
Exzellenzcluster
Cognitive Interaction Technology

Kognitronik und Sensorik
Prof. Dr.-Ing. U. Rückert

Application-driven Exploration
of a Programmable Platform

for Wireless LAN

zur Erlangung des akademischen Grades eines

Doktor-Ingenieur (Dr.-Ing.)

der Techischen Fakultät
der Universität Bielefeld

genehmigte Dissertation

von

Dipl.-Inf. Hans-Peter Loeb

Referent: Prof. Dr.-Ing. Ulrich Rückert,
Universität Bielefeld

Koreferent: Prof. Luciano Lavagno, Ph.D.,
Politecnico di Torino

Tag der mündlichen Prüfung: 2. Februar 2012

München im August 2011

DISS KS / 04

ii

Abstract

Medium Access Control (MAC) plays a central role in communication devices for shared-
medium protocols commonly found in home networks such as Wireless LAN (WLAN). With
ongoing protocol evolution, this MAC layer has grown and still grows in complexity and
its requirements (e.g., real-time). It now poses a unique challenge to a system’s design. But
adaptability as required for such evolving and heterogeneous protocols cannot be provided
by today’s conventional, dedicated devices. New and disciplined approaches to the devel-
opment of flexible platforms are thus required that allow for trading off architectural features
in the light of tough market competition.

Consequently, we propose a novel universal MAC concept that promotes scalability, flex-
ibility, and ease-of-use. It is complemented by an application-driven methodology and
framework for productively modeling, exploring, and implementing efficient systems. This
framework is extended to address the complexity and the real-time requirements of MAC
protocols in a productive way. A fully-functional and executable system model of IEEE
802.11n Wireless LAN is presented as an example. The model drives architectural design
space exploration, resulting in indicative system cost estimates and a platform architecture
template. A software-based FPGA prototype is implemented that demonstrates architectural
concepts and re-uses the system model as device firmware. The resulting protocol-agnostic
system is a competitive platform for MAC systems that proves the capabilities of our com-
prehensive development flow.

iii

iv

Acknowledgement

I would like to take this opportunity and thank everyone who supported me during the ups
and downs of writing this dissertation.

Christian Sauer gave me the chance to start working on his team at Infineon back in 2006.
Ever since, he has spent countless hours supervising my work, helping me over obstacles,
and proofreading. He has been a great mentor, team leader, and colleague. Thank you!

I would also like to thank my supervisors Professor Rückert, then of the University of
Paderborn, and Professor Lavagno, of the Politecnico di Torino, for taking interest in my (at
times, extensive) work. They always found the time to look after my progress and to give
me academic counsel.

I extend my gratitude to my students Rafael Zuralski (Diplom), Jean Thomas (Diplom),
Cunhua Xue (M.Sc.), and Dileesh Jostin (Intern). Especially without the help of Rafael
Zuralski, who spent endless and late hours at the office working on the FPGA, the successful
completion of the WLAN demo would not have been possible.

The collaborations with the University of Paderborn, TU München, and University of Dort-
mund (Oliver Hoffmann) were fruitful and important for my work. I am very grateful to
Christian Liss along with the research group of Professor Rückert, who provided the FPGA
prototyping system and invaluable and tireless support.

I especially acknowledge the firm support that I enjoyed at Infineon and later at Lantiq:
Friedrich Geissler, my superior, who always had an open door for me, and Andreas Foglar,
who ensured that my project could be completed. Charles Bry and Matthias Gries, who also
helped proofreading this thesis. My colleagues including P. Kassel, G. Fenzl, A. Schmidt,
and F. Beckmann, who were open and helpful towards me at any time. And Erwin Lock, to
whom I am much obliged for his adept and patient technical help.

Last and not least, I would like to thank my dearest Rebekka for her endless patience and
support, and to direct a "Danke" to my family and friends who have always believed in me
and my work — in good and in bad times. You know who you are.

v

vi

Contents

1 Introduction 1
1.1 Home Networking Protocols . 3
1.2 Today’s Home Networking Devices . 5
1.3 Development and Exploration of Home Networking Platforms 7
1.4 The Promise of a Universal MAC Approach . 8
1.5 Research Objectives . 9
1.6 Outline – Application-driven Development of a WLAN Platform 10

2 Wireless LAN Domain Analysis 11
2.1 Wireless LAN Fundamentals . 11
2.2 Current and Future WLAN Systems . 17
2.3 Relevant Device Configurations and Features 26
2.4 Chapter Conclusion . 28

3 IEEE 802.11 WLAN Reference Application 29
3.1 Modeling and Models of Wireless Protocols . 29
3.2 Modeling with Click . 31
3.3 WLAN Model . 34
3.4 System Benchmark Scenarios . 43
3.5 Model Verification and Characteristics . 44
3.6 Chapter Conclusion . 45

4 Application Analysis 47
4.1 Timing Requirements of Wireless Protocols . 47
4.2 WLAN Application Requirements . 50
4.3 Application Characteristics . 55
4.4 Chapter Conclusion . 56

5 SystemC-based Evaluation of Programmable Platforms 59
5.1 Programmable Platforms . 59
5.2 Platform Evaluation, Exploration, and Implementation 62
5.3 Modeling and Mapping . 67
5.4 Performance Exploration with Automated Feedback 70
5.5 Memory Exploration in SystemClick . 78
5.6 Quality of Results . 87
5.7 Chapter Conclusion . 94

6 Platform Exploration 97
6.1 Design Space and Architectural Baseline . 97
6.2 Baseline Performance . 99
6.3 Core Type and SW Optimizations . 104
6.4 Multiprocessor Partitioning and Scheduling . 108

vii

Contents

6.5 Heterogeneous Memory Hierarchy . 115
6.6 Hard- and Software Extensions . 124
6.7 System Communication . 129
6.8 Proposed wilaNOVA Platform Instances . 132
6.9 Chapter Conclusion . 140

7 IEEE 802.11n WLAN Prototype 143
7.1 wilaNOVA Prototype System Realization . 144
7.2 Demonstrator Setup . 147
7.3 Results and Performance . 148
7.4 Discussion . 151
7.5 Chapter Conclusion . 154

8 Thesis Conclusion 155
8.1 Methodology and Tools . 155
8.2 Wireless LAN Benchmark . 157
8.3 MAC Architecture Exploration and Prototypical Deployment 158
8.4 Towards a Universal MAC . 159
8.5 Directions of Future Research . 161

Acronyms 163

List of Figures 167

List of Tables 169

Author’s Publications 171

Bibliography 173

viii

1 Introduction

Ever since the broad adoption of the Internet, online and multimedia applications have
evolved constantly and become ubiquitous in our homes. Applications range from web
browsing to television (IP-TV), telephony (Voice-over-IP, VOIP), and online gaming. At the
same time, the household itself has become connected. Home networks distribute data and
services, e.g., from DSL lines to terminals such as phones and computers. Devices inside the
house are connected to each other, such as media centers and gaming consoles. This trend
is bound to increase, as devices controlling power consumption amount to a smart grid, or
network convergence progresses.

This evolution towards comprehensive connectivity puts increasing requirements on home
networks and on the devices (Network Nodes) it consists of. Key concerns include:

• Throughput and efficiency – The amount of data that can be transported over a (wireless)
link is limited. Especially high-quality videos and large file transfers are demanding.
Thus, efficient use of bandwidth is vital.

• Quality-of-Service (QoS) – Guarantees a level of service, i.e., throughput, latency, and
reliability that is robust and sufficient for sensitive applications such as video and
telephony. QoS requires precise scheduling inside the network and its nodes.

• Security and usability – In open networks, traffic must be encrypted and securely authen-
ticated. Network setup must be easy in home networks, but advanced mechanisms
are needed, e.g., for centralized management in offices.

• Coexistence and reach – Existing infrastructure must be reused but other networks must
not be influenced. The range of networks is limited due to signal attenuation and other
impairments such as unfavorable room geometries and interference.

These concerns have fostered an enormous development of wireless and wireline communi-
cation techniques. As extra wiring is often not an option, the physical medium must be either
the air or reuse existing cables (electricity, television). In fact, such shared media often exhibit
similar adverse conditions that conflict with above-mentioned requirements:

• Shared and open – Wireless transmissions cannot be confined to the intended area of
use, or wired networks galvanically isolated from neighboring networks. Multiple
networks and interfering devices thus occupy the same medium.

• Dynamic and unreliable – Random or periodical interference and distortions cause chang-
ing medium conditions. Thus, communications are highly unreliable.

• Scarce and congested – Unlicensed frequency bands as commonly used in home networks
are scarce, e.g., in the 2.4 GHz range. Thus, multiple communication networks may
compete for access to the same medium.

1

1 Introduction

Evolution of Applications and Home Networks:

Transport Layer – 4
TCP UDP

Increasing

Requirements

• Google, YouTube, IP-TV, VoIP, Online Gaming, Multimedia, P2P, ...

• Network Convergence, Smart Grid, ...

Network Protocol Stack (OSI/ISO)

Network Layer – 3
Internet Protocol (IP)

TCP, UDP

Bandwidth

Robustness /

QoS

Wireless / Wireline

Medium

Sh d U li bl+

+
-

Data Link Layer - 2
Medium Access Control

(MAC)

Security

Dynamic

Shared Unreliable

Open

Congested

Usability

+

+

+

-

-

ScarceCoexistence

Physical Layer (PHY) – 1
Medium and Coding

Reach

Congested

Adverse Conditions

ScarceCoexistence

E l ti f C i ti T h iEvolution of Communication Techniques:
• Multiple Input/Multiple Output (MIMO), OFDM, QAM, UWB, SDR, ..

Figure 1.1 – The Media Access Control (MAC) challenge: Increasing requirements collide with
adverse effects posed by unreliable and limited communication media. This has increased the
complexity of protocols at the central MAC layer significantly.

The antagonism of increasing requirements and adverse conditions leads to the Medium
Access Control (MAC) challenge of Figure 1.1. Networks are organized in layers according
to the OSI protocol stack. The physical (PHY) layer is responsible for transmission, e.g., over
a radio. It deploys advanced techniques such as MIMO and has evolved significantly to
cater increasing throughput requirements. Now, the MAC layer plays a central role in the
network stack: It must timely access, control, and configure the PHY in order to handle
unreliable transmissions and to compensate for diverse transmission errors. At the same
time, it must provide a reliable link service to the upper network layer, satisfying again
increasing requirements in terms of throughput, QoS, and coexistence.

The consequence is an ongoing evolution of MAC protocols, as indicated by Figure 1.2 for the
IEEE 802.11 Wireless LAN (WLAN) standard [86]. The number of pages specifying the MAC
layer – and hinting at its complexity – has increased by 6X since the introduction in 1999,
twice the increase of the scope of the standards document as a whole. In fact, standardization
is often still in progress during development (evolving protocols). At the same time, PHY
data rates have increased by 300X within 10 years. This does not only impact the MAC layer
directly, but also underpins its importance: Without adequate improvements at the MAC
layer, medium efficiency drops below 10 % to only 60 Mbit/s of effective throughput despite
the medium’s theoretical capacity of 600 Mbit/s.

Home networking devices often implement a whole family of such shared-medium protocols
and are subject to tight market competition, requiring fast time-to-market and solutions that
are cost-efficient in terms of chip area and development effort. The increase of complexity
and evolving protocols at the MAC layer thus have a great impact on the internal device
architecture and their development. Medium Access Controllers (MACs), i.e. the subsystems
implementing the MAC-layer protocol are deeply embedded into these systems. In the past,
MACs have often been neglected due to their low complexity (e.g., for Ethernet) and realized
in an ad-hoc fashion with inflexible architectures for chip area cost reasons. The radical
increase in complexity, however, has put MACs into the critical path of the development

2

1.1 Home Networking Protocols

0

250

500

750

1000

1250

1500

1750

19
99 a b g i e

20
07 n

MAC

PHY

Total

(a) Number of pages specifying the IEEE
802.11 standard [86] for different versions

1.5 6
20 30

230

450

700

2 11
54 54

300

600

1000

0

200

400

600

800

1000
MAC (Legacy/1999)

MAC

PHY

(b) Throughput (Mbit/s) at the MAC and PHY
layer with/without MAC optimizations

Figure 1.2 – Evolution of the Wireless LAN standard: The complexity especially of the MAC
layer has increased as indicated by its specification (a), also to improve channel efficiency in the
face of higher capacities at the PHY layer (b).

process and can lead to inefficient implementations. If protocol features are not completely
understood or evolve during development, inflexible systems may be rendered useless,
necessitating costly re-designs.

Thus, three aspects must be considered to develop new and competitive devices for evolving
home-networking protocols in a productive way: (1) Enable a better understanding of
protocol applications and requirements despite the complexity of their descriptions and
system functions. (2) Address shortcomings of existing, inflexible architectures and exploit
similarities of related protocols. (3) Improve on prevailing ad-hoc development methods.
These aspects are further introduced in the following and will lead to a unified concept
(Sec. 1.4), the objectives of this thesis (Sec. 1.5), and the thesis outline (Sec. 1.6).

1.1 Home Networking Protocols

The MAC layer in networking protocols provides a logical communication channel for
the reliable exchange of Protocol Data Units (PDUs) or frames. It comprises addressing
and channel access schemes that enable multiple network nodes to communicate within a
multi-point network. As in other networking applications, the internal function comprises
concurrent, dataflow-like processing of frames and their protocol headers. However, the
system function – and with it the protocol description – has recently become much more
complex, especially for shared media. Thus, such protocols are very difficult to understand
and implement, and a new approach is needed to master this challenge.

Amongst the multitude of shared-medium home networking protocols, IEEE 802.11 Wireless
LAN [86] has become a common and widely used standard. An emerging protocol is G.hn,
which is claimed to support “every wire in the home” [81, 174] including, e.g., power lines.
Other, short-range wireless communications are Ultra-Wideband (UWB) above 6 GHz (e.g.,
Wireless USB) or line-of-sight transmissions at 60 GHz. Strong similarities exist between

3

1 Introduction

these protocols, as they all exhibit the properties outlined in the preceding section. Similar-
ities have also been discussed in [128, 207]. In fact, the most recent IEEE 802.11n version
of WLAN [89] is especially demanding in terms of complexity and dynamic behavior [234],
and its throughput and timing requirements are similar to other protocols such as G.hn (see
also Tab. 1.1 on page 8). Consequently, we regard Wireless LAN as a demanding and repre-
sentative shared-medium MAC protocol and hence use it as our design driver throughout
this thesis.

The WLAN protocol has characteristics that are typical for shared-medium protocols and
that make them special. Due to the shared medium (the air), transmissions work in half-
duplex mode only. The medium is highly unreliable due to reflections, dynamically changing
environments (e.g., moving objects and stations), and interference with other wireless tech-
nologies. WLAN MACs consequently rely on precise timing in the microsecond range to
detect and repair transmission errors and distinguish priorities among participants of the
network. WLAN follows a channel access scheme called Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA). It avoids collisions (e.g., by reservation timers) rather than
recover from them, as collisions cannot be detected during transmissions (unlike Ethernet).
Since the medium is unreliable and its quality is subject to variations, WLAN stacks spend
considerably more time with exchanging station state than protocols for wired networks.
This has led to the definition of diverse frame formats and functions for data transfers,
control, and management of the network. Efforts to increase channel utilization have fur-
thermore added sophisticated functions, e.g., for frame aggregation.

STA

AP

RTS

CTS

Data frame

ACK

SIFS SIFS SIFSDIFS & backoff

time

Figure 1.3 – Frame exchange sequence in IEEE 802.11 Wireless LAN, imposing tight real-time
response time requirements, e.g., of SIFS = 16 µs on the networking device.

A basic frame exchange is shown in Figure 1.3. Assuming the network nodes, i.e., the Access
Point (AP) and a client Station (STA) are synchronized, a channel reservation (Request-to-
Send, RTS) is transmitted after a randomized back-off period. If no collision occurred, the
AP signals Clear-to-Send (CTS) after a defined Short Inter-Frame Space (SIFS) of only 16 µs.
Once the channel is reserved, the data frame is transmitted. After the AP has received and
verified the frame, an Acknowledgment (ACK) is sent back to the sender. The WLAN protocol
is further introduced in Chapter 2.

Given the complexity of the WLAN protocol and its sophisticated functionality under real-
time requirements, a major problem arises from the standard document itself: it is in textual
form, neither executable nor unambiguous, and covers a wide range of configuration options.
It thus is tedious to understand, and capturing protocol knowledge is nearly impossible for
non-experts (cf. Fig. 1.2a). The impact of features on required performance, implementation
complexity, and architecture is not clear. Since the computational complexity of functions
is not known, real-time constraints are difficult to verify. This makes it difficult to develop
and explore architectures and to assess their dimensioning. Hence, a systematic approach is
needed that puts the protocol (application) into focus and relies on an executable benchmark
and associated reference configurations.

4

1.2 Today’s Home Networking Devices

MAC

PHY

Network
- on -
Chip

Gateway/Host
Processor

Cluster

SD / DDR

RAM

Flash

G.hn, Powerline, SmartGrid,

UWB, Optical

WAN
DSL, PON, Cable

Femto / WWAN
UMTS, LTE

(Wireless) USB,

eSATA

Memory-
Controller

MAC

PHY

MAC

PHY

MAC

PHY

MAC

PHY

Ethernet Phone
DECT / FXS

MAC

MAC

MAC

MAC

MAC

PHY

MAC

PHY

BBP

MAC

AFE/

RF

Wireless LAN

Accelerators:

VoIP, TCP,

Crypto, ...

MAC

MACMAC

PCIe,

legacy

interfaces

Device and Control
Interfaces

In-house Networks

External Memory

On-chip

Memory
Ethernet-based Switching

Figure 1.4 – A residential gateway connects in-house networks with the Internet and provides,
e.g., telephony services. The (exemplary) architecture shown comprises processors, interconnect,
and a host of IO interfaces, most of which include MAC functions.

In addition to ongoing standard evolution during development, recent protocol versions
have introduced features that are mutually exclusive or overlapping, and their precise inter-
working may only become apparent during development or in the field. This necessitates
late changes and updates. The consequence is that flexible device architectures are required.
In fact, the diversity of functions may even require a programmable solution.

Worsening spectral congestion, e.g., in the 2.4 GHz bands, will soon necessitate increas-
ingly intelligent and cognitive devices [97]. These devices may dynamically select the best
available network and protocol to utilize even small gaps in the spectrum. At the PHY
layer, this has led to Software-Defined Radios (SDRs) [163, 192]. SDRs perform all signal
processing in software (SW), only relying on a minimal set of hardware (HW) components
for analog/digital conversion and radio transmission. They can be programmed to support
multiple communication standards in the same device. Thus, these efforts will have to be
complemented by highly flexible MAC architectures [172].

1.2 Today’s Home Networking Devices

A multitude of communication standards and thus a heterogeneous landscape of MAC
protocols is found in Customer Premises Equipment (CPE), i.e., in the devices of the home
network. The central device is the Residential Gateway (RG). It connects to the Internet
through a Wide-Area Network (WAN) such as DSL or wirelessly (e.g., LTE). Inside the house,
the RG distributes services over short-range Local Area Networks (LANs). Especially WLAN
has replaced cable-based Ethernet and become the de-facto standard. Emerging protocol
include G.hn, Powerline Communications (PLC), and UWB. DECT is increasingly supported
for in-house telephony. In addition, RGs are becoming increasingly multi-functional, e.g.,
offering network storage, telephony, and firewalling.

5

1 Introduction

This heterogeneity is reflected in the internal architecture of today’s RGs, as exemplarily
shown in Figure 1.4. RGs are complex embedded systems, that are increasingly integrated
to a single Systems-on-Chip (SoC). They comprises a large number of distinct, dedicated
network interfaces. All building blocks are connected via on-chip interconnect such as a
Network-on-Chip (NoC). A processor cluster performs management services and host functions
such as running interface drivers. It is aided by accelerators, e.g., for TCP offloading. The
components of an interface are shown in greater detail for WLAN. They comprise the Medium
Access Controller (MAC), which connects to the rest of the system, and the Baseband Processor
(BBP) implementing the digital part of the PHY layer. The analog Radio Frequency (RF) parts
may be off-chip.

All communication interfaces comprise MACs or MAC-like functions that can be of con-
siderable complexity and partly follow evolving protocols leveraging shared media. MACs
therefore account for a significant part of the system, which both imposes special require-
ments on them but also holds great potential: CPE devices (and thus their embedded MACs)
are subject to tight commercial constraints that demand for fast time-to-market, low devel-
opment cost, and small chip area. Their internal architectures must provide the flexibility
needed for complex or evolving protocols. At the same time, similarities exist in between
MAC protocols, e.g., in terms of medium access or encryption.

Today’s existing MACs, however, fail to address these market requirements, lack flexibility,
and do not lend themselves to the exploitation of similarities. Instead, the MACs of an
RG are a heterogeneous collection of closed, inflexible black-boxes that are buried deeply
in their respective interface implementations. Their architecture is specialized and most of
their function is hardwired. Their development follows low-level and ad hoc methods. This
has the following negative consequences:

• Redundant, monolithic systems – Synergies cannot be exploited and resources are repli-
cated redundantly, as the MAC subsystems are closed and their architecture is not
modular. Lack of suitable representations of both the MACs and the overall system
hinders architectural exploration, thus leading to non-optimal systems. Subsystem
integration is inefficient and bottlenecks arise, as function splits and, e.g., routing
between interfaces cannot be adjusted to system-level needs.

• Systems that are difficult to develop and maintain – Each MAC can only be programmed
– at best – in a specific, low-level language, and MACs strongly rely on dedicated
HW. The consequence is a multitude of different subsystems and associated tools
that are inflexible and hard to program. Thus, development itself is tedious and
time consuming, and the efforts for maintenance and adjustments to customer needs
increase. Depending on the number of units, such Non-Recurring Engineering (NRE)
costs may outweigh the chip-area cost advantage of more specialized systems. For
evolving protocols, inflexible devices can even make complete redesigns necessary.

• Dedicated systems – Protocols may have configuration options that vary, e.g., in di-
mensioning and throughput. Or devices may target different markets. But hardwired,
heterogeneous systems are difficult to scale, both in terms of performance and function,
leading to expensive redesigns. For the development of related protocols, previously
acquired knowledge and building blocks are lost or very difficult to reuse, leading to
increased development times.

Future MAC architectures must therefore be open, modular, and amendable to exploration.
Architectures should be centered around programmability and provide a common, easy-to-

6

1.3 Development and Exploration of Home Networking Platforms

use, and high-level programming model. This tackles the needs for adaptability and the
realization of complex, diverse functions, but also leads to more homogeneous architectures
that are easier to scale and reuse. As a consequence, careful hardware/software trade-offs
are needed to devise efficient configurations.

Efforts are being undertaken to take advantage of and manage heterogeneity of MAC func-
tions and physical media, but these tackle the problem above the MAC layer and still regard
the MAC as a black-box. For example, the Home Gigabit Access Project OMEGA [96] relies on
redundant network links to exploit the varying degrees of susceptibility to disturbances of
different media. Thus, a convergence layer above the media-dependent MACs is introduced
– the InterMAC. From an architectural point of view, however, it will only add to a system’s
heterogeneity, unless addressed in a uniform MAC approach.

1.3 Development and Exploration of Home Networking
Platforms

Developing an embedded system such as a residential gateway or even a WLAN MAC sub-
system is a complex undertaking under time-to-market and cost pressure. The increasing
role of software has led to Multiprocessor Systems-on-Chip (MP-SoCs) for packet process-
ing that combine multiple processors with application-specific accelerators, memories, and
interfaces. Such MP-SoCs are very difficult to develop [148], to program [117], and a careful
exploration of architectural trade-offs is vital for cost-efficient designs.

This is especially true for MAC development, where a seamless approach is missing and a
multitude of pointed, low-abstraction tools are often combined and deployed in an ad-hoc
fashion. And IEEE 802.11n WLAN is especially challenging in three regards:

• Application Complexity Challenge – Understanding the protocol standard and relevant
features is difficult and calls for a careful domain analysis. Since the system function
comprises concurrency, shared state, and precise timing, a capable and comprehensive
modeling approach is needed. In addition, software optimization and debugging gain
importance, necessitating means for performance feedback and analysis. Complex
application state entails the need for long test runs.

• Real-time Challenge – Precise timing in the low microsecond range is at least comparable
with related protocols and domains (see Tab. 1.1). Correct protocol behavior may
depend on the timing behavior of the platform, which is related to, e.g., memory
latencies. Thus, real-time constraints must be assessed comprehensively.

• Productivity Challenge – Market pressure necessitates fast development and good main-
tainability. This demands for productive design exploration and reuse on all levels.
A comprehensive and seamless methodology for hard- and software is needed that
offers appropriate abstractions and a path to implementation.

Recent efforts try to counter this development challenge ranging from design entry – modeling
– to implementation – deployment – at the Electronic System Level (ESL) [204]. Early
design exploration is considered a key aspect that promises fast turn-around of exploration
steps, thus finding better architectures earlier. It necessitates to predict performance and
dependencies from somewhat abstracted models in the face of dynamic workloads and
complex interactions with shared resources such as memories.

7

1 Introduction

Table 1.1 – Real-time software challenges.

Application / Domain Response Time

Production process in factory 1,000,000 µs
Automotive applications (airbag, ABS, motor control) 1,000 µs
Modern computerized tools (e.g., CNC) 125 µs
MAC layer: G.hn home networking, powerline medium [174] 20.5 µs
MAC layer: Energy-efficient Ethernet (EEE), low-power idle 16.5 µs
Medical imaging applications (PET, MRI, Ultrasound)[147, 146] 10 µs
MAC layer: IEEE 802.11n Wireless LAN 2 – 16 µs
Military applications (PATRIOT missile control) 0.001 – 0.1 µs

Exploring the MACs’ architectural design space, trade-offs between flexibility, complexity,
and cost arise. Complex, evolving protocols make programmable solutions indispensable.
But this contradicts the need to cut chip area cost. Hard-wired systems are well suited for
high-volume products and mature technology, or to address high-performance applications
(e.g., [142]). For customer premises equipment, however, a good design must find viable
trade-offs: identify performance bottlenecks that must be addressed by hardware (HW), but
otherwise resort to software (SW) wherever possible. Such architectures comprise special-
ized blocks and application-specific and general-purpose processors, all relying on adequate
interconnect and memory hierarchies, which unfolds several dimensions in the design space.
Important design decisions concern:

• HW/SW trade-offs – What must be in HW for performance or cost reasons, what can be
implemented in SW? What protocol-specific accelerators are needed? How many and
what kind of cores are required? Can concurrency be exploited?

• Memory Hierarchy – How much code and data memory is required? How are packets
buffered? Is fast on-chip memory needed? What is the performance impact?

• Function split, dimensioning, and cost – How is the MAC integrated? Where are expensive
functions located? What is the chip area and the cost of a given feature?

1.4 The Promise of a Universal MAC Approach

We strongly believe that a new and more uniform approach to home networking protocols
is overdue. This approach must address the concerns of the preceding sections: increas-
ingly complex and evolving protocols, implemented on diverse, non-scalable, and closed
architectures, and developed in an inefficient, ad-hoc fashion.

Hence, we propose a Universal MAC (UMAC) architecture and associated development
approach [3], which puts the protocol application into focus. This means that a good
understanding of the application domain is required, and that the application itself must be
captured in an executable benchmark that unambiguously describes its function and reveals
its performance requirements (e.g., realtime). Such a model can then be the basis for design
decisions and guide implementation. A UMAC should thus be developed following an
application-driven methodology such as [209] and complemented by a seamless flow that
is optimized for shared-medium MAC protocols. And, during the development process, the
following architectural principles must serve as guidelines towards a homogeneous and
open MAC platform:

8

1.5 Research Objectives

InterMAC

TMAC1 TMAC2 TMAC3

PHY1 PHY2 PHY3

...

...

(a) Dedicated, closed (T)MACs.

UMAC

UMAC UMAC UMAC

PHY1 PHY2 PHY3

UMAC

...

...

(b) Homogeneous UMAC.

Figure 1.5 – The promise of a Universal MAC (UMAC) architecture.

• Protocol-agnostic – avoid specialized functions and building blocks wherever possible
and identify common MAC features.

• Flexible – be able to quickly adjust to new protocols and features during development
and during operation on the field, relying on software where possible.

• Easy-to-use – support a unified and modular programming model that raises the
abstraction level and opens the platform for changes. Provide a seamless framework
for fast development and exploration. Prefer simple solutions.

• Scalable – be able to address differing requirements in terms of throughput, functions,
and their complexity. A modular approach facilitates reuse.

• Efficient – be competitive (in terms of chip area or cost) with traditional architectures
by allowing for HW/SW trade-offs based on systematic exploration.

The advantages of a universal architecture become apparent in Figure 1.5. Instead of a
heterogeneous system (a), a homogeneous node architecture (b) simplifies architecture de-
velopment and eases deployment and reuse. A single UMAC instance (indicated by the
dashed box) can even cater multiple PHYs at the same time. The potential of such an archi-
tecture – and also the productivity gain if complemented by a seamless approach – is further
discussed as a conclusion to this thesis (Chap. 8).

1.5 Research Objectives

The objective of this work is to productively develop a universal MAC platform. Applying
an established application-driven development methodology [209] to IEEE 802.11n WLAN
as a demanding representative for shared-medium protocols, we propose:

• A seamless framework for development and exploration of MAC systems that over-
comes limitations of existing frameworks. The most suitable framework and model-
ing language is identified and extended for productive use. The extended framework
provides precise performance feedback and appropriate abstractions for the memory
hierarchy, and is optimized for efficient early design exploration.

• A fully-functional IEEE 802.11n reference application and benchmark definition, which
do not exist so far. Based on a careful domain analysis, this benchmark is used for
quantification of dimensioning and features for a range of device configurations. It
drives architectural exploration and opens a path to implementation.

9

1 Introduction

• Exploration of an architectural MAC platform that is verified with a WLAN proto-
type. The solution is based on a protocol-agnostic, fully-programmable multiprocessor
platform and a modular streaming protocol for packet processing accelerators. MAC
instances are customized based on careful evaluation of HW/SW trade-offs and opti-
mization of the memory hierarchy. The prototype is amongst the first to comprise the
IEEE 802.11n MAC layer and the only known realization of fully-flexible control frame
processing in software.

1.6 Outline – Application-driven Development of a WLAN
Platform

We will develop an IEEE 802.11n WLAN system starting from initial protocol analysis to
prototypical deployment, following UMAC principles. This allows to assess the feasibil-
ity of a universal MAC platform and a systematic, productive development methodology.
We deploy an application-driven methodology [209] that will enable us to devise UMAC
instances for WLAN reference configurations and to develop a WLAN prototype:

1. Application domain analysis – identify and define representative and comparable system-
level benchmarks and realistic workloads. The analysis includes the identification of
common MAC functions, a discussion of current and future WLAN systems, and yields
a set of reference WLAN device configurations (Chapter 2).

2. Reference application development – implement a performance-indicative yet architec-
ture-independent reference application that captures essential system functions. A
modular and executable IEEE 802.11n system model is specified in a domain-specific
language that can be customized to the reference configurations (Chapter 3).

3. Architecture-independent profiling – derive architecture-independent properties by ana-
lyzing and profiling the reference application. The WLAN timing and the application’s
memory and performance requirements are precisely analyzed (Chapter 4).

4. Platform exploration – perform a search of the design space and define and customize the
resulting platform architecture. The exploration follows the Y-chart [109] in that archi-
tecture and application are kept separated as HW/SW trade-offs, mapping, scheduling,
and the memory hierarchy are optimized. Costs for reference configurations are de-
rived and compared to existing WLAN systems (Chapter 6).

5. Platform implementation and deployment. An FPGA-based WLAN prototype implements
an 802.11n access point, leveraging the exploration results and reusing the reference
application as device firmware (Chapter 7).

For development and exploration we leverage SystemClick [9] – a simulation-based explo-
ration and code generation framework. It is extended for productive use with MAC-layer
protocols during all development phases (Chap. 5). Chapter 8 concludes on the usefulness
and productivity of the chosen approach, the quality of the identified WLAN configurations,
the main architectural features, and the resulting potential of a UMAC.

10

2 Wireless LAN Domain Analysis

As step one of the application-driven methodology towards a flexible MAC platform we
perform an analysis of the application domain and its requirements. The analysis aims at
exposing key architectural questions and to identify and define representative and compa-
rable system-level benchmarks with realistic workloads. This will guide and reduce the
complexity for subsequent steps, as the system’s design space is narrowed down to a range
of indicative device configurations.

We have selected Wireless LAN (WLAN) as a demanding domain representative in terms
of complexity, throughput, performance requirements, and diversity of functions. The
WLAN protocol deals with the unreliability of the wireless channel while aiming to provide
efficient, reliable, and secure communications. This chapter gives a detailed overview of the
functionality at the Medium Access Control (MAC) layer, focusing on aspects that are relevant
for the architecture of a MAC implementation. The Physical (PHY) layer is discussed in terms
of its impact on higher layers.

Precise timing sets the MAC layer apart from well-known throughput-oriented protocols
such as Ethernet. A consequence are typical core MAC functions that are time-critical, and
a number of extended MAC functions that can impact system cost and performance. As
throughput increases in addition, this impacts system architectures and dimensioning of
today’s WLAN systems. We analyze approaches developed in academia and commercial
WLAN devices and also evaluate trends for future wireless systems.

2.1 Wireless LAN Fundamentals

The IEEE 802.11 standard [86] has been introduced in 1997, enabling wireless communication
in local area networks (LANs). Initially the standard allowed for basic wireless communi-
cation in the 2.4 GHz band at bandwidths of up to 2 Mbit/s. Standard additions have then
been made in order to increase throughput, security, and usability as is summarized in the
IEEE 802.11-2007 version of the standard [87]: The latest, IEEE 802.11n, was finalized in 2009
and offers (raw) data rates of up to 600 Mbit/s. These recent extensions are covered in the
excellent book of Perahia [184]. In summary:

• IEEE 802.11a – 54 Mbit/s in 5 GHz bands (1999)

• IEEE 802.11b/g – 5.5 Mbit/s, 11 Mbit/s (1999) and 54 Mbit/s in 2.4 GHz bands (2003)

• IEEE 802.11e – Quality-of-Service (QoS) support and packet bursting (2005) [88]

• IEEE 802.11i – Enhanced security, WPA/WPA2 (2004)

• IEEE 802.11n – High Throughput (HT) using MIMO and aggregation [89]

• IEEE 802.11o-z – Planned amendments (discussed in Sec. 2.2.4 or, e.g., in [79]).

11

2 Wireless LAN Domain Analysis

This section describes the MAC layer and parts of the PHY layer, focusing on aspects that
are performance relevant and thus impact system architecture. The basic components of
an infrastructure Wireless LAN include Stations (STA) that communicate over the wireless
medium with a central Access Point (AP), forming a Basic Service Set (BSS). The access point,
in turn, is connected to a distribution system, e.g., to an Ethernet or the Internet. Alternatively,
stations can communicate directly with each other or form a meshed network. We recog-
nize the diversity of functionality that must be supported in terms of data transmission,
management, and medium control:

• Data frames can be aggregated, fragmented, transferred in bursts, encrypted, encapsu-
lated with additional protocol headers, or stripped from protocol information.

• Control frames coordinate the medium reservation for atomic transfers and acknowl-
edgments for data frames in a fine-grained manner.

• Management frames concern association with APs to gain network access, periodical
monitoring of network properties, and extended reservation of the medium.

The coordination of shared medium access is based on randomized algorithms,where free air
time is monitored and transmission opportunities are randomly selected. Priorities between
traffic classes affect the waiting times for transmission after detecting a free medium, enabling
QoS. Advanced packet aggregation mechanisms increase efficiency. All these features entail
strict timing requirements in the low microsecond range.

2.1.1 Medium Access

Because of the shared nature of the wireless medium, access must be precisely timed and co-
ordinated between stations1. If multiple stations transmit at the same time, a collision occurs.
Importantly, typical radios are unable to detect collisions while transmitting. Thus, IEEE
802.11 uses a distributed Carrier-Sense-Multiple-Access with Collision Avoidance (CSMA/CA)
algorithm, namely the Distributed Coordination Function (DCF). Its operation is shown in
Figure 2.1. Timing values for recent standard versions are 9 µs for slot time, 16 µs for Short
Interframe Space (SIFS), and 34 µs for DCF Inter-Frame Space (DIFS).

Figure 2.1 – Basic medium access method using the contention window [87].

DCF requires monitoring of the channel status for a DIFS interval prior to transmission.
Typically, channel status is indicated by a Clear-Channel-Assessment (CCA). If the channel is
found busy, transmission is deferred. If multiple stations contend for the channel at the same
time, they will simultaneously find that the channel is released and try to seize it. Collisions

1Unless special properties of the access point are relevant, the terms station or client is used interchangeably for
any member of the wireless network including the AP.

12

2.1 Wireless LAN Fundamentals

are the consequence. DCF uses random backoff to avoid such collisions, forcing stations
to defer channel access throughout an extra period: the contention window. The precise
backoff time for each station is determined by:

Backofftime = random() × aSlotTime ≤ contentionWindowSize

Now collisions are restricted to stations picking the same transmission slot. In this case,
the contention window is increased in steps to render repeated colliding accesses less likely.
More advanced access mechanisms include Enhanced Distributed Channel Access (EDCA),
see Section 2.1.3, HCF controlled channel access (HCCA), and the contention-free access
method Point Coordination Function (PCF) relying on a centralized controller.

2.1.2 Basic Protocol Operation

Due to the unreliability of the medium, DCF includes a positive acknowledgment scheme. If
a frame is successfully received by the destination, an Acknowledgment (ACK) control frame
is sent to notify the source about the successful reception. Fragmentation of frames reduces
the effect of bit errors due to channel distortions.

Additional protection is provided by a virtual carrier sense mechanism based on the Network
Allocation Vector (NAV). This allows to (virtually) reserve the medium for sequences of
packets ahead of the actual transmission. For this, short Request-to-send (RTS) and Clear-to-
send (CTS) control frames are exchanged between source and destination stations during the
contention period, also mitigating the effect of collisions by reducing wasted channel time.
RTS/CTS furthermore addresses the Hidden-Node Problem, where two stations are within
reach of an AP but out of range with respect to each other.

Figure 2.2 – Frame exchange sequence in IEEE 802.11 Wireless LAN. The Network Allocation
Vector (NAV) is also shown [87].

Figure 2.2 shows an atomic frame transfer with medium reservation. The STA has gained
access and sends an RTS to the AP. The AP replies after a defined interval (SIFS period) with
CTS. The STA then starts the data transfer after another SIFS period. At the end, the AP
confirms successful reception with an ACK frame, again after SIFS. This sequence is atomic.
The SIFS periods guarantee uninterrupted operation since randomized channel access by
other stations can only start after the longer DIFS period and a random backoff.

13

2 Wireless LAN Domain Analysis

2.1.3 Quality-of-Service

The 802.11e standard extensions [88] introduced QoS support, leading to increased protocol
complexity. The basic idea is to support four priorities called Access Categories (AC) with
associated queues and per-queue EDCA functions. Collisions can now also occur internally
in between ACs and will trigger the back-off procedure as well. A fixed offset delay period
prior to the contention window, called Arbitrary Inter-Frame Space (AIFS), is added for lower
priorities. This effectively guarantees better access times for high-priority traffic. In addition,
the channel may be reserved by stations for extended periods by setting the NAV counter
accordingly. These Transmission Opportunities (TXOP) reduce channel access overhead as no
subsequent contention procedure is necessary. Furthermore, resource utilization for high-
speed stations is improved, because these stations can now fit multiple frames into one
TXOP. If a TXOP is assigned but no packets are left for transmission, a CF-END frame may
indicate an immediate end of the TXOP (see Fig. 2.3).

C
F
-E

n
d

N
o
m

in
a
l
e
n
d
 o

f

T
X

O
P

EDCA Channel
Access

nav-set sequence initiator -sequence

SIFS SIFS

TXOP Duration

Figure 2.3 – A Transmission Opportunity (TXOP) in IEEE 802.11e/n [87].

2.1.4 High Throughput and Aggregation

The main objective of 802.11n is to increase effectively usable throughput. Increasing PHY
raw data rates alone, however, is not sufficient: Channel efficiency is below 20 % for data
rates above 500 Mbit/s due to significant overhead from frame encapsulation, inter-frame
spaces, contention windows, and control frames. This is addressed by:

• Block Acknowledgments (BlockACKs) and TXOPs, reducing access/control overhead.

• Packet aggregation, reducing access and encapsulation overhead at MAC and PHY.

Control frames occupy a significant share of medium time because inter-frame spaces need
to be respected in addition to the actual transmission. Furthermore, control frames are
typically sent at lower data rates for stability and compatibility reasons. Thus, BlockACK
frames are introduced that acknowledge multiple data frames with a single control frame
(Fig. 2.4). They can either be requested explicitly by a BlockACK Request (BAR), or implicitly
along with aggregated frames. Data frames within TXOPs are sent back-to-back with only a
SIFS time in between. These measures increase throughput but also complexity: Both sender
and receiver must keep track of frames for re-transmission or for re-ordering. Also, TXOPs
need to be planned and packets need to be scheduled accordingly.

Small packets incur a much higher encapsulation overhead than larger packets. At the
MAC layer, every packet has a WLAN header and a CRC checksum and entails inter-frame
gaps and acknowledgments. At the PHY layer, significant per-packet overhead is caused by
preamble and PLC headers (cf. Sec. 2.1.5). This overhead is 8 % at 54 Mbit/s but increases to

14

2.1 Wireless LAN Fundamentals

Ack Policy = Block Ack

Data Block Block Ack

Exchange

Q
o
S

 D
a
ta

Q
o
S

 D
a
ta

Q
o
S

 D
a
ta

Q
o
S

 D
a
ta

B
lo

c
k
A

c
k
R

e
q

B
lo

c
k
A

c
k

Frame-exchange

for NAV Protection

Originator

Recipient

NAV at

other STAs

Figure 2.4 – Multiple frames are acknowledged by a single immediate BlockACK [89].

73 % at 540 Mbit/s for 1500 Byte packets [184]. Thus, small frames are aggregated into larger
ones. 802.11n allows aggregation of up to 64 kB and 64 packets. For the sake of robustness
and efficiency, however, packets are aggregated in two stages:

• At the MAC layer into Aggregate MAC Service Data Units (A-MSDUs).

• At the PHY layer into Aggregate MAC Protocol Data Unit (A-MPDUs).

A-MSDUs are opaque to subsequent functions and share encapsulation such as CRC. Thus,
bit errors within A-MSDUs cannot be recovered. Subframes do not require a separate header.
Instead a 16 B subframe header is provided for de-aggregation and to recover destination
addresses at the receiver. As most MAC processing occurs per frame, A-MSDUs effectively
reduce the processing load. This comes at the expense of extra functions and the need for an
efficient aggregation strategy.

A-MPDUs also consist of subframes, but these are concatenated at the MAC/PHY interface.
A subframe header stores the length for de-aggregation and is protected by CRC (see Fig. 2.5).
The delimiter allows searching for subsequent subframes when a header was corrupted. A-
MPDU subframes are independent of each other. Consequently, damaged frames do not
affect other frames in the aggregate and the BlockACK mechanism must be used to keep
track of failed transmissions. For the MAC, PHY-layer aggregation is a major source of
complexity, as aggregates need to be planned and scheduled ahead of time in addition to
reordering and replaying of corrupted frames. Thus, typical systems only support a limited
number of A-MPDU streams.

2.1.5 Physical Layer

The physical (PHY) layer comprises the digital Baseband Processor (BBP) and the mixed-signal
AFE/RF radio front end. It is responsible for frequency coding and transmitting frames over
the air (see also Fig. 1.2b on page 3). This increase is due to advanced coding schemes
(especially Orthogonal Frequency-Division Multiplexing, OFDM) and the use of Multiple-
Input-Multiple-Output (MIMO) in 20 MHz and 40 MHz channels. Frame encapsulation in
802.11n PHYs depends on the High-Throughput (HT) operation mode, i.e., legacy (non-HT),

15

2 Wireless LAN Domain Analysis

A-MPDU subframe 1 A-MPDU subframe 2 … A-MPDU subframe n

Octets: variable Variable variable

Bits: B0 B3 B4 B15 B16 B23 B24 B31

Reserved MPDU length CRC Delimiter Signature MPDU Pad

Octets:
MPDU Delimiter

4
Variable 0-3

Figure 2.5 – A-MPDU aggregation in IEEE 802.11n [89].

HT-mixed, and HT-greenfield as shown in Figure 2.6. The preamble (STF/LTF in the figure)
is fixed and needed for synchronization. The signal field contains basic frame information
such as rate, length, and encoding. Depending on the number of spatial streams, additional
fields are needed. Data are transmitted in symbols of 3.2 µs each that are encoded with one
of 64 different Modulation and Coding Schemes (MCS).

L-STF L-LTF
L-

SIG

8µs 4µs8µs

Data

L-STF L-LTF
L-

SIG
HT-SIG

HT-
STF

HT-
LTF

Data

HT-GF-STF HT-LTF1 HT-SIG Data

Non-HT PPDU

HT-mixed format PPDU

HT-greenfield format PPDU

8µs 8µs 8µs

HT-
LTF

HT-
LTF

HT-
LTF

8µs 8µs 8µs4µs 4µs
Data HT-LTFs
4µs per LTF

Extension HT-LTFs
4µs per LTF

HT-
LTF

HT-
LTF

HT-
LTF

HT-
LTF

Data HT-LTFs
4µs per LTF

Extension HT-LTFs
4µs per LTF

SERVICE
16 bits

Scrambled
PSDU

6·NES

Tail bits
Pad
bits

Format of Data field
(non LDPC case only)

Figure 2.6 – PHY encapsulation for legacy, mixed, and greenfield formats [89].

The MAC-layer impact concerns timing (see Sec. 4.1), in-frame protocol fields, and fine-
grained PHY control. 802.11n introduces a HT-Control field into the WLAN header. It
is used for antenna selection, calibration, and to indicate sounding packets [184]. Spatial
diversity (MIMO) must be controlled by the MAC and includes proper selection of coding
and configuration for transmit beamforming. The performance impact of MIMO on the MAC
is limited. However, fast link adaptation and rate selection for throughput maximization
under QoS constraints have become a complex topic of research [38].

16

2.2 Current and Future WLAN Systems

2.2 Current and Future WLAN Systems

Following the goal towards a flexible and scalable MAC platform, we first analyze common
MAC operations in order to motivate function splits and architectural options. This anal-
ysis is kept as protocol agnostic as possible, such that it also applies to a generic UMAC
architecture. Then, related work from academia and state-of-the-art commercial systems is
evaluated. Trends and features are assessed that may influence future systems.

2.2.1 Core and Extended MAC Functions

Shared-medium MACs can cover a broad range of functionality, such as for WLAN in home
networks, or be of small scale and energy optimized, e.g., in Wireless Sensor Networks
(WSNs). Almost all such MACs have two things in common: Their operation is time-
critical, and they rely on a basic set of functions. These core functions are typically deeply
embedded and realized close to the PHY due to large communication delays with general-
purpose or host systems. We generalize the views of Nychis [172], who identified core
functions for SDR, and of Sauer [207]:

• Precise scheduling in the µs range is required for both time division (TDMA) and
contention-based medium access and for maximum performance.

• Carrier sense is used by contention-based protocols for synchronization. The ACK/nACK
protocol establishes a reliable communication link. The receiver acknowledges error-
free packets by using a sequence number or triggers retransmission.

• Back-off is related to precise scheduling in the context of randomized rescheduling of
transmission in a distributed scheme.

• Fast Packet Recognition and Classification is required to quickly detect incoming packets.
Classification according to packet types may be based on multiple bit fields (e.g.,
address, format, type) of the header.

• Frame integrity must be validated, e.g., with checksums or error-correcting codes.

• Dependent packets, i.e., the fast generation of response frames is critical especially in
high-performance, acknowledgment-based protocols or for channel reservation.

• Fine-grained radio control and access to physical layer information traditionally refers
to power and rate selection, but is becoming more critical and complex with advanced
MIMO implementations.

• Serializing, framing, scrambling is done by the PHY but may be aided by the MAC.

Specifically in the context of home-networking protocols, additional requirements such
as high throughput, security, and QoS arise and entail more complex functions. These
extended functions can be partly realized outside the MAC on a host or general-purpose
system. But since these functions impact the performance and cost of the composite system,
their consideration must be included in our analysis:

• Packet buffering and interfacing with multiple queues for QoS, aggregation, and power-
saving schedules. Depending on the function split, queues and packet storage may be
partly realized on the host and in external memory for cost reasons.

• Dynamic memory management for packets and their payloads, e.g., in segments.

17

2 Wireless LAN Domain Analysis

• Frame encapsulation and addressing that, e.g., necessitate header translation.

• Network integrity based on cryptography (AES, WPA). In addition, WLAN includes
measures to update crypto keys and to detect network attacks.

• QoS classification and scheduling to determine, e.g., user priorities and access categories
and to prioritize traffic on the medium.

• Aggregation and flow-control, requiring advanced packet buffers that support selective
retransmission, reordering, and keeping track of packets. Flow control, e.g., based on
BlockACKs is demanding if directly dependent on received packets.

• Dynamic planning. Even without a central coordinator, network performance can be
increased if channel reservation is properly planned, e.g., by adjusting TXOP duration
and A-MPDU lengths dynamically in WLAN.

• Configuration and management. Concerns the identity of the device as determined during
initialization, the negotiated link parameters, and user interaction. Access to internal
state and reconfiguration is needed.

2.2.2 Device Types, Architectures, and Dimensioning

Depending on the device type (AP, station Network Interface Card (NIC)) and intended deploy-
ment (e.g., low-cost, integrated vs. standalone) different function splits between the MAC
and the host system are possible. Some extended functions may be time critical and thus
must be integrated to the core MAC. Examples include real-time flow-control, fine-grained
RF control, and QoS. Also, extended functions can impose a high computational load on the
host. We identify three MAC categories:

• Lite-MACs – are systems that implement only a minimum set of time-critical functions
in the MAC and rely on a host for running extended functions in a SW driver. Open-
source drivers exist for popular chipsets [93, 139]. Lite-MACs are typically found in
NICs that handle only a single connection, or in very cost-optimized APs.

• Full-MACs – In integrated systems, the total performance and cost are important. Full-
MACs thus implement all performance-impacting functions in the MAC. They may
still rely on a host processor, e.g., for high-level yet low-performance management
functions and to buffer packet data externally.

• Standalone MACs – Similar to Full-MACs, a Standalone MAC performs all functions in-
cluding packet transfers and high-level management. Additional memory is required
to buffer packets and to store application code.

Table 2.1 – Function splits and device types.

Lite-MAC Full-MAC Standalone

Core Functions yes yes yes
Extended Functions QoS/(crypto) performance-relevant only yes
High-level Management no no yes
Dedicated Memory-IF no* optional yes
Load on Host yes minimal n.a.

*) needed only if the host interface is very slow or has a large latency

18

2.2 Current and Future WLAN Systems

Current WLAN devices differ in their PHY configuration, impacting system dimensioning.
With the number of supported spatial RX/TX streams (MIMO) the throughput is increased as
summarized in Table 2.2. MIMO also allows to operate multiple independent MACs in the
same device, e.g., to keep legacy devices from slowing down the network. Having multiple
independent MACs improves the effective throughput, as the relative per-MAC overhead
is lower with reduced channel capacity. Not considered here are other combinations of RX
and TX streams that are used to increase reliability and reach.

Table 2.2 – Configurations of the PHY layer in IEEE 802.11n (40 MHz channel).

PHY Config. Eff. Utilization* / Capacity Purpose / Deployment

1x1 120 / 150 Mbit/s Low-end devices, integrates with other 802.11n equipment
2x2 230 / 300 Mbit/s State-of-the-art in 802.11n equipment
3x3 340 / 450 Mbit/s Next generation Access Points
4x4 420 / 600 Mbit/s High-end enterprise-level equipment
3x3 + 1x1 < 450 / 600 Mbit/s Multi-MAC, independent operation, e.g., 802.11n + legacy
2x2 + 2x2 460 / 600 Mbit/s Multi-MAC, independent Access Points
4x 1x1 480 / 600 Mbit/s Time and space multiplexing maximizes efficiency

*) effective utilization of the channel with full 802.11n optimizations, according to [184]

2.2.3 State of the Art

A flexible and scalable architectural MAC platform is required for evolving standards in
home networking technology such as WLAN. Keeping the system protocol-agnostic and
homogeneous allows reuse for related protocols. Thus, we favor a fully programmable,
platform-based approach that systematically maps functions to dedicated hardware (HW)
only if necessary for performance and cost reasons. Keeping complex operations such as
control frame processing and channel access in software (SW) facilitates development and
shortens time to market. Ease of use is increased by a high-level programming model and a
seamless development flow. A systematic exploration of the full MAC function in indicative
networking scenarios (see Sec. 3.4) is essential for efficient solutions and to estimate device
costs. Functions must be split flexibly, depending on commercial and practical reasons.
Finally, flexible MACs are interesting for SDRs.

From this perspective, we review the state of the art in flexible WLAN MAC architectures
and systems from both industry and academia. Traditionally focusing on the PHY layer, the
interest in fully-programmable MACs has been fostered only recently in SDR contexts and
by evolving and more complex protocols.

Academic Approaches

To the best of our knowledge, no IEEE 802.11n MAC-layer architecture description is publicly
available. Only few high-level models exist (see Sec. 3.1.3) that are restricted to facets such
as frame aggregation and lack a path to implementation. Thus, the search is restricted to
flexibility found in legacy or generic WLAN MACs and the applicability to related protocols.
Systematic exploration and programming models are highlighted.

19

2 Wireless LAN Domain Analysis

Flexibility at/above the MAC Layer Motivations in academia for seeking flexibility in-
clude protocol experimentation and cross-layer optimization. More recently, the use of
heterogeneous network resources and scalability have also encouraged flexibility. The fol-
lowing approaches view the core MAC as a blackbox and would thus benefit themselves
from an open and homogeneous architecture that can be programmed in a uniform way.

For example, flexibility is added to commercial Lite-MACs by bypassing inaccessible core
MAC functions in the driver for practical reasons. The MadWifi driver is a popular choice
due to its good availability. SoftMAC [169] supports different frame formats and control
over transmission timing. MadMAC and FreeMAC [219] experiment with channel access
and extensions to 802.11. FlexMAC [144] bypasses firmware functions to maximize software
control. MadWifi can also be programmed using Click [131]. All these approaches fail at
real-time response generation, and channel access can only be changed indirectly. Among
the few who actually change the MAC is Grunenberger [72], who has access to the internal
firmware and implements a modified DCF on off-the-shelf Intel IPW2915 NICs.

Efforts to add flexibility by establishing a layer 2.5 above the MAC layer are gaining attention
in home networks. They aim to cope with network heterogeneity and to establish QoS over
diverse links. Efforts include [247] for WLAN, and Multi-MAC [51], a cognitive radio based
on SoftMAC implementing a set of protocols. The OMEGA project introduces an InterMAC
layer [156] to handle a range of physical devices. Hoffman [80] maps multiple wireless
protocols to a large NoC for scalability and QoS reasons.

Traditional MAC Architectures The core MAC architecture is traditionally hardware
(HW) dominated for performance, cost, or power reasons. A common function split par-
titions the MAC into a Low-MAC HW accelerator, and a High-MAC running as software
(SW) on a processor. The Low-MAC comprises processing-intensive data-flow operations
and also real-time response generation, channel access, packet buffering, and aggregation
functions. This results in limited flexibility.

Many authors (and most commercial WLAN systems) follow this usual HW/SW split but
do not quantitatively justify their design decision. These include:

• Bernasconi [24] presents a straightforward implementation of 802.11 on a DSP and
maps time-critical functions to FPGA hardware. Similarly, Fujisawa [62] designs an
ASIC following the usual split and uses an 80 MHz CPU for the High-MAC.

• Hannikainen [75] starts with a SW description of the MAC layer in SDL. However, the
use of the SDL runtime makes it impossible to realize Low-MAC in SW and necessitates
a dedicated HW accelerator.

• Even commercial prototyping platforms for WLAN such as Signalion’s SORBAS en-
courage the use of dedicated HW for some core functions [225]. Still, the architecture
proved suitable to evaluate MAC protocol extensions [232].

Few publications actually analyze performance requirements of real-time functions during
architecture design quantitatively and implement these in dedicated HW, including:

• Panic [179] starts with an SDL simulation model and profile generated C-code to-
gether with the SDL runtime. Even with optimizations he observes excessively high
performance requirements for 802.11a and therefore discards a fully-flexible imple-
mentation. Further quantitative insights that would support the function split of the
resulting system are not provided.

20

2.2 Current and Future WLAN Systems

• Samadi [203] states that 4 µs are available for MAC response generation (unlike our
findings of Sec. 4.1.1), and control frames and channel access must thus be in HW.
RTOSes are evaluated for the High-MAC but discarded due to their large overhead.

• Masselos [152] systematically explores the MAC layer for the related HYPERLAN/2
protocol, but concludes that real-time processing must be mapped to dedicated HW.

• Power and performance constraints for 802.15.3 MACs motivate Dietterle [49] to fol-
low the usual split. Expensive and time-critical tasks are handled by an accelerator
integrated on-chip with a 32-bit processor to reduce the operating clock frequency.

Others focus on HW implementations of low protocol functions only. An efficient imple-
mentation of 802.11b is presented in [248]. Haroud [77] uses SDL for development and
verification of an accelerator for UWB. Complete packet processing pipelines can be synthe-
sized [224], but this approach ignores the complexity of advanced MACs. Finally, dedicated
HW can be used to achieve specialized functions, e.g., in real-time Ethernet [142].

Flexible MAC architectures Recently, flexible MACs have attracted more interest [172,
78, 229]. In addition, many prototyping and SDR platforms exist [108, 98, 78]. Efforts to
implement basic real-time functions of the WLAN MAC layer flexibly have often failed in
the past due to inefficient runtime environments, e.g., for SDL [179, 75], the use of RTOSes
and interrupts, or communication latencies:

• Shono [220] implements a basic 802.11a MAC fully in SW on a PowerPC at 400 MHz. It
runs a VxWorks RTOS and is part of an SDR prototype with several physical modules
connected by a common bus. Features such as security and RTS/CTS frames are lacking,
and timing constraints are missed by one order of magnitude.

• A protocol similar to 802.11 is modeled in UML, and mappings to a scalable MP-SoC
platform are explored in [15]. Response frame generation in SW, however, fails to meet
low µs real-time budgets due to RTOS overhead.

• Based on the USRP platform for SDR, Dhar [47] implements response generation in
domain-specific language Click on the host system, but fails timing requirements due
to communication overhead.

More recently, truly flexible SW-based architectures have emerged. However, they handle
only basic protocol operation and partly rely on high-performance platforms.

• Lee [126] uses an application-specific SoC to implement a subset of 802.11b. The archi-
tecture is heterogeneous: A general-purpose core with caches is aided by a supplemental
processor generating real-time responses. The MAC cycle budget analysis of 5 µs is
pessimistic compared to our analysis (Sec. 4.1.1).

• Nychis [172] states response generation as a general problem in MAC architectures.
He addresses the problem of latency on the USRP platform by implementing core
functions close to the PHY in the GNU radio environment. GNU radio, however,
suffers from drawbacks regarding MAC development [47].

• Hedde [78] uses an FPGA to implement High-MAC functions based on the MadWifi
driver on a PowerPC running Linux. A dedicated Microblaze core performs real-time
operations. Requirements are met for basic response handling with a relaxed slot
time of 20 µs but, e.g., encryption is missing. The need for an optimized MAC/PHY
interface is highlighted that yields 10 µs for MAC processing.

21

2 Wireless LAN Domain Analysis

• Tan [229] meets real-time requirements for basic 802.11 frames in the SORA SDR
approach. He takes advantage of the high performance offered by a commodity
multi-core PC, dedicates a core to real-time processing, and optimizes communication
latencies with the RF hardware. In addition, prediction and pre-calculation are used
for timely generation of frames.

Flexibility can also be based on reconfigurable logic. Nabi [166] chooses the usual high-
/low function split, but proposes reconfiguration to adapt to different protocols on the fly.
Not especially tailored to WLAN MACs are efforts to map (Click) models directly onto
FPGAs [116, 201], or to build reconfigurable network processors [173] and NICs [215]. How-
ever, FPGAs have not made their way into commercial consumer electronics for cost and
power reasons and are thus no alternative to flexibility based on SW.

Programming Models and Modeling Languages Only few approaches to MAC develop-
ment offer a high-level programming model or leverage a modeling language (see Sec. 3.1).
However, these often fail to yield efficient solutions or target higher layers only:

• SDL – the widely distributed SDL model for 802.11a motivates, e.g., the work in [179,
75], but the results are inefficient due to the SDL runtime.

• UML – Arpinen [15] models a protocol similar to 802.11, but requires an RTOS and
does not meet real-time targets.

• GNU radio – efforts based on the USRP platform [47, 172] yield efficient implementa-
tions, but GNU radio has some drawbacks [47].

• Click – Existing efforts include a Madwifi driver implementation [131] and combina-
tions with GNU radio [47], but core and real-time MAC functions are not covered
successfully so far.

Commercial Systems

The 802.11n version of WLAN was finalized in 2009 and has now become the standard in
consumer home-networking devices. Commercial vendors of chipsets include Atheros [185,
206, 155], Broadcom [35], Marvell [149], Intel[93], Lantiq[121], Ralink [191] and many smaller
IP vendors such as Wipro [245], Metalink, and Redpine. Their focus is traditionally on the
PHY, which occupies a larger chip area than the MAC, and on the overall system. We observe
the following trends and architectural decisions:

• MIMO and advanced coding are increasingly important at the PHY layer, improving
throughput and robustness [184]. Devices range from low-cost or mobile 1x1, state-of-
the-art 2x2, and high-end 4x4 configurations (see Tab. 2.2). Dual-band (5 GHz) devices
benefit from less interference.

• Device integration of digital with mixed-signal parts and external interfaces (e.g., USB)
reduces cost, as feature size decreases [114]. Residential gateways often integrate
WLAN system as a sub-module.

• While Lite-MACs were common in NICs and low-cost APs, the interest in Full-MACs
is rising with more complex protocols in order to offload the host [191, 35]).

22

2.2 Current and Future WLAN Systems

• Dedicated memory interfaces are becoming more common, as throughput increases, low
access latencies are required for QoS reasons, and slow host interfaces such as USB
need to be compensated for.

However, also distinctive features of the MAC itself are gaining attention as new and more
complex protocol versions offer more possibilities. These protocol features have a strong
impact on the evolution of MAC architectures:

• QoS support enabling low latency applications by implementing admission control
such as Wi-Fi Multimedia (WMM). Advanced MAC schemes based on central coordi-
nators (PCF) or TDMA are only found as proprietary solutions (e.g., [149].

• Fast link adaption exploits the plethora of channel configuration options (channel se-
lection, coding, beam forming) to increase throughput and reliability. Support for
advanced features such as RDG, power saving, and TXOP continuation (see Sec. 2.1).

• High throughput by exploiting, e.g., aggregation. However, throughput differs only
marginally in current systems [237] under good channel conditions. Close to no
differences exist for security, as WPA2 based on AES-CCMP has become standard.

• Dimensioning in addition to throughput includes the number of supported clients,
BlockACK streams, and QoS categories. Multi-MAC operation (see Sec. 2.2.2) and
legacy modes increase usability.

Above features including complex scheduling, dynamic adaption, and advanced functions
require a programmable and real-time capable system. Reconfiguration for different pro-
tocols favors SW-based implementations, and together with dimensioning demand for a
careful exploration. However, little is known about architectures of commercial WLAN
MACs, their flexibility, and their development:

• Most available information, e.g., from product sheets [191] focuses on device configura-
tion and features. Publications such as [185, 206] are limited to high-level descriptions
of 802.11n MACs, but give quantitative chip area results (see Sec. 6.8.4).

• From analyzing feature lists and block diagrams, it can be concluded that many systems
are still built on inflexible architectures following the usual HW/SW split, e.g., [149]. A-
MPDU and BlockACK operation is typically in HW (e.g., [191, 121]).

• Some systems/architectures claim to be more flexible and scalable, such as Wipro [245]
implementing an 802.11bg Full-MAC based on an ARM7 SoC.

• Few designs are known to use SW for Low-MAC functions. The Intel IPW2915 executes
firmware on an embedded core for Low-MAC functions, but no architectural details
are given [72]. Lantiq [121] uses a small core, e.g., for response generation and channel
access, but still relies on HW support, e.g., for queuing and BlockACKs.

While architecture internals remain mostly unclear, we expect an increasing trend towards
flexibility. The usual HW/SW split is mostly used for legacy protocols or low-power devices,
but often is motivated by rule-of-thumb decisions and gradual system evolution. Many
commercial WLAN systems even fail to meet proper timing [26]. However, the advantages
of easy-to-use programmable platforms become apparent with increasing complexity and
and network evolution. Programmable platforms will improve initial time to market and
can be tailored to special use cases and related protocols. In addition, decreasing feature
sizes and increasing chip integration diminish the cost impact of the digital MAC. Thus,
costs for design and maintenance can easily outweigh chip costs.

23

2 Wireless LAN Domain Analysis

Table 2.3 – Overview of related work on Wireless LAN MACs.

Author/Title P
ro

to
co

l
/M

,P

P
ro

g
.

M
o

d
el

F
le

x.
/S

W
M

A
C

P
ro

d
u

ct
/1

1n

S
D

R
/U

M
A

C

S
ca

la
b

il
it

y

S
y

st
em

at
ic

D
S

E

Q
u

an
t.

R
es

u
lt

s

Neufeld[169]: SoftMAC 11g MAC – high-l no no no no no
Letor[131]: nsclick 11g MAC Click high-l no no no no no
Doerr[51]: Multi-MAC 11g MAC (ext.) – high-l no yes no no no
Meyer[156]: InterMAC multi, MAC 2.5 – no no yes no no no
Hoffman[80]: Scalable NoC multi, M+P – no no part. yes part. no
Fujisawa[62]: Single-Chip 11a, P>M – usual no no no no area
Hannikainen[75]: Using SDL TUTWLAN SDL usual no no no no part.
Dietterle[49]: HW-accel. 802.15.3 MAC – usual no no no part. part.
Panic[179]: SoC Impl. 11a MAC SDL usual no no no no part.
Samadi[203]: Novel Impl. 802.11 MAC SDL usual no no no part. no
Masselos[152]: Wireless HyperL. MAC – usual no no no yes yes
Yang[248]: Design Verif. 802.11 MAC – no no no no no yes
Shono[220]: 802.11 SDR 802.11 MAC – fully* no yes no no part.
Arpinen[15]: Configurable TUTWLAN UML fully* no no yes part. yes
Dhar[47]: Integrated Devel. 802.11 M+P Click/gr fully* no yes no part. no
Lee[126]: Dual-Processor 802.11 MAC – fully no no no part. yes
Nychis: Enabling MAC[172] 802.11 M+P gr fully no yes no part. no
Hedde: MPSoC flex.[78] 802.11 M+P – fully no no yes no no
Tan: SORA[229] 11abg M+P – fully no yes n/a no part.
Nabi: Reconf. MAC[166] 802.11 MAC – FPGA no yes no no yes
Sankaran: Atheros 2x2 [206] 11n P>M n/a n/a yes no n/a n/a (area)
Wipro: Wild 802.11abg[245] 11abg MAC n/a part. yes no part. n/a no
Lantiq: 1x1 LiteMAC[121] 11n M+P – part. yes no no n/a yes

M =MAC, P = PHY, n/a = not available or applicable, gr = gnu radio, (802.11) = generic *) but fail

State-of-the-Art Summary

We aim to develop a WLAN MAC system that is commercially competitive while leveraging
a systematic approach to the end of a flexible and generic system. As summarized in Table 2.3
for the most relevant pieces of related work, such an approach does not exist yet to the best
of our knowledge:

• Often a generic protocol version of 802.11 is used, especially in SDR contexts. Sometimes,
MAC and PHY layers (M+P) are considered, or the PHY layer is in the focus (P>M).
Only commercial systems are known to fully implement 11n MACs, academical work
is limited to 11a/g.

• Only few academic approaches support a high-level programming model (see also
Sec. 2.2.3). However, they either fail to meet performance requirements or require
the usual HW accelerators.

• Flexibility at the MAC layer was discussed in the previous sections: Few fully SW-
based approaches exist, however, they fail other criteria such as supported protocol,
programmability, and product relevance.

• No academic work could be found on the full MAC functionality relevant for 802.11n
products. For example, consideration of system dimensioning, precise memory require-
ments, different function splits, and host interface is typically missing. At the same

24

2.2 Current and Future WLAN Systems

time, commercial systems are poorly described publicly and typically lack flexibility,
generality, scalability, and a high-level programming model.

• Both SDR approaches and the support for multiple MAC protocols are becoming in-
creasingly popular. However, none of the presented platforms was both systematically
explored and applicable to 802.11n MAC products.

• Only few authors consider systematic exploration of the WLAN MAC layer and justify
function splits, HW/SW trade-offs, and performance requirements.

• Scalability is only considered by few authors that, e.g., base their systems on MP-SoC
platforms or explore advanced NoCs.

• Quantitative results typically concern chip area. Only few include performance or
memory requirements. These results are compared to our solution in Section 6.8.4.

2.2.4 Future Trends and Challenges in Wireless (LAN)

Our platform concept must also be scalable to future versions of shared-medium and WLAN
protocols. The success of the 802.11 standard so far was based on easy yet robust operation
and over-provisioning of resources. However, more sophisticated approaches are necessary
as channel and spectrum capacities reach their limit, traffic and QoS demands are increasing,
and user requirements and deployment scenarios are evolving. These are partly addressed
by amendments to 802.11 [79]:

• IEEE 802.11k/T – Radio resource measurement / performance prediction

• IEEE 802.11s/z – Mesh networking / direct link setup (DLS)

• IEEE 802.11v – Wireless network management

• IEEE 802.11w – Protected management frames

• IEEE 802.11aa – High-quality video transport streams

• IEEE 802.11ac/ad – Very High Throughput (VHT) at below / above 6 GHz

We project the following challenges for future MACs (in addition to Sec. 2.2.3) with differing
impact on MAC performance and architecture requirements:

• QoS and audio/video streaming (strong impact) – The 11e standard’s EDCA is increasingly
supported while central coordinators are not found in today’s products. WLANs must
reliably support VoIP. 11aa targets time-synchronized, low-latency streaming services
with graceful stream degradation.

• MAC efficiency (strong impact) – MAC efficiency is greatly improved with 11n. In the
future, inter-frame spaces and timing could be further optimized. Optionally, Reverse
Direction Grant (RDG) aids bi-directional traffic such as VoIP and TCP, and Direct Link
Support (DLS, 11z) conserves network resources. Unlike aggregation and timing, the
impact of RDG and DLS on MAC architecture is limited.

• Throughput (strong impact) – In addition to the above, the operation of multiple in-
dependent MACs, i.e., multiplexing of time and space improves efficiency. Together
broader spectrum bands (up to 100 MHz), better coding, and MIMO the throughput is
projected to increase to 1 Gbit/s and beyond (11ac, VHT).

25

2 Wireless LAN Domain Analysis

• Link adaption and cognitive radio (strong impact) – The available spectrum must be uti-
lized more efficiently to increase reach (MIMO, 11y) and interoperability by reducing
interference (11h, 11v). Important means to this end are the measurement standard
(11k) and advanced dynamic link adaption techniques. Future devices may dynami-
cally select the best available network, protocol, configuration, and channel, and utilize
even small free gaps in the spectrum.

• Versatile deployment(medium impact) – Deployment, e.g., in automotive contexts (WAVE,
11p) requires special consideration of network management, security, robustness,
range, and low-latency operation [56]. Scalability is thus essential, and power is a
major concern for mobile devices.

• Security (limited impact) – In addition to established standards (11i), encryption of
management frames (11w) prevents denial-of-service and packet-insertion attacks.

• Network management and integration (small impact) – Many features will improve usabil-
ity of wireless networks but have small impact on MAC architectures. For example,
networks must be centrally managed in offices, or be easy to set up in homes. Others
include user handoff and roaming (11r), mesh networks (11s), network management
(11v), and interoperability in large networks (11u). For fast bridging (11c, 11s), appro-
priate packet buffering must be provisioned.

A future need for an open, scalable, and flexible MAC layer can be inferred in conclu-
sion. Even implementations of the 11n standard, although now finalized, are evolving, e.g.,
to properly utilize 40 MHz channels [237, 175] and features [137]. This is addressed by
programmable systems that can be easily adapted and updated. Higher throughputs and
low-latency operations to improve efficiency and QoS directly affect the MAC’s architec-
ture. The operation of multiple MACs at the same time requires scalable and concurrent
systems. Furthermore, increasingly intelligent radios with frequency/space multiplexing
will be based on complex SW and thus require powerful, programmable, and real-time ca-
pable platforms. Open architectures simplify systematic cross-layer design, measurements,
and optimizations. With increasing true network convergence flexible MACs must comple-
ment SDR-based PHYs with multi-protocol operation. At the same time, systems must be
cost-efficient and allow flexible function splits for better integration.

2.3 Relevant Device Configurations and Features

Following our goal to develop a scalable and flexible next-generation WLAN platform, we
highlight relevant protocol features and define benchmark configurations. Trends from the
preceding sections are reflected where possible and will be discussed in the light of our
exploration results in Section 6.8.5. The selection of features that are relevant in terms of
performance and architecture allows to model the reference application in Chapter 3 in a
more focused way. Providing an indicative range of target configurations yields a scalable
architecture and drives the architectural exploration of Chapter 6.

WLAN features differ in their impact on performance requirements and functional memory
sizes, as listed in Table 2.4. Many features such as RDG and DLS only impact the management
layer and are thus neglected for our exploration. At the same time, functions concerning
aggregation, BlockACKs, and highly dynamic scheduling will be shown to have a strong
impact on system architecture and memory hierarchy. Device dimensioning is reflected in

26

2.3 Relevant Device Configurations and Features

Table 2.4 – WLAN features and their impact on performance, memory, and management.

Feature Options* Impact** Explanation / Comment

TXOP continuation yes no perf Multi-frame TXOP / contention-free burst (incr. eff.)
Dynamic aggregation yes no perf Dynamic adjustment of A-MPDUs to TXOP (incr.

eff.)
Imm. retransmission yes no perf Direct response to BlockACK (incr. efficiency)
BlockACK streams 4 48 mem(+perf) Extra buffering and scheduling required
A-MPDU subframes 16 64 perf(+mem) Depends on aggregated packet sizes
DLS yes no mgmt(+perf) Direct Link Support /management, scheduling
RDG yes no mgmt(+perf) Reverse Direction Grant /management, scheduling
Powersave (PSMP) yes no mgmt(+mem) Requires extra queues for sleeping stations
Link Adaptation yes no perf+mem Fine grain control of rate and channel
Supported STAs 16 64 mem(+perf) Access Point feature
Number of MACs 1 4 perf+mem Improve network efficiency (Sec. 2.2.2)

*) Considered choices are highlighted
**) Performance/memory requirements, parentheses indicate minor impact

Table 2.5 – Summary of WLAN device reference configurations.

2x2 AP 2x2 STA 1x1 AP 4x4 AP VHT AP
LiteMAC MultiMAC projected

Device Type Full MAC Full MAC Lite-MAC Full MAC Full MAC
Device Function Access Point Station Station Access Point Access Point
Spatial Diversity 2x2 2x2 1x1 4x4 e.g., 4x4
PHY Speed [Mbit/s] 300 300 150 600 1000
Multi-MAC – – – 3x3 + 1x1 e.g., 2x2 + 2x2
TXOP continuation yes yes no yes yes
Dynamic aggregation yes yes no yes yes
Supported STAs 32 1 16 64 64
BlockACK streams 16 4 8 32 48
Subframes per A-MPDU 16 16 16 –

the benchmark configurations and more precisely analyzed – especially in terms of memory
requirements – during the application analysis of Section 4.2.

This choice of features is probing the limits of 802.11n in terms of real-time performance
and exceeds the state-of-the-art of today’s systems. Maximum-sized A-MPDU aggregates,
dynamic aggregation, TXOP planning, and immediate rescheduling after BlockACKs, how-
ever, maximize efficiency and throughput. In addition, efficient dynamic aggregation [137]
and link adaption close to the PHY will become important in the future as discussed pre-
viously. Thus, our benchmark reflects future trends in terms of real-time performance of
complex embedded protocol operations.

The benchmark configurations of Table 2.5 cover the complete range of current and future
11n devices. We focus on Full-MAC architectures, but also consider a Lite-MAC and thus
require flexible function splits. Standalone systems and SoC integration with the host or the
digital baseband are not in the focus of this thesis and only discussed in the context of the
UMAC architecture (see Sec. 8.4 or, e.g., [207]). We can thus restrict further exploration to
the given configurations and will target a single, universal MAC platform.

27

2 Wireless LAN Domain Analysis

2.4 Chapter Conclusion

Following the technical introduction of IEEE 802.11 WLAN, an analysis of the state of the
art and of future trends for wireless MAC architectures was presented. Extended MAC
functionality – in addition to core functions – must be considered for comprehensive home-
networking devices. Flexible function splits are needed between Full-MACs and Lite-MACs,
which also impacts the memory architecture of the final device. No single approach from
academia covers the full IEEE 802.11n MAC system function in a flexible and scalable
architecture while offering a high-level programming model and exploring HW/SW trade-
offs with quantitative results at the same time. Little information is available on commercial
systems. However, we also expect a trend towards flexibility there, fostered by more complex
protocols, time-to-market pressure, and reduced total cost of development and maintenance.
In the future, high throughputs, increased efficiency, fine-grain cognitive radio control, and
SDR will have a significant effect on MAC architectures. Thus, programmable, concurrent,
real-time capable, and scalable platforms are required that offer a high-level programming
model.

Indicative device configurations were identified that cover the complete range of 11n de-
vices, including multi-MAC and future high-throughput systems. Features relevant in terms
of performance and system architecture include most notably aggregation, QoS, and real-
time channel access. These configurations and features will drive the development process
in subsequent chapters:

• The modeling of a reference application in Chapter 3 can be focused on performance-
relevant features and configurations. Benchmark scenarios are devised that reflect our
device configurations.

• The architecture-independent analysis in Chapter 4 extends on the configurations,
deriving memory and performance requirements from the reference application.

• Design exploration in Chapter 6 considers dynamic performance and memory require-
ments for the benchmarks. As a result, a scalable platform is developed and precise
device costs for the proposed configurations are derived.

We will extend our findings in terms of architectural concepts and the usefulness of our
approach towards the idea of a universal MAC (UMAC) throughout this thesis. Given
the discussed MAC functionality, throughput and timing requirements, and standard com-
plexity it can be concluded that Wireless LAN is at least representative if not a superset of
other shared-medium home networking protocols. The importance of productivity in an
industrial setting motivates a closer analysis of our approach. In this regard, a dedicated
domain analysis can be considered a sensible and useful first step. Since the effort for this
analysis, however, highly depends on the domain’s complexity, novelty, and expertise of
the designer(s), it is not quantified and assessed as a part of the development time. Subse-
quent development steps, however, will be assessed in greater detail, and the total efforts
are summarized in the conclusion of Chapter 8.

28

3 IEEE 802.11 WLAN Reference
Application

For step two of our methodology, a performance-indicative yet architecture-independent
reference application is needed that captures essential system functions. Unfortunately, such
a reference is not available for the IEEE 802.11n MAC layer. Therefore, we have developed
an executable system model and its environment in a modular and domain specific language
according to the configurations and features of Section 2.3.

Such a model allows performance benchmarking of MAC architectures and design space
exploration. It serves as a starting point for efficient software-based implementations. In
addition, it captures and documents protocol knowledge in an executable specification. It
may serve as a golden model for test and verification. Finally, it can provide black-box
function for network simulation and allows experimentation with protocol extensions.

After discussing modeling requirements for MAC-layer applications, a modeling language
is selected and refined for deployment on resource-constraint network nodes. Then, a
fully-functional WLAN system model implementation is presented – in its graphical syntax
and with a detailed description of its main components and processing paths. Protocol
timing, frame aggregation, and configuration require special attention. Based on the model,
performance-indicative benchmark scenarios are defined and verified.

3.1 Modeling and Models of Wireless Protocols

3.1.1 Language and Model Requirements

Wireless LAN is a complex protocol that comprises a variety of functions and relies on exact
timing (cf. Chap. 2). Thus, the full system function must be modeled. This is different from
small-scale, homogeneous, and untimed algorithmic kernels that are often considered in
literature. In addition, use cases and traffic environments are needed. This requires protocol
instances to be configurable, e.g., in terms of their function, size, and mode of operation. For
a suitable modeling language we therefore require:

• Modeling of the full system function at the MAC layer, especially of timing-precise behav-
ior and control flow. This includes time-stamping and precise and dynamic scheduling.
Packet and data flows must be coordinated. In a modular approach, this includes
capturing dependencies between elements.

• Domain-specific concepts for packets and their processing. This includes packet gener-
ation, copying, and deletion, and special functions, e.g., for packet aggregation.

• Appropriate abstractions for fast modeling while focusing on essential aspects. The
language must be as expressive as needed yet remain easy-to-use and intuitive.

29

3 IEEE 802.11 WLAN Reference Application

• Modular and extensible models that encourage reuse. An existing element library for
packet processing is beneficial. Dynamic changes must be considered, e.g., when the
network topology changes.

Since our focus is on the device and its architecture rather than protocol performance,
especially performance-relevant aspects must be captured precisely, and we require:

• Executable models that enable system validation and that serve as an executable specifi-
cation. Models must be performance indicative, i.e., they must not fundamentally differ
from the final implementation. A path to implementation is needed.

• Models to be architecture independent, enabling platform benchmarking and exploration.
Models thus must expose application behavior and requirements and orthogonalize it from
platform functions such as IO, scheduling, and memory management.

• Data flow must be explicit as it has a big architectural impact. This naturally captures
inherent parallelism in packet flows and dependencies between elements. Similarly,
resource usage, e.g., for storage must be explicit and finite.

• Explicit communication separated from computation, as is essential for mapping onto
concurrent architectures. This means that state should be kept locally. Similarly,
functions and structures must be provided at an appropriate granularity.

• Modeling support, as models quickly grow large and complex. This includes script
integration and a graphical editor for generation and configuration.

3.1.2 Modeling Languages and Frameworks

A broad range of modeling approaches exists. For a comprehensive overview of approaches
targeting protocol comparison and generic packet processing application, see [207]. We
focus on the area of wireless systems and protocols as we discuss models of computation,
frameworks, and languages.

Models of Computation (MoCs) are at the core of most modeling approaches [54]. They
can be seen as design patterns that separate computation, communication, and control
while addressing issues of concurrency and time. They describe the system behavior in
an executable way as an interaction of components that guarantees desired system proper-
ties [95]. Kahn Process Networks (KPNs) and variants thereof are very popular. Introduced
by Kahn [99], such models consist of sequential processes that run concurrently and com-
municate synchronously or via FIFOs. Even though they capture data flow [123], their
behavior is untimed. Discrete-Event (DE) models follow a very general definition in that
components communicate via events that are associated with a time-stamp. Most popular
protocol modeling frameworks are based on DE, including OMNeT++ [235] and ns-2 [34].
However, these abstract the node architecture, focus on simulation at the network level, and
often fail to provide realistic models of complex wireless behavior [72]. Other relevant MoCs
include Petri Nets, Queuing Networks, and Finite State Machines (FSMs). However, such
models are often less intuitive and difficult to understand [207]. Similarly, model-driven
approaches [73] are often overly formal [104] and cumbersome to use. A compiler-assisted
approach deriving protocol implementations from declarative descriptions [136] focuses on
behavioral and cooperative aspects.

From the evaluation of MAC architectures of Section 2.2.3 we deem the following languages
most relevant in the context of MAC protocols and systems design:

30

3.2 Modeling with Click

• SDL – The Specification and Description Language is popular for wireless system design
(e.g., [179, 75]). It is based on both FSMs and KPNs. However, data-flow, computation,
and timing are not first-class citizens. Implementations are rather inefficient. In addi-
tion, models can grow overly complicated, a possible reason why the SDL description
of IEEE 802.11a has been discontinued despite its popularity.

• UML – The Unified Modeling Language is a general purpose language. Profiles exist
for embedded systems that are actively used. However, the focus is put on structural
aspects and specification, and no efficient implementation of a wireless system has
been published to date [15].

• gnu radio – This data-flow language based on C++ is popular for implementing the
PHY layer in SDRs. Some authors try to extend the scope to the MAC layer, but report
lack of expressiveness, e.g. for timed behavior and state machines [47].

• Click – is a domain-specific, declarative language for implementing packet processing
applications. It has been found suitable for modeling the MAC layer [47, 207] and will
thus be discussed further in Section 3.2.

3.1.3 Models of Wireless LAN Systems

To the best of our knowledge, no executable reference or full system model is publicly
available for the IEEE 802.11n MAC layer. A reference for IEEE 802.11 in SDL as part of the
standard document has been discontinued. Only test specifications such as IEEE 802.11T
exist that describe a host of traffic patterns and metrics [90]. Models for IEEE 802.11g in
Click are discussed in [47] and available with the Click framework [230]. Unfortunately,
no detailed description is available for the former, and the latter only covers management
functionality. Still, it can partly be reused for our purposes in Section 3.3.3.

Other existing models either target legacy protocols, focus on isolated aspects, or fall short
of satisfying our requirements. A number of WLAN models exist, e.g., in the popular
OmNET++ and ns-2 frameworks that abstract performance, lack detail, and have not yielded
efficient implementations. The legacy protocol is modeled, e.g., in [190, 244]. Recent ns-
2 models covering the frame aggregation facet of 802.11n include [135, 238, 221]. Often,
isolated aspects such as aggregation [167, 141] or EDCA [92] are examined using analytical
models. Kukkala [115] models the legacy standard in UML.

3.2 Modeling with Click

We find Click most suitable for our requirements (Sec. 3.1.1) as outlined in the following.
However, the special characteristics of WLAN to be deployed on resource-constraint devices
necessitate modeling techniques and extensions as described in Section 3.2.2.

3.2.1 The Click Modeling Language

Click [113] is a widely-used framework for packet processing applications based on a
domain-specific, declarative language. The application library includes standard functions
and few higher-layer wireless modules. Using Click, functionally correct and executable

31

3 IEEE 802.11 WLAN Reference Application

models can be derived quickly. Click has also been used in network simulation, e.g., with
ns-2 [170]. Further information is found in [112] and the Click web site [230].

As described by Sauer [207], Click applications are composed from elements that are linked
by directed connections. The elements describe common computational operations whereas
connections specify the flow of packets between elements. Packets are the only data type that
can be communicated; their generic format supports arbitrary communication protocols. All
application state is kept locally within elements. Two packet communication patterns are
distinguished in Click: push and pull. A push is initiated by a packet source, modeling
the arrival of packets. Pulls are initiated by a packet sink, modeling available space in an
outbound resource. Figure 3.1 gives an example for Click’s graphical and textual syntax.
Packets enter the system by the FromDevice element (push output [black]). The packets flow
to the input of a Classifier. This element forwards packets depending on the result of internal
processing, e.g., filtering header fields. Two of its outputs are connected to queues. In Click,
queues are explicit and have push inputs and pull outputs (white). Hence, the ToDevice can
pull packets out of the queues at its own rate, removing them from the system. Pulling of
packets happens via the Scheduler, which selects a packet from its inputs depending on its
policy (e.g., priority).

FromDevice
 ToDevice

Discard

Classifier
Scheduler

Queue0

Queue1

FromDevice -> cl::Classifier [0] ->

cl [1] ->

cl [2] ->

q0::Queue ->

q1::Queue ->

Discard;

[0] s::Scheduler ->

[1] s;

ToDevice;

Figure 3.1 – Click example: graphical and textual representations.

The Click language is a graphical and textual coordination language to instantiate and con-
figure elements and to describe the packet flow between them.1 Compound elements enable
hierarchy. Single elements are implemented in C/C++ and stored in a library. Connections
are mapped to method bindings. For push connections, the thread of execution flows with
the data, i.e. the target’s push method is called with the packet as parameter. For pull con-
nections, the generation of a packet is triggered by calling the pull method of an upstream
element with the packet being the return value. This pattern directly results in an efficient
implementation. Click’s notion of time is explicit and metric. Packets in Click can carry a
time stamp. Elements may use the time stamp and access system time.

Click satisfies most requirements of Section 3.1.1 (see also [207]). It is domain-specific, suf-
ficiently expressive and intuitive, and encourages efficient implementations. Since elements
describe a particular function, encapsulate all state, and have a uniform interface, reuse and
modularity are natural. Click has been found especially suitable for modeling the MAC
layer, e.g, by Dhar [47]: It has concepts of time and packets, allows coordination between
transmit and receive flows, supports complex scheduling, and both local and global state

1Click defines a model of computation, see, e.g., Lee [122] or our discussion in Section 5.1.2.

32

3.2 Modeling with Click

can be maintained. Its applicability to performance evaluation and target implementation
are shown in subsequent chapters. Click also has shortcomings in terms of timing and
communication within the model that are discussed in the next section. The problem of
reconfigurability is discussed in Section 3.3.6.

3.2.2 Modeling Techniques and Click Extensions

The original Click framework targets router implementations running on single-processor
Linux systems. In order to adapt it to MAC-layer modeling for embedded multiproces-
sors, we address issues regarding modeling, timing and communication within our own
framework – SystemClick (see Sec. 5.2.4).

Modeling. It is imperative to find “good” granularities and function splits for Click elements.
If too much is implemented in a single element, the model’s modularity is lost. It is thus
harder to understand, to partition, and to exploit its parallelism. Using only elements
with very limited functionality, however, makes models complex and may severely impact
performance. Similarly, a good trade-off has to be found between generic and specialized
elements: Universal elements would, e.g., classify a packet internally whereas a specialized
element would rely on classification already being done elsewhere.

Timing. In the Click framework, execution times of tasks dependent on the host system,
and scheduling is based on inexact means provided by Linux. Thus, we address:

• Simulation – Processing times are abstracted for modeling by a fixed value small enough
not to interfere with protocol operation. This ensures event causality in the model.
Unlike ideal discrete event simulation (e.g., in ns-2 [34]), this is more realistic regarding
the target system and opens the path to implementation.

• Scheduling – MAC applications are timed precisely relative to external events such as
packet reception. As system time progresses during execution, relative scheduling
alone is insufficient. We introduce a ScheduleAt directive that enables precise schedul-
ing based on, e.g., time stamps annotated to packets. Scheduled times in the past
indicate problems in the application logic and are reported to the user.

Communication within a Click model refers to the interaction of elements. Natural to Click
is the flow of packets along push/pull connections. However, we identify additional schemes
that cannot be modeled properly in Click:

• A communication means outside the flow of packets is needed, e.g., when a packet
is forwarded to the host but other elements need to be notified about its reception
afterwards. We refer to this as active one-to-one communication.

• Similarly, when many elements need to be actively informed about, e.g., a state change,
we have an active one-to-many communication or broadcast.

• Distinct pieces of information such as global configuration need to be accessed by
many elements. Broadcasting this information actively to all subscribers, however, is
too expensive. In this case, we prefer a passive one-to-many communication.

• Packets have annotations to transport additional sideband information. This works
well in downstream direction along push processing chains. When packets are pulled,
however, the “caller” cannot pass parameters to the upstream elements

33

3 IEEE 802.11 WLAN Reference Application

• In a demand-driven setup with multiple producers and one consumer, the consumer
cannot pull from the right producer. This is a many-to-one communication.

Communication Extensions. Within our approach, we introduce the following artifacts and
extensions to address above mentioned communication patterns:

• Tokens – provide an efficient means for active one-to-one communication and transfer
the control flow in Click. Based on Click packets, tokens are distinct and provide a
semantic and data structure for non-packet data types such as boolean. Tokens reuse
standard Click ports and connections, but are assumed to be unique or maintain a
reference count, which makes it unnecessary to duplicate or kill them. Relying on the
Tee and Classifier element infrastructure of Click active one-to-many communication
can be efficiently implemented as well.

• Shared data objects – represent a single data object shared among several elements. It
makes data dependencies explicit, allowing to cope with it during mapping. Shared
objects are a means for one-to-one communication along pull chains and passive one-
to-many communications. If the shared data are complex, the object may be structured
and modifiable only through access methods (cf. Sec. 3.3.6).

• Annotation with direct access – may be necessary to directly access an element via a
reference in a many-to-one situation in order to limit model complexity. A reference
to the producer is annotated to the packet and the consumer directly accesses the
producer through a function call.

In summary, our findings and extensions address the shortcomings of Click with respect to
modeling complex, time-dependent applications on resource-constraint systems. They help
to aim the system model better towards the final implementation on the target device, while
still remaining platform independent.

3.3 WLAN Model

The model described in the following captures the full IEEE 802.11 WLAN system function
in Click, including QoS and high-throughput extensions (11n). Model setups comprise
instances of AP and STAs combined with packet sources and a shared medium. The model
itself is modular and comprises interconnected processing paths. Essential aspects of its
implementation include protocol timing, aggregation, and model reconfiguration.

3.3.1 IEEE 802.11n Protocol Function

The model captures the protocol timing and state of both the legacy IEEE 802.11abg and
IEEE 802.11e/n MAC layer. We focus on performance-relevant aspects and implement the
following features:

• In legacy mode, fragmentation and RTS/CTS protection can be used. Medium access is
based on a contention window, and frames are acknowledged and re-sent one by one.
On collisions, a back-offmechanism increases the contention window.

34

3.3 WLAN Model

PHY Rx

Idle / Busy transition

WLAN
Air

PHY Rx

Idle / Busy transition

STA

STA

… … …

To Host

To Host

Idle / Busy transition

Management
AP PHY Tx

WLAN
Air

Source
Source
Source

…

From Host

Figure 3.2 – Generic setup for the transmission (upper part) and reception path (lower part)

• QoS extensions (11e) introduce four prioritized access categories (AC) for medium
access. Stations acquire TXOPs per AC, e.g., by completing an RTS/CTS exchange and
subsequently send packets. Acknowledgment of frames is done in blocks (Immediate
BlockACK) with timely retransmission of failed packets.

• HT extensions (11n) introduce two mandatory aggregation schemes: The aggregation
of service data units (A-MSDU) relieves per-frame MAC processing. Aggregation at
the PHY layer (A-MPDU) reduces overhead by concatenating protected subframes.
Total length must match the current TXOP.

In addition, management functions such as beacons, station authentication and associa-
tion as well as the exchange of configuration data are comprised in the model. Although
operational and functionally correct, WEP security and rate selection modules are merely
placeholders for more sophisticated schemes imposing similar loads on a system.

Features that are not performance relevant (cf. Sec. 2.3) have been abstracted, including
detailed PHY handling and higher-layer management.2 Especially HT Control mechanisms
(training, sounding, beam-forming) and recommended MCS are not supported. Channel
management, Direct Link Support (DLS), Reverse Direction Grant (RDG) and contention-free
operation modes such as PSMP are in principle covered by the model but would simply
add more management overhead. All other features can be omitted as they refer to higher
management functions only, such as negotiation of BlockACK streams.

3.3.2 Setup and Interfaces

The model setups include one Access Point (AP) and several Stations (STAs). Figure 3.2
provides a generic overview of the setup and the flow of packets. Packets are generated by
packet sources, e.g., providing IMIX [13], VoIP, or HDTV traffic. The abstracted host then
pushes Ethernet-encapsulated packets into the system. The WLAN standard defines this
interface as the Service Access Point (SAP) of the MAC layer. Packets are processed by the
MAC and forwarded to the PHY interface. Eventually, received packets are again processed,
Ethernet-encapsulated, and forwarded to the host.

2However, such features must be added as needed for prototype implementation in Chapter 7.

35

3 IEEE 802.11 WLAN Reference Application

The AP and the STAs have additional inputs. The PHY generates information tokens indi-
cating the medium state and the end of frame transmissions. The host provides high-level
management frames and triggers management functions implemented in the MAC model
such as authentication and association (cf. Sec. 3.3.6). Our model uses special (compound)
elements for the PHY layer and the shared medium:

• The PHY TX element queues aggregated packets and delays transmission according
to an annotated time stamp.

• The WLAN Air element generates both timing behavior of frame transmissions and
half-duplex busy signaling. Frames aggregated at the PHY layer are transmitted back
to back. Bit errors can be introduced at random or in case collisions occur. It broadcasts
received packets to all RX PHYs.

• The PHY RX element receives and time stamps the packets from the air and transmits
them to the AP/STAs.

3.3.3 Model Implementation

The Click model for IEEE 802.11n is shown in its graphical representation in Figure 3.3.
Processing paths for transmission (TX) are found in the left-hand part and for reception
(RX) in the right-hand part. Time-critical functions are found close to the air side (bottom),
whereas pre-/postprocessing stages are close to the host (top). This relates to the core and
extended functions of Section 2.2.1. The figure exemplary features three TX/RX packet stream
processing paths (TID streams) in different configurations for Access Category 0 (AC 0), and
the legacy path. Other ACs are present in the model but not shown. All processing paths can
be configured by a ReconfigurationManager, which writes a global StationInfoBase every
time the connection state changes (as detailed in Sec. 3.3.6).

WLAN Click Elements. Standard Click elements provide a good infrastructure for our
implementation of the IEEE 802.11n protocol function. Some of Click’s higher-layer WLAN
management functions can be reused and have been extended as needed. Still, the library
had to be extended substantially, e.g., for real-time and 11n processing:3

• Protocol timing is handled by the EDCA element, which schedules packets and se-
quences for different ACs. The Update_NAV element maintains a counter for virtual
carrier sensing and communicates its busy/idle state using tokens.

• Response frames are generated by the GenACK and GenCTS elements for incoming
unicast data frames and received RTS frames, respectively. Both elements extract the
necessary information for the generation from the received frames.

• Aggregation of A-MSDU frames is done by joining Click packets until a limit or time-
out is reached (Wifi_Aggregate_MSDU_AP). For A-MPDU, first the aggregated packet
length is determined (Wifi_AMPDU_Initial) before packets are removed from the buffer
and subframe headers are inserted (Wifi_AMPDU_Continue).

• Block Acknowledgments are generated by the WifiReorderBuffer, which keeps track of
received frames. At the sender, BlockACKs are preprocessed by the WifiBlockAckRe-
sponder before the WifiReplayBuffer schedules lost frames for retransmission.

3The application library has been implemented in or ported to C within our framework SystemClick (cf. Sec. 5.2.4)
for increased efficiency and to ease model deployment on resource-constraint systems.

36

3.3 WLAN Model

BlockACK-Bitmap

BlockACK Req

T
ee

WifiReplayBuffer

A-MPDU InitialD
iscard

De- AMPDU

H
ostE

therF
ilter

Frame Classifier

STA + TID Classifier (Streams)

WifiEncap(QoS)

EDCA

STA-ID Classifier (QoS Streams)

b
u

s
y
 /

T
X

 d
o

n
e

Air / PHY LayerAir / PHY Layer

HostHost

WifiSetTID

A-MSDU

SetCRC32

data

m
anagm

ent

control

Classifier

S
canner &

 T
racker

B
eacons

&
 P
robe

R
esponses

O
ther

M
gm

tfram
es

P
robeR

equester

P
aint(M

gm
t)

outgoing
B
lockA

C
K

unicast
Q
oS

A
ck/C

ts

R
T
S

Virtual Carrier Sense

W
ifiB

lockA
ckR

es

W
ifiR

eorder

B
uffer

G
enA

C
K

C
trl C

lassifier

BCast-QoS Filter

D
iscard

WifiDupeFilter

WepDecap

WifiDecap

WepDecap

S
etT

X
R
ate(22)

BCast-Legacy

FilterW
ifiE

ncap

(legacy abg)

ProbeTXRate

EtherAnno

Lookup

WifiReplayBuffer

WifiSeq

WEPEncap

WifiEncap(QoS)

WifiSeq

WEPEncap

WifiEncap(QoS)

A-MSDU

WifiSeq

WEPEncap

F
ragm

entation
BCast?

Mgmt?

W
E
P
E
ncap

S
hortcut

to A
C

 0

...

RR-Scheduler (AC 0)

...

...

...

...

A-MPDU Continue

A
C

 1

A
C

 0

A
C

 2

A
C

 3

EtherAnnoLookup

WifiParser

G
enC

T
S

WepDecap

De-AMSDU

A
C

 3

A
C

 2

A
C

 1

A
C

 0

BCast?Mgmt?

...
M

g
m

t

......

... ...
incom

ing
B
lockA

C
K
 R
eq

F
eedback

F
ragm

entation

W
ifiD

ecap
W
E
P
D
ecap

Delay (Timestamp)

R
econfiguration

M
anager

S
tationInfoB

ase

B
lockA

C
K

D
efragm

ent

D
efragm

ent

D
efragm

ent

W
ifiR

eorder

B
uffer

Update_NAV

CRC failed

SetTimestampAnno

CheckCRC32
...
M

g
m

t.

F
eedback to

R
ate S

election

W
ifiS

eq

I1I2

I3I4 O
1

O
2

O
3

O
4

O
5

O
6

(AC 1)...

m
ulticast

and abg

Figure 3.3 – Click model of a WLAN 802.11abg/en MAC with transmit paths (TX) on the
left-hand side and receive paths (RX) on the right-hand side.

Processing Paths. The main receive and transmit packet processing paths through the
Click model as shown in Figure 3.3 are detailed in subsequent paragraphs. A number of
interconnections in between these main TX and RX paths exist (cf. Fig. 3.3). This reflects
the need for immediate generation of responses to incoming frames, which is characteristic
of shared-medium protocols. RTS frames need to be responded by a CTS message, and
incoming packets with single acknowledgment policy must trigger an immediate ACK

37

3 IEEE 802.11 WLAN Reference Application

response. This is more complex in the case of a Block Acknowledgment (BlockACK), which
is processed by the replay buffer. All incoming control frames are forwarded to the EDCA
element as they usually affect the scheduling of the next transaction. Incoming BlockACK
requests can trigger the immediate generation of a BlockACK frame at the ReorderBuffer.
Information about successfully transmitted or failed packets is provided as feedback to the
rate selection algorithm (not shown in the figure).

A.1) Outbound 11abg data frames. All frames from the host (input I1) pass rate selection and get
a STA-ID based on Ethernet address and TID. Legacy (11abg) frames are sorted out, encapsulated,
receive a sequence number, and are fragmented/encrypted as needed. Stored in the best effort traffic
queue, they are pulled round-robbin by the EDCA. The EDCA sets the duration field, TX time, and
schedules RTS/CTS protection if indicated. Eventually, every frame is CRC’ed and sent as specified by
an annotated time stamp to the PHY (O2).

A.2-4) Outbound 11n data frames. 11n frames are classified into QoS paths and have additional
header fields and TID set. If configured, aggregation into A-MSDUs and encryption are performed
before being queued. The EDCA schedules and pulls frames for a given AC. In BlockACK mode, the
WifiReplayBuffer tracks frames, replays them if not acknowledged, and issues BlockACK requests.
Depending on the TXOP length, max.-sized A-MPDUs are initially prepared by computing the aggre-
gate length. The EDCA performs RTS/CTS protection to start TXOPs and sends CF-END frames when
no more packets are available. Finally, the actual aggregation is done and CRC-protected frames are
sent as scheduled.

B.1) Inbound 11abg data frames. Packets from the PHY (I3) are timestamped and CRC checked. They
are annotated with STA-ID, TID and type. The NAV timer is updated with the frames’ duration. The
model’s state is also updated if CRC checks fail or if medium state changes (I4). Next, frames for
other networks are discarded and unicast frames are acknowledged. After classification and duplicate
removal, frames are decrypted and reassembled. After header translation to Ethernet, frames are
forwarded to the host (O6).

B.2-4) Inbound 11n data frames. A-MPDUs are deaggregated, member frames are marked and
forwarded subsequently the same as 11abg frames. STA-ID classification then forwards the frames
into the proper QoS path. The WifiReorderBuffer keeps track of received frames and releases them in
correct sequence. Frames are then decrypted and A-MSDUs de-aggregated into single frames before
being forwarded to the host (O2−5).

C.1) Outbound 11abg acknowledgment. ACK frames are generated upon reception of a valid abg
unicast data frame or if indicated by the ACK policy. The frame is scheduled after SIFS, forwarded to
CRC protection, and sent out.

C.2) Outbound 11n BlockACK. BlockACKs are triggered by explicit or implicit requests and generated
by the WifiReorderBuffer. Explicit requests are treated as inbound control frames. Responses are
scheduled after SIFS. The implicit mechanism extracts the trigger from A-MPDUs and schedules the
response, either after the last member is processed or if time to send runs out.

D.1) Inbound 11abg acknowledgment. Inbound ACK frames are processed as in (B.1), but classified
as control frames and forwarded to EDCA. There, the stored frame is killed and the next transmission
can proceed. A timeout in the EDCA detects failed transmissions and causes retransmissions according
to retry counters. Feedback is given to rate selection.

D.2) Inbound 11n BlockACK. Inbound BlockACKs are processed as in (B.1), but classified as 11n
control frames and forwarded to the WifiBlockAckResponder. The extracted bitmap is then forwarded
to the proper WifiReplayBuffer(s). There, acknowledged frames are cleared, and lost frames prepared
for retransmission. A timeout detects missing BlockACKs.

E) RTS/CTS. If an outbound frame exceeds the RTS threshold or a TXOP is to be used, EDCA issues
an RTS prior to actual transmission. At the receiver of an RTS, a CTS is generated similar to ACK

38

3.3 WLAN Model

frame processing (C.1/D.1). Completing the exchange, inbound CTS are classified and trigger the
transmission of the outbound frame after SIFS in the EDCA.

F) Management Frames. Management frames are generated by the model or can be provided by
the host through dedicated ports (I2). Outbound management frames are forwarded to the legacy
path (B.1) without additional Wifi encapsulation. Incoming management frames are received like data
frames, but assorted by classification and either directly processed or forwarded to the host.

3.3.4 Implementation Essentials

Click’s run-to-completion model of computation and its scheduling scheme cannot guarantee
precise timing in the presence of processing delays. Thus, we introduce a scheduling scheme
based on time stamps. Incoming packets and the CCA are stamped upon reception to have
a consistent timing reference throughout their processing. Tasks are scheduled relative to
this time stamp. For transmission, packets are annotated with the scheduled transmit time
and delayed accordingly.

Central to the model’s timing is the EDCA element that schedules sequences. It main-
tains backoff counters per AC and pulls packets from schedulers that select among all
streams of a given AC. The backoff management is realized with two auxiliary functions:
findNextTriggerTime() initially computes the backoff for the AC based on the current back-
off situation and the given parameters (e.g., aSlotTime). updateBackoffTimers() is used to
update backoff counters when the medium went busy during the contention process. The
EDCA element is implemented as a state machine with states presented in Table 3.1 and two
different transition functions, RUN and PUSH:

• The RUN routine is triggered by timers: When the EDCA is in a waiting state, every
9 µs (aSlotTime) the queues are pulled for new packets. Packets are then parsed to
determine the next expected state as well as packet duration, sequence timeout, and
possible retransmission. In the contention process, the getNextAction() function is
used to update states and to schedule packet sequences if necessary.

• The PUSH routine is activated by feedback packets. If indicated, the EDCA schedules
the next packet for transmission. In two cases, the getNextAction() function is called:
A timeout is reached while waiting for a response. Or, no more transmission packets
are left within a TXOP and a CF-END packet must be sent.

Table 3.1 – States of the EDCA element’s state machine.

State Description

Wait for timer The EDCA waits to check if new packets are available for transmission.
Wait for CTS After sending a RTS, the EDCA waits for a CTS.
Wait for ACK After sending a QoS frame, the EDCA waits for an ACK.
Wait for BlockAck After sending a BlockAck request, the EDCA waits for a BlockAck.
Wait for end of TXOP The EDCA is in a TXOP but has no more packets to send.
Wait for packet to finish A timeout occured during transmission but the medium is still busy.
Wait for CTS finish A CTS timeout occurred but the medium is still busy.
Wait for ACK finish An ACK timeout occurred but the medium is still busy.
Wait for BlockAck finish A BlockACK timeout occurred but the medium is still busy.
Packet scheduled The EDCA has scheduled a packet for transmission.

39

3 IEEE 802.11 WLAN Reference Application

W
ifi
R
ep
la
yB
uf
fe
r

�
�
��
�
�
�
�
�
	�

E
D
C
A

Preview ������ ������

����� ������

�����

!����"

Incoming
BlockACK

Explicit
BlockACK
Request

From Host
Processing

Other QoS
Streams

To Air
Processing

Regular Click
Push/Pull

Implicit
Connection

�����

#$����%�

Figure 3.4 – Implementation of the ReplayBuffer part of A-MPDU aggregation in Click.

The EDCA element has precisely timed transitions at timeouts and when the virtual carrier
sense changes. It is notified about relevant busy-idle or idle-busy medium transition by
the Update_NAV element, which maintains a NAV counter based on the duration field of
incoming packets. Knowing the medium state, the EDCA is able to defer timeouts if a packet
reception is still in process.

The A-MPDU aggregation process is implemented by the ReplayBuffer and the A-MPDU
aggregators (cf. Fig. 3.4). The ReplayBuffer keeps track of transmitted frames. When it
reaches a limit, a BlockAck request is triggered. From incoming BlockAcks, a list of lost
frames is extracted and only those are kept for retransmission. Anticipating an optimized
implementation, aggregation has been split into two parts to decrease processing in the
critical scheduling path: When the EDCA pulls for packets, the A-MPDU_Initial element
first determines the possible aggregation length from a shared object. Then, queues with
new or lost frames are previewed directly and a boiler-plate packet is generated. This packet
is a place holder for scheduling and contains the number of frames to aggregate, the total
length, and a reference to the ReplayBuffer that stores the remaining frames. Finally, A-
MPDU_Continue performs the actual aggregation, pulling and processing follow-up packets
off the indicated ReplayBuffer (cf. communication patterns in Sec. 3.2.2).

It is important to note that A-MPDU in our application dynamically adjusts the aggregate’s
length to the remaining TXOP time. This introduces more complex processing. While many
state-of-the-art products perform aggregation statically in advance, the dynamic approach is
vital for maximum throughput. This is especially true when dynamic effects during a TXOP
– such as packet loss or RDG – make a static schedule impossible.

3.3.5 Model Configuration Parameters

Both the model structure and the protocol behavior can be customized. For the purpose of
this thesis, all structural parameters are static whereas protocol settings can be changed at
runtime (cf. Sec. 3.3.6). The model’s structure is influenced by the following parameters:

• Number and type of MACs – Includes the supported IEEE 802.11 standard (Legacy, QoS,
QoS+HT). In addition, multiple MACs can be instantiated, e.g., in order to support
legacy operation and 802.11n at the same time.

40

3.3 WLAN Model

• Number of supported stations and TIDs – The AP supports up to 32 stations. The Traffic
Identifiers (TIDs) represent user priorities or traffic streams. Each TID for each station
has a unique processing path that can be configured independently and includes
aggregation functions and queuing.

The following parameters affect the model’s behavior at runtime and can be set, e.g., via a
global configuration database:

• EDCA operation depends on, e.g.: TXOP length, AIFSN, cw_min and cw_max that
determine the contention window size, slot timing, retry counters, and thresholds.

• The total number of TIDs with aggregated BlockACK streams as well as the maximum
size and maximum number of packets in A-MPDUs can be limited.

• Other parameters include the supported rate set, timeouts (e.g., for A-MSDU aggrega-
tion and retransmission of BlockACK Requests), and encryption schemes.

• The network topology can also be changed. This includes STA instances and character-
istics of the medium such as the packet drop rate and the type of bit errors.

3.3.6 Management Functions and Model Reconfiguration

Changes in the network environment, management functions, and user interaction neces-
sitate dynamic model reconfiguration. Wireless stations with unique capabilities join and
leave the BSS. Connected stations add or remove streams with different aggregation types
and acknowledgment policies. Higher management layers change link and QoS settings or
may retrieve cross-layer information. We introduce an interface for such operations, discuss
reconfiguration requirements and choices, and explain a solution chosen for the current
model by giving an example.

High-level control of a MAC is done by a management entity through a management in-
terface. Depending on the function split, this entity can be located on the same device or
communicate through a remote interface. It must be possible to choose the function split ac-
cording to the needs of the target system. Our model includes exemplary management func-
tionality and provides an interface to external management functions, e.g., implemented as
part of a Linux protocol stack. This interface is based on (Click) trigger packets and basically
serves two purposes: It can provide user stimulus to management functions implemented
inside the model (e.g., trigger association). And, it conveys parameter changes from external
entities (e.g., to set up a BlockACK stream).

From the parameters of Section 3.3.6, different requirements become apparent that must be
fulfilled by mechanisms that guarantee consistency and avoid packet loss:

• Changes to single parameters in centralized elements, e.g., network name or fragmentation
threshold. Changes to queue and buffer sizes may require reallocation.

• Addition or removal of TID streams, e.g., by changing packet classification or graph
structure. In addition, streams must be configured, e.g., to toggle aggregation.

(Re-)configuration mechanisms. Click uses a handler interface based on the Linux file
system for run-time graph reconfiguration. It is utilized, e.g., by XORP [74] for a router
control plane or in OpenFlow [154]. However, special consideration is necessary since
we target a deeply embedded multiprocessor. Local, i.e., distributed configuration should

41

3 IEEE 802.11 WLAN Reference Application

consequently be preferred to a central database and shared memory solutions that may
become bottlenecks. In addition, memory resources are extremely limited.

Especially, multiple traffic streams must be modeled carefully. Two main approaches exist
in modular languages (as also discussed in a different context in [101]): (1) Splitting the
streams explicitly into different paths, e.g., per station or TID. Or (2), using a single path
where every element classifies and processes incoming packets accordingly. Each approach
offers different trade-offs: Explicit modeling incurs memory overhead from multiple element
instances. Reconfiguration necessitates changes to the graph itself. However, configuration
is exported into the model graph, thus making it amendable to analysis, mapping, and
optimization. On the other hand, using a single path, computational overhead is incurred
for classification at every processing stage. Streams and their configuration is not visible
at the graph level and elements are more complex. Therefore, reconfiguration is limited to
state kept inside single elements.

Our model combines these approaches but keeps TID streams explicit to ease mapping later
in the design process. Thus, methods are needed to (re-)configure traffic streams:

• In a fully static setup, features are configured within elements only. A central config-
uration database is accessed at runtime by every element in passive one-to-many com-
munication, or side-band annotation can be used (cf. Sec. 3.2.2). Alternatively, active
reconfiguration saves runtime overhead, but elements must be addressable regardless
of their mapping by a global directory similar to Click’s handlers.

• Reducing memory usage, a partially static setup with a fixed number of streams can
be allocated statically and reassigned as needed. This requires management of free
streams and either rewiring of connections or reconfiguration of classifiers.

• Complete graph reconfiguration is memory-efficient, but necessitates dynamic generation,
deletion, and rewiring. Individual elements need to be addressed and configured
appropriately, and graph changes must be modeled appropriately, e.g., by subgraphs
or in a reconfiguration language.

Our initial model implementation comprised a static setup, but the partially static setup
proved to be a better solution during prototypical implementation. In fact, we can assume
a globally limited number of streams for the memory requirement analysis of Chapter 4.
For further discussion of reconfiguration, the reader is referred to literature: Liu [141] has
proposed a hashtable-based approach to reassign TID traffic streams for WLAN, similar to
our partial setup. Targeting configuration of real-time SW, Rasche [193] leverages algebraic
category theory to describe both computation and parameters. Graph reconfiguration4 is
overly complex, and no pragmatic, light-weight solution to convey parameter and structural
changes to a distributed graph has been established so far.

Configuration for associated stations including settings for TID streams is stored in a central
lookup facility – the Station Info Base (SIB). Entries for connected stations are identified
with a unique Station ID (STA-ID) and support a number of TIDs. STA-ID/TID are thus
required for lookups from stream elements. These values can either be configured statically
or be learned from packet annotations. Entries are accessed, added, and removed at runtime

4 For example, Balani [17] presents a large-scale framework for in-situ reconfiguration based on a run-time wiring
engine. In the context of active networks, Kanada [101] compares element connections, namely direct port-
based and implicit label-based. It is shown that implicit graphs are easier to configure, but direct connections
are better suited for distributed parallel implementations. Neuendoerffer [168] presents an abstract model for
reconfiguration data-flow graphs based on hierarchical decomposition.

42

3.4 System Benchmark Scenarios

Table 3.2 – System benchmark scenarios.

Name Description

HT Unidirectional high throughput (HT) setup between an access point (AP) and a single station
(STA) comprising packets of different size distributions (min, max, typ, IMIX).

QoS Typical home networking setup with AP and four STAs comprising all applications of Table 3.3
(/w file) to expose queuing and channel access timing. Additional VoIP, VC, HDTV and back-
ground STAs may be added (scenarios QoS2, QoS3, etc.).

Cmplx AP and 32 STAs with IMIX traffic (1Mbps) for high model complexity exposing memory and
configuration bounds.

(11abg) Based on a previous implementation of IEEE 802.11abg this scenario is only used as a reference.
(11e) Simplified configuration for IEEE 802.11e only supporting QoS extensions with 4 ACs.

by local wrapper functions, and the SIB is mapped to shared memory. The SIB implements
passive one-to-many communication (cf. Sec. 3.2.2), i.e., it is polled by elements. A dirty
field is incremented upon updates to the SIB to indicate changes. It can be cached locally to
reduce shared memory accesses.

3.4 System Benchmark Scenarios

Leveraging the WLAN system function as described in preceding sections, benchmark sce-
narios can now be defined that reflect and refine the reference device configurations of
Section 2.3. This will enable further analysis and indicative exploration. Three essential
facets must be addressed by such specifications for reliable and comparable results [231]:

• System function – unambiguously specifies the function of the system in form of a
functionally correct and executable model.

• Environment – defines the surroundings of the system, its configuration, and parame-
ters. This includes use cases and traffic setup.

• Measurement – describes how performance and the quality of results are evaluated.

Environment and measurement must now be defined in addition to precise configuration
of the system function. For this purpose, the existing IEEE 802.11T specification describes
37 use cases, 19 usage models, and 24 different applications. But such a multitude is not
necessary for the evaluation of different MAC architectures.

Instead, we propose three base scenarios that stress a MAC architecture’s performance
in terms of scheduling, high-throughput, and complex setup (cf. Tab. 3.2). The scenarios
instantiate MAC system functions as well as host environments (traffic generators, packet
sinks, management triggers), protocol checkers, and a combined air/PHY channel module
(cf. Sec. 3.3.2). All stations are configured for 802.11n mixed mode,and a channel of 300 Mbit/s
with standard timing is assumed: slot time 9 µs, SIFS 16 µs, PHY preamble and header
(24+ 4 ∗nr_mimo_streams) µs, and CCA 4 µs. Unless stated otherwise, a constant error rate
of 5 % for frames and A-MPDU subframes is assumed. The measurement facet is addressed
in the following and further detailed during the exploration step, based on the response time
requirements of Section 4.1.2.

Traffic is generated by the QoS applications of Table 3.3, and other model parameters are
listed in Table 3.4. QoS applications are associated with traffic identifiers (TIDs) and mapped
directly onto ACs with given parameters for TXOPs and aggregation. We depart from

43

3 IEEE 802.11 WLAN Reference Application

Table 3.3 – Benchmark applications and their characteristics.

Application Throughput Pkt. Size Delay TID

VoIP∗ 0.096 Mbit/s 120 B 30 ms 3
Video Conf∗ 2 Mbit/s 512 B 100 ms 2

HDTV 24 Mbit/s 1500 B 200 ms 1

Internet/File(∗) 1/150 Mbit/s IMIX1 BE2 0
∗ Two-way communication 1) Internet IMIX distribution 2) Best Effort

Table 3.4 – Settings for QoS and aggregation parameters.

AC/TID TXOP A-MSDU A-MSDU A-MPDU
max. size timeout max. size

0 1.5 ms 4096 B 50 ms 64 Pkts.
1 3 ms 4096 B 30 ms 32 Pkts.
2 0 2300 B 10 ms -
3 0 - - -

Table 3.5 – Scaling the QoS setup for different PHY bandwidths.

– 1x1 2x2 3x3 4x4 VHT

Channel Capacity [Mbit/s] 150 300 450 600 1000
QoS{x} (AP) 2 4 6 8 12
QoS{x} (STA) 0.5 1 1.5 2 3

standard settings to expose all performance-relevant functions, e.g. in terms of aggregation,
in a static setup for architecture exploration. TXOPs are not necessary for low-bandwidth
applications such as VoIP [202] or bi-directional traffic unless Reverse Direction Grant is
supported [14]. Dynamic selection of aggregation strategies, e.g., based on packet arrival
rates is subject to active research [138].

3.5 Model Verification and Characteristics

3.5.1 Measurements and Verification

Measurements most importantly include protocol conformance, i.e. real-time behavior,
packet sequences, and frame formats must be verified. We have simulated and validated
the model extensively in the defined scenarios. The framework allows detailed analysis and
tracing of traffic and element execution. Applying assertion based techniques, a protocol
checker monitors, e.g., response times for various protocol sequences. Data streams are
checked for end-to-end packet loss, throughput, and latency. In addition, packet traces have
been checked by tools such as Wireshark. Recently, the model has been successfully used
for evaluating MAC-layer extensions for collision-free operation [1].

Exemplary simulation results further validate the model. The maximum delays for the QoS
applications from Table 3.3 are met for all scenarios. Figure 3.5 shows the maximum delay
incurred in the QoS scenario with two HDTV/VoIP streams and a packet drop rate of 5 %
as the background traffic load (AC 0) is increased. While all higher QoS classes remain
unaffected, the background latency is first large due to the A-MSDU aggregation timeout,

44

3.6 Chapter Conclusion

0

10

20

30

40

50

60

70

80

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

M
a

x
.

L
a

te
n

c
y

 [
m

s
]

Background Traffic [Pkts. / s]

VoIP Video Conf HDTV Background

Figure 3.5 – End-to-end latencies as background traffic is increased. For background traffic,
timeouts cause large latencies at low loads and packet loss occurs at high loads.

then comparable to AC 1 and lastly starts to grow as the channel capacity is reached. Packet
loss only occurs for AC 0 as indicated with shaded markers. Finally, Table 3.6 shows that the
number of collisions increases with the number of clients connected. The load on an ideal
channel approaches theoretical bounds for the HT scenario.

Table 3.6 – Simulation Performance.

Scenario Simulation1(1min) Load on air2 Collisions

HT (IMIX/AC 0) 47 s 253 Mbit/s -
HT (IMIX/AC 3) 23 s 17 Mbit/s -
QoS 58 s 185 Mbit/s 145/s
Cmplx 432 s 38 Mbit/s 404/s
1) CRC and WEP disabled 2) 300 Mbit/s channel

3.5.2 Model Complexity and Simulation Speed

All benchmark scenarios are generated from 18 Click source files with a total of 1188 lines
of code (LoC). This includes verbose output and tracing. The library comprises 80 different
elements with a total of 10722 LoC, see Table 3.7a. The number of instantiated elements in
the AP varies with the number of STAs as shown in Table 3.7b. Most elements are inferred by
hierarchy and macros. Despite the size of the models, the effort for customizing stations and
modeling new scenarios is well within a few hours. Simulation speed depends on model
complexity. One minute traffic takes between 23 s and 432 s on a 1.7 Ghz Pentium M system
running Cygwin (see Tab. 3.6). This is sufficient to verify most scenarios in real time and
even allows testing of large configurations.

3.6 Chapter Conclusion

A comprehensive and performance-indicative reference for the WLAN MAC layer and its
surroundings was developed [6]. Such a reference was not available before, and it has

45

3 IEEE 802.11 WLAN Reference Application

Library Type Elements Lines of C-Code (LoC)*

WLAN-specific 41 7490
Standard 39 3232
Sum 80 10722

(a) Size of application library, (*) Physical LoC
without comments and empty lines.

Scenario AP STAs Env. Total

1 HT 118 123 44 285
2 QoS 230 123 97 819
3 Complex 1238 123 599 5741

(b) Functional element instances for
scenarios of Section 3.4.

Table 3.7 – Click application library and model characteristics.

already been well received in the context of realistic evaluation of protocol extensions [1].
Realizing the model gave a better understanding of the WLAN protocol, capturing relevant
aspects in an executable specification and exposing complexities. The model was verified
in terms of protocol conformance and expected network performance. It will serve as a
reference application for subsequent development steps. We highlight:

• The fully-functional IEEE 802.11n model covers all performance-relevant aspects for
legacy operation, QoS, and high-throughput extensions. The WLAN library features
41 elements, e.g., for channel access, frame encapsulation, aggregation, and basic
management functions. The modular concept exposes processing paths and – together
with parameterization – allows for a range of configurations.

• The main complexities concern application timing relative to external events and
MAC/PHY-layer aggregation including packet replay. These aspects are captured in
a performance-indicative way. A feasible solution to (re-)configuration was proposed
that keeps TID/QoS traffic streams explicit.

• Benchmark scenarios were defined that can be scaled to the device configurations
of Section 2.3 in easy-to-use, static setups. These setups add detailed configuration,
traffic environments, and the measurement facet to instances of the system function.
The scenarios stress WLAN architectures with corner-cases related to scheduling (QoS),
high-throughput (HT), and complex network topology.

The choice of Click as modeling language was essential for both productivity and appli-
cability in our UMAC approach. Click allows to capture timing, inter-dependent streams,
and complex state-machines in a modular and executable way. Our extensions regarding
timing, modeling on a time-consuming resource, communication, and reconfiguration will
facilitate deployment on resource-constraint multiprocessor systems. In addition, the setups
comprising over 800 elements can be simulated in real-time, allowing to assess and verify
long-term effects. Click is thus well suited for developing shared-medium MAC protocols,
reinforcing previous findings from literature.

The total development effort for all performance-relevant features and the benchmark sce-
narios can be estimated to 8 effective man months (MM). This includes initial development
(4 MM), integration and optimization of the aggregation mechanisms (2 MM), and identifi-
cation and parametrization for the benchmark scenarios, e.g., adding flexibility to the model
(2 MM). Considering recurring efforts for a new shared-medium protocol of comparable
complexity (i.e., in the UMAC context), an improvement of 25 % for initial development is
realistic thanks to the extended library and better modeling capabilities. If the new protocol
has no complex mechanism such as aggregation, recurring efforts total 5 MM. Changes to
the model setup (as, e.g., in Chap. 7), protocol extensions (as, e.g., in [1]), or developing a
closely related protocol are a matter of days or few weeks.

46

4 Application Analysis

Having modeled the WLAN protocol function in the preceding chapter, step three of our
methodology now derives architecture-independent application characteristics and require-
ments. We initially conducted a static performance analysis [10] that indicated the feasibility
of software-based WLAN MACs. However, further evaluation of dynamic, architecture-
dependent effects is necessary. This will be performed during the architecture exploration
of Chapter 6, levering extended features of the SystemClick framework, e.g., for profiling
and memory simulation.

In this chapter, more technical input is provided beforehand to guide exploration and im-
plementation: The timing at the MAC/PHY interface is evaluated in the context of a given
PHY architecture and critical processing paths in the WLAN application. This enables vali-
dation of design points and is essential for eventual deployment. Memory is a major factor
for chip costs. Total requirements are thus determined in preparation of the exploration of
their distribution and dynamic performance impact in Chapter 6. By analyzing concurrency,
common functions, and memory access characteristics in the reference application, the ar-
chitectural design space can be narrowed and necessary exploration steps can be identified.
In addition, tool requirements become apparent.

4.1 Timing Requirements of Wireless Protocols

Timing requirements and critical processing paths must be reconsidered in the context of
the MAC/PHY interface. Unfortunately, this interface is not standardized. Thus, we sketch
the timing of an existing PHY and re-analyze transmission, reception, and channel access.
From this rather technical analysis, performance and response time requirements needed
for further exploration become available in Section 4.1.2 on Page 49.

4.1.1 Detailed MAC/PHY Interface Timing

The observable timing on the wireless channel is defined in the WLAN standard. Transmis-
sion times are determined by preambles, signal fields, transmission rate, and packet length
(see also Sec. 2.1.5). Table 4.1 summarizes the channel timing for 802.11n packets. Critical
are channel access and response times, which are discussed in the following.

Since the MAC interacts with the channel indirectly via the MAC/PHY interface, only an
analysis of these interactions yields actual timing constraints for the MAC implementation.
We sketch the timing of a the PHY [121] that is also used for the prototype implementation.
It has been optimized to require data as late as possible and to provide data as early as
possible. This leaves more time for the MAC, which is usually neglected in wireless designs.
It is a special case of cross-layer optimization that does not improve network performance

47

4 Application Analysis

Table 4.1 – Packet lengths and transmission times of IEEE 802.11 frames.

Type Length [B] Time on Air [µs]
Legacy/54 Mbit/s HT-Mixed/600 Mbit/s

RTS Ready to Send 20 24 39.6*

CTS Clear to Send 14 24 39.6
ACK Acknowledgment of packets 14 24 39.6
BA Block Acknowledgment 32 28 39.6
DATA Data frame (0 – 2312 B payload) 34 – 2346 28 – 368 39.6 – 68.4
A-MPDU 2 – 64 aggregated frames 168 – 65535 – 39.6 – 910,8

*) The minimum time is given by the transmission of preamble, signal fields, and one symbol (3.6 µs).

but reduces performance requirements. In fact, many commercial WLAN systems fail to
meet timing [26] and academic analyses are overly pessimistic [126, 78].

Transmission The interaction for transmitting a frame from a MAC-layer perspective is
shown in Figure 4.1. A Go-Signal is sent as an initial trigger 2 µs ahead of the actual
transmission to allow the RF system to power up. It contains preamble information that can
be chosen statically, such as basic information on network setup and transmission power. The
preamble synchronizes transmitter and receivers (16 µs). The signal field contains packet
details – the frame context – which includes rate information, packet length, aggregation
settings, and PHY specifics such as guard interval information. It must be provided 5 µs
prior to transmission in order to be protected by a CRC. Then, more training fields may
follow, before actual packet data is required, again with a 5 µs offset for encoding.

• Result: Detailed packet information is only needed approx. 14 µs after the Go-Signal.
At least 18 µs are available for providing packet data.

PHY_TRANSMIT_TIMING

Preamble Signal Field LTF LTF Data

Preamble

Information

16 µs

~2µs

Signal Field

Information

~5µs

8µs

Data

~5µs

Data

Figure 4.1 – MAC/PHY timing for frame transmission in HT mode.

Reception In receive mode, the PHY constantly monitors the channel for the start of a
packet, i.e., its preamble. The Clear Channel Assessment (CCA) primitive indicates a BUSY
or IDLE channel1 and is sent to the MAC with an exact time stamp. The process is detailed
in Figure 4.2. The signal field becomes available 3 µs after its reception. It contains the
RX Vector with information about the received frame, which allows, e.g., prediction of the

1According to the IEEE 802.11-2007 standard [87], “the start of a valid 20 MHz HT signal at a receive level equal
to or greater than the minimum modulation and coding rate sensitivity of -82 dBm shall cause the PHY to set
CCA(BUSY) with a probability of at least 90 % within 4 µs”.

48

4.1 Timing Requirements of Wireless Protocols

frame end based on its length and rate. Packet end on air is indicated by CCA(IDLE). A
recommended MCS rate is computed for rate selection. Received data decoding may induce
up to 12 µs backlog

• Result: The frame end is known 12 µs before all data are available to the MAC, but
processing can only start after the complete frame is verified.

Preamble
Signal

Field

LT

F

LT

F
Data

CCA Busy Signal Field

Data

<4 µs

16 µs 8 µs

Data Data Data

~12 µs

REC_MCS

Data

CCA Idle

~12 µs3 µs

Timestamp

Figure 4.2 – MAC/PHY timing during frame reception in HT mode.

Channel Access Timing WLAN follows Listen Before Talk (LBT) for channel access (see
also Sec. 2.1). Due to the MAC/PHY interface, the contention window access procedure from
a MAC perspective becomes more complicated. During slotted operation, the MAC learns
the CCA with a delay of 4 µs. When a packet is awaiting transmission and the back-off
expires, it may be transmitted unless a busy channel (CCA) is indicated in the meantime.
The Go-Signal must be asserted 2 µs prior to the packet’s air time.

• Result: Only 3 µs remain for MAC processing during slotted operation unless special
HW support, e.g., for pre-scheduling is available.

4.1.2 Resulting MAC-layer Application Timing

WLAN defines strict timing for frames on the air. Based on the MAC/PHY interface analysis,
the actual budget for the MAC can be derived. Most relevant is the timing in two cases: 1)
the gap between frames in sequence, and 2) the time for sending a response.

Inter-frame gaps. Sequences of frames sent out by one sender occur in different situations.
Same destination: No gap occurs in between A-MPDU subframes. This is the worst case in
terms of cycle budget per frame. The participants may agree on extra spacing to relax this
requirement. All other sequences use SIFS between packets. Different destinations: Between
frames destined to different stations within a TXOP, an interval of 2 µs (RIFS) is defined by
the standard (SIFS may be used instead at slightly reduced throughput).

MAC response time. The SIFS time of 16 µs specifies the interval between a received
frame and its response on the air. Considering interface delays, the data are available
12 µs after reception and a transmission must be triggered 2 µs ahead of time. This is
summarized in detail in Figure 4.3 for our proposed PHY implementation. Consequently, a
MAC implementation has the following time budgets:

49

4 Application Analysis

16µs Context

20µs Frame Data

Inbound frame
SIFS = 16µs

2µs

RF

12µs

RX PHY

2µs

MAC

Outbound response

Figure 4.3 – MAC time budget for response frames.

• The Go-Signal specifying whether a transmission will follow must be sent after 2 µs.

• The frame context with information such as the frame length is due after 16 µs.

• The actual frame data, i.e., header and beginning of payload is required after 20 µs.

Critical paths and budgets. The resulting critical paths are summarized in Table 4.2. All
channel reservation and legacy operations require a response time of 16 µs (SIFS). The budget
for follow-up subframes in A-MPDUs depends on the size of the preceding subframe.
In the unlikely case of minimum-sized Ethernet subframes (84 B), 1.1 µs are available
at 600 Mbit/s PHY rate. The immediate generation of a BlockACK following a received
A-MPDU aggregate is mandatory in 802.11n. Dynamic behavior that influences critical
processing to meet the frame context deadline2 is analyzed further in Chapter 6.

Rescheduling A-MPDUs immediately from received BlockACKs and dynamically scheduled
multi-frame TXOPs are not mandatory, but essential for high throughput, efficient channel
usage, and future systems (see Sec. 2.3). We thus deem them essential. However, if cost or
performance concerns prevail, requirements can be relaxed seamlessly: 1) Restrict the length
or the number of packet in A-MPDUs. 2) Do not consider a BlockACK immediately in the
next aggregate. 3) Do not consider A-MPDU length dynamically or use static scheduling of
single aggregates per TXOP.

Table 4.2 – Critical processing paths in the WLAN reference application.

Description Type Mandatory Gap Comment

DATA->ACK Response yes 16 µs Legacy acknowledgment
RTS->CTS, CTS->DATA Response yes 16 µs Channel reservation

AMPDU-Subframe->Subframe Follow-up yes >1.1 µs Depends on packet sizes
(De)-AMPDU->BlockACK Response yes 16 µs Immediate BlockACK

BlockACK->AMPDU Response no* 16 µs Immediate response
AMPDU->AMPDU Follow-up no* 2/16 µs Only with TXOP continuation
AMPDU->CF-END Follow-up no* 16 µs Only with dynamic TXOP end

*) but necessary for achieving maximum throughput

4.2 WLAN Application Requirements

The following section statically analyzes the reference application. In terms of performance
requirements, an initial static analysis has been conducted [10] that indicated the feasibility
of SW-based WLAN MACs. The complexity of the WLAN application and the dependency
of the architecture on its behavior, however, necessitates a dynamic analysis of the full

2A closer analysis [10] showed that Go-Signal and channel access can be critical unless addressed properly: either
a resource must always be available (cf. Sec. 6.4) or HW support is needed (cf. Sec. 6.6.2).

50

4.2 WLAN Application Requirements

OS; 4604; 8%

Packet; 3608;

6%

Wifi; 19512;

32%

Aggregation;

11484; 19%

Modeling and

Standard; 4796;

8%

Management;

16000; 27%

Figure 4.4 – Code Size distribution of the 802.11n application (-Os switch, in [B]).

system function. This will be based on a cycle-precise SW profile and further discussed in
the exploration step of Chapter 6. Instead, we focus on memory requirements for code, data,
and packet memory, as memories are a major contributor to chip area (and thus per-unit
costs). Precise estimates are needed in preparation of the exploration step, where memory
distribution and performance impacts are further analyzed and total chip areas are estimated
for the reference WLAN configurations.

4.2.1 Code Memory Requirements

The code of the reference application is arranged into three segments: Start-up Init code,
Run-time code, and Shared code that is always needed. Init code accounts for approx.
20 % of overall code size and can be swapped out after initialization. A small section
(≈ 1 kB) for variable initialization is allocated to data memory. The application footprints
are summarized in Table 4.3. The rising complexity becomes obvious: The 11abg setup is
from an early implementation stage and the results have been published in [2]. The 11e
setup is more basic in functionality but comprises already a more complex EDCA with QoS
scheduling, resulting in a moderate increase in code size. The 11n setup is fully featured,
effectively doubling code size over 11abg, with aggregation functions (A-MPDU/A-MSDU)
being the biggest contributor. The operating system had to be extended to support advanced
packet operations and, e.g., token communication.

Table 4.3 – Code sizes (optimized for size, -Os) for different scenarios [in B]*.

Scenario 11abg 11e QoS(11n) QoS(11n), agg. related

Run + Shared Segments 16358 B 19856 B 35792 B 11484 B
(Init Segment) – – 13080 B –
Operating System 6248 B 8212 B 8212 B 1000 B
Total Runtime Code Memory 22606 B 28068 B 44004 B 12484 B

*) excludes management functions

The code distribution in Figure 4.4 shows that WLAN-specific functions account for over
50 % of the overall size, with aggregation functions being a large contributor. This underpins
the observation that the new HT aggregation functions are the main source for increased
complexity in 11n. Another 27 % are used for WLAN management functions and interfacing.
Standard Click functions account for 8 %. The OS including packet functions is below 10 %,
which is reasonable given the tiny overall footprint.

Basic management functions (e.g., beacon generation) that are essential for stand-alone
operation are comprised in the model and require around 12 kB (see also [2]). At the other

51

4 Application Analysis

0

200

400

600

800

1000

1200

150 MBit/s

(1x1)

300 MBit/s

(2x2)

450 MBit/s

(3x3)

600 MBit/s

(4x4)

1000 MBit/s

(n.a.)

N
u

m
b

e
r

o
f

P
a
c
k
e
ts

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
e
q

.
P

a
c
k
e
t

M
e
m

o
ry

 [
M

B
]

Total Number of Pkts.

Pkts. in Agg. Streams

Packet Memory

(actual distribution)

Pkt. Mem. (4000 B)

Pkt. Mem. (1524 B)

Pkt. Mem. (524 B)

Pkt. Mem. (400 B)

Pkt. Mem. (64 B)

Figure 4.5 – Number of packets present in an AP system for the home networking scenario
QoS(11n) and the required packet memory for different packet sizes.

extreme, a fully-featured driver of a 1x1 Lite-MAC [121] has 256 kB, yielding an upper
bound for MAC-layer management functions. Higher layers such as hostapd [84] use several
MBs of memory. However, non time-critical and low-performance functions are typically
implemented on the host, which has dedicated external memory. This is even the case for
Full-MACs, since the main concern is the performance impact rather than memory. We
will thus assume a total of 12 kB as a placeholder for essential management functions or
appropriate interfacing with higher layers in the AP (8 kB for STA).

4.2.2 Data Memory Requirements

Traffic Environment and Packet Buffers

Packet buffering requires large amounts of memory. Understanding packets in terms of their
number, size, and organization is thus paramount for efficient implementations. However,
the number of packets present in a WLAN system is difficult to estimate. In literature,
complex approaches such as [134] are common that consider, e.g., on network utilization,
round trip times of TCP connections, and video stream buffering. Engineers use rule-of-
thumb calculations and experience in practice. In our case, it suffices to consider the MAC
part in a home network. Thus, the benchmark scenarios can be used, and the total number
can be limited as most packets are buffered on the host.

For the estimation presented in Figure 4.5, the QoS(11n) setup from Sec. 3.4 is scaled with
increasing bandwidth (cf. Tab. 3.5 on p. 44). It is assumed that 32 packets are required
per active HDTV stream, 16 per video conferencing stream, 8 per VoIP connection, and 64
altogether for background traffic. A fixed amount of 128 mixed size (IMIX, [13]) packets is
scaled with bandwidth relative to the 2x2 setup. This totals 384 packets for the 2x2 setup and
almost 1100 packets for the future 1 Gbps setup. Approximately two thirds of the packets
are queued in A-MPDU aggregation streams. Altogether, the memory required to store all
packets is 1.0 MB and 3.0 MB respectively, assuming the actual packet distribution and A-
MSDU aggregation rate derived from the QoS scenario. The requirements for a STA device
can be lowered significantly, requiring only 144 packets and 250 kB of packet memory in a
2x2 setup.

52

4.2 WLAN Application Requirements

Table 4.4 – Memory for PDs (in kB depending on PD size) for single packets, packets with
separate A-MSDU subframes, packets with A-MSDU subframes in segment lists.

Scenario Packets only Packets /w Subframes Packets /w Subframes (64 B PD)
Throughput Pkts. Subfs. 32 B 64 B 32 B 64 B 64 B Lists 32 B & 64 B Lists

150 Mbit/s 208 880 7 13 28 56 23 20
300 Mbit/s 384 1728 12 25 55 111 43 38
600 Mbit/s 736 3424 24 47 110 219 84 74
1000 Mbit/s 1100 5131 35 70 164 328 126 110

Packet Descriptors and Organization

Packets are expensive to store and move within the system due to their size. They are thus
represented by packet descriptors (PDs) that define the packets’ data and that hold sideband
information such as timestamps and annotations. The packets’ data can be distinguished
into the MAC protocol-specific packet header and the transported data, i.e., the packet payload.
The PD format3 used throughout this thesis requires 32 B without and 64 B if the packet
header is included in the PD. Having the header available locally in the PD will prove
beneficial during the exploration of Chapter 6.

The size and organization of PDs – especially regarding aggregated A-MSDU frames com-
prising many subframes – is a critical design decision, since the required memory is signifi-
cant: ranging from 13–70 kB if aggregates are copied and represented with a single PD, but
up to 328 kB if each subframe requires a separate, linked PD (Table 4.4, left and middle).
This can be optimized as follows: The first payload segment is part of the PD and follow-up
segments can be organized in separated lists linked to the main PD. This allows to concate-
nate and split packets without moving their payload, e.g., for A-MSDU aggregation (see
Sec. 6.6.3 for a discussion of the performance impact). Fixed 64-byte lists suffice for close
to all aggregated packets and are easy to manage. However, using also 32-byte lists adds
flexibility to reduce memory. The total memory requirements for PDs can be reduced by
65 % if 64-byte PDs are used together with 32/64-byte segment lists. The 300 Mbit/s setup
uses 38 kB in total. Other system designs may suffice with fewer memory, e.g., 24-byte PDs
but typically lack a flexible approach to packet aggregation. As the total number of PDs
is limited and as they have a fixed size, 2-byte pointers can be used for their addressing
throughout the application.

Queue and Management Memory

The model includes memory statically allocated to queue arrays4 for every access category
(128 entries) as well as for every TID (32 entries each) and every active BlockACK/TID stream
(queues for retransmission, replay and reorder operation, 64 entries each). This ranges from
4.8 to 22.8 kB for AP configurations and compressed 2-byte pointers. Significantly less is

3The PD contains the packet length and a payload reference as a minimum. Sideband information includes
annotations for Click communication, classification results, rate, and retry counters. Flags indicate aggregation
status and, e.g., CRC and encryption information. A time stamp of 4 B is required for timing-exact processing.
The packet data may comprise arbitrary combinations of payload segments. Assuming 8 kB as maximum size,
the segments can be represented compactly using 6 B: a pointer to the actual location (3 B for addressing up to
16 MB), the starting offset (1 B suffices for header manipulations), the end offset (13 bit), and the segment size
(3 bit to denote sizes as powers of two, starting from 64 B).

4Queues implemented as linked lists incur a memory and runtime overhead and are thus not considered.

53

4 Application Analysis

needed for LiteMACs (1.6 to 4.4 kB), as queuing is done by the host, and for stations (3 kB), as
less QoS streams are supported. Also, management data structures, e.g., for available rates
and configurations of connected stations are needed – the StationInfoBase (SIB, cf. Sec. 3.3.6).
The SIB can be kept small as configuration is decentralized in the Click elements. 128 B per
station are assumed for short-time rate selection.

The 2x2 AP configuration needs a total of 19 kB for queues and management. An enterprise-
level fully-featured AP may require up to 100 kB. For Lite-MACs and stations a fraction of
the SIB suffices (only 3.1 kB for a minimal 1x1 Lite-MAC with 16 clients).

Total Data Memory Requirements

An additional analysis based on the identification of distinct pieces of memory – memory areas
– allows us now to summarize the total data memory requirements. These areas are available
within SystemClick from profiling (cf. Sec. 5.4.4) and allow efficient exploration of memory
mappings. The areas plus the previously identified requirements for initially/statically
allocated memory are shown in Table 4.5. A small section is statically allocated to stack
and data segments. Few helper structures are needed on the heap, such as template PDs
and packets for control and management functions. The application configuration and
state is stored in the element/port area (we state the optimized values from Sec. 6.3.3).
Global/management memory supports up to 32 stations in the AP. Total functional memory
also includes 38 kB for packet descriptors.5

Table 4.5 – Total functional data memory requirements for the 2x2 reference Access Point and
Station in the QoS(11n) scenario (in bytes), excluding packet storage.

Memory Area 2x2 Access Point* 2x2 Station** Cost per agg. stream

Stack 1536 1536 –
Static data segment (ELF) 1024 512 –
Local heap 600 168 –
PDs and payload (static) 2592 1359 64
Static communication tokens 256 256 –
Click element structures and ports 14404 7076 572
Queues (2B pointers) 8448 3072 448
Global mgmt. and config. structures 10424 808 16
Total static memory 39284 14787 1100
Packet descriptors (dynamic) 37888 12544 –
Total functional memory 77172 27331 –

*) Includes 16 resp. **) 4 supported aggregation streams.

The total memory required for the 2x2 AP and station are 77 kB and 27 kB. The station is
thus significantly smaller than the AP (only 35 %) and is dominated by its code size (44 kB),
whereas the AP is dominated by functional data memory. It would thus be advisable to
implement more of the station functions on the host to reduce code size (as often done in
Lite-MAC designs). On the other hand, the focus should be put on data memory for an AP.
For example, reducing modularity (the AP consists of 254 elements requiring an average
of only 57 B for element state and ports) or by efficient organization of PDs as discussed
previously. In addition, the memory statically allocated for one aggregation stream in our
implementation is approximately 1100 B and includes queue space as well as elements

5Memory for packet payloads will be allocated outside the MAC due to its size. Similarly, beam-forming matrices,
e.g., 50 kB for 4x4 MIMO are considered a functional part of the baseband processor (PHY).

54

4.3 Application Characteristics

(and state) for A-MPDU and A-MSDU aggregation. This can add up significantly for large
configurations, underpinning the importance of reconfiguration as discussed in Section 3.3.6.
Final results also for other configurations are discussed after exploring memory mappings
and distributions in Chapter 6.

4.3 Application Characteristics

4.3.1 Application Structure and Implementation Character istics

Exploiting concurrency increases throughput and minimizes response times by paralleliza-
tion and better resource availability. It is therefore essential for efficient embedded designs,
where tight constraints are put, e.g., on operating frequencies. Parallelism in the definition
of Mihal [159] is mostly found at the task-level in the WLAN application.6 From the appli-
cation graph (cf. Fig. 3.3) receive and transmit parts can be distinguished. Due to the shared
nature of the medium (half-duplex) and the resulting connections in between these parts,
however, the elements related to medium access must run sequentially. This motivates the
introduction of two sublayers7:

• The Access and Response (AR) Layer includes all elements and functions that directly
participate in medium access and response generation. These elements need to run
sequentially under timing constraints. Essentially, all elements after respectively before
the queues and close to the medium in Fig. 3.3 belong to this layer.

• The Preparation and Management (PM) Layer includes all other elements closer to the
host that perform preparation or post-processing (e.g., aggregation or encapsulation)
and management (e.g., beacon generation). These are not subject to time constraints
but impact the throughput of the system.

The two layers can run independently, and more parallelism is contained within each layer.
Especially the preparation (and post-processing) functions are mainly data/packet-driven
and can thus be parallelized or pipelined. At the AR layer, the scheduling of A-MPDUs can
be decoupled in certain cases. This is further explored in Section 6.4.

Analysis of the functions in the model shows that WLAN is representative, complex, and
generic. All core and extended functions (cf. Sec. 2.2.1) are comprised in our model, under-
pinning that WLAN is representative for related protocols. For example, the need for fast
responses and to maintain a copy of transmitted packets is typical for ACK/nACK protocols.
In fact, WLAN is rather complex and potentially a superset of other standards. For exam-
ple, aggregation necessitating advanced packet operations and time-critical channel access
proved time consuming during implementation. At the same time, the functions in their
entirety are generic since diverse operations are needed including queuing, scheduling, bit
field operations, packet modification and concatenation, timed state machines, classification,
time computations (multiplications). Thus, no tendency towards a specialized or hard-wired
target architecture can be identified before further exploration. Only payload moving and

6Instruction-level parallelism occurs, e.g., during lookups or loops, but exploitation is difficult with standard
building blocks (keep it simple). Data-flow dominated payload processing such as crypto exhibits well-known
instruction- and bit-level parallelism and will be considered accordingly during exploration.

7In [207], these layers are referred to as Data Link Layer and Transaction Layer respectively. This is reasonable in the
context of IO interfaces but can be confused with the OSI layers in a network protocol context.

55

4 Application Analysis

Table 4.6 – Accesses of the WLAN reference application to shared data
(management/configuration structures, queues, and packets).

Layer Element Function Access to Memory Area***

PM-Layer EtherLookup classify dest. station global (SIB)
(TX/RX) WifiEncap/Decap header translation global (SIB, WirelessInfo)

Rate Selection observe link quality global (Rates, Statistics)
A-MSDU check SIB, append packets global (SIB), packet (Payload)*
De-AMSDU parse and split subframes packet (Payload)*
(Shared)Queue enqueue / dequeue queues

PM-Layer Various e.g., Beacon and Association global (SIB, WirelessInfo,
(Mgmt.) Rates), packet(Templates)

AR-Layer ReplayBuffer dequeue agg. queues queues, global(SIB)
(TX) A-MPDU preview aggregates queues, global(SIB)

(Shared)Queue check / dequeue queues
AR-Layer ReorderBuffer reorder queues
(RX) EtherLookup classify source station global (SIB)

BlockACK-Responder format BlockACK packet(Payload)**
(Shared)Queue enqueue queues

Payload (De-)CRC CRC32 calculation packet (Header,Payload)
Processing Crypto AES/rc4 packet (Payload)

*) depends on packet append/split function **) uncompressed BA only ***) excluding 32 B packet header

processing functions such as CRC and crypto are directly amendable to HW accelerators, as
is often done in communication interfaces [207].

4.3.2 Memory Access Characteristics

The amount of required data memory (cf. Sec. 4.2.2) and the need to share data in a concurrent
architecture motivates a closer analysis (as also discussed in [116]). Data shared amongst
elements include packet descriptors and payload, global configuration, and (aggregation)
queues. Leveraging SystemClick’s memory area profiling (cf. Sec. 5.4.4), it can be shown
that most protocol processing functions only require header modification (header processing),
whereas CRC and crypto requires access to the packet’s payload (payload processing). The
initial 32 Byte of every packet as the header suffice for WLAN, leaving only the accesses
summarized in Table 4.6 to shared data.

Since embedded (shared) memories trade off access latency with cost and are subject to ar-
bitration effects, further exploration of these accesses is necessary (cf. Sec. 6.5). The through-
put impact on the PM layer needs to be assessed and an appropriate data mapping must
be identified. Especially A-MSDU aggregation necessitates advanced packet manipula-
tion for split/merge. Since the memory accesses for split/merge depend on the choice of
packet descriptors and packet organization, they are initially abstracted as a platform service
(cf. Sec. 5.4.2). The AR layer must classify packets and is concerned with aggregation and
access to queues that will impact real-time response times.

4.4 Chapter Conclusion

An architecture-independent analysis has been performed in preparation of subsequent
exploration and implementation steps. This concerns especially timing constraints – which
are difficult to derive since the MAC/PHY interface is not standardized – and memory

56

4.4 Chapter Conclusion

requirements – which is essential for determining the precise costs for different device
configuration and architecture mappings:

• Abstracting the timing of an existing PHY, precise requirements for channel access and
response constraints for application paths could be derived. They will allow validation
of design points and help during prototype implementation.

• The code memory required for the 2x2 AP in 11n configuration is 44 kB, twice as much
as for the 11abg setup. The biggest contributor are aggregation-related functions,
indicating their complexity.

• The packet memory required is significant and on-chip buffering must thus be re-
duced to a minimum. Representing packets more efficiently, packet descriptors were
introduced that support advanced packet operations.

• Functional data memory is estimated at 27 kB for a STA, but at 77 kB for an AP –
dominating code memory for the latter. This indicates that for APs special consid-
eration must be put on dimensioning and data structures such as queues and packet
descriptors. For STAs, a Lite-MAC design can be favorable as it reduces code size
requirements.

An analysis of the application graph structure, of common functions, and of memory accesses
allows to derive a good architectural starting point and exposes framework requirements
for a productive exploration:

• Two concurrent layers, the Access-and-Response (AR) layer and the Preparation-and-
Management (PM) layer, could be identified. The packet-driven PM layer can be
pipelined as needed. Thus, a concurrent architecture and efficient ways to explore task
assignment is needed.

• WLAN proves to be both complex and generic. Adding the need for flexibility
(cf. Chapters 1 and 2) it is reasonable to start with a fully-programmable architec-
ture template. This puts the (software) application into focus and thus necessitates a
fast and precise performance feedback loop in the light of real-time constraints.

• The WLAN protocol can be divided into header processing and payload processing
(CRC, crypto). These payload operations are candidates for HW accelerators and
should be considered accordingly.

• Large data memories and shared state motivate an optimization of the memory hier-
archy. Dynamic access effects must be considered in order to assess the impact on
throughput (PM layer) and timing requirements (AR layer).

In summary, a concurrent and fully-programmable architecture is to be explored that allows
customization of the memory hierarchy and evaluation of HW/SW trade-offs. Such an
architecture and an established tool flow will also be widely applicable in the universal
MAC context, if it can be kept as protocol agnostic as possible. Analysis efforts for WLAN
total 6 effective man months (MM). This includes a lengthy feasibility analysis based on
profiling (4 MM) and initial architecture definition (2 MM). Recurring effort are estimated at
1 MM only for feasibility and memory analysis: better profiling tools are available (Chap. 5)
and the prototype presented in this thesis has raised credibility for fully software-based
solutions (Chap. 7). The MAC architecture defined in Chapter 6 can be reused.

57

58

5 SystemC-based Evaluation of
Programmable Platforms

After modeling and analyzing the WLAN application in preceding sections, a suitable ar-
chitecture template and an efficient framework is now developed to support the final steps
of the application-driven approach – exploration and implementation. In fact, parts of this
framework have already been successfully used for application modeling and simulation
in Chapter 3 and initial performance verification and memory access analysis in Chapter 4.
For the next steps it is again important to reuse application models in Click, which we
already found best suited for complex protocol applications. Such a single model from spec-
ification to deployment will increase productivity, as it enables early exploration, facilitates
verification, and will eventually provide a path to implementation.

The architecture-independent analysis motivates us to target a programmable multiproces-
sor platform for our MAC system, since such platforms are software-centric, flexible, allow
to exploit concurrency, and encourage reuse. Thus, an existing network-optimized platform
is chosen as the starting point. However, such a platform template must be customized by
exploring architectural choices. A large design space is spanned, e.g., by multiprocessor
mappings, memory distribution, and memory and communication subsystem characteris-
tics. Especially memories pose a significant cost factor and their performance impact can
even outweigh the choice of the processor.

Since detailed platform models (e.g., RTL) are both tedious to change for exploration and
time-consuming to simulate, appropriate abstractions at the system level are needed. We
leverage the SystemClick framework to abstract the performance of the target platform and to
achieve fast turnaround of exploration steps. SystemClick allows fast changes to application-
to-architecture mappings and quick evaluation of the full system function. It is extended as
needed to meet the complexity, real-time, and productivity challenge posed by our applica-
tion. This includes extensions to its modeling capabilities, a precise and fast performance
loop, and efficient memory models. Finally, simulation performance and accuracy are im-
proved and evaluated with respect to existing approaches.

5.1 Programmable Platforms

Programmable platforms, according to [68], are the next design discontinuity promising
higher productivity, easier verification, and predictable results. They provide HW and SW
templates that can be customized quickly, e.g., in terms of the number or type of processing
cores or the memory hierarchy. Unlike HW/SW co-design [18], platforms orthogonalize
concerns such that single aspects are easier to change and design decisions can be made
later [107]. Key features are thus modularity, simplicity, and scalability. Surveys on packet
processors and platforms can be found, e.g., in [242].

59

5 SystemC-based Evaluation of Programmable Platforms

PE1
I,DC D

Shared
Mem

Mem access

Messages

PE2
I,DC D

C

Acceli
I,DC D

General-Purpose Processing Engines (PE)Dedicated Accelerator

On-chip communication
network

…

Generic

IO

…

D

IP-Module
MEM

IF

Packet-Descr. IF System-Mes. IF

M S M S

Packet Descriptors System Messages

IP {

NoC {

specific

NOVA Socket

Figure 5.1 – The generic NOVA platform template [208] with processor cores embedded in Pro-
cessing Elements (PEs). The NOVA Socket decouples PEs and IP cores from the communication
and memory subsystems.

Few platforms emphasize programmability and modularity rather than high performance
(as, e.g., [173, 171]) or targeting specific architectures (as, e.g., [11]). Examples include
Tensilica’s Extensa, which allows core customization, and the StepNP platform [183], which
supports Click as a programming model. We favor the NOVA platform, since it is readily
available and yields efficient packet-processing systems based on Click [207].

5.1.1 The Network-Optimized Versatile Architecture (NOVA)

For exploration and implementation of the WLAN/UMAC architecture in Chapter 6 and
Chapter 7 we will extend on the NOVA multi-processor hard- and software platform [208].
Figure 5.1 shows its architecture template. We assume a variable number of general-purpose
Processing Elements (PEs) for protocol functions. A shared memory stores packets and shared
data structures. Further specialized nodes (i.e., co-processors or IO) may be added as needed.
A central concept of NOVA is the NOVA Socket. It decouples IP cores such as processors
and hardware accelerators from the communication and memory subsystems, facilitating
the exploration of each of these facets.

Hardware Building Blocks

On-chip communication. Memory accesses and inter-element communication are kept
separate by the communication network. For the latter, HW-supported message passing
can be used. Following the Click communication semantics, messages are primarily used to
transfer Packet Descriptors (PDs) of size 64B representing a packet between processing nodes.
In addition, System Messages (SMGs) may be exchanged, e.g., for OS like functions.

General-purpose PE. A PE comprises a 32-bit processing core with local instruction and
data memories (Harvard). Its register set includes hardware counter and timer registers.
In addition, a memory interface (pipelined, split-transaction), a tiny DMA function, and
the Message Passing Interface (MPI) with a set of hardware transfer queues are integrated

60

5.1 Programmable Platforms

memory-mapped into the module. The DMA may be used to transfer messages from the
MPI into the local memory and vice versa.

Dedicated Accelerator. Accelerators may be integrated into the platform for computation-
ally complex or time-critical functions. These typically feature message passing interfaces
and may have access to shared memory.

NOVA IO Interfaces. NOVA provides a generic template for IO interfaces that includes
autonomous packet transport through DMAs and parsing of PDs. Extending on this, a
Specialized PE (SPE) for WLAN will be developed in Chapter 6.

Programming Environment

NOVA supports Click as a programming model and provides code generation for embedded
cores based on an element library written in C [210]. Specialized library elements, APIs, and
extended code generators encapsulate HW specifics. A thin OS layer provides a runtime
environment that we abstract as platform services as discussed in Section 5.4.2. Special purpose
hardware, such as timers and co-processors, is encapsulated in a hardware-independent API.
Depending on the way of coupling, hardware can be deployed either directly using the API
within elements or indirectly by particular elements that are mapped onto the special purpose
hardware (e.g., encryption). Apart from Click, OS-like services for system messages, task
handling, exact timing, and resource sharing among several processing elements are needed.
A direct consequence of the message passing paradigm is, for instance, the lean event handler
and task scheduler, which exploits the Click run-to-completion and cooperative scheduling
semantics. Events, such as arriving PDs, SMGs, or expired timers, trigger the execution of
associated tasks that run until completed. The register file does not need to be saved.

5.1.2 Click on Concurrent Systems

Multiprocessor platforms such as NOVA are concurrent and can thus minimize response
times and increase throughput by parallelization and better resource availability. This section
discusses implications and the state-of-the-art of mapping Click onto such platforms. Click
readily satisfies the requirements for a programming model [16]:

• Identification of computational and parallel tasks, communication in between tasks,
and relevant data structures.

• Mapping of computational tasks to processing elements, distribution of data to memory
elements, and communication to the inter-connection network.

• Synchronization and scheduling of tasks.

Click is originally single threaded [113]. Its Model of Computation (MoC) following push/pull
semantics translates to function calls. Queues are explicit and connect pull to push chains
that are scheduled by timers or IO. As stated by Lee [122], Click deals with concurrency such
as converging asynchronous streams in a robust and natural way. Click’s modular elements
are combined to execution ‘islands’ [252], i.e., its modularity eases reuse but does not affect
semantics. Thus, Click’s semantics must be revisited for concurrent execution:

• Click’s model of computation in terms of execution at the graph or process level is only
defined properly for single-core execution:

61

5 SystemC-based Evaluation of Programmable Platforms

– Element connections mapped to function calls imply a strict processing order
despite the modular approach and unlike Process Networks (PNs) [99, 123].

– Timer scheduling and IO are based on First-Come-First-Serve (FCFS) and undefined
if multiple requests occur concurrently or distributedly.

• Click is very expressive in that it does not impose restrictions on the function inside
elements. Especially, packet input and output may be arbitrary, which is fundamentally
different from actors [12, 57].

– Every push/pull is an implicit synchronization point, i.e., the element yields con-
trol. Elements can thus be re-entered if the graph contains cycles.

– Return paths of push chains are an implicit synchronization informing upstream
elements that execution is finished on all downstream elements.

The consequence are two well-known approaches that either restrict Click’s expressiveness
or application complexity in order to avoid ambiguous cases. If simplified to actor semantics,
elements from a library can be mapped directly to FPGAs [116, 201], where a communication
and scheduling infrastructure is provided. A related approach re-implements elements in an
actor language to exploit element and graph-level parallelism on sub-RISC processors [158].
Focusing on IP routers, Chen [39] maps Click onto a Symmetric Multiprocessor (SMP). Expen-
sive elements are duplicated or pipelined, which is only possible for linear and independent
flows. Data structures in critical elements must be protected by locks. However, a different
approach is needed for applications with dependent flows, complex state machines, and
exact timing such as WLAN.

Together with Sauer [210] we propose to adapt the application itself to maintain the original
Click semantics, e.g., for NOVA. Explicit insertion of queues to cut task chains forces the
designer to consider implications such as reentrancy while allowing distribution of tasks on
concurrent resources. Pull chains are either triggered on stock ahead of time or stall until
a response is received, depending on the application. Communication must be reliable,
e.g., relying on back-pressure if mapped to the target platform. This effectively bounds
intermittent queues but can lead to deadlocks. If all concerns are properly reflected, we
deem the approach well suited for WLAN.

For reduced response times, we introduce an extension to Click with priorities that exploits
the fact that elements yield control at their boundaries. This Click Element Threading (CET)
re-evaluates priorities only at such points. This simplifies task switches and allows critical
tasks to be executed preemptively. CET is further discussed in Section 6.4.2.

5.2 Platform Evaluation, Exploration, and Implementation

5.2.1 Requirements

Exploration of architectural choices, e.g., by platform customization is essential for efficient
designs. However, cycle-precise and RTL models of the target platform are lacking abstrac-
tion to change and evaluate platform instances productively. Thus, a more efficient approach
to early exploration and performance evaluation of programmable platforms is needed. We
recognize the following basic requirements of Sauer [207]:

62

5.2 Platform Evaluation, Exploration, and Implementation

• Rapid generation of platform instance for exploration – requiring separation of application
and platform, support of Click, and evaluation of the full platform.

• Early system-level performance evaluation – requiring feedback from architecture timing
to system function and a high level of abstraction.

• Productive exploration and programming environment – requiring a path to efficient im-
plementations in hard- and software and an appropriate programming model.

Special challenges are posed by WLAN with respect to application complexity, real-time
requirements, and productivity. We emphasize the need for supporting Click, which proved
well suited for application modeling, to promote model reuse for increased productivity. It is
imperative to evaluate the full system function, because protocol behavior can be influenced
by the timing of the target platform (unlike homogeneous benchmarks such as JPEG). In
addition, we add the following refined criteria:

• Efficient performance feedback – Due to the complexity of WLAN, optimizations regard-
ing the system and software functions are much more common during exploration,
necessitating a fast turnaround for profiling, performance simulation, and analysis at
appropriate abstractions.

• Memory and communication facets – The WLAN application maintains complex state,
manipulates packets, and relies on shared data structures. Thus, the memory hierarchy
must be explored for efficient solutions and – together with communication – be
reflected in the verification of real-time constraints.

• Fast/accurate simulation – On the one hand, real-time requirements must be evaluated
precisely, on the other hand, verifying complex WLAN transactions necessitates long
simulation runs. Thus, high simulation performance and trade-offs between accuracy
and speed are needed.

• Productive modeling – Graphical design entry and graph transformations increase devel-
opment efficiency in the face of a complex application. In a commercial environment,
the use of SystemC [71] enables step-wise refinement and reuse, mixed-level simula-
tions, and virtual prototyping.

5.2.2 System Development at the MAC Layer

Protocol design is done with performance-abstracting frameworks, e.g., OmNET++ [235].
But exploration and development of protocol-processing systems and their architecture is
often based on ad-hoc methods (see Sec. 2.2.3). We perceive related work in the fields of
development frameworks, evaluation of HW/SW trade-offs, and the use of SystemC.

Many frameworks map protocol applications onto fixed architectures. They leverage high-
level application descriptions and optimize performance but are missing the exploration
facet. For example, Shangri-La [41] is a comprehensive compiler-assisted framework based
on the language Baker targeting Intel IXP network processors. Similarly, NPClick [217] maps
Click applications to the IXP. Click is also used for integrated development targeting an
SDR platform in [47]. SDL-based approaches rely on a runtime environment, e.g., in [179]
for WLAN. A specific operating system is often targeted for small-scale nodes of wireless
sensor networks [133, 32]. Mapping descriptions of packet functions directly in hardware as
in [224] is difficult for complex MAC applications.

63

5 SystemC-based Evaluation of Programmable Platforms

Few authors perform design exploration at the MAC layer as discussed in Section 2.2.3.
However, their approaches do not support Click or SystemC, lack precise performance feed-
back, or are inefficient. For example, the OCAPI-xl library is used for HW/SW exploration
with abstracted performance for the HYPERLAN/2 protocol [152]. SDL models of an UWB
system are manually encapsulated in SystemC and coarsely instrumented in [77]. SDL is
also used in [48] for HW/SW partitioning, but the approach based on co-simulation is too
slow for exploring programmable platforms. UML is used in [102] to evaluate a WLAN
system, but the implementation targeting an RTOS is inefficient [15].

The use of SystemC is often limited, e.g., to model the network environment or to evaluate
power aspects. Bombieri [31] and Damm [45] couple co-simulated TLM models of network
nodes with network simulation. TLM models are also used in [21] to model a shared medium
connecting embedded systems. Still, network simulation with SystemC is promising as it
facilitates integration of detailed node models and verification.

5.2.3 Existing Platform Evaluation and Exploration Framew orks

Outside the networking community, a plethora of comprehensive methodologies and tools
is available. Many of these are generic or target signal processing domains. Approaches to
performance evaluation and simulation alone are insufficient, since the exploration facet
and an efficient path to deployment are missing. We give a brief overview here, but discuss
details related to performance simulation and memory exploration relative to our work in
Sections 5.4.6 and 5.5.5 respectively:

• Abstract or static performance evaluation – e.g., based on queuing networks [223], statis-
tics [65], formal methods [213], graphs [119, 176], traces, or static analysis [145] do not
consider the full system function and dynamic effects.

• Co-simulation – of the complete system function based on Instruction Set Simulation
(ISS) as, e.g., in [63] is typically slow and does not allow early and fast exploration.
The combination with TLM abstractions as presented in [211, 33, 11] still relies on fine-
granular synchronization of memory accesses, and models are cumbersome to change
for fast exploration.

• Host-code execution – speeds up processor simulation by executing the system function
natively and back-annotating performance. It is thus the means of choice for fast explo-
ration. Existing approaches, however, either abstract performance and do not provide
accurate feedback [28, 182, 212, 186] or are too low-level and tightly synchronized for
early and fast exploration, e.g., [64, 214, 106, 42]. Abstraction of memory accesses is
only considered in [182].

A large number of exploration frameworks exists (see, e.g., [46] for an overview). According
to Sauer[207], however, only frameworks based on the Y-Chart [109] leverage distinct de-
scriptions for application, architecture, and mapping and separate concerns of application
developers and platform architects. Given appropriate abstractions, designs can thus be
explored and implemented quickly while facilitating reuse. Unlike top-down approaches
found in HW/SW co-design [18] and refinement methodologies [243, 52], such a meet-in-
the-middle approach can efficiently address the implementation gap between concurrent
application descriptions and heterogeneous hardware platforms.

None of the frameworks reviewed by Sauer – including the comprehensive Metropolis [19]
and the Click-supporting Mescal [158] methodology – were able to fulfill the requirements of

64

5.2 Platform Evaluation, Exploration, and Implementation

System Function Model Architecture Model

ApplicationApplication Platform
Click

task graph

Click
resource

description

System Function Model Architecture Model

Mapping
Simulation

Cli k

resources

SystemC

Codegen

Click Annotated Click model

g

Simulation

SystemC model

Perf DB

Profiling
framework

(a) Platform exploration with SystemClick.

R
CPU

R
BUS

…

F
ro
m
E
th

W
ifi
F
ra
gm

en
t

W
ifi
E
nc
ap

C
la
ss
ifi
er

P
rio
S
ch
ed

T
oE
th

R
IO

R
CPU

R
CoP

R
BUS communication resource

processing resource

frame

input

frame

output

(b) Mapping a Click model onto concurrent resources.

Figure 5.2 – (a) Overview of the SystemClick exploration flow. (b) Following the Y-Chart,
application and platform are kept separated and only brought together by explicit mapping.

Section 5.2.1. Two more recent Y-Chart frameworks are promising, since they use SystemC
and offer performance feedback. SysCOLA [239], however, only supports the automotive
domain-specific language COLA, and the approach in [226] targeting signal processing is
limited to actor-based languages. In addition, they do not support efficient exploration
of the memory hierarchy, and the accuracy of [226] is insufficient for real-time purposes.
Only SystemClick as described in the next section matches all basic requirements. It will be
extended to cater our refined needs as proposed in Section 5.2.5.

5.2.4 SystemClick

We have developed SystemClick together with Sauer [9] to have independent descriptions
of the system function and the platform architecture, such that different mappings from
functions to hardware building blocks can be explored seamlessly. SystemC performance
models (including function behavior) are generated from high-level descriptions employing
library elements for application and hardware resources following the Y-chart, as sketched
in Figure 5.2a. A performance analysis step provides feedback for optimizing architecture,
application, and mapping. SystemClick is lightweight and easy to extend. The different
views of the framework are explained next.

System function in Click. The application is specified in an architecture-independent
way using Click. Applications are composed from modular elements linked by directed
connections, as suited for describing packet flow and processing (cf. Chap. 3).

Architecture models in SystemC. Architecture blocks are specified as performance models
that represent shared computation and communication resources. Each block is described
by a Resource Manager (RM) in SystemC that arbitrates tasks and consumes time. Resource
managers also specify the properties of a resource, such as its type, operating frequency,
and scheduling policy. Abstract RM elements can also be inferred automatically in order to
speed up the exploration process.

Mapping and code generation. Function and architecture specifications are used as input
to the mapping step. The application graph is partitioned at element boundaries, and

65

5 SystemC-based Evaluation of Programmable Platforms

task chains and communication are mapped onto an SoC platform manually (cf. Fig. 5.2b).
Additional wrappers represent the operating system aspects of a platform. They model
the overhead required for event handling and task scheduling. From the annotated source,
the framework generates a SystemC model that is compiled together with libraries for
application and architecture using standard GNU tools. Using a performance database,
behavior and timing of the full system model can be simulated.

SystemClick covers modeling, exploration, and deployment from a single source of code.
The flow is centered around the cross-platform code generation framework Click Rapidly
Adapted to C Code (CRACC) [210], which extends the Click framework and is built on the GNU
tools. Model entry and exploration are performed with Click models that are targeted to
SystemClick’s SystemC resources for simulation. The elements are implemented in CRACC,
i.e., in C rather than C++ (which is used in the Click framework). Such an implementation is
more indicative of performance regarding resource-constraint systems and can be targeted
directly to embedded cores, leveraging the OS layer of NOVA.

5.2.5 Open Issues and Next Steps

Assessing MAC development approaches, we found that a more systematic and efficient
approach is needed. SystemClick is best suited to our needs, as it is easy to use and to
extend and allows for efficient evaluation, exploration, and deployment of programmable
platforms such as NOVA. It supports Click as needed for describing the WLAN application
and is based on SystemC.

However, a number of shortcomings must be addressed in order to make SystemClick
applicable to complex real-time applications in a productive way. For example, resource
managers have been improved by adding auxiliary interfaces and better client management.
More schedulers, e.g., based on priority, and wrappers supporting FIFO interfaces and
different flavors of pull connections have been introduced. Also, the performance database
has been extended to support multiple configurations. From the requirements of Section 5.2.1
the following main issues remain and will be discussed in the following:

• Modeling and mapping – Graphical design entry is needed in addition to advanced
mapping capabilities and modeling extensions to abstract on-chip communication.
This will increase productivity and ease of use, and is essential for comprehensive
evaluations. (Sec. 5.3)

• Performance exploration with automated feedback – Automated yet flexible methods are
needed to characterize, simulate, and analyze Click applications in terms of perfor-
mance and memory accesses while abstracting platform functions. This counters the
complexity and real-time challenges posed by the WLAN application. (Sec. 5.4)

• Memory models – Memory is a primary cost and performance factor in deeply embed-
ded systems. Efficient means for both configuration of the memory hierarchy and
consideration of performance-limiting effects must thus be available. (Sec. 5.5)

• Simulation performance – WLAN has real-time constraints but its complexity necessitates
long simulations. The framework’s performance must thus be increased and the
accuracy must be re-assessed in the light of newly added extensions. (Sec. 5.6)

66

5.3 Modeling and Mapping

Figure 5.3 – CliMMT with element library, hierarchical Click model, and its graphical and
textual representation. The mapping to platform resources is indicated by colors.

5.3 Modeling and Mapping

In preparation of the major extension steps – performance feedback and memory modeling
– we present our graphical tool CliMMT and discuss extensions to SystemClick that increase
expressiveness, including modeling capabilities for system communication.

5.3.1 Graphical Modeling of Click Applications

Design entry for Click models and their mapping so far is a textual process. But Click has a
natural graphical syntax, i.e., elements and connections that can be exploited for productive
modeling. Few dedicated tools for Click exist such as ClickController and Click!It, but they
are immature and require a live Click configuration. Thus, we have developed a graphical,
component-based editor – the Click Modeling and Mapping Tool (CliMMT) [8] – and integrated
it into the SystemClick framework.

Graphical editors are tedious to implement from scratch. But generic modeling frameworks
such as Eclipse/GMF or [55] are overly complex, require metamodels, and do not support
hierarchical modeling. Instead, CliMMT is based on Ptolemy [57], because it is easy to
extend, provides a graphical infrastructure, supports hierarchical modeling, and represents
the model in XML. Existing actor domains such as [252] could not be reused as they lack,
e.g., proper graphical representation.

CliMMT has its own representation of Click elements, extends on the idea of a component
library, and introduces capabilities for validating, transforming, and mapping Click appli-
cation graphs. Figure 5.3 shows the graphical Click model, the extended element library, a

67

5 SystemC-based Evaluation of Programmable Platforms

hierarchically zoomed compound element, extended options, and generated textual Click
code. Summarizing CliMMT’s features:

• Easy-to-use hierarchical modeling of Click graphs with drag-and-drop, model over-
views, zooming, and saving/loading of configurations. Configuration strings can be
configured and are propagated into compound elements.

• Large template library of basic elements parsed from the Click library (including port
and configuration descriptions) and user-defined compound elements.

• Object orientation extending modularity and abstraction to modeling with classes, in-
heritance, interfaces, and polymorphism [125]. Changes to classes and predefined
configuration strings are propagated to instances.

• Graph checking for correctness and resolution of agnostic ports.

• Textual Click code generation from graphical syntax and parsing of existing models.

• Mapping by assignment of colors representing platform resources. Mappings are prop-
agated in downstream direction until a manually mapped element is found to avoid
re-mapping. Platform-specifics are encapsulated by placeholder elements.

• Graph transformation, e.g., insertion of push-to-pull converters at cuts or insertion of
additional elements with information for advanced mapping.

• Tool integration includes seamless code generation for SystemClick simulation, embed-
ded cores, and the NOVA platform.

The mapping step has been extended over [210]. Graphical input is supported as explained
above. Element connections can be mapped to communication resources by inserting map-
pable cut elements, e.g., representing FIFOs (see Sec. 5.3.2). Data structures are represented
by special elements that can be assigned to storage resources (see Sec. 5.5.2). In addi-
tion, mapping of arbitration parameters such as priorities is introduced (needed for CET in
Sec. 6.4.2). These are propagated downstream and rely on Click’s StopFilter to detect already
mapped elements. For priorities, if a given element has inputs with differing parameters,
the maximum priority must be assigned. The graph can be automatically cut at every ele-
ment boundary. After flattening, appropriate wrappers are inserted, or placeholders with
information, e.g., on the nature of a connection (push/pull) and its priority are dumped so
that they can be processed by scripts.

5.3.2 Extensions for Communication Modeling

SystemClick is lacking features to model application communication, as is vital for indicative
platform evaluation. Click models are partitioned onto concurrent architectures by cutting
task chains (cf. Sec. 5.1.2). Cut tasks communicate packet contexts. Thus, communication
must be mapped onto SoC interconnect. In our framework, wrappers extend task chains
at these cuts and pass packets to communication infrastructure modeled in SystemC. Also,
wrappers trigger execution as packets become available, indicated by events. We provide
such wrappers for transactions of packets over standard signal and FIFO interfaces that can
be refined if needed. These may be used explicitly by the designer to partition, refine, and
map the communication, or be inferred automatically.

A natural match for the communication semantics of Click’s model of computation is a
reliable message passing architecture with back-pressure. In Figure 5.4, a cut task chain is

68

5.3 Modeling and Mapping

SystemC

Wrapper

SystemC

Wrapper

SystemC / Architecture

Click

Element

Click

Element

Channel

+

Delay

RM

Core 1

RM

Shared Comm.
RM

Shared IO

Click Taskchain

IOBox
sc_

fifo_if

Cut

sc_
fifo_if

IOBox

RM

Shared IO

RM

Core 2

Association with
Resource Manager

Processing Element 1 Processing Element 2
Message

Communication

Figure 5.4 – Mapping Click element connections to a shared communication architecture.

mapped onto a virtual communication system replacing the original connection. Default
wrappers are connected with I/O boxes that extend SystemC’s FIFO channels. I/O boxes may
arbitrate ports. If associated with the same resource manager, they can share their capacity.
In combination with FCFS arbitration the behavior of a PE’s shared in- and outboxes is
modeled. To reflect a simple shared medium connecting the I/O boxes, we use a hierarchical
channel that associates with an RM to arbitrate its transport function. This channel also
progresses simulation time by a transport delay that may depend on transaction size and
the RM’s operating frequency. Optionally, connecting channels can be assembled from basic
SystemC modules or fully refined, e.g., to an NoC.

Our approach preserves the direct connections between task chains, which avoids system-
wide addressing and improves performance but necessitates extensions to SystemClick. A
communication may only take place if both the medium and the target inbox are available.
ResourceManagers (RMs) must thus offer non-blocking locks and a semaphore-like capacity
interface that notifies if capacity becomes available again. In addition, concurrent RMs have
been introduced for fairness if locks occur concurrently in tightly synchronized parts of the
model (see also clocked RMs in Sec. 5.5.3). These RMs defer arbitration to the next SystemC
update phase after no more requests are registered. The last update of a delta cycle, as
would be needed ideally, is not accessible in SystemC [71]. Similar to our work, the lack
of non-consuming reads and a guard function in sc_fifo is also identified as a problem for
modeling communication in SystemC by Wang [239].

5.3.3 Discussion

The CliMMT tool proved very useful during development of the WLAN application. In
addition, it increases the acceptance at potential users that are put back by textual represen-
tations. Dependencies, similarities, and hierarchy of the application become apparent and
reuse is thus encouraged. During development and deployment, changes to the mapping or
the application structure can be done within minutes. With growing complexity, however,
graphical syntax can become tedious to use. Thus, a bi-directional automated way between
graphical and textual syntax is essential. CliMMT is extensible and can be used to visualize

69

5 SystemC-based Evaluation of Programmable Platforms

performance or memory use of elements (e.g., as in [171]). Efforts exist to visualize the flow
of packets in Click graphs [241].

The advanced mapping mechanisms proved essential during exploration. Different cut
variants opened more options for parallelization, and priorities enable better processor
utilization for low-cost solutions. The communication mapping can have a significant impact
on real-time performance if not considered properly (Sec. 6.7).

5.4 Performance Exploration with Automated Feedback

With increasing complexity the application itself becomes an essential aspect of the explo-
ration process. Appropriate abstractions for software, fast performance simulation, and a
precise performance feedback loop are thus vital for productive platform exploration. Sys-
temClick is back-annotating performance and memory accesses during simulation to reflect
the target platform’s behavior. However, a quick and systematic way to profile applications
and to analyze their behavior is missing. Targeting early exploration, our approach must be
flexible and offer trade-offs, as part of the system function may not yet be fully available and
promising exploration steps must be identified in the first place.

5.4.1 Performance Simulation Feedback Loop

Our extended flow integrates all essential aspects, namely profiling, simulation, and analysis
into a performance simulation feedback loop, as outlined in Figure 5.5: It is based on a single
source of code (1) with instrumentation points (see Sec. 5.4.3) for automated profiling and
simulation. During initial profiling (2), parameters such as selection of worst-case or average
performance and the profiling method can be given to determine computational and memory
access profiles. These are stored in a database for subsequent simulation runs. Platform
functions, e.g., for packet manipulation must be abstracted and made explicit, since the
final implementation is typically not yet available. Assumptions on their performance or on
future optimizations can also be entered in the database. During subsequent simulation (3),
the profiled code is executed while performance is back-annotated from the database at
instrumentation points. For analysis, both statistical data from the profile or dynamic
simulation traces are available (2a and 3a). Since all aspects are automated, optimizations
to the source code (4) can be quickly re-evaluated, either by changing assumptions in the
existing database or by re-profiling. All aspects are discussed in the following, focusing on
the following essential features:

• Precisely capture and back-annotate computational and memory access requirements at
code instrumentation points – at the granularity of relevant blocks and relevant data
structures. Accurately consider target platform specifics (e.g., compiler, processor)
while abstracting platform features that are not yet available.

• Allow trade-offs between automation and flexibility, i.e., inclusions of assumptions and
additional instrumentation at points of interest, and between accuracy and speed, i.e.,
instrumentation granularity and different profiling approaches.

• Provide simulation-based and static analysis methods at appropriate abstractions to
help understanding the application, identifying exploration steps, and debugging.

70

5.4 Performance Exploration with Automated Feedback

Profiling
Performance

Simulation

Analysis +

Optimization

Instrumented

Source Code

Dynamic Analysis /

Tracing, Measurements

Static Analysis /

Statistics

Manual Performance

Assumptions for

Application SW (optional)

Target Platform SW

Performance Assumptions
Target Platform SW

Performance Abstraction

Automated Profiling

Options (avg, wc, method)

for Application SW

3

4

Performance

Database

3a12a

2

Figure 5.5 – Performance simulation feedback loop relying on instrumented source code (1) for
both automated profiling (2) and subsequent simulations (3). Performance assumptions can be
added manually to generated performance profiles stored in a database. Both static (2a) and
dynamic means (3a) can be used for analysis and optimization (4).

5.4.2 Platform Services and their Abstraction

A defined distinction between application and platform functionality is needed during
early platform evaluation. The application itself must be platform independent, merely
capturing the requirements in terms of computation, communication, and memory accesses.
At the same time, services and functions provided by target platforms may not be available
at an early exploration stage, or they could be subject to the exploration itself, e.g., if they
depend on the memory hierarchy or the chosen interprocessor communication scheme.
The impact of such functions is exemplarily discussed in Section 6.6.3. In the context of
performance simulation, such services may in addition be implemented differently on the
simulation host for performance reasons or convenience. For example, native memory
management, default packet libraries, or the SystemC scheduler could be used. Aspects of
this have been discussed very recently in [85].

Therefore, we propose the following common functions that have the biggest impact on
system performance to be provided as platform services during application modeling. This
hides their implementation and allows to abstract their performance during exploration.
A robust interface is given by code macros that hide these functions during profiling and
back-annotate fixed and dynamic costs during simulation.

• Memory Management – the dynamic allocation of memory blocks through MALLOC,
AREA_MALLOC, and FREE. Performance depends on the allocation algorithm, buffering
strategy, memory hierarchy and mapping, and system state.

71

5 SystemC-based Evaluation of Programmable Platforms

Computation Resource (RM)

Click task chains

Timer

ToSysCC

… B…A

…

push

pull

run

lock/
unlock

Click

SystemC

Performance

Database
sc process

(type, arbitration policy, frequency, …)

MemoryAdapter

Storage resource (RMi)Storage resource (RMi)

lock/
unlock

lock/
unlock

...

Sync
with
mem

(type, arbitration policy, frequency)

(memory map, access distribution and costs)

lock/
unlock

lock/
unlock

ToSysCFromSysC

FromSysC

Wrappers: FromSysC, ToSysC,
Timer, MemoryAdapter

sc port

...

Figure 5.6 – Performance model for tasks mapped to a processing element (represented by the
computation RM), SystemC wrappers (in blue) including an adapter to associated storages.

• Scheduling and Packet IO – activation of tasks through timers and IO. SCHEDULE and
UNSCHEDULE abstract both fixed and dynamic parts that, e.g., take the current number
of tasks into account. Packet descriptors are made available to the PE, and a HEADER
function caches the packet header locally.

• Token communication – communication outside the packet flow. Tokens are available
locally and in between PEs. They can be generated and copied at fixed costs.

• Standard packet functions – functions provided by Click, including modifiers such as
PUSH/PULL and functions for packet creation/deletion. Expensive cases, e.g., requiring
reallocation need to be handled explicitly by the designer.

• Extended packet functions – functions to join, split, modify, and efficiently create and
kill packets, e.g., for (de-)aggregation. Actual costs highly depend on the chosen
implementation and mapping. Optimizing the standard function, packet CLONE, e.g.,
for retransmission can be performed implicitly by IO interfaces.

5.4.3 Performance Simulation and Instrumentation

Performance simulation executes task chains explicitly within a concurrent SystemC envi-
ronment that is provided by wrappers. Wrappers (cf. Fig. 5.6) handle a task chain’s commu-
nication, interface it to the shared computation and storage resources, and synchronize its
processing time with the simulation time. Using an XML-based performance database, each
task is associated with costs for a particular resource, e.g., its processing time and accesses
to memories (see also Sec. 5.5.2). At runtime, these costs are accumulated at instrumentation

72

5.4 Performance Exploration with Automated Feedback

points from performance tags stored in the database. Depending on the simulation mode,
instrumentation points can seamlessly be used as additional synchronization points with the
SystemC environment. This does not impact the accuracy of the software profile but merely
the distribution of memory accesses and the resolution of the analysis. Thus – in the other
extreme – synchronization may only take place at points of IO to reduce SystemC events for
better simulation performance.

The same instrumentation points are used for both tagging and synchronization during
simulation and for reporting instruction counts during profiling. They are added as macros
to the element source code, as explained in Section 5.6. A typical Click element has three
to five of such points. Leveraging Click, natural points for instrumentation can be found at
element boundaries such as push/pull calls and function returns. Platform functions have
their own instrumentation points. Additional update points can be added to increase accuracy,
down to basic blocks. For convenience, points can also be tagged with static costs. A runtime
parameter may be used to efficiently capture dynamic data and system dependencies, e.g.,
on packet length, in loops, or on the number of active clients.

5.4.4 Profiling Approaches

Two profiling approaches are presented, an extension to the conventional gnu profiler gprof
and a new and automated approach that exploits SystemClick’s instrumentation macros
and that is able to capture memory accesses in addition to performance. Both approaches
rely on the MIPS-Sim Instruction Set Simulator (ISS) [160], but are also compatible with other
simulators. Click models are mapped to a single-processor target using SystemClick’s code
generation framework CRACC [210] and the MIPS-SDE tool chain [161]. The simulator is run
for a specified time in instruction- or cycle-precise mode with caching disabled. Mapping
onto a single core includes the use of a central scheduler – the lightweight NOVA scheduler
– and may necessitate the inclusion of queue elements to decouple the model. However, the
function of single elements is not influenced.

Conventional Profiling with gprof

This straight-forward approach for performance analysis at the granularity of elements
extends on the tool gprof. Gprof relies on built-in performance counters and coarsely in-
struments code to produce a function call graph, which necessitates two separate simulation
runs to reduce profiling overhead. The application model is cut to subgraphs in order to
expose relevant processing paths manually. Stimulation and measurements are aided by a
profiling-only element GMonControl that allows dynamic activation of measurements dur-
ing simulation. Still, the overall process is tedious. Statistics per function are processed
by tailor-made scripts for per-element breakdowns and subtotals of stacked functions as in
Figure 5.7. Cycles counts are averaged over all activations. Cycles of subfunctions that are
shared between elements can only be averaged, as the call stack on MIPS architectures is not
easily available. This leads to further inaccuracies.

73

5 SystemC-based Evaluation of Programmable Platforms

SetCRC32 (1x)

-SetCRC32_simple_action | 3700/ 100 = 37

-Packet_length | 2400/ 600 = 4.0 . (100/ 600 x 4.0 = 400)

-Packet_data | 2600/ 3700 = 0.7 . (100/3700 x 0.7 = 70)

-update_crc | 115102/ 200 = 575.5 . (100/ 200 x 575.5 = 57551)

-gen_crc_table | ****

-Packet_put | 2600/ 100 = 26.0 . (100/ 100 x 26.0 = 2600)

-Packet_tailroom | 400/ 100 = 4.0 . (100/ 100 x 4.0 = 400)

-Packet_uniqueify | 1000/ 500 = 2.0 . (100/ 500 x 2.0 = 200)

*** Packet_put = (32)

-Packet_data | 2600/ 3700 = 0.7 . (100/3700 x 0.7 = 70)

Sum | 649.9 . (= 64991 sum total)

Figure 5.7 – Output of the gprof-based profiling exposing cycle counts averaged over element
execution and subfunction call graph.

Automated In-Place Profiling

The callgraph-based approach lacks automation, accuracy, and memory access profiling.
Without changing or extending the simulator tool, three other solutions are available:

1. Use instrumentation points to report cycle counts measured during simulation. This is
similar to gprof but allows for a finer granularity and automated back-annotation.

2. Analyze the simulator trace to extract and back-annotate memory accesses related to
every instrumentation point and categorize them.

3. Fine-granular instrumentation of every instruction or every memory access. We discard
this approach as discussed in Section 5.4.6.

Our profiling method [4] flexibly combines approaches 1 and 2, exploiting source code
instrumentation as sketched in Figure 5.8. For approach 1, instrumentation points generate
a trace of performance tags in a file during ISS, as shown on the left-hand side of the figure. On
first invocation, every instrumentation macro dumps a unique id, and the profiling overhead
to be subtracted from later measurements is calculated by measuring an empty block of code.
During profiling, the macros read built-in performance counters, dump the result and their
point id, and then reset the counter. Again, a run-time parameter, i.e., multiplier can be
used to capture control and data dependencies more efficiently. For protection of platform
functions, a CONST_COST macro is provided that excludes enclosed code from profiling or
assigns a constant cost.

For memory access profiling (approach 2), the ISS-generated trace must be analyzed as
shown on the right-hand side of the figure. Magic addresses are now used instead of
dumping to mark instrumentation points. Post-processing scripts extract the addresses
of read/write accesses and categorize them into predefined memory bins, stack, and heap
regions (cf. Sec. 5.5.2). This speeds up subsequent performance simulations, since no address
decoding is needed at runtime. Alternatively, traces of memory accesses can be stored for
every instrumentation point and replayed during simulation.

Finally, cycle counts and memory accesses are accumulated to performance tags to be stored
in the database. They can be calculated and analyzed, e.g., in the average or the worst case.
A large mean deviation at a given point indicates that the current instrumentation does not
properly capture the flow of control and should thus be refined.

74

5.4 Performance Exploration with Automated Feedback

Element xyz:
void push(Packet* p)

...

OUTPUSH(p, “forward_pkt”);
for (i=0;i<p.length;i++)

...
UPDATE_META(“loop”, p.length);
...
RETURN(“done”);

xyz – “forward_pkt” – 123 cyc.
xyz – “loop” – 128 cyc. – 68 times
xyz – “done” – 24 cyc.
...
abc – “...

Instruction Set
Simulator

InstrumentationPoint (“loop”, 128, 68)
MemoryRead – 0x00001234
MemoryWrite – 0x00001238
...
InstrumentationPoint (“done”, 24)
..

Cycle Count Trace Memory Access Trace

Element : Point– avg– min- max

xyz : “loop” – 120 – 110 – 123
“done” – 24 -24 -24

abc : ...

Statistics

Element : Point - Memory – rd - wr

xyz : “done” – Stack – 10 – 4
“done” – Packet Header - 2 - 0

abc : ...

Performance

Database

Application Library –
Instrumented
Source Code

Annotated labels at
points of

communication and
relevant branches

Figure 5.8 – Automated profiling using in-place annotations and the simulation trace.

5.4.5 Analysis

Performance analysis but also visualization of the application behavior is important for
complex protocols such as WLAN. The introduction of instrumentation points at a user-
defined granularity helps to understand the application better and faster. We leverage this
abstraction by extending SystemC’s tracing mechanisms to keep track of strings provided by
ResourceManagers (RMs) that indicate the execution of tasks and instrumentation points.
In addition, arbitrary variables can be traced, e.g., state in Click elements, filling level
of queues, or memory utilizations. Since tracing only updates when synchronized with
SystemC, additional synchronization points in the source code can be used for debugging
(cf., Sec. 5.4.3). An example trace visualized in a trace viewer is shown in Figure 5.9.

In addition, a range of statistics and extended functions are provided by SystemClick to
support the quantitative evaluation and verification of design points:

• ResourceManagers gather data on utilization in addition to tracing. They report the
overall idle and service time distribution as well as per-task breakdowns of waiting
and service time (min, ave, max). RMs could also be used for power analysis.

• IO elements gather statistics on packet flows broken down to packet size/type. They
report packet numbers and (min, ave, max) processing time per length/type.

• Packets can store the sequence of passed elements over their lifetime. Time stamps for
creation and deletion are annotated for analysis of delay and missed deadlines.

• Additional Click elements can be used to verify protocol conformance, measure through-
put, and monitor, e.g., response timing.

75

5 SystemC-based Evaluation of Programmable Platforms

Figure 5.9 – SystemClick trace file in Cadence SimVision. In addition to element execution
traces (upper part), the number of pending request at the shared memory – indicating its
utilization – and filling levels of queues are shown (bottom part).

5.4.6 Discussion and Related Work

Our approach is both flexible and fast as needed for early exploration of the WLAN ap-
plication on a programmable platform. Task chains remain explicit in SystemClick such
that they can be flexibly assigned to architectural resources. Still, speedups of at least four
orders of magnitude over RTL simulation are achieved while accuracy remains within 5 %,
as is discussed in Section 5.6. At the same time, SystemClick allows verification of real-time
processing paths and therefore of architectural feasibility, as the focus can be increased and
worst-case performance can be considered if needed. The generated performance tags/points
representing relatively large intervals together with pre-categorization of memory accesses
are the basis for fast memory models as explained in Section 5.5. In addition, they provide an
abstraction above the C language that eases the consideration of potential optimizations and
allows productive analysis and debugging. A typical drawback of simulation-based profil-
ing is that code related to exceptional behavior can be missed during initial measurements.
However, exploration of packet processing applications typically focuses around steady-
state behavior, and unknown performance tags are reported and can be given manually if
necessary.

The profiling methods offer trade-offs targeting different points in the exploration and
development cycle:

• GProf-based profiling allows an early understanding of costs and dependencies in the
application. However, it is less suited for complex behavior and lacks automation and
memory access profiling.

76

5.4 Performance Exploration with Automated Feedback

• Inplace dump is automated, fast, and captures computation cycles accurately at a user-
defined granularity. It still lacks memory profiling, but can be used for fast update
cycles during development.

• The exhaustive trace-based approach captures computation cycles and extracts and pre-
categorizes memory accesses. It is slower, since the trace must be stored (see, e.g., [157]
for a discussion) and analyzed.

A broad range of approaches to performance evaluation and profiling exists. As discussed
in Section 5.2.3, we focus on simulation-based methods that execute the system func-
tion natively on the simulation host and back-annotate estimated or profiled performance.
These can be distinguished by their annotation granularity, where our approach combines
advantages of both abstract and accurate methods.

Abstract / high-level performance annotation frameworks target specifically early explo-
ration and use very coarse-grained annotations. Simple approaches manually insert wait
statements [28]. An important aspect is flexibility of the given annotations. We agree with
Kogel [111], who demands that function and performance should be orthogonal at an early
stage of development. Another aspect is high simulation performance as needed for RTOS-
based SW development [250]. In this context, Schirner [212] discusses the importance of
synchronization granularity and annotates ISS-measured performance at the function level.
In the SESAME framework [186] a model calibration technique is proposed and simula-
tion can be accelerated by abstracting, e.g., loops based on dynamic parameters, similar
to our work. Only the MESH framework has been extended to model memory accesses
efficiently [30]. However, all approaches are lacking performance feedback accurate enough
for real-time applications.

Fine-granular performance annotation approaches aim at maximum accuracy, but vary in
the granularity of the performance analysis – from binary level to single lines of source
code – and performance annotation – from binary level to basic blocks. They replace slow,
interpretation-based ISS and compile performance annotations statically into the host exe-
cutable instead. Binary-level approaches estimate the costs of every instruction, as in [20].
An expensive memory model is needed as the target address space is mapped directly to the
host. Kempf [106] relies on a partly-optimized three-address intermediate representation
(IR) generated by the Lance compiler [132] for fine-granular annotation of static costs and
explicit instrumentation of memory accesses. This approach can be extended with ISS for
increased accuracy in critical parts [64]. Annotation on a line-to-line basis in the source code
as proposed in [157, 214] complicates consideration of optimized code. Overcoming some
of the problems of above approaches, Wang [240] uses both static and dynamic methods at
various abstractions for analysis and annotates performance up to the level of basic blocks.
Like Wang, Cheung [42, 43] considers aggregation of atomic wait statements for improved
simulation performance.

Fine-granular processor models are often used in virtual prototypes, as they allow full
and precise software coverage. This may be necessary, e.g., for verification of large-scale
systems. In our application, few control-dominated elements such as EDCA would benefit
from a complete coverage of basic blocks. However, their performance impact is limited.
In addition, during development and exploration, preciseness is often not needed, or even
misleading, as many parts of the system are still work in progress. Even worse, profiling
of larger chunks of code as in our approach proved better suited for reflecting dynamic
processor effects and compiler optimizations. SystemClick avoids the following drawbacks

77

5 SystemC-based Evaluation of Programmable Platforms

of most fine-granular approaches that slow down simulations and hinder use for early
exploration and fast development:

• Lack of abstraction – No abstraction above the (C) language level is provided, e.g., for
analysis and performance re-evaluation. No abstraction of data dependencies and
grouping or categorization of memory accesses is available to speed up simulation.
This is further discussed in Section 5.5.5.

• Lack of flexibility – The application timing cannot be changed dynamically for explo-
ration. Platform functions cannot be considered separately. Tasks are regarded as SW
and cannot be partitioned or assigned to different resources for exploration.

• Tool infrastructure – Target-specific compilers or simulators need to be modified, which
may be tedious or impossible for commercial tools.

5.5 Memory Exploration in SystemClick

The memory hierarchy of an application-specific embedded system significantly impacts its
resulting performance and cost [178]. In fact, the choice of the memory hierarchy can have
a bigger impact than the choice of the processor core [165]. Thus, its key properties and the
interplay with the application must be explored early in the design process. Click’s model
of computation makes the application’s function independent of memory interference, since
all interactions are explicit. However, especially shared memories introduce access and thus
performance penalties that are difficult to estimate due to the effects of latency, arbitration,
and multiple clock synchronization.

SystemClick effectively decouples simulation execution from performance estimation, which
makes explicit modeling of the memory hierarchy necessary. Memory models are thus
needed that reflect access penalties as precisely as possible. These models must be fast since
vast numbers of design points must be evaluated due to multiple design axes and large
parameter ranges. We have extended SystemClick for the exploration of memory hierar-
chies [5]. The modified framework targets the embedded memory design space (Sec. 5.5.1),
leverages SystemClick concepts (Sec. 5.5.2), and incorporates memory models at different
abstraction levels (Sec. 5.5.3).

5.5.1 The Embedded Memory Design Space

We are interested in the exploration of memory hierarchies for programmable SoCs as they
are used for protocol processing in devices such as home gateways and network processors.
Such deeply embedded systems exhibit specific characteristics to fulfill their performance
and real-time requirements:

• Processing elements (PEs) deploy small RISC-like processor cores. The cores have sim-
ple pipelines and do not support, e.g., out-of-order processing. Their operating fre-
quency varies with the application. The local subsystems comprise instruction and
data memories of variable size running at core speed. Caches are avoided due to their
unpredictable timing behavior. Local memory content is loaded explicitly.

78

5.5 Memory Exploration in SystemClick

• The number of PEs ranges from one to the 10s. Each PE may have an individual
configuration of type and frequency, local storage, and communication and memory
ports. Inter-PE communication (e.g., message passing) may take place directly or via
shared memory.

• Shared memories are primarily SRAM and are kept on-chip for cost and performance
reasons. They may be organized in multiple banks and are accessed via multiplexed
bus/crossbar structures. There operating frequency is different from the PE frequencies.
Thus, accesses require synchronization in addition to arbitration.

• Other clients such as on-chip CPUs or DMA engines may access selected shared mem-
ories as well, effectively increasing the contention and limiting the bandwidth.

Shared memories are typically accessed through a shared bus or a cross-bar. We distinguish
the local (e.g., PE) clock and the clock of the access system. In both cases, the overall timing
behavior of memory accesses (see also Sec. 7.3.3) is influenced by:

• Synchronization – The local clock needs to be synchronized with the memory subsystem,
for example, through an asynchronous FIFO. This typically has a static part (FIFO
delay) and a dynamic part (clock synchronization of the faster clock). For read requests,
the effect also occurs for responses.

• Arbitration – The identification of the next client to be granted access to a memory
typically takes one clock cycle (of the access system) and is based, e.g., on FCFS,
Round-Robbin, or priority schemes.

• Memory Latency – For read requests, the round trip delay of the memory becomes
important. If the memory system is not fully pipelined, it can be blocked by previ-
ous requests. If split transactions are not supported, the communication system is
essentially blocked during a read request.

5.5.2 Memories in SystemClick

Representation and mapping of data and storage. Data objects in the functional model
are described using regular C/C++ constructs. Memory areas for common heap, stack,
and compile-time data sections are created by default. The user may add extra heaps or
compile-time sections. Distinct data objects such as lookup tables can, e.g., be represented
and mapped with place-holder Click elements (cf. Sec. 5.3.1). SystemClick provides a spe-
cial AREA_MALLOC instruction to allocate and tag objects with a memory ID, enabling
automated access profiling (cf. Sec. 5.4.4). Depending on the desired mapping and analysis
resolution, a memory ID may identify individual objects or groups of objects to be allocated
into the same memory area. In the mapping phase, each memory ID is associated with a
storage resource of the platform. Using a memory map, every computational resource may
have its own mapping and access parameters.

Performance simulation. Tasks are executed in SystemC by wrappers (cf. Sec. 5.4.3). This
necessitates explicit consideration of memory access penalties. The performance database
holds tags with the number of accesses to different – pre-categorized – memory areas that are
accumulated at simulation runtime at instrumentation points. Such tags can be derived, e.g.,
by automated profiling (cf. Sec. 5.4.4). Depending on the simulation mode, the granularity of
synchronization points and thus the length of the interval to be synchronized can be chosen
seamlessly from instrumentation points. Accumulated memory accesses within such an

79

5 SystemC-based Evaluation of Programmable Platforms

interval may be handled individually (single access mode) or as a group (grouped access
mode) by a memory adapter. The adapter handles accesses per storage resource to derive
memory contention and access penalties. Alternatively, precise memory access traces can
be replayed during simulation. Due to pre-categorization and direct indexing, no memory
addresses need to be evaluated at run-time.

Memory hierarchy analysis. ResourceManagers trace idle/service utilization per task.
Building on these statistics and trace capabilities, specific performance data are gathered on
1) the accesses and stalls per processing resource and memory area, and 2) on the back log
and waiting times at arbiters. Combined with other performance results such as throughput,
response delay, dynamic memory usage, and precise execution traces (cf. Sec. 5.4.5), these
data are the input for analyses as shown in Chapter 6.

5.5.3 Memory Access Models

In SystemClick, the accumulated computation time µcomp and pre-categorized memory ac-
cesses at a synchronization point are known prior to the actual synchronization with simu-
lation time. After associating memory area accesses to storage memi using a memory map
associated with every computational resource, the tuple

µ = (µcomp, {µmem,i}), µmem,i = (acci,read, acci,write)

is presented to the memory adapter for synchronization.

This allows different approaches to reflect the latency of shared memory accesses: Accesses
can be issued one-by-one to a representation of the architecture. Or, all accesses for the
current interval can be grouped in order to predict additional contention penalties, e.g., on
a statistical basis. Finally, access latencies to selected storages can already be considered
statically in the computation time µcomp to speed up simulations.

Single-Access Mode

In single access mode, the load/store requests for all memories acctotal are ordered by the
memory adapter (MA), e.g., using a Deficit-Round-Robin schedule to guarantee an even
distribution. Every single access is issued either to an abstract resource manager RMi repre-
senting storage memi or passed to the SystemC environment, for example, to a TLM model
(cf. Fig. 5.6). The arbitration schemes at the RMi can be customized like all ResourceManagers
in SystemClick. Schemes include e.g., Round-Robbin or FCFS.

Each access is divided into five steps by the MemoryAdapter, where steps 1 to 3 can be
replaced by a single call to a SystemC port:

1. Call the blocking lock() function of RMi

2. wait() for the arbitration period of RMi

3. Call unlock() function of RMi

4. Account for extra delay associated with memi

5. Account for a fraction of the total computation time

80

5.5 Memory Exploration in SystemClick

Arbitration period and extra delay can be resource- and load/store-specific and may consist
of local PE and memory cycles. See Figure 5.10 for an exemplary read request.

Arbitration

Request Delay

Synchronization

(Read Request to Shared Memory)

1 3 117 95 15132 4 128 106 1614

Processing Engine Clock Cycles

1 2 3 4 5 6

Memory Subsystem Clock Cycles

Local PE
Subsystem

Response Delay

Contention

Memory
Latency

Communication
System

Memory

Figure 5.10 – Read request to a shared memory. Dynamic effects caused by synchronization and
contention need to be considered in addition to static latencies and delays.

We implement a number of random, fixed, and trace-based distributions in the MA to
determine the proportion of µcomp in between two subsequent accesses. For instance, a
common approach in literature is to assume a negative exponential distribution, where we
choose the parameterλ = µcomp/acctotal. In order to guarantee the total bound given by µcomp,
the rounding of cycles is balanced according to an updated λ, and accesses are squeezed
if the end of the interval is approaching. As another example, access traces derived from
automated profiling can be used for a most accurate distribution.

For cycle-accurate consideration of synchronization effects between differing local and mem-
ory clocks, it is necessary that the RMi representing storages have a notion of time. For this,
the RMi defer the arbitration of the next client to the SystemC update() phase at the end of
their current clock cycle. This synchronization of clocked RMs is demand driven and only
necessary when asynchronous requests are present.

Grouped-Access Mode

In this mode, all accesses to given storages memi during an interval I = µcomp are grouped
together and evaluated by newly introduced statistical RMi’s. Latencies for memory accesses
are abstracted in the computation time µcomp as accumulated by performance tags. The
effect of clock synchronization between PEs and memories is considered statically, e.g., in
the average or worst case. However, delay caused by memory contention is reflected in
one (as in [30]) or more penalty intervals following the initial interval I (see Fig. 5.11). With
prerequisites as above, we execute four phases at a synchronization point:

1. Set client request rate ρ j = µmem,i/I and interval duration I at all RMi

2. wait() the interval time I

3. Enter penalty phase: Repeatedly retrieve and wait() penalties Πi until remaining
penalty is below threshold

4. Clear client request rate at RMi if no penalty left

81

5 SystemC-based Evaluation of Programmable Platforms

Statistical RMi keep track of their utilization ρ, the set of active clients Cact, and requested
utilizations ρ j of every active client c j ∈ Cact. Only when request rates are set, cleared,
or penalties retrieved, the state is updated by calling an updatePenalties() function that
computes penalties for the passed interval I a posteriori, e.g., using a statistical contention
function. Of course, this assumes memory accesses and requests served to be equally
distributed in any given subinterval. Setting the contention function to zero, only memory
latencies are simulated, yielding lower bound execution times.

During the penalty phase, clients iteratively consume, i.e., delete() and wait(), their
current penalty Π j without clearing their requested utilization: This allows to consider
contention for other clients caused by accesses deferred into the penalty phase. Without
the iteration in the penalty phase, the approach of Bobrek [30] is covered, which ignores
contention during penalty intervals.

 1 = 5 req. / t

 2 = 15 req. / t

 3 = 10 req. / t

!3 = min(5, 10) + min(15, 10)

 = 5 + 10 = 15

task1

task2

 task3 !3

!1 !'1

!'3

 1,2

 2

...

...

......

Figure 5.11 – Example of estimating contention during an interval I in grouped mode. Penalty
phases Π j account for additional latency due to delayed accesses.

Iterated Contention Algorithm

In order to derive strict upper bounds for contention, iteration is needed as additional
contention might occur during the penalty phase. In this section we provide a memory
model suited for grouped access mode, which is able to estimate the total contention that
can possibly occur, i.e., in the worst case. The scheduler is arbitrary but assumed to be fair,
i.e., every client c j is served at least 1/nact,J of its request utilization ρ j during each interval
J, where nact,J = |Cact,J| denotes the number of active clients during that interval. The case of
prioritized schedulers is well understood and out of the focus of this thesis.

In a first approach (S), we exploit scheduler fairness to derive the number of totally out-
standing requests α j of client c j in the worst case: Initially, α j is ρ j × I, where I is the interval
(length) if no contention occured. For any subsequent or sub interval J, α j can be reduced by
at least ρ j × J × (1/nact,J). Now, the penaltyΠ j equals the number of outstanding requests α j

and has to be recomputed for every subsequent interval. The approach, however, leads to
overly pessimistic bounds and performs badly due to many iterations of update intervals.

For an improved approach (P), we first observe that the worst-case penalty incurred by any
client c j ∈ Cact,J in any interval J is given by

Π j =
(
∑

ck∈Cact,J ,ck,c j

min(ρ j, ρk)
)

× J . (5.1)

82

5.5 Memory Exploration in SystemClick

f o r a l l a c t i v e c l i e n t s c j ∈ Cact

update outstanding r eques ts α j / * as in (S) * /
i f (no a c c e s s e s l e f t)

s e t Π j to 0 and continue

/ * Compute penal ty π j,k between c j and ck * /
f o r a l l other c l i e n t s ck

s e t π j,k to min(ρ j, ρk) × J / * Eq . (5 . 1) * /
i f (ck i s already in penal ty phase)
bound π j,k by a p r i o r i penal ty β j,k of ck

s u b t r a c t π j,k from β j,k

add π j,k to Π j

bound Π j by outstanding r eques ts α j / * as in (S) * /

Figure 5.12 – Function to update penaltiesΠ j of all active clients c j for interval J in the combined
iterated worst-case contention algorithm (P).

Any request made by c j in J can only collide at most once with every other client, again,
using scheduler fairness (see also Fig. 5.11).

It is important to note that all possible contention between two clients c j and ck is already
considered prior to their penalty phases. Thus, the penalty at c j incurred during ck’s penalty
phase cannot be larger than the penalty ck already had when c j became active. In this case,
we can bound the partial penalty π j,k by the a priori penalty β j,k, which is stored for all other
clients ck whenever a client c j becomes active.

Both approaches are independent and can be combined, as sketched in Figure 5.12: The
penalty is computed using Equation 5.1 and bound by both a priori penalty and remaining
accesses. The worst-case penalty derived by the presented algorithm is a good indication
of the actual amount of contention that may occur. For an estimate of the average case, this
penalty can be scaled in each interval J, e.g., based on |Cact,J|, total utilization ρ, ρ j, or the
burstiness of the client. The grouped average (grouped avg.) approach used for the evaluation
in the next section divides the penalty by the number of active clients |Cact,J| in any given
interval. This effectively distributes contention evenly amongst the clients.

5.5.4 Evaluation of Memory Models

We use the transmission path of the IEEE 802.11n application (cf. Chap. 3) to assess and
compare the models. The system function is mapped to two PEs (cf. Sec. 5.5.1) running at
200 MHz. Including three DMAs for packet IO and an encryption accelerator, five clients
access a single shared memory through a bus. The performance bottleneck is at the first
PE, for which the packet throughput in Mbit/s is stated in subsequent figures. A detailed
analysis of accuracy and simulation performance follows in Section 5.6.

Impact of Access Distributions

In literature, memory accesses issued by processing cores are commonly assumed to be expo-
nentially distributed. We confirm that this assumption is also valid for our system, assessing

83

5 SystemC-based Evaluation of Programmable Platforms

Memory Clock Frequency 250 MHz

420

430

440

450

460

470

480

490

500

0.00 3.33 5.00 6.67 10.00 12.50 16.67 25.00 33.33 50.00 100.00

Additional Synchronization Points [%]

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

exponential
equidistantexponential /w gap
bursty at beginningbursty at end

Figure 5.13 – Impact of access distribution and synchronization granularity.

the sensitivity of system performance to access distributions and simulation resolution in
single access mode.

Memory arbitration is based on Round-Robin for this study. Because back-to-back accesses
will always incur a maximal waiting time, a distribution’s burstiness influences the amount
of contention. We consider two instances of two corner cases, respectively:

• All bursty access – Two patterns where all accesses are performed as a block, either at
the beginning or at the end of the interval.

• Access with inbetween gaps – If possible, accesses are never performed back-to-back.
For one pattern, accesses are distributed equidistantly, for another pattern, accesses
are randomly distributed but a gap is enforced in between accesses.

Now, these corner cases are compared with the truly random exponential distribution as
simulation resolution is increased. This increase is achieved by using additional synchro-
nization points (cf. Sec. 5.4.3): At 0 %, accesses are averaged over complete tasks. At 100 %,
up to 60 synchronization points per task account for around 100 cycles and 25 accesses each.
As shown in Figure 5.13, the considered variants of the two corner cases converge with
increasing resolution, respectively. Over 12 considered memory frequencies, the average
spread from their mean decreases from 2.4 % to 0.4 % for bursty and from 1.6 % to 0.8 % for
gap patterns. This indicates that the structure within the variants becomes almost irrelevant
in the highest simulation resolution. The exponential pattern remains nearly constant for all
synchronization/simulation resolutions.

Over all distributions, the exponential pattern deviates only 0.5 % from the mean of the two
corner cases. Compared to simulation based on a cycle-accurate access trace, it deviates only
by 1.5 %. Thus, the exponential distribution is a good approximation for our system, even
at a low simulation resolution, and will serve as our reference.

Comparison of Access Models

A comparison of single and grouped access models in terms of system throughput over
memory clock frequency is shown in Figure 5.14. We consider a set of 12 frequencies that

84

5.5 Memory Exploration in SystemClick

100

150

200

250

300

350

400

450

500

550

600

50 150 250 350 450 550 650 750

Memory Clock Frequency [MHz]

T
h

ro
u

g
h

p
u

t
[M

B
it

/s
]

single access exponential (reference)

no contention

grouped worst-case (S)

grouped worst-case (P)

grouped avg. based on worst-case (P)

grouped avg. from literature

Figure 5.14 – Comparison of single and grouped access models.

can be derived by a natural fraction of the PEs’ clocks. Still, clock synchronization effects
limit the throughput at 133.3, 150, and 250 MHz. This is also well reflected statically in the
grouped models. For the single access exponential model, which is used as a reference, the
penalty caused by memory contention is up to 23 % at 50 MHz, drops to 7.5 % at 200 MHz,
and vanishes with very fast memories. The iterated worst-case algorithm (P) outperforms the
simple approach (S) and predicts a throughput 13 % below the reference on average. Based
on this worst-case contention, the grouped avg. approach estimates the actual contention by
dividing the penalty by the number of active clients in every interval. It stays within 2.6 %
of the reference throughput in the range up to 333 MHz, up to four times better than the
approach [30] based on [40], which underestimates contention greatly. See Section 5.6.2 for
a comparison with cycle-accurate simulation.

5.5.5 Discussion and Related Work

The proposed models in combination with performance feedback (cf. Sec. 5.4) allow both
efficient evaluation of penalties for single design points as well as fast exploration of memory
mappings and architecture characteristics. It is well suited for the domain of deeply em-
bedded systems and offers trade-offs that target especially early exploration but also allow
verification of real-time constrains. In summary:

• Trade-offs – The synchronization granularity impacting the distribution of memory
accesses can be varied. In the extreme, single-access mode or access traces can be used
for verification purposes.

• Fast Simulation – The chosen abstraction and the statistical models allow consideration
of accesses over large intervals, reducing simulation overhead. Pre-categorization into
memory areas saves expensive run-time parsing of addresses.

• Fast exploration – Mappings of data structures can be changed efficiently, and the
architecture model is sufficiently abstract to be changed quickly.

85

5 SystemC-based Evaluation of Programmable Platforms

Some issues should be addressed in future work. If clients access multiple shared resources,
accesses could block each other, which is currently not fully reflected in the grouped-access
model. For single-access simulation, more complex architectures can be constructed from
standard SystemC components and SystemClick’s ResourceManagers. In addition, the
iterated worst-case algorithm (P) is not optimal in all cases, being too pessimistic, e.g., if
multiple clients request 100 % utilization.

Our exploration approach can be classified as hybrid, as it combines simulation with ana-
lytical methods and combinatorial arguments to estimate contention in given intervals. We
thus discuss analytical, simulation-based, and hybrid methods, and memory exploration
in general. But none of the approaches is suited for our design space, reflects complex
application behavior, and allows fast early exploration at the same time:

Analytical models for the memory or machine interference problem based on queuing or Petri
networks have been used to reflect the impact of memory arbitration. They barely reflect the
control flow and are tailored large-scale systems. Furthermore, they impose restrictions on
distributions and rates of request. Early work targeting mainframe computers can be found,
e.g., in [22]. The techniques in [25] include Markov chain models and analytical methods.
Hoogendoorn [83] was one of the first to rely on a combinatorial approach. Newer bus-based
and cached multiprocessor architectures were considered, e.g., in [164]. Mean value analysis
is a popular method for solving queuing networks [197]. A recent bibliography on machine
interference is found in [76, 228]. Memory is partitioned for generic applications based on
analytical models in [94].

Most models are too complex for our purpose. A practical approach is found in [40], which
we used as a reference in Section 5.5.4. There, a formula for the average response time Tk of
a memory request is derived, where k is the number of concurrent clients:

tk = δS(1 + const(k)UR)

This scales the access latency δS by the request utilization UR of the shared resource and by a
constant depending on k. However, the model is inappropriate for small numbers of clients,
as const(k) becomes 0 for k = 1, 2 and does not reflect asymmetric load requests. When
applied to our problem, contention is thus underestimated greatly.

Simulation-based approaches in general were discussed in Section 5.2.3. Even for archi-
tectural exploration there is an industry trend toward very accurate co-simulation (e.g., by
ARM, VAST) that synchronizes every memory access with precise models, e.g., in TLM ab-
stractions [211, 11]. Such models can vary the level of abstraction but are still detailed and
tedious to change. Models are often biased and focus around bus systems such as AMBA
in [180, 143]. Recently, the function has been abstracted completely to generate artificial
memory traffic for complex bus models by CoWare [44].

Revisiting performance annotation frameworks (cf. Sec. 5.4.6), efficient memory abstractions
are rarely found. Most fine-granular approaches [106, 42] and even abstract ones [111, 28]
synchronize single transactions or ignore the problem [157]. Some consider the use of
cache simulators to speed up simulations, e.g., [214, 240]. Problems include proper address
generation [43] and fast modeling of cache strategies [66]. Wang [240] leverages the similarity
to host access traces and accumulates accesses for basic blocks, which is more efficient.
Unlike our pre-categorization approach, such cache models must, e.g., rely on binary search
to determine cache contents. In addition, they focus around modeling cache strategies rather
than the abstraction of arbitration effects.

86

5.6 Quality of Results

Hybrid simulation-analytical approaches have been proposed by Bobrek [30]. Discrete
event simulation is combined with statistical models to compute penalties for shared re-
source accesses, similar to grouped accesses in SystemClick. However, a proprietary sched-
uler is used instead of SystemC. Contention during penalty phases is ignored, and they
use the imprecise model from [40] (cf. Sec. 5.5.3). In [29], this model is extended to statis-
tical regression learning based on access attributes to predict contention. Average requested
utilization ρ, access balance B, and number of active threads T are identified as the most
significant parameters. Our approach considers the same parameters, but details accesses
for every client instead of generalizing the access balance. By learning functions f1, f2, β from
co-simulation, the delay per unit time (DPT) can be estimated as

DPT = f1(ρ) + f2(B) + βT .

While results seem promising, a number of drawbacks exists: First, precise co-simulation
of the complete system must be available. This is not the case early in the design process,
and difficult if the memory subsystem itself is subject to exploration. Furthermore, a strong
dependency on interaction patterns during the initial training period is reported. This is less
severe for the considered homogeneous, loop-centric algorithms. By generalizing the access
balance during initial training, however, application knowledge about heterogeneous task
activation is lost, which is essential for WLAN. Finally, the authors find their approach less
suitable for small numbers of clients.

Other hybrids include [213], which focuses on real-time behavior and derives worst-case
timings from abstract stimuli. Shared resource accesses are grouped locally and then inte-
grated into a formal system-level performance simulation. Similarly, the authors of [118] try
to combine formal network calculus with simulation. Both approaches, however, focus on
priority schedules and do not use an accurate description of the system’s function.

Exploration and optimization approaches are often based on static methods that rely on an
initial simulation and target loop-centric benchmarks that are easier to abstract. Dynamic
and complex behavior as in WLAN thus cannot be reflected. For example, an abstract
communication analysis graph (CAG) is extracted from co-simulation with Polis/Ptolemy
in [119]. The CAG captures computation, memory accesses, and inter-task synchronization.
After mapping, every transaction is evaluated in terms of access delay and contention.
Statistical application graphs are used, e.g., in [65]. Approaches for scratch-pad and cache
partitioning based on static application graphs include [176]. Static ILP formulations are
used in [227] to derive scratch-pad allocation and static task schedules. Dynamic, compiler-
directed allocation for heap memory to scratch-pads is shown to be more efficient than caches
in [53]. In [177], generic memory optimization techniques are presented. There is a large
body of work on loop optimization and memory design limited to algorithmic kernels, see,
e.g., [236], and on cached systems [66].

5.6 Quality of Results

Simulation performance is essential, since the complexity WLAN and the large design space
require a large number of long simulation runs. In addition, the results must be accurate
enough for indicative evaluation of design points and verification of real-time constraints.
The performance impact of architectural changes must be reflected properly. We present

87

5 SystemC-based Evaluation of Programmable Platforms

optimizations to SystemClick, compare performance and accuracy to native X86 execution,
ISS, and RTL simulation, and relate to other approaches.

5.6.1 Simulation Performance

First, we focus on the performance of SystemClick in standalone configuration, i.e., serving
as a single-PE model comparable to an Instruction Set Simulator (ISS) embedded in SystemC.
Previously [207], SystemClick’s accuracy has been shown to remain within few percent in this
case. However, the performance of the as-is implementation is insufficient for our purpose.
Thus, we discuss optimizations and broaden the evaluation by assessing performance-
influencing factors for different benchmarks.

Framework Optimizations. SystemClick’s speedup over MIPS ISS is shown in Table 5.1 for
the baseline implementation and a WLAN-TX benchmark as published in [9]. As absolute
bounds, the benchmark is targeted to MIPS and X86 using CRACC (cf. Sec. 5.4.4). Native
X86 simulation (A) shows a speedup of 4400X over ISS (D), which is in the range found
in the MIPS documentation [161]. The upper limit for SystemClick’s performance simu-
lation is given by behavior-only simulation in SystemC (B), where the lightweight NOVA
scheduler is replaced by the SystemC scheduler and SystemClick’s wrappers encapsulate
Click task chains. Running the benchmark on a processor model comparable to ISS ne-
cessitates resource arbitration, i.e., associating with a ResourceManager (C’, untimed) and
additional performance annotations (C, perf.). For the baseline implementation, we observe
that behavior-only simulation reaches less than 50 % efficiency, affecting all other config-
urations accordingly. Furthermore, adding performance annotations limits the speedup
significantly (C vs. C’). Consequently, we optimized:

• SystemC infrastructure – including the lock() procedure and event handling at resources
and wrappers, and handling of empty resources. This increases the upper bound (B)
by 1/3 to more than 60 % efficiency rel. to the native execution (A).

• Performance annotations – including caching of tags, optimized accumulation after ini-
tial execution, adjustable synchronization granularity, and better integration of tracing
(as sketched in Fig. 5.15). This improves timed simulation (C) by 7X, approaching the
limit given by (C’) and only 58 % slower than native execution.

Table 5.1 – Simulation speedup of SystemClick for the WLAN-TX preprocessing benchmark
(baseline [9] and optimized implementation [4]).

Baseline Impl. [9] Optimized Impl. [4]
Configuration Speedup[X]* Efficiency** Speedup[X]* Efficiency**

A Native X86, behavior only 4400 100.0 % 4400 100.0 %
B SystemC, behavior only 2070 47.0 % 2750 62.5 %
C’ SClick /w untimed resource 1500 33.9 % 1870 42.5 %
C SClick /w perf. annotation 260 5.9 % 1840 41.8 %
E SClick /w add. 2 PE arch. 190 4.3 % 511 11.6 %
E’ SClick /w add. shared com. 180 4.1 % 450 10.2 %
D MIPSsim ISS 1 0.02 % 1 0.02 %

*) Open-source SystemC kernel and commercial MIPSsim ISS **) simulated speedup / native speedup

88

5.6 Quality of Results

Table 5.2 – Simulation speedup over ISS for different benchmarks.

Benchmark
WLAN-TX WLAN-TX WLAN-TX PCI-X headers
(Tab. 5.1) no CRC 2x CRC from [207] (Sec. 5.6.2)

Cycles / timing event 5024 1050 9100 1200 583

A Native X86 4400 3650 4450 3970 3070
B SystemC behavior 2750 (63%) 1160 (32%) 3270 (74%) 1400 (35%) 400 (13%)
C SClick perf. anno. 1840 (42%) 580 (16%) 2450 (55%) 680 (17%) 120 (4%)
D MIPSsim 1 1 1 1 1

Open-source SystemC kernel and commercial MIPSsim ISS. Efficiency relative to native X86 execution given in brackets.

Simulation Benchmarks. The simulation performance is influenced by the characteristics of
the benchmark. Especially event handling shows a large overhead in SystemC, whereas the
lightweight NOVA scheduler can handle subsequent events much faster in ISS simulation.
A main factor thus are the simulated Cycles Per Timing Event (CPTE), which is related to
simulation performance for a number of benchmarks in the following.

We analyze three benchmarks. First, the WLAN-TX benchmark is re-considered, which
features protocol processing, timers, and payload processing such as CRC for a sequence of
packets and proved representative for our domain. By doubling and removing the expensive
CRC calculation, the CPTE is varied as shown in Table 5.2. The effect on performance
simulation (C) is a drop by 68 % if the CPTE are reduced by 79 % or an increase by 33 %
if the CPTE are almost doubled. Another benchmark from the packet processing domain,
PCI-X [207], proves to be comparable to no CRC. Finally, the headers benchmark that will
be used in Section 5.6.2 differs from the others, since it comprises little computation and
many timers. It was designed specifically to evaluate extreme effects and accuracy of the
memory models. In summary, we conjecture the following influences assuming that ISS
(D) performs on a constant level.

• X86 (A) – Performs better for homogeneous processing (e.g., CRC) and worse for
scheduling and control-dominated code, probably due to the superscalar and opti-
mized host processor. In addition, caches may have an effect, e.g., on the headers
benchmark, where a large number of packets is produced on store beforehand.

• SystemC (B) – In addition to event handling, performance can be impaired as native
(libc) memory management is used rather than the NOVA implementation, which is
very efficient in the absence of reallocations (e.g., for headers). Also, platform and
packet functions are implemented differently.

• SystemClick (C) – Annotated simulation is influenced by all of the above factors. In
addition, the granularity of the instrumentation (e.g., for very small elements as in
headers) and the size of the element database can further impact performance.

For typical packet processing applications, a performance simulation speedup of almost
three orders of magnitude over ISS and 20 to 50 % efficiency relative to native X86 thus
are realistic. In fact, the sparse nature of the full WLAN application leads to even higher
speedups in SystemC, since the discrete event scheduler skips over idle periods.

89

5 SystemC-based Evaluation of Programmable Platforms

d ef ine UPDATE_META_DP(name , labe l , m u l t i p l i e r)
s t a t i c void * caching_hook = 0 ;
i f (m−>r esour ce)

update_meta_cached (name , m, labe l , m u l t i p l i e r , &caching_hook) ;
i f (SYNC_ELEMENT)

i f (COUNT_PP) m−>pp_count++;
rm_trace_annotation_point_d (name , labe l , m) ;
wrapper_sync_simulation (m) ;

Figure 5.15 – Optimized instrumentation macro for performance simulation with cached tags.
Synchronization can be disabled or based on counters. The caching hook refers to a MetaUpdate
structure that initializes the tag on first execution accessing the database and resource properties.
Subsequent tag accumulation only requires direct indexing.

5.6.2 Architectural Simulation

For full platform evaluation, the single-processor performance simulation models must
be multiply instantiated and coupled with an architecture model. Thus, we extend the
assessment to SystemClick’s abstract architecture representation in the following. Table 5.1
showed the speedup for the WLAN-TX benchmark being mapped to a two processor system
connected with FIFOs (E) or shared I/O boxes (E’). As communication channels and more
ResourceManagers for shared resources and additional PEs are involved, the simulation
performance is reduced by 72 and 76 %. Still, SystemClick runs approx. 500X faster than
single-PE ISS simulation and at about 10 % efficiency compared to native execution while
evaluating the full application on a concurrent architecture in SystemC.

In the following, we broaden this evaluation by reflecting a heterogeneous memory ar-
chitecture in addition, using memory models as described in Section 5.5.3. The accuracy
and performance of SystemClick is assessed with respect to the access models and with
cycle-accurate RTL simulation of NOVA [208].

Accuracy and Sensitivity

SystemClick’s accuracy compared to a real system and the sensitivity to changes of the
architecture and of the memory mapping are vital for early yet quantitative design space
exploration. We use the headers benchmark to expose effects of memory interference on
system performance. It generates a burst of packets that is mainly processed by header-
modifying elements of the WLAN TX path and then transfered to the PHY. By changing the
mapping of packet headers from local to shared memory (cf. Sec. 6.5.1), memory effects can
be exposed. Using a cycle-accurate SW profile, the simulated execution time of the single-PE
baseline (C) can be matched almost exactly with the RTL reference.

Representing two typical exploration steps, the memory mapping – namely of packet headers
– is varied and the application is partitioned onto a concurrent system comprising two PEs
and a DMA. The consequences are different memory access profiles and thus total access
latencies due to contention and memory distance.

• Benchmark (target) run times are summarized in Table 5.3. SystemClick’s accuracy
stays within 1 % of the reference if the architecture is changed, and within 3.6 % if the
memory mapping is changed and significantly more shared accesses occur.

90

5.6 Quality of Results

Table 5.3 – Accuracy of memory access models when compared to cycle-accurate RTL
simulation for two different architectures and memory mappings.

Header mapped locally Header in shared memory
Time* [µs] Error Time* [µs] Error

Single PE RTL Simulation 345 – 417 –
Single-Access** 345 0.0 % 423 1.4 %
Grouped-Access*** 345 0.1 % 429 2.7 %

Two PEs RTL Simulation 239 – 306 –
and DMA Single-Access** 241 0.8 % 309 1.2 %

Grouped-Access*** 241 1.0 % 317 3.6 %

*) simulated target execution time for preprocessing a burst of 15 packets (headers benchmark)

) SystemClick simulation with exponential distribution and *) using the grouped-avg model

Table 5.4 – Impact on system performance, i.e., target execution time as in Table 5.3, when
migrating to a concurrent architecture or allocating more data to shared memory.

Changing Architecture Changing Memory Mapping
Headers Local Headers Shared 1 PE 2PE+DMA

RTL Simulation -30.9 % -26.7 % 20.9 % 28.1 %
Single-Access -30.3 % -27.8 % 22.2 % 28.6 %
Grouped-Access -30.1 % -26.1 % 24.2 % 31.3 %

• Essential for exploration is the sensitivity of the models to such changes. From Table 5.4
it can be observed that both the performance improvement of migrating to the con-
current architecture (up to -31 %) as well as the penalty due to allocating more data
to shared memory (up to 28 %) are reflected accurately in SystemClick. As expected,
increasing concurrency is less benefitial for the mapping with more shared accesses
due to memory contention.

• If compared, the single-access model outperforms grouped accesses marginally in terms
of accuracy. This means that grouped accesses can well be used for design exploration,
while single-access models allow verification of single design points.

Simulation Performance

Simulation performance of an architectural simulation as in the preceding section depends
on the chosen access model and the total number of shared memory accesses. Table 5.5
reveals the speedup over RTL simulation for the concurrent two-PE setup.1 With headers
mapped locally, the grouped-access model is about one order of magnitude faster than
the single-access model and produces only 1/30 of the simulation events, resulting in a
speedup of 50000X. Moving to the shared mapping, the tightly synchronized single-access
model produces almost 40 % more simulation events reflecting the increased number of
shared accesses. Performance is down by 22 %, while the grouped model remains almost
unaffected. In fact, the grouped model performs only about 12 % worse than the simulation
without any memory model. As a reference, we give the speedup of pure ISS (725X) and
behavior-only simulation in SystemC (cf. Sec. 5.6.1).

1The results in [7] proved too pessimistic (2-4X) after revising SClick’s settings and measurement metrics.

91

5 SystemC-based Evaluation of Programmable Platforms

Table 5.5 – Simulation speedup over cycle-accurate RTL simulation for headers with different
memory models and system configurations.

Local Mapping of Headers Shared Mapping of Headers
Speedup [X]* SysC Events Speedup [X]* SysC Events

Two PE, single access 6000 10740 k 4700 14120 k
Two PE, grouped access 50000 370 k 47600 380 k
Two PE, no mem. model 57000 365 k 57000 365 k

Single PE, behavior 286000 132 k – –
ISS 725 132 k – –
X86 > 2 M 132 k – –

*) over RTL with Modelsim 6.1, simulation time comprises 5 min. application initialization and 5 min. packet processing.

Previously [7], we have assessed the five-client setup of Section 5.5.4, which heavily stresses
the memory models. In this case, the grouped-access model outperformed single access
by up to 150X, mostly due to the 330X increase in SystemC events. Thus, the advantage
of the grouped models can be one order of magnitude higher than given in Table 5.5.
Similarly, judging from Table 5.1, we can expect architectural simulations for representative
benchmarks to be in the range of up to 200000X faster than RTL (including a 10 % penalty
for memory models) and reaching efficiencies between 2.5 and 10 %.

5.6.3 Discussion and Related Work

SystemClick enables both fast and accurate exploration and performance verification of
protocol-processing applications. Trade-offs are available, e.g., fast grouped-access memory
models can be used for design exploration, while more accurate single-access models allow
verification of single design points. Simulation performance of single-PE models is approx.
three orders of magnitude above ISS, with efficiencies relative to native execution averaging
at 25 % and peaking at 74 %. Architectural simulations run 70X to 450X faster than a
single ISS and up to five orders faster than RTL simulation. The accuracy remained within
few percent, which we deem sufficient for early exploration, and was shown to reflect
architectural changes properly.

SystemClick’s single-PE model performs at least as good or better as existing work.2 In-
terpretative ISS such as our MIPS reference runs approx. 4000X slower than native execu-
tion [161]. Both higher and lower values are found in literature, e.g., 16500X for Tensilica
ISS by Cheung [42] or 1600X for Tricore ISS by Schnerr [214]. Modern compiled [198] or
hybrid [64] ISS is reported only 68X resp. 83X slower. Revisiting the annotation approaches
of Section 5.4.6, both Schnerr and Cheung emphasize aggregation of annotations prior to
SystemC synchronization. They achieve a maximum efficiency of 6 resp. 3 %, one order of
magnitude below our maximum efficiency. Notably, Cheung’s accuracy remains only within
6 % despite fine-granular instrumentation. This could be due to neglected dynamic effects
that can be captured better for larger blocks.

A closer look at the benchmarks and simulator environments is needed for better compar-
ison. Unfortunately, no benchmark from our domain is widely accepted. Instead, multime-

2An exact comparison is difficult due to the lack of established metrics. In cases where no direct comparison to
native execution is given, we use the frequency of the host processor as a reference instead, e.g., to derive the
efficiency (simulated cycles to native cycles) or the corresponding slowdown.

92

5.6 Quality of Results

dia or crypto benchmarks with very different characteristics are prevailing. For example,
Schirner [212] reports an efficiency for SW-only simulation with function-level annotations
of up to 48 % for JPEG. Such homogeneous kernels require very sparse instrumentation in
SystemClick if the run-time data dependency parameter is used. Wang [240] reports up to
80 % efficiency for AES. But after embedding the simulator in SystemC, efficiency drops to
25 %. In fact, both approaches perform application scheduling natively, either implicit or
using an RTOS model. While our results are at least comparable, it must be noted that Sys-
temClick completely relies on the SystemC scheduler. This impairs simulation performance.
However, SystemClick is therefore not limited to HW/SW co-simulation and rather allows
to flexibly assign tasks to arbitrary resources for exploration (similar to the virtual models
in [105]) and enables, e.g., high-level tracing.

From this perspective, we relate to architectural simulation and especially the memory hi-
erarchy. Adding the memory facet significantly impairs performance of other approaches.
Kempf reports a speedup of only 10X over LISATEK ISS [106] when memory accesses are
issued directly to a TLM model. Even though not directly comparable, the performance of
Wang decreases by at least one order of magnitude for relevant benchmarks if cache simu-
lation is added. Our grouped-access model reflects penalties from shared resources at only
10 % performance degradation, outperforming single-access models by one to two orders
of magnitude. This is comparable to the findings of Bobrek for their hybrid approach [29],
who report 40X speedup over cycle-accurate accesses.

Full system simulation is hard to assess. RTL models of MP-SoCs are typically in the
range of 100–1000 Hz, i.e., about 2 million times slower than native execution of the system
function (in accordance with Tab. 5.5). Replacing processors with ISS instances improves
this by 10-100X [200, 63]. If the architecture is represented with SystemC/TLM models, the
speedups can be 100X up to 10000X [148]. The virtual prototype presented in [243] is in this
range, running at 100 kHz. Surprisingly, the more abstract approach by Kogel [111] based on
virtual architecture mapping comparable to SystemClick performs only marginally better.
The abstracted approach of Kempf [105] achieves 100X over an ISS-based IXP co-simulator
but neglects the memory hierarchy. In the range of SystemClick (single-digit efficiency,
speedup over 50000X), we recognize the abstract TLM and function-level RTOS models of
Schirner [212]. However, these are less flexible, run natively (as discussed above), and
neglect at least parts of the memory hierarchy.

In summary, SystemClick’s single-PE simulation is one order of magnitude better than fine-
granular approaches and at least comparable to abstract or optimized frameworks, but is
sufficiently accurate and flexible as needed for productive exploration. Adding the memory
facet reduces performance by one order of magnitude in related approaches, whereas our
models hardly degrade. Architectural simulation reaches four to five magnitudes above
RTL, which is at least comparable to recent very abstract and restricted RTOS/TLM models
while providing precise performance estimation of SW tasks and shared resource accesses.
We conservatively estimate the speedup over full virtual prototypes to be in the range of two
orders of magnitude, depending on the level of detail or the flexibility they offer. Considering
the efficiency of our approach, significant speedups could only be expected if the SystemC
kernel is further optimized or parallelized [58].

93

5 SystemC-based Evaluation of Programmable Platforms

5.7 Chapter Conclusion

SystemClick with our extensions is a comprehensive development framework that supports
all phases of our application-driven methodology: It aided application modeling in Chap-
ter 3 and initial analysis in Chapter 4; it will abstract the performance of programmable
platforms for early exploration of architectural trade-offs with fast turn-around times in
Chapter 6; it will provide a path to implementation in Chapter 7. Having contributed to the
initial implementation [9], we now summarize the extended framework and discuss its key
characteristics.

We have extended SystemClick to counter the challenges posed by application complexity,
real-time requirements, and the need for productivity when developing an efficient MAC
system. Our graphical editor CliMMT [8] is library-based and together with the Click
extensions of Section 3.2.2 provides a productive application modeling framework for MAC
protocols. It is complemented by advanced mapping features for priority schedules and data
structures that proved essential for exploring efficient application-to-processor and memory
mappings. SystemClick’s expressiveness and library of architectural models was extended for
memories and shared communication, including, e.g., arbitrated FIFOs and cycle-accurate
resource managers. Main contributions comprise:

• Automated performance feedback loop – A feedback loop integrating profiling, simu-
lation, and analysis was introduced [4]. It enables early feasibility studies and proved
essential for indicative platform exploration as well as verification and optimization
of design points in terms of real-time constraints. The approach is centered around
a single source instrumented at element boundaries and user-defined points. Precise
performance feedback is obtained from ISS-based profiling that separates specifics of
the target platform from the application. Profiling and simulation based on perfor-
mance tags are available at different granularities and automation levels, up to the
capturing of both computation and memory accesses. During simulation, perfor-
mance is back-annotated from a database, orthogonalizing it from behavior and thus
allowing quick evaluation of alternatives. SystemClick’s infrastructure was optimized
for simulation performance and for analysis based on tracing and statistics, especially
improving turn-around during exploration.

• Memory exploration – The memory facet was added to SystemClick targeting hetero-
geneous hierarchies in deeply embedded systems [5, 7]. Access penalties from shared
resources due to latency, arbitration, and synchronization can be reflected. Wrappers
accumulate pre-categorized accesses to user-defined data structures and regions from
profiled tags. Accesses for a given interval can then be reflected at two different levels
of abstraction:

– In single-access mode, cycle-accurate stimulus to abstracted memories or full Sys-
temC models is generated. The distribution of accesses is chosen by the user or
based on traces. This allows precise verification of single design points.

– The grouped-access mode synchronizes groups of accesses by invoking iterative
contention estimation functions in a hybrid simulation/analytical approach. Our
algorithm yields upper penalty bounds and can be scaled to average contention.
This mode is up to 100X faster than single accesses and thus well suited for
identifying ideal memory mappings from hundreds of design points. Accuracy
could be increased by at least 4X over a related approach.

94

5.7 Chapter Conclusion

The following key aspects make the extended framework especially suited for productive
development and early exploration of efficient systems at the electronic system level:

• Seamlessness – Despite its light-weight nature SystemClick seamlessly covers our devel-
opment process and design space: It comprises modeling, early verification of function
and feasibility, automated performance feedback, high-level analysis, and code gener-
ation. All relevant facets including computation, HW/SW trade-offs, communication,
and memory can be reflected (see Chap. 6 and [2, 5]). A single source of code is used,
avoiding reimplementation and increasing productivity.

• Appropriate abstractions – The Y-Chart proved key to efficient development, as it allows
to optimize application, architecture, and mapping separately [109]. SystemClick
complements this with abstractions above the C language and RTL for:

– Application – Click’s modularity eases reasoning about application and mapping.
User-defined instrumentation raises the abstraction to functional blocks that can
be considered for optimization and that enable true high-level analysis. Platform-
specific functions are explicit and abstracted as services.

– Mapping – User-defined data structures and, e.g., packets are assigned to memory
areas for mapping to storage resources. Click task chains remain explicit and can
have, e.g., priorities. Performance is kept independent of behavior.

– Architecture – Building blocks are abstracted and configured as needed (e.g.,
scheduling and performance). Tasks can be assigned flexibly to resources.

This results in fast turnaround times during exploration (see Sec. 6.9). In addition,
accumulating performance tags with accesses pre-categorized to memory areas is vital
for efficient consideration of memory accesses in groups.

• Quality of results – The careful choice of abstractions and the flexible synchronization
granularity ensure both high simulation performance for design exploration (as in
Sec. 6.5.1) and accuracy for verification. Speedups reach up to five orders of magnitudes
over RTL and at least two orders over virtual prototypes. Further improvements could
only be achieved if SystemC is discarded for task scheduling, sacrificing mapping
flexibility. Grouping memory accesses outperforms single accesses by up to 150X. The
accuracy compared to the target system (RTL) remains within few percent and proved
sufficiently sensitive to reflect architectural changes [7]. In general, SystemClick trades
off speed and ease of use with accuracy. However, especially during early exploration
accuracy can be misleading.

• Extensibility – The use of SystemC enables interfacing with existing IP, e.g., based
on TLM. More complex modeling, e.g., for hierarchical communication and pipelined
memory systems can be achieved from standard SystemC constructs and our extended
library. SystemClick supports other domains and MoCs in principle. Last not least, the
framework can be extended to the power facet, as the most relevant utilization data
(memory, processor, communication) are known.

The framework’s quantitative impact on productivity and the benefits of the application-
driven methodology are discussed at the end of the respective chapters for each step. A
summary is found at the end of the development cycle in the conclusion to this thesis.

95

96

6 Platform Exploration

This chapter investigates an efficient MAC architecture for state-of-the-art and future WLAN
products. Such an architecture must be as programmable as possible to support evolving
standards and to ease the development in short time-to-market cycles. Ideally, a platform
is provided that can be targeted to different product configurations (e.g., access point and
station) and that is adaptable to future protocol versions and related standards. At the same
time, costs must be minimized: Chip area is the main cost driver in today’s devices, and
on-chip memory and processors are significant contributors.

In step four of our methodology – architecture exploration – we perform a search of the
architectural design space based on the reference application. Since the emphasis is put on
programmability, the search can be narrowed down to the exploration of a generic, modular,
and programmable architecture – the NOVA platform.

During the process, we follow the Y-chart by optimizing the platform instance, mapping,
and application separately. The starting point is a generic, single-core platform instance.
This instance is utmost flexible but likely to fail other design objectives. The benchmark
scenarios introduced in Section 3.4 allow the evaluation of architectural options during
exploration of core type, multiprocessor mappings, the memory hierarchy, HW/SW trade-
offs, and system communication. SystemClick together with accurate performance profiles
is used to evaluate design points by simulation, capturing dynamic effects.

Eventually, a platform template optimized for MAC operation is presented that is customized
and quantified for a range of WLAN device configurations. In addition, the productivity of
our approach and its applicability to related protocols is assessed.

6.1 Design Space and Architectural Baseline

Design space exploration (DSE) is a well-researched topic in the field of embedded systems [246]
and computing architectures [181] in general. Ample work is available on network proces-
sors [216] and their design space [70] (also in terms of their memory hierarchy [165]). In
wireless systems, the focus is often put on the PHY layer (e.g., [127, 140]). However, little is
found on flexible WLAN systems and their deeply embedded and real-time critical MACs:
Other work is either too specialized, such as exploring multithreading [82] or instruction set
extensions [91], or too generic [249]. Samadi [203] targets a specific architecture and RTOSes.
Liu [141] focuses on a BlockACK implementation.

Instead, we need to explore IEEE 802.11n WLAN on a generic platform and for product-
relevant device configurations. NOVA (cf. Sec. 5.1.1) is an ideal starting point: Its modularity
exposes all relevant axes. It is not limited to specific processors or communication structures
and can even be used to emulate other platforms. In addition, it is readily available and
supported by SystemClick such that design points can be evaluated quickly. Leveraging

97

6 Platform Exploration

platform-based design, we limit the design space and customize, refine, and extend NOVA
towards our Wireless LAN on NOVA (wilaNOVA) architecture.

6.1.1 Baseline Architecture Setup

The exploration starts with a single-core instance of NOVA. Figure 6.1 details its components:
a single processing element (PE) is connected via message passing and a shared memory
to generic host and IO interfaces.

PE1

IC D

Shared

Mem

Mem access

Messages

C

Fetch-DMA,
Transmit Timing, CCA

Store-DMA, Header Generation,
Timestamping

Wireless LAN function

On-chip communication network

WLAN-IO

Host-IO

(Ethernet)

C

Figure 6.1 – Basic single-PE instance of NOVA with generic host and WLAN IO interfaces.

The two IO modules (Ethernet, WLAN) are decoupled by NOVA sockets. Consequently,
all communication is based on packet descriptors (PDs) and/or system messages (SMGs).
PDs are generated upon packet reception. The platform is optimized for packet processing
and thus relies on DMAs to move packet data in and out of the system [207]. These data
movers have a separated, direct access to the shared memory. Free memory segments are
always available. The generic IO interfaces are a mere placeholder for concepts presented in
this chapter (e.g., timely packet transmission and timestamping). The channel status (CCA)
is sent to a PE via system messages. The MIPS M4K [160] is used as the PE’s embedded
processing core, for which the application is compiled with CRACC [210]. An application
performance database has been profiled using instruction-accurate ISS (cf. Sec. 5.4). Ideal
(shared) memories are assumed initially, i.e., memory accesses have no additional latency
and are not subject to contention.

6.1.2 Design Objectives and Exploration Steps

Gries [67] divides the space for design exploration into an objective and problem space.
Several of the primary objectives in [67] are relevant for WLAN:

• Cost – concerns primarily chip area. It is our main design driver and evaluated by
summing up the areas of subcomponents. Memory is a major contributor, necessi-
tating precise estimations. We deem development effort cost relevant as well. The
architecture must thus be kept simple, homogeneous, and programmable.

98

6.2 Baseline Performance

• Power – is less important in wired systems. However, consumption has to be kept
moderate, as fans or coolers increase costs. Low-power processes and power saving
techniques thus are common. We do not explore the power facet but put reasonable
performance bounds on dynamic resources such as processors.1

• Speed – has two aspects in WLAN: throughput – of the Preparation-Management (PM)
layer, and real-time responses – in the Access-Response (AR) layer (see also Sec. 4.3.1).
A configuration is only feasible if deadlines are met.

• Flexibility and Scalability – are meta objectives that cannot be evaluated in absolute
numbers. However, we aim to keep the architecture as programmable and generic as
possible, and rely on the NOVA platform that can be scaled as needed [208].

Our search thus is multi objective. It is aided by problem-specific secondary objectives. An
important metric are resource utilizations of PEs, buses, memories, and buffers in System-
Click. Profiling results are available. HW-SW trade-offs are quantified in terms of speedup
and area overhead. Specific to memories, clocking frequencies, stalls, and sizes are con-
sidered. Also, we evaluate our system in terms of reliability, deterministic behavior, and
compatibility with future protocols.

A bottom-up coverage of the design space, i.e., the problem space along various axes is
natural for platforms. Our benchmarks (cf. Sec. 3.4) drive the exploration and allow to
examine the impact of, e.g., aggregation settings and PHY speeds. Leveraging SystemClick
for quick evaluation of design points, the platform is explored along these axes:

• Core type and software – Two different cores are evaluated. Compiler settings and the
Click overhead are considered for optimization.

• Multiprocessor partitioning and scheduling – Overcoming the performance limitation of
a single core, the mapping is varied to achieve real-time performance and required
throughputs. Alternative scheduling policies can increase efficiency.

• Memory hierarchy – Performance and cost considerations necessitate a heterogeneous
memory architecture. We aim to mitigate the negative effects of latency and contention.
In addition, memory requirements are re-evaluated.

• HW/SW function split – Optimizations of the processing element (PE) and an architecture
for a Specialized PE (SPE) at the MAC/PHY interface are assessed. Protocol functions
and platform services are optimized.

• SoC communication and interfaces – Message-based communication impacts the system,
e.g., through back-log, and host interfacing must be evaluated.

6.2 Baseline Performance

The fully-programmable architecture establishes a baseline that guides further DSE steps. As
dynamic effects in the application must be considered, the full system function is simulated
in SystemClick. First, an evaluation setup is established, then performance requirements
and the impact of protocol settings are assessed.

1A broad range of related work is available on power estimation for embedded systems [60], platforms [205], and
at the system level [23]. Langen el al. [120] estimate power consumption in a network processor, and Lee and
Mudge [126] address the problem for programmable WLAN systems in an SDR context.

99

6 Platform Exploration

Table 6.1 – Functional performance categories.

IO Overhead for packets and packet descriptors
Operating System (OS) Incl. scheduling, task identification and starting, platform services
Protocol All functions strictly related to the WLAN protocol
Modeling e.g., paint annotations, switches, tokens, queues, schedulers
Lookup and classification Classifiers and other lookup functions (e.g., for addresses)

Table 6.2 – Quantification of platform overhead (core instructions/cycles).

PD transfer. Packet descriptors (PDs) are moved from and to the message-passing FIFOs into the
local memory by the core. We assume 2 + SPD/4 ∗ 3 instructions with SPD = 64.

50 instructions

Extra packet transfer latency. In addition to the transport and arbitration delay on communication
resources, extra latency is acquired, e.g., in the specialized PE.

50 cycles

Identify and start task chain. For a received PD message the associated task chain must be
identified from a dynamic list of candidates and must be started.

12 + 7*NIO−Tasks insn.

Schedule Timer. The task must be sorted to a dynamic timer list according to its expiry. 12 + 7*NAct.−Tmrs insn.
Scheduling Loop. Retrieve the next runnable task from the timer list and start it. 26 instructions

Memory management. Allocation and freeing of memory blocks. 40 instructions
Standard packet functions and tokens. All inexpensive cases profiled directly. < 40 instructions
Extended packet functions. Join, split, and inexpensive clone (only PD affected). 60 instructions

6.2.1 Evaluation Setup

Evaluation of design points is performed by SystemClick simulation using an instruc-
tion-accurate performance database. Model run times representing up to 5 seconds proved
sufficient to capture performance-relevant effects. Deterministic packet drop rates and rate
selection are used for reproducible results.2 The main indication for performance is the
minimum frequency of the processing core(s) that is needed to execute the benchmark
while fulfilling real-time requirements. The minimum is determined over several simula-
tion runs. The frame context deadline (16 µs) is measured by WifiConstraintChecker elements
(cf. Sec. 4.1.2). Secondary indications are resource utilizations and throughput. PE utiliza-
tion (i.e., the relative time during which tasks are being executed) can be well below 100 %
due to the real-time constraints. Instruction counts per element can be derived and are
categorized into functional categories as in Table 6.1.

The platform architecture and its performance overhead are abstracted as summarized in
Table 6.2. Components (PEs, IO modules) are represented by resource managers (RMs) as
introduced in Section 5.2.4. Platform services (cf. Sec. 5.4.2) provide for communication,
task handling, memory management, and packet operations. It is assumed that frequently
used services are highly optimized, e.g., by coding in assembly language. The separation of
application from platform concerns allows to establish an indicative baseline, while specific
implementations can be explored later.

6.2.2 Performance Analysis

Application performance and critical paths are analyzed with focus on performance-relevant
aspects. Initial results show minimum frequencies in excess of 70 GHz. Throughput is

2The packet drop rate is deterministic and set to 5 %. Within (PHY-layer) aggregates, 10 % of dropped packets
have biterrors in the subframe header. Rate selection was performed but set statically to the maximum medium
capacity for consistent results, i.e., 300 Mbit/s PHY speed for the 2x2 setup.

100

6.2 Baseline Performance

IO;
100; 0%

OS;
1678; 0%

AMPDU;
10381; 1%

Protocol;
3985; 0%

Lookup & Classifier;

5538; 1%

Model & Comm.;
4071; 0%

Reorder Operation;

2964; 0%

CRC;
840690; 98%

IO; 100; 0%

OS;
1678; 6%

Model & Comm.;
4071; 14%

Reorder
Operation;

2964; 10%

AMPDU;

10381; 37%

Lookup & Classifier;
5538; 19%

Protocol;

3985; 14%

AMPDU processing with CRC (869407 instructions; 100%) AMPDU processing without CRC (28717 instructions; 100%)

Figure 6.2 – Instruction distribution for A-MPDU de-aggregation and subsequent BlockACK
generation (16 subframes, TP scenario). CRC dominates (left) and thus is accelerated (right).

uncritical, as PE utilizations are below 4 %. Instead, the critical constraint is the fitting of
an incoming AMPDU frame and subsequent BlockACK generation into SIFS (De-AMPDU-
to-BlockACK).3 The TP scenario proved most demanding as it features the largest A-MPDU
aggregation (16 subframes, up to 64 kB). A closer look at the functional distribution of the
critical path in Figure 6.2 indicates that processing of complete A-MPDU packets within
SIFS is not feasible (even if CRC is accelerated by HW):

• De-AMPDU comprising packet splitting, subframe header verification, and delimiter
searching in case of errors accounts for 37 % of instructions in the TP benchmark.
If all subframes failed or for 64 subframes, ten times more instructions are required.
Thus, HW support for de-aggregation is needed such that subframes are forwarded
one-by-one to the PE and only the last subframe must be processed in SIFS.

• Model communication and repeated redundant classification of each subframe account
for 33 % of instructions and offer potential for optimization (cf. Chap. 7).

• OS overhead is moderate, and only 24% of the cycles are actually spent in protocol
processing and reordering packets, leaving little to optimize.

For the refined HW/SW splits in Figure 6.3 we consider the data-flow operations CRC,
cryptography, and (De-)AMPDU as hardware accelerators (as further discussed in Sec. 6.6.2).
Mapping A-MPDU de-aggregation in HW alone reduces required performance by 75 %. CRC
and crypto acceleration saves up to 97 %. The effects are almost orthogonal, and the combined
solution needs only about 1 % of the initial frequency. Resource utilizations are slightly higher
as well but still low in general. Peaking at 31 % in the transmitting AP of the TP scenario, an
indication is given that pre- and post-processing can be significant contributors. The critical
path is now dynamic A-MPDU aggregation after an incoming BlockACK (BlockACK-to-
AMPDU). First, the BlockACK’s bitmap is used to determine frames for replay, then the
follow-up A-MPDU is generated within SIFS. Figure 6.4 details the functional distribution:

• Replay processing for incoming BlockACKs accounts for 40 % of instructions, but almost
33 % (model + lookup) are spent to identify and transport the frame to the correct Re-

3Performance required for response generation can be influenced by the internal application structure. Incoming
frames are thus processed first in terms of the response generation and bursts are avoided by insertion of
additional queues (see also Sec. 6.4). Channel access specifics are also considered later.

101

6 Platform Exploration

900

3100

21500

900

3000

21500

70000

800

2500

18000

78000

72000

0 20000 40000 60000 80000 100000

SW

SW

TP

QoS

QoS2

HW

SW

SW

HW

HW

HW

AMPDU

CRC/Crypto

AMPDU

CRC/Crypto

AMPDU

CRC/Crypto

AMPDU

CRC/Crypto

Required Minimum PE Frequency [MHz]

Figure 6.3 – Comparison of HW/SW tradeoffs for aggregation and payload processing (CR-
C/crypto) for scenarios TP, QoS, QoS2 (less required frequency is better).

IO; 50; 2%

OS; 100; 4%

Protocol;

453;18%

Model & Comm.;

85; 3%

Replay Operation;

217; 9%

AMPDU; 1568; 64%

AMPDU generation (2473 instructions; 100%)

Lookup & Classifier;

433; 21%

BlockACK processing (2073 instructions; 100%)

IO; 50; 2%
OS; 180; 9%

Protocol;

322; 16%

Model & Comm.;

256; 12%

Replay Operation

(BlockACK);

832; 40%

Figure 6.4 – Functional distribution for processing an incoming BlockACK (left) and scheduling
a follow-up A-MPDU with 16 subframes in the TP scenario (right) with HW support.

orderBuffer. An optimization necessitates profound application changes as discussed
during deployment (cf. Sec. 7.3.2).

• When an A-MPDU of size 16 is generated, 82 % of the instructions are already used in
A-MPDU and protocol-specific operation, leaving little to be optimized.

A closer look reveals now that performance is impaired significantly by post-processing
(mainly A-MSDU de-aggregation) that blocks the resource on receiving devices due to
the platform’s run-to-completion scheduling scheme. If the computational resource was
always available upon packet reception, the PE would have to run at only 350 MHz to
achieve the 16 µs deadline (BlockACK-to-AMPDU) in the TP setup. Altogether, improving
resource allocation is the most promising step to increase resource utilization and to lower
performance requirements. This is further discussed in Sec. 6.4.1. A-MPDU aggregates
with 64 subframes remain critical but are unlikely to occur if A-MSDU aggregation is used,
because only 16 packets of 4 kB match the 64 kB total aggregate limit. Such aggregates

102

6.2 Baseline Performance

required frequency [MHz]

PE utilization (tx) [%]

PE utilization (rx) [%]

throughput relative to

300MBit/s [%]

Packet Size [B]

F
re
q
u
e
n
c
y
 [
M
H
z
]

U
ti
li
z
a
ti
o
n
 [
%
]

0

500

1000

1500

2000

64 400 564 1524 2302

min imix typ max max wlan

0

10

20

30

40

50

60

70

80

90

Figure 6.5 – Required frequencies (bars), PE utilizations, and relative throughput for different
packet sizes in the TP scenario (with A-MSDU and A-MPDU) at 300 Mbit/s PHY speed.

should thus only be optimized as needed for a deployment, limited to less subframes, or
generated statically (at the expense of reduced throughput).

6.2.3 Impact of Packet Size, Aggregation, and PHY Capacity

Figure 6.5 shows the impact of packet sizes (minimum 64 B, typical 564 B, maximum 1524 B,
maximum wlan 2302 B) and distribution (IMIX [13] or constant) on system performance and
throughput above the MAC layer in the TP scenario:

• Total throughput is between 204 and 228 Mbit/s, roughly 80 % of the capacity of the
PHY layer (300 Mbit/s) due to overhead for channel access and PHY encapsulation.
The maximum is reached in IMIX distribution, for which optimal fitting to TXOPs with
large aggregates occurs. Increased protocol overhead for subframe encapsulation is
limiting the throughput for small packets.

• Performance requirements are highest for small packets and IMIX due to A-MSDU de-
aggregation at the receiver (1.2 GHz suffice at the sender). Starting with typical-
sized packets, real-time transmit processing becomes dominant and requires 600 MHz.
Larger packets come with higher requirements, as A-MSDU aggregation is less efficient
resulting in larger A-MPDUs (up to 27 subframes vs. 16 for IMIX).

• PE utilizations are highest for small packets due to pre- and postprocessing. Consider-
ing the computational power effectively used, the TP scenario with IMIX traffic could
be run on one PE at 280 MHz at the sender if no real-time constraints were present.
The load at the receiving station is approximately 2-5X smaller.

If aggregation at the MAC-layer (A-MSDU) is switched off, the impact of PHY-layer aggrega-
tion (A-MPDU) becomes apparent. Large A-MPDUs with up to 64 subframes and A-MPDUs
restricted to 16 subframes are considered. Required frequencies range from 500 MHz for
maximum-sized frames in restricted aggregates to 850 MHz for minimum-sized frames in
64-subframe aggregates. Restricting the aggregation size from 64 down to 16 can thus re-
duce requirements by 20 % for a given packet size. However, throughput is also reduced
due to channel access overhead and PHY encapsulation, most notably for small packets
(down to 36 %) and almost negligible for large packets. In addition, the processing load is
higher if A-MSDU is switched off, as more MAC functions need to be performed per input

103

6 Platform Exploration

packet. Small packets require 77 % more cycles. For IMIX traffic, the penalty is still 63 %,
but effectively drops below 10 % for larger packet sizes.

Finally, PHY capacity is considered. Since inter-frame gaps are unchanged and control
frames are sent with basic rates, higher capacities do not result in a linear growth of through-
put. Virtually no impact in terms of the required minimum frequency can be observed,
as real-time response requirements remain unchanged. Doubling PHY speed to 600 Mbit/s
increases the PE utilization to 60 % at the sender for IMIX traffic. Considering real-time
constraints and computational complexity on a single-PE architecture, it can be projected
that a throughput of approx. 800 Mbit/s would utilize the processing core at 900 MHz most
efficiently. Only at 1200 Mbit/s, the minimum frequency has to be raised to 1 GHz at 95 %
utilization for full packet throughput. The overall impact is moderate for relevant IMIX
traffic and only critical for minimum-sized packets.

6.2.4 Summary

The simulation-based evaluation of our scenarios on the baseline architecture yielded a better
understanding of the application’s dynamic behavior and directs further exploration. Key
to an indicative analysis are platform representation and the separation of platform services.
We find in summary:

• A software-only approach on a single core is not feasible today. Consequently, ex-
pensive CRC and crypto functions must be put to dedicated HW. Integral for WLAN
is A-MPDU de-aggregation in HW such that subframes can be processed one-by-one
during reception and the PE is relieved from expensive error correction.

• With the refined HW/SW split all benchmarks run on a single 900 MHz PE. Critical is
the generation of A-MPDUs following a BlockACK. The optimization potential here
is limited and would require finetuning of the algorithm. However, given that the
resource was always available, a 400 MHz core suffices for realistic setups.

• The performance impact of packet size and large aggregates can be considerable for
very small packets, but other packet distributions remain feasible. Restricting A-
MPDU size can lower requirements by 20 %. PHY speed has virtually no impact, as
real-time requirements remain unchanged. The impact on other system resources such
as memories must be examined further.

The availability of the resource for real-time processing is a major concern impacting per-
formance requirements. Resource utilizations remain low (7 % to 30 %) and make different
scheduling and resource allocation advisable (cf. Sec. 6.4).

6.3 Core Type and SW Optimizations

The anticipated choice of the PE’s processor core is justified in the following by assessing
performance/area trade-offs for WLAN. Further integral aspect of SW-dominated systems
include compiler settings and the impact of the modeling language.

104

6.3 Core Type and SW Optimizations

6.3.1 Processing Core

MIPS 32-bit cores [160] have proven a good performance-cost ratio in previous studies [210]
and come with a mature toolchain. We focus on two cores: M4K [162], the smallest MIPS core,
and 24k, which is widely used in CPE products. Based on the datasheet comparison of Table
6.3a, the M4K can only be clocked at 400 MHz4 but offers a better performance/power/MHz
trade-off. Most importantly, the area footprint is significantly smaller. Many features of
the 24k that increase its size are needless with the architectural assumptions of NOVA and
for WLAN: Caches and complex fetch logic are not needed, as scratch-pad memories are
preferred. Memory protection and paging is not needed by NOVA’s thin OS layer. Arithmetic
operations (MulDiv-Unit) do barely occur.

Feature MIPS M4K MIPS 24k

Frequency* [MHz] 200-414 750+
Performance* [DMIPS/MHz] 1.62 1.51
Power* [mW/MHz] 0.04 0.34
Core Size* [mm2] 0.12 0.83
Pipeline [stages] 5 8
Branch Prediction no yes
Built-in Caches no yes
Variable Page Size no yes
MulDiv-Unit removable yes no

*) in 90nm, according to [162]

Architecture CPI

M4K Harvard architecture 1.08
M4K Harvard, no HW multiplier 1.13
M4K unified bus 1.45
24k Harvard with caches 1.35 - 1.4
24k Harvard, caches saturated 1.3 - 1.35

Table 6.3 – Comparison of datasheets and CPIs (WLAN benchmark) for MIPS M4K and 24k.

A comparison of the cores’ performance/area ratio for WLAN shows that the M4K is better
suited for parallel and deeply-embedded systems: Cycles-per-Instruction (CPI) ratios were
determined for our WLAN benchmark as shown in Table 6.3b. The M4K in Harvard config-
uration has a CPI of 1.08 but 1.45 for the unified memory interface. The impact of removing
the multiply unit is small and limited to few elements (e.g., duration calculation). The CPI
of the 24k is worse (1.35–1.4), even with saturated caches in the steady state (CPI 1.3 - 1.35).
This is due to its additional pipeline stages and the complex fetch logic optimized for remote
memory accesses. Altogether, the 24k offers 70 % more performance (CPI 1.35 at 750 MHz
over CPI 1.13 at 400 MHz). However, four to seven M4k cores can be used instead of one
24k, depending on subsystem configuration.

6.3.2 Code Size / Performance Trade-offs

Compilers such as gcc have optimization settings that trade off code size with performance.
Settings for speed (-O2, -O3) perform, e.g., loop unrolling, while -Os use heuristics to make
code smaller [161]. Since both parameters may be critical, we have to find the best compro-
mise for the WLAN application. Compared to the legacy application (11e), 11n proved more
sensitive to changes. Our analysis shows:

• Static comparison of all 11n-related elements in the database (cf. Tab. 6.4) shows that
code size can be reduced by 11 % resp. 23 % if -Os is used. The performance gain is

4Synthesis results for the MIPS M4K core show that a C65HP, rvt, 12-track library is able to meet timings at
400 MHz + 15% overconstraints on clocks.

105

6 Platform Exploration

Table 6.4 – Static comparison of compiler settings for all instrumentation points in WLAN.

Code Size Static Performance (total instructions)

-Os -O2 -O3 -Os -O2 -O3
44 004 B 48 896 B 54 084 B 74 204 insn. 72 282 insn. 66 153 insn.

-Os - 11,1% 22,9% - -2,6% -10,8%
-O2 -10,0% - 10,6 % 2,7% - -8,5 %
-O3 -18,6% -9,6% - 12,2% 9,3% -

Table 6.5 – Run-time performance comparison for the QoS(11n) setup (critical path only).

Optimization -Os -O2 -O3

Required Frequency (MHz) 355 325 300
-Os - -8,5% -15,5%
-O2 9,2% - -7,7%
-O3 18,3% 8,3% -

somewhat smaller at only 7 % and 9 % if -O3 is used. The -O2 setting offers a good
trade-off in terms of code size but its performance advantage over -Os is marginal.

• Most relevant for run-time performance is WLAN’s critical path, as determined for QoS
by simulation in Table 6.5. The gain from maximum performance optimization over
-Os is now 18 % and the -O2 setting offers a more reasonable trade-off.

In summary, the -O2 setting is preferable as it offers the best trade-off. Both -O3 with 23%
increase in code size and -Os with an 18% performance penalty (when compared to each
other) should only be chosen if clearly either run time or code size is an issue.

Further optimization potential arises from our detailed performance profiles at Click ele-
ment granularity. In some cases, -O3 does not produce the fastest and -Os not the smallest
code.5 Table 6.6 compares these settings with the absolute minimum over all options for
all elements. The gain in code size is 3 % and some elements run up to 20 % faster. More
importantly, a total potential of up to 26% in code size and 13 % in instructions is available
for trade-offs: For example, in a multi-PE system there could be PEs running functions
without timing constraints and PEs with critical functions. The mapping and optimization
of elements can now be chosen to guarantee run-time performance under the constraint of
optimal code size distribution. Such optimizations are often formulated as Integer Linear
Programming (ILP) problems as in [227, 187].

Table 6.6 – Potential gain from choosing compiler options per element and maximum trade-off
possible if combining different options.

-Os -O3 best per element potential gain max. trade-off

Code Size 44004 B 54084 B 42796 B 2.7 % 26.4 %
Static Performance [insn.] 66153 74204 65835 0.0 %* 12.7 %

*) Single elements can perform up to 20 % better.

5Compilers trade off compiler run time with (partial) solutions of complex optimization problems. While reason-
able compiler run times are required during development, the final product code could be optimized for several
days, just like HW designs are. In addition, performance depends on the target architecture and can only be
determined by profiling. This is, e.g., recognized in [16]: Auto-Tuners profile different variants [61] whereas
others exhaustively search the optimization space [151].

106

6.3 Core Type and SW Optimizations

Table 6.7 – Runtime overhead of Click’s modularity in the QoS2(11n) scenario.

Required Frequency Overhead

Baseline Profile (Push/Pull Ovhd.) 375 MHz –
No Push/Pull Ovhd. 350 MHz - 7 %

Add. SimpleAction Ovhd. 425 MHz + 13 %

Table 6.8 – Memory requirements for element state and graph connections can be reduced by
39 % by optimizing Click’s memory overhead in the QoS(11n) application.

Add. Optimization Element Memory Port Memory Total Memory Saving

– 18092 B 5568 B 23660 B –
Slim element structure 15044 B 5568 B 20612 B 13 %

Combine pointers and ports 13012 B 2784 B 15796 B 33 %
Single connection 13012 B 1392 B 14404 B 39 %

(Element state /wo overhead) 5854 B - 5854 B 75 %

Code compression is another means to reducing code size. True code compression is pro-
posed, e.g., in [130]. In MIPS cores, code is not compressed but rather a simplified 16-bit
instruction set is used. This instruction set comes with performance penalties and limited
expressiveness [161]. Different approaches are compared in [129]. Since peak performance
is critical for WLAN, code compression is not further investigated.

6.3.3 The Click Overhead

Modularity in Click entails overhead in run time and code size, as shown in Table 6.7.
The overhead for push/pull indirection, i.e., the dynamic resolution of connections at run
time is moderate (7 %) and reflected in our baseline. However, if agnostic (SimpleAction)
elements are used that also resolve their type at runtime, the additional overhead is 13 %.
Optimizations proposed in [210] include static resolution of agnostic elements that is stated
to save up to up to 30 % depending on the application (13 % in our case). Push/pull overhead
may be removed by connecting follow-up function pointers directly or by inlining. However,
applicability is limited as elements such as switches rely on this indirection, and the code
size will increase if elements are shared amongst tasks.

Memory overhead can be reduced as shown in Table 6.8. A slimmer element structure is
achieved by removing function pointers. Port counts can be combined or statically compiled
into most elements. In addition, arrays containing inport/outport (function) pointers and
port numbers can be combined, if pointers are restricted to 3 B and ports to 1 B (at the
expense of run-time overhead for masking). Storing both ends of a connection is not needed
if the connection type is resolved prior to compilation. In total, the Click overhead for one
element with one input/output can be reduced from 60 B to 28 B.

Since the element state without any overhead comprises only 5.9 kB, the theoretical mem-
ory cost for Click’s modularity accounts for 59 % of the final figure of 14.4 kB with all
optimizations applied. However, Click’s elements and graph structure also determines
control flow and data organization. This would have to be provisioned by an alternative
all-in-one-element implementation likewise.

107

6 Platform Exploration

6.3.4 Summary

We have exemplarily compared a small micro-controller (M4K) with a standard embedded
core featuring caches and a deeper pipeline (24k). The MIPS M4K was found better suited
for our purpose, as it offers a better power/performance ratio and is 4–7X smaller, while the
24k offers only 70 % more performance in our architectural setup and for WLAN. The M4K
can be clocked just above 400 MHz, which means that feasible design points during further
exploration are limited to this boundary.

Compiler settings and SW optimizations play an important role for SW-based WLAN
systems. The -O2 setting offers the best performance/code size trade-off and is thus used
in the following. A per-element analysis showed that up to 25 % of additional trade-off
potential is available if settings and mapping are optimized, e.g., as an ILP problem. Code
compression is not applicable as peak performance is critical for our application. The Click
overhead in memory can be reduced by up to 40 % from the existing implementation. From
the final figure, still 59 % of memory are related to Click, but also include control flow and
data organization. Runtime overhead can be removed except for push/pull function calls
(7 %), which is already included in our profiles.

6.4 Multiprocessor Partitioning and Scheduling

The WLAN application has tasks that need to run immediately, such as for response gen-
eration. At the same time, long-running pre- and post-processing task may block the com-
putational resource for extended periods. The extreme effect of this is shown in Figure 6.6
for an 802.11e setup implementing crypto functions in SW [9]. The response times for ACK
and CTS frames in the single-PE setup are distributed over a wide range, both inside and
outside the 16 µs frame context deadline. After partitioning the application and changing
the allocation to computational resources, i.e., the mapping, all deadlines can be met with
significantly lowered core frequencies.

1

10

100

1000

10000

0 20 40 60 80 > 100

Response Time [us]

O
c

c
u

rr
e

n
c

e
s

Single-core ACK

Single-Core CTS

Single-core DATA

Refined ACK

Refined CTS

Refined DATA

Frame Context Deadline

Figure 6.6 – Histogram of response times for the 802.11e setup. After refining resource allocation
the frame context deadline is met in all cases [9].

A common solution to this problem is the introduction of generic preemptive prioritized
task scheduling. However, this comes at the expense of a more complex operating system

108

6.4 Multiprocessor Partitioning and Scheduling

and extra overhead for task switching and interrupt handling, putting the real-time behavior
into jeopardy again unless expensive support in hardware is deployed. Thread switching
and interrupt response times alone can easily exceed the cycle budgets in WLAN [220, 203].
In addition, many authors highlight inherent problems with interrupts and threads such
as bad portability and their susceptibility to a variety of severe errors [195]. On shared-
memory multiprocessors, concurrency correctness and the avoidance of race conditions
and deadlocks are difficult to achieve [194]. Lee emphasizes that the thread model of
computation has a lack of understandability, predictability, and determinism [124]. For
example, a deadlock occurred in the Ptolemy project’s kernel implementation after more
than four years of intense code review. Thus, we aim to attack the problem within the Click
model of computation.

Click has a cooperative scheduling policy [113], where tasks are started by external events
such packet arrival and by internal timers. However, a task blocks the resource during its
complete run time, and other tasks can only be started once the resource is available again.
The standard scheduler in Click (and CRACC) is First-Come-First-Serve. As a consequence,
the worst-case response time tresponse,FCFS for a critical task is

tresponse,FCFS ≤
∑

j∈Tasks

t j.

SystemClick supports additional scheduling policies for each resource manager. For a
priority schedule and assuming the critical path in question has the highest priority, the
worst-case response time is still

tresponse,prio ≤ tlongest_task + tcritical_task. (6.1)

Since our application is dominated by long-running tasks (e.g., stemming from bursts),
a priority schedule alone has limited effect. In the following, two ways of making the
computational resource available as early as possible for critical tasks are discussed:

• Exploring application-to-resource mappings, we separate critical from non-critical tasks.
Additional task-level concurrency is exploited by pipelining and speculation.

• The reference application has been carefully optimized to defer processing in favor of
immediate response generation. However, the process is manual and tedious. Instead,
we systematically decrease task lengths and change the scheduling.

6.4.1 Multiprocessor Resource Allocation

The required frequencies, i.e., performance required for the single-PE mapping of Sec-
tion 6.2.2 are not feasible in our target architecture’s MIPS M4K core (limited to 400 MHz).
Mapping the application to multiple resources allows to separate critical task of the Access-
Response (AR) layer from non-critical tasks in the Preparation-Management (PM) layer
(cf. Sec. 4.3.1). In addition, task-level concurrency within the layers can be exploited. This
is examined in the following for the 2x2 access point (AP). SystemClick wrappers and ideal
FIFOs abstract inter-PE communication (see also Sec. 6.7 and Tab. 6.2).

The results of separating the AR and PM layers onto two PEs are given in Table 6.9.
Separated performance requirements for real-time processing and for data flow-like packet
processing become apparent. The critical path at the AR layer requires just below 400 MHz

109

6 Platform Exploration

Table 6.9 – Performance requirements at the AP for a two-PE mapping of the Access-Response
and Preparation-Management layers (Agg. and crypto in HW).

Scenario Freq. (ARL) Freq. (PML) Limiting Constraint PE Utilization at AP [%]

scenario_TP (TX) 600 MHz - BlockAck->Resp. 44
scenario_TP (TX) 365 MHz 250 MHz BlockAck->Resp. 5, 99
scenario_TP (RX) 800 MHz - Post-Processing 8
scenario_TP (RX) 175 MHz 50 MHz AMPDU->BlockACK 5, 99

scenario_QoS 900 MHz - Post-Processing 7
scenario_QoS 325 MHz 50 MHz BlockAck->Resp. 7, 84

scenario_QoS2 900 MHz - Post-Processing 8
scenario_QoS2 375 MHz 50 MHz BlockACK->Resp. 7, 87

Table 6.10 – Performance requirements of different mappings for the TP(TX) scenario.

Mapping PE 1 PE 2 PE 3 PE 4 Throughput PE Utilization at AP
[MHz] [MHz] [MHz] [MHz] [Mbit/s] [%]

1 PE 600 - - - 230 44
1 PE (static) 500 - - - 180/210 (*) 53

2 PE 365 250 - - 230 5, 99
4 PE (tx) 365 85 85 85 230 5, 99, 99, 99

4 PE (static) 165 50 165 70 180/210 (*) 6, 18, 98, 96
4 PE (spec.) 165 100 175 75 >210 (**) 6, 9, 99, 99

*) One aggregate per TXOP, ReplayBuffer with 32/64 packets **) Estimated, functional changes needed

and is related to A-MPDU generation after BlockACK. The long aggregates of the TP scenario
and the complex scheduling of QoS2 have the highest requirements. 175 MHz suffice for
immediate BlockACK generation in receive-only mode. The requirements for the PM layer
are determined by the actual throughput and range up to 250 MHz.

Further exploiting concurrency, the data flow-like PM Layer can be mapped to multiple PEs.
It can be seen from Table 6.9 that the receive and transmit flows have diverging requirements
and that such a separation is thus not promising. Instead, the PM layer is split into multiple
pipelined stages as summarized in Table 6.10. Four PEs running at 365 MHz (AR layer)
and 85 MHz (PM layer) are sufficient. The IO overhead of communicating the packets in
between PEs is limited but will increase with more PEs.6

By contrast, the critical paths of the AR layer are highly sequential and cannot be parallelized
at the task level as-is: First the state is updated, then aggregates are formed, scheduled,
and transmitted. But application requirements can be relaxed at the expense of reduced
throughput, namely dynamic length matching of aggregates and immediate retransmission
of frames after BlockACK. Now the pull inputs of the EDCA that request new frames for
transmission can be cut. Cutting with classic Click pull semantics, however, blocks the calling
resource during the request and thus is of no avail. Instead, pulls must be non-blocking and
produce packets ahead of time. Solutions include:

• Static aggregation of one fixed-sized aggregate per TXOP, pre-computed ahead of time
or in parallel to channel reservation. This reduces throughput and requires a larger
ReplayBuffer. As summarized in Table 6.10, PE 1 requires only 165 MHz for EDCA
functions and PE 2 50 MHz for A-MPDU processing.

6A detailed discussion of IO overhead on the NOVA platform is found in [207].

110

6.4 Multiprocessor Partitioning and Scheduling

Table 6.11 – Summary of performance requirements if AR and PM layers are separated.

Layer Feature/Throughput Min. Freq. Comment

Access-Response (AR) Dynamic TXOP continuation 375 MHz
Static aggregation 165 MHz also for Lite-MAC

Preparation-Mgmt. (PM) 120 Mbit/s 120 MHz 1x1, 150 Mbit/s at PHY
230 Mbit/s 250 MHz 2x2, 300 Mbit/s at PHY
450 Mbit/s 490 MHz 4x4, 600 Mbit/s at PHY
700 Mbit/s 760 MHz 1 Gbit/s at PHY

• Speculative aggregation at fixed or a choice of sizes such that the best match can be
selected. A higher throughput is reached at the expense of functional changes and
increased code size (e.g., discarding of aggregates, replay buffer state consistency). The
aggregating PE 2 runs at 100 MHz, as it must be available at the second aggregation
stage when follow-up subframes are transmitted back-to-back.

Table 6.11 sums up this section’s results per processing layer as needed for further explo-
ration. 375 MHz are required for the AR layer in standard configuration, which includes
the functionality of a Lite-MAC. However, 165 MHz suffice for both scheduling and re-
sponse generation if frame aggregation is relaxed. The PM layer requirements are scaled to
throughputs as associated with different PHY configurations.

6.4.2 Task Partitioning and Scheduling

Separating critical tasks yields feasible solutions. However, utilizations of the real-time PEs
remain low (cf. Tab. 6.10), and the question remains if a single-PE solution is feasible. From
Equation 6.1 it is apparent that resource availability can be increased by reducing task chain
lengths and by priorities, as is explored in the following.

Fully Partitioned Application Graph

A natural limit for task partitioning in Click is the element granularity. We call the systematic
scheduling of a fully-partitioned graph with priorities Click Element Threading (CET), as
introduced in Section 5.1.2. First, the flattened graph is extended with mapping information,
then a script performs the graph transformation. All push task chains are cut into single el-
ements by insertion of SystemClick wrappers and connected by FIFOs. The demand-driven
pull chains starting at the EDCA are not cut, as stockpiling of packets may invalidate the
ReplayBuffer. Then, priorities are now assigned in order to guarantee causality where nec-
essary. Priority scheduling departs from Click’s MoC, however, but is needed as cutting task
chains can change application behavior. The outcome of this application-specific mapping
process is shown in Figure 6.7. We note:

• The pre-/post-processing tasks of the PM layer are assigned low priorities, allowing for
interruption. Elements producing packet bursts (e.g., A-MSDU) need to map their
outputs to higher priorities such that they finish before the next burst.

• Higher priorities for real-time tasks in the AR layer must be chosen carefully because of
semantic changes when all elements run independently. Especially the state-machines

111

6 Platform Exploration

3

3

3

0

4

2

4

4

5

5

00
EDCA

UpdateNAV

RX Packet

CCA busy/idle

AMPDU
Continue

Replay
Buffer

To PHY

Frame
Classifiers

Pre-
Processing

Post-
Processing

Reorder
Buffer

From Host

To Host

1

Figure 6.7 – Application overview with priority mapping for a completely cut graph.

(UpdateNAV, EDCA) rely on proper ordering of events. This is guaranteed by pri-
oritizing primary over secondary outputs in Tee-like elements. In addition, EDCA
timeouts must not interrupt real-time tasks.

Priority Scheduling in NOVA and SystemClick

SystemClick wrappers representing graph cuts can easily be configured to priority schedul-
ing for exploration. Of course, this is different for NOVA, where PEs must be extended
to run both IO and timed tasks with priorities. It must be noted that a single scheduling
queue in NOVA is insufficient because expired timers must overtake low priority timers if
scheduling is delayed due to run-to-completion. If a single message passing (MP) inbox is
used for multiple priorities, tasks must be rescheduled in SW. Then, reading all messages
from a single inbox avoids head-of-line blocking at the expense of variable scheduling delays
and lack of MP back-pressure. A small number of MP inboxes may be considered statically
in the scheduler, e.g., low/high priority, at reduced expressiveness.

An implementation supporting arbitrary, programmable priorities for both timers and IO
while maintaining MP back-pressure is sketched in Listing 6.8. An array of memory-mapped
queues is checked for entries, returning the entry itself for a timer queue (in SW) or a non-
zero entry for an MP inbox (in HW). Timers can be run right away. For an IO task, the packet
descriptor is read out of the MP queue and the task is identified and run. Considering
performance, only a single queue has to be checked for each priority, since a given priority
is either assigned to IO or timers. For a complete dequeue, all queues need to be checked
starting with the highest priority until a runnable task chain is found. Consequently, we add
a scheduling cost on top of IO and timer activation as follows:

cpriosched(task) = cyc f ixed + (Nprios − priotask) × cyciter

Click Element Threading

Several implementations for priority-based re-scheduling of elements on the same resource
(CET scheduling) are possible in NOVA. The insertion of queues in the application is too
expensive as all queues need to be checked at a given rate. Instead, the NOVA scheduler and
message passing (MP) is used: (1) Leaving the platform unchanged, a packet descriptor (PD)

112

6.4 Multiprocessor Partitioning and Scheduling

while (t rue)
f o r j = Nprio downto 1

tmp = check_queue_head (j) / / re turns tas k (t imer) or t rue (IO)
i f (tmp) / / queue was non−empty

i f (j i s IO)
pd = read_from_inbox (j) / / queue j i s MP inbox
t = i d e n t i f y _ t a s k (pd)
run_task (t , pd)

e l s e
run_task (tmp) / / tmp i s a t imer tas k

break

Figure 6.8 – Algorithm to schedule and run message IO and timers with priorities in NOVA.

600

475

800

600

900

400

500

600

700

800

900

1000

1100

1200

Standard PD Standard PD, Anno

Task

Standard SMG, Anno

Task

Schedule Internally,

Anno Task

No CET

CET Implementation

R
e
q

.
F

re
q

u
e
n

c
y
 [

M
H

z
]

TP TX/RX TP TX

TP RX QoS2

Figure 6.9 – Performance impact of different implementations for Click Element Threading.

can be sent to the same PE via MP. This incurs overhead due to IO and task re-identification.
(2) The latter is avoided by annotating the task pointer to the PD context. (3) IO overhead
is reduced by sending a shorter system message (SMG) and keeping the PD local. (4)
All approaches relying on IO may result in deadlock. Consequently, extending NOVA for
scheduling the tasks directly is the best solution.

The implementations are assessed in Figure 6.9. Leaving the platform unchanged (1) is not
feasible. Option (2) is already better than a single-PE without CET (cf. Sec. 6.4.1). Reducing
IO from (2) to (4) lowers requirements by another 20 %. In total, requirements decrease by
almost 40 % for the QoS2 and TP/RX scenario due to better resource availability with CET. As
a drawback, transmitting at maximum throughput (TP/TX) benefits only slightly (550 MHz
at 87 % utilization vs. 600 MHz at 44 %) as the resource is highly utilized and scheduling
overhead (up to 45 %) impacts the critical path. This overhead could be reduced if critical
tasks are not partitioned and small elements are grouped. Regarding memory, elements
producing packet bursts increase requirements if the contexts needed for scheduling are
larger than the state kept internally, e.g., for de-aggregation. These elements should instead
reschedule themselves every few subframes.

Even though single-PE performance is not in the range required for 2x2 setups, CET improves
resource availability and utilization and has the following benefits for WLAN:

113

6 Platform Exploration

Table 6.12 – Instruction budgets for background tasks in a single-PE mapping.

Frequency [MHz] Early Offset* [µs] Total Budget (SIFS) [insn] Budget for Background Task** [insn]

600 – 8000 3000
400 – 5333 333
400 4 5333 1667
400 16 5333 5667

*) requires application-aware scheduling **) assuming 5000 instructions in the critical path

• Devices with low throughput (1x1) or less functions (Lite-MAC, highly-optimized 2x2
AP) are feasible on a single PE with CET.

• In a multi-PE system, CET can be used to increase resource utilization, e.g., by mapping
background tasks on real-time PEs. The total budget for non-critical tasks fitting inside
the 16 µs frame context deadline is shown in Table 6.12.

The cycle budget for non-critical tasks could be further increased by application-aware
scheduling: If it can be predicted when a resource will be needed by a critical task, it can be
blocked for other tasks ahead of time. Such indications include the CCA or an estimation of
the packet’s end. An implementation could either use a polling element to keep the resource
busy or be more tightly integrated with the scheduler. Table 6.12 reviews the budget for
background tasks, when response generation is protected by an offset. The earlier the
resource can be blocked, the longer other tasks may run without interfering with critical
functions. Despite this promise, additional HW support (e.g., channel access, Go-Signal)
and considerable application changes (events requiring immediate responses) are needed.
Thus, application-aware scheduling is not further explored for now.

6.4.3 Summary

The main reason for high performance requirements and low resource utilizations are low-
priority tasks of the PM layer that interfere with real-time processing in the AR layer due to
Click’s run-to-completion MoC. Two solutions were investigated:

• Separating layers in a multi-PE mapping exposed requirements just below 400 MHz
for the AR layer and 75–250 MHz for the PM layer of the 2x2 Access Point. Higher
PHY speeds do not affect real-time requirements but PM processing scales linearly
with throughput. Pipelining is better than separating TX/RX parts. If aggregation is
restricted, e.g., for Lite-MACs, less than 200 MHz suffice for real-time processing.

• A single-PE mapping with reduced task lengths and priority scheduling (i.e., Click
Element Threading) was explored, extending NOVA and Click. Real-time constraints
can be met at 400 MHz in principal, but throughput requirements for 2x2 or faster
systems are too high due to scheduling overhead. If carefully considered, though, it
can be applied to configurations with low throughput or reduced functionality, or in
general to improve resource availability and utilization.

The exploration is continued with the focus put on the two-PE and multi-PE mappings, as
these are more generic and scalable. Single-PE solutions require optimizations and changes
to application and platform, but are in reach of a redesign if more effort is spent. The
potential cost advantages are thus also evaluated in Section 6.8.

114

6.5 Heterogeneous Memory Hierarchy

6.5 Heterogeneous Memory Hierarchy

Memories can be dominant cost factors in SoCs [178]. State-of-the-art WLAN MACs are
often dominated by on-chip memory (or memory interfaces). Consequently, memory usage
and memory organization must be a first-class concern, but so far an ideal shared memory
architecture with unlimited capacity was assumed.

A typical performance/area trade-off is between local and shared on-chip memories. On the
one hand, local memories can be accessed quickly and are always available but are dedicated
and cost extra. Shared memories, on the other hand, are flexible in their usage and require
(for the same total size) less area. However, they introduce access penalties that are difficult
to estimate due to the effects of latency, arbitration, and clock synchronization. The memory
models of Section 5.5 are used to reflect these penalties.

It must be ensured in the WLAN MAC that (1) the required throughput is reached and (2)
real-time constraints are met. At the same time, chip area must be minimized and previ-
ously identified performance requirements (on number and frequency of cores) should be
maintained. As the system function is very complex and characteristics of the application’s
layers are clearly distinct (cf. Sec. 4.3.2), exploration can be facilitated by considering effects
impacting throughput (AR layer) and full system real-time performance (PM layer) sepa-
rately. On this basis, we optimize properties of the system architecture, the mappings of
data memories, total memory usage, and memory management.

6.5.1 Optimizing Memory Hierarchy and Mapping for Throughp ut

Properties of the system architecture that impact system throughput (such as memory dis-
tance and the mapping of application data) are optimized in the following while keeping
the on-chip memory footprint as small as possible. A throughput above the MAC layer of
450 Mbit/s is chosen as the exploration target, as is needed for a high-end 4x4 WLAN AP.
The system function is mapped to two PEs (PM and AR layer) running at 200 MHz. Includ-
ing three DMAs for packet IO and an encryption engine, five clients access a single shared
memory.7 The memory access system is a crossbar running at memory speed with timing
as in Figure 5.10 on page 81: A request delay of one PE cycle occurs for shared memory
accesses, with an additional response delay of one cycle for reads. Arbitration takes one
memory cycle and additional read memory latency cycles reflect the distance of the shared
memory. A close on-chip memory is represented by no extra latency, whereas more distant or
off-chip SRAM requires three extra cycles. See also Section 7.3.3 for a discussion of memory
latency in the prototype implementation.

Impact of the Memory Subsystem

Mapping all data to shared memory, we observe from Figure 6.10 that none of the configu-
rations achieves the full WLAN throughput. The performance bottleneck are the PM-layer
functions being executed on the first PE. Performance is down 30 % due to request and
arbitration delays, even when PE and a close memory run at the same speed. Moving to

7This setup was published as a case study in [5]. The TX path of the WLAN reference is adapted and real-time
constraints are removed by abstracting the EDCA function. The performance values given in the following are
indicative for the reference scenarios or slightly better due to these simplifications.

115

6 Platform Exploration

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Memory / CPU Frequency

T
h

ro
u

g
h

p
u

t
[M

b
it

/s
]

local memory

dist. mem. extra latency 0

dist. mem. extra latency 1

dist. mem. extra latency 2

dist. mem. extra latency 3

Figure 6.10 – Increasing shared memory distance and the effect of access contention lowers
system performance, shown over varying memory clock speeds.

distant memory, the performance drops again by 30 %. Increasing the latency further (e.g.,
to represent SDRAM) starves the PEs significantly and is not appropriate for frequently
accessed data structures in uncached systems. In addition, the effect of synchronizing the
local PE clock with the memory subsystem also decreases performance if no proper fractions
are chosen. E.g., at 1.25X the PE speed, the penalty is 12 % not accounting for additional
synchronizing logic that would be required. We thus limit the exploration to memories
running 0.25, 0.5 and 1X the PE speed.

Impact of Memory Mappings

Mapping parts of the application’s 200 kB data memory to closely-coupled private memories
mitigates the adverse impact of shared memory latency and contention. But such local
memories are expensive, need to be allocated for each PE, and limit the flexible use of the
platform’s resources. Thus, we aim to keep these as small as possible by considering six
data memory areas to be mapped either to locally or shared. These areas include stack,
local heap and element state, program code data (ELF), and packet descriptors (see also
Sec. 4.2.2). A packet memory and global configuration need always be shared. Representing
an optimization step of the application itself, we also map packet headers locally as part
of the packet descriptor (at the expense of increased SW complexity and a small memory
penalty).

The result of an exhaustive search of all 64 mapping combinations is shown in Figure 6.11,
with Pareto-optimal data points achieving 450 Mbit/s being highlighted by large symbols.
For a close shared memory (cf. Fig. 6.10, extra latency 0) running at 200 MHz the target
can be met with 12 kB of local memory for element configuration, ports, and stack. Up to
31 kB of local memory are needed for a shared memory at 100 MHz. However, this can be
reduced to 13 kB if the packet header also kept locally. A distant/off-chip shared memory (3
cycles extra latency) must run at twice the speed (200 MHz) for the same mapping. At the

116

6.5 Heterogeneous Memory Hierarchy

Target Throughput

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Size of Local Memory (kB)

Throughput [MBit/s]

close shared memory, 50 MHz

close shared memory, 100 MHz

close shared memory, 200 MHz

distant shared memory 50 MHz

distant shared memory 100 MHz

distant shared memory 200 MHz

Figure 6.11 – Impact of memory mappings reflected by local memory size (less is better) on
system throughput (more is better). Pareto fronts and data points achieving 450 Mbit/s target
throughput are highlighted.

expense of 32 kB, when only queues are shared, a close memory even at 50 MHz8 and the
100 MHz distant memory become feasible. The penalty of moving from a close/on-chip to a
distant/off-chip memory at the same speed is between 28 to 42 % if all data are shared, and
between 6 to 23 % if all possible data are mapped locally.

Impact of Packet Flow and Contention

As five clients access a single shared memory, contention leads to limited performance. The
DMAs and the WEP crypto accelerator account for most of memory traffic, whereas the PEs
working on packet headers and shared data are the performance bottleneck. It can thus be
advisable to allocate a separated packet memory. Furthermore, the coupling of the accelerator
is inefficient: By transferring the entire packet payload, the memory traffic is effectively
doubled w.r.t. normal IO. This increases the required bandwidth and access contention. An
alternative is to group operations on the packets’ payload (such as encryption) at the end of
the task graph. Now, these operations may be performed flow-through close to the MAC/PHY
interface, which accesses the payload anyway.

The resulting improvements are summarized in Figure 6.12. For a setup where all memory
is shared, performance is improved by almost 12 % for a slow local memory and up to 5 %
for other setups, as contention is reduced significantly. Distant memories are dominated by
latency and not affected as much. If all possible data are mapped locally, the gain is less

8At 50 MHz the memory system’s capacity limits a sustained throughput.

117

6 Platform Exploration

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

50 100 200 50 100 200

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50 100 200 50 100 200

Flow-Through WEP Extra Packet Memory Extra packet Memory /w Flow-Through WEP

close closedistant distant

max. local mappingall shared mapping

Figure 6.12 – Performance improvements by making the WEP accelerator flow-through at the
IO interface and by allocating a separated packet memory.

significant. However, the throughput with a 50 MHz shared memory, which was previously
limited by memory bandwidth, benefits greatly if the accelerator is made flow through. This
is especially important for low-end systems with slow (memory) interfaces or very high
throughputs, where an optimized data flow is essential.

Discussion

The memory subsystem can severely impair system throughput. However, the effect can be
limited if clocking, memory architecture, and mappings are chosen appropriately:

• The memory subsystem’s frequency should be a proper divider of the PEs’ frequen-
cies to avoid synchronization effects (the performance penalty reaches 12 % otherwise).
Higher clocked memory subsystems yield little benefit, also due to PE request delay.

• Allocating only 5 % (or approx. 12 kB) of total memory locally improves performance
by up to 25 % and allows to reach the target throughput for a close shared memory
running at 200 MHz. For a shared memory at 100 MHz, 15 % of the data or the packet
header optimization is needed (then 6 %). While mapping of stack and element state
locally is vital, the exact mapping of other data depends on the full application and is
refined in the following sections.

• Distant off-chip memory for frequently accessed shared data should only be used if it is
a design requirement. It comes at the cost of decreased performance (up to 42 %) and
in general requires more local memory (e.g., 12 to 31 kB for 100 MHz memories) and
higher memory frequencies (e.g., more than 200 MHz instead of 100 MHz).

• The total impact of contention on throughput was up to 20 % in some cases but dropped,
e.g., to < 3 % with large local memories at 100 MHz. It is advisable to optimize the
architecture with separate packet memory and flow-through accelerators, especially if
the bandwidth is critical at very high throughputs or for slow memories.

Thus, our further search is focusing on close on-chip memories due to their performance
advantage, but off-chip memories can be traded off if needed. The memory frequency is set

118

6.5 Heterogeneous Memory Hierarchy

to 0.25x of the fastest PE clock to avoid synchronization effects, e.g., 100 MHz with 400 MHz
PEs. An extra memory distance of one memory cycle is assumed, as is a realistic choice for
shared on-chip memory in the given frequency range (cf. Sec. 7.3.3).

6.5.2 Real-time Performance with Heterogeneous Memories

The performance of the full WLAN application mapped to a two-PE configuration with a
heterogeneous memory hierarchy is discussed on the basis of the previous section. After re-
assessing packet storage implications at the system level, it becomes apparent that accesses
to shared data such as PDs and queues are becoming critical for real-time performance at
the AR layer. From a baseline, mappings are optimized to minimize local memory usage
with respect to application features.

Packet Storage and System-level Implications

Consideration of packet storage for the full system is important, as the requirements for
low-latency on-chip packet memory would be significant (e.g, up to 1 MB for the 2x2
AP). Fortunately, the analysis in Section 4.3.2 and Table 4.6 has shown that accessing a
packet’s payload is barely necessary. In fact, protocol processing on the PEs can be reduced
completely to packet descriptor or header processing, if:

• Packet headers are buffered locally, e.g., in the PD. 32 B suffice for WLAN.

• Payload processing functions are moved to the end/beginning of the Click task chains,
i.e., to HW accelerators close to the MAC/PHY (cf. Sec. 6.5.1).

• Appropriate logical packet operations, e.g., for concatenation and insertion of data seg-
ments exist (e.g., based on linked lists in the PD).

Since no more direct accesses are needed, packet storage does not impact real-time per-
formance. Payload can be stored remotely, e.g., on the host processor or external RAM.
The flow of packet data can be separated to minimize interference with on-chip buses by
connecting the IO module directly to the host interface. The complete packet thus is only
available immediately prior to transmission or after reception in between the host and PHY
interfaces. All expensive payload-related operations (e.g., encryption) must be performed
in this payload processing path (cf. Sec. 6.7.2).

Only minor limitations exist: Even if remote accesses are possible, these should not be time
critical and be performed concurrently. For example, payload access is needed for A-MSDU
de-aggregation to parse subframe boundaries. This can be done remotely as it is not time
critical, or with the help of a filter unit in the payload path (cf. Sec. 6.6.2). Few management
frames (such as Beacons) require payload exceeding the packet header, but such frames are
uncritical as well. Uncompressed BlockACK control frames, however, require the analysis of
128 B (the more common compressed version fits in the header). A solution is redirection of
these frames to on-chip memory by a filter unit. Or, if not time critical, they can be returned
or processed by the host.

119

6 Platform Exploration

Table 6.13 – Real-time performance and additional local memory for different mappings.

Memory Mapping Scenario QoS2* Scenario TP** Add. Local Mem.***

Ideal memories 375 MHz 365 MHz –
Only global data shared (queues local) 395 MHz 375 MHz 20.5 kB
Global and queues shared (baseline mapping) 410 MHz 400 MHz 16.4 kB
Global, queues, and PDs (/w headers) shared 525 MHz 525 MHz 0 kB

*) maximum A-MPDU size 8 subframes **) 16 subframes
***) mapped to local instead of shared memory, in addition to standard structures

Real-time Performance Baseline

As a baseline mapping for full-system evaluation we allocate element state, stack, heap,
ELF, PDs, and headers locally (as in Section 6.5.1). Global data structures, queues, and
enqueued PDs are accessed in a close on-chip shared memory, as summarized in Table 4.6
on Page 56. Most shared accesses occur at the PM layer and their throughput impact has
been discussed. The real-time critical paths in the AR layer, however, access shared data as
well: The sending station’s internal ID is classified for incoming packets, and for aggregates
the initial packet is dequeued and total length is determined based on available packets in
the queues. Few elements check configuration from the SIB.

Real-time performance requirements are up 10 % for both TP and QoS2 scenarios with the
baseline mapping (shown in Tab. 6.13). Mapping queues locally as well is better for the TP
scenario, where larger aggregates need to be pre-calculated by accessing queue memory. At
the same time, classification and thus SIB accesses have a smaller effect in the TP scenario,
as fewer stations are associated. An additional 16.4 kB resp. 20.5 kB are to be moved from
shared to local memory for queues and PDs ((on top of standard structures, as estimated in
Sec. 4.2.2). However, if these are also shared for minimum local memory, more than 500 MHz
are required for both scenarios.

Optimizing Mapping, Application, and Architecture

The baseline mapping of Table 6.13 both requires a large local memory and violates our
performance limit (400 MHz). In addition, it does not scale well: larger A-MPDUs im-
pair performance (460 MHz for 64 subframes)9 and supporting more aggregation streams
increases the additional local memory requirements (32.8 kB for 32 streams, 4x4 device).

Hence, our exploration must optimize mapping, application, and architecture in order to
better trade off performance, local memory, and scaling of application features (aggregation).
The following measures are considered:

• Lookups for incoming packets impair real-time performance due to shared accesses by
approx. 4 %. Especially for a large number of connected stations, it is advisable to
buffer the lookup structure locally (e.g., 512 B for 2x2 AP) or to add an accelerator.
Buffering requires house keeping but can be used flexibly as needed.

• Local packet descriptors and headers speed up processing by up to 20 % at the expense
of more local memory (16 kB for 256 packets). However, only the PD of the first packet

9Only the penalty from additional shared accesses is considered neglecting the computational impact. The quality
of this discussion is still valid, however, independent of the current implementation.

120

6.5 Heterogeneous Memory Hierarchy

7.2; 3942.6; 402

0.0; 432

7.7; 379

16.4; 409 (Baseline)

350

400

450

500

550

0.0 2.0 6.0 10.0 14.0 18.0 22.0

Add. Local Memory (equivalent) [KB]

R
e
q

u
ir

e
d

 P
E

 F
re

q
u

e
n

c
y
 [

M
H

z
]

all shared, prefetch PE

all shared, opt. lookup, prefetch DMA

queue and small pd local, prefetch DMA

queue and small pd local, opt. lookup, prefetch DMA

Figure 6.13 – Trading off implementations w.r.t. required PE frequency (less is better) and
additional local memory (less is better). Bars indicate performance penalties for A-MPDUs with
64 subframes (instead of 8) and memory increase when doubling the number of aggregation
streams to 32.

of an aggregate (the boiler plate) is needed for critical response processing. Thus,
prefetching this PD only improves performance without additional memory.

• Prefetching can also be done by a DMA, e.g. in parallel to aggregation scheduling. The
performance gain is moderate (approx. 4 %) and we estimate an equivalent to 2 kB of
local memory as implementation cost.

• Both queue memory and PDs must be accessed once per subframe during A-MPDU
generation. Memory latency thus is more critical for larger aggregates. However, as
only the packet length is needed from the PD, a small placeholder PD of 4 B holding only
the packet length and a pointer to the full PD in shared memory suffices.

The requirements for design points implementing these measures are summarized in Fig-
ure 6.13. The best design point that keeps all data shared (and thus needs no additional
memory even with more agg. streams supported) and that uses the PE to prefetch the first
PD requires 430 MHz. However, maximum-sized aggregates can only be scheduled at more
than 500 MHz. Optimizing lookup and using a DMA, 400 MHz are almost sufficient but
now 2.6 kB are required and large aggregates remain critical. Other design points that keep
aggregation queues and small PDs local are a good compromise in that they allow large ag-
gregates and face only a moderate increase in local memory with more streams. Combined
with a DMA, 7.2 kB memory and a performance just below 400 MHz suffice for the 2x2
access point. Adding lookup optimizations, the impact of memory latency can almost be
mitigated completely in the recommended setup at the expense of just below 8 kB additional
equivalent memory (diamond shape in figure).

Depending on the choice of implemented measures, aggregation size and number of streams
can be traded off flexibly if either memory or performance are becoming critical. In any case,
a tiny DMA function for PEs is advisable. For example, the AMPDU_Continue function (see
Sec. 3.3.4) also benefits: It processes follow-up PDs in aggregates, and PD prefetching can
account for 28 % of the cycle budget alone.

121

6 Platform Exploration

Table 6.14 – Code size comparison (-O2) for single-PE and two-PE mappings.

Single-PE PE 1 (PM Layer) PE 2 (AR Layer) Total (Overhead in %)
Init-only Code [B]* 13156 7532 8736 16268 (+24%)
Runtime Code [B] 60896 35864** 37260 73124 (+25%)

*) init code can be overwritten after initialization **) incl. 12 kB placeholder for mgmt. functions

6.5.3 Memory Distribution and Organization

Multi-PE mappings and additional local memories increase the memory footprint. Further-
more, the amount of memory that can be accessed directly by a core in one clock cycle is
limited by complex addressing and memory structures. The exact footprint must thus be
re-calculated for code and data (total requirements are found in Sec. 4.2). In addition to static
memory, dynamic usage for packets and descriptors is assessed.

The distribution of code memory to local memories is revisited in Table 6.14 for the two-
PE setup. As the functions are split, less than 40 kB per PE suffice for the run-time code
including management functions. Overall code size, however, has increased by almost 25 %
over the single-PE mapping due to replication of OS and standard Click functions. For
a Lite-MAC, the AR-layer code suffices. Code memory may be insufficient, e.g., if more
management functions are needed. In this case shared memory can be used as overflow
storage for uncritical code and data. A DMA function may relieve the PE from explicit
fetching. Another option is the sharing of local memories between PEs, which increases
flexibility in memory assignment without increasing the overall area footprint. However,
there may be performance penalties due to concurrent accesses. For a stand-alone AP that
requires several MB of code, caches can be used in addition to local memories but come with
area penalties.

The distribution of static data memory is revisited in Table 6.15, again for the two-PE
setup. Management and configuration memory is completely allocated to shared memory.
Mapping options for other data were discussed in Section 6.5.2. The setup that keeps queues
and all PDs shared requires 7/13 kB of local and 57 kB of shared data memory, but fails target
performance. Mapping queues and PDs to local memory, however, requires 35 kB. The
recommended setup uses a tiny DMA function and holds small PDs, lookup structures, and
aggregation queues locally, totaling at only 20 kB with stable performance requirements.
The total overhead due to local replication of data is below 2 %. AR-layer requirements
(max. shared) suffice for Lite-MACs, where aggregation is performed on the host. Thus,
significantly less memory is needed for queues, PDs, and management, totaling 35 kB and
21 kB for AP and station, respectively.

The application requires dynamically allocated memory at run-time only for packet payload
segments and descriptors (and few uncritical management tasks). Static start-up heap
requirements and the number of packets and PDs were discussed in Section 4.2.2. Our
platform thus must provide a platform service (cf. Sec. 6.6.3) for management of shared
memories that keeps allocation latencies for inbound traffic at a minimum:

• PDs are received by NOVA PEs via message passing and stored locally. As their size
is fixed, allocation can be simplified. If PDs are swapped out to shared memory for
permanent storage, e.g., in queues, a global memory manager is needed. As their total
number is limited, short 2 B pointers suffice. In addition, memory compression could
be applied to FIFO queues [196].

122

6.5 Heterogeneous Memory Hierarchy

Table 6.15 – Distribution of functional data memory (2x2 setup, all in [B]).

Mapping Req. Perf. Mem. Access Point (AP) Station (STA)
[MHz] [B] PM Layer AR Layer Total PM Layer AR Layer Total

Max. shared 525/431* Global 56760 56760 16424 16424
Setup Local 7446 14320 21766 4877 7050 11927
Queues and 375 Global 36280 36280 11304 11304
agg. PDs local Local 7446 34800 42246 4877 12170 17047
Recommended 379* Global 52664 52664 15400 15400
Setup Local 7446 19952 27398 4877 8394 13271
Lite-MAC (200) Global 21332 21332 9727 9727

Local – 14320 14320 – 11927 11927

*) requires tiny DMA function for prefetch

• Packet payload is moved directly to and from external (host) memory. Thus, additional
management structures are needed for exchanging allocated and freed segments and
to keep track of split segments (as needed for A-MSDU aggregation). Segments should
be pre-buffered to reduce latencies. As a consequence of indirect packet operations,
packets must be defined as arbitrary lists of memory segments that may, in parts, be
allocated dynamically in on-chip memory.

6.5.4 Summary

This section discussed the configuration and architecture of the memory subsystem and the
impact of mapping on throughput and real-time requirements. Local memories are to be
kept at a minimum as they add cost, decrease flexibility, and may limit core performance. A
feasible solution for the 2x2 access point10 was identified:

• The memory subsystem’s severe impact on system throughput can be mitigated al-
most completely, if clocking, memory architecture, and memory mapping are chosen
carefully: Synchronization effects must be minimized by running the system syn-
chronously. Allocating a small amount of memory (element state, stack, current packet
headers and descriptors) locally yields a performance gain of at least 25 %. Close shared
on-chip memories are preferable for frequently accessed shared data.

• Keeping packet payload on-chip is expensive, and packet moving increased the impact
of shared-memory contention to up to 20 %. At the same time, protocol and payload
processing can be separated: Protocol processing only requires access to a packet’s
header and descriptor, if indirect packet manipulation is provided. Payload processing
can be grouped and allocated to dedicated HW close to the MAC/PHY interface, where
the payload is available anyway. Thus, the flow of packet data can be decoupled
completely (see also Sec. 6.6.1 and Sec. 6.7.2).

• Real-time performance is critical if aggregation queues and PDs as needed in the critical
path are mapped to shared memory. Local allocation increases memory requirements
significantly. Thus, it is recommended to maintain a small placeholder PD for packets
in aggregation queues locally and to prefetch the next required PD. Together with a tiny
DMA function and optimized address lookups, only 8 kB of additional local memory
are needed and 380 MHz suffice for the AR layer.

10The findings are extrapolated to other device configurations for the cost analysis in Section 6.8.3.

123

6 Platform Exploration

• A distributed system with two PEs necessitates reconsideration of memory distribution
and management. Code memory requirements are up 26 % due to the replication of
common functions and OS, but less than 40 kB per PE suffice for run-time code.
The chosen mapping for data maximizes shared over local memory. Only 8/20 kB
are needed locally, and requirements increase only moderately for longer A-MPDUs.
53 kB are allocated to shared memory, which must be partly managed dynamically (as
further discussed in Sec. 6.6.1).

6.6 Hard- and Software Extensions

Selected hardware accelerators for computationally expensive and payload-related functions
in WLAN offer an enormous performance gain over software implementations, as discussed
in the baseline analysis of Section 6.2.2. Furthermore, the separation of header and payload
processing and remote storage of packet payload is essential for achieving cost, throughput,
and real-time targets (cf. Sec. 6.5.2). This puts the WLAN IO module into focus, as all
payload-related functions must be grouped at the MAC/PHY interface, where the full packet
is available. In the interest of flexibility and scalability – potentially to other protocols –, (1)
only few accelerators should be used (2) that are as generic as possible and (3) that can be
productively integrated to the system.

In this chapter, essential hard- and software extensions for our wilaNOVA architecture tem-
plate are devised. The WLAN IO module is extended by generic shared-medium MAC
functions and a modular payload processing path that makes it easy to map functions of
Click elements into HW accelerators. This path then accommodates the small set of acceler-
ators required for WLAN in our approach. Finally, the need for indirect packet operations
due to remote packet storage motivates us to revisit platform services.

6.6.1 SPE - a Modular MAC/PHY Interface

The IO module surrounding the MAC/PHY interface is an integral part of wilaNOVA, as it
autonomously transfers packets and encapsulates interface-specifics and payload-processing
functions. It is based on NOVA’s generic IO module and reuses message passing, DMAs,
and configuration mechanisms. This module is now extended to a Specialized PE (SPE)
optimized for shared-medium MACs. This includes improved packet handling to better
accommodate the separation of packet header and payload, such as embedded packet
headers and sequences of PDs with payload lists.

The scope of interface-specific functions required for shared-medium protocols with com-
plex PHY layers exceeds basic forwarding and receiving of service data. Thus, such generic
shared-medium MAC functions concerning channel feedback, timing, and PHY-layer con-
trol are added to the SPE module template:

• Channel feedback and robustness – Feedback to the PEs is provided via system messages,
indicating channel state changes, collisions, and successful transmissions. Robust
handling of PHY errors is required.

• Timing – A time stamp is available system-wide, in PDs, and to precisely schedule
transmissions at the interface. A Go-Signal sent to the SPE is deferred to the annotated
time and then initiates the transmission, while packet data can be provided later.

124

6.6 Hard- and Software Extensions

Data_in Data_out Data_out

Rd_out

Not_empty_in

AND OR

NOT

Set Not_empty_out

cl
e

a
r

D
a

ta
_

o
u

t_
re

g
_

fu
ll

Streaming Protocol Wrapper

Functional

Block

(CRC, DC,

RC …)

Rd_in

n n n

rdy

Data

out

reg

Full

flag

reg

(a) FIFO-like streaming interface.

P
a

y
lo

a
d

 d
a

ta

P
a

y
lo

a
d

 d
a

ta

P
a

y
lo

a
d

 d
a

ta

P
a

y
lo

a
d

 d
a

ta

S
tre

a
m

in
g

 h
e

a
d

e
r 1

S
tre

a
m

in
g

 h
e

a
d

e
r 0

…………..

35 34 33:32 31:0

Byte_enable End_frame New_frame Packet_length

35 34 33:32 31:0

Byte_enable End_frame New_frame Packet_length

(b) Streaming protocol

Figure 6.14 – The modular streaming protocol put in place in the SPE’s payload processing path.
The packet-based interface extends Click’s modularity onto hardware blocks.

Packets must be discarded and the PEs be notified if this deferral is interrupted by a
received packet.

• PHY control – Configuration interfaces are provided. Internal signals indicate started,
completed, and ongoing transfers and can trigger special configuration sequences.
In-band RX contexts are parsed into PDs.

The SPE furthermore provides a systematic approach to accommodate flow-through HW ac-
celerator blocks operating on complete packets and their payload. Such blocks are grouped
together close to the MAC/PHY interface since the payload is available only here due to the
separation of header and payload processing and remote packet storage. This modular flow-
through payload processing path available in receive and transmit directions comprises two
aspects: Blocks are connected through a FIFO-like interface as shown in Figure 6.14a. It is
based on the signals not_empty_in (indicating available data from the source) and Rd_in
(indicating free space at the destination) and is able to operate continuously in pipelined
mode. Additional registers are only needed if data are to be added or removed from the
stream. The abstraction in between blocks is the packet, which is achieved by a streaming pro-
tocol as shown in Figure 6.14b. This protocol is established by a streaming header that moves
in-band with packet data. It comprises, e.g., packet length and processing annotations. Extra
side-band information indicates start and end of packets as well as byte enables, resulting
in a data path width of 36 bit. Compactor modules adjust byte enable information.

This processing path effectively extends NOVA’s modularity and Click’s packet abstraction
onto flow-trough HW blocks, allowing to integrate functions of Click elements easily. Blocks
may even be generated from the Click description using high-level synthesis, as the (packet)
interface is well defined. All blocks can be configured either on a per-packet basis via
in-band annotations or directly through system messages. Blocks rely on the streaming
protocol to modify packets (changing packet length), remove or add packets (changing new
and end frame signals), and to communicate with downstream blocks (using annotations).

125

6 Platform Exploration

Additional FIFO buffers can be inserted to increase the cycle budget in case PEs are involved
in direct configuration support, e.g., for the crypto engine.

6.6.2 Dedicated Hardware Accelerator Blocks

Required Accelerators

Only few dedicated hardware accelerators are needed in our wilaNOVA approach. At
the system level, the SPE must be complemented by packet movers at the host interface
to check interface queues for available packets, to generate PDs, and to hand off packets
(cf. Sec. 6.7.2). Inside the PE’s subsystem, a general-purpose tiny DMA is needed to locally
access MP queues and for swapping data to/from shared memory. This includes storing
and fetching PDs, code, management data structures, and updating headers to and from
the packet’s payload. The DMA is accessed through registers containing command and
result queues for independent, non-blocking operation. Transactions are identified by an ID
number. In steady state, the processor can initiate a transfer (write) every time the result of
the previous one (read) is consumed.

All other needed blocks relate to flow-through processing at the MAC/PHY interface and are
integrated into the SPE’s modular path. Such blocks are commonly found in communication
interfaces [207] and can also be adjusted to other protocols:

• Payload processors are needed for CRC and cryptography. En-/decryption blocks for
WEP require rc4, whereas WPA/WPA2 is based on AES. Such blocks can significantly
contribute to chip area, depending on their throughput [251]. Key tables and config-
uration are needed on a per-packet or per-flow basis. For this, direct access for PEs
must be available, e.g., via the SPE’s configuration infrastructure.

• Enhanced packet functions are required for A-MPDU (de-)aggregation. A block con-
catenates aggregated packets (TX). Subframe detection, error recovery, and logical
splitting of packets are required for de-aggregation (RX). The streaming protocol is
re-established such that the modifications are transparent for other blocks.

Optional Accelerators

Packet functions can be generalized into parser blocks inside the SPE’s receive and transmit
path. Implementations can range from simple hard-wired classifiers to ASIPs and can be
loosely supported by a PE. As a minimum, a micro-coded Scan-and-Edit engine must be able
to forward, remove, edit, and insert data into the payload stream. Such parsers can be used
for filtering, classification, header translation, redirection of frames to on-chip memory, or
assist in A-MSDU de-aggregation.

Further accelerators can be added as needed. Blocks for response generation (e.g., CT-
S/ACK) as commonly found in traditional HW-centric WLAN systems are not needed in our
approach. In fact, they are discouraged, as functions related to the EDCA include complex
state machines and protocol specifics that are difficult to implement and verify in HW and
that especially limit flexibility. Better options include:

126

6.6 Hard- and Software Extensions

• The NOVA PE’s local subsystem can be extended by closely-coupled accelerators to
aid the operating system in terms of task scheduling and local memory allocation. A
global wall clock timer register simplifies system timing. The MIPS instruction set can
be extended [162], e.g, to efficiently access short 2 B-pointers or for bit manipulation
as is commonly needed in protocol processing (see also [207]).

• A-MPDU aggregation is handled in SW for flexibility, but A-MPDU aggregate length
could be efficiently determined by HW to optimize the critical path.

• Channel Access is aided by the SPE’s timer, but the Go-Signal must be generated as fast
as possible for response generation (see Sec. 4.1.1). Fortunately, most required data can
be gathered statically ahead of time such that only few header fields and the EDCA
state need to be considered11. It can be generated by an optimized Click element (see
Sec. 7.3.2) or by a programmable HW classifier.

6.6.3 Exploration of Platform Services

Platform services concern OS functionality and parts of the packet library (cf Sec. 5.4.2).
Their abstraction so far proved sound and enabled fast exploration, while keeping concerns
separated. Since they can have a big performance impact, implementation options for two
services – memory management and packet concatenation – are now exemplarily discussed,
which are also required and representative for indirect packet operations.

Memory Management

The current approach to management of dynamic memory in NOVA suffers from drawbacks
that must be reconsidered in the light of real-time applications such as WLAN:

• The current implementation of malloc/free [59] was chosen for its small footprint
(< 1 kB). Average performance and worst-case response time, however, are insuffi-
cient when the memory is fragmented or compaction of freed blocks is needed (see
Tab. 6.16). Other algorithms such as [153, 150] perform better but entail too much
memory overhead. Instead, careful optimizations include supporting only fixed seg-
ment sizes and running compaction as a background task. Buffering of free segments
reduces latency at the cost of wasting a small part of the usable memory.

• Presently, a centralized memory manager (MM) handles requests via message passing.
While the performance impact is hidden by splitting such transactions, response times
dependent on the availability of the MM’s PE and of the message system. As a careful
optimization, lists of fixed-size segments can be pre-allocated in shared memory. More
elaborate would be the use of multiple, distributed MMs. These MMs can (1) be
restricted to a distinct memory part, e.g., chosen statically or at runtime via messages.
Or (2), multiple MMs can manage memory simultaneously if management structures
are in shared memory and properly synchronized.

While we apply said careful optimizations for prototypical deployment in Chapter 7, a
dedicated memory allocation HW block is advisable that is directly accessible through
registers. HW-supported methods are described, e.g., in [218] or in [103]. The latter propose
to use combinations of fixed size segments to utilize memory more efficiently.

11Only with TXOP continuation the Go-Signal depends on BlockACK and replay buffer state in rare cases [10]

127

6 Platform Exploration

Table 6.16 – Exemplary performance of NOVA’s memory manager during the
transmission/reception of 200 packets (including initial allocations).

Memory Management Total Calls Average Instructions Worse-Case Instructions

malloc 7194 320 9852
free 6122 40 -

Packet Operations

Table 6.17 – Pre-processing performance and cost trade-offs for packet_append.

Implementation Throughput* Improvement Cost**

Re-allocate and copy payload 221 Mbit/s 24.5 kB
Re-allocate and copy with DMA 428 Mbit/s 94 % 24.5 kB, DMA
Linked list of PDs 445 Mbit/s 101 % 24.5 kB + 86 kB
Linked list of payload segments 435 Mbit/s 97 % 24.5 kB + 13 kB

*) In the situation of the case study of Sec. 6.5.1 **) Memory for PDs as discussed in Sec. 4.2.2

Two types of packet operations are needed for WLAN. Basic operations such as clone
and kill need to guarantee a low latency. This is discussed during implementation
(see Sec. 7.1.1). Extended operations for indirect packet modification including split,
append, and insert, however, have a complex impact on the system’s throughput and
its memory requirements. Consequently, we discuss Memory/performance trade-offs for
the packet_append operation as required for A-MSDU aggregation in the following: A
straight-forward implementation re-allocates the first packet to a sufficiently large segment
and copies all other payloads. Even assuming only one re-allocation per aggregate, it can
be seen from Table 6.17 that performance is poor unless a DMA is used for data moving.
But in both cases there is increased data traffic in the system and copying may be impos-
sible if payloads are stored remotely. Copying can be avoided by indirect concatenation.
Accumulating PDs in linked lists, however, requires up to 86 kB of additional memory (as
in Sec. 4.2.2) and incurs additional costs for list traversal.

wilaNOVA thus organizes packet payloads indirectly in pointer lists referencing segments in
shared or remote memory. The first pointer is part of the PD, and additional pointers are
stored in linked list descriptors. This results in high performance at a moderate memory
overhead (13 kB) for list PDs. More importantly, organization in linked segment lists enables
to perform all packet operations in a similar indirect manner by modification of PDs and
locally available segments only: Packets and their headers and payloads can be arbitrarily
modified prior to passing to the host or SPE given that scatter-gather operation is supported
by these interfaces.

6.6.4 Summary

This section investigated platform extensions in hard- and software towards the MAC-
optimized, flexible, and efficient wilaNOVA architecture template:

• The WLAN IO module is extended to a Specialized PE (SPE) by adding generic shared-
medium MAC/PHY interface functions and a modular payload processing path. Mod-
ules in this path are connected through a FIFO-like interface and streaming protocol.

128

6.7 System Communication

This establishes a packet abstraction in between blocks that effectively extends the
modularity of Click onto such HW accelerators.

• Only few accelerators are needed in our approach in addition to data movers at
the system level. These packet payload processors (CRC, crypto, A-MPDU) can be
integrated productively into the SPE’s processing path. No additional, dedicated
hardware is required for response generation, but the PE itself and WLAN channel
access can be further improved if necessary.

• Revisiting indirect packet operations it was shown that lists of packet segment point-
ers in packet descriptors are an efficient implementation option. Modification then
only requires scatter-gather capabilities at the interfaces. For memory management, a
dedicated block is advisable if careful optimizations are not sufficient.

6.7 System Communication

Communication is an important aspect of MACs. It is needed both internally for accessing
IO modules and other PEs and externally for interacting with the host processor when
integrated, e.g., in a residential gateway. The NOVA platform provides message passing
and autonomous operation of IO interfaces. However, these must be customized to be
resource efficient and validated in the light of real-time constraints and the need to manage
and store packets in host memory:

• Internally, – the structure and type of the communication system must be determined,
and the performance/cost impact of buffers and priorities must be explored.

• Externally, – interaction patterns and appropriate accelerators must be devised. Inter-
face latency and throughput for on-the-fly packet transfers must be considered.

6.7.1 Evaluation of the Message Passing System

Separating Preparation-Management (PM) and Access-Response (AR) layers (cf. Sec. 6.4)
necessitates exchanging packets for TX, RX, and rate selection feedback in between these
layers (and thus PEs). Time-critical channel status and packets are communicated with
the SPE. With ideal point-to-point communication and unlimited buffering between tasks,
throughput and timing constraints are met in a 120/200 MHz PE configuration (1x1, no
TXOP continuation). As communication is mapped to NOVA’s message passing, effects due
to arbitration, latency, and limited buffer size must be considered.

Communication links are mapped to a single bus as in [207]. Each PE is both master,
sending messages, and slave, receiving them. A PE therefore has one shared inbox resp.
outbox abstracted by the I/O boxes of Section 5.3.2. Transfers consume 16 bus cycles for
packet descriptors (PDs, 64 B) and are mutually exclusive. If the target box is full, back-
pressure occurs at the source, which eventually blocks the sending PE completely. With
IMIX traffic (exhibiting worst-case behavior) we find this setup indeed feasible:

• Arbitration and bandwidth are not relevant due to the low load imposed by PDs.

• Latencies directly affect the critical response paths but can be controlled at moderate
communication system frequencies (80–100 MHz).

129

6 Platform Exploration

1

10

100

1000

40

60

80

100

120

A
C

K
/C

T
S

 L
a
te

n
c

y
 [

u
s

]

Q
u

e
u

e
 S

iz
e
s
 [

a
b

s
o

lu
te

]
a

n
d

 P
E

 U
ti

li
z
a

ti
o

n
 [

%
]

Core Utilization [%]

Inbox TL

Outbox DLL

Feedback

RX Data

TX Data

Deadline ACK

0,1

1

10

100

1000

0

20

40

60

80

100

120

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 240 280

A
C

K
/C

T
S

 L
a
te

n
c

y
 [

u
s

]

Q
u

e
u

e
 S

iz
e
s
 [

a
b

s
o

lu
te

]
a

n
d

 P
E

 U
ti

li
z
a

ti
o

n
 [

%
]

Access/Response Layer (ARL) - PE Core Frequency (MHz)

Core Utilization [%]

Inbox TL

Outbox DLL

Feedback

RX Data

TX Data

Deadline ACK

Deadline CTS

Figure 6.15 – Shared I/O box sizes and core utilization (left axis) and deadlines (right axis) for a
two-PE mapping: The AR-layer core frequency is varied until backlog no longer interferes with
real-time operation (120 MHz) and buffer size can be reduced (180 MHz) [2].

However, buffer sizes and core frequency at the PM layer and back-pressure turn out to be
a critical system parameter in terms of real-time performance and cost:

• Up to 115 MHz core frequency (PML), the inbox limit of 64 is reached, which leads to
back-pressure on both the host (TX Data) and AR-layer side (RX Data and Feedback).

• Consequently, the ARL core’s shared outbox is not idle, which leads to head-of-line
blocking for real-time PHY communication and thus missed deadlines.

• At 120 MHz the load at the PM layer can be handled (utilization drops). Since the PM-
layer inbox does not run full any more, no back-pressure occurs at the AR layer and
deadlines are met.

• Now a trade-off can be made between core utilization and needed buffer size. Running
the PML core at 120 MHz reaches throughput requirements but requires an inbox size
of 61 PDs. More reasonably, only 8 PDs are needed at 180 MHz.

In summary, back-pressure is very useful in between throughput-dominated PEs (such as
at the PM layer) and untimed interfaces supporting back-pressure (such as Ethernet). Buffer
sizes can be kept moderate (< 512 B) if some performance headroom is left or bursts and long-
running tasks are avoided. Back-pressure, however, is detrimental for real-time operation
at the AR layer due to head-of-line blocking or complete blocking of the core. The message
passing system must thus be adjusted at least at the AR layer to (1) support dedicated real-
time I/O, e.g., based on priorities as in Section 6.4.2, and to (2) discard low priorities packets
rather than to block the core if outboxes are full.

6.7.2 Host Interface

If the WLAN MAC is coupled and shares memory with a host processor as sketched in
Figure 6.16), this host interface must be designed carefully. The Click approach allows for a
flexible split between host and MAC as long as a packet-based interface is used. Remote
payload storage necessitates on-the-fly transfers during transmission and reception.

130

6.7 System Communication

PHY

e.g., PCI/PCIe, Ethernet

Host

Processor

Packet/
Payload

Ethernet
Frames

MAC / wilaNOVA

Driver / SW

Figure 6.16 – WLAN MAC system coupled with a host and external packet memory.

Host SW architecture. The host caters a number of different network interfaces such as
Ethernet or DSL, and application SW performs routing, user interfacing, and high-level
functions. A low-level driver is integrated into the OS for packet hand-off and accessing
the MAC via configuration APIs. The physical interface, e.g., PCI is often protected by a
Hardware Abstraction Layer (HAL). Polling communication at moderate rates is preferred over
interrupts to reduce load on the host, as also described in [27] for a Click driver. Payload
should only be moved by DMAs that must support scatter-gather operation. The memory
is exclusively managed by the host in kernel buffers.

An efficient driver interaction requires PD fetch/hand-off accelerators in the MAC that aid
with the following operation: The host provides packets to be transmitted over WLAN as
a list of segment pointers in dedicated ringbuffers. Multiple queues must be supported in
case QoS classification is done on the host. QoS classes may also be communicated in an
extra header along with other per-packet sideband info. The MAC deploys an accelerator
to poll for available packets and to prefetch headers. For transmission, the MAC’s SPE
fetches the payload on the fly from shared memory. Once segments are not needed any
more, they are written back to a release queue on the host. Similarly, received packets are
stored directly into host memory. The MAC buffers free segments to hide allocation latency.
It can necessary to store aggregate subframes into distinct segments. After validation and
reordering, the packets are handed off via a receive list on the host. The host must support
scatter-gather DMA operation such that arbitrary lists of segments can form an actual packet,
e.g., if headers are inserted or removed.

Interface throughput. For on-the-fly payload transfers, the interface to the remote packet
storage must sustain the PHY’s peak throughput. For example, 600 Mbit/s must be sustained
for 800 µs during transmission of a maximum-sized A-MPDU. Depending on the exact PHY
timing, the transfer may be started ahead of time. The state-of-the-art host/MAC setup [121]
discussed in the following is connected via PCI, delivering up to 1 Gbit/s in burst mode at
33 MHz. However, the sustained throughput is dominated by transaction latency for small
packet segments. The measured latency (1.26 µs avg., 2.82 µs worst case) is due to complex,
bridged architecture in the host. The required minimum latency τi per burst now depends
on average segment size (Fig. 6.17. Assuming segments larger than 256 B on average, the
interface latency can be balanced out if a moderately sized buffer (4 kB) is added to avoid
over/underflow. Systems with very high PHY rates, a very slow interface, or the ability to
transmit minimum-sized aggregates at full throughput must prefetch more payload data
prior to transmission. For reception, up to 8 kB are required if payload processors have very
high latencies.

131

6 Platform Exploration

0,00

2,00

4,00

6,00

8,00

10,00

12,00

64 96 128 192 256 384 512 768 1024 1536 2048

typical 1.26 s

worstcase 2.82 s

Segment size [Bytes]

 i (sseg) = ¼ x (1/fPHY - 1/fPCI) x sSeg

R
e
q
.
L
a
te

n
c
y
 [

s
]

Figure 6.17 – Required minimum latency τi (per burst) for PCI burst reads over segment size
to reach 600 Mbit/s sustained throughput.

6.8 Proposed wilaNOVA Platform Instances

Based on the preceding exploration, a candidate wilaNOVA platform architecture is pre-
sented. A block-diagram summarizing new building blocks and the description of packet
flows underpin the validity of the chosen approach. Then, a block-level analysis of chip area
costs is used to conclude on total costs of platform instances needed for the reference device
configurations. The results are categorized and compared to existing work.

6.8.1 Platform Architecture and Operation

The proposed Wireless LAN on NOVA (wilaNOVA) architecture is based on the NOVA platform
(cf. Sec. 5.1.1). Following universal MAC principles, it is software based and designed for
flexibility to support evolving and related protocols. Specific hardware is only introduced
if necessary for performance/cost reasons and targeted to generic operation rather than
protocol specifics. The separation of header from payload processing is integral to our
approach: Event-driven MAC protocol functions in SW operate per packet and require only
the manipulation of packet descriptors and headers. By contrast, processing on packet
payload data is stream-oriented and done flow through by dedicated HW. As a low on-
chip memory footprint is a primary cost concern, payload is kept in remote host memory.
The remaining on-chip memory is preferably allocated to shared memory to increase the
flexibility of its use in the system.

The block diagram of wilaNOVA is shown in Figure 6.18. It features up to five processing
elements (PEs) with local instruction and data scratchpad memories (IS/DS). A shared on-
chip and the host memory (e.g., over PCI/e) are accessed through memory interfaces (M).
Message-passing interfaces (C) transport packet descriptors (PDs) and system messages
(SMGs) in between PEs and other blocks. The host interface bridges access to remote
memory either memory mapped or based on SMGs. An accelerator is added for fetching
and handing off PDs with the host. The specialized PE (SPE) encapsulates PHY specifics, and
its modular payload processing path comprises buffers, accelerators for crypto, A-MPDU,
CRC, and an optional packet parser (see Sec. 6.6).

132

6.8 Proposed wilaNOVA Platform Instances

PE1

IS,DSC M

On-Chip
Shared
Memory

Memory Access

Messages
(PD/SMG)

Wireless LAN function (SW)

On-chip
communication

networks

PE2

IS,DSC M

Host-IF
(e.g., PCI)

PD
Fetcher/
Hand-off

CRC
AMPDU

Fetch
DMA

Store
DMA

P
H

Y

TX Buffer

RX
Buffer

Specialized PE (SPE)

Header
CRC-1

AMPDU-1

PHY-IF

Config.

Crypto
RX

Crypto
TX

Parser
ASIP

C

C

M

M

M

M

C

C

Figure 6.18 – Block diagram of the resulting wilaNOVA architecture with two PEs executing
the WLAN function (e.g., for a 2x2 AP). Names of conceptually new blocks are underlined.

Once a packet is detected for transmission, its header is pre-fetched and a PD is generated
and forwarded to SW for protocol processing. The packet then is scheduled by pushing the
PD along with the transmit time and processing configuration to the SPE. A preliminary
Go-Signal can be sent ahead of the actual PD to increase the SW’s cycle budget. The SPE
parses the PD and concatenates payload segments from the PD or from memories. Lists with
extra segments can be read from shared memory or be sent in subsequent messages. The
fetching process is decoupled by a FIFO and is halted by back-pressure if downstream blocks
are full. Payload processing is performed on a per-packet basis as indicated by sideband
information. Start of transmission and PHY configuration are delayed until the given time
stamp. A-MPDU frames are sent back to back.

Reception is more complex due to time-critical responses and remote payload storage.
Upon detection, a CCA message and time stamp is sent to SW. The SPE parses the receive
context, splits A-MPDUs, and establishes the streaming protocol. Headers can be forwarded
immediately to supporting PEs that aid configuring crypto and parser engines. Packet
processing and storage proceeds speculatively until the CRC can be validated at packet
end. Pre-buffered segments are used for storage of packets and de-aggregated subframes.
System messages notify the SW about transfer completion, segment pointers, and processing
results. Once SW receives the PD and packet header, it performs CRC validation, response
generation, header processing, and packet reordering. The packet can be discarded from
host memory, e.g, if CRC fails. Synchronization stages in SW may be needed if, e.g., check
results are only made available by HW after SW processing has started. Eventually, packets
are released to the host via the PD hand-off unit.

133

6 Platform Exploration

6.8.2 Component Costs

We start our analysis by deriving the chip area of the platform’s components. The estimations
are based on published work such as [207] or extrapolated from proprietary IP. We target a
65 nm high-performance process and assume that 610K NAND2-equivalent gates can be fit
on 1 mm2 (see, e.g., [37]). A factor of 0.65 converts from 90 nm data [189]. Memory area is a
large factor and thus estimated precisely using a memory explorer tool.

An area estimate for the PEs is given in Table 6.18. The M4K core is synthesized for 400 MHz
but should support dynamic scaling for power reasons. Memories account for up to 76 % of
the area due to their high-speed configuration. Memories larger than 32 kB are composed
of smaller blocks. As PD and SMG operation barely interfere in WLAN, the MP interface is
optimized to a single memory and thus exclusive operation.

Table 6.18 – Area estimations for one Processing element (PE) in 65 nm, based on [207]

General-Purpose PE Area [mm2] Remarks

MIPS M4K Core 0.135 w/o fast multiply
Local Code Memory 0.096 - 0.441 14 kB – 64 kB single-port (SP) RAM (highspeed)
Local Data Memory 0.030 - 0.340 4 kB – 48 kB single-port (SP) RAM (highspeed)
Message Passing 0.057 optimized to one dual-port (DP) RAM (1280 B)
Other logic 0.053 includes memory if, DMA, and address decoder
Total* 0.363 – 1.026

The SPE (Tab. 6.19) also has optimized MP interfaces but needs a controller for internal
configuration and SMG generation in addition. It comprises the A-MPDU/CRC blocks, logic
at the MAC/PHY interface (including a timer and header extractor), and TX/RX controllers
with DMAs and PD parsers. Buffers are scaled with PHY speed to decouple 50 µs of traffic
from interface latency (plus 50 % in RX direction). The parser ASIP is based on a control-
dominated header parser from [50]. The crypto engine is specified at 80 kGates for up to
300 Mbit/s of throughput. Considering a 32-bit data path, only 4.7 MHz to 33 MHz are
required for SPE operation. Thus, all data path logic except the crypto engine can be scaled
as needed and single-port high-density memories suffice.

Table 6.19 – Estimated area for the Specialized PE (SPE), partly based on [207].

Specialized PE Area [mm2] Remarks

Message Controller 0.024 includes 2x 128 B DP RAM
TX/RX CRC/A-MPDU 0.031 est. 4x (RX) and 1x (TX) the CRC unit*
MAC/PHY Interface 0.025 est. same as RX CRC/A-MPDU
Fetch/Store DMA + controller 0.015 includes interfaces to on-chip and host memory
PD Parser/Unparser 0.038 includes 2x 512 B DP RAM
TX/RX Stream Buffer 0.028 – 0.121 3 kB – 20 kB SP RAM (high-density), dep. on bandwidth
Programmable Parser ASIP 0 – 0.100** includes 2kB SP RAM, not needed for Lite-MAC
Crypto Engine 0.149 – 0.298 depends on throughput & number of streams
Total 0.310 – 0.652

*) compared to [207] **) from [50], scaled from 0.45 mm2 in 180 nm

The biggest global resource (Tab. 6.20) is shared memory, accounting for up to 0.73 mm2

(140 kB). High-densitiy memory can be used due to its low speed requirements. PCI is
specified at 100 kGates and delivers up to 1 Gbit/s at 33 MHz. Interconnect and arbiters for
memory and MP do not contribute significantly to overall area [207].

134

6.8 Proposed wilaNOVA Platform Instances

Table 6.20 – Global resources area estimation.

Resource Area [mm2] Remarks

Shared Memory 0.089 – 0.730 16 – 140 kB, single-port RAM (high density)
Host Interface 0.164 PCI, up to 1 Gbit/s
Interconnect, Arbiters 0.033 for on-chip memory and MPIs
Total 0.286 – 0.927

Table 6.21 – Summary of chip area costs for WLAN device configurations.

2x2 AP 2x2 STA 2x2 AP 1x1 AP 4x4 AP VHT AP
optimized LiteMAC MultiMAC projected

PHY Speed Mbit/s 300 300 300 150 600 1000+
TXOP Cont. – yes yes limited no yes yes

Number of PEs – 2 2 1 1 3 4
Req. Freq. MHz 250/400 <250/400 400 200 all 400 3x300/400
Local DS Mem. kB 8/20 4/8 28 16 10/14/34 6/4/4/48
Local IS Mem. kB 36*/38 32*/38 64* 44 36*/38/38 24*/14/14/38

Total (PEs) mm2 1.20 1.06 0.87 0.67 1.93 1.87
SPE / Parser x 1 0.5 1 0 1 1
SPE / Crypto x 1 1 1 1 2*** 2****

Buffers (TX/RX) kB 2/3 2/3 2/3 1/1.5 4/6 8/12
Total (SPE) mm2 0.42 0.37 0.42 0.31 0.63 0.65
Global Memory kB 54 16 54 16/32** 100 140
Total (Global) mm2 0.56 0.36 0.59 0.39/0.47 0.85 1.00

Total Area mm2 2.18 1.80 1.89 1.37/1.45 3.41 3.54
Total Memory kB 168 109 157 83/99 288 318
Memory/Area 58.8% 52.4% 60.8% 52.5/55.0% 62.3% 59.4%

*) includes 12 kB (8 kB STA) for mgmt. functions **) add. packet buffer ***) 2x crypto ****) crypto scaled

6.8.3 Device Configuration Costs

Based on the block-level estimates, the chip areas12 for the reference device configurations
of Section 2.3 are presented in Table 6.21.13 The 2x2 Full-MAC access point requires two
PEs running at 400 and 250 MHz. The PEs account for more than half of the area (2.2 mm2)
and memories (168 kB) for 59 % overlappingly. As a station handles only one link, 109 kB of
memory and a simplified SPE suffice. Optimizing the 2x2 AP to a single PE is feasible but
requires extra optimization effort (see Sec. 6.4.2). The area savings are moderate at 14 % due
to virtually unchanged memory requirements. Local code memory is becoming very large,
potentially impacting the achievable frequency of the PE’s core. The 1x1 Lite-MAC costs
only 60 % of the 2x2 AP. One PE at 200 MHz suffices at the expense of reduced throughput
(no dynamic TXOP). It is based on the requirements for the AR layer with additional 2/6 kB
local memory for host interfacing. No parser is needed. Depending on the host interface, an
on-chip packet buffer must be provisioned.

Scaling towards 4x4 Multi-MAC and VHT devices, we observe the following cost factors:

• Increasing supported stations from 32 to 64 impacts global memory requirements as
more management structures and queues are required (see Sec. 4.2.2).

12Additional FPGA synthesis results are found in Section 7.3.3.
13For comparison with legacy systems, we also state the requirements for an 802.11abg AP based on two PEs at

200 MHz with 4/8 kB data and two 16kB code memories that performs crypto in SW [2]. The required area is
0.95 mm2 resp. 1.05 mm2 with and without host interface and management functions.

135

6 Platform Exploration

• The supported BA streams are scaled to 32/48 according to the QoS{x} scenario. Thus,
18 kB resp. 35 kB are added – mainly to local data memory in the AR layer.

• Increasing throughput, more PDs are present in the system. The SPE’s crypto engine
and buffers must be scaled, and more cores are needed in a pipelined PM-layer.

The Multi-MAC is dimensioned as a 4x4 AP but can be reconfigured, e.g., to 3x3 plus 1x1 for
operation in both 11n and legacy mode. Two AR-layer cores are now needed for response
generation, as both MACs operate independently. Therefore, memory is added to the second
PM-layer core, which would effectively operate as a one-PE system that shares management
functions with the first PM-layer core. For a symmetric 2x2 configuration (up to 462 Mbit/s),
either using CET on all cores or an extra PE would be necessary. All global resources can be
shared. The SPE overhead for processing two streams independently is estimated to 20 %
(generic logic area, parser is unchanged). Two crypto engines are needed for concurrent
streams in excess of 300 Mbit/s.

For the Very High Throughput (VHT) device the PHY speed is scaled to 1 Gbit/s while
leaving the MAC protocol unchanged, representing a future wireless standard (see Sec. 2.2.4).
Real-time requirements are unaffected, but up to 3 PM-layer PEs are needed to sustain
throughput. The PCI host interface reaches its limit. The PE’s payload accelerators (e.g.,
crypto) are scaled accordingly, assuming twice the area. Other resources such as parsers can
be duplicated as needed.

Discussion. The memory hierarchy remains heterogeneous throughout device configura-
tions. Even single-PE systems distinguish local and shared memory, as the later is cheaper
and can also be accessed directly by the SPE. Local memory – especially on the data side –
differs greatly between cores. This could be balanced to some extent for greater generality,
but fundamental differences remain: The AR-layer core performs a multitude of functions
and requires many data structures locally. One PM-layer core executes management func-
tions that require code memory but map data to shared memory. Pipelined PM-layer cores
require little code and data memory.

The devices can be characterized in terms of size and memory proportions (Fig. 6.19).
Memories make up at least half of the area and increase with throughput and features:

• The Lite-MAC is 40 % smaller than the 2x2 AP, as only essential real-time functions
and half the throughput are supported. A station is approx. 20 % smaller due to fewer
streams, less queueing, and limited management functions. Both configurations have
thus relatively small memory proportions just above 50 %.

• The VHT device is at least 50 % bigger than the 2x2 AP due to resource scaling and
additional PEs, but has the same memory proportion (ca. 59 %). This indicates a
constant progression as throughput is scaled.

• The 4x4 Multi-MAC is similar in size but dominated by memories (65 %) required for
flexible and independent operation of two MACs. Scaling MAC features and function
has thus a bigger impact than scaling throughput.

6.8.4 Comparison with Existing Systems

The device configurations are compared with existing systems (as introduced in Sec. 2.2.3)
in terms of memory, performance, and chip area. Little quantitative data are available for

136

6.8 Proposed wilaNOVA Platform Instances

2x2 STA:

52.4%, 1.80mm^2

1x1 Lite:

52.5%, 1.37mm^2

2x2 AP:

58.8%, 2.18mm^2

2x2 AP (1 PE):

60.8%, 1.89mm^2 VHT / 1Gbit/s:

59.4%, 3.54mm^2

4x4 Multi:

64.8%, 3.27mm^2

50.0%

55.0%

60.0%

65.0%

70.0%

0 200 400 600 800 1000 1200

PHY Speed [Mbit/s]

M
e

m
o

ry
/A

re
a

 [
%

]

Figure 6.19 – Memory/area ratios and chip area (bubble size) of device configurations.

the MAC layer – especially of IEEE 802.11n – as many authors focus on the classical signal
processing aspects of the PHY layer.

Memory requirements are difficult to compare due to differing function splits, host inter-
faces, and supported features and WLAN standard versions:

• Implementing a legacy MAC in SDL, Hannikainen [75] requires 490 kB of code and
161 kB of data memory, one order of magnitude larger than our implementation. This
is due to the SDL runtime environment and the inclusion of host functions.

• An ad-hoc implementation in C [24] implements only basic features such as fragmenta-
tion and occupies about 125 kB of DSP memory. Much better is the 8-bit supplemental
processor in [126], that has 8/4 kB code/data memory but only generates immediate
response frames such as ACK. This is somewhat in the range of our 32-bit general-
purpose implementation for 11abg.

• A fully-featured, programmable 11abg MAC by Wipro [245] uses 128 kB in station
configuration. Similarly, the Intel IPW2200 firmware has 195 kB. Our legacy setup has
only about 50 kB but requires packet storage and high-level functions externally.

• As the only 11n reference, a commercial Lite-MAC driver [121] has approx. 250 kB of
code memory, but also covers management functions. The firmware [121] is coded in
16-bit assembly language and thus about half the size of our AR-layer code while data
memory is comparable. A relatively large packet buffer is needed.

We find our application code to be better than straight-forward implementations, but fail
to compete with highly optimized systems. Of course, the function kernels in our Click
elements can also serve as the basis for optimized code. Total on-chip requirements in our
case are moderate, as extended management functions are mapped to the host and packet
buffering is reduced significantly due to on-the-fly payload handling.

The performance analysis showed that 400 MHz are sufficient for handling even the dynamic
retransmission of frames during a TXOP in 802.11n. Legacy operation and static schedules
are much simpler and can well be handled at below 165 MHz.

137

6 Platform Exploration

• Panic [179] requires 1 GHz for the 802.11a protocol with generated SDL code on a MIPS
M4K. SDL requires a runtime environment and consequently fails to meet real-time
constraints. Similarly, Shono [220] implements the MAC fully in SW on a PowerPC at
400 MHz but fails to meet deadlines by at least one order of magnitude.

• Also for legacy WLAN, the supplemental processor in [126] runs at 136 MHz and
generates responses while channel access is done by a general-purpose core. Their
analysis of the critical path and time budget concludes that only 5 µs are available for
MAC processing, which is improved significantly in our approach (cf. Sec. 4.1.1).

• More recently, real-time response generation is acknowledged as a problem for flexible
MACs in SDR contexts. However, only basic ACK/RTS handling is typically consid-
ered. While Nychis [172] does not give performance data, Hedde [78] successfully uses
a MicroBlaze core at 100 MHz. Tan [229] achieves real time on commodity multi-core
HW at 2 GHz. His main problem is not processor performance but IO latency and the
need to keep a core available, similar to our findings.

• A commercial 11n Lite-MAC [121] runs at 80 MHz but relies on HW for frame aggre-
gation and does not support dynamic TXOP continuation.

Our architecture proves superior to other fully programmable devices and academic ap-
proaches. Commercial implementations with reduced functionality or HW support are
more efficient, but typically lack flexibility and a uniform, high-level programming model.
None of the approaches performs dynamic frame aggregation and retransmission in SW or
discusses optimizations such as Go-Signals and application-aware scheduling.

Chip area is the main cost factor and design driver in today’s home-networking devices. It
depends on the architectural approach, flexibility supported, and the maturity of the solution
(see Sec. 2.2). Comparison is complicated by the high integration level that maps analog
parts together with the combined digital part (MAC+PHY) on the same chip.14

• The fully hard-coded 11g MAC in [248] requires only 120 kGates, but excludes crypto,
higher protocol functions, and buffers. Our SPE in legacy configuration is less than
half in size yet does not handle protocol state and response generation.

• Excluding memories, Panic [179] states 169 kGates for his 11g setup, of which the
HW accelerator is 63 kGates. Our SPE is smaller than the accelerator, but our single-
PE instance would be 185 kGates without processor memories and SPE buffers. The
overhead is mostly due to modularity, i.e., the message passing system.

• The highly-optimized commercial legacy MAC by Wipro [245] excluding host inter-
faces requires 120 kGates. Again, the overhead on our side is due to modularity and
lack of optimizations, e.g., tailoring the crypto core to lower throughputs.

• Targeting a generic and simplified WLAN standard, the FPGA-based approach in [166]
requires 200 kGates for the (reconfigurable) HW accelerator alone. The total of 1.34 mm2

excluding memories seems rather inefficient.

• The commercial 11g MAC by Atheros [155] accounts for 43 % of the combined digital
part, as indicated by the die image. The equivalent 2.5 mm2 in 65 nm seem very large,
but the device potentially includes complete (STA) management functions.

14In addition, different processes are used. Conversion factors to 65 nm for equivalent area given in mm2: 0.2 from
180 nm, 0.35 from 130 nm, 0.65 from 90 nm.

138

6.8 Proposed wilaNOVA Platform Instances

• An early 11n-draft system by Atheros [185] with a 2x2 PHY and 16 BlockACK streams
uses an equivalent of 12 mm2 for the digital part. Analyzing the die image, 1/4 is
occupied by the MAC. Considering that PCI/e is supported, the resulting area is still
20 % above our estimations for a 2x2 AP, indicating a premature solution.

• Recently, Atheros presented a more efficient 802.11n (2x2) solution [206]. The single-
chip SoC uses an equivalent of 8.8 mm2 for the digital part. Again, considering 1/4 as
the MAC area and the PCI/e interface, our 2x2 AP solution shows a 10 % overhead.

• The commercial 11n Lite-MAC in [121] is 15 % smaller than our configuration with
16 kB of shared memory added as an extra packet buffer for better comparability.

Our own area estimations proved to be accurate and on par with both legacy and state-of-
the-art devices. In legacy configuration, the SPE is smaller than typical Low-MACs. But
the 11abg standard is simple and mature such that highly-optimized systems can be much
smaller than our scaled-down modular platform instance. The 11n-draft system [185] shows
that commercial implementations of evolving standards with short time-to-market can be
immature and are outperformed by our flexible and systematic approach. Compared to
more mature and recent 11n products, we estimate an overhead of 10–20 % mostly due to
modularity, high-level programming model, and lack of optimization on our side. Little
information is available on future devices such as the description of a 4x4 transceiver [36].
Regarding the number of BlockACK streams, Song [222] describes a gigabit system running
up to 84 HDTV streams, as compared to 48 in our VHT device.

6.8.5 Suitability for Future Devices

Future wireless (LAN) protocols and extensions to IEEE 802.11 as discussed in Section 2.2.4
require flexible and scalable architectures. The MAC system must cope with increased
throughput, MIMO, decreased response times, and extended highly dynamic functions.
Decreased response times will be motivated by better protocol efficiency, i.e., reduced inter-
frame gaps and faster channel access. Fast link adaption and handling of MIMO streams
may be time-critical and require precise timing and concurrent processing.

The proposed architecture is well suited for such challenges, as it is based on a scalable and
concurrent platform [208]. NOVA’s socket interfaces and the streaming protocol of the SPE
allow to modularly add or replace components. Our approach is generic and programmable.
In addition, the VHT scenario has shown that scaling to gigabit throughputs is possible, and
complex operations such as aggregation are already performed in realtime. We expect the
following architectural aspects to be impacted:

• The number of processing elements can be increased for pipelining or to exploit appli-
cation concurrency. Core types and frequencies can be adjusted to higher demands.
Non-realtime cores with caches can be added for management functions. Similarly,
hardware accelerators can be added or duplicated as needed. Block-level scaling, e.g., of
the crypto core is beyond our scope.

• As more clients are added, the communication networks can be implemented by NoCs.
PEs can be coupled directly to the SPEs to optimize latency. High-performance external
interfaces such as PCI/e will be used for packet transfer. These provide multi-gigabit
throughputs but have significantly larger footprints. Dedicated connections and mem-
ory ports can be used to limit the impact on the rest of the system.

139

6 Platform Exploration

• Shared on-chip memory requirements were moderate so far and their frequency can
be further increased. External memory interfaces for packet buffering and code can be
justified by cheap low-speed host interfaces, QoS requirements, or increased SW com-
plexity. A multi-port memory controller limits the interference from packet transfers,
while caches reduce traffic and latency for code fetches on selected cores.

6.9 Chapter Conclusion

This chapter presented step four of our methodology towards an efficient and flexible WLAN
MAC. Following the Y-Chart, the NOVA platform was extended and explored towards op-
timized application-architecture mappings for WLAN – wilaNOVA. Keeping the reference
application fixed, only mapping and platform instance were changed, while avoiding spe-
cific hardware where possible. As a result, protocol-agnostic concepts for MAC operation
could be identified, and eventually the enhanced platform was scaled to our range of device
configurations to assess chip area costs. Throughout the process, SystemClick enabled fast
evaluation of design points and a productive exploration.

The baseline analysis showed that a fully-programmable realization of the benchmark on
NOVA is infeasible and inefficient, even if expensive operations are hardware accelerated.
Thus, further exploration of the design space was necessary:

• The MIPS M4K core is well suited for deeply-embedded systems, as it offers a better
performance/area trade-off than more advanced cores (e.g, 24k). Running at 400 MHz
in NOVA, its performance suffices for critical WLAN paths. Compiler configuration
impacts code size and performance by up to 23 %, and additional trade-offs are possible
at the element granularity. The Click memory overhead can be reduced by 40 %, but a
small run-time overhead due to function calls remains.

• High performance requirements are caused by long-running tasks that block the re-
source at frame reception. Isolating the critical AR layer leads to feasible multi-PE
mappings of 2–4 cores. Pipelining the PM layer for higher throughputs is better than
parallelizing TX and RX processing. In addition, a systematic approach to decrease
task length based on priority scheduling and exploitation of application knowledge
was assessed. It can increase resource efficiency on real-time cores and be leveraged
to realize single-PE solutions.

• A heterogeneous memory hierarchy is needed to trade off performance, flexibility, and
cost. The consequence are access penalties from shared or remote memories that
severely impair system performance, unless clock synchronization is minimized and
on-chip memories are used for frequently accessed data. Element state and current
packet context (PD and header) must be mapped locally to optimize throughput, but
queues, enqueued PDs, and management data should remain shared to minimize
private memory. Real-time performance is sensitive to A-MPDU size as PDs are
enqueued in shared memory. These effects can be mitigated, if a reduced PD list is
cached locally and a DMA is added to the PE. In critical cases the size and number of
aggregation streams can be reduced.

• Storing packet data on-chip is expensive, and data transfers increase the impact of
access contention to up to 20 %. At the same time, protocol and payload processing
can be separated: Protocol processing can be restricted to indirect packet operations

140

6.9 Chapter Conclusion

based on segment lists and the packet header stored in the PD. These operations
must be complemented by memory management and supported by the IO interfaces
(scatter-gather). Payload processing is grouped and allocated to HW accelerators at
the MAC/PHY interface, where the payload is available anyway. The flow of packet
data can thus be decoupled completely and storage be provisioned remotely.

• Only little dedicated hardware is needed for WLAN – encapsulated in the Specialized
PE (SPE). The SPE extends NOVA’s IO module by generic shared-medium MAC/-
PHY interface functions (timing, PHY handling, channel state) and a modular payload
processing path. Blocks in this path are connected via FIFO-like interfaces and a
streaming protocol. This establishes a packet abstraction in between blocks that effec-
tively extends the modularity of Click onto such HW accelerators. Only few dedicated
blocks are needed for WLAN: These payload processors (CRC, crypto, A-MPDU) are
integrated productively into the SPE’s processing path.

• Message communication can be adapted to real-time operation, if back-pressure and
head-of-line blocking are controlled carefully. Trade-offs for buffer sizes, PE frequen-
cies, and message priorities are possible such that small I/O boxes suffice (512 B). The
host interface must support polling. Accelerators on the MAC side establish an au-
tonomous, PD-based interface. PCI throughput can be limited by per-segment delays
but on-the-fly payload fetch is feasible in realistic cases.

Summarizing the key benefits of our MAC architecture, the protocol function – including
real-time critical control frame processing – can remain entirely in SW, and packets can
be stored remotely for a small on-chip memory footprint. Essential for this were (as
explained above) the introduction of the SPE with shared-medium MAC/PHY functions and
its modular streaming path integrating De-AMPDU and crypto accelerators. At the system
level, only a tiny DMA function, a packet-based host interface, and support for indirect
packet operations is required. Precise customization of PE and the memory hierarchy is
essential to guarantee throughput and real-time requirements.

The resulting wilaNOVA instances proved to be competitive with other systems, while being
based on a flexible, programmable, and generic platform and following a systematic, high-
level development approach. Memory was a significant area contributor (over 50 %). This
ratio was almost stable when scaling bandwidth, but increased as more features were added.
Assessing the WLAN benchmark configurations:

• The state-of-the-art 2x2 AP in Full-MAC configuration was our main design driver. It
features two PEs and requires 2.2 mm2 and 168 kB of memory. This is 20 % better than
a comparable, early commercial 802.11n system by Atheros. If configured as a Station,
the area can be reduced by 17 %.

• For an optimized single-PE version of the 2x2 AP, advanced scheduling techniques,
SW and platform optimizations, and more HW support are required. The area can be
reduced by 13 % and is comparable to a recent commercial 802.11n system.

• At the low end, a 1x1 AP configured as Lite-MAC requires only 1.45 mm2 for one
PE and 99 kB of memory. It is 15 % larger than a comparable, heavily optimized
commercial Lite-MAC, mostly due to modularity in our approach.

• A next-generation or high-end device in 4x4 AP configuration supporting concurrent
multi-MAC operation is significantly larger at 3.41 mm2, three PEs, and 276 kB of
memory. Offering less features but more throughput, the VHT device is comparable
in size and runs on four PEs.

141

6 Platform Exploration

wilaNOVA proved scalable, flexible, and inherently modular. It thus is well suited for future
protocols, where challenges arise from increased throughput, decreased response times, and
extended functionality. This impacts the number of PEs, communication interfaces, and the
memory architecture. The architecture’s potential in the context of a universal MAC and
future prospects in home networking are discussed in Chapter 8.

Throughout the exploration process, SystemClick proved well suited for the fast and early
exploration of a platform’s design space based on a system model. Especially:

• Key to an indicative exploration was the precise estimation of platform overhead and
accurate performance feedback (instructions, memories). The abstraction of platform
services separates concerns and led to reproducible results.

• SystemClick’s architectural models enabled a multi-faceted exploration and covered
all performance-relevant system aspects such as the memory hierarchy.

• Analysis of real-time constraints, traces, memory accesses, protocol conformity, uti-
lizations, and throughput exposed bottlenecks and enabled a targeted exploration.

Timing-exact simulation and extensive analysis allowed to generalize results and to debug
the application. Still, the determination of required minimum frequencies proved difficult
in some cases. This is a general problem of simulation-based approaches, as results depend
on input and simulation time is finite.15 Also, the choice of benchmark scenarios is critical.
We focused on performance-relevant corner cases, but the scenarios are static and can only
cover a fixed set of parameters, e.g., in terms of aggregation.16

SystemClick proved very productive. In addition to its architectural models and analysis
capabilities, modularity and script integration accelerated generation and examination of de-
sign points. High simulation performance enabled both detailed evaluations, e.g., of tightly
synchronized memory accesses and the coverage of large design axes, e.g., for searching
Pareto-optimal points. A total of 3 man months (MM) was spent, including non-recurring
efforts for assessment of priority scheduling, the SPE architecture, and platform services.
Customization for a new protocol is estimated at 2 MM and comprises initial HW/SW analy-
sis, multi-processor partitioning, memory mapping and dimensioning, and communication
validation. During each step, most of the time is spent on initial experimental setup to expose
relevant parameters (up to 1 week) and subsequent analysis steps. Experiments/simulations
can be performed within few hours.

15Formal approaches such as [199] can overcome this problem, but in turn are dependent on the quality of the
(non-functional) application model [69] that typically does not provide a path to implementation.

16A discussion is well beyond the scope of this work, see e.g., [110] for an overview on design for experiments.

142

7 IEEE 802.11n WLAN Prototype

As a final step, a fully-functional and standard-compliant IEEE 802.11n WLAN access point
is implemented. It realizes essential aspects of the proposed wilaNOVA architecture as
identified in the preceding exploration step and leverages the WLAN reference application
as device software. Since wilaNOVA follows universal MAC principles in terms of a flexible,
SW-based, protocol-agnostic, scalable, and easy-to-use architecture, a generic platform will
eventually become available, as is discussed in Section 8.4.

Underpinning the feasibility for WLAN and the validity of our exploration results, a video
demonstration setup is presented and evaluated, e.g., in terms of resource utilizations and
performance. This allows to verify our predicted results, to assess the deployment capabili-
ties of our development approach, and to discuss extensibility.

Since ease of development and flexibility to customize the platform are important, an FPGA-
based prototyping system is preferable. Especially, the MAC layer must be exposed for
experimentation while providing sufficient performance. Existing solutions, however, do
not support 802.11n, are not standard compliant [108], are not based on FPGAs [98], or lack
performance [78]. An existing prototyping system is thus used and extended by a WLAN
PHY. The RAPTOR-X64 system [100, 188] is modular and extensible. The PCI-X card can be
extended by up to six modules such as a large FPGA or other hardware as needed. A special
adapter accommodates and connects an Infineon/Lantiq 802.11n WLAN development board
to the RAPTOR system that is used as the PHY. The resulting WLAN prototyping setup is
shown in Figure 7.1.

Figure 7.1 – WLAN prototype with RAPTOR-X64 system and AFE/RF daughterboard.

143

7 IEEE 802.11n WLAN Prototype

As the basis for realizing the wilaNOVA MAC we rely on and extend the NOVA hard- and
software platform (cf. Sec. 5.1.1) and SystemClick’s code generation capabilities (cf. Sec. 5.2.4).
The reference application can thus be reused as device firmware. The system is limited to 1x1
configuration due to the given PHY but is standard compliant and able to operate standalone.
Steps to deployment in the following include MAC implementation according to identified
principles, adjustments due to the given PHY, board bring-up, demo and application setup,
and performance optimizations.

7.1 wilaNOVA Prototype System Realization

The RAPTOR-based WLAN prototype comprises two Xilinx Virtex-4 FX100 FPGA modules,
the Infineon board connected via a proprietary adapter module, and an Ethernet module
as shown in Figure 7.2. All modules connect over direct left/right interconnection paths, of
which the RAPTOR provides 80 per module and direction. The board is hosted in a standard
PC and configured through a serial programming cable. Modules can be accessed through
a PCI/on-board local bus in addition.

Raptor Board X64

FPGA 1

Baseband
Processor

(PHY)

FPGA 2

BBP+RF
Inter-
faces

Raptor
Direct
Link

(DDR)

RF + AFE
(Infineon)

Raptor
Direct
Link

Proprietary
Adapter
Board

Module 1 Module 2 Module 3 Module 4

PE 1

I,DC D

Shared
Mem

Memory access

Messages

PE 2

I,DC D

C

Accel.,

PHY-IF,

Header

Accel.,

PHY-If

Fetch

DMA

Store

DMA

PHY 1
…

PHY n

…
SDR

PE i

I,DC D

Host function(s), Inter-MAC function(s), MAC function(s)

On-chip communication network

Tx buffer

Rx buffer

…

SPE l

HW-Accel j

I,DC D

…

E
th

e
rn

e
t

Figure 7.2 – Block-level overview of the WLAN prototyping board.

The wilaNOVA MAC is implemented on the module 2 FPGA, leveraging two hard-wired
PowerPC cores and on-chip BlockRAM as Processing Elements (PEs). These PEs perform
protocol processing by running an extended NOVA operating system (OS) and an adjusted
version of the reference application. The CRACC framework is retargeted to powerpc-eabi
GNU tools, and SW including boot-up code is directly initialized into BlockRAMs. The
PowerPCs are clocked at 320 MHz, but their subsystems including local memories (64 kB
code and 32 kB data) are restricted to 160 MHz due to FPGA limitations. Shared memory,
buses, and the SPE run at 80 MHz. Since no external memory is available, packet buffering is
provisioned in shared on-chip memory (300 kB). This memory can be accessed externally for
debugging purposes. The Specialized PE (SPE) interfaces with and configures the physical
(PHY) layer. An Ethernet interface serves as a distribution system through an existing,
emulated MAC-IO block.

The PHY layer consists of three parts: The Baseband Processor (BBP) performs digital signal
processing for en- and decoding packets. It is connected to the Analog Frontend (AFE),

144

7.1 wilaNOVA Prototype System Realization

which converts to and from analog signals. The Radio Frontend (RF) amplifies these signals
and mixes them to and from the target channel frequency in the 2.4 GHz band. Up to
two antennas can be connected. The PHY layer is distributed over two modules, since the
Infineon WLAN chip does not allow direct access to the MAC/PHY interface. Instead, the
chip’s BBP part is emulated on an FPGA (module 3) while the chip itself is operated in a test
mode that provides a direct digital interface to the AFE.

7.1.1 The wilaNOVA MAC Implementation

An integral part of the wilaNOVA MAC is the Specialized PE (SPE) and the encapsulated
MAC/PHY interface. Message passing, DMAs, and CRC calculation could be reused from
NOVA’s Ethernet IO module, but data handling was improved to support packet headers
in packet descriptors (PDs). Especially for shared-medium protocols such as WLAN the
following extensions are vital:

• Channel feedback and robustness – Feedback to the PEs is provided via time-stamped
system messages (SMGs), indicating channel state changes (CCA in WLAN), collisions,
and successful transmissions. Robustness is increased by a receive (RX) trigger unit
that can cope with incomplete packets and erroneous receive contexts.

• Timing – A 32-bit time stamp is available system-wide, in PDs, and to schedule trans-
missions at the interface. A two-stage mechanism initiates transmissions after a SMG
is received, while packet data can be provided later (Go-Signal).

• PHY control – Trigger signals indicate started, completed, and ongoing transfers. In
addition to direct BBP control (TX context), register-defined sequences are issued prior
to and after a transmission for AFE/RF configuration. In-band RX contexts including
RX rate are parsed into PDs.

The SPE’s payload path is organized following the modular flow-through streaming pro-
tocol of Section 6.6.1. Compactors are needed after DMA and DCRC blocks to adjust byte
enables. The A-MPDU accelerator could be integrated easily, because virtually no changes
were necessary to other modules. In fact, only the streaming header is changed to render a
burst of smaller packets transparently to a continuous aggregate and vice versa. In receive
direction, the packet parser must ensure that the last frame of (even corrupted) aggregates
is always marked properly for SW processing.

The OS software extends NOVA for improved performance, communication, and packet
operations. This affects PD and system message (SMG) formats. For example, PDs feature a
32-bit time stamp and flags compacted to 12 B for signaling RX and TX contexts of the PHY.
SMGs are extended to handle token communication, CCAs, and Go-Signals. The scheduler
supports ScheduleAt operation and checks IO and expired timer in turns to reduce latency.
PDs are pre-allocated. Packet operations include:

• Packet headers to be kept locally in the PD to reduce access latencies. The function
packet_header(n) ensures at least n byte to be available, returning a local pointer.
Additional content is fetched as needed. Packet modifications (push/pull) only have
local impact if possible. If the payload is needed in one segment, the packet_data()
function swaps out the header resulting in a normal packet. Application designers
should always prefer header access. IO elements must ensure that a) the header is
available on input and b) that the output format conforms with the interface.

145

7 IEEE 802.11n WLAN Prototype

• Fast generation of packet copies for retransmissions under timing constraints. The
original packet_clone() function copies and re-allocates both packet payload and
descriptor, leading to long response times. It is often sufficient, however, to reference
or copy only the PD, for which flags are introduced. Since copies share the payload
with the original packet, the SHARED_PAYLOAD flag must be set and changes to PD and
thus header are still possible. Packet payload may only be modified or killed by the
original packet owner (MY_PAYLOAD). Alternatively, a reference counter is maintained
such that the PD may only be killed after no more references exist. This is also used
for token communication.

7.1.2 PHY Integration and Bring-up

A number of adjustments were made necessary by the specific choice of PHY and prototyping
setup. Together with AFE/RF board bring-up, this proved very time consuming.

The wilaNOVA MAC is responsible for PHY configuration and control. The PHY is config-
ured by SW at startup via dedicated interfaces encapsulated in the SPE: a bus for the BBP and
a serial Four-Wire Bus (FWB) for the AFE/RF. The BBP features 200 configuration registers,
e.g., for channel timing and Automated Gain Control (AGC). The AFE/RF has 80 registers, e.g.,
for gain control and channel frequency. Receive and transmit modes are signaled directly
to the BBP. TX packet contexts are programmed through registers, while the RX context is
received in-band with the packet data. Data transfer is always triggered by the BBP. Reg-
isters need to be switched in the AFE/RF by the SPE before and after every transmission,
impacting timing due to the slow serial interface.

The BBP part of the WLAN chip was available as RTL that had to be optimized for the FPGA.
For example, 802.11b coding was removed to reduce area. Fine-tuning features are selected
statically to increase operating frequency. The MAC/PHY timing differs from Section 4.1 in
that the TX context (packet length, rate) is required immediately at packet start, which affects
response times (see Sec. 7.3.2). Altogether, 93 % of the FPGA’s logic resources are occupied
and timing-closure for 80 MHz is achieved. The BBP is still limited to 20 MHz channels and
normal guard intervals, resulting in 65 Mbit/s PHY rate.

The AFE/RF development board is connected through a proprietary adapter directly to the
BBP FPGA (approx. 50 signals). The chip is operated in a dedicated FPGA test mode via an
external JTAG connector. It is controlled through the FWB, and digital I/Q data is exchanged
in parallel (20 bit). After optimizing the board, packet loss could be almost eliminated (< 1 %)
and a sensitivity of -71.0 dBm is achieved at 54 Mbit/s OFDM modulation. This is sufficient
for our demonstration setup.

Integration of the four modules includes a common reset and clocking concept and consid-
eration of inter-module interfaces. The system reset is triggered by the MAC, causing a hard
reset in the RF chip. The system clock is generated by the RF chip, forwarded to the MAC,
scaled to 80, 160, and 320 MHz, and re-distributed throughout the system. The Ethernet
module is clocked by its external PHY. For physical MAC/BBP interfacing, output data is
registered at the FPGA’s pads, then sampled with a skewed 80 MHz clock on the receiving
end, and finally synchronized through register stages. The digital I/Q interface is strobed
and operates at 160 MHz. The strobe is directly derived from the AFE’s output clock and
delayed for two cycles to account for slow signal slew.

146

7.2 Demonstrator Setup

7.2 Demonstrator Setup

The system is set up as shown in Figure 7.3 for demonstration and measurement purposes.
The WLAN system serves as a standalone WLAN access point that is connected via Ethernet
to a distribution system on a PC. Up to 16 wireless stations can be dynamically connected to
demonstrate QoS and A-MPDU aggregation for video and background traffic applications.
Multiple videos are streamed at bitrates from 1 Mbit/s to 20 Mbit/s (HDTV) using VLC media
player over the UDP protocol. The tool jperf is used for throughput evaluation and TCP/UDP
background traffic generation.

The WLAN application graph was re-modeled for prototypical deployment (starting from an
802.11g configuration) and then extended for standalone 802.11n operation and customized
to the intended setup. Standard changes as compared to an early draft standard regarding
BlockACK operation could be reflected easily in SW. All adjustments could be made within
few weeks and included the following aspects:

• Management – Standalone operation necessitates standard-compliant beacon genera-
tion, association management, and BlockACK negotiations. As a central lookup facility
the StationInfoBase (SIB) is mapped to shared memory.

• Application – Includes packet classification for STA/TID (e.g., based on destination), QoS
paths per TID (=AC), and address filtering. Headers are translated from/to Ethernet.
Both legacy and 11n rates are supported and dynamically adjusted for retransmissions.
Direct routing to other wireless stations is provisioned.

Figure 7.3 – Wireless LAN demonstrator setup with AP prototype and commercial STA cards.

147

7 IEEE 802.11n WLAN Prototype

0

5000

10000

15000

20000

25000

30000

35000

MCS0 MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7

D
a

te
n

d
u

r
c

h
s

a
tz

 i
n

 K
b

it
/s

No AGG - TX - ø

No AGG - TX - max

No AGG - RX - ø

No AGG - RX - max

AGG - TX - ø

AGG - TX - max

AGG - RX - ø

AGG - RX - max

Figure 7.4 – Throughput for different mcs settings with and without A-MPDU aggregation.

• Aggregation – A fixed number of A-MPDU streams is available, which are assigned
dynamically to negotiated sessions. Aggregates are scheduled statically and both
implicit and explicit BAR are supported. BlockACK policy is immediate.

Altogether, the setup proved stable and reliable, underpinning the feasibility of the SW-
based approach. Only few limitations exist that are due to our rapid prototyping approach.1

The setup has been demonstrated successfully at Infineon/Lantiq, University of Dortmund,
and in the context of the EU-funded OMEGA project.

7.3 Results and Performance

7.3.1 Network Performance and Resources

The demonstrator setup works reliably with commercial and standard-compliant 802.11n
WLAN cards, which proves that all protocol constraints are met by the prototype. Standard
compliance was additionally checked with protocol analyzers. The maximum mcs rate that
performs reliably is 4 (i.e., 39 Mbit/s) due to lack of fine-tuning in the PHY. This is acceptable,
as the MAC layer is in the focus of this evaluation.

Measured network performance further verifies our setup. The throughput is given in
Figure 7.4 and is within expected bounds considering channel congestion in an office en-
vironment. A peak performance of 16 Mbit/s is achieved for non-aggregated traffic in TX
direction. In RX, up to 25 Mbit/s are reached, because the commercial WLAN card drops
RTS/CTS protection dynamically to increase throughput. A-MPDU aggregation proves very
effective (up to 32 Mbit/s). The latency is in the low microsecond range with very little jitter.
Evaluating the AP in a two-station video setup, up to four streams (2-4 Mbit/s) altogether
can be transmitted in parallel from and to the AP without A-MPDU. Adding aggregation,
bidirectional transmission of two HDTV streams (10 and 15 Mbit/s) is possible. QoS features
are verified by applying additional background traffic.

1 TXOP continuation and dynamic BlockACK length adjustments are too demanding for FPGA and have been
discarded. Since the PHY rate is limited to 65 MHz, aggregates cannot comprise more than 12 subframes. A-
MSDU aggregation is both less efficient and less demanding than A-MPDU and thus has been omitted. Packet
payload allocation is SW-based in order to maintain flexibility and reduce latency.

148

7.3 Results and Performance

0

10

20

30

40

50

60

70

80

90

100

Idle Long (1524B) Imix (426B) Short (64B)

P
E

 U
ti

li
za

ti
o

n
 [

%
]

TX (mcs 4)

PP NoAgg

PP Agg

RT NoAgg

RT Agg

0

10

20

30

40

50

60

70

80

90

100

Idle Long (1524B) Imix (426B) Short (64B)

P
E

 U
ti

li
za

ti
o

n
 [

%
]

RX (mcs 4)

PM NoAgg

PM Agg

AR NoAgg

AR Agg

Figure 7.5 – PE utilization (PM and AR layers) with and without A-MPDU aggregation (Agg.)
for different packet sizes in TX and RX direction.

PE utilization is a critical internal performance metric (Fig. 7.5). The high Idle utilization
is caused by an immature channel access implementation that constantly checks for state
updates. Utilization is uncritical once packets saturate the channel. With decreasing packet
length, the AR layer first is more demanding, as aggregation leads to more throughput and
more complex processing. If the system transmits minimum-sized frames, the through-
put at the PM layer limits performance. In RX direction, utilization is uncritical even for
minimum-sized frames. For IMIX traffic the PM layer has a large headroom, as expected
for only 30 Mbit/s. The AR layer is rather sensitive to the number of packets in aggregates
and thus can handle higher throughputs as well. Other system parameters that proved
critical were shared memory utilization, queue sizes, and message passing. However, this
can be attributed to the prototypical FPGA implementation (e.g., non-optimized memory
management in SW, only 300 kB packet buffer).

7.3.2 Response Times

Response times are critical for standard-compliant behavior. This means that SIFS (16 µs)
must be guaranteed on the channel for all responses. The PHY latency on the channel
relative to the MAC is 8 µs until a packet is fully received by SW and of 3 µs after a
transmission is triggered by SW. The latter comprises forwarding to the SPE (0.5 µs), PHY
configuration (1.5 µs), and RF power-up (1 µs). This leaves 5 µs for SW to process incoming
packets and to trigger the response transmission using a Go-Signal system message (see
Sec. 4.1.1). Unfortunately, the PHY is not optimized for MAC latency and requires the
complete TX context (rate, length) with the Go-Signal. Then, the packet’s data, i.e., the PD
is only required 16 µs after the Go-Signal – as expected.

All response times are met as shown in Table 7.1. Since A-MPDU scheduling is static,
(immediate) BlockACK PD generation and channel access remain as the most critical tasks. A
number of changes were made necessary by above-mentioned PHY limitations (TX context)
and non-optimized code (e.g., Click overhead, OS functions):

• Application re-structuring – Response generators (e.g., ACK) are put close to the input.
A-MPDU members are forwarded directly to ReorderBuffers to avoid backlog and
improve BlockACK generation. Channel access is decoupled from scheduling.

149

7 IEEE 802.11n WLAN Prototype

Table 7.1 – All requirements for Go-Signal delay and PD delay after Go-Signal (< 16 µs) are
met (measured non-intrusively with a logic analyzer).

Constraint Requirement (Go-Sig.) SW delay +MAC/PHY delay Total (Go-Sig.) PD delay

DATA->ACK 16 µs 3 µs + 11 µs 14 µs 2 µs
CTS->DATA* 16 µs 2 µs + 11 µs 13 µs 4 µs
BlockACK* 16 µs 2 µs + 11 µs 13 µs 16 µs
Channel Access 5 µs 2 µs + 3 µs 5 µs 2 µs

*) with optimized Go-Signal Generator element (SW)

• Decreasing modularity – The send_go_signal() function is called directly to avoid Click
overhead. Some functions such as address checking and CRC flag validation are
merged into neighboring elements. Some classifications including session-ID are done
by specialized elements rather than standard classifiers.

• A Go-Signal Generator (SW) element performs a quick classification of received packets
and schedules, e.g., BlockACK frames (where size is fixed). If the CTS-to-DATA
constraint is critical, the EDCA can pre-program packet length and rate such that the
Go-Signal can be generated immediately as well.

7.3.3 FPGA Performance and Resources

The wilaNOVA MAC is realized on a Virtex4 FPGA with PowerPC 440 cores. Since NOVA
originally runs synchronously at 25 MHz and targets ASICs, many components had to be
re-timed and optimized for FPGA. Given the MAC/PHY interface clock of 80 MHz, the cores
run at 320 MHz and their subsystem including memories is optimized to 160 MHz. The
latter necessitated restriction of data memory size (32 kB) as well as fine-tuning of address
nets and BlockRAM organization. Additional register stages are needed in the PE subsystem
(MPI, shared memory). This is reflected in total memory access latency (see Tab. 7.2). Special
consideration of synchronization cycles in SystemClick’s memory models (cf. Sec. 5.5.3) thus
proved justified, as they account for up to 44 % of total latency.

Table 7.2 – Measured shared memory access latency for PowerPC-based PE.

Delay reason Delay (actual clock) [cyc.] Actual clock [MHz] Delay (CPU clock) [cyc.]

Store / load 1 320 1
Sync to 160 0–1 320 0–1
Sync to 80 0–1 160 0–3
Arbitration 1 80 4
Sum (store) n.a n.a. 5–9
BRAM latency 1 80 4
Register to CPU 1 160 2
Sum (load) n.a. n.a. 11–16

FPGA resources are shown in Table 7.3. Comparison with ASIC gates and thus with our
estimates of Chapter 6 is very difficult. Instead, we normalize to a MicroBlaze softcore
(from [233]). While both the total system (5X) and the PE subsystems (0.5X) are reasonably
sized, the SPE excluding memories and encryption is 2–3X bigger than a MicroBlaze. This
is due to its non-optimized implementation (e.g., PD generation uses a 512-bit register) but
can be optimized as needed. Code size proved critical for the AR layer (close to 64 kB,

150

7.4 Discussion

Table 7.3 – FPGA resources utilized by a wilaNOVA MAC comprising two PowerPCs with
64/32 kB local memory, three 4 kB buffers in the SPE, and 300 kB shared on-chip memory.

Component Resource absolute of FPGA total

Total MAC Slice/Flipflops 7623 9 %
Slice/LUTs 12162 14 %
BlockRAMs 276 73 %
IOBs 217 37 %
BUFGs 17 53 %
DCMs 4 33 %
PowerPCs 2 100 %
MicroBlaze equiv. (FF/LUTs)* 4.9/5.3 n.a.

PE subsystem Slice/Flipflops 841 1 %
(hard-wired Slice/LUTs 700 1 %
PowerPC) BlockRAMs 52 13 %

PowerPCs 1 50 %
MicroBlaze equiv. (FF/LUTs)* 0.5/0.3 n.a.

SPE (MAC/PHY If) Slice/Flipflops 3348 3 %
Slice/LUTs 6352 7 %
BlockRAMs 10 2 %
MicroBlaze equiv. (FF/LUTs)* 2.1/2.7 n.a.

*) MicroBlaze Virtex4 resources, 75 MHz, no caches, no FPU: 1554 FFs/2296 LUTs (from [233])

almost 50 % more than expected) and less tight on the PM side (approx. 45 kB). However,
the increase is due to the need for a higher SW optimization level (-O3) to compensate for
reduced PE performance in the FPGA (below 200 MHz effectively). In addition, init code is
not swapped out and Click overhead is not removed. Debugging code and assertions account
for almost 10 kB. Altogether, the estimated values are still within reach.

7.4 Discussion

7.4.1 Expected Results

Observable quantities were in the range expected from SystemClick simulations. Net
throughput approaches the theoretical limit and latencies depend on traffic class and Block-
ACK operation (as in Sec. 3.5.1). On-chip buffers and queues proved sufficient, their ca-
pacities can be derived from simulation. Advanced packet operations (headers) yielded
the expected performance gain if used carefully by the developer. The overall load on the
system was uncritical as expected, and PE utilizations were low in general even after packet
classification was added. However, because of the high number of CCAs in the real system,
channel access (EDCA) increased load in the idle state.

Direct comparison to predicted costs and performance is difficult. Memory and area differ
because the prototype is a standalone system on an slow(er) FPGA with non-optimized
HW blocks. Response times required SW optimizations due to limited PE performance
and non-optimized OS and Click overhead. While SystemClick had identified critical paths
and their requirements correctly, the optimization itself proved tedious due to an increase in
complexity after partly breaking with modularity. The benefits of a modular SW architecture
thus became apparent: despite the performance penalty, clearly defined and separated
functions are easier to adjust, debug, and verify.

151

7 IEEE 802.11n WLAN Prototype

Many unexpected issues appeared when the system interacted with the real world, i.e., the
given PHY, wireless channel, and other (commercial) WLAN stations. A critical case were
HDTV streams with an invalid target port. This caused short ICMP packets in the reverse
direction, simultaneously flooding the system with very long and very short packets. This
packet burst and the lack of dedicated memory management led to a feedback loop between
the two PEs that overloaded the message passing system.2 The principle problem had
been predicted correctly by the analysis in Section 6.7.1. However, this indicates that (1)
packet bursts must be considered better in benchmark definitions, (2) the memory allocation
facet must be considered during exploration, and (3) dedicated memory management is
preferable. Other issues include:

• The PHY signaled erroneous packets and spurious CCAs. Especially, the Signal Field)
containing packet length is unprotected (802.11g), invalidating our streaming protocol.
This was fixed by padding/pruning data directly at the MAC/PHY interface.

• Unexpected or initially misinterpreted protocol behavior (e.g., BlockACK operation) and
even standard changes (e.g., BlockACK bitmap layout) occurred. Similarly, previously
neglected management aspects required refinement. The endianness of the PowerPCs
caused a mismatch with simulation for the A-MPDU bitmap. However, these changes
could be easily fixed in software (see next section).

7.4.2 Approach and Productivity

The available tool set ranges from SystemClick to single-core ISS over RTL simulation to
FPGA emulation. All tools cover the full system function at different abstraction levels and
trade off timing accuracy, platform representation, and ease of use. This enables a seamless
development process. SystemClick provides accurate performance feedback (cf. Sec. 5.6.2)
and thus yields a-priori complexity bounds. These upper bounds give confidence that
functions are feasible in principle. During development, SystemClick proved very useful
for quick verification of application changes. Its full use for debugging was hindered by
minor inconsistencies, e.g., the profiling tool chain had not been adjusted for PowerPC. Also,
code refinement for wilaNOVA’s platform specifics (e.g., split transaction memory allocation)
and optimizations (e.g., Go-Signal generator in SW) were not disciplined enough, leading
to diverging code bases. Finally, differing intrinsics of simulation and target CPU such as
endianness must be overcome by enforcing portable code. However, no principle obstacle
exists to refining the SystemClick representation as close to the target as needed.

The total deployment time for the prototype was close to two years and can be estimated to
19 effective man-months (MM), as outlined in Table 7.4. A closer look reveals the usefulness
of our approach and tools:

• The time to extend, refine, and adjust the application SW to the standalone setup and
the real PHY was only 4 MM. The platform’s programming model (Click) proved
efficient and enabled fast changes (e.g., only one week for the actual demo setup).
Initial efforts were small, since the reference model can be used directly as device
firmware if implemented in a performance-indicative and thus reasonably efficient
way. A protocol standard change in the A-MPDU bitmap could be fixed within hours.

2As a resolution, the message system’s capacity was increased, memory management was optimized to buffer
segments in shared memory and to frequently perform compaction, and scheduling was tuned to alternate
between SMGs and PDs.

152

7.4 Discussion

Table 7.4 – Demonstrator development timeline.

Time / Date Phase /Milestone wNOVA* Board* WLAN*

2007 / 2008 System modeling + exploration /w SystemClick (5) (6)
End of 2008 Planning for adapter board and PHY 0.5
March 2009 HW/SW platform development, SPE, NOVA OS 4 0.5
– Oct. 2009 application extension and restructuring 2
Oct. 2009: AFE/RF chip available, RTL simulation works
Oct. 2009 Board bring-up and debug (BBP+RF, MAC/PHY IF, 2 6
– Sept. 2010 FPGA-to-FPGA, clocking, Ethernet),

application refinement, A-MPDU accelerator 2
April 2010: First packet capture (TX)
Sept. 2010: WLAN (11g) connection stable (PER < 1 %)
Oct. 2010 A-MPDU integrated, performance optimization 1
– Nov. 2010 Demo setup and evaluation 1
Dec. 2010: Prototype fully operational (11n, A-MPDU, QoS)

*) Estimated effective man-months (MM), team of up to 3 students

• An additional 2 MM were spent on performance optimization and dedicated HW devel-
opment in the SPE, most of which can be attributed to the A-MPDU accelerators. The
integration benefited greatly from the modular streaming protocol in the SPE, leaving
other (generic) blocks untouched.

• Platform development, bring-up (Board), and debug accounted for 13 MM altogether
(Sec. 7.1). Consequently, debugging capabilities must be of primary concern (e.g., a
platform-independent printf or a SW-triggerable on-chip logic analyzer).

7.4.3 Prototyping the Next Protocol

Revisiting the universal MAC (UMAC) concept, we evaluate how productively the pro-
totype can be used for related protocols. The time for platform development (6 MM) can
be considered a one-time effort, including a large initial overhead for targetting the FPGA,
porting to PowerPC, setting up interfaces, and establishing a debug infrastructure. With the
SPE, extended OS functions (e.g., packet header), and generic support for shared-medium
protocols with unreliable PHYs, a capable and generic platform becomes available for reuse.
The SPE’s modular streaming protocol facilitates future integration of HW blocks. Platform
changes are only expected in the case of significantly differing real-time, performance, or
channel access requirements.

Recurring costs include application deployment and bring-up of PHY and board. The
deployment time for a related protocol application depends on its complexity and the quality
of the reference model. If no performance optimization (HW/SW) as for A-MPDU is needed,
recurring costs can be reduced to 4 MM. Board bring-up can be significant, but mostly
depends on expertise and support (which was minimal in our case for the PHY, hence the
large effort). At the same time, the RAPTOR FPGA prototyping system proved very useful,
and 2–3 MM should suffice for integrating and configuring a well-supported PHY.

Altogether, faster application deployment, easier platform customization, and avoiding
FPGA/PHY pitfalls is possible. Reusing the prototyping board when targeting another
protocol similar to WLAN, a deployment effort in the range of 6–9 MM seems feasible if
the following points are considered:

153

7 IEEE 802.11n WLAN Prototype

• Getting platform and board/PHY working is aided by better tool support (e.g., on-chip
debug, RTL), but current tools lack support for SW analysis. Debugging should be
planned ahead, i.e., leaving headroom in terms of performance and code memory. A
well supported and proven-to-work PHY is definitely beneficial.

• Refinement and optimization must be done in a disciplined way, relying on version-
ing and regression testing. Platform specifics must be hidden (e.g., using macros).
Optimization by breaking modularity is difficult and should thus be avoided.

• SystemClick should be used throughout the complete development process, refining
the platform and application in SystemC towards the target system. This includes
message passing, memory allocation, and the SPE model.

7.5 Chapter Conclusion

The presented FPGA-based WLAN prototype is amongst the first to demonstrate the IEEE
802.11n protocol on a fully-programmable architecture. Based on the RAPTOR prototyping
system, it integrates the wilaNOVA MAC, an emulated baseband processor, an AFE/RF
chip, and Ethernet. The MAC function is directly generated from the reference application,
and all protocol functions including real-time control frame processing run in SW on an
extended NOVA OS. The MAC implements a generic MAC/PHY interface and the SPE’s
modular streaming protocol in HW. A module for packet splitting/concatenation as needed
for A-MPDU (de-)aggregation is integrated. The system is adjusted to the given PHY and
had to be optimized due to performance constraints of the FPGA.

The demo setup comprises a fully-functional, stand-alone, and standard-compliant WLAN
access point that interoperates with off-the-shelf wireless cards. Streaming of multiple HDTV
videos and QoS could be demonstrated successfully. The achieved throughput of 15 Mbit/s
at 39 Mbit/s PHY rate can be increased to over 30 Mbit/s with A-MPDU aggregation. All
observable quantities are in good compliance with the expected results from SystemClick
simulation. Response times in SW are met as expected, but necessitated optimizations in
terms of application re-structuring, breaking with modularity, and acceleration of the Go-
Signal. The (non-optimized) total MAC system occupies 9 % of the logic resources of a Xilinx
Virtex 4 FPGA, comparable to 4–5 microblaze soft cores.

Both the chosen approach and the available tools proved productive. Re-using the refer-
ence, the application was deployed in 6 effective man months (MM). SystemClick and its
programming model enabled fast adjustments of the system function for the demo setup
and to counter standard changes. SystemClick provides seamless support during deploy-
ment and performance optimization, if SW is refined in a disciplined way and the platform
representation is kept consistent (which is highly recommended). Board/PHY bring-up was
tedious and complicated by lack of support (7 MM). Initial platform development effort was
significant (6 MM), but future deployments will benefit from the implemented platform,
generic MAC/PHY interface, and debugging infrastructure.

Our concept towards a flexible MAC proved feasible, and a powerful platform for shared-
medium protocols becomes available. The prototype fully exposes the MAC layer of 802.11n
for experimentation or related protocols. Given a portable system reference for a new shared-
medium protocol, MAC deployment can be expected to be within 6–9 MM, depending on
application complexity and the level of support for the PHY.

154

8 Thesis Conclusion

Media Access Control (MAC) plays a central role in communication devices for shared-medium
protocols commonly found in home networks such as Wireless LAN (WLAN). With ongoing
protocol evolution, the MAC layer has grown and still grows in complexity and requirements
(e.g., real-time). It now poses a unique challenge to a system’s design, since adaptability
as required for evolving protocol families cannot be provided by today’s conventional,
dedicated devices.

Instead, programmable platforms are needed that provide flexibility in terms of the system’s
function and that can be quickly adapted to related protocols. Disciplined approaches
to the development of such platforms are vital in terms of productivity and to trade off
architectural features in the light of tough market competition. These new MAC architectures
must be protocol agnostic, flexible, easy to use, scalable, and yet efficient. Development
for the MAC layer must address the challenges posed by application complexity, real-time
requirements, and the need for productive development while allowing seamless exploration
of architectural trade-offs.

The contribution of our work is threefold, as summarized in the following: A comprehen-
sive system-level development framework and methodology, which was shown to be both
applicable and productive in the context of home networking protocols (Sec. 8.1). The devel-
opment of a real-world MAC system from an executable IEEE 802.11n WLAN benchmark
as a demanding representative of such protocols (Sec. 8.2). The exploration and optimiza-
tion of an architectural platform that allows to develop and prototype competitive MAC
systems, which are fully-programmable from a high-level description (Sec. 8.3). Altogether,
a universal MAC (UMAC) architecture and development approach emerges with great po-
tential, not only in home-networking products but also with the advent of cognitive and
software-defined radios (Sec. 8.4).

8.1 Methodology and Tools

Our work addresses the lack of established methods for the development of programmable
MAC platforms that leads to unproductive development cycles and inefficient designs. By
successfully developing a WLAN system from initial protocol analysis to prototypical de-
ployment, the selected application-driven approach was proven to be feasible and well
suited in terms of applicability to such shared-medium MAC protocols. Starting with a
performance-indicative application model poses a large initial effort and requires early in-
volvement of SW developers – unlike traditional system engineering approaches. However,
the methodology helped tackling the problem of application complexity in a systematic and
productive way and yielded efficient results:

• The reference application captured domain knowledge and helped recognizing essen-
tial protocol features and performance-relevant aspects. It was vital for early analysis

155

8 Thesis Conclusion

of real-time and memory size requirements, the two dominant factors for cost and
feasibility of WLAN system. Also, it served as an executable specification aiding
exploration and design.

• Relying on a modular, single-source model avoided reimplementation and was key
for early exploration on abstracted hardware resources. The Click language with our
extensions regarding timing and communication proved ideal for modeling complex,
time-critical interactions as needed for shared-medium MAC protocols. Supporting
Click as a programming model opens a direct path to implementation and eases main-
tainability, which is often neglected in other approaches.

• The Y-Chart abstraction proved useful during exploration, since both application and
architecture needed frequent optimization and changes, e.g., for assessing feature/cost
trade-offs (aggregation). Fast turn-around and explicit mapping (scheduling, memo-
ries) quickly led to feasible and competitive solutions.

The exploration and development framework SystemClick follows the Y-Chart in combining
Click with early SystemC performance models. We contributed to SystemClick [9] and
extended it (1) to fully complement the application-driven methodology, (2) to counter the
challenges associated with shared-medium MAC protocols, and (3) to cover the associated
design space better, leading to improved systems:

• Modeling and Mapping – Extending the expressiveness of Click and its mapping
abstractions proved essential for exploring efficient application-to-architecture map-
pings. Our graphical tool (CliMMT) increases productivity and has been well received
by concept engineers at Infineon [8].

• Automated Performance Feedback Loop – A feedback loop integrating profiling, simula-
tion, and analysis was introduced [4] that puts the application into the focus – accounting
for its complexity. Precise feedback (computation, communication, memories) was vi-
tal for verification of real-time constraints. User-defined granularities and orthogonal-
izing behavior from (platform) performance allowed indicative platform exploration
and optimization with fast turn-around.

• Architectural Models – SystemClick’s expressiveness was extended for memories [5]
and shared communication [2]. Access penalties from such shared resources due to
latency, arbitration, and synchronization that impact (real-time) performance can be
reflected. Two different abstractions allow coupling with access-accurate SystemC
models or grouping accesses to abstracted resources. The later is 4X more precise
than previous approaches and up to 150X faster than access-accurate models, allowing
quick searching of large design spaces.

• Simulation Performance and Accuracy – Above-mentioned abstractions (performance,
memories) allowed speedups of three orders of magnitude over ISS after optimization.
Compared to RTL simulation, up to five orders of speedup are achieved even if mem-
ories are considered (unlike many other approaches). The accuracy is sufficient to
indicatively reflect design changes, e.g., to the memory hierarchy [7].

The extended framework is seamless and comprehensive and thus increases productivity.
It is based on appropriate abstractions for application, architecture, and mapping above the
C language and RTL, which enables early and productive exploration, better debugging,
and fast simulation. Despite the framework’s lightweight nature it shows good quality
of results. It thus overcomes limitations of other frameworks due to lack of abstraction,
lack of flexibility, and extensive tool requirements. Based on SystemC, it is extensible and

156

8.2 Wireless LAN Benchmark

especially the newly added memory facet allows direct coupling with, e.g., TLM models of
communication infrastructure.

The importance of productivity in an industrial project setting motivated a closer analysis
of this aspect, as is summarized in Table 8.1. First-time efforts total 36 effective man months
(MM). Exploration benefited from our new methods, but feasibility was analyzed before
automated feedback was available. Prototypical deployment was tedious due to lack of
support (PHY layer). Recurring efforts are expected to be significantly lower (as will be
further discussed in Sec. 8.4). Changes to the model setup, protocol extensions (as, e.g.,
in [1]), or developing a closely related protocol are a matter of days or few weeks. The
overall productivity gain from our system-level approach cannot be underestimated: System
engineering efforts (in industry) are estimated at 3–6 man years each for specification and
implementation. In fact, increasing device complexity might render development infeasible
altogether without system-level methods.

Table 8.1 – Estimation of total real initial efforts and expected recurring efforts for developing a
different shared-medium protocol.

Development phase Initial efforts (WLAN) [MM]* Exp. rec. efforts [MM]

Domain analysis n.a. n.a.
Application model and benchmark definition 8 4–6
Architecture-independent analysis / feasibility 6 1
Design exploration and definition 3 2
Prototypical deployment 19 6–9
Total 36 13–18

*) Estimated effective man-months (MM), team of up to 3 students

8.2 Wireless LAN Benchmark

To the best of our knowledge, this is the first published evaluation of the IEEE 802.11n MAC
protocol in a system engineering context with product-relevant scope. Our methodology
and framework provided the systematic foundation and associated tools for the following
development steps:

• A domain analysis revealed relevant features (e.g., aggregation), device configurations
(e.g., MIMO), and principle architectural concerns (function split, packet memory).
Flexibility in function and architecture proved a key requirement for evolving and
future protocols.

• A comprehensive reference application for the 802.11n MAC layer was developed [6].
Unlike other models, it covers all performance-relevant aspects (e.g., aggregation) and
is implemented in a performance-indicative way. Such a reference was not available
before, and it has already been well received for realistic evaluation of protocol exten-
sions [1]. Benchmark scenarios were devised that expose corner cases and add detail
to configuration, environments, and measurement.

• An architecture-independent analysis – extended on the benchmarks deriving memory
and real-time requirements. The need for a programmable, concurrent, and real-time
capable platform and support for its exploration was identified.

157

8 Thesis Conclusion

A programmable platform template was optimized for MAC operation and customized
for our range of reference WLAN device configurations. No other approach so far has
considered the full 802.11n MAC function on a fully-flexible architecture supporting a high-
level programming model and has explored trade-offs with quantitative results.

• Range of devices – The state-of-the-art 2x2 access point (AP) as a Full-MAC was our
main design driver. It comprises two processing elements (PEs) and 168 kB of memory,
totaling a chip area of 2.2 mm2 (in 65 nm). A station requires 17 % less area. At the low
end, a 1x1 AP as a Lite-MAC requires only 1.45 mm2 for one PE and 99 kB of memory.
A next-generation or high-end device in 4x4 AP configuration supporting concurrent
multi-MAC operation is significantly larger at 3.41 mm2 (three PEs, 276 kB).

• The results are competitive with commercial systems, despite being based on a flexible
and programmable platform and a high-level development approach. The 2x2 AP is
20 % better than a comparable early commercial 11n system by Atheros. More recent
system are approx. 10 % better, which could be matched if our AP was optimized to
one PE. An overhead of up to 15 % is incurred over highly optimized low-end 1x1
devices mostly due to modularity.

• Memory was a significant cost factor, accounting for 50-60 % of the chip area, followed
by the processing elements. Scaling function (e.g, Multi-MAC) is more expensive
than scaling throughput. Stations should optimize code size (i.e., Lite-MAC) while
access points must minimize on-chip data and packet memory. PEs can be run below
400 MHz, which is realistic for the selected architecture, and below 200 MHz, if dynamic
aggregation is relaxed.

8.3 MAC Architecture Exploration and Prototypical
Deployment

The basis for the competitive results of the preceding section was the careful consideration
of architectural trade-offs in order to reduce chip costs while maintaining flexibility. During
this design space exploration, instances of a modular platform (NOVA) were optimized for
MAC processing and customized for WLAN leveraging SystemClick [3, 5]. Starting from a
fully-programmable baseline instance and a precise SW profile of the reference application,
the exploration followed universal MAC principles in avoiding dedicated HW and favoring
protocol-agnostic solutions where possible:

• Required HW accelerators (A-MPDU aggregation, CRC, crypto, DMAs), multi-processor
mappings (2–4 PEs), and SW optimizations (e.g., Click overhead) were identified.

• The memory hierarchy was optimized by allocating small portions of memory locally
(25 % performance gain), separating packet storage, and identifying trade-offs for large
number of aggregation streams (prefetch).

• System communication has to be prioritized for real-time responses, and a packet-based
host interface supporting scatter-gather operation is required.

No further protocol-specific accelerators were shown to be necessary. However, advanced
indirect packet operations and memory management must be provisioned efficiently. This
leaves the protocol function – including real-time critical control frame processing and
response generation – almost entirely in software.

158

8.4 Towards a Universal MAC

Leveraging existing platform features (message passing, heterogeneous memories), the fol-
lowing architectural extensions proved key to the (WLAN) MAC system, including the
introduction of a Specialized PE (SPE) at the MAC/PHY interface:

• Strict separation of packet header and payload is enforced, countering shared access
penalties, contention caused by payload moving, and limited on-chip buffers. This
includes header-specific extensions to the platform OS and better store/fetch mech-
anisms in the SPE. Payload processing is encapsulated in the SPE where payload is
available naturally.

• Click’s modularity and packet passing semantics are extended towards HW blocks in
the SPE’s processing path by establishing a modular streaming protocol. The SPE thus
is easy to customize and extend (e.g., A-MPDU) and can be leveraged by high-level
synthesis and reconfiguration.

• Generic MAC functions for shared medium and real-time operation are added, in-
cluding precise time-stamping (TX/RX), channel status updates, PHY configuration
mechanisms, and increased MAC/PHY interface robustness.

The resulting MAC-optimized platform is scalable, flexible, and inherently modular. It is
thus well suited for future protocols, where challenges arise from increased throughput,
decreased response times, and extended functionality. In addition, it provides a foundation
for adaption to other MAC protocols.

An FPGA-based IEEE 802.11n prototype was developed, verifying for the first time the
feasibility of a software-based MAC that comprises complex features such as A-MPDU ag-
gregation and real-time handling of control frames. Our framework proved very helpful
in customizing, optimizing, and verifying the application in the prototype. The resulting
system is fully programmable and open. This allowed to correct a standard change within
hours, but also makes it ideal for MAC-layer experimentation: For example, a fine-granular
rate selection algorithm could be evaluated within one week, which is not possible with
closed or less flexible systems. The stand-alone demo setup with HDTV videos was success-
fully demonstrated at Infineon and for the OMEGA project.

8.4 Towards a Universal MAC

The importance and heterogeneity of MAC functions in residential home gateways and the
increasing trend towards flexible radio systems has motivated us to strife for a more universal
and homogeneous MAC approach. Such an approach must be protocol agnostic, flexible,
scalable, efficient, and easy to use (cf. Sec. 1.4). Following these principles throughout this
thesis, we have developed a modular HW/SW platform for the WLAN MAC protocol that
is fully programmable and supported by a seamless framework. Since WLAN is at least
representative for other shared-medium home-networking protocols in terms of real-time
and throughput requirements and complexity, the combination of these aspects lays the
foundation for a truly universal MAC (UMAC) [3]:

1. Protocol function in software – Almost the complete protocol function relates to header
processing and can be performed in software, as has been shown for WLAN including
real-time critical control frames. The platform is programmable in Click with its
extended application library for shared-medium protocols, optimized expressiveness,
and graphical front-end in a productive way.

159

8 Thesis Conclusion

6A
C

)
3
4
5
6

re
l.
 t

o
 T

M
A

1
2

1 2 3 4 5No. of PHYs

S
iz

e
 (

r

Dedicated TMAC UMAC, mutually exclusive

UMAC, parallel PHY, 50% reuse

(a) Area advantage of a UMAC over dedicated
TMACs for exclusive and parallel setups.

UMAC

UMAC UMAC UMAC

PHY1 PHY2 PHY3

UMAC

...

...

(b) UMAC-based architecture.

Figure 8.1 – The promise of a Universal MAC (UMAC) architecture.

2. Modular hard- and software platform – The underlying architecture template is
inherently modular and scalable. In addition, the SPE’s streaming protocol extends
Click’s packet abstraction and modularity to a flow-through payload processing path.
The resulting platform can thus be customized to the requirements of other protocols
and dedicated accelerators can be integrated as needed. Fast deployment is further
aided by generic MAC functions for shared medium protocols (e.g., channel status,
timing, efficient packet operations).

3. Development and exploration framework – Our methodology and tools are com-
prehensive and productive and have been proven to yield efficient, programmable
MAC solutions. Productive exploration of the design space (multiprocessor map-
pings, memory, communication) enables fast customization. High-level synthesis of
Click elements into SPE hardware blocks would further increase productivity.

The development efforts for implementing a new shared-medium protocol are estimated in
Table 8.1. Taking advantage of the established flow and platform, total time to prototypical
deployment drops to one third (13–18 MM). This depends on application complexity and
the maturity of the used PHY. Protocols that are more closely related or protocol extensions
(e.g, future versions of IEEE 802.11) can be developed significantly faster.

The potential of a UMAC system supporting multiple physical layers (PHYs) and associated
MAC protocols is sketched in Figure 8.1a. A maximum overhead of 25 % for a single
UMAC over a dedicated TMAC is assumed. Now, estimating that mutually exclusive MAC
operation would add only around 10 % to a scaled UMAC’s chip area for interfacing logic
per PHY, a UMAC setup with two PHYs is already 30 % smaller than two separate TMACs.
In a setup with concurrent (parallel) MAC operation, the UMAC is smaller starting with
three PHYs. Here, it is assumed that each additionally supported PHY adds only 50 % to
the chip of a single UMAC instance, since, e.g., host interfacing, external memory interfaces,
pins, selected accelerators and management functions can be shared.

There are at least two promising areas of deployment where we expect benefits from an
open, homogeneous, and flexible UMAC architecture as sketched in Figure 8.1b:

• Customer Premises Equipment – More efficient designs arise from unified, system-level
trade-off explorations, from component sharing, and from dynamic load distribution
on memories, processors, and queues. Subsystem integration is improved, as, e.g., bot-
tlenecks and overhead can be reduced. Better maintainability and re-use are achieved,

160

8.5 Directions of Future Research

decreasing time to market and non-recurring costs for engineering. In fact, new and
previously unattractive markets may become available altogether. At the same time,
the chip area penalty from modularity and programmability are becoming negligible.
Since analog components and pads do not shrink as fast as digital logic, the digital
MAC part will account only for a very small fraction of overall area in future feature
sizes (< 45 nm).

• Fully software-defined radio – Eventually, a single fully SW-based UMAC can control a
number of PHYs connected, e.g., through a bus-like structure in a time-multiplexed
fashion. Maximum flexibility is reached in combination with software-defined ra-
dio [192] or reconfigurable PHYs, potentially aided by reconfiguration of HW blocks
in the MAC’s modular SPE module.

8.5 Directions of Future Research

Our work has been successfully applied to WLAN. Even more potential arises from the
advent of flexible communication systems and increasing momentum in Electronic System
Level (ESL) methodologies:

• Embedded Software – Click has shown its large potential as a modeling language, with
the distinction between graph and element level holding great promise. It could, how-
ever, be more formalized, e.g., in terms of element prerequisites and modifications to
packets. The element description (or embedded software in general) should make re-
quirements more explicit (avoiding profiling) and provide better mapping abstractions
(e.g., for data structures).

• SystemClick – The architectural modeling capabilities e.g., for communication could be
extended or complemented by other models. All existing facets could be leveraged for
power estimation, e.g. based on utilization ratios. Further uses of SystemClick include
performance modeling of existing architectures to evaluate the feasibility of a given
application-to-architecture mapping, or SW-centric virtual prototypes. In both cases,
the memory models can be extended as common shared resource predictors and must
be complemented by cache models.

• Platform architecture – Accelerator modules in the SPE can be generated using high-level
synthesis, which extends code generation from Click elements onto hardware. Such
hardware accelerators could furthermore be reconfigured dynamically as required for
software-defined radio applications.

• Protocol development – This work has focused on WLAN. Future work may address
the intersection of platform support and protocol development. Additional functions
can be realized easily, either for fast deployment of other protocols or for evaluation of
protocol extensions to existing protocols.

• UMAC – Fully programmable solutions are feasible, but require more research, e.g.,
in terms of power saving. The UMAC should be further evaluated in terms of fully
flexible software-defined and cognitive radios.

161

162

Acronyms

AC WLAN: Access Category

ACK WLAN: Acknowledgement

AES Advanced Encryption Standard

AFE Analog Front End

AGC WLAN: Automated Gain Control

AIFSN WLAN: Arbitration Inter-Frame Space Number

A-MPDU WLAN: Aggregated Mac Protocol Data Unit

A-MSDU WLAN: Aggregated Mac Service Data Unit

AP WLAN: Access Point

API Application Programming Interface

ARL Access-and-Response (AR) Layer

ASIC Application-specific Integrated Circuit

ASIP Application-specific Instruction Set Processor

BAR BlockACK Request

BBP Baseband Processor

BlockACK WLAN: Block Acknowledgment

BSS WLAN: Basic Service Set

CCA WLAN: Clear Channel Assessment

CET Click Element Threading

CliMMT Click Modeling and Mapping Tool

CPE Customer Premises Equipment

CPI Cycles-per-Instruction

CPTE Cycles Per Timing Event

CRACC Click Rapidly Adapted to C Code

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS WLAN: Confirm-to-send

DCF WLAN: Distributed Coordination Function

DIFS WLAN: Distributed Interframe Space

163

Acronyms

DLS WLAN: Direct Link Support

DMA Direct Memory Access

DSL Digital Subscriber Line

EDCA WLAN: Enhanced Distributed Channel Access

ELF Executable and Linking Format

ESL Electronic System Level

FCFS First-Come First-Serve

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HCCA WLAN: Hybrid Coordination Function Controlled Channel Access

HD(TV) High Definition (Television)

HT WLAN: High Throughput

HW Hardware

ICMP Internet Control Message Protocol

IF Interface

IMIX Internet (Traffic) Mix

IO Input/Output

IP Internet Protocol

IPTV Internet Protocol Television

IR Intermediate Representation

IS/DS Instruction Side- / Data Side-

ISS Instruction Set Simulator

JTAG Joint Test Action Group

KPN (Kahn) Process Network

LoC Lines of Code

MA Memory Adapter

MAC Medium Access Controller /Media Access Control

MCS WLAN: Modulation Coding Scheme

MIMO Multiple Input Multiple Output

MM Memory Manager

MM Man Month

MoC Model of Computation

MPI Message Passing Interface

MP-SoC Multiprocessor System-on-Chip

164

NAV WLAN: Network Allocation Vector

NoC Network-on-Chip

NOVA Network-Optimized Versatile Architecture

NRE Non-recurring Engineering

OFDM Orthogonal Frequency Division Multiplexing

OS Operating System

PCF WLAN: Point Coordination Function

PCI(/e) Peripheral Component Interconnect (Express)

PD Packet Descriptor

PDU WLAN: Protocol Data Unit

PE Processing Engine

PHY Physical (Layer)

PLC Powerline Communications

PML Preparation-and-Management (PM) Layer

QoS Quality-of-Service

RDG WLAN: Reverse Direction Grant

RF Radio Frequency

RG Residential Gateway

RIFS WLAN: Reduced Interframe Space

RM SystemClick: Resource Manager

RTL Register Transfer Level

RTOS Real-time Operating System

RX Receive / Reception

SAP WLAN: Service Access Point

SDL Specification and Description Language

SDR Software-Defined Radio

SDRAM Static Dynamic Random Access Memory

SIB Station Info Base

SIFS WLAN: Short Interframe Space

SMG System Message

SoC System-on-chip

SPE Specialized Processing Engine

SW Software

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

165

Acronyms

TID WLAN: Traffic Identifer

TLM Transaction-level Modeling

TP Throughput

TX Transmit / Transmission

TXOP WLAN: Transmission Opportunity

UMAC Universal MAC

UML Unified Modeling Language

UWB Ultra Wide Band

VHDL Very Large Scale Integration Hardware Description Language

VHT WLAN: Very High Throughput

VoIP Voice-over-IP

WAN Wide Area Network

WEP WLAN: Wired Equivalent Privacy

wilaNOVA Wireless LAN on NOVA

WLAN Wireless LAN

WMM WLAN: Wifi Multimedia

WPA WLAN: Wi-Fi Protected Access

166

List of Figures

1.1 The MAC challenge. 2
1.2 Wireless LAN standard evolution. 3
1.3 IEEE 802.11 frame exchange sequence. 4
1.4 Exemplary residential gateway architecture overview. 5
1.5 The promise of a Universal MAC (UMAC) architecture. 9

2.1 Basic medium access in IEEE 802.11. 12
2.2 Frame exchange sequence in IEEE 802.11 Wireless LAN. 13
2.3 A Transmission Opportunity (TXOP) in IEEE 802.11e/n [87]. 14
2.4 BlockACK operation overview. 15
2.5 A-MPDU aggregation in IEEE 802.11n [89]. 16
2.6 PHY encapsulation overview. 16

3.1 Click example. 32
3.2 Model setup in Click. 35
3.3 IEEE 802.11abg/en Click system model. 37
3.4 ReplayBuffer implementation. 40
3.5 Measured end-to-end latencies for QoS scenario. 45

4.1 MAC/PHY timing for frame transmission in HT mode. 48
4.2 MAC/PHY timing during frame reception in HT mode. 49
4.3 MAC time budget for response frames. 50
4.4 Code size distribution. 51
4.5 Packets and packet memory in QoS(11n). 52

5.1 Generic NOVA platform template. 60
5.2 SystemClick overview. 65
5.3 CliMMT tool overview. 67
5.4 Communication mapping. 69
5.5 Performance simulation feedback loop. 71
5.6 SystemClick performance model. 72
5.7 Exemplary gprof output. 74
5.8 In-place profiling overview. 75
5.9 SystemClick trace file in Cadence SimVision. 76
5.10 Read request to a shared memory. 81
5.11 Memory contention estimation example. 82
5.12 Iterated worst-case memory contention algorithm. 83
5.13 Impact of access distribution and synchronization granularity. 84
5.14 Comparison of single and grouped access models. 85
5.15 Optimized instrumentation macro. 90

6.1 Baseline NOVA instance. 98

167

List of Figures

6.2 Instruction distribution (no HW support). 101
6.3 Payload processing performance tradeoffs. 102
6.4 Functional instruction distribution (add. HW support). 102
6.5 Performance requirements for different packet sizes. 103
6.6 Histogram of response times for the 802.11e setup. 108
6.7 WLAN application graph with priority mapping. 112
6.8 NOVA priority scheduling algorithm. 113
6.9 Performance impact of Click Element Threading implementations. 113
6.10 Impact of shared memory distance on system performance. 116
6.11 Impact of memory mappings on system performance. 117
6.12 Impact of packet memory layout on system performance. 118
6.13 PE frequency and local memory trade-offs. 121
6.14 Modular Streaming Protocol. 125
6.15 Performance impact of message passing communication. 130
6.16 Overview MAC and host system interface. 131
6.17 Impact of PCI burst latency on sustained throughput. 132
6.18 Block diagram of the wilaNOVA architecture. 133
6.19 Memory/area ratios and chip area (bubble size) of device configurations. . . . 137

7.1 Raptor prototyping board and radio frontend. 143
7.2 Block-level overview of the WLAN prototyping board. 144
7.3 WLAN demonstrator setup. 147
7.4 Throughput measurements. 148
7.5 PE utilization measurements. 149

8.1 The promise of a Universal MAC (UMAC) architecture. 160

168

List of Tables

1.1 Real-time software challenges. 8

2.1 Function splits and device types. 18
2.2 PHY-layer configurations for IEEE 802.11n. 19
2.3 Overview of related work on Wireless LAN MACs. 24
2.4 Relevant WLAN features. 27
2.5 Summary of WLAN device reference configurations. 27

3.1 States of the EDCA element’s state machine. 39
3.2 System benchmark scenarios. 43
3.3 Benchmark applications and their characteristics. 44
3.4 Settings for QoS and aggregation parameters. 44
3.5 Scaling the QoS setup for different PHY bandwidths. 44
3.6 Simulation Performance. 45
3.7 Click application library and model characteristics. 46

4.1 Packet lengths and transmission times of IEEE 802.11 frames. 48
4.2 Critical processing paths in the WLAN reference application. 50
4.3 Code sizes for different setups. 51
4.4 Memory requirements for packet descriptors. 53
4.5 Total data memory requirements for QoS(11n) AP/STA. 54
4.6 Shared data accesses of the WLAN application. 56

5.1 Simulation speedup (over ISS) for WLAN-TX. 88
5.2 Simulation speedup (over ISS) comparing different benchmarks. 89
5.3 Accuracy of memory models. 91
5.4 Sensitivity of memory models. 91
5.5 Speedup (over RTL) for architectural simulation. 92

6.1 Functional performance categories. 100
6.2 Quantification of platform overhead. 100
6.3 Comparison of MIPS M4K and 24k. 105
6.4 Comparison of compiler settings (static). 106
6.5 Comparison of compiler settings (dynamic). 106
6.6 Per-element tradeoffw.r.t. compiler settings. 106
6.7 Click overhead (performance). 107
6.8 Click overhead (memory). 107
6.9 Two-PE performance requirements. 110
6.10 Performance requirements for multiprocessor mappings. 110
6.11 Performance requirements for different throughputs and features. 111
6.12 Instruction budgets for background tasks in a single-PE mapping. 114
6.13 Real-time performance baseline. 120

169

List of Tables

6.14 Code size comparison (-O2) for single-PE and two-PE mappings. 122
6.15 Distribution of functional data memory (2x2 setup, all in [B]). 123
6.16 Memory managment performance (example). 128
6.17 Performance/cost trade-off for platform services. 128
6.18 Processing element (PE) area estimation. 134
6.19 Specialized Processing Element (SPE) area estimation. 134
6.20 Global resources area estimation. 135
6.21 Summary of chip area costs for WLAN device configurations. 135

7.1 Prototype response times. 150
7.2 Measured shared memory access latency. 150
7.3 Prototype FPGA resources. 151
7.4 Demonstrator development timeline. 153

8.1 Estimation of total and recurring efforts. 157

170

Author’s Publications

[1] O. Hoffmann, F.-M. Schaefer, R. Kays, C. Sauer, and H.-P. Loeb. Prioritized medium access in
ad-hoc networks with a SystemClick model of the IEEE 802.11n MAC. In IEEE 21st International
Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2010.

[2] H.-P. Loeb, M. Gries, and C. Sauer. Implementing a software-based 802.11 MAC on a customized
platform. In Proceedings of the 6th IEEE Conference on Consumer Communications and Networking
Conference (CCNC), 2009.

[3] H.-P. Loeb, C. Liss, U. Rückert, and C. Sauer. UMAC - a universal MAC architecture for hetero-
geneous home networks. In The International Workshop on Wireless and Optical Networks (WI-OPT
2009), at International Conference on Ultra Modern Telecommunications (ICUMT-2009), 2009.

[4] H.-P. Loeb and C. Sauer. SystemClick - efficiently exploring the performance of programmable
packet processing platforms. In 18th European SystemC User’s Group Meeting, 2008.

[5] H.-P. Loeb and C. Sauer. Exploration of embedded memories in SoCs using SystemC-based
functional performance models. In Forum on Specification Design Languages (FDL), 2009.

[6] H.-P. Loeb and C. Sauer. A modular reference application for IEEE 802.11n wireless LAN MACs.
In Proceedings of the 2009 IEEE International Conference on Communications (ICC), 2009.

[7] H.-P. Loeb and C. Sauer. Fast SystemC performance models for the exploration of embedded
memories. In D. Borrione, editor, Advances in Design Methods from Modeling Languages for Embedded
Systems and SoCs, volume 63 of Lecture Notes in Electrical Engineering, pages 73–92. Springer
Netherlands, 2010.

[8] H.-P. Loeb, C. Sauer, M. Gries, and S. Dirk. Graphical component-based application modeling
and code generation for MP-SoCs. Infineon Embedded Software Days (IESD), 2006.

[9] C. Sauer, M. Gries, and H. P. Loeb. SystemClick – a domain-specific framework for early ex-
ploration using functional performance models. In Proceedings of the 45th ACM/IEEE Design
Automation Conference (DAC), 2008.

[10] C. Sauer, H.-P. Loeb, and C. Teerapat. Performance of an 802.11n software MAC. Technical report,
Infineon Technologies, Access Communication Solutions, 2007.

171

172

Bibliography

[11] S. Abdi, G. Schirner, I. Viskic, H. Cho, Y. Hwang, L. Yu, and D. Gajski. Hardware-dependent
software synthesis for many-core embedded systems. In Proceedings of the 2009 Asia and South
Pacific Design Automation Conference (ASP-DAC), 2009.

[12] G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
MA, USA, 1986.

[13] Agilent Technologies. JTC 003: mixed packet size throughput. The Journal of Internet Test
Methodologies, pages 16–18, Sept. 2004.

[14] D. Akhmetov. 802.11n: Performance results of reverse direction data flow. In Proceedings of the
IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
2006.

[15] T. Arpinen, P. Kukkala, E. Salminen, M. Hännikäinen, and T. D. Hämäläinen. Configurable
multiprocessor platform with rtos for distributed execution of uml 2.0 designed applications. In
Proceedings of the conference on Design, automation and test in Europe (DATE), 2006.

[16] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson, W. Plishker,
J. Shalf, S. Williams, and K. Yelik. The landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University of California at
Berkeley, 2006.

[17] R. Balani, C.-C. Han, R. K. Rengaswamy, I. Tsigkogiannis, and M. Srivastava. Multi-level software
reconfiguration for sensor networks. In Proceedings of the 6th ACM & IEEE International conference
on Embedded software (EMSOFT), 2006.

[18] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-software co-design of embedded
systems: the POLIS approach. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[19] F. Balarin, Y. Watanabe, H. Hsieh, et al. Metropolis: an integrated electronic system design
environment. IEEE Computer, 36(4):45–52, 2003.

[20] J. R. Bammi, W. Kruijtzer, L. Lavagno, E. Harcourt, and M. T. Lazarescu. Software performance
estimation strategies in a system-level design tool. In Proceedings of the eighth international workshop
on Hardware/software codesign (CODES), 2000.

[21] A. Banerjee and A. Gerstlauer. Transaction level modeling of best-effort channels for networked
embedded devices. pages 77–88, 2009.

[22] F. Baskett, K. Chandy, R. Muntz, and F. Palacios. Open, Closed, and Mixed Networks of Queues
with Different Classes of Customers. Journal of the ACM, 22(2):248–260, 1975.

[23] L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and optimization. In
Proceedings of the 1998 international symposium on Low power electronics and design (ISLPED), 1998.

[24] R. Bernasconi, S. Giordano, A. Puiatti, R. Bruno, and E. Gregori. Design and implementation
of an enhanced 802.11 MAC architecture for single-hop wireless networks. EURASIP Journal on
Wireless Communication Networks, 2007(1):33–33, 2007.

173

Bibliography

[25] D. P. Bhandarkar. Analysis of memory interference in multiprocessors. IEEE Transactions on
Computers, (9):897–908, Sept. 1975.

[26] G. Bianchi, A. Di Stefano, C. Giaconia, L. Scalia, G. Terrazzino, and I. Tinnirello. Experimental
assessment of the backoff behavior of commercial ieee 802.11b network cards. In 26th IEEE
International Conference on Computer Communications (INFOCOM), 2007.

[27] A. Bianco, R. Birke, D. Bolognesi, J. Finochietto, G. Galante, M. Mellia, M. Prashant, and F. Neri.
Click vs. Linux: two efficient open-source IP network stacks for software routers. In Workshop
on High Performance Switching and Routing (HPSR), 2005.

[28] O. Blaurock. A SystemC-based modular design and verification framework for C-model reuse
in a HW/SW-co-design flow. In Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops (ICDCSW), 2004.

[29] A. Bobrek, J. Paul, and D. Thomas. Shared resource access attributes for high-level contention
models. In Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC), 2007.

[30] A. Bobrek, J. Pieper, J. Nelson, J. Paul, and D. Thomas. Modeling shared resource contention
using a hybrid simulation/analytical approach. In Proceedings of Design, Automation and Test in
Europe (DATE), 2004.

[31] N. Bombieri, F. Fummi, and D. Quaglia. System/network design-space exploration based on tlm
for networked embedded systems. volume 9, pages 1–32, New York, NY, USA, 2010. ACM.

[32] R. Bosman, J. Lukkien, and R. Verhoeven. An integral approach to programming sensor net-
works. In Proceedings of the 6th IEEE Conference on Consumer Communications and Networking
Conference (CCNC), 2009.

[33] S. Boukhechem and E.-B. Bourennane. Tlm platform based on systemc for starsoc design space
exploration. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2008.

[34] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varad-
han, Y. Xu, and H. Yu. Advances in network simulation. Computer, 33(5):59–67, 2000.

[35] Broadcom. BCM4323x family - Intensi-fi® XLR media family. Product Sheet, accessed online,
2010.

[36] A. Burg, S. Haene, M. Borgmann, et al. A 4-stream 802.11n baseband transceiver in 0.13 CMOS.
Symposium on VLSI Circuits, pages 282 –283, 2009.

[37] D. Bursky. Behind the numbers: Are FPGAs usurping ASIC design investigations and design
starts? Chip Design Magazine, 2007.

[38] C.-B. Chae, A. Forenza, J. Heath, R.W., M. McKay, and I. Collings. Adaptive mimo transmission
techniques for broadband wireless communication systems. Communications Magazine, IEEE,
48(5):112 –118, 2010.

[39] B. Chen and R. Morris. Flexible control of parallelism in a multiprocessor pc router. In In
Proceedings of the 2001 USENIX Annual Technical Conference (USENIX), 2001.

[40] C.-H. Chen and F.-F. Lin. An easy-to-use approach for practical bus-based system design. IEEE
Transactions on Computers, 1999.

[41] M. K. Chen et al. Shangri-la: Achieving high performance from compiled network applications
while enabling ease of programming. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2005.

[42] E. Cheung, H. Hsieh, and F. Balarin. Framework for fast and accurate performance simulation
of multiprocessor systems. In IEEE International High Level Design Validation and Test Workshop
(HLVDT), 2007.

174

Bibliography

[43] E. Cheung, H. Hsieh, and F. Balarin. Memory subsystem simulation in software TLM/T models.
In Proceedings of the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC), 2009.

[44] CoWare. CoWare PlatformArchitect. www.coware.com/products/platformarchitect , accessed
Jan. 2009.

[45] M. Damm, J. Moreno, J. Haase, and C. Grimm. Using transaction level modeling techniques for
wireless sensor network simulation. In Proceedings of the conference on Design, Automation and Test
in Europe (DATE), 2010.

[46] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli. A platform-based taxonomy for
ESL design. IEEE Design and Test of Computers, 23(5):359– 374, 2006.

[47] R. Dhar, G. George, A. Malani, and P. Steenkiste. Supporting integrated MAC and PHY software
development for the USRP SDR. 1st IEEE Workshop on Networking Technologies for Software Defined
Radio Networks (SDR), 2006.

[48] D. Dietterle. Embedded system protocol design flow based on SDL: from specification to hard-
ware/software implementation. In Proceedings of the 1st international conference on Simulation tools
and techniques for communications, networks and systems & workshops (Simutools), 2008.

[49] D. Dietterle and R. Kraemer. A hardware accelerated implementation of the IEEE 802.15.3 MAC
protocol. Telecommunication Systems, 40(3-4):161–167, 2009.

[50] G. Dittmann. On Instruction-Set Generation for Specialized Processors. PhD thesis, ETH Zurich,
2005.

[51] C. Doerr, M. Neufeld, J. Filfield, T. Weingart, D. C. Sicker, and D. Grunwald. MultiMAC - an
adaptive MAC framework for dynamic radio networking. In IEEE DySPAN, 2005.

[52] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and D. D. Gajski. System-on-chip
environment: a specc-based framework for heterogeneous mpsoc design. EURASIP Journal of
Embedded Systems, 2008:1–13, 2008.

[53] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation to scratch-pad memory
in embedded systems. Journal of Embedded Computing, 1(4):521–540, 2005.

[54] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of embedded systems:
Formal models, validation, and synthesis. Readings in hardware/software co-design, 2001.

[55] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual editors as eclipse plug-ins.
In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering
(ASE), 2005.

[56] S. Eichler. Performance evaluation of the IEEE 802.11p WAVE communication standard. 2007.

[57] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity – the Ptolemy approach. In Proceedings of the IEEE, pages 127–144, 2003.

[58] P. Ezudheen, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi. Parallelizing SystemC kernel
for fast hardware simulation on smp machines. 2009.

[59] G. Fankhauser, C. Conrad, E. Zitzler, and B. Plattner. Topsy - a teachable operating system.
Technical report, 1997.

[60] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power estimation of embedded systems: a
hardware/software codesign approach. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 6(2):266 –275, 1998.

[61] M. Frigo, Steven, and G. Johnson. The design and implementation of fftw3. In Proceedings of the
IEEE, volume 93, pages 216–231, 2005.

175

www.coware.com/products/platformarchitect

Bibliography

[62] T. Fujisawa, J. Hasegawa, K. Tsuchie, T. Shiozawa, T. Fujita, T. Saito, and Y. Unekawa. A
single-chip 802.11a MAC/PHY with a 32-b RISC processor. IEEE Journal on Solid-State Circuits,
38:2001–2009, 2003.

[63] F. Fummi, G. Perbellini, M. Loghi, and M. Poncino. ISS-centric modular hw/sw co-simulation.
In Proceedings of the 16th ACM Great Lakes symposium on VLSI (GLSVLSI), 2006.

[64] L. Gao, S. Kraemer, et al. An integrated performance estimation approach in a hybrid simulation
framework. In Proceedings of the 4th Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), 2008.

[65] D. Genbrugge and L. Eeckhout. Chip multiprocessor design space exploration through statistical
simulation. IEEE Transactions on Computers, 58:1668–1681, 2009.

[66] A. Gordon-Ross, N. Dutt, et al. Automatic tuning of twolevel caches to embedded applications.
In Proceedings of the conference on Design, Automation and Test in Europe (DATE), 2004.

[67] M. Gries. Methods for evaluating and covering the design space during early design develop-
ment. Integrated VLSI Journal, 38(2):131–183, 2004.

[68] M. Gries and K. Keutzer. Building ASIPs: The Mescal Methodology. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[69] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Comparing analytical modeling with simulation
for network processors: a case study. In Proceedings of the conference on Design, Automation and
Test in Europe (DATE), 2003.

[70] M. Gries, C. Kulkarni, C. Sauer, and K. Keutzer. Exploring trade-offs in performance and
programmability of processing element topologies for network processors. In in Proceedings of
Network Processor Workshop in conjunction with Ninth International Symposium on High Performance
Computer Architecture (HPCA), 2003.

[71] T. Grötker. System Design with SystemC. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[72] Y. Grunenberger, M. Heusse, F. Rousseau, and A. Duda. Experience with an Implementation
of the Idle Sense Wireless Access Method. In Proceedings of the 2007 ACM CoNEXT conference
(CoNEXT), 2007.

[73] B. Hailpern and P. Tarr. Model-driven development: the good, the bad, and the ugly. IBM
Systems Journal, 45(3):451–461, 2006.

[74] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov. Designing extensible IP
router software. In Proceedings of the 2nd conference on Symposium on Networked Systems Design &
Implementation (NSDI), 2005.

[75] M. Hannikainen, J. Knuutila, T. Hamalainen, and J. Saarinen. Using SDL for implementing a
wireless medium access control protocol. In Proceedings of the 2000 International Conference on
Microelectronic Systems Education (MSE), 2000.

[76] L. Haque and M. J. Armstrong. A survey of the machine interference problem. European Journal
of Operational Research, 179(2):469–482, June 2007.

[77] M. Haroud and A. Biere. Hw accelerated ultra wide band MAC protocol using SDL and SystemC.
Proceedings of the IEEE Radio and Wireless Conference (RAWCON), 2004.

[78] D. Hedde, P.-H. Horrein, F. Petrot, R. Rolland, and F. Rousseau. A MP-SoC prototyping platform
for flexible radio applications. In Proceedings of the 2009 12th Euromicro Conference on Digital
System Design, Architectures, Methods and Tools (DSD), 2009.

[79] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and B. Walke. The IEEE 802.11 universe.
IEEE Communications Magazine, 48(1):62–70, January 2010.

176

Bibliography

[80] J. Hoffman, D. A. Ilitzky, A. Chun, and A. Chapyzhenka. Architecture of the scalable commu-
nications core. In Proceedings of the First International Symposium on Networks-on-Chip (NOCS),
Washington, DC, USA, 2007.

[81] HomeGrid-Forum. ITU G.hn protocol standard, website. www.homegridforum.org, accessed
June 2010.

[82] I.-P. Hong, Y.-J. Lee, et al. Multi-threading processor architecture for wireless LAN MAC con-
troller. In Proceedings of the International Conference on Consumer Electronics (ICCE), 2005.

[83] C. H. Hoogendoorn. A general model for memory interference in multiprocessors. IEEE Trans-
actions on Communication, (10):998–1005, Oct. 1977.

[84] hostapd. IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS authenticator.
http://hostap.epitest.fi/hostapd/ .

[85] Y. Hwang, G. Schirner, S. Abdi, and D. D. Gajski. Accurate timed rtos model for transaction level
modeling. In Proceedings of the conference on Design, Automation and Test in Europe (DATE), 2010.

[86] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifi-
cation. IEEE standard, 1997.

[87] IEEE 802.11-2007. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications. IEEE standard, June 2007.

[88] IEEE 802.11e-2005. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications, amendment 8: Medium Access Control (MAC) Quality of Service enhancements.
IEEE standard, 2005.

[89] IEEE 802.11n/D9.0. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications, amendment 5: enhancements for Higher Throughput. IEEE Unapproved Draft
Standard, 2009.

[90] IEEE 802.11P. Usage models. IEEE 802.11 standard contributions, 2004.

[91] M. Iliopoulos and T. Antonakopoulos. Optimised reconfigurable MAC processor architecture.
In 8th IEEE ICECS, 2001.

[92] I. Inan, F. Keceli, and E. Ayanoglu. Modeling the 802.11e enhanced distributed channel access
function. In IEEE Global Telecommunications Conference (GLOBECOM), 2007.

[93] Intel Corporation. Intel®Wireless WiFi Link 4965AGN. http://www.intellinuxwireless.org ,
accessed Jan. 2008.

[94] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge. An analytical model for designing
memory hierarchies. IEEE Transactions on Computers, 45(10):1180–1194, 1996.

[95] A. Jantsch and I. Sander. Models of computation and languages for embedded system design.
2005.

[96] J.-P. Javaudin, M. Bellec, D. Varoutas, and V. Suraci. OMEGA ICT project: Towards convergent
gigabit home networks. In Proceedings of annual the IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2008.

[97] F. K. Jondral. Software-defined radio-basic and evolution to cognitive radio. EURASIP Journal
on Wireless Communication and Networking, 2005.

[98] A. Jow, C. Schurgers, and D. Palmer. CalRadio: a portable, flexible 802.11 wireless research
platform. In Proceedings of the 1st international workshop on System evaluation for mobile platforms
(MobiEval), New York, NY, USA, 2007.

177

www.homegridforum.org
http://hostap.epitest.fi/hostapd/
http://www.intellinuxwireless.org

Bibliography

[99] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld,
editor, Proceedings of the IFIP Congress on Information Processing, pages 471–475. North-Holland,
New York, NY, 1974.

[100] H. Kalte, M. Porrmann, and U. Rückert. A prototyping platform for dynamically reconfigurable
system on chip designs. In Proceedings of the IEEE Workshop Heterogeneous Reconfigurable Systems
on Chip (SoC), 2002.

[101] Y. Kanada. Two rule-based building-block architectures for policy-based network control. In
Proceedings of the 2nd International Working Conference on Active Networks Control (IWAN), 2000.

[102] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D. Hämäläinen, J. Riihimäki,
and K. Kuusilinna. UML-based multiprocessor SoC design framework. ACM Transactions on
Embedded Computing Systems, 5(2):281–320, 2006.

[103] K. Karras, D. Llorente, T. Wild, and A. Herkersdorf. Improving memory subsystem perfor-
mance in network processors with smart packet segmentation. In Proceedings of the International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2008.

[104] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated development of embedded
software. Proceedings of the IEEE, 91:145–164, January 2003.

[105] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, and B. Vanthournout. A
modular simulation framework for spatial and temporal task mapping onto multi-processor
SoC platforms. In Proceedings of the conference on Design, Automation and Test in Europe (DATE),
2005.

[106] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr. A sw performance
estimation framework for early system-level-design using fine-grained instrumentation. In
Proceedings of the conference on Design, Automation and Test in Europe (DATE), 2006.

[107] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System-level design: orthog-
onalization of concerns and platform-based design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 19(12):1523–1543, Dec. 2000.

[108] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W. Knightly. WARP: a flexible
platform for clean-slate wireless medium access protocol design. SIGMOBILE Mob. Comput.
Commun. Rev., 12(1):56–58, 2008.

[109] B. Kienhuis, E. Deprettere, et al. An approach for quantitative analysis of application-specific
dataflow architectures. In IEEE International Conference on Application-Specific Systems, Architec-
tures and Processors (ASAP), 1997.

[110] J. P. C. Kleijnen. An overview of the design and analysis of simulation experiments for sensitivity
analysis. European Journal of Operational Research, 164(2):287–300, 2005.

[111] T. Kogel, A. Wieferink, R. Leupers, G. Ascheid, and H. Meyr. Virtual architecture mapping: A
SystemC based methodology for architectural exploration of system-on-chip designs. In Pro-
ceedubgs of the International workshop on Systems, Architectures, Modeling and Simulation (SAMOS,
2003.

[112] E. Kohler. The Click modular router. PhD thesis, Massachusetts Institute of Technology, November
2000.

[113] E. Kohler, R. Morris, B. Chen, et al. The Click modular router. ACM Transactions on Computer
Systems, 18(3), Aug. 2000.

[114] A. K. Kruth. The Impact of Technology Scaling on Integrated Analogue CMOS RF Front-Ends for
Wireless Applications. PhD thesis, RWTH, Aachen, 2008.

178

Bibliography

[115] P. Kukkala, V. Helminen, M. Hannikainen, and T. Hamalainen. Uml 2.0 implementation of an
embedded wlan protocol. In Proceedings of annual the IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2004.

[116] C. Kulkarni, G. Brebner, and G. Schelle. Mapping a domain specific language to a platform
FPGA. In Proceedings of the 41st Design Automation Conference (DAC), 2004.

[117] C. Kulkarni, M. Gries, C. Sauer, and K. Keutzer. Programming challenges in network processor
deployment. In Proceedings of the international conference on Compilers, architecture and synthesis for
embedded systems (CASES), 2003.

[118] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining simulation and formal methods for
system-level performance analysis. In Proceedings of the conference on Design, Automation and Test
in Europe (DATE), 2006.

[119] K. Lahiri, A. Raghunathan, and S. Dey. System-level performance analysis for designing on-chip
communication architectures. IEEE Transactions on Computer Aided-Design of Integrated Circuits
and Systems, 2001.

[120] D. Langen, A. Brinkmann, and U. Ruckert. High level estimation of the area and power consump-
tion of on-chip interconnects. In Proceedings 13th Annual IEEE International ASIC/SOC Conference,
2000.

[121] Lantiq. Data sheet, XWAVE 1650. Technical report, 2010.

[122] E. Lee and S. Neuendorffer. Concurrent models of computation for embedded software. IEEE
Proceedings on Computers and Digital Techniques, 152(2):239–250, Mar 2005.

[123] E. Lee and T. Parks. Dataflow process networks. IEEE Proceedings, 83(5):773–801, May 1995.

[124] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[125] E. A. Lee, X. Liu, and S. Neuendorffer. Classes and inheritance in actor-oriented design. ACM
Transactions on Embedded Computing Systems, 8(4):1–26, 2009.

[126] H. Lee and T. Mudge. A dual-processor solution for the mac layer of a software defined radio
terminal. pages 257–265, 2005.

[127] J. Lee and S. C. Park. Hardware architecture exploration of ieee 802.11n receiver using systemc
transaction level modeling. In Advanced Communication Technology, The 9th International Conference
on, volume 3, pages 1707 – 1710, 2007.

[128] J.-S. Lee, Y.-W. Su, and C.-C. Shen. A comparative study of wireless protocols: Bluetooth, UWB,
ZigBee, and Wi-Fi. In 33rd Annual IEEE Conference of the Industrial Electronics Society (IECON),
2007.

[129] C. Lefurgy, E. Piccininni, and T. Mudge. Evaluation of a high performance code compression
method. In Proceedings of the 32nd annual ACM/IEEE international symposium on Microarchitecture
(MICRO), 1999.

[130] H. Lekatsas and W. Wolf. Code compression for embedded systems. In Proceedings of the 35th
annual Design Automation Conference (DAC), 1998.

[131] N. Letor, P. De Cleyn, and C. Blondia. Enabling cross layer design: adding the MadWifi extensions
to Nsclick. In Proceedings of the 2nd international conference on Performance evaluation methodologies
and tools (ValueTools), 2007.

[132] Leupers, R. and Wahlen, O. and Hohenauer, M. and Kogel and others, P. An Executable Inter-
mediate Representation for Retargetable Compilation and High-Level Code Optimization. In
International Workshop on Systems, Architecturs, Modeling and Simulation (SAMOS), 2003.

179

Bibliography

[133] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler. Tinyos: An operating system for sensor networks. Ambient Intelligence,
pages 115–148, 2005.

[134] M. Li, M. Claypool, and R. Kinicki. Playout buffer and rate optimization for streaming over IEEE
802.11 wireless networks. ACM Transactions on Multimedia Computing Communication Applications,
5(3):1–25, 2009.

[135] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti. Aggregation with fragment retransmis-
sion for very high-speed WLANs. IEEE/ACM Transactions on Networks, 17(2):591–604, 2009.

[136] H. Lichte, S. Valentin, and H. Karl. Automated development of cooperative MAC protocols.
Mobile Networks and Applications, 2009.

[137] Y.-D. Lin, J.-H. Yeh, T.-H. Yang, C.-Y. Ku, S.-L. Tsao, and Y.-C. Lai. Efficient dynamic frame
aggregation in ieee 802.11s mesh networks. Int. J. Commun. Syst., 22(10):1319–1338, 2009.

[138] Y.-D. Lin, J.-H. Yeh, T.-H. Yang, C.-Y. Ku, S.-L. Tsao, and Y.-C. Lai. Efficient dynamic frame
aggregation in ieee 802.11s mesh networks. Int. J. Communication Systems, 22(10):1319–1338,
2009.

[139] Linux Wireless. mac80211. http://linuxwireless.org, accessed Jan. 2008.

[140] D. Liu, A. Nilsson, E. Tell, D. Wu, and J. Eilert. Bridging dream and reality: Programmable
baseband processors for software-defined radio. Communications Magazine, IEEE, 47(9):134 –140,
2009.

[141] H. Liu and Y. Wang. An efficient software/hardware architecture for the IEEE 802.11n BlockACK
mechanism. In Proceedings of the 11th IEEE Singapore International Conference on Communication
Systems (ICCS), pages 1111–1114, Nov. 2008.

[142] H. P. Loeb, R. Buchty, and W. Karl. A network agent for diagnosis and analysis of real-time
ethernet networks. In Proceedings of the 2006 international conference on Compilers, architecture and
synthesis for embedded systems (CASES), 2006.

[143] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon. Analyzing on-chip communication
in a mpsoc environment. In Proceedings of the conference on Design, automation and test in Europe
(DATE), 2004.

[144] M.-H. Lu, P. Steenkiste, and T. Chen. Using commodity hardware platform to develop and
evaluate csma protocols. In Proceedings of the third ACM international workshop on Wireless network
testbeds, experimental evaluation and characterization (WiNTECH). ACM, 2008.

[145] S. Malik, M. Martonosi, and Y.-T. S. Li. Static timing analysis of embedded software. In Proceedings
of the 34th annual Design Automation Conference (DAC), pages 147–152, New York, NY, USA, 1997.

[146] A. Mann, B. Grube, I. Konorov, S. Paul, L. Schmitt, D. McElroy, and S. Ziegler. A sampling ADC
data acquisition system for positron emission tomography. IEEE Transactions on Nuclear Science,
53(1):297 –303, 2006.

[147] A. Martin, P. Starr, and P. Larson. Software requirements for interventional MR in restorative
and functional neurosurgery. Neurosurgery clinics of North America, 20(2):179–86, 2009.

[148] G. Martin. Overview of the MPSoC design challenge. In Proceedings of the 43rd Annual Conference
on Design Automation (DAC), 2006.

[149] Marvell. 88W87 integrated MAC/Baseband/RF SoC product brief.
http://www.marvell.com/products/wireless/8786.pdf, 2009.

[150] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo. A constant-time dynamic storage allocator
for real-time systems. Real-Time Systems, 40(2):149–179, 2008.

180

http://linuxwireless.org

Bibliography

[151] H. Massalin. Superoptimizer: a look at the smallest program. SIGPLAN Notes, 22(10):122–126,
1987.

[152] K. Masselos and N. S. Voros. Implementation of wireless communications systems on FPGA-
based platforms. EURASIP Journal on Embedded Systems, 2007(1):1–1, 2007.

[153] R. McIlroy, P. Dickman, and J. Sventek. Efficient dynamic heap allocation of scratch-pad memory.
In Proceedings of the 7th international symposium on Memory management (ISMM), 2008.

[154] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation in campus networks. SIGCOMM Computer
Communication Review, 38:69–74, March 2008.

[155] S. Mehta, D. Weber, et al. An 802.11g WLAN SoC. IEEE Journal of Solid-State Circuits, 40(12):2483
– 2491, 2005.

[156] T. Meyer, P. Langend¨orfer, V. Suraci, S. Nowak, and M. Bahr. An Inter-MAC architecture for
heterogeneous gigabit home networks. In Proceedings of the IEEE Conference on Local Computer
Networks (LCN), 2009.

[157] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D. Langen. Source-level timing
annotation and simulation for a heterogeneous multiprocessor. In Proceedings of the conference on
Design, automation and test in Europe (DATE), 2008.

[158] A. Mihal and K. Keutzer. A processing element and programming methodology for click ele-
ments. In Proceedings of the Workshop on Application Specific Processors (WASP 2005), 2005.

[159] A. C. Mihal. Deploying Concurrent Applications on Heterogeneous Multiprocessors. PhD thesis, EECS
Department, University of California, Berkeley, November 10 2006.

[160] MIPS Technologies. Homepage. www.mips.com, accessed 2009.

[161] MIPS Technologies. MIPS SDE 6.x programmers’ guide. http://www.mips.com, accessed 2008.

[162] MIPS Technologies. M4K core product overview. http://www.mips.com, accessed 2009.

[163] J. Mitola. The software radio architecture. Communications Magazine, IEEE, 33(5):26–38, 1995.

[164] T. N. Mudge and H. B. Al-Sadoun. A semi-markov model for the performance of multiple-bus
systems. IEEE Transactions on Computers, 34(10):934–942, 1985.

[165] J. Mudigonda, H. M. Vin, and R. Yavatkar. Overcoming the memory wall in packet processing:
Hammers or ladders? In Proceedings of the 2005 Symposium on Architecture for Networking and
Communications Systems (ANCS), 2005.

[166] S. Nabi, C. Wells, and W. Vanderbauwhede. A dynamically reconfigurable hardware co-
processor for a multi-standard wireless MAC Processor. Proceedings of the NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2008.

[167] Y. Nagai, A. Fujimura, Y. Shirokura, Y. Isota, F. Ishizu, H. Nakase, S. Kameda, H. Oguma, and
K. Tsubouchi. 324mbps WLAN equipment with MAC frame aggregation. In Proceedings of the
IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006.

[168] S. Neuendorffer and E. A. Lee. Hierarchical reconfiguration of dataflow models. In MEMOCODE,
pages 179–188, 2004.

[169] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald. SoftMAC - flexible wireless research
platform. In Workshop on Hot Topics in Networks (HotNets), November 2005.

[170] M. Neufeld, A. Jain, and D. Grunwald. Nsclick: bridging network simulation and deployment.
In Proceedings of the 5th ACM international workshop on Modeling analysis and simulation of wireless
and mobile systems (MSWiM), 2002.

181

www.mips.com

Bibliography

[171] J.-C. Niemann, C. Puttmann, M. Porrmann, and U. Rückert. GigaNetIC - a scalable embedded
on-chip multiprocessor architecture for network applications. In Workshop proceedings of the 19th
International Conference on Architecture of Computing Systems (ARCS), 2006.

[172] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste. Enabling MAC protocol imple-
mentations on software-defined radios. In Proceedings of the 6th USENIX symposium on Networked
systems design and implementation (NSDI), 2009.

[173] R. Ohlendorf, A. Herkersdorf, and T. Wild. FlexPath NP: a network processor concept with
application-driven flexible processing paths. In Proceedings of the 3rd IEEE/ACM/IFIP international
conference on hardware/software codesign and system synthesis (CODES+ISSS), 2005.

[174] V. Oksman and S. Galli. G.hn: the new ITU-T home networking standard. Communications
Magazin, 47(10):138–145, 2009.

[175] S. Ortiz. IEEE 802.11n: The road ahead. Computer, 42(7):13–15, 2009.

[176] O. Ozturk, M. Kandemir, M. Irwin, and S. Tosun. Multi-level on-chip memory hierarchy design
for embedded chip multiprocessors. In Proceedings of the 12th International Conference on Parallel
and Distributed Systems (ICPADS), 2006.

[177] P. R. Panda, F. Catthoor, et al. Data and memory optimization techniques for embedded systems.
Transactions on Design Automation of Electronic Systems (TODAES), 2001.

[178] P. R. Panda, S. Inc, N. D. Dutt, R. Nicolau, F. Catthoor, A. V, E. Brockmeyer, C. Kulkarni, and
E. D. Greef. Large embedded memories. IEEE Design & Test of Computers, 2008.

[179] G. Panic, D. Dietterle, et al. A system-on-chip implementation of the IEEE 802.11a MAC layer.
In Proceedings of The Euromicro Conference on Digital System Design (DSD), 2003.

[180] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extending the transaction level modeling approach
for fast communication architecture exploration. In Proceedings of the 41st annual conference on
Design automation (DAC), 2004.

[181] D. A. Patterson and J. L. Hennessy. Computer architecture: a quantitative approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[182] J. M. Paul, D. E. Thomas, and A. S. Cassidy. High-level modeling and simulation of single-
chip programmable heterogeneous multiprocessors. ACM Transactions on Design Automations for
Electronic Systems, 10(3):431–461, 2005.

[183] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A system-level exploration platform for
network processors. IEEE Design & Test of Computers, 19(6):17–26, Nov.–Dec. 2002.

[184] E. Perahia and R. Stacey. Next Generation Wireless LANs: Throughput, Robustness, and Reliability
in 802.11n. Cambridge University Press, 2008.

[185] P. Petrus, Q. Sun, S. Ng, J. Cho, et al. An integrated draft 802.11n compliant MIMO baseband
and MAC processor. Digest of Technical Papers, IEEE International Solid-State Circuits Conference
(ISSCC), 2007.

[186] A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. Calibration of abstract performance
models for system-level design space exploration. J. Signal Process. Syst., 50:99–114, February
2008.

[187] W. L. Plishker. Automated mapping of domain specific languages to application specific multi-
processors. Technical Report UCB/EECS-2006-123, 2006.

[188] M. Porrmann, J. Hagemeyer, J. Romoth, and M. Strugholtz. Rapid prototyping of next-generation
multiprocessor SoCs. In Semiconductor Conference Dresden (SCD), 2009.

182

Bibliography

[189] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo, G. De Micheli, and L. Benini.
NoC Design and Implementation in 65 nm Technology. In Proceedings of the First International
Symposium on Networks-on-Chip (NOCS), year = 2007, unit = LSI ESL.

[190] Qi Chen et al. Overhaul of IEEE 802.11 modeling and simulation architecture in NS-2. In
Proceedings of the 10th International Symposium on Modeling, Analysis, and Simulation of Wireless and
Mobile Systems (MSWIM), 2007.

[191] Ralink Corp. RT2880 MIMO Wireless Access Point/Router/iNIC SoC. Product Sheet, accessed
online, 2010.

[192] U. Ramacher. Software-defined radio prospects for multistandard mobile phones. Computer,
40(10):62–69, 2007.

[193] A. Rasche and A. Poize. Dynamic reconfiguration of component-based real-time software. In
Proceedings of the IEEE Workshop on Object-Oriented Real-Time Dependable Systems (WORDS), 2005.

[194] J. Regehr. Handbook of Real-Time and Embedded Systems, chapter Safe and structured use of
interrupts in real-time and embedded software. CRC Press, 2006.

[195] J. Regehr and N. Cooprider. Interrupt verification via thread verification. Electronic Notes on
Theoretical Computer Science, 174(9):139–150, 2007.

[196] S. Rein, C. Gühmann, and F. Fitzek. Compression of short text on embedded systems. Journal of
Computers (JCP), 2006.

[197] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain queuing networks.
Journal of the ACM (JACM), 27(2):313–322, 1980.

[198] M. Reshadi, P. Mishra, and N. Dutt. Hybrid-compiled simulation: An efficient technique for
instruction-set architecture simulation. ACM Trans. Embed. Comput. Syst., 8(3):1–27, 2009.

[199] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance verification.
Computer, 36(4):60–67, 2003.

[200] J. Rowson. Hardware/software co-simulation. In Proceedings of the 31st Design Automation Con-
ference (DAC), 1994.

[201] E. Rubow, R. McGeer, J. C. Mogul, and A. Vahdat. Chimpp: A click-based programming and
simulation environment for reconfigurable networking hardware. Technical report, HP Labs,
HPL-2010-25, 2010.

[202] A. Salhotra, R. Narasimhan, and R. Kopikare. Evaluation of contention free bursting in IEEE
802.11e wireless LANs. Proceedings of the IEEE Wireless Communications and Networking Conference,
2005.

[203] S. Samadi, A. Golomohammadi, A. Jannesari, et al. A novel implementation of the IEEE 802.11
medium access control. In Proceedings of the International Symposium on Intelligent Signal Processing
and Communications (ISPACS), 2006.

[204] A. Sangiovanni-Vincentelli. Quo vadis, SLD? Reasoning about the trends and challenges of
system level design. Proceedings of the IEEE, 95(3):467–506, 2007.

[205] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software design method-
ology for embedded systems. IEEE Design & Test, 18(6):23–33, 2001.

[206] S. Sankaran, M. Zargari, L. Nathawad, et al. Design and implementation of a CMOS 802.11n
SoC), journal = IEEE Communications Magazine, year = 2009, volume = 47, pages = 134-143,
number = 4, month = April , timestamp = 2009.10.18.

[207] C. Sauer. Application-driven development of flexible packet-oriented communication interfaces. Ph.d.
thesis, University of California at Berkeley, Berkeley, CA, 2009.

183

Bibliography

[208] C. Sauer, M. Gries, and S. Dirk. Hard- and software modularity of the NOVA MPSoC platform.
In Proceedings of the conference on Design, automation and test in Europe (DATE), 2007.

[209] C. Sauer, M. Gries, J.-C. Niemann, M. Porrmann, and M. Thies. Application-Driven Development
of Concurrent Packet Processing Platforms. In Proceedings of the International Symposium on Parallel
Computing in Electrical Engineering (PARELEC), 2006.

[210] C. Sauer, M. Gries, and S. Sonntag. Modular domain-specific implementation and exploration
framework for embedded SW platforms. In Proceedings of the Design Automation Conference (DAC),
2005.

[211] G. Schirner, A. Gerstlauer, and R. Domer. Automatic generation of hardware dependent software
for mpsocs from abstract system specifications. In Proceedings of the Asia and South Pacific Design
Automation Conference (ASPDAC 2008), 2008.

[212] G. Schirner, A. Gerstlauer, and R. Dömer. Fast and accurate processor models for efficient MPSoC
design. ACM Transactions on Design Automation for Electronic Systems, 15(2):1–26, 2010.

[213] S. Schliecker, A. Hamann, R. Racu, and R. Ernst. Formal methods for system level performance
analysis and optimization. In In Proceedings of the Design Verification Conference, 2008.

[214] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-performance timing simulation of
embedded software. In Proceedings of the 45th annual conference on Design automation (DAC), 2008.

[215] J. Shafer and S. Rixner. A gigabit reconfigurable programmable network interface card. Annual
Affiliates Meeting, Department of Electrical and Computer Engineering, Rice University, 2005.

[216] N. Shah. Understanding network processors. Master’s thesis, UC Berkeley, 2001.

[217] N. Shah, W. Plishker, K. Ravindran, and K. Keutzer. NP-Click: a productive software develop-
ment approach for network processors. IEEE Micro, 24(5):45–54, Sept.–Oct. 2004.

[218] M. Shalan and V. J. Mooney, III. Hardware support for real-time embedded multiprocessor
system-on-a-chip memory management. In Proceedings of the 10th international symposium on
Hardware/software codesign (CODES), 2002.

[219] A. Sharma and E. M. Belding. FreeMAC: framework for multi-channel MAC development on
802.11 hardware. 2008.

[220] T. Shono, Y. Shirato, H. Shiba, et al. IEEE 802.11 wireless LAN implemented on software defined
radio with hybrid programmable architecture. IEEE Transactions on Wireless Communications,
4(5):2299–2308, 2005.

[221] D. Skordoulis, Q. Ni, H.-H. Chen, A. Stephens, C. Liu, and A. Jamalipour. IEEE 802.11n MAC
frame aggregation mechanisms for next-generation high-throughput WLANs. Wireless Commu-
nications, IEEE, 15(1):40–47, February 2008.

[222] Y. Song, J. yon Choi, Y. Kim, H. Park, and S. kyu Lee. MAC implementation for IMT-advanced
multi-gigabit nomadic systems. Proceedings of the IEEE 19th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2008.

[223] S. Sonntag, M. Gries, and C. Sauer. SystemQ: Bridging the gap between queuing-based perfor-
mance evaluation and systemc. Design Automation for Embedded Systems, 11(2):91–117, 2007.

[224] C. Soviani, I. Hadžić, and S. A. Edwards. Synthesis of high-performance packet processing
pipelines. In Proceedings of the 43rd annual Design Automation Conference (DAC), 2006.

[225] M. Stege. A flexible prototyping platform for wireless communication systems. In Wireless Word
Research Forum (WWRF 12), 2004.

184

Bibliography

[226] M. Streubühr, J. Gladigau, C. Haubelt, and J. Teich. Efficient Approximately-Timed Performance
Modeling for Architectural Exploration of MPSoCs. In Proceedings of the Forum on specification
and Design Languages (FDL), 2009.

[227] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and task
scheduling for mpsoc architectures. In Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems (CASES), 2006.

[228] J. Sztrik. Finite source queuing systems and their applications: a bibliography. Technical report,
Institute of Mathematics and Informatics, University of Debrecen, Debrecen, Hungary, 2001.

[229] K. Tan, J. Zhang, J. Fang, et al. Sora: high performance software radio using general purpose
multi-core processors. 2009.

[230] The Click Modular Router Project. http://pdos.csail.mit.edu/click/, accessed March 2009.

[231] M. Tsai, C. Kulkarni, C. Sauer, N. Shah, and K. Keutzer. A benchmarking methodology for
network processors. In Network Processor Design: Issues and Practices, pages 141–165. Morgan
Kaufmann Publishers, 2002.

[232] S. Valentin, H. S. Lichte, H. Karl, et al. Cooperative wireless networking beyond store-and-
forward. Wireless Personal Communications, 48(1):49–68, 2009.

[233] J. R. Van Houten, J. P. Jarosz, B. J. Welch, D. E. Gallegos, and M. W. Learn. Soft-core processor study
for node-based architectures. Technical report, Sandia National Laboratories, TRN: US200902-
166, 2008.

[234] L. VanderPerre, B. Bougard, J. Craninckx, et al. Architectures and circuits for software defined
radios: scaling and scalability for low cost and low energy. In Proceedings of the IEEE International
Solid-State Circuits Conference (ISSCC), 2007.

[235] A. Varga. The OMNeT++ discrete event simulation system. In Proceedings of the European
Simulation Multiconference, 2001.

[236] M. Verma, S. Steinke, and P. Marwedel. Data partitioning for maximal scratchpad usage. In
Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC 2008), 2003.

[237] V. Visoottiviseth, T. Piroonsith, and S. Siwamogsatham. An empirical study on achievable
throughputs of ieee 802.11n devices. In Proceedings of the 7th international conference on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT), 2009.

[238] C.-Y. Wang and H.-Y. Wei. IEEE 802.11n MAC enhancement and performance evaluation. Mobile
Networks and Applications (Journal), 14(6):760 – 771, 2009.

[239] Z. Wang, W. Haberl, A. Herkersdorf, and M. Wechs. Syscola: A framework for co-development of
automotive software and system platform. In Proceedings of the 46th Design Automation Conference
(DAC), 2009.

[240] Z. Wang and A. Herkersdorf. An efficient approach for system-level timing simulation of
compiler-optimized embedded software. In Proceedings of the 46th Annual Design Automation
Conference (DAC).

[241] D. Wendlandt, M. Casado, P. Tarjan, and N. McKeown. The clack graphical router: visualizing
network software. In Proceedings of the 2006 ACM symposium on Software visualization (Soft-Vis),
2006.

[242] B. Wheeler and L. Gwennap, editors. A Guide to Network Processors. The Linley Group, 7th
edition, 2005.

[243] A. Wieferink, T. Kogel, R. Leupers, et al. A system level processor/communication co-exploration
methodology for multi-processor system-on-chip platforms. In Proceedings of the conference on
Design, automation and test in Europe (DATE), 2004.

185

Bibliography

[244] S. Wiethölter and C. Hoene. Design and verification of an IEEE 802.11e EDCF simulation model
in ns-2.26. Technical Report TKN-03-019, Telecommunication Networks Group, Technische
Universität Berlin, 2003.

[245] Wipro Newlogic. WiLD 802.11 a/b/g MAC, product sheet.
http://www.newlogic.com/products/802_11_wireless_abg/, accessed 2010.

[246] W. Wolf. High-Performance Embedded Computing: Architectures, Applications, and Methodologies.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[247] H. Wu, Y. Liu, Q. Zhang, and Z.-L. Zhang. SoftMAC: Layer 2.5 collaborative MAC for multimedia
support in multihop wireless networks. IEEE Transactions on Mobile Computing, 6(1):12–25, 2007.

[248] Z.-H. Yang, Y.-T. Chen, and C.-P. Fan. Design and verification of high-throughput IEEE 802.11
MAC-layer hardware IP with FPGA platform. In Journal of Chinese Institute of Engineer (JCIE),
2010.

[249] S.-R. Yoon, J. Lee, and S.-C. Park. Design space exploration of ieee 802.11n using systemc. pages
19–23, 2007.

[250] H. Zabel and W. Müller. Increased accuracy through noise injection in abstract RTOS simulation.
In Proceedings of the conference on Design, automation and test in Europe (DATE), 2009.

[251] J. Zambreno, D. Nguyen, and A. Choudhary. Exploring area/delay tradeoffs in an AES FPGA
implementation. In In Proceedings of the 14th Annual International Conference on Field-Programmable
Logic and Applications (FPL, 2004.

[252] Y. Zhao. A model of computation with push and pull processing. Technical Report UCB/ERL
M03/51, EECS Department, University of California, Berkeley, 2003.

186

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

	Introduction
	Home Networking Protocols
	Today's Home Networking Devices
	Development and Exploration of Home Networking Platforms
	The Promise of a Universal MAC Approach
	Research Objectives
	Outline – Application-driven Development of a WLAN Platform

	Wireless LAN Domain Analysis
	Wireless LAN Fundamentals
	Current and Future WLAN Systems
	Relevant Device Configurations and Features
	Chapter Conclusion

	IEEE 802.11 WLAN Reference Application
	Modeling and Models of Wireless Protocols
	Modeling with Click
	WLAN Model
	System Benchmark Scenarios
	Model Verification and Characteristics
	Chapter Conclusion

	Application Analysis
	Timing Requirements of Wireless Protocols
	WLAN Application Requirements
	Application Characteristics
	Chapter Conclusion

	SystemC-based Evaluation of Programmable Platforms
	Programmable Platforms
	Platform Evaluation, Exploration, and Implementation
	Modeling and Mapping
	Performance Exploration with Automated Feedback
	Memory Exploration in SystemClick
	Quality of Results
	Chapter Conclusion

	Platform Exploration
	Design Space and Architectural Baseline
	Baseline Performance
	Core Type and SW Optimizations
	Multiprocessor Partitioning and Scheduling
	Heterogeneous Memory Hierarchy
	Hard- and Software Extensions
	System Communication
	Proposed wilaNOVA Platform Instances
	Chapter Conclusion

	IEEE 802.11n WLAN Prototype
	wilaNOVA Prototype System Realization
	Demonstrator Setup
	Results and Performance
	Discussion
	Chapter Conclusion

	Thesis Conclusion
	Methodology and Tools
	Wireless LAN Benchmark
	MAC Architecture Exploration and Prototypical Deployment
	Towards a Universal MAC
	Directions of Future Research

	Acronyms
	List of Figures
	List of Tables
	Author's Publications
	Bibliography

