible to monitor

protein degradation.
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3.3.3 Two-dimensional electrophoresis

In the �rst instance, 2D-electrophoresis serves as a means to separate complex protein

mixtures. Moreover, the technique also allows to make a statement about protein quantities—

spot sizes give hints on the relative amount of each separated protein. While the traditional

approach based on IEF and SDS-page is limited in terms of validity and reproducibility,

e. g. due to inhomogeneity in di�erent gels, a large proportion of the di�culties is avoided

by the DIGE technique, which utilizes di�erent dyes to compare two or more samples in

the same gel (Lilley and Dupree 2006). However, the applicability of 2D-electrophoresis has

several drawbacks concerning, for example, proteins with exceptional properties such as a

high molecular weight. �is is particularly problematic with regard to the identi�cation of,

in general, hydrophobic membrane proteins—doubtlessly a group of proteins that ful�lls

most important biological functions in a cell. Another limitation of the technology results

from the typical complexity of proteomics samples. It is not unusual that a single spot in a

gel does not contain only one individual enzymatically digested peptide species but instead

a mixture of peptides, which moreover not necessarily have to belong to the same protein

(Hamdan and Righetti 2005).

3.3.4 Label-free approaches

Apart from labeling approaches, which are o�en time-consuming, laborious, and compara-

tively cost expensive, a variety of strategies have been conceived (and not seldom discarded)

to quantify proteins in a sample. A simple but nevertheless reasonable method, which is o�en

practiced in LC-MS/MS experiments, is to count the number of times a peptide has been

observed during a measurement. �e idea of ’spectral counting’ is based on the assumption

that the more of a protein is in a cell, the more enzymatically digested peptides should be

present in the investigated sample, which in turn should result in an increase in detectedmass

spectra for this protein. In fact, Liu et al. (2004) found correlations between the number of

mass spectra and known protein abundances greater than r2 = 0.9997, but only for a mixture
of six protein markers. Hendrickson et al. (2006) performed a comparison of two datasets

onMethanococcus maripaludis gained by spectral counting, on the one hand, and metabolic
labeling using 15N, on the other hand. In summary, a rather low correlation of r = 0.58 was
observed between all investigated abundance values for all proteins. If only regulated proteins

were taken into account, the correlation increased to r = 0.89, but still there remained large
di�erences in the data. �ey draw the conclusion that spectral counting “performs poorly

when counts are low [...], but performs quite well when counts and signal-to-noise are high”,

but also continue noting that “the low counts and (or) low signal-to-noise portion of the

data is o�en of the greatest experimental interest” (Hendrickson et al. 2006, p.7).

In recent times, the idea of spectral counting has been improved and extended. A very similar

method is not to count each spectrum individually but instead add up the number of all

uniquely identi�ed peptide sequences per protein. ’Absolute Protein Expression’, abbreviated

APEX (Lu et al. 2007), goes a step further and combines spectral counting with additional
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information derived from the amino acid sequence of a peptide including the con�dence in

the peptide’s detection (see section 4.2). In this way, peptides that are expected to occur only

rarely in an experiment are weighted with a higher score. Another approach, the ’normalized

spectral index (Gri�n et al. 2010), considers both the spectral as well as the aforementioned

peptide count in conjunction with intensity of the fragment ion (MS/MS) recorded by the

mass spectrometer.

3.4 Shedding light on the importance of mass spectrometry
for proteome research

�is chapter aimed at highlighting the importance of mass spectrometry on proteomics not

only for the identi�cation of biomolecules but also for the assessment of their quantities,

in particular, using heavy stable isotopes. Two di�erent work�ows have been exemplary

introduced, and demonstrate the diversity of approaches to gain knowledge about the pro-

teins contained in a cell or organism. As shown, both work�ows have their advantages

and disadvantages. MALDI-TOF mass spectrometry, typically used in combination with

2D-electrophoresis, allows to precisely characterize individual proteins. However, even

though individual worksteps can be automated, e. g. using picking roboters, the experimental

procedures are comparably tedious and time-consuming. Moreover, protein separation using

2D-electrophoresis o�en excludes interesting groups of proteins such as membrane proteins.

In contrast, LC-MS/MS, in particular the MudPIT approach, o�ers to investigate complete

proteomes in high-throughput experiments, which also facilitates the utilization of stable

isotopes for labeling.

With the introduction to these work�ows, the challenges are pointed out that have to be

tackled by an integrated so�ware solution to support experimenters in the conduction of

these experiments. For example, a data model for mass spectra but also a user interface to

view and process this type of data needs to take into account that a sample in a MALDI-TOF

experiment, which has been extracted from a spot in a 2D-gel, results in only one mass

spectrum, while an LC-MS/MS experiment o�en generates thousands of mass spectra from

a single sample.
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Chapter 4

State of the art in proteomics data analysis

A typical proteomics experiment may comprise more than one hundred liquid chromatogra-

phy runs on a mass spectrometer, which in turn can consist of up to 40,000 individual mass

spectra. �enumber of identi�ed peptides (in case ofMS/MS)may then easily reach hundreds

or thousands, accounting, for their part, for several hundred proteins. It seems obvious that

a thorough analysis of these amounts of data which constitutes a pile of relevant but also

irrelevant information demands computational assistance. For this reason, the proteomics

community o�ers a plenitude of so�ware solutions aiming at two primary objectives: �rstly,

the provision of comprehensive data management capabilities to organize and structure the

data and all associated meta data, and, secondly, the provision of analysis functionality to

extract all relevant and important features, so to say, to pick the cherries out of the proteomics

information cake.

4.1 Data standards in proteomics

An integral part of every proteomics experiment is the qualitative assessment of the proteins

contained in a sample. In many cases, this is enhanced by the determination of protein

abundance values to gain quantitative information about a proteome. �e availability of

a profound data basis represents a key element for the provision of subsequent analysis

methods. Within the proteomics community, therefore, e�orts are being made to create

common data standards for the storage of experimental data and meta-data. �is appears

particularly important with regard to the manifold vendor-speci�c formats in which mass
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spectrometry instruments produce their results. O�en neglected, it is also the long-term

archiving of experimental data that places particular demands on the storage formats. �ere

is the risk of a ’semantic’ data loss if a stored �le is not readable any more due to the absence

of a so�ware application that could interpret its content. At this point, proprietary data

formats have a considerable disadvantage in comparison to open document standards as

implementation details are o�en inaccessible and typically bound to a speci�c company

(Neuroth et al. 2009).

4.1.1 Human Proteome Organization: PSI, MIAPE andMIBBI

Inspired by the Human Genome Organization (HUGO), which supports collaborations

between genome scientists in international projects, the Human Proteome Organization

(HUPO) was founded in 2001 “to help increase the awareness of proteomics across society

and biomedicine—in particular, the bene�ts that are o�ered by knowledge of the human

proteome” (Huber 2003, p.75). �e consortium unites several national and international

research groups with an academic, governmental as well as industrial background. An

ambitious project initiated by the organization is the “Human Proteome Project”. �eir

declared objective is no less than the determination of the quantities and locations of all

human proteins and their interactions (Pearson 2008).

�e HUPO’s Proteomics Standards Initiative (PSI) aims at the development of common data

standards in proteomics (Orchard et al. 2003). Intended to standardize the information about

conducted experiments and to facilitate the exchange of data, the project suggests a set of

guidelines known as the minimum information about a proteomics experiment (MIAPE,

Taylor et al. 2007). Individual workgroups focus on all aspects of proteomics experiments

starting from data generation and analysis to the description of protein interactions and

protein modi�cations (Taylor et al. 2006). As an example, the mass spectrometry group

targets “the minimum information required to report the use of a mass spectrometer in a

proteomics experiment, su�cient to support both the e�ective interpretation and assessment

of the data and the potential recreation of the work that generated it” (Taylor et al. 2008a, p.1).

�e guidelines are following other e�orts for example in the �eld of transcriptomics. Here,

MIAME—the minimum information about a microarray experiment (Brazma et al. 2001)—

beared fruit as so�ware is developed in accordance to the guidelines and journals require

MIAME-compliant transmission of data (Dondrup et al. 2009). MIAPE is registered with the

“minimal information for biological and biomedical investigations”-project (MIBBI) which

provides a general resource for “collaborative minimum information checklist development

projects” (Taylor et al. 2008b, p.889). �e project aims to harmonize the developments in

di�erent �elds of research from genome sequencing to �ow cytometry.

4.1.2 Institute for systems biology

Apart from the HUPO’s initiatives, other groups are engaged in the development of data stan-

dards in proteomics. �e Seattle Proteome Center (SPC) at the Institute for Systems Biology
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aims to bring together knowledge in the �eld of proteomics. In 2005, the group proposed a

set of guidelines similar to the ideas pursued with MIAPE stating which information should

be included in the publication of experiments (Bradshaw 2005). �e approach covers the

reporting of the method which generated the mass spectrometry raw data, the algorithm

used to identify peaks and its parameters as well as lists of identi�ed and quanti�ed proteins

and their signi�cance.

4.1.3 Data standards for mass spectra

�e variety of mass spectrometer systems is vast, and their range of application in the �eld of

proteomics mainly depends on the intended research objective of an experiment. Although

most vendors aim to provide comprehensive so�ware tools for the analysis of their data, in

many cases specialized solutions have to be developed and implemented—a work that can

o�en only be done by public research institutes or universities. In this connection, it is of

course problematic if instruments produce their data in a multitude of data formats, which

are moreover not seldom proprietary. For this reason, there is a strong need to unite the

storage of mass spectra.

4.1.3.1 mzXML

Developed at the Institute of Systems Biology, mzXML (Pedrioli et al. 2004) represents an

open and generic data format to store mass spectra in form of an extensible markup language

(XML) document. �e format supports MS data e. g. fromMALDI-TOF analysis but also

tandem mass spectrometry and even MSn. A range of tools is provided to convert vendor-

speci�c formats, parsers that are aware of an index-structure integrated into the format, and

tools for visualization and validation. An interesting implementation detail concerns the

storage of peak information. �is would best be stored in a binary format, simply to preserve

disk space. However, as binary data cannot be directly incorporated in XML documents, this

was circumvented by base64-coding of the data.

4.1.3.2 mzData andmzML

In 2004, theHUPO’s PSI proposed a datamodel for the storage ofmass spectra data calledmz-

Data (Orchard et al. 2004). Similar to the aforementioned mzXML, the format utilizes XML

to structure its content. In addition, tools are provided for data conversion and visualization.

It was not until 2008 before both initiatives to implement a common standardized data

format for mass spectrometry data �nally realized that two independently developed formats

are obviously incomprehensible and counterproductive. Under the roof of the HUPO the

two e�orts were joined, and resulted in the new format mzML (Martens et al. 2010). �is

combines advantages of both formats, and furthermore integrates new aspects such as the

possibility to assign di�erent instrument con�gurations to individual mass spectra.
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4.1.4 Ontologies and controlled vocabularies

Closely related to the e�ort to implement common data standards in proteomics is the

necessity for a controlled vocabulary. Purpose of such an ontology is the unambiguous

annotation of an experiment’s datasets and associated meta data. �e OBO Foundry aims

to coordinate the development of ontologies that support data integration in biological and

medical applications (Smith et al. 2007). In the context of genomics, the Gene Ontology

provides a standardized way for the description of gene functions (Ashburner et al. 2000).

Similarly, the individual workgroups of the PSI are publishing proteomics-speci�c controlled

vocabularies.

4.2 Software for protein identification

Mass spectrometry allows to determine the masses of any analyte under investigation (see

section 3.2). In a typical experimental work�ow proteins are subjected to a digesting enzyme,

which accordingly leads to the analysis not of a protein on the whole but instead of its

peptide fragments. It further depends on the applied technology and work�ow whether

the observed peptide masses are directly utilized to identify a protein by using its so called

’peptide �ngerprint’ (see section 3.2.2), or whether a peptide undergoes a further, second,

fragmentation as it is the case in MS/MS ion search (see section 3.2.3).

A variety of algorithms and so�ware applications have been developed for the purpose of

protein identi�cation. �e most ambitious and powerful approach allows to determine

a peptide’s amino acid sequence based solely on the spectral information of its MS/MS

fragmentation pattern. Granted that each possible peptide fragment (see Figure 3.13) gives a

distinct peak in the mass spectrum, each mass can be matched to a certain combination of

amino acids and it is thus possible to derive the complete sequence of amino acids of this

peptide. However, as soon as peaks aremissing e. g. due to non-ionized fragments or incorrect

peaks caused by foreign substances such as the solvent occur, the direct derivation gets di�cult

if not impossible. Moreover, the large number of possible amino acid combinations renders

the determination of a peptide’s complete amino acid sequence based on its mass spectrum

expensive and is, thereby, in many cases impracticable.

�e classical ’identi�cation strategy’ in mass spectrometry utilizes a library of prerecorded

mass spectra for a list of known compounds (Martinsen and Song 1985). Identi�cation then

relies on the comparison of an observed mass spectrum with this library. Perfectly �tted for

the �eld of metabolomics the approach renders useless in the face of the enormous number

of di�erent proteins and their possible enzymatic digestions.

A practicable way to gain knowledge of the proteins contained in a sample links the spectral

information with the information about proteins yielded by genome sequencing projects.

In peptide mass �ngerprinting, the expected fragment masses resulting from an enzymatic

digestion are compared to the observed masses in a mass spectrum (James et al. 1993). If

MS/MS fragmentation patterns are available this, additionally, can be taken into account.
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Mann and Wilm (1994) claim that in each MS/MS spectrum there exists at least a series

of peaks allowing to determine parts of the peptide’s amino acid structure. �ey proposed

a so�ware tool named PeptideSearch for protein identi�cation based on these ’peptide

sequence tags’ in combination with additional information such as the molecular weights

of other peptide fragments. Other approaches do not aim to determine an amino acid

structure directly from the mass spectrum, but instead compare a recorded mass spectrum

with theoretically expected patterns derived from sequence databases. �e list of search

engines that follows this approach includes OMSAA (Geer et al. 2004), ProbID (Zhang

et al. 2002), X!Tandem (Craig and Beavis 2004), and the two most prominent members

Mascot™ (Perkins et al. 1999) and Sequest™ (Eng et al. 1994; Yates et al. 1995).

4.2.1 Mascot™

Pappin et al. (1993) were the �rst to extend peptide mass �ngerprinting with a scoring

algorithm that takes the non-uniform distribution of peptide fragment sizes into account. As

depicted in Figure 4.1, which shows the molecular weight distribution of all possible tryptic

peptides of Xanthomonas campestris pv. campestris, smaller-sized peptides are, generally,
more frequent than heavier fragments. Moreover, the relative frequencies depend on the

overall protein size: for Xanthomonas campestris pv. campestris it seems to apply that the
higher the molecular weight of a protein the less frequent are smaller peptides.

Figure 4.1 –Histogram showing the distribution of all possible tryptic peptides of Xanthomonas campestris pv.
campestris (as of January 2010). Molecular weights for �ve di�erent classes of molecular weights. Smaller-sized
peptides are for example slightly more frequent for proteins having a maximal molecular weight below 50 kDa

compared to heavier proteins, in particular above 200 kDa.

Given a list of observed mass valuesm = {mi} for each mi , i ∈ {1 . . . p}, a corresponding
peptide mass m′

i is searched in an in silico-digested sequence database such that m′
i − ε ≤

mi ≤ m′
i + ε. Here, ε de�nes an error window, typically termed ’peptide tolerance’. A

score is then assigned to each ’hit’ based on the frequency with which peptides with the
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same mass mi are found in other proteins with a similar molecular weight. �e scores of

all matching peptide hits aggregate to a total score for each possible matching protein. In

the original publication, the �nal score was achieved by multiplication of the individual

distribution frequency scores. In addition, the score was normalized to “an ’average’ protein

molecular weight of 50kD to reduce the in�uence of random score accumulation in large

proteins” (Pappin et al. 1993, p.331). �e original so�ware tool was called MOWSE, and later

on commercialized as Mascot™ by the company Matrix Science Ltd. In subsequent years,

the ’search engine’ was extended to support MS/MS ion search (Perkins et al. 1999). Unique

to Mascot is the assignment of a probability to each protein score that re�ects in how far a

match may have occurred randomly taking into account, inter alia, the database size.

4.2.2 Sequest™

�e algorithm proposed by Eng et al. (1994) and Yates et al. (1995) is based on the idea that

CID fragmentation patterns generated by tandem mass spectrometry are reproducible and,

moreover, predictable. In an initial step, the experimentally determined mass of a precursor

ion is used to screen a sequence database for potential peptides with the same or at least a

similar molecular weight. �e algorithm then “converts the character-based representation

of amino acid sequences in a protein database to a fragmentation pattern” (Eng et al. 1994,

p.977). �erefore, the fragmentation pattern of each matching peptide is predicted, which

yields e. g. a list of type-b and type-y ions for a typical ion trap or quadrupole analyzer (see

Figure 3.13). �e m/z values of each fragment that might occur are calculated by summing

up the weights of the corresponding amino acids: given a peptide consists of J amino acids
a j , j ∈ {1 . . . J}, the i-th type-b ion corresponds to the sum of the mass values of its amino
acids bi = ∑i

p=1 ap + 1. Analogously, it applies for type-y ions that yi = MW −∑J
q=i aq, where

MW denotes the peptide’s overall weight.

All candidate peptides that matched the mass of the precursor ion are ranked according

to their total number of actually observed fragment ions. �ereby, a bonus is given for

consecutive matching fragments, in terms of the peptide’s amino acid sequence, in order to

further reduce the search space. To �nally identify a peptide (with a certain probability), a

cross-correlation analysis is utilized that directly compares the experimentally determined

MS/MS spectrum to the top-ranking candidates. For this purpose, arti�cial mass spectra are

constructed based on the lists of fragment ions that have been predicted for each potential

peptide. Both the recorded mass spectrum d and each arti�cially constructed mass spec-
trum c constitute discrete signals, which can furthermore be converted to comprise each N
individual peaks dn, cn with n ∈ 1 . . .N (e. g. by rounding on nominal masses). Given that
τ ∈ R represents an arbitrary o�set between both signals, a cross correlation can then be
calculated as follows:

Xd,c =
N
∑
n=0

dn cn+τ (4.1)

In the end, the best matching hit is characterized by the highest achieved cross-correlation

value, and—best of best—with a su�cient di�erence between this score value and that of a
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potentially second ranked hit. An improved version of the algorithm is nowadays used in

the commercially distributed so�ware Sequest™.

4.2.3 Evaluation of search results

Several problems may arise in protein identi�cation using sequence databases. Di�culties

start if the genome of an organism is not fully known. In such cases, a close relative may be

used or a comprehensive database that includes a diversity of sequenced organisms such as

the protein databases of the Universal Protein Resource (UniProt, �e UniProt Consortium

2008) or the National Center for Biotechnology Information (NCBI, Wheeler et al. 2008).

Di�culties continue, if search results are ambiguous: in peptidemass �ngerprinting observed

masses may match more than one peptide fragment, and in the worst case, the peaks of a

mass spectrum account not for a single protein but a mixture of proteins. Hufnagel and

Rabus (2006) argue that at least �ve and up to 50 peptides are necessary for an assured

identi�cation.

In MS/MS ion search another profound issue has to be addressed: even if a peptide has

been identi�ed based on its tandem mass spectrum with a high degree of certainty it may

be questionable which protein it belongs to. In eukaryotes, this is beset with particular

di�culties as di�erent splice variants of one gene may result in proteins that share a common

set of peptides.

Decoy databases: determining the false discovery rate of protein identification

A common strategy to evaluate the quality of peptide identi�cations is based on the utilization

of so called decoy databases (Moore et al. 2002; Peng et al. 2003; Elias and Gygi 2007).

�e approach can be best illustrated with a metaphorical example: a search for the word

’BOOT’—as a synonym for a certain peptide—in a German dictionary—analogously to a

sequence database—would yield a highly con�dent hit for a ’small sea vessel’. If, however, the

same word is also searched in an English dictionary—analogous to the genome of another

organism—the con�dence dwindles as a second meaning ’footwear’ becomes evident. In

protein identi�cation, the second ’dictionary’ is usually a copy of the original sequence

database where each protein’s amino acid sequence has been either randomized or simply

reversed. Using a modi�ed and, thereby, equally-sized version of the same database ensures

that also the probability of a false positive hit in both databases is, in theory, equal. Mass

spectra are then searched in both the original and this (target-)decoy database. �e resulting

hits give hint on the reliability of the identi�cations: If a search revealed FP number of hits
in the decoy database and TP hits in the original database a false discovery rate (FDR) can
be estimated as follows:

FDR = FP
FP + TP

(4.2)

�e practical application of the FDR manifests itself in the implementation of �lter criteria

for protein or peptide hits. Hits are, for example, ranked by their score or correlation value,
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and only those hits with a score above a threshold are accepted that result in an acceptable

FDR, e. g. of p ≤ 0.05 or 0.01.

4.3 Quantitative analysis of isotopically labeled data

�e incorporation of isotopic labels in protein samples allows for a relative and under certain

circumstances even absolute quanti�cation of protein amounts (see section 3.3.1). While,

in the end, the utilized label decides about the concrete implementation of a quanti�cation

method, all approaches to calculate relative abundance values between a labeled and an

unlabeled sample follow a common procedure as depicted in Figure 4.2. In general, the

information gained from a preceding protein identi�cation is used as basis to determine a

ratio, in the following also denoted asM value, for each identi�ed peptide. Beginning from the
mass spectrum that gave rise to the peptide identi�cation, the crucial task is to demarcate the

peaks that belong to the speci�c peptide and thereby determine its abundance. In case of the

chemical labeling method iTRAQ theMS/MS scan can be utilized for quanti�cation, whereas

in most other approaches the full MS scan has to be used. One reason for this is the fact that

in many cases only for one of the two peptides—either the labeled or the unlabeled variant—a

corresponding MS/MS scan has been (automatically) recorded. �erefore, the complete

information for quanti�cation is only available in the parent spectrum (see 3.2.3.6). �e

known amino acid composition of the peptide can be translated into amolecular composition

(4.2A), and under consideration of the utilized label the theoretically expected isotopic

distribution resultant from a mass spectrometry analysis of this peptide can be estimated

(4.2B). �is gives hint to the exact m/z ranges in which the peaks of the labeled as well as

the unlabeled variant have to be expected (4.2C) in the corresponding mass spectrum. In

this context, it is important to consider a peptide’s charge state as it leads to a division of the

observed mass by a factor equal to the value of the charge.

If protein separation has been performed by liquid chromatography, the gained temporal

information provides a possibility to signi�cantly improve a following quanti�cation—the

elution of a peptide can be taken into account. �is is demonstrated in Figure 4.3 for a

number of subsequently recorded mass spectra: the fact that a peptide elutes in a time frame

of a few seconds allows the extraction of ion chromatograms (EIC or XIC) for each labeled

and unlabeled peptide which can then be used for quanti�cation. In the following a selected

choice of so�ware tools is introduced. In accordance with the objectives of this work, the

mentioned algorithms will mainly concentrate on metabolic labeling approaches. A detailed

discussion and comparison of di�erent applications can be found for example in Nesvizhskii

et al. (2007), and Mueller et al. (2008).
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Figure 4.2 –General procedure to calculate relative abundance ratios of two peptides: one unlabeled, and one
fully labeled (in the example with heavy stable nitrogen). A) In general, the information gained from protein

identi�cation, namely the amino acid sequence, charge state, modi�cations and the associated protein accession

number, are used to calculate B) each peptide’s molecular composition and its theoretical isotopic distribution.

In this context, it is of no relevance if both peptide variants have been identi�ed in a preceding database search.

In general, the type of labeling is known a priori and the missing information can be deduced from the available
molecular composition of a peptide. C) Based on the m/z ranges determined by the isotopic distribution, the

associated peptide intensities can be extracted from the recorded mass spectrum.

4.3.1 ASAPRatio

ASAPRatio (Li et al. 2003) has been developed for the quanti�cation of ICAT and SILAC

labeled proteins from LC-MS/MS data. �e process to gain quantitative values not only for a

speci�c peptide but complete proteins consists of several steps.

At �rst, based on present MS/MS peptide identi�cations, ion chromatograms are extracted

using the �rst three peaks of each unlabeled peptide and its labeled partner. �e two chro-

matograms are smoothed using a Savitzky-Golay �lter (Savitzky and Golay 1964) to eliminate
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Figure 4.3 – If peptides have been separated using chromatography, quanti�cation can signi�cantly be improved
if a peptide’s elution is factored into the calculation. �e fact that a peptide elutes not only at a de�ned time point

but, typically, in a time frame of a few seconds ion chromatograms can be extracted (EIC) for each labeled and

unlabeled peptide.

unwanted di�erences in the measurements. A�er both elution peaks for the labeled as

well as the unlabeled peptide are detected from the smoothed chromatograms, the relative

abundance of a peptide is calculated by setting the areas under the elution peaks in relation.

Before a measurement is accepted, peak intensities in the neighborhood of each detected

elution peak are used as an estimate of present background noise. It is then investigated

whether the ratio between the peak apexes and this background exceeds a given threshold.

ASAPRatio, in addition, allows to take into account any elution peak shi� between the

labeled and the unlabeled peptide. �is may, for example, result from the labeling e. g. with

hydrogen isotopes. Furthermore, di�erent charge states of the same peptide are considered

in the quanti�cation. Particularly in LC-MS/MS experiments, it may happen that a peptide

is identi�ed only in one speci�c charge state, although the same peptide may also be found

di�erently charged.

At second, peptide measurements are combined to form an overall protein abundance ratio.

As a special feature of ASAPRatio, for each peptide abundance ratio an error measure “is

estimated by the signal di�erence of the raw and the smoothed chromatogram” (Li et al. 2003,

p. 6651). Using this error, and in addition an outliers test, a weighted protein abundance ratio

is averaged. Results are presented in a CGI generated web page.
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4.3.2 RelEx

Belonging to the �rst implemented so�ware tools for the quanti�cation of proteins, RelEx

(MacCoss et al. 2003) allows the calculation of relative abundance ratios from isotopically—

predominantly metabolically—labeled samples. �e program is written in the programming

languages C and Visual Basic and runs only on the Microso�™ Windows platform. RelEx

demands existing protein identi�cations as input. Initially, a tool named EXTRACT-CHRO is

used to construct extracted ion chromatograms (EICs) based on these peptide identi�cations

and the corresponding raw �les from the mass spectrometer for each labeled and unlabeled

peptide pair. A user-de�ned window, which defaults to 100 MS scans around any identifying

MS/MS spectrum, is used as starting point for peak detection.

RelEx di�ers from other approaches in that the calculation of peptide abundance ratios is

not based on the calculation of the area under the elution peak’s curve but on least squares

regression: the values of both EICs (in the range of the most intense elution peak) are set in

relation and the slope of the regression line between these values gives hint to the peptide’s

relative abundance. In the end, RelEx allows the aggregation of all peptide abundance ratios

to �nally output a list of protein abundance ratios. Similar to ASAPRatio (Li et al. 2003),

chromatographic shi�s may be taken into account, and outliers can be removed using a

Dixon’s Q-test.

4.3.3 ProRata

Pan et al. (2006) designed a Microso�™ Windows based so�ware tool named ProRata for

the quantitative analysis of metabolically labeled proteomics samples. �e approach closely

follows the idea of RelEx but replaces linear regression analysis with a principal component-

based approach for the calculation of relative abundance ratios. It is proposed that the �rst

principal component refers to the ’true’ ratio between the signals of the labeled and the

unlabeled peptide while the second principal component explains any present noise in the

data. Based on the eigenvalues of both components as measures of the variance of the ’true’

ratio and the noise, a so called pro�le signal to noise value is de�ned that can be used to

evaluate the quality of any calculated ratio. As an additional feature, ProRata introduces an

algorithm termed “parallel paired covariance algorithm” to detect the elution peaks of both

the EIC of the labeled and the unlabeled peptide. In contrast to other so�ware tools, elution

peaks are not searched separately in the original EICs, but in a derived chromatogram that

consists of the covariances between both signals.

4.3.4 Census

Census (Park et al. 2008) is the successor of RelEx (MacCoss et al. 2003) and has been

developed in the same laboratory. Although the program has been written in Java parts of

the application, e. g. a tool for the creation of EICs from mass spectrometry data, depend on

Microso�™Windows. Census supports a variety of quanti�cation approaches for LC-MS/MS
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data starting from iTRAQ to metabolic labeling using stable isotopes, SILAC and even label-

free quanti�cation. In comparison to RelEx, the tool has, particularly, been improved with

regard to high-resolution mass spectrometry data.

4.3.5 QN

QN (Andreev et al. 2006) is another so�ware tool that has been developed for the quanti�ca-

tion of proteins containing metabolically incorporated heavy stable nitrogen isotopes. �e

Microso�™ Windows based so�ware, which has been written in Visual Basic and MATLAB,

puts its focus on high-resolution mass spectrometry data from LC-MS/MS experiments,

particularly using an LTQ-FTMS instrument. Based on existing protein identi�cation results,

EICs are created for both the labeled and the unlabeled peptide. In contrast to most other

approaches, only the monoisotopic peak is included, while any other isotopic peaks are used

to validate the correctness of the peptide identi�cation. QN features the calculation of a

reliability score for each resultant peptide abundance ratio based, inter alia, on the height of
the included peak intensities and the validity (score or probability) of the original peptide

identi�cation.

4.3.6 QuantiSpec

�e tool QuantiSpec has been developed for the relative quanti�cation of MALDI-TOF data

(Haegler et al. 2009). In contrast to all other aforementioned approaches it allows to set in

relation unlabeled and fully-labeled but also partially-labeled samples. Currently, the so�ware

tool supports only heavy stable nitrogen isotopes. QuantiSpec is implemented in Perl and

provides a GTK2-based graphical user interface. It is intended to run onMicroso�™Windows.

4.3.7 MaxQuant

MaxQuant is denoted “an integrated suite of algorithms” (Cox and Mann 2008, p.1367)

developed for the quanti�cation of SILAC-labeled proteins. It follows a fundamentally

di�erent approach in that protein quanti�cation precedes protein identi�cation. �e three-

dimensional feature space spanned by an LC-MS/MS dataset, which is characterized by each

spectrum’s m/z to intensity values and, in addition, the temporal dimension given by the

elution time, is searched for characteristic peak patterns that indicate pairs of labeled and

unlabeled peptides. �is is, in particular, possible since the mass shi� that is introduced

by a labeled amino acid such as 13C6 arginine (see section 3.3.1.2) but also the form of the

isotopic distribution (see Figure3.18) are to a great extent predictable and consistent. For each

identi�ed pattern that denotes a potential peptide the change in abundance is calculated using

linear regression analysis. Only at this point, protein identi�cation is started based on the—so

far unconsidered—MS/MS spectra of the dataset. MaxQuant utilizes the Mascot™ search

engine for this purpose. Not necessarily being a disadvantage, one has to denote in this
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connection that certainly not for all quanti�ed peptides an appropriate MS/MS spectrum

is available, which could be used for a reliable determination of each peptide’s sequence.

Conclusively, there may remain quanti�ed but not identi�ed peptides in the �nal result. �e

so�ware is implemented using the Microso�™ .NET framework and designed to be run on

Microso�™ Windows.

4.4 Data storage andmanagement solutions

Starting from the preparation, extraction, and measurement of protein samples in the wet

lab, a typical quantitative proteomics experiment involves several—o�en laborious and time-

consuming—experimental steps. In general, the data generation is followed by a database

search to identify the proteins contained in a sample, and—if applicable—the calculation

of relative (or absolute) abundance values. Information collected during an experiment

includes mass spectra and lists of reported proteins but also the documentation of a chosen

experimental setup.

Already during the conduction of an experiment, it is in general advantageous that all

data and meta-data is brought together and stored in a common place. �is facilitates not

only the retrieval of information but also its validation, e. g. of protein identi�cations by

setting search results from di�erent databases in comparison. Furthermore, in many �elds

of application, special attention must be paid to the issue of long-term archiving and access

to all experiment-relevant information.

A number of so�ware applications have been developed that provide a standardized way of

data storage and data management. Typically these applications are referred to as laboratory

informationmanagement systems. Within these systems data andmeta-data are stored either

using speci�c �at �le formats or in a database. As experiments are frequently conducted

in cooperative work within larger teams, information has to be shared between a number

of participants. �erefore, user management and data access control are vital components

of these systems. Examples of applications for this purpose are CPAS (Rauch et al. 2006),

MASPECTRAS (Hartler et al. 2007), Proteios (ProSE) (Gärdén et al. 2005; Levander et al.

2009), and the command-line based Trans-Proteomics pipeline (TPP) (Keller et al. 2002;

Nesvizhskii et al. 2003).

In addition to these laboratory information management systems and with particular regard

to the steadily increasing amounts of data, it is desirable that information about conducted

experiments is shared within the proteomics community. �e exchange of information

does not only enable the global-scale comparison of experiments but it can also avoid

the unnecessary duplication of experimental data. �is task is performed e. g. by PRIDE

(Vizcaíno et al. 2009)—a data repository for the proteomics community.
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4.4.1 Laboratory informationmanagement systems

�e term laboratory information management system, abbreviated LIMS, refers to so�ware

applications that provide data storage and retrieval capabilities for all data and meta-data

related to an experiment. �is typically covers experimental procedures as conducted in the

wet lab as well as parameters and settings of any so�ware application used for data analysis.

Strictly speaking, a LIMS provides only capabilities for data management. From this point of

view, the selected choice of applications that is presented in the following goes beyond the

scope of a LIMS expanding the meaning of this term to also include analysis functionality for

proteomics data. A comprehensive comparison of di�erent LIMSs has been made available

for example by Stephan et al. (2010).

4.4.1.1 ProDB

Andreas Wilke designed ProDB as a system that “integrates the analysis and storage of

mass spectra with a detailed description of the experimental setup” (Wilke et al. 2003,

p.155). �e so�ware, which has been developed at the CeBiTec, aims at the evaluation of

2D-electrophoresis data, mainly, in combination with MALDI-TOF mass spectrometry. It

does not support modern high-throughput methods such as MudPIT. Great emphasis was

placed on a comprehensive LIMS system to describe the experimental procedures that have

been employed to obtain and analyze the samples of an experiment. ProDB has been imple-

mented in Perl and provides both a GTK- as well as a CGI-based graphical user interface

(GUI). It is such available as a stand-alone desktop and a web application. Data storage is

based on a relational database system. ProDB is, in a way, the predecessor of QuPE, which

incorporates aspects of the extensive LIMS system.

4.4.1.2 CPAS

�e ’Computational Proteomics Analysis System’ (CPAS) constitutes “an open-source, web-

based analysis platform that organizes and annotates general biological experiments and

provides capabilities for managing and analyzing LC-MS/MS proteomics data” (Rauch et al.

2006, p.112). As a special feature, CPAS does not only allow the import of Mascot™ as well

as Sequest™ results but also includes its own database search engine X!Tandem (Craig and

Beavis 2004).

CPAS has been written in Java and demands an Apache Tomcat web server (�e Apache

So�ware Foundation 2011b) for running. �e user interface has been designed using Struts

(�e Apache So�ware Foundation 2011a). User authentication can refer to an existing au-

thentication provider with the help of the Lightweight Directory Access Protocol (LDAP).

�e authors claim that the web application is adaptable to any type of database management

system—at least Microso�™ SQL Server (Microso� 2011a) and PostgreSQL (PostgreSQL-

Team 2011) are currently supported. Distributed under the Apache 2.0 license the system is

open for further community-extensions.
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Although CPAS features comprehensive possibilities to describe a proteomics experiment,

and even provides an integrated pipeline to conduct database searches for protein identi�ca-

tion it does not o�er a module for protein quanti�cation. CPAS has recently been renamed to

’LabKey Server platform’ (Nelson et al. 2011). �e new version of the platform features, inter
alia, advanced data visualization capabilities using the R statistical programming language.

4.4.1.3 MASPECTRAS

Hartler et al. (2007) developed the ’MAss SPECTRometry Analysis System’ (MASPECTRAS)

for the management and analysis of LC-MS/MS data. �e web application allows the import

of search results from various search engines such as Sequest™, Mascot™, X!Tandem (Craig

and Beavis 2004) or OMSAA (Geer et al. 2004). �e analysis pipeline of MASPECTRAS

includes extended functionality to verify protein identi�cations based on a probability score,

which is computed for all imported database search results. �e approach follows an idea that

has been suggested by Keller et al. (2002). As an additional and unique feature, the authors

have implemented a cluster algorithm to evaluate the assignment of peptide identi�cations.

�is addresses the aforementioned severe problem in proteomics (see section 4.2.3): given

a search engine has identi�ed a speci�c peptide based on an MS/MS spectrum, it is o�en

questionable which protein this peptide belongs to. �is applies, in particular, to eukaryotes

in which di�erent isoforms of the same protein may exist that all share a common peptide.

Protein quanti�cation can be conducted using an integrated implementation of the algorithm

used in ASAPRatio (Li et al. 2003).

MASPECTRAS is implemented in Java and utilizes a three-tier architecture model. It is

compliant to the Java Platform Enterprise Edition (Java EE) speci�cation. Similar to CPAS,

the user interface has been designed using Struts (�e Apache So�ware Foundation 2011a). A

MySQL (Oracle 2011b), PostgreSQL (PostgreSQL-Team 2011) as well as an Oracle™ Database

(Oracle 2011c) can be utilized as database backend. �e underlying data scheme is based

on the PEDRo data model (Garwood et al. 2004), which also in�uenced the developments

of the HUPO’s PSI (4.1.1). �e web application allows the outsourcing of computational

extensive tasks on a compute cluster. �is is mediated via an own implementation of a web

service-based interface. �e graphics library JFreeChart is utilized to display for example

imported mass spectra (JFree.org 2011).

Although MASPECTRAS provides very comprehensive capabilities for data management

and analysis in terms of protein identi�cation and quanti�cation, the web application lacks

advanced statistical data analysis features.

4.4.1.4 ProSE/Proteios

In 2005, Gärdén et al. introduced the so�ware application ’Proteios’ as a web-based appli-

cation for proteomics data management. Four years later, the platform was rewritten and

republished as the ’Proteios So�ware Environment’ (ProSE) (Levander et al. 2009) augmented
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by comprehensive data analysis functionality. ProSE features the integration of search results

from di�erent search engines including OMSAA (Geer et al. 2004) and X!Tandem (Craig

and Beavis 2004). It provides user interfaces to de�ne search parameters and allows the

initiation of database searches directly from a web browser. In addition, Mascot™ results can

be imported. Using the application, search results from di�erent engines can be combined

and veri�ed based on the utilization of decoy databases and the calculation of false discovery

rates (see 4.2.3).

ProSE is written in Java and utilizes Hibernate (JBoss Inc. 2011) to map Java objects on a

relational MySQL database (Oracle 2011b). �e web application is designed to run on a

Tomcat web server (�e Apache So�ware Foundation 2011b). Apart from this web server, a

�le transfer protocol (FTP) server is integrated that facilitates data import and export. Similar

to MASPECTRAS, computationally intensive tasks are placed in a queue and automatically

processed to reserve su�cient compute resources for the user interface. ProSE provides an

application programming interface (API) that eases the extension of the platform in form of

plug-ins.

4.4.1.5 Trans-Proteomics pipeline

�e ’Trans-Proteomics Pipeline’ (TPP) consists of a number of individual tools (Keller et al.

2002; Nesvizhskii et al. 2003) including the aforementioned so�ware application ASAPRatio

(Li et al. 2003), which allows to determine relative abundance ratios from isotopically labeled

proteins. A so�ware named XPRESS (Han et al. 2001) is integrated for the quanti�cation of

chemically, e. g. ICAT, labeled proteins. �e user interface of the TPP is provided through a

Perl/CGI-based web application running on an Apache web server. Installation is supported

under Microso�™ Windows as well as the Linux operation system. �e pipeline supports the

import of protein identi�cations from the three search engines X!Tandem (Craig and Beavis

2004), Mascot™, and Sequest™. As part of the pipeline, the two applications PeptideProphet

and ProteinProphet allow the assessment of search results on the peptide as well as on the

protein level. �is can be based on the utilization of decoy databases and thereby estimated

false discovery rates, but in addition Keller et al. (2002) developed and implemented a

statistical model that takes into account various search related scores and parameters such as

the number of cleavage sites to evaluate the accuracy of peptide identi�cations.

4.4.2 Data repositories

Data repositories for proteomics data and meta-data aim at the long-term archiving of

experiments. In general, all information stored in these databases is freely accessible (in some

cases a membership is required) and comprehensive data retrieval functionality are provided.

�e most important repository is PRIDE, which is hosted by the European Bioinformatics

Institute (EBI).
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4.4.2.1 PRIDE – proteomics identifications database

�e ’Proteomics Identi�cations Database’ (Vizcaíno et al. 2009), abbreviated PRIDE, has

been designed as an online-available repository to ful�ll two main purposes: researchers

can submit their experimental data, which is o�entimes desirable in connection with a

publication of the work, and thereby allow others to retrieve this data and better comprehend

the work or compare it to own results. However, experiments can also be stored in a private

context beingmade available only for privileged partners, e. g. for data exchange. All uploaded

data is stored in a special purpose data management system termed BioMart (Smedley et al.

2009), which facilitates complex data retrieval operations. �e repository supports all major

open source data formats including mzData and mzXML (see section 4.1.3) for raw mass

spectrometry data as well as for the representation of protein identi�cations. Currently (as of

March 2012), PRIDE comprises more than 21,000 experiments consisting of over 8.1 million

identi�ed proteins and 280 million mass spectra.

4.4.2.2 PeptideAtlas

PeptideAtlas is the name of a project that has been designed and implemented by the Seattle

Proteome Center (SPC) at the Institute for Systems Biology. It focuses at the collection and

provision of peptide sequence data, which has been yielded in LC-MS/MS experiments, and

its mapping onto genome sequences. �e project’s motivation originates from the idea that

the information about genes and their products “can be enhanced through the collection of

di�erent types of experimental data and its integration and validation in a genomic context”

(Desiere et al. 2005, p.R9). To ensure a common basis for data comparison, all contributed

mass spectra datasets are processed by the TPP (see section 4.4.1.5) upon submission. As of

March 2012, the repository contains more than 750 samples, of which 91 are from human

plasma alone making up more than 3 million identi�ed peptides/mass spectra (Farrah et al.

2011).

4.5 Identification, quantification, ... and next?

Apparently, the initial analysis steps of any mass spectrometry-based quantitative proteomics

experiment concern, �rstly, the identi�cation, and secondly, the quanti�cation of the proteins

that are contained in a number of investigated samples. For this purpose, there exist a variety

of so�ware applications that support not only the aforementioned two tasks but also allow to

store, query, and combine datasets and additional information. A selected choice of these

tools and algorithms was introduced in this chapter. At this point of analysis, the preliminary

result is, simply spoken, a list of identi�ed proteins together with their abundance ratios. A

typical experimental setup, however, includes in general more than one condition, and thus

the resulting values actually need to be combined to form e. g. a data matrix (Kumar and

Mann 2009). �is can then be further processed using methods of statistical analysis and
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data mining. Arising questions are, for example, whether proteins are up- or down-regulated

regarding the investigated conditions, whether clusters of proteins show similar expression

pro�les, or whether observed di�erences in the proteomes of di�erent individuals allow the

prediction of diseases or defects.

So�ware such as spreadsheet programs or statistical programming languages, albeit generally

usable for this purpose, demand a high level of background knowledge and training, or

do not adapt to the complexity of proteomics data. �eir most important drawback is,

however, that they do not allow to directly link analysis results to the originating raw data.

If data and associated meta-data are found connected all at the same place, it would for

example be possible to thoroughly investigate a di�erentially regulated protein taking into

consideration every individual peptide abundance ratio including potential quality measures

of the calculation or even the underlying mass spectra.

4.5.1 Spreadsheet-alike analysis of proteomics data: DAnTE, StatQuant,
GProX

Di�erent applications have been introduced that provide a range of statistical methods

for proteomics data. Two stand-alone so�ware applications which feature comprehensive

statistical analysis and visualization methods and which are based on the Microso�™ .NET

framework (Microso� 2011b) are DAnTE (Polpitiya et al. 2008) and GProX (Rigbolt et al.

2011). StatQuant (Breukelen et al. 2009) ful�lls a similar purpose. It is implemented in the Java

programming language. �e work�ow of all three applications starts with the import of one

ormore data matrices in form of aMicroso�™Excel sheet or as a tab- (or character-) delimited

text �le. DAnTE has the unique feature that it is not only limited to proteomics datasets

but also supports other types of PolyOmics data. GProX claims to support particularly

complex experimental setups. None of the applications does, however, allow to integrate any

originating data such as mass spectra or search results from a database search. Moreover,

they do not provide data management functions, e. g. to group and archive all data that

belongs to an experiment.

4.5.2 Integration of functional annotation data: PIPE

Tools such as the ’Protein Information and Property Explorer’ (PIPE, Ramos et al. 2008) do

not aim at the statistical evaluation of quantitative proteomics data but focus at the functional

analysis of identi�ed proteins. �e principal task of PIPE is the collection and integration of

additional information from di�erent databases such as Uniprot (�e UniProt Consortium

2008) or the Gene Ontology (Ashburner et al. 2000). �erefore, lists of protein accession

numbers can be uploaded and securely stored with access restriction. PIPE is implemented

using the Google Web Toolkit (Google 2011) and makes use of the R-programming language

(R Development Core Team 2011).
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4.6 An inventory of the current state of proteomics software
tools and applications

�is chapter took an inventory of the current state of the art in proteome data analysis, and

showed that there is a broad range of so�ware applications available to support experimenters

in the conduction of their experiments, especially concerning the identi�cation and quan-

ti�cation of proteins. �ere are, however, several signi�cant drawbacks: �rst of all, there

exists no so�ware application that integrates all data and meta-data of an experiment in one

place and, moreover, provides the functionality for the complete work�ow of a quantitative

proteomics experiments up to the statistical analysis of complex experimental setups. Besides

that, algorithms for the quanti�cation of proteins are still worth of improvement. Targeting

the speci�c application of pulse chase experiments there has up to now no integrated so�-

ware solution been introduced that allows to calculate synthesis and degradation rates from

isotopically labeled LC-MS/MS data in a high-throughput manner.
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Chapter 5

Requirements: computational support for
quantitative proteome experiments

As has already been noted, current mass spectrometers such as �ermo Scienti�c’s LTQ

OrbitrapVelos™ are able to record up to 40,000mass spectra in a single run, thereby producing

data �les with several hundred megabytes in size. Since a typical experiment consists of

dozens of these �les, there is, undoubtedly, a strong need for computational assistance in

handling, organizing, and particularly, analyzing these amounts of data. Over the past decade,

a variety of so�ware tools and applications has been introduced by the scienti�c community

to cope with this quantitative data (see chapter 4). On closer examination of the current

state of the art in proteomics so�ware, it becomes clear that there is, however, no application

available that provides an integrated solution covering all aspects from data acquisition to

data evaluation. Moreover, several issues concerning an in-depth and comprehensive analysis

of quantitative proteomics experiments remain unaddressed. �is applies, for example, to

the quality and accuracy of methods for the calculation of relative protein abundance values

from isotopically-labeled protein samples including speci�c applications such as pulse chase

experiments. Furthermore, methods for the statistical analysis of this multivariate type of

biological data have not been evaluated yet, not to mention the design and validation of a

comprehensive work�ow to draw reliable conclusions from stable isotope labeled samples.

Following key requirements can be formulated that need to be addressed by a so�ware

solution to fully support experimenters in the conduction of mass spectrometry-based

quantitative proteomics experiments:
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1. A basic requirement is the provision of data management capabilities in terms of data

storage and archiving. �is includes, �rstly, the retrieval not only of raw datasets but

also of �ltered and prepared information derived from the data, and secondly, an

addressing visual representation of data and analysis results: to reveal the underlying

meaning of data an appropriate visualization is indispensable. “Modern data graphics

can do much more than simply substitute for small statistical tables. At their best,

graphics are instruments for reasoning about quantitative information” (Tu�e 2007).

An integral requirement of such a so�ware is to ensure the security and the integrity

of any entrusted data. �erefore, user management, authentication, and access control

have to be implemented.

2. �e analysis and processing of quantitative proteomics datasets demands the provision

of appropriate analysis functions and tools. In order to facilitate the integration of

existing methods but also the development and evaluation of novel algorithms and

tools for the processing of mass spectrometry data and meta-data, it is necessary that

developers can make use of a standardized programming interface. In this connec-

tion, particularly with regard to the enormous amounts of data, it is furthermore

advantageous to ease the use of distributed compute resources.

In a wider sense, such a so�ware application can be regarded as an information system

about mass spectrometry data (Parker et al. 1994). As such, it allows researchers to organize

and annotate the data that belongs to an experiment and helps to �nd an answer to the

overarching question: what can be learned from the data?

5.1 Use case analysis

�e basic data type of any proteomics experiment is the mass spectrum. Yet, their concrete

format depends on the utilized instrument, i. e. the ion source such as MALDI or ESI and

the characteristics of the mass analyzer, as well as the instrument’s structure, e. g. in form

of a tandem mass spectrometer (see 3.2). In general, instrument vendors rely on their own,

proprietary data format. As discussed in 4.1, data exchange and community-driven support

require data to be independent of any protected format—it should be easily readable and

editable. �erefore, the community has developed various open source data formats such as

mzXML and mzData (see section 4.1.3). An information system for mass spectrometry data

must be capable of understanding these data formats, and must allow to browse and display

its contents.

Obviously, a proteomics experiment is more than the sum of its parts—the individual mass

spectra. Based on the mass spectra a multitude of information is to be yielded not only

about the identi�ed proteins in a sample but also their relative or absolute quantities. �ese

types of data have to be stored in the system. Moreover, it is necessary to provide interaction

and connectivity, i. e. an identi�ed protein should be linked to its mass spectrum and vice

versa. �e system, furthermore, needs to provide extensive capabilities to group and integrate
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all data relevant to a particular experiment. �is comprises mass spectra data but also a

description of the experimental setup as well as all analysis results.

�e typical work�ow of a quantitative proteomics experiment involves several steps from data

acquisition to analysis. Although the sequence of the individual steps naturally di�erentiates

between di�erent experiments, there is still a high degree of congruence. Referring to the

analysis of LC-MS/MS data (see section 3.2.3), but without loss of generality, e. g. regarding

MALDI-TOF experiments 3.2.2, a typical work�ow is depicted in Figure 5.1.

Figure 5.1 –�ediagram depicts a typical work�ow to quantitatively analyze isotopically labeled data frommass
spectrometry-based experiments: starting with the import of data and the description of the experimental setup

to protein identi�cation, protein quanti�cation and further statistical analysis, data mining and visualization.

5.1.1 Data organization and structuring

To structure all data relevant for an experiment—beginning from raw mass spectra to lists of

identi�ed peptides—appropriate data representations need to be devised and made available.

Projects might be used to group related experiments. An important aspect is data security: it

is necessary to ensure that only authorized persons are allowed to read datasets. �is involves

authentication of a user at login using a password and, in addition to that, an authorization
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before certain methods are allowed to be processed, such as delete or edit operations. Access

control list directives (ACLs) provide an opportunity to implement �ne-granular privileges

on individual objects allowing, for example, an experimenter to read-access an experiment

and all associated datasets but denying the same user any modi�cation of the experiment’s

content.

Comprehensive descriptions of an experimental setup allow for future retrieval of the work-

steps carried out by an experimenter in the laboratory and the way individual samples have

been treated. Within the scope of a practical training (Gau 2008) a set of �ve worksteps has

been identi�ed providing a su�cient description of a typical proteomics experiment: “Culti-

vation”, “Protein extraction”, “Protein �ltration”, “Digestion”, and “Mass spectrometry”. From

this point of view, a workstep would, for example, describe the cultivation of an organism

including parameters such as the optical density at time of harvesting and the utilized growth

medium.

Mass spectrometry data is generated in various formats and instrument vendors o�en dis-

tribute their own, mostly proprietary, data format as does the company Bruker (Bruker

Daltonics, Billerica, MA) by using a binary format for single-stage mass spectrometry data

(luckily relevant peaks are written out in an XML-based format). Nevertheless, a range of

freely available open source formats has emerged, namely mzXML (Pedrioli et al. 2004), mz-

Data (Orchard et al. 2004), and mzML (Martens et al. 2010). As most vendor speci�c formats

can be converted, an information system for proteomics has to target these data formats.

Appropriate visualizations of imported mass spectra allow to validate that measurements

were successful but also to compare individual scans. Furthermore, it is o�en necessary—as

a �rst step in data analysis before protein identi�cation and quanti�cation can be applied—to

preprocess mass spectra using peak detection methods such as MassSpecWavelet (Du et al.

2006) or Bruker’s SNAP™ algorithm (Köster and Holle 1999).

5.1.2 Protein identification

Dependent on the type of imported data, e. g. tandemmass spectra, peptide mass �ngerprint-

ing (PMF) or MS/MS ion search (MIS) are the methods of choice to identify the proteins

contained in a sample. �e usual way is to employ a search engine such as Mascot™ or

Sequest™ for this purpose, which base on the comparison of the recorded mass spectra with

theoretical fragmentation patterns derived from sequence databases (see section 4.2). In

an ideal situation, several sequence databases, such as an organism-speci�c and a general-

purpose sequence database like UniProtKB/Swiss-Prot (�e UniProt Consortium 2008), can

be searched at once—at best using di�erent sets of parameters, e. g. prohibiting one or more

missed cleavage sites of an utilized proteolytic enzyme.

A�erwards, search results have to be combined and it is necessary to assess the hits reported

from one or more search engines, found in di�erent databases using di�erent sets of param-

eters. Extensive research focused on the development of methods to ensure that further

analysis can rest on a solid ground of valid protein identi�cations. A commonly accepted
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strategy, which has been put forth by Peng et al. (2003) as well as Elias and Gygi (2007), bases

on the utilization of decoy databases to estimate and control the false discovery rate (FDR)

for database search results (Reidegeld et al. 2008).

5.1.3 Protein quantification

�e combination of mass spectrometry and isotopic labeling techniques represented a key

milestone on the way towards a comprehensive comparison of protein abundances under

di�erent environmental conditions, disease states, or physiological adaptation processes

(Mallick and Kuster 2010; Gouw et al. 2010; Hufnagel and Rabus 2006; Bantsche� et al. 2007;

Mueller et al. 2008; Zhu et al. 2002; Ong et al. 2002; MacCoss et al. 2003; Wolters et al. 2001).

Various so�ware programs have been introduced to quantify protein amounts (see section

4.3). A so�ware application for the analysis of quantitative proteomics data needs to integrate

the results of these tools or provide own implementations of quanti�cation algorithms.

A speci�c problem, still seeking a solution, is the analysis of metabolically labeled samples,

in which a label has not been fully incorporated. �ere is, hitherto, no publicly available

and easy-to-use algorithmic approach available that allows to perform an automated, high-

throughput protein quanti�cation of this type of data. On top of that, as it will be shown in

chapter 8, the accuracy and performance of currently available quanti�cation methods is

still worthy of improvement.

5.1.4 Statistical analysis, data mining, and visualization

�e next step a�er protein identi�cation and quanti�cation is, undoubtedly, the most impor-

tant (and probably exciting) one: while the data basis is—in a manner of speaking—prepared

and ready, the focus now turns towards a thorough interpretation of the data. �erefore,

methods of statistics and data mining are indispensable. As already stated in section 4.5,

there is currently no so�ware application available that supports the complete work�ow of

a quantitative proteomics experiment and allows to integrate raw data and analysis results

in the same place. Moreover, it is, of course, not only important to make statistical analysis

methods available in a user-friendly and conceivable way but also to provide guidance re-

garding their application in the context of quantitative proteomics experiments (cf. chapter

6). In view of the broad range of methods that could be applied, there is a strong need to

assess which approaches are pointing to success (cf. chapter 9).

A reasonable interpretation of analysis results in a biological context requires information

about the functions of individual proteins and the relationships between di�erent proteins

in a cell. Whatever reason proteins are of interest, e. g. because they are found signi�cantly

di�erentially regulated by a statistical test, the information about a protein’s function should

be as detailed as possible in order to understand the results of an experiment such as the

impact of a stress stimulus or the in�uence of changing environmental conditions. It seems,

for example, logical that proteins which ful�ll a similar function are also similarly regulated.
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Hence, if a group of proteins reveals a similar pattern of abundance in an experiment, this

might indicate that these proteins also play a comparable role in the metabolism of an organ-

ism. While the outcomes of database searches, typically, only provide the accession numbers

of identi�ed proteins, it is necessary to query and integrate this data from di�erent resources

such as UniProt (�e UniProt Consortium 2008). �is particularly applies to functional

annotations of proteins, e. g. in form of a�liations to speci�c clusters of orthologous groups

of genes (Tatusov et al. 2003) or in form of a structured and ontology-controlled description

of gene products as found in the Gene Ontology (Ashburner et al. 2000). To take another

example, the KEGG (Kanehisa and Goto 2000) database allows to gain a detailed picture of

protein regulation in the context of known metabolic pathways such as the glycolysis—the

conversion of glucose to pyruvate. At the Center for Biotechnology, the GenDB annotation

system (Meyer et al. 2003) constitutes a valuable resource for gene annotation data allowing

to map protein and gene information via the BRIDGE layer (Goesmann et al. 2003), which

mediates data access across di�erent applications.
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Chapter 6

Methods for the statistical analysis of
quantitative proteomics data

�e scienti�c questions that are posed in the �eld of proteomics and which are to be answered

with the help of stable-isotope labeling methods are without any doubt manifold. A closer

investigation of the typical experimental setups reveals, however, that there are in particular

two questions that are most frequently asked by experimenters: �rstly, “which proteins are

di�erentially regulated regarding the selected experimental conditions”, and secondly, “are

there groups of proteins that are characterized by similar abundance ratios, indicating a

common regulation?” (Albaum et al. 2011b, p.1). �e aim of this chapter is to introduce a

set of methods that can be used to adequately answer these two questions, especially with

regard to the particular nature of quantitative proteomics data.

6.1 Detection of differentially regulated proteins

Statistical measures such as a mean value or a standard deviation aim to provide an estimate

of the true conditions in a population under investigation, and thereby help to draw reliable

conclusions from observed protein abundance measurements, among others. Statistics can

be used in a descriptive way to summarize—in a numerical or a graphical manner—the

essential characteristics of a series of measurements. �e derived parameters are supposed

to explain the properties of the frequency distribution of all observations and, applied to

samples taken for example under varying conditions, to expose similarities and di�erences
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in the data. Statistics goes a step further when inferences about the overall population are

deduced from the chosen sample. Techniques such as regression or hypothesis testing base

on the best �t of a model and its parameters to the data, where the best model is meant to

explain most of the di�erences and relations of all measurements—“the model that produces

the least unexplained variation (the minimal residual deviance)” (Crawley 2007, p.4).

Looking at the di�erent types of data that are involved in a quantitative proteomics experi-

ment, one typically �nds calculated ratio measurements on the one side, and—without loss

of generality—categorical variables on the other. In this connection, a categorical variable is

typically termed a factor, which is furthermore separated in one or more individual levels.

�is can for example be the factor “strain” with two levels “wildtype” and “mutant” or a time

series experiment with di�erent levels corresponding to various time points a sample has

been taken at (strictly speaking, time is of course interval-scaled).

It is important to consider that a sample represents only a subset of the overall population,

and moreover, that the repeated measurement e. g. of a protein’s abundance may result

in a slight but noticeable di�erent value. Obviously, this kind of variance is unavoidable

when living organisms are under examination, and the only way to cope with this biological

variance is to take several (biological) replicate measurements. However, also the process of

measuring data may itself be error-prone, thus, the measurement contains defects. In this

case, one typically speaks of technical variance. So called technical replicates, that is the

repeated measurement of the same biological replicate, can be employed to balance out this

source of variation (Rocke 2004; Levin 2011).

A typical experiment includes several replicate measurements for each protein. Furthermore,

a protein’s abundance is usually not measured directly, but instead observations are made at

the peptide level. It depends on the type of analysis whether it is advantageous to combine

peptide measurements to a protein ratio or whether peptide measurements are interpreted—

in broader terms—as a replicate measurement for a protein.

Certainly, the detection of di�erently regulated proteins can be based on averaged protein

abundance ratios for each investigated condition, but it is more than bene�cial to scrutinize

the variances that occur between measurements. “Given a number of measured abundance

ratios for a protein, a small variation between these values could mean that the strict enforce-

ment of the protein’s quantity is of key importance, e. g. for the development of an organism.

Contrary, a rather high variation could indicate a weak in�uence of regulatory elements

and lead to the assumption that the exact dosage e. g. of an enzyme regarding a metabolic

pathway may not be important. If, for a protein, repeated measurements are obtained under

di�erent conditions, i. e. can be separated into two or more groups, it can be questioned

whether variations are larger between two groups than within the same group” (Albaum et al.

2011b, p.2).

A statistical test aims to investigate the signi�cance of deviations between samples, or more

generally, whether a hypothesis, the null hypothesis H0, concerning the population under
investigation can be veri�ed or falsi�ed—inwhich case the alternative hypothesisH1 would be
valid. An essential aspect of this approach is the de�nition of signi�cance, which determines
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if a result is likely to occur just by chance under the provision that the de�ned hypothesis H0
is true. �erefore, the highest acceptable signi�cance level α has to be set in advance to the
application of a statistical test. Typical values for this purpose are α ≤ 0.05 or 0.01.

6.1.1 Up- or down- regulation of an individual protein

In the simplest case, an experiment consists of a direct comparison between two samples,

in which one is labeled and one unlabeled. �en, the focus of interest is on the similarity

(or dissimilarity) between both of them or to be more precise between the abundances of

each individual protein present in both samples. Since relative quanti�cation results in one

ratio value (cf. section 3.3.1), the H0 hypothesis can simply be de�ned as the deviation of this
logarithmically-scaled relative abundance valueM from the theoretical mean value µ = 0
—synonymous to ’no di�erential regulation’. Given that {xl , l = 1, . . . , L} denotes a series of
abundance measurements for a protein (M-values), a t-statistic, and thereby a measure for
signi�cance, can be calculated as follows:

t = ∣ x − µ ∣
s

⋅
√
L (6.1)

where

x = 1

L

L
∑
l=1

xl (arithmetic mean)

s =
¿
ÁÁÀ 1

L − 1
L
∑
l=1

(xl − x)2 (standard deviation)

Depending on the degrees of freedom (d f = L − 1) and taking into account the correspond-
ing t-distribution, a probability p can be derived stating whether the measured value is
signi�cantly di�ering from the theoretical mean µ = 0 (cf. Koehler et al. 2002).

6.1.2 Comparison of multiple-condition proteome data

�e biologist and statistician Fisher (1918) coined the term “variance” as the square of the

standard deviation, and described analytical methods to measure the impact of various

sources of variance on a dependent variable, hence, with regard to a quantitative proteomics

experiments, on the calculated (relative) abundance values of a protein. Considering the

case of having protein abundance measurements that can be separated in G groups (levels)
regarding a speci�c type of treatment (factor), and furthermore, letting µg denote the mean
vector of all abundance values associated to a speci�c level g ∈ [1, . . . ,G], a hypothesis H0
can be formulated as follows:

µ1 = µ2 = ... = µG = µ (6.2)
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On the opposite, the alternative hypothesis H1 is given as the divergence of at least two
parameters:

µi ≠ µi′ for i , i′ ∈ [1, . . . ,G], i ≠ i′ (6.3)

Aim of the analysis of variance (ANOVA) is to test whether these group means signi�cantly

di�er or, in case H0 is valid, equal the expected population’s mean value µ. Formally, a vari-
ance analysis could also be replaced by pairwise t-tests (Bortz 2005), which might, however,

lead to an in�ation of the type I error (cf. 6.1.3). Characteristic trait of the method—hence

the name—is not to directly consider the mean vector of each level but instead to investigate

in how far the overall variability of the data, in other words, the total varianceQStotal, can be
explained by the variability caused by the factor, namely the treatment variance QStreatment.

�e remaining variance, termedQSerror, must consequently originate from other sources,
such as errors in measurements:

QStotal = QStreatment +QSerror (6.4)

Using the estimations of the population’s variance σ̂2treatment as the squared sum of all dif-

ferences of each groups’ mean value from the overall mean value, and σ̂2error , given by the
squared sum of all variances observed within each level, in analogy to the t-statistic, a so
called F-statistic can be calculated and transformed into a probability value p depending on
a speci�c F-distribution:

F = σ̂2treatment
σ̂2error

(6.5)

Whereas the decomposition ofQStotal inQStreatment andQSerror is not subject to any condi-
tions, a valid and meaningful interpretation of the F-statistics demands the following three
prerequisites (cf. Ellison et al. 2009; Crawley 2007):

i) Gaussian-distributed error components: within a group, deviations from the group’s

mean vector should follow a normal distribution. To investigate whether this precondi-

tion is ful�lled, a Shapiro-Wilks test (Shapiro and Wilk 1965) may be considered.

ii) Homogeneous error variances: the samples should be taken from equally distributed

populations. �erefore, variances within di�erent samples are not allowed to di�er

signi�cantly. �e Fligner-Killeen test (Fligner and Killeen 1976) provides a measure to

examine this condition.

iii) Independent error components: Certainly, each measurement is subject to confounding

variables. �e in�uence of these error components has to be independent for each

measurement. �is should be the case if biological replicates are considered, it might be

problematic in case of technical replicates, however.

“Infringements of these premises, in particular of ii), might result in the false assessment of

proteins as signi�cantly di�erentially regulated. Although the ANOVA has more power in

terms of discovering signi�cant di�erences, in cases of violated assumptions a non-parametric

method such as the Kruskal–Wallis one-way analysis of variance has to be applied” (Albaum

et al. 2011b, p.2).

64



Methods for the statistical analysis of quantitative proteomics data

6.1.3 Error in hypothesis testing

Considering one single statistical test, an error of as much as the a priori de�ned signi�cance
level α is allowed to falsely reject the null hypothesis. Albeit small for a single test, this
error increases dramatically if multiple tests have been performed—and this is certainly

always the case when hundreds of proteins are being investigated in a single experiment.

Givenm hypotheses H10 to H
m
0 of whichm0 hypotheses are true and accordingly 1−m0 false,

m signi�cance tests can, consequently, be performed to verify or falsify each of these null
hypotheses. In the outcome, a number of hypotheses, hereina�er de�ned S, may then be
found valid with regard to a signi�cance threshold, or, in terms of proteomics S proteins are
presumably not signi�cantly di�erentially regulated. It has to be assumed that TN number
of hypotheses are correctly accepted as well as TP hypotheses correctly rejected. In addition
to that, however, few hypotheses might be wrongly declared invalid (FP) or valid (FN),
respectively, and these two types of errors must be taken into account in the calculation of

p-values:

H0 accepted H0 rejected total

H0 true TN FP (type I error) m0
H0 false FN (type II error) TP m −m0

m − S S m

�e ’family-wise error rate’ (FWER) de�nes the probability that at least one type I error might

occur:

FWER = Pr (FP > 0) (6.6)

A well-known, albeit conservative, instrument to control the FWER is based on Bonferroni’s

inequality (Hochberg 1988). Let p1 to pm be the probabilities that correspond to the hy-
potheses H10 to H

m
0 , then a hypothesis H

i
0 (i ∈ [1, . . . ,m]) has to be rejected, if the following

condition holds: pi ≤ α
m . Bonferroni’s inequality “ensures that the probability of rejecting at

least one hypothesis when all are true is no greater than α” (Hochberg 1988, p.800):

Pr (
m
⋃
i=1

pi ≤
α
m

) ≤ α (0 ≤ α ≤ 1) (6.7)

An alternative and less conservative method to control the FWER has been formulated by

Holm (1979). Given that all p-values p1 to pm are increasingly sorted, so that p1 ≤ p2 ≤ ... ≤
pm, a hypothesis Hi is rejected, if the following is valid for j = 1, . . . , i:

p j ≤
α

m − j + 1 (6.8)

Another instrument to control the error in hypothesis testing is given by the ’false discovery

rate’ (FDR), which is de�ned as the expected number of false positives (FP) regarding the
overall number of rejected hypotheses (S):

FDR = E (Q) (6.9)
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where

Q =
⎧⎪⎪⎨⎪⎪⎩

FP
S , i f S > 0
0 otherwise

(6.10)

While, undoubtedly, the exact determination of the expectation value E of the variable Q
is rather impossible, Benjamini and Hochberg (1995) postulated a limitation of the FDR to

a level q, qm0
m ≤ q, which has to be de�ned a priori in analogy to the signi�cance level α.

Given m hypotheses H10 to H
m
0 , with corresponding p-values p1 to pm, increasingly sorted

(p1 ≤ p2 ≤ ... ≤ pm), the procedure of Benjamini and Hochberg de�nes an index imax as

follows (i ∈ [1, . . . ,m]):
imax = max{i ∶ pi ≤

i
m
⋅ q} (6.11)

All hypotheses H j
0 having an index in the range of j = 1, . . . , imax have to be rejected.

6.2 Identification of co-regulated proteins

“One of the most basic abilities of living creatures involves the grouping of similar objects to

produce a classi�cation1” (Everitt et al. 2001, p.2). As soon as a factor with two or more levels

is analyzed in an experiment, the question commonly arises whether a group of proteins

shows similar abundance ratios related to these factor levels and thus might have a similar

protein turnover. It seems reasonable to suppose that these proteins ful�ll a similar function

or play a comparable role in the metabolism of a cell or organism. Aiming to aggregate a

number of proteins, each characterized by a series of measurements, i. e. relative (or even

absolute) abundance values, in groups or clusters, at �rst, a solution needs to be found that

determines a measure of similarity (or dissimilarity) between each two proteins. Based on the

similarity values computed for all proteins, the aggregation procedure can then be performed

in such a way that all proteins in a cluster are as homogeneous as possible, whereas between

all members of each two clusters there is a considerable heterogeneity (Bacher 1996). A trivial

solution to this optimization problem would be the successive assorting, evaluation, and

re-sorting of proteins to clusters until an optimal grouping ful�lling these criteria has been

found. �is approach, however, is being bought with an enormous computing e�ort, since

N elements result in BN = 1

e ∑
∞
k=0

kn
k! possible combination. Given for example only N = 50

elements, BN = 23.9 ⋅ 1021 di�erent clusterings would need to be taken into consideration.

Cluster analysis methods provide a heuristic approximation of the optimal assorting of a

dataset. �ey belong to the group of unsupervised learning methods, which are characterized

by being independent from any external information. �e calculation is solely performed

on inherent features of the data—clusters are not known a priori but discovered during the
clustering process. Clustering techniques are traditionally divided into three distinct classes:

�rstly, hierarchical; secondly, partitioning or vector quantization; and thirdly, probabilistic

or density-based methods (Cormack 1971; Everitt et al. 2001). Applied to proteomics data,

1
Everitt here uses the term classi�cation in the sense of clustering.
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hierarchical approaches group proteins into clusters, which are then, iteratively, grouped

into larger clusters. �ereby, a hierarchical tree structure is formed. Partitioning approaches,

in contrast, follow a given optimization strategy to assign each protein to one of an a priori
speci�ed number of groups. Density-based approaches di�er from the other two strategies

in the way that each protein is not necessarily belonging to a single cluster but instead is

assigned a probability that speci�es its membership to a group.

6.2.1 Measures of similarity between two proteins

Asmentioned above, a �rst prerequisite for the application of a cluster analysis on proteomics

data is the speci�cation of a similarity or distance measure between each two proteins. In

principle, a plethora of similarity measures is available, their applicability, however, depends

on the scale of the data as well as the relation between two objects that an experimenter is

interested in. In the context of proteome experiments, one may, for example, think of an

experiment, in which the actual di�erence in the abundances of two proteins over time is

negligible but instead a positive or negative correlation between the two protein’s series of

measurement is of considerable importance. In such a case, correlation-based distances can

be taken into consideration.

In general, measures of similarity or distance ful�ll the properties of a metric. Given three

proteins x, y, z ∈ Rn, a measure of distance d ∶ Rn × Rn ↦ R therefore has to satisfy the
following conditions:

d(x, y) ≥ 0
d(x, y) = 0⇔ x = y

d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z)

A well-known and commonly used metric is the Minkowski distance, which is well-suitable

for the typically interval-scaled protein abundance values (cf. Bortz 2005). It is de�ned as

follows:

d(x, y) = r

¿
ÁÁÀ

n
∑
i=1

∣ xi − yi ∣r (6.12)

�e Minkowski distance can be considered as a generalized form of the Manhattan metric—

here the value of r is equal to 1. For r = 2 the distance is better known as the Euclidean
distance, which has the particular characteristic of representing the physical distance between

two points in space.

As alreadymentioned above, in some cases correlation coe�cients can be a favorablemeasure

of similarity such as Pearson’s (centered) correlation coe�cient (cf. Hastie et al. 2001):

cor(x, y) = ∑n
i=1 (xi − x̄) (yi − ȳ)√

∑n
i=1 (xi − x̄)2

√
∑n

i=1 (yi − ȳ)2
(6.13)
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with

x̄ = 1

n

n
∑
i=1

xi (arithmetic mean of vector x) (6.14)

Assuming a linear interrelation between the series of measurements of two proteins the

correlation coe�cient measures their degree of correlation. Resulting values ([−1 . . . 1]) can
then be transformed in a distance value d:

d(x, y) = 1 − cor(x, y)2 (6.15)

With a slight modi�cation—the subtraction of each protein’s mean abundance value is

omitted—Pearson’s uncentered correlation coe�cient provides another possibility tomeasure

similarities between two proteins:

r(x, y) = ∑n
i=1 xi yi√

∑n
i=1 x2i

√
∑n

i=1 y2i
(6.16)

6.2.2 Formal definition of cluster analysis

Based on pairwise-computed similarity measures for a set of proteins, cluster analysis can

formally be described as the partitioning of these proteins in K clusters {Ck , k = 1, . . . ,K}.
Given N proteins with abundance values, which are described by a matrix X = {xi , i =
1, . . . ,N} with xi j denoting the j-th measurement of the i-th protein, the clustering can be
de�ned by a matrix:

W(X) = [wki]K×N (6.17)

In hierarchical and partitioning cluster analysis, the association of a protein to a cluster is

unique. It applies, therefore, that wki ∈ {0, 1} according to:

wki =
⎧⎪⎪⎨⎪⎪⎩

1, if protein xi ∈ cluster Ck

0, otherwise
(6.18)

In addition, the following restriction has to be imposed to ensure this uniqueness:

K
∑
k=1

wki = 1 for i = 1, . . . ,N (6.19)

From these two conditions, it can, consequently, be deduced an equation expressing the

number of proteins that belong to each cluster Ck :

∣Ck ∣ =
N
∑
i=1

wki , k ∈ {1, . . . ,K} (6.20)

For probabilistic approaches, a protein may, in principle, belong to more than one cluster

with a certain probability such that wki ∈ [0 . . . 1]. In order to enable the comparison and
evaluation of cluster results, it is, however, necessary to assign each protein i to one speci�c
cluster, i. e. typically maxk wki .
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6.2.3 Hierarchical cluster analysis

In hierarchical cluster analysis groups of objects are successively merged together to form

greater clusters. An important aspect of this process is that a grouping is regarded perma-

nent once it has been made. It cannot be reversed (Bacher 1996). Strictly speaking, two

contrary approaches have to be distinguished since apart from the mostly used agglomerative

cluster analysis algorithms there exists also the group of divisive algorithms. While the

�rst-mentioned approach initially begins with each object forming a singleton cluster, all

of which are then successively merged, the last mentioned approach starts with one cluster

containing all objects, which is then successively divided into two parts (Gordon 1987).

All (agglomerative) hierarchical cluster analysismethods share a common algorithm. Applied

to the context of proteomics and given a set {xi , i = 1, . . . ,N} of proteins as well as dCp ,Cq as

an arbitrary measure of similarity or distance between two clusters Cp and Cq (initially each

object forms a singleton cluster), for p, q ∈ [1, . . . ,N] and d ∈ R the hierarchical clustering
procedure can be outlined as follows:

(1) for i ∶= 1 to N do
(2) define cluster Ci ∶= xi od
(3) define k ∶= N
(4) while k ≠ 1 do
(5) find {p, q} ∶= minp,q{ dCp ,Cq ∣ p, q ∈ [1, . . . ,N] }
(6) define Cp,q ∶=merge(Cp ,Cq)
(7) k ∶= k − 1 od

�e formation of clusters generates amonotonic hierarchical structure between the individual

proteins. Dependent on the engaged clustering method, the structure ful�lls the properties

of an ultrametric space, where in addition to the triangle inequality the so called strong

triangle or ultrametric inequality applies (Milligan 1979):

d(x, y) ≤ max{d(x, z), d(z, y)} (6.21)

�is is valid for Single- and Complete-linkage (see below), in which distances between

successively merged clusters are monotonically increasing, but may not be satis�ed for

example in case of the Centroid approach. �is has to be considered, therefore, if results of a

cluster analysis are displayed in form of a tree as a so called dendrogram.

Whereas a distance measure, as mentioned above, is utilized to determine the similarity

between two individual proteins during the process of clustering, an additional measure is

required that de�nes the distance between two clusters consisting of more than one object.

�erefore, a number of di�erent approaches has been proposed, each having its advantages

and disadvantages concerning their utilization in the frame of proteomics data.

In the following a selected choice of cluster algorithms is presented. At this, X = {xi , i =
1, . . . ,N} will denote a number of proteins, and Cp and Cq, p, q ∈ [1, . . . ,K], two arbitrary
clusters. Furthermore, for each two elements x, y ∈ X a distance function d ∶ X × X ↦ R
shall be prede�ned, e. g. based on a coe�cient of correlation or a Minkowski metric.
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6.2.3.1 Single- and Complete-linkage

�e general idea behind Single- as well as Complete-linkage is derived from the application

of computers to taxonomy, e. g. to cluster di�erent strains according to similar and dissimilar

features (Sneath and Sokal 1973). Both approaches, basically, represent opposite models in

the sense that either the two objects of two clusters to be fused which are nearest to each

other (Single-linkage) or which are furthest apart from each other (Complete-linkage), are

chosen for the determination of an inter-cluster distance (Bacher 1996). “Transfered to the

context of proteomics this can be seen as the con�ict between the two ideas to, on the one

hand, combine as many proteins as possible if they reveal only a slight similarity and to form

compact clusters that contain only those proteins that are utmost similar, on the other hand”

(Albaum et al. 2011b, p.8).

Formally, the inter-cluster distance in Complete-linkage is computed as follows:

dic(Cp ,Cq) = max
x,y

{d(x, y) ∣ x ∈ Cp ∧ y ∈ Cq} (6.22)

Using this approach a high degree of homogeneity within each cluster is achieved. In contrast

to that, Single-linkage de�nes a measure of distance between two clusters with the equation:

dic(Cp ,Cq) = minx,y
{d(x, y) ∣ x ∈ Cp ∧ y ∈ Cq} (6.23)

�e approach, however, has one decisive disadvantage, thus it is conceivable, that two, obvi-

ously inhomogeneous, clusters may be merged solely due to the spacial neighborhood of two

of their representatives, which then “leads to the notorious chaining e�ect [...]” (Kaufman

and Rousseeuw 1990, p.226).

6.2.3.2 Average-linkage

Hierarchical cluster analysis algorithms that rely on averaging can be understood as a varia-

tion of Complete- and Single-linkage. Figuratively speaking, they constitute an intermediate

between both approaches, in which the distance between two clusters is calculated as the

average distance between all pairs of objects. Most frequently, “Weighted-Average”-linkage

(Sokal and Michener 1958; McQuitty 1966) is being applied, which employs the following

formula:

dic(Cp ,Cq) =
1

∣Cp∣ ∣Cq∣
∑

x∈Cp ,y∈Cq

d(x, y) (6.24)

While Kaufman and Rousseeuw (1990) refer to this approach as “Grouped Average”, another

commonly used term is “Unweighted Pair Group Average Method” (UPGMA, cf. Everitt

et al. 2001). In contrast to other averaging methods, it is ensured that during the fusion of

clusters, inter-cluster distances are monotonically increasing. �is is, for example, not the

case if “Within-Average”-linkage is being utilized (Bacher 1996).
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6.2.3.3 Centroid-linkage

Closely related to the previousmethod, inter-cluster distances in Centroid-linkage are de�ned

as the (squared) Euclidean distances between each cluster’s so called centroid, which basically

represents the mean element—also termed prototype—of all elements of a cluster:

dic(Cp ,Cq) =∥ cp − cq ∥2 (6.25)

where

ck =
1

∣Ck ∣

∣Ck ∣
∑
i=1

xi ∣ xi ∈ Ck (cluster centroid) (6.26)

Whether the method can be applied depends on the data’s type of scale. It is necessary that

all measurements are interval-scaled as otherwise a (meaningful) mean value computation

would not be possible. �is is certainly the case for quantitative proteomics data. It also

has to be noted that Centroid-linkage can only be employed in combination with Euclidean

distances (cf. Bacher 1996).

6.2.3.4 Ward-linkage

Ward (1963) proposed another approach, which can only be applied on interval-scaled

data, similar to Centroid-linkage. Distances between two clusters are calculated using the

Euclidean metric, but furthermore the algorithm penalizes an increase in the error sum of

squares (ESS):

dic(Cp ,Cq) =
2 ∣Cp∣ ∣Cq∣
∣Cp∣ + ∣Cq∣

(cp − cq)
2

(6.27)

6.2.4 Partitioning cluster analysis

Partitioning cluster algorithms iteratively re-sort objects into a speci�ed number of groups,

thereby attempting to minimize the error—given by a certain numerical criterion—within

each group while di�erences between individual clusters shall be as large as possible. K-

means is a typical and popular representative of this type of cluster algorithms. It is important

to note that these methods all demand a preceding estimate of the ’correct’ number of clusters

the data shall be partitioned in.

6.2.4.1 K-means

Strictly speaking, the term K-means refers to several closely related algorithms. Common

element of all of these approaches is the iterative construction of so called cluster centers

as kind of anchor points for the formation of a partitioning of a set of objects. �e basic

idea is to minimize the error sum of squares in all clusters in a way that at the same time

the di�erences between all clusters are maximal—an approach similar to Ward-linkage (cf.
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6.2.3.4) in hierarchical cluster analysis. While such an optimization is hardly feasible for

large datasets, various algorithmic approaches have been proposed striving to �nd at least

a suboptimal solution, e. g. by Forgy (1965) and Lloyd (1982). He already introduced the

method in 1957 at a conference. Following the procedure of MacQueen (1965) initially K
random objects are selected as cluster centers. Each object is then assigned to one of these

cluster centers on condition that the (Euclidean) distance between both is minimal. Once

the assignment has been completed, for each of the generated K clusters the new center
is computed. �e process is iteratively repeated until it converges in a way that, a�er an

iteration, no object would be assigned to any other cluster center.

Applied to proteomics data, the K-means algorithm can formally be described as follows:

GivenX = {xi , i = 1, . . . ,N} ∈ Rm as a set ofN proteins, d(xi , x j) → R de�ne the (Euclidean)
distance between two proteins xi and x j, i j ∈ [1, . . . ,N], and, furthermore, let K ∈ N indicate
the number of clusters, the following procedure aims to �nd a partitioning C1, . . . ,CK :

(1) //K random proteins c1 to cK are selected as initial cluster centers:
(2) for i ∶= 1 to K do
(3) ci ∶= randomly chosen vector ∈ Rm od
(4) //the procedure is repeated as long as at least one protein

(5) //can be re-assigned to any other cluster center:

(6) while changes in any cluster Ci occure do
(7) //(re-)assign each protein to a cluster on condition that the distance is minimal:

(8) foreach k ∶= 1 to Kdo
(9) Ck = { xi ∣ d(ck , xi) ≤ d(ch, xi), ∀xi ∈ X ∧ h = 1, ...,K , k ≠ h }
(10) od
(11) //re-calculation of cluster centers:

(12) foreach k ∶= 1 to Kdo
(13) ck ∶= 1

∣Ck ∣ ∑
∣Ck ∣
i=1 xi ∈ Ck

(14) od
(15) od

While the algorithm is comparatively e�cient—its complexity depends on the number of

iterations I and can be speci�ed with O(KNI)—the method has one clear disadvantage:
MacQueen (1965, S.282) had already noted, that “in general, the k-means procedure will

not converge to an optimal partition, although there are special cases where it will”. For that

reason, Hartigan and Wong (1979) proposed another K-means approach that “goes further,

and ensures that there is no single switch of an observation from one group to another group

that will decrease the objective” (Hastie et al. 2001, p.462). However, it may, consequently, be

advisable to repeat the algorithmic procedure using di�erent sets of initial cluster centers.

�e solution o�ering the minimal within as well as maximal between cluster error sum of

square should then be chosen as a solution to the clustering problem.

72



Methods for the statistical analysis of quantitative proteomics data

6.2.4.2 Neural-Gas

�e cluster algorithm Neural-Gas (Martinetz et al. 1993) was inspired by the K-means

approach—the authors claim it an extension—but also conceals elements of Kohonen’s

self-organizing map (Kohonen 1990), whose idea goes back to the beginning of the sixties.

Hubel and Wiesel (1962) found neurons in a cat’s visual cortex responding to complex pat-

terns of light. �ey were able to show that (visual) stimuli occurring in nearby locations

are also processed in nearby areas of the cortex. Self-organizing maps attempt to model

these characteristics of the nervous systems, thereby aiming to “very closely resemble the

topographically organized maps found in the cortices of the more developed animal brains”

(Kohonen 1990, p.1464). In this sense, the Neural-Gas network consists of a number K of
prede�ned neurons—synonymous with the cluster centers in K-means—represented by

weight vectors. In an iterative process, termed the learning procedure, all objects—the input

data—are, �guratively speaking, projected onto this network, where in each iteration the

neurons of the network adapt to the presented data.

In the following, x = (x1, x2, . . . , xP)T denotes a series of measurements for one protein.
Given the a priori speci�ed number of clusters that shall be found is K, for each j = 1, . . . ,K
a cluster center or weight vector w j = (w j1,w j2, . . . ,w jP)T has to be determined, e. g. by
sampling from the input space.

During the I-step learning procedure (I ∈ N) each protein is iteratively selected and subject
to the following procedure: Given x, all cluster centers or weight vectors are increasingly
sorted according to their Euclidean distance to this vector of protein abundance values:

dx,w j =∥ x −w j ∥2 for j ∈ [1, . . . ,K] (6.28)

so that the following condition holds:

dx,w1 < dx,w2 < ... < dx,wK (6.29)

Letw j denote the weight vector at position j in this sequence, dependent on the input and the
current iteration i ∈ [1, . . . , I] of the learning procedure, a kind of “neighborhood ranking”

hw j ,x(i) = exp(
w j

σ(i)) (6.30)

can be applied on all weight vectors with the result that in the next iteration i + 1 each vector
is de�ned as follows:

w j(i + 1) = w j(i) + η(i)hw j ,x (x −w j(i)) (6.31)

where η and σ denote, typically, exponentially or linearly decaying functions that determine
either the range of adaption regarding neighboring weight vectors or specify a learning-rate.

As the cluster analysis aims to �nd a partitioning of the data, a�er the learning procedure,

each object is assigned to its nearest cluster, which is represented by its weight vector or

cluster center.
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6.2.5 Cluster validation

Cluster analysis has the potential to reveal hidden structures in the data, which—in the

sense of quantitative proteomics—might be groups of proteins having a similar turnover. In

contrast to supervised learning methods, where success can, in general, directly be measured

based on the error between a prediction and a suspected outcome, it “is di�cult to ascertain

the validity of inferences drawn from the output of most unsupervised learning algorithms.

One must resort to heuristic arguments not only for motivating the algorithms, as is o�en

the case in supervised learning as well, but also for judgments as to the quality of the

results. �is uncomfortable situation has led to heavy proliferation of proposed methods,

since e�ectiveness is a matter of opinion and cannot be veri�ed directly.” (Hastie et al.

2001, p.439). In the run-up to the analysis, in general, no information regarding a true

partitioning is available. Moreover, the results produced by di�erent algorithms are not rarely

dissimilar: the hierarchical structures for example obtained by Single- and Complete-linkage

are seldom characterized by a strong congruence (see section 9.3 for a detailed evaluation).

A fundamental part of the clustering process is therefore an evaluation of the algorithms’

results (Halkidi et al. 2002).

Cluster algorithms such as K-means partition a set of objects in a speci�ed number of groups,

which is therefore required as input parameter. However, before execution, a determination

of this number is, strictly speaking, not possible. An elegant solution to this problem is to

iteratively compute clusterings of the data in di�erent sizes. �e quality of each resultant

cluster structure may then be evaluated using some kind of numerical criterion—in case

of K-means this might for example be the partitioning o�ering the minimal within as well

as maximal between cluster error sum of square. In addition to this approach, a variety of

techniques have been developed for this purpose. Milligan and Cooper (1985) compared

the performance of more than 30 of these so called cluster indexes on simulated datasets,

and found the procedure of Calinski and Harabasz (1974) giving the best results. In a

more recent study, another approach, the index I, has been suggested and recommended
as “more consistent and reliable in indicating the correct number of clusters” (Maulik and

Bandyopadhyay 2002, p.1654).

In the context of hierarchical cluster analysis the investigator may also be interested in a

certain partitioning of the input data. �is can directly be achieved if the algorithm (cf.

6.2.3) is stopped as soon as the desired number of clusters has been merged—�guratively

speaking, one could also imagine that the resulting tree structure is cut at the desired level.

An evaluation of di�erent cluster solutions—to �nd the ’correct’ number of clusters—might

for example be conducted by plotting the increase (or decrease, respectively) in distance

gained from the merge of each two clusters against the current iteration of the algorithm. Of

course, cluster indexes might also be considered.

In general, it is recommended to apply several di�erent algorithms on the input data and

to compare their outcomes to each other. An evaluation includes both a comparison of the

di�erent algorithms regarding the signi�cance of their results as well as the determination of

the ’correct’ number of groups.
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In the following, a number of cluster indexes are described. �is includes the aforementioned

measures from Calinski and Harabasz, Maulik and Bandyopadhyay, a commonly used

index from Davies and Bouldin (1979), as well as another ’classical’ approach introduced by

Krzanowski and Lai (1988). In addition to these, an index, called Figure of Merit (FOM), is

listed, that has been delineated by Yeung et al. (2001) particularly for the analysis of gene

expression data. �e special feature about this method is the idea to integrate a kind of

bootstrapping approach (cf. Hastie et al. 2001) and, thereby, to estimate the predictive power

of a cluster algorithm.

Terms and de�nitions: X = {xi , i = 1, . . . ,N} denotes a set of objects, as well as K ∈ N a
number of clusters which the set is partitioned in and which is described by the matrix

W(X) = [wki]K×N . As already mentioned before,

∣Ck ∣ =
N
∑
i=1

wki (6.32)

equals the number of objects assigned to a cluster Ck . While Ck de�nes the mean vector (or

cluster center) of the k-th cluster (cf. 6.2.3.3),

x = 1
N

N
∑
i=1

xi (6.33)

is the overall mean vector of all objects.

6.2.5.1 Calinski-Harabasz

Calinski and Harabasz (1974)’s cluster index is calculated using the following equation:

CH(K) = [trace BK Ò K − 1]
[trace WK Ò N − K] for K ∈ N (6.34)

where B denotes the error sum of squares between di�erent clusters (inter-cluster)

trace BK =
K
∑
k=1

1

∣Ck ∣
∥ Ck − x ∥2 (6.35)

andW the squared di�erences of all objects in a cluster from their respective cluster center

(intra-cluster)

trace WK =
K
∑
k=1

N
∑
i=1

wki ∥ xi − Ck ∥2 (6.36)

Calculated for each possible cluster solution the maximal achieved index value indicates the

best clustering of the data. It is an important characteristic of the index that trace WK will

start at a comparably large value while trace BK should behave in the opposite direction:

With an increasing number of clusters K, approaching the optimal clustering solution of K∗

groups, the value of trace WK should signi�cantly decrease due to an increasing compactness
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of each cluster. As soon as the optimal solution is exceeded an increase in compactness

and thereby a decrease in value might still occur; this decrease, however, should be notably

smaller. On the other hand, trace BK is expected to get higher as the number of clusters K
increases but will reveal a kind of so�ening in its rise if K gets larger than K∗.

6.2.5.2 Index-I

Maulik and Bandyopadhyay (2002) proposed a cluster index that is, in principal, composed

of three individual elements:

I(K) = ( 1
K
× E1
EK

× DK)
p
for p,K ∈ N (6.37)

While the �rst factor simply normalizes each index value by the overall number of clusters

K, the second term sets the overall error sum of squares of the complete datasets in relation
to the intra-cluster error of a given clustering:

EK =
K
∑
k=1

N
∑
i=1

wki ∥ xi − x̄k ∥ for K ∈ N (6.38)

A third factor takes into account the maximally observed di�erence between two of the K
clusters:

DK = max
p,q=1,...,K∧p≠q

∥ x̄p − x̄q ∥ for K ∈ N (6.39)

�e index computation includes a variable parameter p ∈ N that is “used to control the
contrast between the di�erent cluster con�gurations” (Maulik and Bandyopadhyay 2002,

p.1651). �e authors recommend a value of p = 2.

6.2.5.3 Davies-Bouldin

Instead of simply proposing a cluster index, Davies and Bouldin (1979) formulated a general

framework for the evaluation of the outcomes of cluster algorithms. In analogy to Halkidi

et al. (2002) an instance of their index DB(K)may be de�ned as follows:

DB(K) = 1
K

K
∑
k=1

Rk for K ∈ N (6.40)

where

Rk = max
j=1,...,K , j≠k

(
Sk + S j
dk j

) for k ∈ [1, . . . ,K] (6.41)

and

Sk =
1

∑N
i=1wki

N
∑
i=1

wki ∥ xi − x̄k ∥ for k ∈ [1, . . . ,K] (6.42)
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as well as

dk j =∥ x̄k − x̄ j ∥ (6.43)

For each cluster Ck an utmost similar cluster—regarding their intra-cluster error sum of

square—is searched, leading to Rk . �e index then de�nes the average over these values. In

contrast to the aforementioned cluster indexes, here, the minimal observed index indicates

the best cluster solution.

6.2.5.4 Krzanowski-Lai

Krzanowski and Lai (1988) developed a cluster index that, similar to the index of Calinski

and Harabasz (1974), is based on the squared di�erences of all objects in a cluster from their

respective cluster center—trace W. �e authors de�ne DIFF(K) as the di�erence between a
clustering of the data in K and a clustering in K − 1 clusters. Let J be the number of variables
that has been measured on each xi ∈ X and trace WK the sum of squares function that

corresponds to the clustering in K clusters, their measure DIFF(K) is than de�ned as follows:

DIFF(K) = (K − 1)
2

J ⋅ trace WK−1 − K
2

J ⋅ trace WK (6.44)

In this formula, a normalizing factor 2J is included, which is derived from the observation that,

given independently uniformly distributed measurements on each variable j ∈ [1, . . . , J],
the optimal clustering of the data will reduce the sum of squares exactly by this factor

(Krzanowski and Lai 1988, p.25).

�e authors claim that if there exists an optimal clustering solution in K∗ groups, the value
of DIFF(K∗) should be comparably large and positive (see index of Calinski and Harabasz
for further explanation). In contrast, all values of DIFF(K) for K > K∗ will have rather
small values (maybe even negative ones), whereas values for K < K∗ will be rather large and
positive. Bringing these observations together the index KL(K) is de�ned as follows:

KL(K) =∣ DIFF(K)
DIFF(K + 1) ∣ (6.45)

�e optimal cluster solution is then indicated by the highest value of KL(K).

6.2.5.5 Figure of Merit

Coming from a gene expression background, the Figure of Merit (Yeung et al. 2001) is

based on the assumption that the validity of a cluster is certainly increasing in value if in

a second experiment the same genes would group together and reveal a similar pattern of

expression. Following a bootstrapping or jackknife approach, this situation may be simulated

by successively applying a cluster algorithm on a set of proteins whereby in each iteration one

experimental condition—in terms of a feature of each object/ a column of the data matrix—is

le� out. If a cluster algorithm would have assigned an object to a cluster just by chance, it
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seems logical that the emission of a condition will produce di�erent results. Otherwise, it

is likely that two cluster results reveal a similar structure if the dependence on the le�-out

feature is small.

Let in the following X = {xi , i = 1, . . . ,N} denote a set of N objects, each having the
dimension P ∈ N, so that xi j is the j-th feature of xi , j ∈ 1, . . . , P; furthermore, let there be a
number of clusters K ∈ N wherebyW(X) = [wki]K×N describes the clustering of the data.
Assuming that a clustering has been performed with a data matrix where the j-th feature has
been omitted, the Figure of Merit is de�ned as follows:

FOM( j,K) =
¿
ÁÁÀ 1

N

K
∑
k=1

N
∑
i=1

wki (xi j − Ck j)
2

(6.46)

where

Ck j =
1

N

N
∑
i=1

wkixi j (6.47)

denotes the arithmetic mean in feature j of all objects of cluster k.

To avoid a bias towards the overall number of clusters, the so called “adjusted Figure of Merit”

takes this amount K into account:

adjusted FOM( j,K) ⋅ 1√
N−K
N

(6.48)

If the calculation is iterated over all P features of the objects, the “aggregate Figure of Merit”
can be computed:

aggregate FOM(K) =
P
∑
j=1
FOM( j,K) (6.49)

�e authors state that in the outcome “A small �gure of merit indicates a clustering algorithm

having high predictive power. We compare clustering algorithms with the same number of

clusters, and over a range of number of clusters” (Yeung et al. 2001, p.310).

6.2.6 Ameasure to determine the congruence between clustering results

�e Rand measure (Hubert and Arabie 1985) gives an indication of the congruence between

two clusterings, for example, representing the outcomes of two cluster algorithms. Likewise,

the index may also be used to compare a cluster solution to the true partitioning of a dataset,

if this is known. Assuming that the application of a cluster algorithm on a dataset X with N
proteins, produced a list of clusters C = {C1...CK} and, additionally, a second clustering of
the same dataset X is given by the clusters P = {P1...PJ}, for each pair of proteins from the
dataset X, namely (xv , xu), one of the following conditions must be met:

• SS: in both clusterings C and P, the two proteins both belong to the same cluster
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• SD: in C both proteins are in the same cluster, while they are separated in P

• DS: similar to SD, except that in C both belong to di�erent clusters, while they group
together in P

• DD: in both clusterings both proteins are in separate clusters

�e Rand measure is derived from these conditions: For all possible pairwise combinations

of proteins from the dataset X it is counted which of the three conditions holds, the measure
is then given by

R = ∣SS∣ + ∣DD∣
∣SS∣ + ∣SD∣ + ∣DS∣ + ∣DD∣ =

∣SS∣ + ∣DD∣
N N−1

2

(6.50)

�e domain of de�nition of the resulting value is restricted between [0, . . . , 1] and it is valid
that the higher the value the greater the similarity.

A derivative of the measure takes into consideration that two di�erent proteins may be

grouped into a cluster not as a result from any similarities between these two proteins but

rather at random. �e adjusted Rand index (cf. Hubert and Arabie 1985) therefore corrects

the original Rand index by the expectation value E (R) that the clustering occurred just by
chance:

Rad justed =
R − E (R)
1 − E (R) (6.51)

In analogy to the aforementioned unadjustedRand index the domain of de�nition is restricted

between [0, . . . , 1], while a high value indicates a high similarity.

6.3 Data analysis: more questions than answers

In this chapter, a set of methods was presented, which allow to answer two of the most

frequently asked questions arising in quantitative proteomics experiments: �rstly, “which

proteins are di�erentially regulated regarding the selected experimental conditions”, and

secondly, “are there groups of proteins that are characterized by similar abundance ratios,

indicating a common regulation?” (Albaum et al. 2011b, p.1). �e analysis of variance allows

to detect di�erentially regulated proteins regarding a number of experimental conditions.

�is method, however, demands certain prerequisites, whose ful�llment with regard to

quantitative proteomics data cannot be taken for granted. Similarly, the identi�cation of

groups of proteins, which show similar abundance ratios, can be based on a variety of cluster

analysis methods, which produce—in the worst case scenario—completely di�erent results.

�e aim of this work is to provide a so�ware platform that allows to apply the introduced

set of methods on the data of a quantitative proteomics experiment. �is requires both

the persistent storage and the appropriate representation of analysis results, e. g. in form of

plots and tables. It also demands the provision of a framework to perform computationally

intensive tasks. However, the aim of this work is not only to allow the application of these

methods but also to investigate their applicability on this particular type of data. �e �nal
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objective is to provide straight answers to the central two questions. For this purpose,

an evaluation study has been carried out taking into account three real-world datasets

(Haußmann et al. 2009; Hahne et al. 2010; Otto et al. 2010). �e results have been published

in Proteome Science in 2011. Based on these results, a work�ow for the comprehensive

analysis of quantitative proteomics data is presented in chapter 9.
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Chapter 7

Implementation of the QuPE system

�is chapter describes in detail aspects of the implementation of the rich internet application

QuPE as well as related methods and algorithms. �e application consists of several modules

that target independent services, ranging from the presentation of data in a web browser-

based graphical user interface to the execution of computationally intensive tasks on a

compute cluster. On the whole, the modules complement each other to form a versatile

and extensible system for the storage and analysis of quantitative proteomics data and for

the development and in-depth evaluation of data processing and analysis methods. Apart

from the overall system design, this chapter addresses, in particular, the implementation of

algorithms for the calculation of relative abundance values of metabolically stable isotope

labeled protein samples.

7.1 System design

QuPE is based on Spring (Johnson 2003; SpringSource, a division of VMware 2011), which

provides a framework for the development of applications compliant with the Java Platform,

Enterprise Edition (Java EE, Oracle 2011a) speci�cation. �e traditional implementations

of a server-side architecture model are Enterprise JavaBeans. �ey are, however, regularly

suspected1 of placing too high restrictions on the design of components for data manage-

ment and processing logic as well as of demanding too complex con�gurations (keyword:

1
Many disadvantages have been addressed in the newest EJB de�nitions 3.0 and 3.1.
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’deployment descriptors’, Höller 2005). �e Spring framework, in contrast, o�ers a—in this

sense—lightweight alternative to manage a number of loosely-coupled objects or rather a

number of plain old Java objects (POJOs), as simple objects are called today in the Java

world. �e most characterizing and interesting aspect of this framework is the utilization

of the so called ’Inversion of control’ so�ware pattern in the form of a technique termed

’dependency injection’. �is allows for a centralized con�guration and administration of the

more than 450 Java-classes, which constitute the entire QuPE system (over 850 including

auto-generated code). In this regard, the relationships between di�erent objects are de�ned

by means of XML-based con�guration �les.

To take an example of this concept: an instance of the class ExcelExporter provides function-
ality to export database search results in form of an Microso�™ Excel sheet. According to the

multilayer architecture model of QuPE, its business logic such as the functionality to retrieve

protein identi�cations and other search information is implemented in classes belonging to

the logic layer (ObservationBusiness and ProteinBusiness in this example). In the context of
the Spring framework, the ExcelExporter instantiation and wiring is then performed solely
based on the following code fragment:

<bean i d= " e x c e l E x p o r t e r " c l a s s = " de . c e b i t e c . qupe . e x po r t . E x c e l E x p o r t e r " >

< p r op e r t y name= " o b s e r v a t i o n B u s i n e s s " >< r e f bean= " o b s e r v a t i o n B u s i n e s s " / >< / p r op e r t y >

< p r op e r t y name= " p r o t e i n B u s i n e s s " >< r e f bean= " p r o t e i n B u s i n e s s " / >< / p r op e r t y >

< / bean>

All implemented classes follow the technical recommendations described by the JavaBean

conventions (Hamilton 1997). In the case of the ExcelExporter this manifests itself in a public
constructor as well as public get- and set-methods for all private attributes. In keeping with

the de�nition of a JavaBean to be reusable, each class has, in general, no dependencies on

the Spring framework, which allows to deploy a class and its instantiations in di�erent and

unrelated contexts, such as JUnit tests.

7.2 System architecture

�e design of QuPE resorts to the multi-tier architecture model. As depicted in Figure 7.1,

the system consists of three layers responsible for data access and retrieval, application logic

and data processing, and the presentation of data.

7.2.1 Data access layer

�e data model of an application targeting the analysis of quantitative proteomics data has to

cover a variety of di�erent data types starting from the representation of mass spectra, to

protein and peptide identi�cations in terms of matches to sequence databases, to analysis

results such as lists of statistically signi�cant proteins or plots of expression values. Whereas

the design of parts of the data model could follow recommendations made, in particular, by
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Figure 7.1 –�is diagram depicts the three tier architecture model of the QuPE system. �e data access layer
provides an object-relational mapping utilizing Hibernate. �e implementation of the application or business

logic is located in the second layer, including the framework for the execution of computationally intensive

tasks. �e presentation layer is separated in two distinct components: a graphical user interface that allows the

interaction with the system through a standard web browser, and a SOAP/WSDL-based web service, which can

be utilized by other applications for data exchange.

the Proteomics Standards Initiative (PSI) at the HUPO (Orchard et al. 2003), there has not

yet been proposed a standardized way to store higher-level analysis results.

�e overall development of the data model pursued the model driven architecture approach

(MDA, Object Management Group 2008) using themodel designer O2DBI (Linke 2002).�e

implementation itself bases on Hibernate (JBoss Inc. 2011), a wide-spread object-relational

mapping library. �erefore, a tool named JavaO2DBI developed by Kai Runte (Benölken

2007) has been extended to cooperate with the Spring framework. �e XML-based modeling

produced by the O2DBI designer is translated into the appropriate Java classes and Hibernate

mappings. Objects responsible for data access, the so called DAOs, directly extend the class

org.springframework.orm.hibernate3.support.HibernateDaoSupport, which provides support
for database transaction handling, data retrieval, and database-related error handling. �e

model driven architecture approach yields a substantial bene�t as it allows to cope easily

with future requirements for the analysis of proteomics data. �us, it facilitates not only the
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addition of further attributes to existing classes but also the integration of new classes into

the data model. In the following, selected aspects of the data model are presented in detail.

For a complete description, the reader may refer to the QuPE API.

Figure 7.2 –�is class diagram explains the data model used for the storage of mass spectra. An instance of
MSCollection is a container for one or more mass spectra of type Spectrum. While the data itself is stored in
an instance of SpectrumData, each spectrum may have associated both a raw dataset as measured by a mass
spectrometer and a derived dataset as created, for example, by a peak detection tool. Please note, that some

attributes and methods—in particular setter-methods and obvious methods such as ’equals’ and ’hashCode’—are

omitted in the visualization.

7.2.1.1 Object model for mass spectra

�e classes designed to represent a collection of mass spectra (see Figure 7.2) in the data

model closely follow the open source format mzData (Orchard et al. 2004) developed by

the PSI and include attributes for the total ion current, the time of recording of a spectrum,

as well as its numeric identi�er. Aiming at an e�cient storage of the raw datasets, namely

pairs of m/z and intensity values in form of two arrays, data is stored as a compressed byte

array (based on ZIP as implemented in the package java.util.zip). Each spectrum may have
associated two di�erent datasets, the raw mass spectrum as recorded by a mass spectrometry

instrument, on the one hand, and a therefrom derived mass spectrum as result, for example,

from a peak detection algorithm, on the other hand. In combination with a technique called

’lazy loading’ (child objects are retrieved from database only on demand) the modeled parent-

child relationship ensures an e�cient retrieval of the data. An additional class Sample has
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been introduced to describe the origin of a collection of mass spectra, such as a particular

spot on a MALDI target plate or a speci�c run of an LC-MS/MS experiment. In summary,

the implemented data model allows to e�ciently store and retrieve mass spectra produced by

di�erent types of mass spectrometry instruments. �e classMSCollection is able to represent
both a single MALDI-TOF spectrum with only a few child spectra up to huge LC-runs

comprising thousands of individual mass spectra.

7.2.1.2 Object model for protein and peptide identifications

Similar to the representation of the basic data type Spectrum, classes for the storage of peptide
and protein identi�cations model themselves on PSI recommendations, which are nowadays

described in the ’mzIdentML’ data exchange standard (Proteomics Informatics Standards

Group 2011). To base reported hits from a sequence database search using for example

Mascot™ (see section 4.2.1) on common ground, all designed classes extend a common

superclass named Observation (see Figure 7.3). Specializations are then found either in
the class ObservationProteinHit, which refers to database search results from peptide mass
�ngerprinting (PMF), orObservationPeptideHit to describe MS/MS ion search (MIS) results.
Owing to their increasing importance, particular attention was paid to the representation

of protein modi�cations in the data model. �ese may origin from a post-translational

modi�cation (PTM) of the protein or may have been introduced due to a speci�c chemical or

physical treatment. For this purpose, an observation can have associated a variable number

of objects of typeModi�cation. Each modi�cation, in turn, has to be described by an instance
of the classModi�cationType to de�ne occurring changes in the molecular composition of
the protein. In addition, references to further descriptions of the type of modi�cation may be

assigned as found in Unimod (Creasy and Cottrell 2004) or the RESID database (Garavelli

2003), for example.

A special feature of QuPE’s data model is the fact that an observation can be labeled with

an annotation, and thereby marked as a valid protein or peptide identi�cation. At this, the

annotation may, in addition, be given a level of certainty. �is can either be done manually

by a user or automatically based on certain criteria (see section 7.4.2 for further details).

All evidential observations that ’proof ’ the identity of a speci�c protein are aggregated by

an object of class Protein. Based on the �nal list of proteins determined for an experiment,
information from external resources such as UniProt (�e UniProt Consortium 2008) or

KEGG (Kanehisa and Goto 2000) is collected and integrated into the ’pool of knowledge’

about the samples under investigation.

7.2.1.3 Object model for analysis results

In contrast to the aforementioned data models, yet no binding recommendations have been

made regarding the representation of higher-level analysis results obtained, for instance,

by a statistical test or a hierarchical cluster analysis. Only recently, an initiative has been

started to create a common data exchange standard for protein amounts quanti�ed in a cell
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Figure 7.3 –�is class diagram explains the data model implemented for protein and peptide identi�cations.
Extending the common superclassObservation, the two classesObservationProteinHit andObservationPeptideHit
refer to database search results from peptide mass �ngerprinting (PMF) or MS/MS ion search (MIS), respectively.

An observation can have associated a variable number of protein modi�cations, which have to be described by an

instance of classModi�cationType. A special feature of QuPE’s data model is the fact that an observation can be
labeled with an annotation, and thereby marked as valid. An object of type Protein groups all information related
to a protein identi�cation. Due to reasons of space some attributes and methods are omitted in the diagram. �is

includes setter-methods and obvious methods such as ’equals’ and ’hashCode’ but also ’convenience methods’

e. g. to add or remove an element to or from, respectively, a collection or to check whether a list is empty.
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Figure 7.4 –�is class diagram explains the data model used to store analysis results such as calculated abun-
dance ratios, statistical measures including a mean value and its standard deviation, but also images such as

box-and-whisker plots or heatmaps. Please note that due to reasons of space some attributes and, in this case, all

methods have been omitted.
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or organism. �e development is predominantly driven by the PSI and will presumably be

named ’mzQuantML’; however, no version has been released until now.

Along with the inventory of methods for the analysis of quantitative proteomics data (see

chapter 6), the requirements have been identi�ed for an object model to store the data arising

from these analyses. First of all, this aimed at an adequate representation of calculated protein

abundance ratios, which also included protein quanti�cation utilizing the elution time of a

peptide. At second, statistical measures needed to be taken into account in the object model,

such as the mean value of all abundance ratios found for a protein under a speci�c condition

together with the standard deviation, or analogous, the median. �irdly, an analysis may

produce any kind of plot or, more generally, visualization as a result. �is can, for example,

be box-and-whisker plots, or heatmaps as originating from a hierarchical cluster analysis.

In the design of the object model (see Figure 7.4), all results of a performed analysis are

combined in one Result object, which in turnmay consist of datasets of measurements and/or
any number of illustrations. While a general type of measurement termedMeasurementPro-
teinSeries has been devised to store any series of values for a protein, more speci�c types of
measurements are included in the data model for the most common types of analyses. �is

involves, inter alia, statistical measures and test results including, for example, the ANOVA
or a Kruskal-Wallis rank sum test. A dataset groups any number of measurements. In order

to distinguish the results of an analysis regarding di�erent conditions or sample treatments, a

dataset can be further described using a list of objects of type TreatmentLevel. At this point, a
type of treatment refers to the factor or condition which has changed during the experiment.

An example would be ’heat’ or ’time’. A level of treatment then de�nes the speci�c value or

characteristic of this type, e. g. one hour or 30°C.

7.2.1.4 Object model to structure experiments and related data

To structure all data and meta-data relevant to a speci�c experiment, the data model of

QuPE provides a corresponding representation (see Figure 7.5). Several experiments may in

turn belong to a project2 to group all information gathered, for example, by an individual

experimenter or a particular working team. Each user is represented in the object model by

an instance of the class Experimenter. Upon creation a speci�c object is �rstly only accessible
by its owner, yet di�erentiated access rights can be assigned to other experimenters allowing

them to read, modify or delete an experiment or even a complete project. �e use of a

common superclass (Secured) for all kinds of ’secured’ objects, allows to provide generic
implementations of the necessary functions for this level of application security, which is

based on access control list (ACL) directives. Given an object of type Secured, there may
exist a variable number of objects of type ACL that specify whether particular privileges are
granted or denied.

2
To avoid name clashes and misunderstandings with instances of the class Project within the central CeBiTec
project management system (GPMS, see section 7.4.1 for further details), a project in QuPE is internally

referred to as Subproject.
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Figure 7.5 –�e classes designed to group all data relevant to a speci�c experiment are described in this diagram.
�is may include mass spectra as well as lists of identi�ed proteins, and higher-level analysis results. In QuPE,

several related experiments may belong to one project (internally referred to as ’Subproject’). To allow the

assignment of �ne-granular privileges to individual objects, as for example an experiment, access control list

(ACL) directives have been set up.
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7.2.2 Logic layer

At the heart of the QuPE system are the classes and methods that provide the overall business

logic, inter alia, to process and validate interactive requests, to distribute workload between
a web server and a compute cluster, to initiate and prepare storage and retrieval of data, or to

perform calculation tasks.

Classes in the Java package de.cebitec.qupe.businessmediate the connection between the data
access and the presentation layer. �ey act as an interface to process user actions received

by the graphical user interface but also those of the provided web service, and accordingly

initialize data transfer from and to the database. �is includes the composition of information

e. g. in form of newly instantiated objects, the validation of received data, and the veri�cation

of user permissions regarding a user’s right to perform a requested operation.

7.2.2.1 Job and tools framework

Amain pillar of this middle layer of QuPE is the framework for the execution of tasks, e. g. to

import data, to perform calculations, or to conduct a database search for protein identi�-

cation (package de.cebitec.qupe.task). �e objective of this framework is, �rstly, to provide
programmers with a well-de�ned programming interface (API) that eases the integration

of new functions and that o�ers frequently used methods for the retrieval, processing, and

storage of data. In addition, the API facilitates the integration of routines written in the

programming language R (R Development Core Team 2011; Chair for computeroriented

statistics and data analysis 2008), and thereby allows developers to resort to a wealth of

established data analysis methods. Secondly, the framework enables generic and uni�ed

views for both the con�guration and initiation of a task, as well as the monitoring of a task

during its execution. Similar, the access to resulting data objects and their presentation in a

graphical user interface are uni�ed, and do not need to be addressed by a developer.

Central parts of this framework are the two classes Tool and Job, which represent a speci�c
unit of work, on the one hand, and a complete task consisting of these work units processed

in a de�ned order, on the other hand (see Figure 7.6). In combination, both are used to

collect and describe all aspects of a computation. Obviously, this includes the input in form

of individual mass spectra, complete samples, or datasets that resulted from a previous

calculation. In the end, each job may be associated with its resulting output in form of

an object of type Result—if appropriate—consisting, for example, of datasets of calculated
abundance ratios or a number of plots (see section 7.2.1.3).

If a tool demands additional con�guration, e. g. to let a user choose a speci�c method for

a calculation, a list of parameters of the type ToolParameter may be de�ned for each tool,
in practical terms, pairs of parameter names and associated values. Currently, String, Float,
Integer, and Boolean values are supported for this purpose. To ensure a valid con�guration, a
programmer may set, in case of numeric values, upper and lower limits as well as an allowed
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Figure 7.6 –�is diagram describes all classes representing any kind of computational tasks performed either
on data in the QuPE system or to import data into the system. An instance of the class Job consists of one or
more individual tools (Tool), each designed to portray a speci�c part of a calculation. �e input of a job can be
a list of individual mass spectra, complete samples, or even datasets that resulted from a previous calculation.

Each tool can have a variable list of parameters to control its behavior during the execution.

increment value. In case of textual parameters, optionally, a list of terms may be provided to

restrict the value of a parameter to these alternatives.

While themajority of work units is represented by an instance ofTool, for two, very specialized
types of units of work, own classes have been designed. �is is, �rstly, the import of data

into the system, in particular, of mass spectra, and secondly, the identi�cation of proteins

using a database search engine such as Mascot™.

�e necessary application logic to perform a speci�c unit of work is strictly segregated from

its representation in the data model and has to be implemented in a class of type ToolTask. In
analogy to the two classes Job and Tool such a ToolTask or any combination of these assemble
to a JobTask. An important characteristic of each JobTask is the implementation of the Java
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Figure 7.7 – Together with the data model shown in Figure 7.6, the herein described classes complement the
framework for the execution of tasks, e. g. to import data, to perform calculations, or to conduct database

searches. �e class JobTask and its specializations, which all implement the Java interface Runnable, provide the
application logic to perform these tasks. Concrete implementations for all aspects of these computations are

found in tools each represented by a ToolTask. �is is, for example, the calculation of isotopic distributions for a
list of peptides, which are then used as basis for a second tool to determine abundance ratios.
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interface Runnable. Each task is, hence, executable in its own Java�read, and the system
can thereby take care of the execution of a JobTask in a separate process.

Conception and design of a speci�c task rely on the capabilities of the Spring framework

and its uni�ed, centralized con�guration. To take an example, the following XML-code

de�nes a method to quantify protein amounts in isotopically-labeled samples. �e complete

task consists of four di�erent tools, each ful�lling a speci�c purpose from the calculation of

isotopic distributions, to the extraction of ion chromatograms, to �nally, the calculation of

protein abundance ratios.

<bean i d= " e l u t i o n P e a kQu a n t i f i c a t i o n " p a r en t= " r e s u l t a b l e J o b T a s k " s cope= " p r o t o t y p e " >

< p r op e r t y name= " d e s c r i p t i o n " >

<va lu e >

Qu a n t i f i c a t i o n u t i l i z i n g p e p t i d e e l u t i o n ( L i n e a r r e g r e s s i o n / Re lEx approach )

</ v a l u e >

</ p rope r t y >

< p r op e r t y name= " t a s kDu r a t i o n " ><va lu e >LONG</ va lu e ></ p rope r t y >

< p r op e r t y name= " t o o l T a s k s " >

< l i s t >

< r e f bean= " i s o t o p i c D i s t r i b u t i o n T a s k " / >

< r e f bean= " e l u t i o nP e a kTa s k " / >

< r e f bean= " e lu t ionPeakChromatogramTask " / >

< r e f bean= " e l u t i o n P e a kQu a n t i f i c a t i o nT a s k " / >

</ l i s t >

</ p rope r t y >

</ bean >

Typically for many calculation tasks, as can also be seen in this example, the job inherits from

the provided class ResultableJobTask. �ereby, the creation of an appropriate Result object to
store the datasets written out by this computation is taken care of. In this way a developer

is only required to implement the four ToolTasks, which are then, of course, reusable in
other contexts. Before and during execution of a JobTask, the provided implementation
veri�es that the di�erent tools and their inputs and outputs are compatible to each other

and manages the transfer of data objects. In a job con�guration, an expected duration of

the overall computation may be speci�ed and expressed by the enumeration TaskDuration,
which currently supports three stages: short, medium, and long.

At this point, a further characteristic of the Spring framework comes into play: given that

the implementation of an object relies on Java interfaces, the concrete realization of an object

is exchangeable solely based on a modi�ed XML-con�guration. �is is made use of for

the delegation of computationally-intensive and long-running tasks: while the production

version of the QuPE server may refer to an Oracle™ Grid Engine (Oracle 2011d) to bene�t

from the advantages of a distributed computing solution, during development, task execution

is performed locally using a�readPool:
pub l i c c l a s s QuPETaskCont ro l l e r implements S e r i a l i z a b l e {

/ * . . . * /

/ *
* Task e x e c u t i o n i s c a t e g o r i z e d d ep end en t on i t s e x p e c t e d
* du r a t i o n and con sumpt i on o f r e s o u r c e s i n t h r e e c a t e g o r i e s .
* The c o n c r e t e imp l emen t a t i o n o f an e x e c u t o r i s
* i n t e r c h a n g e a b l e , bu t ha s t o b a s e on t h e i n t e r f a c e
* o r g . s p r i n g f r amewo r k . c o r e . t a s k . Ta s kEx e cu t o r
* /

p r i v a t e TaskExecu to r s ho r tT a s kEx e cu t o r ;

p r i v a t e TaskExecu to r mediumTaskExecutor ;

p r i v a t e TaskExecu to r l ongTa skExe cu t o r ;

/ * *
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* S e t t e r f o r p r o p e r t y l o n gTa s k E x e c u t o r
* @param l o n gTa s kE x e c u t o r
* /

pub l i c vo id s e t LongTa skExe cu t o r ( Ta skExecu to r l ongTa skExe cu t o r ) {

t h i s . l ongTa skExe cu t o r = l ongTa skExe cu t o r ;

}

/ * . . . * /
}

<bean i d= " p r o SETa s kCon t r o l l e r " c l a s s = " de . c e b i t e c . qupe . t a s k . c o n t r o l l e r . QuPETaskCont ro l l e r " >
< p r op e r t y name= " s ho r tT a s kEx e cu t o r " >< r e f bean= " s ho r tT a s kEx e cu t o r " / > </ p rope r t y >

< p r op e r t y name= " mediumTaskExecutor " >< r e f bean= " mediumTaskExecutor " / > </ p rope r t y >

< p r op e r t y name= " l ongTa skExe cu t o r " >< r e f bean= " l ongTa skExe cu t o r " / > </ p rope r t y >

< p r op e r t y name= " j o bBu s i n e s s " >< r e f bean= " j o bBu s i n e s s " / > </ p rope r t y >

</ bean >

. . .

<−− L o c a l l y a ThreadPoo l i s used f o r t h e e x e c u t i o n o f c ompu t a t i o n a l l y i n t e n s i v e t a s k s −−>

<bean i d= " l ongTa skExe cu t o r " c l a s s = " org . sp r ing f r amework . s c h e du l i n g . c on cu r r en t . ThreadPoo lTa skExecu to r " >
< p r op e r t y name= " c o r e P o o l S i z e " v a l u e = " $ { t a s k . s h o r t . e x e c u t o r . c o r e . poo l . s i z e } " / >

< p r op e r t y name= " maxPoo lS i z e " v a l u e = " $ { t a s k . s h o r t . e x e c u t o r . max . poo l . s i z e } " / >

</ bean >

<−− In p r o d u c t i o n mode t h i s i s i n s t e a d r e p l a c e d by a
b i n d i n g t o t h e O r a c l e (TM) Gr id Eng in e v i a DRMAA −−>

<bean i d= " l ongTa skExe cu t o r " c l a s s = " de . c e b i t e c . qupe . t a s k . drmaa . DRMAAExecutor " / >

7.2.3 Presentation layer

�emain interface that allows users to interact with the QuPE system is implemented using

the Echo2 web framework (NextApp, Inc. 2011). An example screenshot is depicted in Figure

7.8. In addition, a web service interface is provided based on SOAP and the web service

description language (WSDL, Gudgin et al. 2011), which can be utilized by other applications

to retrieve and exchange analysis results as, for example, complete datasets of calculated

abundance ratios. �e capabilities of this interface have successfully been demonstrated

by ProMeTra (Neuweger et al. 2009), a web application that allows to combine PolyOmics

datasets from di�erent sources and to project expression values on ’self-made’ metabolic

pathway maps.

7.2.3.1 Graphical user interface

It has been a matter of particular concern to take into account the distributed location of

users. Aiming to enable the sharing of information and data not only between di�erent

departments such as a laboratory and an o�ce but also between di�erent universities or

institutions, the QuPE system was developed as a rich internet application (Allaire 2002).�e

Echo web framework, which is based on Asynchronous JavaScript and XML (AJAX, Garrett

2005), allowed to develop a graphical user interface that, on the one hand, behaves similar to

the user interface of a standalone so�ware application started on a personal computer, but

on the other hand, is accessible using a standard web browser whenever and wherever an

internet connection is available. QuPE is installable on any Java EE-compliant web server.

Using QuPE is independent from any web browser3 or operating system. In the sense of

3
Except for some minor display problems with the newest version (v9.0) of the Microso�™ Internet Explorer
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Figure 7.8 –�is Figure shows a screenshot of QuPE’s graphical user interface running in a web browser. On
the top of the page, the main menu provides access to all functionalities of the system. Information about the

logged-in user, as well as the currently selected experiment and data is displayed below in a status bar. In this

example, the main part of the page is used to display a welcome message and some introductory text to QuPE.

the ’so�ware as a service (SaaS)’ concept so�ware maintenance and further development are

centralized (Mell and Grance 2010).

7.2.3.2 Design and control of the graphical user interface using a
model-view-controller pattern

In contrast to many other frameworks for the development of web-based applications, Echo2

purely relies on the implementation of server-side components in the Java programming

language. Communication between di�erent components of the user interface is handled

by an event-based programming paradigm akin to that of the Java Swing API. �is allowed

to implement a model-view-controller pattern to control the graphical user interface of

QuPE. �e use of this pattern facilitates the extension of the system by new input masks

or visualizations of analysis results. In the context of the web application these are termed

pages. As only the classes responsible for the view are directly referring to elements of the

Echo2 web framework, a further advantage of this pattern is that it would—in the distant

future—be conceivable to complement the presentation layer of QuPE with a graphical user

interface implemented in Java Swing.
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Figure 7.9 –�is class diagram shows the relationship between the three classes Page, PageView, and TableModel
and their specializations, which make up the model-view-controller pattern to retrieve data, process and display

content, and allow for user interaction within the web browser-based graphical user interface of QuPE. An

instance of the class PageManager manages the initialization of a page using the Spring framework.
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Figure 7.9 gives an overview of the classes that have been designed to put this pattern into

practice. A special type of page, the so called frame page, is responsible for the overall layout

and structure. It provides a screen area to display themain content represented by an instance

of the class Page. Currently, two di�erent FramePage implementations are available in the
context of QuPE. �e �rst is used to draw a login screen providing a container to query

a user’s credentials and to select a GPMS project, respectively, database. A second frame

page generates the basic structure of each subsequent screen including the main menu and

additional status information.

Each individual page has to be based on the class Page, which acts as the controller to process
user requests and at least one subclass derived from PageView, which is responsible for the
layout and setup of the structural elements of the user interface. All events occurring at

speci�c components, for example if a user performs a click on a button, are delegated from

the PageView instance to the page controller of type Page. In addition, one or more model-
implementationsmay be provided that act as mediator between the presentation layer and the

application layer to retrieve data objects from the database. At this point, the design diverges

from the original implementation of the model-view-controller pattern, as—in the name of

simplicity—the model’s realizations are direct specializations of the classes TableModel or
ListModel. �e reason for this variation is simply the fact that most of the data is displayed
in form of lists and tables.

Apart from the simple display of a single page as it is the case in the screenshot of Figure 7.8,

a developer may refer to presentations that are built up of several related pages using tabs

and/ or using a sidebar.

All pages have to be registered within the Spring framework. During server startup, an

instance of the Spring framework’s class ApplicationContext is build up and con�gured
according to the given con�guration. If a user requests a new page, e. g. by selecting an

entry in the main menu, setup and instantiation of a page are mediated by a singleton

instance of the class PageManager, which has full access to the ApplicationContext. In the
�rst instance, for each page and potential ’helper pages’ displayed in a side bar or a tab the

buildView()methods are invoked to install and setup each corresponding PageView’s content.
At next, control is handled over to the controller, namely the instance of Page using the
method postBuildView(). �is can be used to �nalize the display of content, in particular, in
consideration of an actual selection, e. g. a currently chosen mass spectrum or protein hit.

7.3 Algorithms for the analysis of quantitative proteomics
data

Even though a wide range of so�ware tools for the quanti�cation of isotopically-labeled

proteins has been introduced in recent years, the accuracy and performance of currently

available algorithms is still worthy of improvement, and, as already mentioned in chapter

5, regarding speci�c experimental setups, in particular concerning the quanti�cation of
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proteins in which a metabolic label has only been partly-incorporated, no algorithmic

approaches have been conceived yet. Utilizing the application programming interface (API)

of QuPE, therefore, a number of quanti�cation algorithms have been developed, whose

implementations are now explained in detail. A comprehensive evaluation of the herein

introduced methods can be found in chapter 8. All implemented algorithms are accessible

via the web interface of QuPE and have proven their applicability in several quantitative

proteomics experiments (e. g. Grasse et al. 2011; Fränzel 2010; Albaum et al. 2011b; Haußmann

and Poetsch in-press).

7.3.1 Sum quantification approach – simple but powerful

In the �rst instance, a simple and straightforward approach was taken to quantify metabo-

lically-labeled samples in which one protein, or rather one peptide, is found fully-labeled

and one completely unlabeled. In contrast to techniques such as iTRAQ (Ross et al. 2004),

where the quantitative information can be extracted from a single isolated peptide and hence

from the MS/MS scan that accounted for the peptide’s identi�cation, in metabolic labeling

the full MS scan has to be used for quanti�cation (cf. also section 4.3). Required input of

the algorithm is a list of peptides that have been identi�ed in a database search, e. g. using

Mascot™. Based on each peptide’s sequence, its actual charge state and any observed protein

modi�cation, the expected theoretical isotopic distributions are calculated for both the

unlabeled peptide and its counterpart characterized by a speci�c label such as heavy stable

nitrogen isotopes or a tagged amino acid and an estimated incorporation rate of this label.

�e information gained in this way about the m/z-values of each of the two peptides directly

leads to their intensities in a mass spectrum, and subsequently, the intensities’ ratio to a

measurement of relative abundance. In principle, quanti�cation could be based only on the

monoisotopic or the most abundant peak of both isotopic distributions. However, since label

incorporation rates typically do not reach 100 percent, the isotopic patterns reveal heavily

varying forms. �erefore, the complete isotopic distribution4 is used for quanti�cation.

At the cost of e�ciency but ensuring a high accuracy, the calculation of isotopic distributions

is grounded on a polynomial algorithm derived from an open source program named

’Isotopic Pattern Calculator’ (Nolting 2008, see Appendix A.1) that closely follows the method

introduced by Yergey et al. (1983). �e algorithm allows to determine the mass to charge

positions and relative intensities of each isotope of a peptide with a user-de�nable but in

all cases su�cient exactness. Atomic weights and isotope probabilities were taken from the

database of atomic weights and isotopic compositions hosted at the National Institute of

Standards and Technology (Coursey et al. 2005). �e procedure of the sum quanti�cation

approach is implemented as follows: formally, a mass spectrum S that consists of p discrete
peaks with each an m/z-value m and intensity i can be described by two vectors m =
{m1 . . .mp} and i = {i1 . . . ip}. Given the theoretical isotopic distribution calculations
predict the peaks of the unlabeled peptide to be localized between the two m/z values µ1 and
µ2, and for the labeled peptide between µ3 and µ4, a relative abundance value for a peptide

4
Strictly spoken, all intensities above a reasonable threshold as for example one percent.
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can be calculated and transformed into a logarithmic ratio, similar to the so calledM-value
known from microarray experiments (Dudoit et al. 2000):

M = log2
∑ ik
∑ i j

, ∀k ∶ µ1 − ε ≤ mk ≤ µ2 + ε,∀ j ∶ µ3 − ε ≤ m j ≤ µ4 + ε (7.1)

To ensure that the monoisotopic peak of the unlabeled peptide, in particular, is not missed, a

user-de�ned tolerance value ε can be taken into account to extend the investigated ranges.

�e ratio naturally ignores the overall intensities of both peptides. Although peak intensities

are an unreliable predictor for the absolute amounts of proteins in a cell, they nevertheless

provide a measure of the quality of a peptide identi�cation as very low intensities may be

a�ected by background noise. �erefore, a value, in the following termed A-value, is hereby
proposed to assess a measurement:

A = log2∑ ik ●∑ i j (7.2)

Implementation of the sum quantification algorithm

For the concrete implementation of the sum quanti�cation approach speci�c ToolTasks
have been devised (see Figure 7.10). It was decided to separate the processing of samples

labeled with the SILAC approach and those that utilize metabolic labeling with heavy stable

isotopes such as 15N. Accordingly, two di�erent tools are provided for the calculation of

theoretical isotopic distributions, which can then be combined with a second task to calculate

peptide abundance ratios. For data exchange a mapping of peptide sequences on two isotopic

distributions—one for the labeled and one for the unlabeled variant of a peptide—is utilized.

As the quanti�cation of MALDI-TOF data demands special processing of mass spectra and

di�erent default settings of parameters, the implementation is provided in an own ToolTask.
Execution and con�guration of the �nal calculation task is done as described in section

7.2.2.1.
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Figure 7.10 –�e class diagram in this Figure displays details of the implementation of the described sum
quanti�cation algorithm. Dependent on the type of label, either SILAC or a heavy stable isotope such as

15
N,

di�erent implementations to calculate theoretical isotopic distributions are utilized. �e output in the form of a

mapping of peptide sequences on two distributions for the labeled as well as the unlabeled variant of a peptide

are then used as input for the calculation of relative abundance values.

7.3.2 Utilizing the time

In case of an LC-MS/MS experiment, the calculation of relative abundance ratios can be

signi�cantly improved by taking the temporal information gained from a peptide’s elution

into account. �is has successfully been shown by tools such as RelEx and ProRata (cf.

section 4.3.2 �.). In contrast to the sum quanti�cation approach it is not only necessary to get

to know the m/z positions of both the unlabeled and the labeled peptide but also the start and

end point of their elution from the chromatographic column. �e algorithm requires—in

agreement with the previous approach—a list of identi�ed peptides including their sequence,

charge state and any present protein modi�cation as its input. In addition to the concrete
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Figure 7.11 –A common problem in mass spectrometry is noise as illustrated in this example. To cope with this
kind of error, the theoretical isotopic distribution (right side of the picture) can be used to extract the intensities

only from a small-framed window around the exact positions of each peak (le� spectrum, indicated by the

highlighted bars).

mass spectrum that accounts for the identi�cation of a peptide, the retention time is a further

requisite information.

For the construction of extracted ion chromatograms (EICs), at �rst the theoretical isotopic

distributions are calculated as previously described and used to determine the m/z ranges,

in which the peptide pair can be found in a mass spectrum. Common problems in mass

spectrometry are noise or interferences that occur, for example, if the peaks of two peptides

with similar mass overlap in a spectrum (Hoopmann et al. 2007). Putting forward a proposal

to reduce the impact of these errors, instead of the whole isotopic envelope that is spanned

by the theoretical isotopic distributions exact peak positions can be utilized. �e approach is

illustrated in Figure 7.11. Given a spectrum T with q peaks, which is described by a vector of
m/z-values µ = {µ1 . . . µq}, represents the theoretical isotopic distribution of a peptide, given
further ε as a small-sized value, and furthermore, S denotes a recorded mass spectrum that
has p peaks,m = {m1 . . .mp} and i = {i1 . . . ip}, only those intensities of S are considered
for the quanti�cation that are de�ned by a new intensity vector ĩ:

ĩ = {ĩ1 . . . ĩq} where each ĩ j = ∑ ik ,∀k ∶ µ j − ε ≤ mk ≤ µ j + ε, j ∈ {1 . . . q} (7.3)

An important parameter in this connection is the utilized accuracy of the isotopic distribution

calculation. A good setting of this value depends, on the one hand, on the accuracy of the

instrument used to acquire the mass spectra, but is, on the other hand, also limited by an

increasing computational e�ort due to the comparably high complexity of the algorithm.

Since it can be taken for granted that a peptide does not only elute at a de�nite time point

but possibly within a distinct time interval, the next step is to extract the intensities not only

from the spectrum that is responsible for the peptide’s identi�cation, but also from all scans

recorded in the seconds before and a�er the detection. In this respect, it has to be taken into

consideration that the same peptide with the same charge state has sometimes been identi�ed

not only once but two or more times, for instance in its labeled and its unlabeled variant.

At best, these peptides have eluted in the same time interval, at worst there is a di�erence

of several minutes between their retention times. In such a case, �rstly those two peptides

with the utmost di�erent time interval are searched for. All remaining peptides (if there are
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Figure 7.12 –�e Figure illustrates the assets and drawbacks of di�erent peak detection methods. While a
Wavelet-based peak detection is able to cope with—admittedly extreme—signal instabilities as shown in the le�

picture, the right picture reveals the disadvantage of the top-down approach in this case as the peak detection is

erroneous ’stuck’ in a local minimum.

any) are then grouped according to their distance in time to these two peptides. Secondly, a

majority rule is applied, and that peptide or group of peptides which has the lowest number of

members is removed. If both groups are equally-sized, it is always the group with the highest

retention time that is discarded since these have a higher probability to be inaccurate—not

seldom peptides that somehow ’got stuck’ in the chromatographic column elute in the last

seconds of a liquid chromatography run. If the time interval spanned by the retention times

of all peptides still exceeds a given threshold, the procedure is repeated.

A�er all intensities have been extracted and thereby the two EICs for the unlabeled and the

fully labeled peptide were constructed, it is necessary to �nd the concrete �rst and last time

point a peptide eluted at in the EICs, in other words, the borders of the peptides’ elution

peaks. A simple and straightforward approach searches for the peak’s apex and follows the

�anks on both sides until these ridge lines either reach the baseline or fall below a given

threshold. Even though appropriate, this method has a signi�cant weakness if deviations

between the signals of the same peptide in two successive spectra occur, for instance, due

to spray instabilities of the ESI ion source (Parvin et al. 2005). �is can be countered by

the application of a smoothing �lter as has been proposed by Savitzky and Golay (1964).

However, Yang et al. (2009) found an algorithm based on continuous wavelet transform

having the best performance for the purpose of peak detection in chromatographic data. �e

algorithm of Du et al. (2006) utilizes a Mexican Hat wavelet, as it approximately describes

the form of a peak. By this means, irregularities can be compensated for, as shown by the

example in Figure 7.12.

Dependent on a retention time point τ this wavelet function ψ(τ) is de�ned by the following
equation:

ψ(τ) = 2√
3π1/4

(1 − τ2)e−τ2/2
(7.4)

To apply the wavelet on an EICs, this has to be interpreted as a function of retention time,

c(τ). �us, a continuous wavelet transformation with the parameter a, which denotes a
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scaling factor to shrink or stretch the width of the wavelet, in analogy to the width of a peak,

can be conducted as follows:

CWT(τ) = 1√
∣a∣ ∫

∞

−∞
c(t) ⋅ ψ ( t − τ

a
) dt t, a ∈ R (7.5)

To gain an optimal �t of the wavelet on the spectral data, convolution operations are con-

ducted for a range of scales, each resulting in a list of wavelet coe�cients. Leveraging the fact

that only the most abundant peak at a time point close to the retention time of an identi�ed

peptide is of interest, the maximal observed coe�cient can directly be used as indicator for

the apex of this peak. Subsequently, the borders of the elution peak can be deduced from the

corresponding scaling factor and the roots of the folded function.

On the one hand, peak detection can be conducted separately on the two EICs of the labeled

as well as the unlabeled peptide. In this case, either the maximal peak width or the overlap

provide both good estimates of the true peptide’s elution start and end point. In this manner,

non-overlapping peaks may also indicate an error in measurement or an incorrect peptide

identi�cation, and may be chosen to be omitted. On the other hand, both EICs may be

combined before the peak detection, e. g. using the maximal intensity value for each time

point τ. Peak detection is then performed on this merged EIC. A similar approach has
been used in the tool ProRata (see section 4.3.3). Both methods have their advantages and

disadvantages. Whereas the �rst allows to implement an additional veri�cation, in particular

if only overlapping peaks are taken into account, the second approach may give better results

in case one peptide is only found with a very low abundance—the probability to correctly

detect a barely existing elution peak of this peptide is likely to be increased.

Finally, the ion current ratio is estimated using the resulting elution peak borders. Various

methods have been proposed for this purpose. For instance, the areas under the two curves

described by the elution peaks may be set in relation to each other, or alternatively, MacCoss

et al. (2003) and others (Li et al. 2003; Pan et al. 2006) proposed a linear regression approach

for this purpose. Within the frame of this work, a Master and a Bachelor thesis have been

conducted to evaluate di�erent methods. Mertens (2008) successfully implemented a quan-

ti�cation algorithm based on the last mentioned linear regression approach, Schröder (2010)

successfully devised a trapezoid-based procedure to calculate relative abundance values.

So far the best results have been achieved using the linear regression approach, especially

due to its robustness against outliers as also illustrated in Figure 7.13. In QuPE’s implementa-

tion a modi�ed version of this method is employed, as instead of vertical o�sets, which are

commonly used in least squares �tting, perpendicular o�sets are utilized to allow for uncer-

tainties of the data points along both axes. Formally, the sections of the two chromatograms

c1(τ) and c2(τ), attributable to the labeled and the unlabeled peptide, are plotted against
each other. Aim is to �t the function c1(τ) = a + b c2(τ) to the data (given, without loss of
generality, ∥c1∥ = ∥c2∥). In the outcome, the slope of the regression line a gives an estimate
of the ratio of the abundances, as determined by minimization of the following equation:

r ≡
∥c1∥
∑
τ=1

(c1(τ) − (a + bc2(τ)))2
1 + b2

(7.6)
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Figure 7.13 –�is Figure clearly illustrates the advantages of the linear regression approach. It can be assumed
that the outlier in the EIC that is drawn in red is an error in the measurement, e. g. due to spray instabilities. �e

picture on the right side shows the results of the linear regression analysis, and demonstrates that the outlier has

only a minor (if any) in�uence on the calculated abundance ratio.

Calculated abundance ratios that exceed a given threshold of r are then stored in the QuPE
database. In addition, for each ratio a signal-to-noise (S/N) value is computed and used for

�ltering that sets the overall peak intensity in relation to the mean signal intensity in a range

before and a�er the detected peak borders.

Implementation of the elution peak quantification algorithm

�e classes implemented for the elution peak quanti�cation algorithm are described in

Figure 7.14. Based on the theoretical isotopic distributions (see section 7.3.1 for further

details), exported in form of a PeptideIsotopologueMap, at �rst, the tool implemented in the
ElutionPeakTask groups all peptides having the same charge state according to their elution
time. Co-eluting peptides are combined in one object of type ElutionPeak. A mapping
of peptide sequences on these ElutionPeaks is subsequently used to extract the spectral
information from the database. �erefore, both the m/z positions gained from the theoretical

isotopic distribution calculation as well as the temporal information of each peptide’s elution

are taken into account. In the last step, the borders of the elution peak are determined using

one of the available peak detection algorithms, and �nally, relative abundance ratios are

calculated and stored in database as an object of type Result.

7.3.3 Pulse chase quantification

Pulse chase experiments using metabolically incorporated stable isotopes provide a way to

gain knowledge about the two components of protein turnover by determining synthesis as

well as degradation rates of a protein (see section 3.3.2 for further details). �is required the

development of an algorithm that allows to calculate the ratio between the abundances of

two di�erentially labeled peptides—�rst, a fully-labeled or unlabeled peptide, and second, a

partially-labeled peptide that is synthesized either before or a�er a pulse chase. �e approach
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Figure 7.14 –�is diagram shows the classes implemented for the elution peak quanti�cation algorithm.
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Figure 7.15 –Work�ow of the algorithm allowing to quantify peptides with variable incorporation rates e. g. of
nitrogen. A) �e required input is a list of peptides identi�ed by an MS/MS ion search along with information

about their amino acid sequence, charge state, modi�cations and the associated protein accession number. B)

Based on each peptides’ molecular composition, theoretical isotopic distributions are computed for varying rates

of
15
N or

13
C incorporation. C) �e parent spectrum is retrieved and D) both, the theoretical as well as the “real”

isotopic distributions are compared using the dot product. E)�e best match of a theoretical distribution (e. g. at

30% enrichment) determines the m/z ranges for the extraction of ion chromatograms (EIC) for each the partly-

and the fully-labeled peptide (F). Both EICs are compared by perpendicular linear regression (G), where the

slope of the regression line leads to the peptide abundance ratio (e. g. -2.704).
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described in the following has also been published in a journal article, in which also a

comprehensive experimental setup for the analysis of protein turnover is explained in detail

(Trötschel* et al. 2012).

�e basic idea of the algorithm—analogous to the aforementioned elution peak quanti�cation

approach—is to extract ion chromatograms (EICs) for each of the two isotopologous peptides,

and then to set these two EICs into relation. An immanent feature of a pulse chase approach

that is based on metabolic labeling, e. g. using 15N, is the fact that in the same spectrum a

peptide is always found in a fully-unlabeled or—dependent on the applied approach—fully-

labeled variant and, in addition, in a variant which is only partly-labeled at an unknown rate

of enrichment. �e crucial task is to determine this incorporation level, that then leads to

the m/z positions of both peptides and subsequently allows the construction of EICs.

�e complete work�ow of the algorithm is depicted in Figure 7.15, starting as before with

a list of identi�ed peptides including their amino acid sequence, charge state and protein

modi�cations (see Figure 7.15A). For each peptide, �rstly, the expected theoretical isotopic

distribution is calculated using the naturally occurring atomic weights and isotope probabili-

ties. Secondly, further isotopic distributions are computed for a selected set of variable rates

of enrichment of the isotope that has been used as label. Dependent on the applied pulse

chase approach, this starts, for example, with a low incorporation of 15N and ends with a

distribution where almost all 14N isotopes are replaced by their heavy counterpart (see Figure

7.15B). �e next and crucial step is to determine the similarity between this set of theoretical

isotopic distribution and the peptide’s associated mass spectrum (see Figure 7.15D). From

di�erent investigated approaches, e. g. correlation-based measures, the comparatively ’simple’

scalar product showed the best performance for this purpose. �is also corresponds to the

�ndings of Stein and Scott (1994), who investigated a closely related topic, namely, mass

spectral library search algorithms. Given a spectrum S consists of p discrete peaks, each
described by its m/z-value m and intensity i, formallym = {m1 . . .mp} and i = {i1 . . . ip}
and, analogously, q peaks belong to a calculated theoretical distribution T, ranging from the
lowest m/z-value µ1 to the highest m/z-value µq with intensities ι, a similarity is computed as

dS×T = arccos(
S × T√

S × S ⋅
√
T × T

) = arccos( ĩ × ι√
ĩ × ĩ

√
ι × ι

) (7.7)

wherein ĩ is derived from i as described above to, �rstly, hold the necessary condition ∥ĩ∥ =
∥ι∥, and, secondly, to reduce noise, e. g. from overlapping peptides.�e similarity dS×T is
calculated for any theoretical isotopic distribution, with the highest value providing a clear

indication of the correct rate of enrichment. In addition, the similarity is also used to verify

whether a peptide identi�cation is correct: If no theoretical isotopic distribution matches

the given mass spectrum, i.e. all calculated similarities fall below a threshold, the peptide

is omitted from further calculation. In this regard, it has to be added that in some cases

the utilization of exact peak positions is not appropriate, e. g. if the resolution of a mass

spectrometer is too low or a preprocessing algorithm was already applied to remove any

noise from the spectra. In such a case, the value of ε may be chosen in such a way that in the
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end all peaks of S are taken into account, thus, in principle, all values are combined to hold
the condition ∥ĩ∥ = ∥ι∥.

In addition to the incorporation rate, the applied spectral matching also leads to the m/z-

values and intensities of each of the two peptides, and the intensities’ ratio to a measurement

of relative abundance (see Figure 7.15E) following the same procedure as described for the

elution peak quanti�cation approach.

Implementation of the pulse chase quantification algorithm

�e implementation of the pulse chase quanti�cation algorithm is based to a large extent on

the classes implemented for the elution peak quanti�cation approach. As described in Figure

7.16 a tool has been added for the calculation of theoretical isotopic distributions given a

range of incorporation rates. �erefore, a starting and an ending incorporation rate have to

be given as well as an increment value. For the particular case that in addition to one isotope

such as heavy stable nitrogen an additional isotope, for example heavy stable carbon, has

been utilized to measure both protein synthesis and degradation rates, the special tool Du-
plexIsotopicDistributionTask is provided. Furthermore, the ElutionPeakChromatogramTask
was extended to perform the task of determining the best �tting isotopic distribution.

7.4 Summary of features of the QuPE system

In the following, a short summary of the features is given that have been implemented in

accordance to the requirements listed in section 5.1 and described in Figure 5.1 and which

are provided by the QuPE system.

7.4.1 Datamanagement: projects and experiments

In the �rst instance, QuPE provides the necessary functionality to organize and keep track

of all data and meta-data relevant to a particular quantitative proteomics experiment. �is

includes the raw mass spectra that belong to an experiment as well as descriptions of the

experimental setup and all further analysis results. Any access to the data is, �rstly, secured

by the CeBiTec’s generalized project management system (GPMS), which has already proven

its worth and functionality in hundreds of international PolyOmics projects (e. g. Neuweger

et al. 2008; Dondrup et al. 2009). As explained in 7.2.1.4, a second level of application-based

security utilizes access control list directives (ACLs) on selected database objects (see Figure

7.17A).�e communication between a client’s web browser and the QuPE server, furthermore,

takes place using HTTP over Secure Sockets Layer (SSL).
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Figure 7.16 –�e implementation of the pulse chase quanti�cation algorithm closely follows the implementation
of the elution peak quanti�cation algorithm. Only a few classes have been added namely for the calculation of

theoretical isotopic distributions for a range of variable incorporation rates and a tool to determine the best

�tting incorporation rate of a stable isotope.
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Figure 7.17 –A selection of screenshots showing QuPE’s graphical user interface: A) login screen, B) view to
browse and import mass spectra, C) visualization of database search results for protein identi�cation, D) details

about a protein quanti�cation result, E) projection of abundance ratios on a metabolic pathway, F) view of

analysis results, here, a heatmap as resulting from a hierarchical cluster analysis, G) con�guration and start page

of a calculation task, H) view to describe the treatment and grouping of samples.
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Import and preprocessing of mass spectrometry raw data

QuPE supports the import of mass spectra data in the open source formats mzXML (Pedrioli

et al. 2004), mzData (Orchard et al. 2004), the text-based Mascot™ generic format, and in

addition a proprietary format of the company Bruker Daltonics™, which is used by particular

MALDI-TOF instruments. �ereby, most of the mass spectrometers available on the market

are compatible with QuPE as vendors, in general, provide appropriate data export and

conversion tools in at least one of the aforementioned open source formats. �is should, for

example, include the majority of mass spectrometers from the companies Bruker Daltonics™,

�ermo Scienti�c™and Agilent Technologies™.

Comprehensive capabilities are available to browse and search imported mass spectra (see

Figure 7.17B). An interactive visualization allows to zoom into a spectrum, e. g. to closely

investigate speci�c peaks or to overlay and compare two or more di�erent mass spectra to

each other. Before a database search to identify proteins can take place, it is o�en necessary

to preprocess the imported raw data. �erefore, a number of methods are provided, which

utilize QuPE’s job and tools framework. For the task of peak detection (cf. section 3.2.1.1),

the R-package MassSpecWavelet (Du et al. 2006) has been integrated. In addition, tools

have been implemented to inspect and approve imported mass spectra according to the

observance of certain criteria such as a minimal total ion current or number of peaks. A

further use case concerns the �ltering of individual peaks, e. g. if these have an intensity below

a certain threshold and, hence, are potentially noise peaks. �e application of these �ltering

methods o�entimes allows to greatly reduce the search space for peptide mass �ngerprinting

and MS/MS ion search.

Structuring of samples according to the experimental model

Ameaningful analysis demands that samples, which have been measured under the same

conditions, are grouped together and accordingly compared to each other. QuPE provides a

mapping tool to describe this model of an experiment (see Figure 7.17H). A�er the experi-

mental conditions have been de�ned, which are for instance di�erent temperature levels such

as 30 and 40°C, or concentrations of a substance, each imported sample can interactively

be assigned to these conditions. A subsequent analysis is then based on the, in this way,

described experimental model. At any time, it is possible to modify the created model and to

temporarily exclude or include certain conditions, e. g. to investigate only a part of all samples

according to a speci�c treatment. To support a user in �nding an appropriate terminology

for each condition the ontology lookup service of the EBI may be queried from the web

interface (Côté et al. 2006; Martens et al. 2005).
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7.4.2 Protein identification: peptidemass fingerprinting andMS/MS ion
search

QuPE allows the import of search results, e. g. in form of a DTASelect-�lter �le, and has

an integrated Mascot™ search engine to perform peptide mass �ngerprinting and MS/MS

ion search. As the local Mascot™ server installation is not directly accessible outside of the

CeBiTec network, the integration is based on a self-written SOAP-based webservice as well

as a kind of HTTP-proxy for communication with the server and the initial con�guration

of a search. Next, HTTP-Post/Get are used internally for the initiation and conduction of

a search. Searches of the same set of mass spectra may be batch processed, for example,

by means of the de�nition of ranges for peptide tolerance values or by querying several

databases at once.

Automatic evaluation of database search results

To ensure that further analyses rest on a solid ground of veri�ed peptide or protein identi-

�cations, it is necessary to assess the reported hits produced by database search tools. In

QuPE, this can be based upon the calculation of false discovery rates (FDR) as suggested

by Reidegeld et al. (2008). �e precondition for this is that a concatenated decoy database

(Peng et al. 2003; Elias and Gygi 2007) has been employed. In the �rst instance all peptide or

protein hits that were either imported or reported by the integrated Mascot™ search engine

are stored in a database. Based on user-de�ned parameters such as the exclusion of speci�c

charge states, a certain FDR-threshold, or, alternatively, a minimal score value, reported hits

are �ltered to gain the set of proteins and peptides that will be included in further analyses.

7.4.3 Protein quantification

QuPE provides several quanti�cation algorithms, which have been implemented and evalu-

ated within the scope of this work. �e list of quantitative methods which are addressed by

these algorithms includes (see section 3.3.1 for further details regarding the di�erent labeling

strategies):

• �e ’sum quanti�cation’ approach for 15N and 13C metabolically and SILAC-labeled

data (see section 7.3.1). A special version of the algorithm has been designed for the

quanti�cation of MALDI-TOF mass spectra.

• �e ’elution peak quanti�cation’ approach for 15N and 13C metabolically and SILAC-

labeled data (see section 7.3.2).

• �e ’pulse chase quanti�cation’ approach for variable 15N or 13C metabolically-labeled

data (see section 7.3.3).

• �e ’dual chase quanti�cation’ approach (a variant of the pulse chase approach) for

both 15N and 13C metabolic labeling as used in Trötschel* et al. (2012).
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• A spectral count quanti�cation approach

In addition, QuPE facilitates the import of results as produced by two of the most commonly

used quanti�cation tools ProRata (Pan et al. 2006) as well as Census (Park et al. 2008). Figure

7.17D depicts an exemplary screenshot of the graphical user interface of QuPE showing an

extracted ion chromatogram as calculated by the elution peak quanti�cation approach.

7.4.4 Statistical analysis, data mining, and visualization

QuPE supports the complete range of analysis functions as introduced in chapter 6. �is in-

cludes several methods to detect di�erentially regulated proteins and to verify these �ndings:

• Measures of descriptive statistics: mean, standard deviation, median (the implementa-

tion makes use of the R-package ’stats’; R Development Core Team 2011)

• One-sample t-test (R Development Core Team 2011)

• Analysis of variance (R Development Core Team 2011)

• Kruskal-Wallis rank sum test (R Development Core Team 2011)

• Shapiro-Wilk test of normality (R Development Core Team 2011)

• Fligner-Killeen test of homogeneity of variance (R Development Core Team 2011)

• Tools to visualize calculated abundance values and statistical measures including M/A

(Ratio vs. intensity) plots, Box-and-Whisker plots, histograms, and scatter plots

Targeting the identi�cation of co-regulated proteins a number of tools have been implemented

to perform, inter alia, the task of cluster analysis (see Figures 7.17F and G):

• Hierarchical cluster algorithms (HCA) using Ward-, Complete-, Average-, Single-,

Median-, or Centroid-linkage and either Euclidean or Correlation-based distance

measures (implementation makes use of the R-packages ’stats’ and ’amap’; Lucas and

Jasson 2006; R Development Core Team 2011)

• Partitioning cluster algorithms including K-means and Neuralgas clustering (based on

the R-packages ’stats’ and ’cclust’; Dimitriadou 2009; R Development Core Team 2011)

• Fuzzy C-means clustering as a probabilistic method (Dimitriadou et al. 2011)

• Principal component analysis (R Development Core Team 2011)

• Cluster validity measures including the indexes Calinski-Harabasz, Krzanowski-Lai,

Index-I, and Figure of Merit (Broberg 2012; Hennig 2010; Walesiak and Dudek 2012)

• Tools to visualize cluster results, e. g. in form of a heatmap or as a cluster pro�le plot
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To extend the knowledge about identi�ed proteins, information from external resources

including Uniprot (�e UniProt Consortium 2008), KEGG (Kanehisa and Goto 2000), and

the NCBI entrez database (Schuler et al. 1996) can be integrated. �is comprises COG or

KOG (Tatusov et al. 2003) classes and numbers, EC numbers and pathway information, or

GO terms (Ashburner et al. 2000). If protein identi�ers have been derived from the GenDB

annotation system (Meyer et al. 2003), a mapping onto regions via BRIDGE (Goesmann

et al. 2003) is also available. �is information can then be used, for example, to calculate

the distribution of COG categories. Another function, which is integrated in QuPE, allows

to map identi�ed proteins and their calculated abundance ratios on KEGG pathways (see

Figure 7.17E).
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Chapter 8

Performance and accuracy of protein
quantification

One of the central objectives of this work was the improvement of the accuracy and precision,

in terms of reproducibility, of protein quanti�cation methods. As described in the previous

chapter in 7.3, di�erent approaches have been undertaken—from the rather simple ‘sum

quanti�cation‘ to an approach that utilizes the elution time of peptides and that is able to

cope with variable isotope incorporation rates. To demonstrate the applicability and validity

of the developed algorithms a comprehensive evaluation was conducted based on benchmark

datasets made available by workgroups of the Ruhr-University Bochum and the University

of Greifswald.

8.1 Protein mixtures – fully labeled vs. unlabeled

�eUniversity of Greifswald, Institute of Microbiology, provided �ve datasets containing

mixtures of fully-labeled to unlabeled proteins in distinct ratios, each consisting of 14 individ-

ual runs. �erefore, Bacillus subtiliswas grown on normal medium as well as media enriched
to an extent of 98% with heavy stable isotopes of nitrogen. A�er protein extraction and

digestion using the enzyme trypsin, samples were mixed in ratios of 1:1, 1:2, 2:1, 1:10, and 10:1

and analyzed by MudPIT (Wolters et al. 2001) coupled to a�ermo™ LTQmass spectrometer.

For further processing the resulting mass spectrometry data �les were transformed from a

proprietary vendor-speci�c format into the open source format ‘mzXML‘ (see 4.1.3) using
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the tool ‘ReAdW‘ (Keller et al. 2002; Nesvizhskii et al. 2003). �ese data �les were then

imported into the QuPE system. A�erwards, MS/MS ion search was performed using the

Mascot™ search engine in a decoy database speci�c for Bacillus subtilis. Search parameters
were set to two allowed missed cleavage sides, a peptide tolerance of 10 ppm and an MS/MS

tolerance of 1000 mmu. Only those hits were kept that were reported signi�cant (α ≤ 0.05)
by Mascot as well as below an equally set false discovery rate. Oxidation of methionine was

considered as a variable modi�cation. In addition to naturally-occurring nitrogen abun-

dances, the database search was con�gured to also take into account a replacement of all
14N isotopes by the heavy stable form 15N. Following the recommendations of Zhang et al.

(2009), a one Dalton shi� of the fully-labeled peptide due to incomplete incorporation of the

heavy isotope was set up for arginine as well as lysine as an additional variable modi�cation.

8.1.1 Referencemeasurements

In order to gain a reference standard for comparison the tool ProRata (Pan et al. 2006) was

utilized to calculate relative abundance ratios for the �ve protein mixtures provided by the

University of Greifswald. In all cases the default parameter settings of the so�ware were

used, i. e. for the extraction of ion chromatograms a time interval of two minutes before

and a�er the scan, which yielded the peptide identi�cation, an m/z-error of 0.5, and an

isotopic envelope cuto� of 0.1; a peak shi� was not allowed (see Appendix for further details).

�e results are listed in Table 8.1. It becomes obvious that, although tendencies in the data

are correctly estimated, the expected target values (< M >) are more or less clearly missed.
Furthermore, calculated mean abundance values (M̄) are characterized by a surprisingly
high standard deviation, e. g. of σ = 2.12 in case of the uniform 14N to 15Nmixture. In this

connection, it has however to be noted that this does not necessarily indicate an error in the

calculation as a bias might already have been introduced during sample preparation and

measurement.

Secondly, the tool Census (Park et al. 2008) was applied on all benchmark datasets. In analogy

to ProRata, the quanti�cation method was con�gured with reference to the default values

of the so�ware. �e calculated ratios were, a�erwards, exported using the graphical user

interface of Census (see Appendix for further details regarding the parameters), and then

imported intoQuPE.�e achieved results, presented in Table 8.2, are however not satisfactory.

In particular, the two mixtures having ratios of 2:1 and 10:1 could not be quanti�ed accurately,

and in relation to each other the calculated mean abundance values—the median abundance

values are slightly more convincing—do not re�ect the true ratios of the samples. A reason

for these discrepancies might be an unfavorable con�guration of the so�ware tool. Due to

comparably long running times1, it was refrained from any subsequent usage of the so�ware.

1
Running time for Census: up to 10 days for each dataset, granted on the proviso that this was computed on

Microso�™ Windows XP operated on decent hardware (4x Quad-Core AMD Opteron™ 8356, 65GB RAM)

but in Oracle™ VirtualBox (one virtual CPU, 2GB RAM assigned); for comparison: the tool ProRata has been

used on the same system with processing times in the range of hours.
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Table 8.1 –�is table summarizes the quanti�cation results achieved with the tool ProRata (Pan et al. 2006) on
�ve benchmark datasets provided by the University of Greifswald. Due to di�erent growth media, extracted

protein samples of Bacillus subtilis were either fully labeled (98% 15
N) or completely unlabeled, i. e. with natural

occurring nitrogen isotope abundances. Each two samples were mixed in distinct ratios of 1:1, 1:2, 2:1, 1:10 and

10:1 and analyzed using LC-MS/MS. < M > denotes the expected mean value based on the given ratio. �e

column entitled M̄ shows the mean value of all calculated peptide abundance ratios together with their standard
deviation σ . �e median is given in column M̃, while the sixth column contains the 95%-con�dence interval.
Finally, the last two columns denote the overall number of calculated peptide abundance ratios (#peptides) and

the number of proteins these peptides account for (#proteins).

ProRata

14N/15N Ratio < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

1:1 0 -0.31 2.12 -0.42 -4.00;5.07 3320 352

1:2 -1 -2.37 1.89 -2.31 -5.98;2.17 5348 513

2:1 1 1.63 1.64 1.44 -1.48;4.92 4916 425

10:1 3.32 3.78 1.74 3.66 0.82;7.37 6648 529

1:10 -3.32 -4.07 2.32 -4.26 -8.06;2.22 7443 613

Table 8.2 –�is table summarizes the quanti�cation results achieved with the tool Census (Park et al. 2008) on
�ve benchmark datasets provided by the University of Greifswald. See Table 8.1 for a description of the column

headers.

Census

14N/15N Ratio < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

1:1 0 -0.68 1.36 -0.68 -4.32;1.89 2176 389

1:2 -1 -1.54 1.55 -1.56 -4.64;2.17 2975 496

2:1 1 -0.51 1.58 -0.15 -5.06;1.42 3616 409

10:1 3.32 0.69 2.48 1.73 -5.06;3.79 1791 345

1:10 -3.32 -2.64 2.01 -3.06 -5.64;2.16 4916 630

Table 8.3 – Spectral counting is a comparably simple but nevertheless powerful approach to gain abundance
values of proteins. �is table summarizes the Mascot™ search results for all �ve benchmark datasets provided by

the University of Greifswald. In the columns titled “#unlabeled” and “#labeled” the overall number of peptides

are listed that were found with or without enrichment of the heavy stable isotope of nitrogen. Given the simplicity

of the approach, the calculated ratios (M) re�ect the true ratios of the sample mixtures in a remarkably accurate
way.

Spectral counting approach

14N/15N Ratio < M > #proteins #peptides #unlabeled #labeled M

1:1 0 655 20100 9699 10401 -0.10

1:2 -1 668 16986 5162 11824 -1.20

2:1 1 610 20319 13318 7001 0.93

10:1 3.322 642 17277 15916 1361 3.55

1:10 -3.322 765 16045 813 15232 -4.23
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Table 8.4 –�is table summarizes the quanti�cation results achieved on all �ve benchmark datasets provided
by the University of Greifswald with the simple and straightforward sum quanti�cation approach. �e accuracy

of the isotopic distribution calculation and the tolerance value ε were both set to 0.1 m/z. See Table 8.1 for a
detailed description of the column headers.

Sum quanti�cation approach

14N/15N Ratio < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

1:1 0 -0.3 0.67 -0.31 -1.56;0.94 20088 655

1:2 -1 -1.16 0.83 -1.24 -2.57;0.79 16938 668

2:1 1 0.44 0.7 0.54 -1.17;1.51 20309 610

10:1 3.32 1.94 1.28 2.23 -1.22;3.77 17174 642

1:10 -3.32 -2.89 1.78 -3.21 -5.59;1.48 15548 765

To further investigate the �ve benchmark datasets, a variation of the spectral counting ap-

proach was applied. As resulting from the Mascot™ database search, the number of identi�ed

peptides was counted that were found unlabeled, on the one hand, and that were found fully

labeled with the heavy stable nitrogen isotope 15N, on the other hand. Following the idea of

spectral counting (see section 3.3.4), the quotient of these counts then leads to an estimation

of the protein abundances in the sample (M, logarithmized to base 2). Table 8.3 shows the
results of this comparison, revealing a remarkably high agreement between the expected

ratios and the calculated values, in particular, compared to the results of ProRata. However,

as already mentioned before, broken down to the protein level spectral counting is known

to perform rather poorly as soon as individual counts are low (Hendrickson et al. 2006).

Nevertheless, these values con�rm that the benchmark datasets are applicable to evaluate

the accuracy of implemented quanti�cation algorithms, and moreover, ’set the bar high’ for

any other approach.

8.1.2 Accuracy of the sum quantification

At �rst, the simple and straightforward sum quanti�cation approach as described in section

7.3.1 was applied on the �ve benchmark datasets. �erefore, the algorithm was con�gured

as follows: the accuracy for the isotopic distribution calculation was set to 0.1 m/z, which

was also used for the tolerance value ε. As this algorithm does not implement any additional
�lter regarding, for example, the agreement between a theoretical isotopic distribution and

the observed distribution of peaks in the recorded mass spectra, the number of quanti�ed

proteins and peptides is comparably high, and conforms in great measure with the number of

identi�ed proteins and peptides. At the same time, however, it should be noted that thereby

an increased measurement error must be expected, in particular, due to de�cient or noisy

input data, which is not excluded from the calculation.

�e quanti�cation results are listed in Table 8.4, and show that in all cases tendencies in regu-

lation are clearly di�erentiable and correctly estimated, although the expected mean values

(< M >) are not exactly matched. In comparison to ProRata, which apparently overestimated
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Table 8.5 –An evaluation was performed to investigate the impact of di�erent parameters on the quanti�cation
results achievable with the elution peak quanti�cation algorithm. �erefore, the 1:1 sample was analyzed in

detail. �e following settings were used in accordance with the characteristics of this experiment: accuracy of

the isotopic distribution calculation: 0.1 m/z, tolerance value ε = 0.01 Da, investigated retention time interval
for each peptide: 60 seconds before and a�er the identifying mass spectrum, CWT-based peak detection. �e

results of varying settings of the isotopic similarity dS×T are shown in this table. For a detailed description of the
column headers please refer to Table 8.1.

Elution peak quanti�cation - isotopic similarity

dS×T r S/N < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

0.95 0.6 3.0 0 -0.23 0.57 -0.24 -1.33;0.80 3138 491

0.9 0.6 3.0 0 -0.24 0.57 -0.23 -1.34;0.80 3144 492

0.8 0.6 3.0 0 -0.23 0.57 -0.24 -1.34;0.80 3145 492

the ’true’ ratio of the data, the sum quanti�cation approach seems to underestimate all protein

abundances. �is can be clearly seen in view of the 2:1 data (< M >= 1): in this case, ProRata
displayed a mean abundance ratio of 1.63 in contrast to a value of 0.44, which was achieved

with this algorithm. �e ’simple’ approach, however, shows one indisputable advantage as

the distributions of all calculated ratios are generally revealing a lower standard deviation,

e. g. of σ = 0.67 for the 1:1 sample vs. σ = 2.12 for ProRata, a fact that is also indicated by the
95% con�dence interval: sum quanti�cation: [−1.56; 0.94], ProRata: [−4.00; 5.07].

8.1.3 Accuracy of the elution peak quantification

Regarding the application of the elution peak quanti�cation approach, it must be considered

that the algorithm can be con�gured in di�erent ways. In a nutshell, there are two opposing

e�ects that have to be taken into account: on the one hand, the attainable number of quanti�ed

proteins, and on the other hand, the accuracy and quality of the calculated ratios. To evaluate

Table 8.6 –�is table demonstrates the impact on the quanti�cation results regarding the 1:1 sample, if the
regression coe�cient r is used for �ltering. For this purpose, the isotopic similarity dS×T is set to a �xed value of
0.9, and the signal-to-noise threshold S/N to 2.0. For a detailed description of the column headers please refer
to Table 8.1.

Elution peak quanti�cation - regression coe�cient

dS×T r S/N < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

0.9 0.9 2.0 0 -0.22 0.45 -0.24 -0.95;0.56 3457 501

0.9 0.8 2.0 0 -0.23 0.49 -0.24 -1.22;0.66 4077 549

0.9 0.7 2.0 0 -0.23 0.56 -0.24 -1.38;0.82 4444 568

0.9 0.6 2.0 0 -0.23 0.60 -0.24 -1.47;0.94 4694 586

0.9 0.5 2.0 0 -0.24 0.66 -0.24 -1.57;1.07 4870 592

0.9 0.4 2.0 0 -0.24 0.70 -0.25 -1.71;1.17 5008 601
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Table 8.7 –�is table shows the impact on the quanti�cation results regarding the 1:1 sample, if the signal-to-
noise threshold S/N is used for �ltering. In this case, the isotopic similarity dS×T is set to a �xed value of 0.9,
and the regression coe�cient r to 0.6. For a detailed description of the column headers please refer to Table 8.1.

Elution peak quanti�cation - signal-to-noise

dS×T r S/N < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

0.9 0.4 4.0 0 -0.26 0.61 -0.25 -1.49;0.80 1758 366

0.9 0.4 3.0 0 -0.25 0.67 -0.25 -1.59;1.04 3302 505

0.9 0.4 2.0 0 -0.24 0.70 -0.25 -1.71;1.17 5008 601

the impact of di�erent settings on the quanti�cation results, at �rst, the 1:1 sample was

investigated in detail for a selected set of parameters. Adapted to the characteristics of the

experiment, the accuracy of the isotopic distribution calculation was set to 0.1 m/z, and a

tolerance value ε of 0.01 Da was con�gured. While for each peptide a retention time of 60
seconds before and a�er the identifying mass spectrum was analyzed, the concrete detection

of the elution peak refers to the CWT-based approach.

Di�erent settings of the isotopic similarity dS×T, the regression coe�cient r, and the signal-
to-noise threshold S/N were successively evaluated. �e impact of each of these parameters
is summarized in the Tables 8.5, 8.6, and 8.7. In addition, a comprehensive parameter

comparison can be found in the appendix in section B.2.1. It can be observed that the isotopic

distribution similarity has almost no in�uence on the quanti�cation result, neither on the

number of quanti�ed peptides, nor on the accuracy of the ratio (Table 8.5). �is presumably

indicates that—at least in this experiment—the in�uence of any disturbance variables on

the mass spectrometry signal was comparably low. In addition, it may be assumed that the

peptide identi�cations were mostly accurate and contained only a small number of false

Table 8.8 –Using the following parameters, the application of the elution peak quanti�cation approach on
the �ve benchmark datasets provided by the University of Greifswald yielded the results shown in this table.

�e con�guration was as follows: accuracy of the isotopic distribution calculation: 0.1 m/z, tolerance value

ε = 0.01 Da, investigated retention time interval for each peptide: 60 seconds before and a�er the identifying
mass spectrum, CWT-based peak detection, isotopic similarity dS×T > 0.9, regression coe�cient r > 0.6,

signal-to-noise threshold S/N > 3.0. For a detailed description of the column headers please refer to Table 8.1.

Elution peak quanti�cation

14N/15N Ratio < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

1:1 0 -0.23 0.57 -0.24 -1.34;0.8 3144 492

1:2 -1 -1.26 0.66 -1.29 -2.3;0.17 2993 485

2:1 1 0.68 0.57 0.72 -0.65;1.7 3714 490

10:1 3.32 2.83 0.9 2.93 0.4;3.94 2150 393

1:10 -3.32 -3.77 1.41 -4.02 -5.50;0.61 1829 407
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positive hits. Filtering by the regression coe�cient2 revealed in contrast a major e�ect on

the quanti�cation results (Table 8.6). Figuratively, this value speci�es the degree of similarity

between the form of the elution peaks of the light and the heavy peptide, and thus, allows to

�lter out measurements in which one peptide variant is missing. On the other hand, noise in

the mass spectra, even if it occurs only in a few time points, may result in imperfect peak

matches and therefore lead to the incorrect rejection of a calculated ratio. Increasing the �lter

threshold from r > 0.4 to r > 0.9 yields (independent of the S/N value) approximately 30%
less peptides, which then accounts for a decrease of about 20% in the number of quanti�ed

proteins. On the opposite, however, the standard deviation is decreasing by approximately

33%.

A similar e�ect can be observed if the S/N value is taken into account for �ltering (Table 8.7).
Here, an increase of the S/N value from 2.0 to 4.0 allows to further improve the accuracy of
the results: dependent on other parameter settings, in particular of the r threshold (see section
B.2.1 for further details) the standard deviation can be decreased by up to 18%. However, at

the same time, the number of quanti�ed peptides is more than halved, and in the end, about

40% less proteins can be quanti�ed.

Taking together the results of the parameter evaluation, the elution peak quanti�cation

algorithmwas applied on all �ve benchmark datasets provided by theUniversity ofGreifswald.

In this case, the isotopic similarity dS×T was set to 0.9, a regression coe�cient of at least
r > 0.6 was demanded, and the signal-to-noise threshold was set to S/N > 3.0. �e results
are displayed in Table 8.8, and reveal that taking the elution time of each peptide into

account allows to signi�cantly improve the accuracy of protein quanti�cation. Especially in

comparison to the sum quanti�cation approach, the variance of the calculated abundance

ratios could be further decreased.

A closer look at the calculated abundance ratios suggests that all measurements are a�ected

by a small but distinct deviation, which resulted in a shi� of approximately M = −0.25.
�is deviation might have been introduced during the experiment, possibly during the

preparation of samples and, moreover, emphasizes the necessity to include a normalization

step in the analysis of quantitative proteomics data that allows to compensate for this error

in measurement.

8.2 Protein mixtures – unlabeled vs. partially labeled

In the frame of this work, the idea of the elution peak quanti�cation algorithm was extended

to allow the comparison of the abundances of two di�erentially labeled peptides, i. e. a

partially-labeled peptide and its fully-labeled or fully-unlabeled counterpart. �is algorithm

has proven its applicability in pulse chase experiments but also for the quanti�cation of

2
Strictly speaking, due to the perpendicular regression, it is not the regression coe�cient but the correlation

coe�cient that is used for �ltering by this algorithm.
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Table 8.9 –�is table shows the results of the application of the pulse chase quanti�cation on six datasets
provided by colleagues at the University of Bochum. In compliance with all previous tables < M > denotes the

expected mean value based on the given ratio, M̄ the mean value of all calculated peptide abundance ratios
together with their standard deviation σ , M̃ the median of all ratios, and M̄ ± 0.95 the 95%-con�dence interval.
�e last two columns denote the overall number of calculated peptide abundance ratios (#peptides) and the

number of proteins these peptides account for (#proteins). In addition, the column entitled < Ape > contains the
expected incorporation rate of

15
N, ¯Ape the mean incorporation rate averaged over all quanti�ed proteins with

the corresponding standard deviation σ , ˜Ape the median incorporation rate, and ¯Ape ± 0.95 the 95%-con�dence
interval of all estimated rates. Further con�guration details of the algorithm are described in the text.

Pulse chase quanti�cation

14N/15N 15N
Ratio Incorporation < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

1:1 45% 0 0.46 0.51 0.41 -0.29;1.36 402 160

1:6 45% -2.585 -2.26 0.39 -2.28 -2.90;-1.30 120 54

6:1 45% 2.585 3.12 0.80 3.22 0.79;4.24 239 117

1:1 70% 0 0.66 0.60 0.65 -0.48;1.71 459 191

1:6 70% -2.585 -2.21 0.54 -2.21 -3.29;-1.14 154 73

6:1 70% 2.585 3.22 0.96 3.40 1.44;4.28 235 122

< Ape > ¯Ape σ ˜Ape ¯Ape ± 0.95
1:1 45% 0.45 0.45 0.07 0.44 0.4;0.56

1:6 45% 0.45 0.44 0.02 0.44 0.4;0.48

6:1 45% 0.45 0.49 0.13 0.44 0.4;1.0

1:1 70% 0.70 0.69 0.05 0.68 0.62;0.84

1:6 70% 0.70 0.68 0.02 0.68 0.64;0.72

6:1 70% 0.70 0.70 0.1 0.68 0.43;0.9

protein samples extracted from cells or organisms, in which the full incorporation of a stable

isotope label is hardly achievable, for example, with regard to higher eukaryotes.

�e evaluation of the functionality of the pulse chase quanti�cation algorithm required to

investigate not only whether sample mixtures can be accurately quanti�ed but also in how far

incorporation rates can be correctly estimated. Trötschel and colleagues at the University of

Bochum provided benchmark datasets to perform this evaluation. �ey prepared samples of

Corynebacterium glutamicum with di�erent incorporation rates of stable nitrogen isotopes
(see Trötschel* et al. 2012 for further details). In total, six datasets were created, in which

samples were mixed in ratios of 1:1, 1:6, and 6:1 combining each one sample with natural

abundances of nitrogen isotopes and one sample having been labeled with either 45% or 70%
15N.�e rawmass spectra were imported into QuPE together with the corresponding protein

identi�cations, which had been generated using�ermo™’s so�ware ProteomeDiscoverer

and the Sequest™ algorithm.
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8.2.1 Accuracy of the pulse chase quantification

�e application of the pulse chase quanti�cation algorithm on the six benchmark datasets led

to the results shown in Table 8.9. �e algorithm was con�gured with the following parame-

ters: accuracy of the isotopic distribution calculation: 0.1 m/z, tolerance value ε = 0.01 Da,
investigated retention time interval for each peptide: 60 seconds before and a�er the identi-

fying mass spectrum, CWT-based peak detection, isotopic similarity dS×T > 0.9, regression
coe�cient r > 0.6, signal-to-noise threshold S/N > 3.0. �e potential incorporation rate to
be determined by the algorithm for each protein was restricted to a value of 0.4, at the lower

bound, and 0.98 at the upper bound.

It can be observed that for all six datasets the calculated incorporation rates match the

employed enrichments of 15N to a high degree. Despite a small but systematic bias of about

M = 0.5, which has presumably been introduced during sample preparation, the calculated
abundance values adequately re�ect the true ratios of the data and verify the applicability of

the implemented procedure to gain valid abundance ratios of a partially-labeled peptide in

relation to an – in this case – fully unlabeled peptide.

8.3 Protein quantification: final considerations

�emethods described in this chapter targeted the quanti�cation of metabolically stable-

isotope labeled proteins. It could �rstly be shown that the provided implementations allow to

gain accurate and reliable quanti�cation results, and constitute an improvement in terms of

the quality of achievable results. Furthermore, an algorithm was introduced that has proven

successful in the quanti�cation of proteins having an a priori unknown and variable number
of stable isotopes incorporated. Although not demonstrated in this performance evaluation,

quanti�cation methods implemented within the frame of this work were also successfully

applied to proteins labeled with the SILAC-approach (see section 3.3.1.2), which were yielded

not only using an ESI mass spectrometer but also by a MALDI-TOF instrument.
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Chapter 9

Aworkflow for the analysis of quantitative
proteomics data

Based on theQuPE system and its �exible and extensible tool and job concept, a work�owwas

devised and implemented allowing the comprehensive analysis of quantitative proteomics

data and o�ering experimenters the possibility to reveal proteins that play a key role in the

biological processes under investigation. �e derivation of this approach is explained in

detail in Albaum et al. (2011b) by means of three case studies on quantitative proteomics

datasets provided by Hahne et al. (2010), Otto et al. (2010), and Haußmann et al. (2009).

9.1 Case studies

9.1.1 Experimental setups

�e �rst experiment, in the following designated experiment A, constitutes a study on the

wildtype strain of Bacillus subtilis and its adaption to salt stress. Hahne et al. (2010) treated
growing cells with unnaturally high concentrations of NaCl and investigated the process im-

mediately before the stress, and 10, 30, 60, and 120 minutes a�erwards. A second experiment

(B) was conducted by Otto et al. (2010) and targeted the soil bacterium Bacillus subtilis again.
In this experiment the e�ects of glucose starvation were investigated not only in the pro-

teome, but also the transcriptome, and the metabolome. Time series data was collected

during the bacteria’s growth, in the exponential phase, at the transition to stationary phase,
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and 30, 60, and 120 minutes a�erwards. �e experimental procedure in terms of sample

preparation and labeling was similar in both experiments with three biological replicates

being investigated in each of them. �ese samples were grown in normal medium and in

a medium in which ammonium sulphate and L-tryptophan were replaced by 15N-labeled

variants. A�er harvesting, the samples were mixed in equal amounts and measured on

an LTQ Orbitrap XL (�ermo Scienti�c™) coupled to a nanoAcquity UPLC (Waters™). In

contrast to the original experiment of Hahne et al., in which di�erent cell fractions were

analyzed, this case study only takes the membrane fraction of the proteome samples into

account. �is fraction, however, also includes a large amount of cytosolic proteins (> 70%).
In total, 60 runs were performed on a mass spectrometer for experiment A resulting in an

equal amount of raw data �les. �e course of action being taken was similar in experiment B,

in which only the cytosolic fraction was investigated. �is was, however, impressive in itself

as it consists of 292 individual data �les.

�e third experiment (C) has been speci�cally selected to evaluate the work�ow on a com-

paratively smaller dataset. �e original experiment pro�led the physiological adaption of

Corynebacterium glutamicum to the two carbon sources benzoate and glucose. �erefore,
a comprehensive MudPIT experiment was performed on three biological replicates and

di�erent cell fractions. Yet in this case study, only one replicate of the so called predigest

fraction was used, summing up to 22 LC-MS/MS runs (LTQ Orbitrap, �ermo Scienti�c™).

9.1.2 Protein identification

For all three experiments the raw data �les were �rstly transformed into the mzXML format

using the tool ‘ReAdW‘ (Keller et al. 2002; Nesvizhskii et al. 2003), and then uploaded into

the QuPE system. In the cases of experiments A and B, mass spectra were then searched using

Mascot™ against a database that consists of the completely annotated genome of Bacillus sub-
tilis and an equally-sized set of randomized amino acid sequences to facilitate the calculation
of false discovery rates. In addition, a number of common laboratory contaminants (�e

Global Proteome Machine Organization 2011) were included in the database. “Obviously,

these proteins were not subject to the labeling, but some showed high signal-to-noise values

for the unlabeled peptide. We kept these—actually senseless—proteins in our analysis as

they provide a good example for measurements having a high variance. Due to a label swap

(control 15N, experiment 14N) in one of the samples not only very high but also very low

ratios were obtained” (Albaum et al. 2011b, p.18). Other search parameters were adjusted as

follows: the peptide tolerance was set to 10 ppm, the ms/ms tolerance to 1000 mmu; up to two

missed cleavage sites were allowed, and oxidation of methionine was con�gured as a variable

modi�cation. As already used in the quanti�cation evaluation (see section 8.1), a potential

one Dalton shi� was set up for arginine and lysine to account for situations in which the

mass spectrometer had not automatically selected the monoisotopic peak of a 15N-labeled

precursor for analysis but instead a neighboring peak. Only those hits were taken into further

consideration that had, �rstly, a score above Mascot™’s own signi�cance threshold (p < 0.05),
and secondly, a false discovery rate q of less than 0.05, which was estimated based on the
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decoy database (see section 7.4.2). For each spectrum only the best-scoring hit was kept so

that, in summary, 173,044 peptides remained for experiment A, and 620,305 peptides for

experiment B. �ese in turn accounted for 1,445 and 2,472 proteins, respectively.

In case of experiment C, protein identi�cations, provided by Haußmann et al., were directly

imported into the QuPE system. Originally, the Sequest™ search engine was utilized to

compare all mass spectra against a Corynebacterium glutamicum database. Following the
search, �lter criteria such as score thresholds were adjusted in such a way that in the end a

false discovery rate of less than 0.01 had to be accepted. �e �nal list included 12,870 peptides

representing 712 proteins.

9.1.3 Protein quantification

Protein quanti�cation was performed as described in section 7.3.2. In experiment A, the

accuracy of the isotopic distribution calculation was set to 0.01 m/z, a tolerance value ε of
0.2 Da was utilized, and for each identi�ed peptide a retention time interval of 30 seconds

before and a�er the corresponding mass spectrum was investigated. For peak detection the

CWT-based algorithm was used; an isotopic similarity dS×T > 0.8, a regression coe�cient
r > 0.6, and a signal-to-noise threshold S/N > 3.0 were used for �ltering. For experiments
B and C these parameters were slightly modi�ed. Here, an accuracy value of 0.1 m/z for

the isotopic distribution calculation, an increased retention time interval of 60 seconds, a

regression coe�cient r > 0.4, and a signal-to-noise threshold of S/N > 2.0 were con�gured.
For experiment B, in addition, a smaller tolerance value of ε = 0.1 was utilized.

In summary, 58,895 peptides could be quanti�ed for experiment A, 180,913 for experiment B,

and 3,699 for experiment C. �ese in turn accounted for 1,285, 2,321, and 589 proteins.

9.2 Detection of differentially regulated proteins

Asking which proteins are di�erentially regulated regarding one or more selected experimen-

tal conditions is probably the most frequently posed question in any quantitative proteomics

experiment. In chapter 6 the analysis of variance (ANOVA) was introduced as a common

method to answer this question, but also its prerequisites that, in case of infringement, require

the use of methods such as the Kruskal-Wallis rank sum test. Based on the three case studies,

the applicability of these methods on quantitative proteomics data was investigated, and it

was evaluated in how far these methods produce congruent results in terms of the detection

of the same proteins as signi�cantly di�erentially regulated.

A statistical test such as the ANOVA demands the formulation of a model that (su�ciently)

accurately describes the experiment’s data. In case of the time series experiments A and

B, in which each protein can be characterized by a vector x = {xi , i = 1, . . . ,N} of relative
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abundance values and a vector t that assigns each value xi to a �xed time point ti , this �xed
e�ects model can be put forward by the equation

y = x ∼ t (9.1)

�e samemodel can, in principle, be used to describe the data of experiment C, yet instead of

a vector t of time points, in this case, the factor carbon source (c = {ci , i = 1, . . . ,N}), has to
be de�ned to link one of the two growth conditions benzoate and glucose to each value xi . In
this connection, it has to be noted that “in view of the limited number of biological replicates

for all three experiments, statistical tests were performed on every peptide measurement,

i. e. each abundance ratio determined by a 15N-labeled/unlabeled peptide pair was considered

as an independent measurement of the protein’s quantity” (Albaum et al. 2011b, p.3).

At �rst, the ANOVAwas applied on the data of each experiment. In addition, the prerequisites

of this statistical test, namely, the homogeneity of the error variances and the Gaussian

distribution of all error components were examined using the Fligner-Killeen as well as the

Shapiro-Wilks test (see section 6.1.2 for further details). Secondly, the Kruskal-Wallis test

was investigated and the outcomes of both tests were compared. �e signi�cance level was

a priori set to α = 0.05 for all tests. Comprehensive results can be found in Albaum et al.
(2011b) as well as online in the QuPE system.

In experiment A, the ANOVA revealed 73 proteins as signi�cantly di�erentially regulated

regarding the factor time. However, of these 73 proteins 15 showed inhomogeneous variances,

and 29 had non-Gaussian distributions of their residuals. Taking all premises of the ANOVA

into account, therefore, only 38 proteins can be regarded as signi�cantly di�erentially regu-

lated. �e subsequently performed Kruskal-Wallis tests found 64 proteins with statistically

signi�cant deviations in their abundance values. Interestingly, the number of proteins being

congruent between both methods was rather low (18) if only the 38 proteins that ful�lled all

criteria were compared. If, however, the prerequisites of the ANOVA were elided, in total

more than 80% of the proteins were found as signi�cantly di�erentially regulated by both

methods.

�e results were similar in experiment B, although in this case the number of proteins

declared signi�cantly di�erentially regulated by the ANOVA as well as the Kruskal-Wallis

test was comparably high with an accordance of more than 90%. Yet the number of proteins

found signi�cantly di�erentially regulated by both methods was rather impressive with

386 proteins by the ANOVA and 493 by the Kruskal-Wallis test. �e application of the

Fligner-Killeen test to investigate inhomogeneous error variances led to the rejection of only

30 of the 386 proteins. �e Shapiro-Wilks test, however, found a violation of the Gaussian

distribution in 325 cases so that in summary only 61 proteins could strictly spoken be regarded

as di�erentially regulated.

In experiment C only 17 proteins were found signi�cantly di�erentially regulated by the

ANOVA. At least in this experiment, no further observation was rejected by the Fligner-

Killeen test, and only one protein had to be sorted out a�er the distribution of the residuals

had been investigated. In comparison, the application of the Kruskal-Wallis test yielded 10
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proteins as di�erentially regulated, which were—without any exception—also detected by

the ANOVA.

To complete the picture and compare the outcome of bothmethods on thewhole, the resulting

lists of p-values for all proteins from the ANOVA as well as the Kruskal-Wallis test were set
into relation by means of Spearman’s rank correlation coe�cient (Spearman 1904). In all

cases the coe�cient was approximately at r = 0.8 (r = 0.829 for experiment A, r = 0.837 for
experiment B, and r = 0.778 for experiment C) so that, in summary, and following Cohen’s
rating of r ≥ 0.5 as a strong correlation (Cohen 1988), a large degree of similarity between
both methods was found.

9.3 Identification of co-regulated proteins

With regard to an experiment, researchers are o�en interested in �nding groups of proteins

that are characterized by similar abundance ratios. �ese proteins might underlie a common

regulation, for example, in reaction to changing environmental conditions or di�erent growth

states of a cell culture. In chapter 6 various algorithmic approaches have been introduced

to conduct this clustering task. Purpose and scope of the following evaluation is, �rstly, to

determine in how far the outcomes of di�erent cluster algorithms applied on real-world

quantitative proteomics datasets show similarities and/or di�erences—does the choice of

a speci�c cluster algorithm in�uence the clustering result? �e evaluation includes nine

di�erent cluster algorithms, namely, K-means, Neuralgas, fuzzy C-means, as well as hier-

archical cluster analysis (HCA) using, on the one hand, Euclidean distances and Single-,

Complete-, Average-, and Ward-linkage, and on the other hand, both Pearson’s uncentered

and centered correlation coe�cient in combination with Average-linkage. Secondly, the

clustering results themselves are evaluated in terms of both computational and biological

signi�cance. �erefore, a number of cluster validity measures are employed.

In contrast to the problem of detecting di�erentially regulated proteins, which is best solved

by taking the variability of peptide measurements into account, it is advisable to reduce

the complexity of the data in order to tackle the challenge of cluster analysis, and hence,

to combine all abundance ratios that were measured for di�erent replicates of one protein

per condition. Apart from the median and the trimmed mean, the arithmetic mean is

a commonly used summary statistic for this purpose. At this point of analysis, one may

furthermore decide to discard those protein measurements for which not at least a speci�c

number of replicates is available. In the end, a matrix of abundance values over all proteins

and conditions provides the input for any cluster algorithm. It has, however, to be noted that

due to the aforementioned �ltering but also due to errors in measurements and for other

reasons values might be missing in this matrix. �is demands the application of missing

value replacement strategies, e. g. by using the protein’s average abundance value over all

conditions. In a stringent way these proteins may also be completely discarded. Striving to

achieve utmost accurate results, in the present study this strategy has been followed so that

the matrix for experiment A included 188 proteins, for experiment B 935, and for experiment
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C 196 proteins. At least two replicate measurements per protein and condition were required,

which were then aggregated using the arithmetic mean.

9.3.1 Similarities and differences between cluster algorithms

To estimate the similarity and/or di�erences between di�erent algorithms, a pairwise compar-

ison of clustering results was conducted. �erefore, each algorithm was subsequently applied

on the three experimental datasets to produce clustering results having cluster numbers in the

range from two to 50 for the experiments A and C, and up to 100 for experiment B to re�ect

the comparatively larger dataset size of this experiment. Subsequently, for each algorithm

clustering results with identical cluster numbers were compared to each other using the

adjusted Rand index (see section 6.2.6 for further details). A�erwards, the mean index value

for each pair of algorithms was calculated, which is displayed in form of a heatmap in Figure

9.1.

At �rst sight, a strong degree of similarity between K-means and Neuralgas becomes apparent

with adjusted Rand index values greater than at least 0.45 (A/B: R > 0.45, C: R > 0.6). �is
is, however, not too surprising as the authors of Neuralgas claim the algorithm to be an

extension of the K-means approach (cf. 6.2.4.2; Martinetz et al. 1993)1. In addition, a

comparably high similarity (up to R > 0.6) can be found between these two algorithms and
HCA using Ward-linkage and Euclidean distances, and in case of experiment C—albeit to

a smaller extent—also to fuzzy C-means, Complete- and Average-linkage in combination

with Euclidean distances. Interestingly, some clustering results show a considerable degree

of similarity in some but not all experiments. �is is, for example, the case for the results of

HCA using Complete- and Average-Linkage with Euclidean distances in experiments A and

C with an index value R > 0.45, which is only at R = 0.25 for experiment B. On the contrary,
the two cluster algorithms using correlation-based distances (HCA using Average-linkage)

and, for the majority of cases, Single-linkage using Euclidean distances yield entirely unique

outputs, that do not compare to the results of other cluster algorithms. “In summary, the

results of this comparison [. . . ] demonstrate that the choice for a cluster algorithm is not

arbitrary but instead strongly in�uences the outcome” (Albaum et al. 2011b, p.10).

9.3.2 Computational and biological significance of clustering results

Given the outcomes of di�erent cluster algorithms, a decision must be taken whether the

achieved results provide a ’good’ solution for the problem to be solved, namely, the identi�ca-

tion of co-regulated proteins. But, at this point, there remains one central question: what

are the characteristics of a ’good’ solution? Looking at the clustering shown in Figure 9.2 it

becomes evident at �rst sight that the herein used method, that is HCA using Single-linkage

1
�is was also analyzed in detail in (Albaum et al. 2011b) by repeatedly comparing equally-sized K-means

to Neuralgas clustering results invoked on the same dataset. Here, the Neuralgas approach outperformed

K-means showing considerably less variance in its results.
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Figure 9.1 –A pairwise degree of similarity between di�erent clustering results was estimated using the adjusted
Rand index. In each case, the two compared clustering results had identical cluster numbers but were produced

by two di�erent algorithms. For each experiment, the Rand index was calculated for each cluster number in

the range from two to 50 (experiment A and C), or 100 (experiment B). A heatmap visualization was chosen to

display the mean Rand index for each pair of algorithms. It is evident that the three cluster algorithms HCA

using Ward-linkage, K-means, and Neuralgas produce highly similar results. Only in the third experiment

(C), these results were also similar to fuzzy C-means, Complete- and Average-linkage. It can, furthermore, be

observed for two of the three experiments, namely A and B, that there is a slight similarity between Single- and

Average-linkage (with Euclidean distances).
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Figure 9.2 –�is �gure prominently illustrates a possible property of a clustering termed connectedness. It
shows the results of a hierarchical cluster analysis (HCA) using Euclidean distances and Single-linkage. �e

algorithm clearly tends to group all proteins into one cluster that reveal only a slight similarity. It seems obvious

that this method is not very practical to be used within the context of proteomics data analysis (each orange line

represents a protein, the dashed black line indicates a cluster’s prototype).

and Euclidean distances, does not provide a meaningful solution to the problem. All pro-

teins that show a slight similarity are grouped together while only those proteins having

exceptional abundance values are found in individual clusters. To computationally assess

the signi�cance of a clustering, a number of quality measures have been proposed, which

are based on the input data and criteria inherent to a clustering (cf. 6.2.5). Two prominent

characterizations to describe the structure of a clustering are, for example, connectedness

and compactness (Handl et al. 2005). �ese are, however, opposing properties, which are

at best represented by the two hierarchical cluster methods Single- and Complete-linkage.

In the end, it is particularly this oppositeness which exposes the impossibility to formulate

universal criteria to describe an optimal—let alone the best—clustering of a dataset.

Worse still, the search for an optimal cluster solution a�ects not only the choice of a speci�c

cluster algorithm but also the determination of the ’true’ number of clusters of a given

dataset. In case of hierarchical cluster analysis, a simple but su�cient approach to gain this
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Figure 9.3 –�e Figure of Merit estimates the predictive power of a cluster algorithm. Following this index,
HCA using Ward-linkage with Euclidean distances, K-means, and Neuralgas belong to the most competitive

algorithms for the clustering of quantitative proteomics data, while for example HCA using Single-linkage and

Euclidean distances produces considerably less reliable results.
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Figure 9.4 –�e cluster index of Krzanowski and Lai showed both from a biological as well as from a com-
putational point of view meaningful cluster numbers: for the data of experiment A, there were found cluster

numbers between 3 for Ward/Euclidean—here a second local maximum was found at 23 clusters—and 43 for

Average/Uncentered Pearson as the true clustering of the data; for experiment B, between 14 (Average/Pearson

correlation) and 70 (Complete/Euclidean), with a protruding 43-cluster solution applying Ward/Euclidean; and

for experiment C, e. g. at 22 clusters for Ward/Euclidean.
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Figure 9.5 –�is cluster pro�le plot demonstrates the property of HCA using Ward’s linkage method to form
compact clusters as the algorithmic approach attempts to minimize the increase in variance during the iterative

cluster process (each orange line represents a protein, the dashed black line indicates a cluster’s prototype). On

this basis, the method seems to be well suited to identify co-regulated proteins. �e cluster solution herein

displayed was indicated as optimal using the cluster index proposed by Krzanowski and Lai.

cluster number is to investigate the increase in distance resultant from each (cluster) join

operation. Typically, the distance between the �rst clusters2 is comparatively small while it is

usually surpassingly increased a�er several iterations. A method, which makes use of this

assumption, is to plot the increase in distance against the cluster number, and a�erwards

search the ’turning point’ or ’knee’ in this plot.

2
Please note that, in this consideration, each protein forms its own cluster at the beginning of a calculation.
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To assess the signi�cance of a clustering, a number of cluster validity measures have been

introduced such as the cluster index of Calinski and Harabasz or the index I (see section 6.2.5
formore details). But, in the context of proteomics and in addition to this computational point

of view, the signi�cance of a clustering also needs to be seen from a biological perspective. In

this case, further information about the proteins in a cluster needs to be taken into account.

�is can, for example, be a general functional description of a protein or the knowledge

that an enzyme participates in a speci�c metabolic pathway reaction. However, in many

experiments, an impeccable functional classi�cation of each protein is usually only available

for a subset of all identi�ed proteins, not to mention the typically remarkable high number

of hypothetical or putative proteins. An automatic inclusion of gene annotation data in the

assessment of cluster solutions can therefore hardly be put into practice. In this evaluation, it

is hence the aim to utilize existing cluster validity measures to gain an optimal clustering of

the three di�erent quantitative proteomics datasets. �e �nal assessment of a good solution is

then based on amanual evaluation, which incorporates additional knowledge of the clustered

proteins such as functional annotations.

�e Figure of Merit provides assistance in the selection of a cluster algorithm since it aims

to estimate the predictive power of an algorithm by means of a bootstrapping approach (cf.

6.2.5.5). According to this cluster index, HCA using Ward-linkage with Euclidean distances,

K-means, and Neuralgas clearly outperform the other cluster algorithms in this evaluation.

In particular HCA using Single-linkage and Euclidean distances and—at least applied on the

data of experiments A and B—fuzzy C-means yield, in contrast, the least reliable results (see

Figure 9.3).

Calinski and Harabasz proposed a cluster validity measure that sets the similarity of all

proteins within each cluster in relation to the pairwise computed similarities between all

clusters (see section 6.2.5.1). �is approach, however, tends to favor smaller cluster numbers

such as two or three. Even though this result, from a computational point of view, may be

well grounded on clear and understandable reasons, it generally characterizes only individual

proteins with exceptional patterns of abundance (see Figure B.2). �e application of the index

to the data of experiment C represents an exception as in this case higher cluster numbers

such as 14 for HCA using Complete-linkage and Euclidean distances could be observed. A

reason for this might be the lower dimensionality of this dataset with only two conditions,

namely glucose and benzoate. �e tendency to predict very low cluster numbers as optimal

emerges even more clearly for the cluster index called Index-I as it can be seen in Figure
B.1. �is is, however, not surprising since the computation of this index value follows an

approach very similar to those of Calinski and Harabasz (see section 6.2.5.2, Figure B.1).

�e application of the cluster index of Davies and Bouldin (see section 6.2.5.3 for further

details) to the three proteomics datasets did not allow for any meaningful interpretation.

In contrast to the other cluster indexes utilized in this study, a local minimum of the index

value is said to indicate an optimal cluster solution. Yet in most cases, the index value is

constantly decreasing with larger cluster numbers (see Figure B.3). An exception denotes

Average-linkage using correlation-based distances as the index value is rather �uctuating in
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this case, or for experiment C even steadily increasing. In summary, a clear and consistent

statement cannot be formulated using this validity measure.

A pleasant surprise was the cluster index of Krzanowski and Lai (see section 6.2.5.4), which

turned out to provide both from a computational and a biological point of view meaningful

results (see Figure 9.4). In experiment A, cluster numbers between three for HCA using

Ward-linkage and Euclidean distances—with a second local maximum at 23 clusters—and

43 for Average-linkage in combination with Pearson’s uncentered correlation coe�cient were

indicated as optimal. A number of promising cluster solutions were investigated in detail.

Here, in particular the 23-cluster solution (Ward/Euclidean) was riddled with interesting

biological �ndings. It consisted of several clusters of proteins sharing a common function.

�is involves groups of proteins responsible for cell wall biogenesis, metabolism of amino

acids, and for motility and chemotaxis. Overall, the �ndings correspond to the observations

made by Hahne et al. (2010) in their original study.

Similarly positive results were achieved for experiment B. Here, the cluster index of Krzanow-

ski and Lai suggested cluster numbers between 14 (HCA using Average-linkage and Pearson’s

correlation coe�cient) and 70 (HCA using Complete-linkage with Euclidean distances).

Following the advice of the aforementioned Figure of Merit that indicated HCA using Ward-

linkage in combinationwith Euclidean distances as one of the best performing algorithms, the

43-cluster solution of thismethodwas analyzed in detail. �e result is shown in Figure 9.5 and

reveals several biologically interesting groups of proteins. It can, in particular, be observed in

how far di�erent groups of proteins are regulated during the bacteria’s growth phase. While

several clusters of proteins, which play e. g. a role in secondary metabolites biosynthesis,

transport and metabolism, can be found with decreasing abundance ratios a�er the cells

entered the stationary phase, other clusters consist of proteins that are clearly up-regulated at

that time point. In case of experiment C, the range of cluster numbers indicated as optimal

ranges between seven for HCA using Average-linkage and Pearson’s uncentered correlation

coe�cient and 38 clusters for Average-linkage with Euclidean distances. Again HCA using

Ward-linkage and Euclidean distances was scrutinized, which in this case manifested in a

22-cluster solution. It revealed several ribosomal proteins with no change in their regulation

due to the di�erent growth media. In contrast, proteins that ful�ll functions in amino acid

transport and metabolism as well as energy production are down-regulated during growth

on benzoate.

9.4 Proposal of a workflow for the analysis of quantitative
proteomics experiments

�e aim of this chapter, which summarizes the results of a methodological publication in

Proteome Science, was to provide an answer to two of the most frequently posed questions

in quantitative proteomics experiments: �rstly, which proteins are di�erentially regulated

regarding all investigated experimental conditions, and secondly, whether groups of pro-

teins show similar abundance values, which in turn might indicate that these proteins are
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commonly regulated. Certainly, a variety of methods have been introduced that allow to

answer similar questions in other �elds of PolyOmics such as Microarray data analysis. �is,

however, neglects the particular characteristics of mass spectrometry-based proteomics data

i. e. for example noise in the data due to unrelated background signals in the mass spectra

or missing values in the data matrix as peptides could not be correctly quanti�ed nor even

identi�ed (Karpievitch et al. 2009). To face these challenges a work�ow was derived and

evaluated based on three recently published, real-world datasets.

�e ANOVA constitutes the most powerful approach (see section 6.1.2) to detect di�erently

regulated proteins. However, it was found that the results of this statistical test, strictly

spoken, o�en had to be discarded as mandatory preconditions were not ful�lled. Especially

the requirement that error components are Gaussian-distributed was in many cases not

met. “Asking whether ANOVA [. . . ] assumptions are satis�ed is not idle curiosity. �e

assumptions of most mathematical models are always false to a greater or lesser extent. �e

relevant question is not whether ANOVA assumptions are met exactly, but rather whether

the plausible violations of the assumptions have serious consequences on the validity of

probability statements based on the standard assumptions” (Glass et al. 1972, p.237). Since

the objective of many experiments is to �nd all proteins that may be in�uenced by a stress

stimulus, play a role in a speci�c regulatory mechanism, or could be a potential target for a

speci�c therapeutic agent, one may therefore argue that it is of primary interest to �nd any

possible candidate before a stricter investigation and analysis take place. According to the

statistical doctrine, instead of the ANOVA a non-parametric test such as the Kruskal-Wallis

rank sum has to be applied. Interestingly, a strong congruence between the results of both

tests has been discovered. In conclusion, it can be recommended “to �rstly rely on the results

of an ANOVA, but secondly, to always take into consideration Kruskal-Wallis. Results should

then be compared and further visually investigated using for example Box- and Whisker-

plots. In all tests, because of the multiple testing situation, adjustment of computed p-values
should take place” (Albaum et al. 2011b, p.16).

When it comes to the identi�cation of groups of potentially co-regulated proteins, cluster

analysis is the method of choice. It, however, strongly depends on the utilized algorithm and

the utilized measure of validity whether a biologically meaningful cluster solution can be

obtained. In this connection, the objective is clearly to �nd and separate those groups of

proteins that reveal an utmost similar pattern of abundance regarding the selected experiment

conditions. It can, hence, be stated that HCA using Single-linkage is not applicable for this

purpose since this method tends to cluster all proteins together that show only a slight

similarity. A good indicator for this non-applicability was also given by the development of

the Figure of Merit. Following the evaluation it can be concluded that “if the bene�ts of a

hierarchical cluster analysis are requested, Ward’s method has proven a good choice. If there

isn’t, Neuralgas should be selected, which clearly outperforms the K-means approach, in

particular, regarding the reproducibility of its results. �e only drawback of this algorithm

might be its comparatively high computational complexity, which is, however, negligible

taken into consideration today’s average computing resources. [. . . ] �e most di�cult part is

the validation of a cluster result to gain the ’true’ number of clusters of a dataset. Here, the

cluster index of Krzanowski and Lai turned out to produce both computationally as well
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as biologically meaningful results. In contrast to other investigated validity measures the

index solely relies on the internal compactness of clusters, which seems to correspond to

our objective of clustering those proteins that reveal a highly similar pattern of regulation”

(Albaum et al. 2011b, p.16-17).
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Chapter 10

Discussion and Conclusion

Positive changes have taken place in the �eld of protein analysis over the last decade. Tech-

nical developments and in particular the advent of novel experimental procedures forged

ahead and �nally provide today’s scientist with a comprehensive inventory to scrutinize the

biomolecules that correlate the closest to the phenotype of an organism1. �emost important

contribution to this development was certainly made with the invention of the so� ionization

methods MALDI and ESI, which in the �rst place allowed to determine the masses of large

biomolecules such as proteins. Also, the laboratory methods targeting the employment of

stable isotopes and other mass tags for protein quanti�cation played a crucial role towards

the establishment of a high-throughput analysis of an organism’s complete proteome. Since

these technical and experimental methods have found a �rm place in the tool box of modern

proteomics researchers, there is undoubtedly a strong need for computational assistance in

processing and in particular evaluating the enormous amounts of data that are accumulating

in such mass spectrometry-based quantitative proteomics experiments.

10.1 The rich internet application QuPE

In this work, the concept of a so�ware application for quantitative proteomics experiments

was devised and put into practice. �is envisaged a platform, �rstly, to manage all data

and meta data related to these experiments, and secondly, to ease the development and

1
One may of course argue as well that it is the metabolome that best re�ects any di�erences in the phenotype

of two organisms.
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integration of novel analysis methods. Based on the capabilities of the system a variety of new

methods have been designed and implemented starting from procedures for the assessment

of protein identi�cations, to optimized but also novel algorithms for protein quanti�cation, to

the �rst-time derivation of a work�ow for the multivariate statistical analysis of quantitative

proteomics experiments.

�e system has already been used successfully in a number of national and international

projects. Currently, more than 50 users are registered as members of QuPE projects via the

GPMS: the unique project and user management system employed at the CeBiTec. �e list of

application cases comprises scienti�c collaborations with di�erent institutions, as for example

in the frame of the BMBF-funded QuantPro initiative with workgroups at the universities

of Bochum and Greifswald [grant 0313812], and the list of organisms that is worked with

covers all domains and ranges from Burkholderia cenocepacia to Xanthomonas campestris
pv. campestris, from Arabidopsis thaliana to Triticum aestivum.

QuPE constitutes the �rst rich internet application to provide data management capabilities

as well as analysis functionality for protein identi�cation, quanti�cation, and in particular

statistical evaluation from any location in the world via a standard web browser. �is

advantage of QuPE, which is best expressed by the concept of ’So�ware as a Service’ (SaaS,

Mell and Grance 2010), has led to cooperations, inter alia, with the Heart and Diabetes Center
in Bad Oeynhausen, the University College Cork in Ireland, and the Palacký University in

the Czech Republic. It is one of the most characteristic features of the system that also locally

dispersed users, once they have uploaded their data, can start and continue their analysis

in a collaborative way, whenever an internet connection is available. Using the language of

advertisement, QuPE, so to say, enables quantitative proteomics ’in the cloud’.

�e �rst version of QuPE (under the working title ’ProSE’) was used productively by mem-

bers of Bielefeld University beginning at the end of the year 2008. Since then, the system

has evolved towards a comprehensive platform for the storage and analysis of quantitative

proteomics data with a plethora of new features being implemented and added to the web

interface, the application logic, and the data model. During this time, the foundation of the

system has proven successful as new ideas and methods such as advanced quanti�cation

algorithms could easily be integrated. Nowadays, the application programming interface

provides a very extensive and rich basis for all kinds of proteomics data analyses. �e de-

vised data model for mass spectra, for protein identi�cations from database searches, and

especially for analysis results, ful�lled all requirements in terms of performance, scalability,

and �exibility. It was, in particular, the decision to rest the design of the system on the Spring

framework (Johnson 2003; SpringSource, a division of VMware 2011) that yielded a modular

and easy-to-extend architecture. �e implemented model-view-controller pattern, which

makes use of the Echo web framework (NextApp, Inc. 2011), facilitated a rapid advancement

of the user interface and allows for an interactive, desktop-like experience of the so�ware.

�e realization and deployment of QuPE as a rich internet application has shown to be an

economical, reliable, and attractive solution for the development and operation of the system

as well as its usage by experimenters.
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10.2 Algorithms for protein quantification

A signi�cant part of the work of this thesis was dedicated to the optimization and enhance-

ment of algorithms for the calculation of (relative) abundance values from isotope-labeled

protein samples. �is started with the implementation of a rather simple single-spectrum

based approach, which nevertheless achieves competitive results (see section 8.1.2), and ended

with a new method that now allows to compare the abundances of two di�erentially labeled

peptides, i. e. a partially-labeled peptide and its fully-labeled or fully-unlabeled counterpart

in a high-throughput manner. Overall, the newly developed algorithms allow to accurately

and precisely determine relative abundance values of metabolically stable isotope-labeled

data and furthermore represent a signi�cant improvement in terms of quality in comparison

to other existing approaches.

�e algorithms’ key features are the utilization of exact theoretical isotopic distributions

to ensure that, on the one hand, the complete set of peaks belonging to a peptide can be

used for quanti�cation, but on the other hand, any noise due to errors in measurement

or overlapping peptides is omitted. In case liquid chromatography has been employed in

the experiment and therefore a peptide’s elution can be taken into account, the continuous

wavelet transform showed the best performance to accurately predict the elution peak of

a peptide. In contrast to other methods, as for example a simple top-down approach (see

section 7.3.2) that searches for the apex of a peak and its ascending and descending �anks, the

impact of instrumental errors is minimized and, moreover, the application of a smoothing

�lter such as the Savitzky-Golay �lter is in general not necessary. A further feature of the

algorithm is the calculation of relative abundance values based on linear regression instead

of setting the area under the two XICs into relation. �is approach is similar to those used in

the Tool RelEx (see section 4.3.2), yet vertical o�sets have been replaced by perpendicular

o�sets to allow for uncertainties in the intensity measurements of both the labeled and the

unlabeled peptide.

A new algorithm was developed for so called pulse chase experiments. �e basic idea is to

replace the growth medium of an organism at a distinct time point, and thereby, introduce a

new and, in particular, di�erentially stable isotope-labeled nutrient. �e incorporation of

the added mass tags can a�erwards be followed in newly synthesized proteins or, similarly,

their loss due to protein degradation. Colleagues at the university of Bochum conducted an

experiment in which Corynebacterium glutamicum was transfered from minimal medium
with either 15NH4Cl as nitrogen source or

13C-labeled glucose as sole carbon source to normal

growth medium. �e challenge of this pulse chase approach that bases on metabolic labeling

with 15N or 13C is to �nd out the current ratio of heavy to light isotopes of each peptide at any

point of time over the course of the experiment. With protein half-lives in the range of a few

minutes up to hours (Belle et al. 2006;Maier et al. 2011), it can be expected that a�er the switch

of the medium all proteins with a high turnover will quickly be found with a decreasing

number of incorporated heavy stable isotopes. In contrast, it is very likely to observe those

proteins which have a slower rate of turnover with a higher isotope enrichment. Certainly,

the incorporation can be di�erent for each individual peptide. �e correct determination
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of the current incorporation rate is, moreover, exacerbated by two factors: �rst of all, an

unknown number of incorporated stable isotopes also leads to an unknown mass shi�, and

second, partly-labeled peptides reveal a complex isotopic distribution, in which the most

abundant peak is typically not the �rst peak.

Several so�ware tools have been introduced for the quanti�cation of metabolically-labeled

protein samples as for example ASAPRatio, ProRata, Census, and QN (see section 4.3). All of

these tools have in common that they can be used to calculate relative abundance ratios from

a mixture of two samples with de�ned enrichments of stable isotopes, in general, containing

both unlabeled as well as fully-labeled proteins. �e pulse chase approach, however, demands

an algorithm that is able to quantify sample mixtures in which one peptide is only found

partly-labeled, and moreover, at an unknown rate of enrichment. It was not long ago that

Gouw et al. (2010, p.16) noted that “in these cases, the lack of suitable so�ware hampers data

processing so far”. Rao et al. (2008) addressed this problem by investigating all peptides

which had been identi�ed in their experiment. �ey developed a model to estimate the

average m/z ranges based on the number of N-atoms in each peptide, and �nally performed
their quanti�cation based on these estimations. Cargile et al. (2004) utilized a Poisson

distribution model to predict the isotopic distribution patterns of labeled isotopes. Yet the

drawback of these approaches is the requirement for manual estimation of parameters, and

the necessity for time-consuming preprocessing of the data. �ey are therefore hardly to be

used for high-throughput data analysis. �e so�ware tool QuantiSpec (Haegler et al. 2009,

cf. 4.3.6) denotes one of the �rst automated approaches for the relative quanti�cation of

one partially-labeled and one fully-labeled or -unlabeled protein sample. While intended

for MALDI-TOF data, the tool does not support LC-MS/MS experiments, and thus cannot

refer to the temporal information that could be gained through the elution of peptides. Very

recently, Guan et al. (2011) were the �rst to propose a pipeline for the calculation of protein

turnover rates from 15N-labeled samples in a high-throughput manner. Price et al. (2010)

employed this approach to calculate protein turnover rates for over 2,500 proteins from three

di�erent tissues of mice. In this experiment, the animals were fed with a diet of 15N-labeled

algae. �e algorithm has, however, one drawback which hampers its unrestricted application

in other experiments. As protein identi�cations are transfered from the �rst time point to

any subsequently recorded sample, the procedure places high demands on the individual

samples—it is necessary to ensure that no retention time dri�s occur for all peptides within

the di�erent samples.

�e pulse chase quanti�cation algorithm realized within QuPE constitutes an approach for

LC-MS/MS data that is capable of calculating protein turnover rates in a high-throughput

manner from any metabolically stable isotope-labeled sample, in which a mixture of proteins

is found fully-labeled or -unlabeled as well as partially-labeled to an unknown extent. �e

algorithm, in particular, does not require any preconditions to be ful�lled. Apart from the

initial pulse chase experiment conducted at Bochum University, the new quanti�cation

algorithm has been used by Grasse et al. (2011) for the investigation of a novel dimeric

photosystem in a mutant strain of�ermosynechococcus elongatus. �e algorithm has also
proven its applicability for the quanti�cation of protein samples from organisms for which

the full incorporation of a stable isotope is hardly to achieve. �is can have economic reasons
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as the provision of an appropriate diet, e. g. to feed higher eukaryotes such as mice, is without

any doubt laborious and time-consuming (Gouw et al. 2010; Zhang et al. 2011). But there may

be other di�culties that prevent a complete incorporation. In an experiment to determine

the quali�cation of di�erent strains of the green algae Chlamydomonas reinhardtii for the
production of biofuels, members of Olaf Kruse’s workgroup at Bielefeld University faced

the problem of �nding—unintentionally—only partially-labeled protein samples. Using

the quanti�cation method developed within this work, they were yet able to successfully

calculate relative protein abundance values.

�e runtime of the pulse chase quanti�cation algorithm is mainly characterized by three

steps of the procedure: �rstly, the calculation of theoretical isotopic distributions; secondly,

the extraction of ion chromatograms; and thirdly, the �nal calculation of relative abundance

ratios from these XICs. In the current implementation of the algorithm, a polynomial

approach is utilized for the isotopic distribution calculation. �e e�ort of this approach is

acceptable as biomolecules consist, in general, only of the �ve elements carbon, hydrogen,

nitrogen, oxygen, and sulfur (abbrev. CHNOPS). Given a peptide has each nE atoms of an
element E ∈ [C ,H,N ,O , P, S], which in turn has I di�erent isotopes Ei , i ∈ [1, . . . , I] the
peptide’s isotopic distribution can therefore be computed by expanding the following term:

(C1 + C2)nC ⋅ (H1 +H2)nH ⋅ (N1 + N2)nN ⋅ (O1 + . . . + O3)nO ⋅ (S1 + . . . + S4)nS (10.1)

To reduce the computational complexity of this calculation it is in general advisable, to

combine single peaks if their di�erence in mass falls below a certain threshold. In QuPE,

this value is con�gurable and thereby allows to attain an optimal balance between exactness

and computational e�ciency. Nevertheless, the runtime of the algorithm could be further

improved in the future if methods that utilize Fourier transform are taken into account

as proposed by Rockwood and Orden (1996), Cossio (2010), Sperling et al. (2008), or the

dynamic programming-based approach described by Snider (2007). �e extraction of ion

chromatograms is undoubtedly themost demanding factor contributing to the computational

costs of the algorithm. �is step of the procedure requires the retrieval of mass spectra

from the database for each peptide. As the amount of data can easily comprise several

kilobytes per spectrum, it is not only the running time that is a�ected but also the memory

consumption. Optimizations of the algorithm therefore targeted the amount of required

memory, e. g. by �ushing the Hibernate session cache a�er a speci�c number of processed

spectra. To give an example, the running time for the elution peak quanti�cation algorithm

applied on a comparatively large experiment that contained over 1,400 proteins with almost

1,000,000 individual peptides was at approximately 43.5 hours on the CeBiTec compute

cluster (averaged over four runs, 2x Quad-Core Intel Xeon™ E5640, 48GB RAM). It took less

than two hours to compute the isotopic distributions for all peptides, while most of the time

was spend for the creation of XICs. �e �nal computation of relative abundance ratios then

lasted only about 35 minutes.
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10.3 A workflow for the analysis of quantitative proteomics
experiments

Mass tags have become an established technique to gain an understanding of regulation at

the protein level, and also the so�ware tools to perform protein quanti�cation have reached

a high degree of quality (although it was very recently expressed that “there is still room

for improvement of quantitation algorithms”, Arsova et al. 2011, p.9). �e end product of

these tools and algorithms is usually a list of identi�ed peptides together with their (relative)

abundance values, which account for varying environmental conditions or di�erent growth

states of an organism (cf. sections 4.5, 5.1.4, Kumar and Mann 2009). “At this point, data

will be ready for various statistical analyses” (Becker and Bern 2011, p.178), yet one has to

denote that, “proteomics researchers are somehow le� out in the cold, since existing so�ware

solutions [as listed above] lack support of advanced data analysis” (Albaum et al. 2009a,

p.3129).

�e provision of user-friendly and conceivable statistical analysis methods is, however, only

’half the battle’—moreover, it needed to be elucidated which statistical analysis strategy

promises success for stable isotope-labeled proteomics data, and allows to draw accurate

and valid conclusions from the data. �e two central questions posed in a multitude of

quantitative proteomics experiments are, �rstly, which proteins are di�erentially regulated

regarding the selected experimental conditions, and secondly, whether there are groups of

proteins that show similar abundance ratios and thus might have a similar turnover. To

answer these questions, a comprehensive evaluation was conducted within the scope of this

work taking into account three real-world datasets from recently published experiments.

�is �nally led to the derivation of a work�ow for quantitative proteomics data analysis,

which has been described in detail in the previous chapter.

Di�erent statistical analysis methods were evaluated regarding their suitability to identify

up- or down-regulated proteins in multivariate experimental data. In the same manner,

cluster algorithms were investigated and their outcomes compared to each other in order to

determine the method that best �ts to this type of data. �e evaluation assessed not only the

cluster algorithms itself but also their validation to obtain the optimal number of clusters for

a speci�c dataset. In this connection, the inclusion of external information such as COG

functional categories turned out to be a key element to gain meaningful clusterings, both

from a biological and a computational point of view.

10.4 Further developments of the QuPE system

Overall, the QuPE system has proven to be highly extensible. �is could not only be demon-

strated with the implemented algorithms for protein quanti�cation and the provided range

of statistical analysis functionality but also with minor extensions and enhancements of the

system, such as the recently added support for spot coordinates on 2D-gels. �is was realized

in close cooperation with the Institute of Plant Genetics at the Leibniz Universität Hannover.
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Rode et al. (2011) developed GelMap as a web-based tool for the storage and representation

Figure 10.1 –�is screenshot demonstrates the recently added support for 2D-gels in QuPE via the connection
with the web-based so�ware tool GelMap. �is was made possible by a cooperation with the Leibniz Universität

Hannover. A�er an experiment has been linked to a GelMap project, and spot coordinates have been added to

each imported sample, it is possible to directly link a mass spectrum and the respective protein identi�cation to

the original spot position on a 2D-gel.

of 2D-gel electrophoresis results. In the context of QuPE, spot coordinates can be assigned

to each imported sample, e. g. via import of an Excel spreadsheet, and linked to a GelMap

project. �is is illustrated in the screenshot shown in Figure 10.1. A researcher is thereby

able to directly link protein identi�cation and mass spectra to the respective position of the

protein on an underlying 2D-gel.

Although QuPE has reached a high level of functionality, applicability and stability, it is, of

course, still work in progress as developments in the �eld of proteomics in terms of novel

laboratory and technical methods are continuously moving forward, and thus pose new

challenges for data management, integration, and analysis. An important problem in mass

spectrometry-based proteomics, these days, concerns the investigation of post-translational

protein modi�cations (PTMs). Protein phosphorylation sites are, for example, of particular

interest since these may result in a conformational change which in turn may lead to the

protein’s activation or inactivation. While the well-known and established search engines

such as Mascot™or Sequest™do support database searches that take PTMs into account, the

inclusion of more than a few potential modi�cations, in general, drastically increases the

computational complexity of the search. To tackle this issue alternative approaches need to

be evaluated and, subsequently, integrated into the QuPE system. �e search engine InsPecT

(Tanner et al. 2005) is a promising candidate as it has speci�cally been designed to address

the identi�cation of post-translational protein modi�cations (PTMs).
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While protein quanti�cation methods have reached a high level of quality and accuracy, it is

conceivable that the amount of quanti�able proteins can be further increased if the protein

quanti�cation does not primarily rely on an a priori conducted protein identi�cation step.
Instead, the feature space which is spanned by the three domains ’retention time’, ’mass to

charge ratio’, and ’signal intensity’ could be searched independently for pairs of labeled and

unlabeled proteins. A similar approach was introduced with the so�ware MAXQUANT (see

section 4.3.7). �is can, however, only be applied to SILAC-labeled data. No approach has

yet been conceived for stable isotope labeled data, for example, based on heavy nitrogen. Due

to the nonuniform and complex peak pattern of proteins labeled in such a way, this certainly

represents a comparatively far more di�cult task. While there would be the bene�t of an

increased number of quanti�ed peptides, it remains questionable whether these abundance

values can a�erwards also be assigned to a speci�c protein—this would need to be analyzed.

10.5 Final remarks

“Mass spectrometry (MS)-based proteomics has signi�cantly contributed to the development

of systems biology, a new paradigm for the life sciences in which biological processes are

addressed in terms of dynamic networks of interacting molecular networks” (Sabidó et al.

2011, p.1). In this spirit, it is in particular the utilization of metabolic labeling approaches

in combination with the pulse chase approach that allows to gain detailed insights into

the processes that are responsible for the amounts of proteins in a cell—protein synthesis

as well as degradation. QuPE constitutes a comprehensive platform for the analysis of

these quantitative proteomics experiments, especially of metabolic stable isotope labeling

approaches. Due to its extensible nature, the system can easily be extended to cope with

future developments in this �eld of research.
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Appendix A

Implementation of the QuPE system –
additional information

In this section of the appendix, additional information regarding the implementation of the

QuPE system is provided.

A.1 Isotopic Distribution Calculation

Calculation of isotopic distributions of amino acids is derived from an open source program

named ’Isotopic Pattern Calculator’ (Nolting 2008). Given the elemental composition of a

peptide, the algorithm computes relative peak intensities with a user-de�ned accuracy. In

addition, an intensity threshold may be set to omit peaks that contribute only an irrelevantly

small amount to the overall intensity of a molecule.

INPUT: elemental composition

INPUT: accuracy, e. g. 0.01

INPUT: charge state of peptide

INPUT: minimal peak intensity

// the variable peaks defines a mapping of masses on intensity values

DEFINE peaks = Mapping[mass,intensity]

// initialization of peaks variable

SET peaks[0.0] = 1.0
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// loop over all elements possibly occurring in biomolecules...

// i.e. carbon, hydrogen, nitrogen, oxygen, sulfide

FOR EACH element OF CHNOS DO

// ...for each occurring atom...

FOR EACH atom OF element DO

// ...adjust each previous peak...

FOR EACH peak OF peaks DO

// ...taking each isotope and its probability into account...

FOR EACH isotope OF element DO

DEFINE peakMass = peak.mass

DEFINE peakIntensity = peak[mass]

DEFINE newPeakMass = ROUND((peakMass + isotope.mass) / accuracy) * accuracy

DEFINE newPeakIntensity = peakIntensity * isotope.frequency

IF peaks[newPeakMass] != null THEN

peaks[newPeakMass] = peakIntensity + newPeakIntensity

ELSE

peaks[newPeakMass] = newPeakIntensity

FI

OD

OD

OD

OD

// finally, 'translate' to relative peak intensities

DEFINE maxIntensity = MAX OF ALL intensities OF peaks

DEFINE finalPeaks = Mapping[mass,intensity]

FOR EACH peak OF peaks DO

DEFINE peakMass = peak.mass

DEFINE peakIntensity = peak[mass]

DEFINE relativeIntensity = peakIntensity / maxIntensity * 100

// peaks below a user-defined threshold are omitted

IF relativeIntensity > threshold THEN

finalPeaks[peakMass / charge] = relativeIntensity

FI

OD

152



Appendix B

Performance and accuracy of protein
quantification – additional information

In this section of the appendix, additional information regarding the performance and

accuracy of algorithms for the quanti�cation of isotope-labeled protein samples is given.

B.1 Referencemeasurements – additional information

�e universities of Bielefeld and Greifswald provides benchmark datasets for the evaluation

of algorithms for the quanti�cation of proteins. In the following, tool con�gurations and

further information used for the processing of these datasets can be found.

B.1.1 Configuration of the tool ProRata

�e con�guration of the tool ProRata (Pan et al. 2006) was essentially used as provided by

the authors, respectively, in the downloaded so�ware package (Version 1.0):

<? xml v e r s i on= " 1 . 0 " ? >
<CONFIG v e r s i on= " 1 . 0 " >

<SIC_EXTRACTION>

<MS_FILE_TYPE>mzXML< /MS_FILE_TYPE>

<ID_FILE_TYPE>DTASelect< / ID_FILE_TYPE>

<RETENTION_TIME_INTERVAL>

<MINUTES_BEFORE_MS2>2< /MINUTES_BEFORE_MS2>

<MINUTES_AFTER_MS2>2< /MINUTES_AFTER_MS2>

<MINUTES_BETWEEN_DUPLICATE_MS2>2< /MINUTES_BETWEEN_DUPLICATE_MS2>

< /RETENTION_TIME_INTERVAL>
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<MASS_TO_CHARGE_INTERVAL>

<PLUS_MZ_ERROR> 0 . 5 < /PLUS_MZ_ERROR>

<MINUS_MZ_ERROR> 0 . 5 < /MINUS_MZ_ERROR>

<ISOTOPIC_ENVELOP_CUTOFF> 0 . 1 < / ISOTOPIC_ENVELOP_CUTOFF>

< /MASS_TO_CHARGE_INTERVAL>

<ATOM_ISOTOPIC_COMPOSITION>

<C>

<MASS_DA> 1 2 . 0 0 0 0 0 0 , 1 3 . 0 0 3 3 5 5 < /MASS_DA>

<NATURAL> 0 . 9 8 9 3 , 0 . 0 1 0 7 < /NATURAL>

<ENRICHED> 0 . 0 2 , 0 . 9 8 < /ENRICHED>

< /C>

<H>

<MASS_DA> 1 . 0 0 7 8 2 5 , 2 . 0 1 4 1 0 2 < /MASS_DA>

<NATURAL> 0 . 9 9 9 8 8 5 , 0 . 0 0 0 1 1 5 < /NATURAL>

<ENRICHED> 0 . 0 2 , 0 . 9 8 < /ENRICHED>

< /H>

<O>

<MASS_DA> 1 5 . 9 9 4 9 1 5 , 1 6 . 9 9 9 1 3 2 , 1 7 . 9 9 9 1 6 0 < /MASS_DA>

<NATURAL> 0 . 9 9 7 5 7 , 0 . 0 0 0 3 8 , 0 . 0 0 205 < /NATURAL>

<ENRICHED> 0 . 0 2 , 0 . 0 , 0 . 9 8 < /ENRICHED>

< /O>

<N>

<MASS_DA> 1 4 . 0 0 3 0 7 4 , 1 5 . 0 0 0 1 0 9 < /MASS_DA>

<NATURAL> 0 . 9 9 6 3 2 , 0 . 0 0 368 < /NATURAL>

<ENRICHED> 0 . 0 2 , 0 . 9 8 < /ENRICHED>

< /N>

<P>

<MASS_DA> 30 . 9 7 3 76 2 < /MASS_DA>

<NATURAL> 1 . 0 < /NATURAL>

<ENRICHED> 1 . 0 < /ENRICHED>

< /P>

<S>

<MASS_DA> 3 1 . 9 7 2 0 7 1 , 3 2 . 9 7 1 4 5 9 , 3 3 . 9 6 7 8 6 7 , 3 5 . 9 6 7 0 8 1 < /MASS_DA>

<NATURAL> 0 . 9 4 9 3 , 0 . 0 0 7 6 , 0 . 0 4 2 9 , 0 . 0 002 < /NATURAL>

<ENRICHED> 0 . 0 2 , 0 . 0 , 0 . 9 8 , 0 . 0 < /ENRICHED>

< / S>

< /ATOM_ISOTOPIC_COMPOSITION>

<RESIDUE_ATOMIC_COMPOSITION>

<ISOTOPOLOGUE name= " N14 " >

<R> NTerm , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> CTerm , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> L , 6 , 1 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> A, 3 , 5 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> S , 3 , 5 , 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> G, 2 , 3 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> V, 5 , 9 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> E , 5 , 7 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> K , 6 , 1 2 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> I , 6 , 1 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> T , 4 , 7 , 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> D, 4 , 5 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> R , 6 , 1 2 , 1 , 4 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> P , 5 , 7 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> N, 4 , 6 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> F , 9 , 9 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> Q, 5 , 8 , 2 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> Y , 9 , 9 , 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> M, 5 , 9 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> H, 6 , 7 , 1 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> C , 3 , 5 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> W, 1 1 , 1 0 , 1 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> * , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> # , 2 , 3 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

< /ISOTOPOLOGUE>

<ISOTOPOLOGUE name= " N15 " >

<R> NTerm , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> CTerm , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> L , 6 , 1 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> A, 3 , 5 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> S , 3 , 5 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> G, 2 , 3 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> V, 5 , 9 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> E , 5 , 7 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> K , 6 , 1 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 < /R>

<R> I , 6 , 1 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> T , 4 , 7 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> D, 4 , 5 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> R , 6 , 1 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 4 , 0 , 0 < /R>

<R> P , 5 , 7 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> N, 4 , 6 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 < /R>

<R> F , 9 , 9 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> Q, 5 , 8 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 < /R>

<R> Y , 9 , 9 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> M, 5 , 9 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 < /R>
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<R> H, 6 , 7 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 < /R>

<R> C , 3 , 5 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 < /R>

<R> W, 1 1 , 1 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 < /R>

<R> * , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

<R> # , 2 , 3 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 < /R>

< /ISOTOPOLOGUE>

< /RESIDUE_ATOMIC_COMPOSITION>

< /SIC_EXTRACTION>

<PEPTIDE_QUANTIFICATION>

<PEAK_DETECTION>

<CHROMATOGRAM_SMOOTHING>

<ORDER>2< /ORDER>

<WINDOW_SIZE>7< /WINDOW_SIZE>

< /CHROMATOGRAM_SMOOTHING>

<PEAK_SHIFT>

<LEFT>0< / LEFT>

<RIGHT>0< /RIGHT>

< /PEAK_SHIFT>

< /PEAK_DETECTION>

<ABUNDANCE_RATIO>

<NUMERATOR_ISOTOPOLOGUE>N14< /NUMERATOR_ISOTOPOLOGUE>

<DENOMINATOR_ISOTOPOLOGUE>N15< /DENOMINATOR_ISOTOPOLOGUE>

< /ABUNDANCE_RATIO>

<LOG2_RATIO>

<MINIMUM>−10< /MINIMUM>

<MAXIMUM>10< /MAXIMUM>

< /LOG2_RATIO>

<LOG2_SNR_CUTOFF> 1 < /LOG2_SNR_CUTOFF>

<REMOVE_AMBIGUOUS_PEPTIDES> t r u e < /REMOVE_AMBIGUOUS_PEPTIDES>

< /PEPTIDE_QUANTIFICATION>

<PROTEIN_QUANTIFICATION>

<MIN_PEPTIDE_NUMBER>2< /MIN_PEPTIDE_NUMBER>

<MAX_CI_WIDTH>5< /MAX_CI_WIDTH>

<MAX_LOG2_SNR>4< /MAX_LOG2_SNR>

<LOG2_RATIO>

<MINIMUM>−5< /MINIMUM>

<MAXIMUM>5< /MAXIMUM>

< /LOG2_RATIO>

<LOG2_RATIO_DISCRETIZATION> 0 . 1 < / LOG2_RATIO_DISCRETIZATION>

<FASTA_FILE>bs . f a a < / FASTA_FILE>

<STANDARD_DEVIATION>

<SLOPE>−0.288< / SLOPE>

<INTERCEPT> 1 . 3 0 5 < / INTERCEPT>

< /STANDARD_DEVIATION>

<MEAN>

<SLOPE> 1 . 2 < / SLOPE>

<INTERCEPT>0< / INTERCEPT>

< /MEAN>

<SMOOTHING_PROBABILITY_SPACE> 0 . 1 5 < /SMOOTHING_PROBABILITY_SPACE>

< /PROTEIN_QUANTIFICATION>

< /CONFIG>

B.1.2 Configuration of the tool Census

As in the case of ProRata, the con�guration of the tool Census (Park et al. 2008) was essentially

used as provided by the authors, respectively, in the downloaded so�ware package (Version

1.33):

<? xml v e r s i on= " 1 . 0 " encod ing= "UTF−8 " ?>
< c o n f i g >

< l a b e l _ t y p e l a b e l i n g = " t r u e " >

<name>sample< / name>

<name> r e f e r e n c e < / name>

< / l a b e l _ t y p e >

<params>

< s c an_ t yp e >MS< / s c an_ t y p e >

< ex t r a c t _me thod> 1 < / e x t r a c t _me thod>

<mas s_ac cu r a cy un i t = "mz" > 0 . 3 < / mas s_ac cu r a cy>

< en r i c h > 0 . 9 8 < / e n r i c h >

<max_win>50< /max_win>

< / params>

<element_comp>

<each_sample>

< r e s i d u e name= "A" >

<e l e_C>3< / e l e_C>

<ele_H>5< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "C" >

<e l e_C>5< / e l e_C>

<ele_H>8< / e le_H>

<ele_O>2< / e le_O>

<ele_N>2< / e le_N>

< e l e _ S > 1 < / e l e _ S >
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< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "D" >

<e l e_C>4< / e l e_C>

<ele_H>5< / e le_H>

<ele_O>3< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " E " >

<e l e_C>5< / e l e_C>

<ele_H>7< / e le_H>

<ele_O>3< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " F " >

<e l e_C>9< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "G" >

<e l e_C>2< / e l e_C>

<ele_H>3< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "H" >

<e l e_C>6< / e l e_C>

<ele_H>7< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>3< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " I " >

<e l e_C>6< / e l e_C>

<ele_H> 1 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "K" >

<e l e_C>6< / e l e_C>

<ele_H> 1 2 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>2< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " L " >

<e l e_C>6< / e l e_C>

<ele_H> 1 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "M" >

<e l e_C>5< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S > 1 < / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "N" >

<e l e_C>4< / e l e_C>

<ele_H>6< / e le_H>

<ele_O>2< / e le_O>

<ele_N>2< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " P " >

<e l e_C>5< / e l e_C>

<ele_H>7< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "Q" >

<e l e_C>5< / e l e_C>

<ele_H>8< / e le_H>

<ele_O>2< / e le_O>

<ele_N>2< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "R " >

<e l e_C>6< / e l e_C>

<ele_H> 1 2 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>4< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " S " >

<e l e_C>3< / e l e_C>

<ele_H>5< / e le_H>

<ele_O>2< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "T " >

<e l e_C>4< / e l e_C>

<ele_H>7< / e le_H>

<ele_O>2< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>
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< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "V" >

<e l e_C>5< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "W" >

<e l e_C> 1 1 < / e l e_C>

<ele_H> 10< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>2< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "Y" >

<e l e_C>9< / e l e_C>

<ele_H>9< / e le_H>

<ele_O>2< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "NTERM" >

<e l e_C>0< / e l e_C>

<ele_H> 1 < / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "CTERM" >

<e l e_C>0< / e l e_C>

<ele_H> 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " * " >

<e l e_C>0< / e l e_C>

<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " # " >

<e l e_C>0< / e l e_C>

<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "@" >

<e l e_C>0< / e l e_C>

<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< / each_sample>

<each_sample>

< r e s i d u e name= "A" >

<e l e_C>3< / e l e_C>

<ele_H>5< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "C" >

<e l e_C>5< / e l e_C>

<ele_H>8< / e le_H>

<ele_O>2< / e le_O>

<ele_N> 1 < / e le_N>

< e l e _ S > 1 < / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "D" >

<e l e_C>4< / e l e_C>

<ele_H>5< / e le_H>

<ele_O>3< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " E " >

<e l e_C>5< / e l e_C>

<ele_H>7< / e le_H>

<ele_O>3< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " F " >

<e l e_C>9< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "G" >

<e l e_C>2< / e l e_C>

<ele_H>3< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "H" >

<e l e_C>6< / e l e_C>

<ele_H>7< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>3< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>
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< / r e s i d u e >

< r e s i d u e name= " I " >

<e l e_C>6< / e l e_C>

<ele_H> 1 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "K" >

<e l e_C>6< / e l e_C>

<ele_H> 1 2 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>2< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " L " >

<e l e_C>6< / e l e_C>

<ele_H> 1 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "M" >

<e l e_C>5< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S > 1 < / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "N" >

<e l e_C>4< / e l e_C>

<ele_H>6< / e le_H>

<ele_O>2< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>2< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " P " >

<e l e_C>5< / e l e_C>

<ele_H>7< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "Q" >

<e l e_C>5< / e l e_C>

<ele_H>8< / e le_H>

<ele_O>2< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>2< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "R " >

<e l e_C>6< / e l e_C>

<ele_H> 1 2 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>4< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " S " >

<e l e_C>3< / e l e_C>

<ele_H>5< / e le_H>

<ele_O>2< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "T " >

<e l e_C>4< / e l e_C>

<ele_H>7< / e le_H>

<ele_O>2< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "V" >

<e l e_C>5< / e l e_C>

<ele_H>9< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "W" >

<e l e_C> 1 1 < / e l e_C>

<ele_H> 10< / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>2< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "Y" >

<e l e_C>9< / e l e_C>

<ele_H>9< / e le_H>

<ele_O>2< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N> 1 < / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "NTERM" >

<e l e_C>0< / e l e_C>

<ele_H> 1 < / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "CTERM" >

<e l e_C>0< / e l e_C>

<ele_H> 1 < / e le_H>

<ele_O> 1 < / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " * " >

<e l e_C>0< / e l e_C>
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<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= " # " >

<e l e_C>0< / e l e_C>

<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< r e s i d u e name= "@" >

<e l e_C>0< / e l e_C>

<ele_H>0< / e le_H>

<ele_O>0< / e le_O>

<ele_N>0< / e le_N>

< e l e _ S >0< / e l e _ S >

< e l e _P >0< / e l e _P >

< e l e _ 1 5N>0< / e l e _ 1 5N>

<e le_2H>0< / e le_2H>

< e l e _ 1 3C>0< / e l e _ 1 3C>

< / r e s i d u e >

< / each_sample>

< / element_comp>

< / c o n f i g >

Results were a�erwards exported using the following parameters:

Det e rm ina t i on F a c t o r : 0 . 5

O u t l i e r pValue : 0 . 1

F i l t e r Fragment Ion s on MS/MS pValue : t r u e

Co r r e c t i o n F a c t o r Value : 0 . 0

al lNoneLowerBound : 0 . 1

a l lNoneUpperBound : 1 0 . 0

a l lNoneCompos i t e S co r e : 0 . 9 5

Unique P ep t i d e on l y : f a l s e

B.2 Evaluation of implemented quantification algorithms –
additional information

�is section of the appendix provides additional information regarding the evaluation of

own quanti�cation algorithms (see chapter 8 for further details).

B.2.1 Accuracy of the elution peak quantification – parameter evaluation

An evaluation was performed to investigate the impact of di�erent parameters on the quan-

ti�cation results achievable with the elution peak quanti�cation algorithm (see sections 7.3.2

and 8.1.3). �erefore, the 1:1 sample provided by colleagues at the University of Greifswald

was analyzed in detail. �e following settings were used in accordance with the characteristics

of this experiment: accuracy of the isotopic distribution calculation: 0.1 m/z, tolerance value

ε = 0.01 Da, investigated retention time interval for each peptide: 60 seconds before and a�er
the identifying mass spectrum, CWT-based peak detection. �e results of varying settings

of the isotopic similarity dS×T, the regression coe�cient r, and the signal-to-noise threshold
S/N are shown in the following table. Here, < M > denotes the expected mean value based
on the given ratio, thus, in this case 0. �e column entitled M̄ shows the mean value of all
calculated peptide abundance ratios together with their standard deviation σ . �e median is
given in column M̃, while the sixth column contains the 95%-con�dence interval. �e last
two columns denote the overall number of calculated peptide abundance ratios (#peptides)

and the number of proteins these peptides account for (#proteins).
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Elution peak quanti�cation - parameter evaluation

dS×T r S/N < M > M̄ σ M̃ M̄ ± 0.95 #peptides #proteins

0.9 0.9 4.0 0 -0.22 0.37 -0.23 -0.77;0.40 1414 313

0.9 0.9 3.0 0 -0.22 0.42 -0.24 -0.85;0.46 2457 421

0.9 0.9 2.0 0 -0.22 0.45 -0.24 -0.95;0.56 3457 501

0.9 0.8 4.0 0 -0.24 0.40 -0.24 -0.92;0.42 1561 335

0.9 0.8 3.0 0 -0.23 0.45 -0.24 -1.00;0.55 2816 457

0.9 0.8 2.0 0 -0.23 0.49 -0.24 -1.22;0.66 4077 549

0.9 0.7 4.0 0 -0.24 0.47 -0.24 -1.04;0.51 1636 346

0.9 0.7 3.0 0 -0.23 0.52 -0.24 -1.18;0.68 3007 474

0.9 0.7 2.0 0 -0.23 0.56 -0.24 -1.38;0.82 4444 568

0.9 0.6 4.0 0 -0.24 0.53 -0.24 -1.20;0.71 1694 358

0.9 0.6 3.0 0 -0.24 0.57 -0.23 -1.34;0.80 3144 492

0.9 0.6 2.0 0 -0.23 0.60 -0.24 -1.47;0.94 4694 586

0.9 0.5 4.0 0 -0.25 0.59 -0.24 -1.42;0.78 1735 364

0.9 0.5 3.0 0 -0.24 0.63 -0.24 -1.49;0.94 3237 499

0.9 0.5 2.0 0 -0.24 0.66 -0.24 -1.57;1.07 4870 592

0.9 0.4 4.0 0 -0.26 0.61 -0.25 -1.49;0.80 1758 366

0.9 0.4 3.0 0 -0.25 0.67 -0.25 -1.59;1.04 3302 505

0.9 0.4 2.0 0 -0.24 0.70 -0.25 -1.71;1.17 5008 601

0.95 0.6 4.0 0 -0.24 0.53 -0.24 -1.21;0.71 1692 358

0.95 0.6 3.0 0 -0.23 0.57 -0.24 -1.33;0.80 3138 491

0.95 0.6 2.0 0 -0.23 0.60 -0.24 -1.45;0.94 4683 584

0.8 0.6 3.0 0 -0.23 0.57 -0.24 -1.34;0.80 3145 492

0.8 0.6 2.0 0 -0.23 0.60 -0.24 -1.47;0.94 4695 586

0.8 0.5 3.0 0 -0.24 0.63 -0.24 -1.49;0.94 3239 499

0.8 0.5 2.0 0 -0.24 0.66 -0.24 -1.57;1.07 4872 592

0.8 0.4 3.0 0 -0.24 0.67 -0.25 -1.59;1.03 3304 505

0.8 0.4 2.0 0 -0.24 0.70 -0.25 -1.71;1.17 5010 601

B.3 Analysis of quantitative proteomics data – additional
information

�is section of the appendix includes additional analysis results regarding the three case

studies and the development of a work�ow for the analysis of quantitative proteomics data

(see chapter 9 for further details).
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Figure B.1 –�e cluster index “Index I” tends to favor smaller cluster numbers between two and three clusters.
From a computational point of view this is clearly a good result. Unfortunately, from a biological point this

does not allow any meaningful interpretation of the data. In general, these small clusterings only characterize

individual outliers, while the rest of the clusters are found with a high number of cluster members having

everything clustered together that reveals only a slight similarity.
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Figure B.2 – Similar to the “Index I” the cluster index of Calinski and Harabasz tends to favor smaller cluster
numbers between three and four clusters. In the same manner, the applicability with respect to the biological

question also remains questionable.
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Figure B.3 – Instead of simply proposing a cluster index, Davies and Bouldin formulated a general framework
for the evaluation of the outcomes of cluster algorithms. In contrast to other indexes, an optimal cluster solution

is indicated by the minimal calculated index value. For instance, for the two cluster algorithms K-means and

Neuralgas a local minimum can be located around the 30-cluster solution. A general interpretation of this index,

however, seems to be di�cult due to a strong tendency towards constantly decreasing index values with regard

to large cluster numbers.
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2D-electrophoresis Two-dimensional electrophoresis—protein separation.

amino acids Small molecules that each consist of an amine group, a carboxylic acid group,
and a variable side chain together bond to a central C-atom. Currently, 22 amino acids

are known that constitute the building blocks of proteins all di�ering in size, form and

charge.

CID Collision-induced dissociation refers to the utilization of a collision gas such as nitrogen

to gain a de�ned fragmentation of a (peptide) ion. �e masses of these fragments give

hint to the peptide’s amino acid structure.

corpuscles �e physicist and Nobel prize-winner �omson gave this name to the particles

he discovered. Nowadays, these are better known as electrons.

DIGE Di�erential gel electrophoresis—samples are each labeled with a �uorescence dye such
as Cy3 and Cy5. A�er 2D-electrophoresis, a scan process with di�erent wavelengths

in analogy to the utilized dyes then allows to visualize the di�erences in protein

expression.

DNA Deoxyribonucleic acid is a macro molecule consisting of nucleotides and carrying the
genetic information of every known living organism.

EIC In contrast to the total ion current (TIC), in the extracted ion chromatogram (also XIC)
only the summed intensities of one distinct m/z value (or a small range of values) are

used to reconstruct the elution of a speci�c analyte from a number of subsequently
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recorded mass spectra. �e EIC of a peptide, also termed its elution peak, provides a

measure of the peptide’s abundance.

ESI Electrospray ionization is a so� ionization technique that allows the generation of ions
directly from dissolved molecules.

FWHM Full width at half maximum height; the resolution power R of a mass spectrometer
is, for example, calculated as the ratio of a peak’s mass to the peak’s width at half

maximum.

IEF Isoelectric focussing—under the in�uence of an electric �eld any mixture of zwitteri-
onic compounds (ampholytes) rearranges itself in such a way that each individual

compound of the mixture shi�s to that position in this pH-gradient where it has a net

charge of zero. If a protein is added to this gradient it also moves to the position where

it is not electrically charged, its so called isoelectric point.

ion trap An ion trap is a type of mass analyzer that consists of a ring electrode as well as
as two hyperboloid-shaped end cap electrodes. An electric �eld at the ring electrode

forces incoming protein ions to traverse on a circular path—the ions are trapped. At a

particular voltage the trajectory of all ions having a speci�c m/z value get unstable,

and the ions are, �guratively speaking, thrown out of the trap..

isoelectric point With their amine and carboxylic acid group amino acids are able to react
both as an acid and a base. �ere exists a certain pH level, where an amino acid is not

electrically charged. Termed the isoelectric point this is unique for each kind of amino

acid.

LC Liquid chromatography aims to separate a mixture of proteins by their speci�c properties
such as size, charge or hydrophobicity.

LC-MS/MS �e combination of liquid chromatography and tandem mass spectrometry.

m/z Mass to charge ratio—resultant from any mass spectrometry analysis is a list of peaks,
each described by its intensity and mass to charge ratio.

MALDI Matrix-assisted laser desorption/ionization belongs to the group of so� ionization
techniques. �e sample and an UV-absorbing matrix compound are co-crystallized

on a plate. Irradiation with an UV-laser results in matrix vaporization and sample ions

movement into gas phase.

MIS MS/MS ion search utilizes the fragmentation pattern resultant from collision-induced
dissociation to identify the amino acid structure of a peptide.

mRNA During the process of transcription the genes of the DNA are rewritten into a single-
stranded so called messenger ribonucleic acid (mRNA).

MS Mass spectrometry allows to determine the molecular weight of molecules.
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MudPIT Multi dimensional protein identi�cation technology.

PMF Peptide mass �ngerprinting takes advantage of the fact that a proteolytic enzyme such
as trypsin cleaves a protein (or amino acid sequence) at speci�c positions. �e enzyme

produces de�ned fragments of a protein, so to speak its �ngerprint, which allows for a

precise protein identi�cation.

ppm Parts per million—ameasure o�en used to denote the accuracy of a mass spectrometer

with which the mass of an ion has been determined.

precursor ion In tandem mass spectrometry, the precursor ion refers to the molecule
that is subjected to dissociation. Generally, the term is used for any ion before its

reaction e. g. with another molecule to form a particular product. �e precursor ion is

sometimes also called parent ion.

PTM �e term post-translational modi�cation summarizes all types of chemical modi�ca-

tions of a protein that occur a�er the protein has been assembled at the ribosomes.

Since PTMs may in�uence the structure and function of a protein, they constitute an

additional level of regulation in a cell.

quadrupole A quadrupole mass analyzer consists of four metal rods arranged in parallel.
Utilizing an applied voltage on the metal rods an electric �eld is established that allows

only those ions to pass the analyzer that have a certain m/z value.

RNA Ribonucleic acid is a macro molecule similar to DNA containing the sugar ribose
instead of deoxyribose. It plays an important role in protein synthesis.

SDS-page Polyacrylamide gel electrophoresis based on sodium dodecyl sulfate (SDS).

TIC �e total ion current denotes the sum of all intensities recorded across the full mass

range of a spectrum. Given a number of subsequently recorded mass spectra, the TIC

chromatogram provides an overview of the total intensities, and thereby the amounts

of analytes, detected over time.

TOF Time-of-�ight mass spectrometry denotes a type of analyzer. Masses are determined
by measuring the time an ionized particle takes until it hits a detector.

tRNA Type of RNA—transfer RNA is an amino acid carrying helper molecule involved in
translation. Each molecule is characterized by an anticodon sequence of 3 bases that

matches with a corresponding mRNA sequence.

XIC see EIC.
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XML �e extensible markup language is a standardized language to store hierarchically

structured data in a text �le. A mayor advantage of the format is its handling simplicity

due a range of available application programming interfaces.

zwitterion A molecule with at least two oppositely charged functional groups. Despite
positively as well as negatively charged atoms the overall molecule is electrically neutral.

Amino acids are awell-known example of twitterions in solids or polar solutions, e. g. in

water.
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