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The application of machine learning methods in the engineering of intelligent technical

systems often requires the integration of continuous constraints like positivity, mono-

tonicity, or bounded curvature in the learned function to guarantee a reliable perfor-
mance. We show that the extreme learning machine is particularly well suited for this

task. Constraints involving arbitrary derivatives of the learned function are effectively
implemented through quadratic optimization because the learned function is linear in its

parameters, and derivatives can be derived analytically. We further provide a construc-

tive approach to verify that discretely sampled constraints are generalized to continuous
regions and show how local violations of the constraint can be rectified by iterative re-

learning. We demonstrate the approach on a practical and challenging control problem

from robotics, illustrating also how the proposed method enables learning from few data
samples if additional prior knowledge about the problem is available.

Keywords: extreme learning machine, neural network, prior knowledge, continuous con-

straints, regression.

1. Introduction

In recent years, machine learning has matured to a point where the application

of learning methods in the engineering of intelligent technical systems increasingly

comes into focus of applied research. A prominent example is the german leading

edge cluster “Intelligent Technical Systems”, which implements a dedicated project
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to apply self-optimization and learning methods in technical production systems

and the intelligent mechatronical devices of tomorrow.

In this application domain, machine learning solutions face the challenge to

guarantee certain properties of the learned functions to assure safe and reliable

operation of the technical system while capitalizing on the full power of data-driven

modeling methods. In automatic control, for example, constraints like maximum

energy of the control signal, monotonicity or smoothness are often required to ensure

safe operation of the plant 1. This is prior knowledge in the sense that certain

desired relations between inputs and outputs are known in advance, i.e. constraints

must hold on the learned function 2. The acceptance of learning algorithms in such

domains depends on a reliable integration of these constraints into the learner, where

“reliable” can refer to a high probability, or even a mathematical proof, of success.

This task is not trivial because many machine learning algorithms gain their very

power from the universal approximation capabilities. In real applications data are

typically noisy, outliers occur and there is always a risk of overfitting corrupted

data. A constraint that is present in the ideal function, from which the training

data are sampled, may therefore be violated by the learned function.

Approaches that use a-priori model selection can guarantee certain properties or

limits of the model complexity. Yet, model selection strategies are entirely specific

for these constraints and can not easily be found for complex constraints. The issue

of incorporation becomes even more complex due to the large variety of such con-

straints. Essentially, the reliable integration of prior knowledge in form of constraints

can be separated into two main aspects: (i) the integration of the constraint into the

learning algorithm and (ii) the mathematical verification that the constraints hold

in the learned function. Both (i) and (ii) are connected if the learning algorithm

directly guarantees the constraint. However, we can also first tackle (i) separately

and then ex-post verify that the outcome is the desired one. In this paper, we follow

the latter approach.

The incorporation of specific kinds of prior knowledge was tackled before in

several machine learning models. Many of those deal with the embedding of very

specific kinds of prior knowledge like monotonicity 3,4 or minimum/maximum out-

put control 1. Also the prior knowledge integration into ELMs was focused earlier

in 5 for only a limited number of cases. More general approach are offered by 6,2,8

but without focus on the ensured implementation of constraints.

This contribution shows that the particular form of the extreme learning machine

(Huang et al. 9,10,25, see 23 for recent theoretical results) allows for an efficient and

flexible incorporation of continuous constraints in the learned function. To this

aim, output learning is organized as solving a quadratic constraint optimization

problem, i.e. learning refers to minimization of the standard square error under

additional linear constraints. It turns out that all constraints which can be expressed

as linear inequalities involving arbitrary derivatives of the learned functions can be

incorporated. This is possible because partial differentiation of a function which is

implemented by an ELM, can directly be performed due to the special form of the
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ELM with its fixed input weights. The key idea then is to iterate steps (i)-learning

and (ii)-verification. The first step is to learn a function based on a training data

set and linear inequalities for the constraints and then (ii) efficiently verify, where

constraints are still violated by the learned function within continuous regions of

the input space. Then a smart sampling strategy is applied to incrementally add

more inequalities for the constraints and (i) is repeated, starting from the previous

solution as initial point.

Many different mechanisms were developed in order to improve ELMs without

focus on prior knowledge. An interesting idea to improve ELMs is to decrease the

size of the hidden layer - the optimally pruned extreme learning machine (OPELM)
21. The learning results are improved by pruning the OPELM using a leave-one-out

criterion and a ranking of the neurons. 22, e.g., describes ensemble strategies for

ELMs based on entropy measures. Such methods are complementary to the idea

of incorporating prior knowledge and can therefore be used in parallel in order to

optimize the network architecture and the encoding in the hidden layer.

2. Embedding Prior Knowledge via Sampling into ELMs

The classical extreme learning machine (ELM) approach 9 consists of three layers:

x ∈ RI collects the input, h ∈ RR the hidden, and y ∈ RO the output neurons. The

input is connected to the hidden layer through the input matrix W inp ∈ RR×I ,

while the read-out is given by W out ∈ RO×R. The calculation for the ith output

neuron for input x reduces to:

yi(x) =
∑
j

W out
ij f(aj

∑
k

W inp
jk xk + bj) =

∑
j

W out
ij hj(x) , (1)

where aj , bj are slope and bias of the jth neuron parameterizing the component-

wise applied Fermi-function f(x) = 1
1+e−x . In the experiments, we optimize the

choice of the slopes a and the biases b through pretraining by batch intrinsic

plasticity (BIP) 11 after random initialization. The learning algorithm is fed by

a data set D = (X,T ) = (xi, ti)i=1...Ntr
consisting of Ntr training samples. The

hidden layer states obtained for inputs X are harvested in the matrix H(X) =

(h(x1), . . . ,h(xNtr)) and the corresponding targets in the matrix T , respectively.

Many constraints on a desired function can be expressed by bounding on the

outputs y(·) (see Eq. (1)) or its partial derivatives. Hence, we generally refer to a

constraint L(W out,u) for input u w.r.t. the read-out parameters W out as a linear

combination of partial derivatives with parameters γi and bound c of the form:

L(W out,u) =
∑
i

γiD
mi

yi(u)− c =
∑
i

γiW
out
i ·Dmi

h(u)− c. (2)

Dmi

= ∂M/∂umi
1
. . . umi

M
is the component-wise differential operator, whereas the

vector mi = (mi
1 . . .m

i
M ) ∈ [1, I]M defines the input dimensions with regard to

which the differentiations are carried out. Interestingly, Eq. (2) shows that the
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constraint can be rephrased in terms of the hidden state which is linear in the

learning parameters W out defining a linear inequality for each discrete sample u.

If a sampling set U = (u1, . . . ,uNs) comprising of Ns discrete inputs is given,

incorporation of these constraints into the function learned by the ELM is phrased

as solving a quadratic programming 12,13 optimizing the read-out weights W out

subject to a sytem of linear inequalities L(W out, U) ≤ 0:

W out = arg min
W

(‖W ·H(X)− T‖2 + α‖W‖2), (3)

subject to: L(W,U) ≤ 0. (4)

However, to make this approach practical also the multi-dimensional differentiation

has to be carried out. Fortunately, the special form of the ELM allows to compute

arbitrary analytical partial derivatives of the different output components analyti-

cally as:

∂Myi(u)

∂um1 . . . umM

=
∑
j

W out
ij

∂Mhj(u)

∂um1 . . . umM

=
∑
j

W out
ij f (M)(aj

∑
k

W inp
jk uk + bj) · aMj W

inp
jm1

. . .W inp
jmM

, (5)

where f (M) denotes the Mth derivative of f . Note, that the output of the network

can be interpreted as 0th derivative when choosing M = 0. Solving the quadratic

program now guarantees satisfaction of the given constraints w.r.t. the discrete

inputs u, which is already useful in many applications.

3. From Discrete to Continuous Constraints

The next step is to target constraints in a continuous compact region S of the

input space, i.e. to generalize the point-wise constraints to a continuous region,

where discrete inputs ui ∈ S are regarded as discrete samples of the continuous

constraint.

In principle, no finite number of discrete samples ui can implement the con-

straint and at the same time guarantee its generalization to hold in the continuous

region without additional verification effort. In fact, the quadratic program only

guarantees the satisfaction of the continuous constraint in the points ui. But we

expect that the generalization ability and the implicit smoothness of the used net-

work will enable an implementation of the constraint in the whole region S with

only a limited number of discrete samples. We can therefore expect that sampling

is sufficient for generalization, but then need to verify ex-post that the constraint

L(u) = L(W out,u) ≤ 0 holds for all u ∈ S (the read-out matrix is omitted in the

following sections for notational simplicity).

It is impossible to verify the reliability on a given constraint in closed form,

because the universal approximation capability of the ELM 10 implies that the

learned function can in principle be arbitrarily complex. We therefore provide an
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algorithm to verify the fulfillment of the constraint which is based on a worst case

analysis of the Taylor approximation of the learned function.

The algorithm’s result P (L,y,S, ε) w.r.t. the constraint L, reliability ε, and the

ELM’s output y is true for region S if and only if the constraint L is satisfied by

the function y(·) in region S with reliability ε.

Reliability Verification. As a first step, a second order Taylor approximation

of the constraint L in the input region S and its corresponding remainder are

calculated. The Taylor approximation in u0 ∈ S is given as:

L(u) = T (u,u0) + rem(u,u0) (6)

= C + JT (u− u0) +
1

2
(u− u0)TH(u− u0) + rem(u,u0) , (7)

where C = L(u0) is the constant term, J = ∇L(u)|u0 is the Jacobian, H =

(∇∇T )L(u)
∣∣
u0 is the Hessian matrix evaluated at point u0, and rem(u,u0) is the

remainder term. We compute an upper bound for the remainder:

rem :=
∑
i

γi
∑
j

W out
ij Mj

|uj − uj |3

6
, (8)

where i is the dimension of the constrained output and γi are the coefficients defined

as in Eq. (2). The used variables are:

uj = min
u∈S

W inp
j u , uj = max

u∈S
W inp

j u , and (9)

Mj = max
uj∈[uj ,uj ]

[
f (M+3)(ajuj + bj) · aM+3

j W inp
jm1

. . .W inp
jmM

]
. (10)

The maximization steps in (9) can be performed by evaluating the vertices of S if

the region S is a convex polyhedron, e.g. a regular hypercube. The maximization in

Eq. (10) uses that f can be differentiated analytically if we use the Fermi-function

which is one-dimensional w.r.t. its argument - which is only feasible due to the

simple and elegant form of the ELM. The remainder of the Taylor approximation

rem(u,u0) in Eq. (7) is bounded from above by rem in Eq. (8) in region S:

rem ≥ rem(u,u0) : ∀u ∈ S. (11)

Since T (see Eq. (7)) is a polynomial of second order, it is possible to find its

global maximum and minimum in S analytically. In order to find a worst case

approximation of the learned function, the following is tested and a recursive step

is performed:

P (S) =


1 : if max

u∈S

[
T (u,u0)

]
< ε− rem

0 : if min
u∈S

[
T (u,u0)

]
> ε+ rem∧

i P (Si) : otherwise

(12)
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where u0 ∈ S is the base of the Taylor approximation and S =
⋃

i Si is divided into

the pairwise disjoint subregions Si.
A schematic view of the decision process in Eq. (12) is given in Fig. 1. The figure

shows a one-dimensional mapping with constraint L ≤ ε and three subregions (Si−1,

Si, and Si+1) where the reliability is tested. The center of each region u0 defines

the respective Taylor polynomial and the remainder estimate rem of L. The regions

show the possible cases of Eq. (12): (i) the maximum of the Taylor polynomial

max
[
T (u,u0)

]
calculated for u ∈ Si−1 is below ε− rem and therefore P = 1 - the

constraint is fulfilled; (ii) the minimum of the Taylor polynomial max
[
T (u,u0)

]
in region Si+1 is above ε + rem and therefore P = 0 - there exists at least one

point in this region where the constraint is violated; and (iii) it is not clear whether

the constraint in region Si is satisfied or not - a division into smaller subregions is

necessary.

An intrinsic feature of Taylor approximations is that the quality of the estimated

approximation is the best close to the approximation point u0 (locality feature): the

smaller the region S, the better the estimation. This separation is performed until

convergence of the algorithm, where we can stop early whenever the constraint is

Subregion Si Si+1Si-1

rem

rem



 - rem

+ rem

max T

min T

max T

min T

Figure 1. One-dimensional illustration of the reliability verification of a constraint L with a Taylor
polynomial of second order in a subregion Si.

definitely not fulfilled in some subregion. For ε > 0 we ε-fulfill the constraint in the

sense that a violation of size ε is tolerated, very similar to the ε-sensitive loss func-
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tions frequently employed in support vector regression. In engineering applications,

we also might set ε < 0 to guarantee some safety margin, e.g. to balance numerical

errors.

4. Iterative Sampling and Re-Learning

This section demonstrates how the interplay between learning and verification

works. A synthetic regression task is used as an illustrative example where the

maximal output of an R2 → R map is supposed to be bounded despite that the

training samples are violating the constraint.

The Learning Procedure. As a first step (k = 0), the network is initialized

randomly and trained without any constraints (the sample matrix Uk is empty in

the beginning): U0 = ∅ - in this case learning can be done in computationally cheap

fashion by the use of ridge regression (RR). The region S is initialized without

separation into subregions: {S0} = {S}
In the iterative step k, a uniform rejection sampling in the indifferent/violating

regions Si (P (Si) 6= 1) is performed Nre times. Samples violating the constraint are

collected: Û = {û ∈ {Si} : L(û) > 0}. The rejection sampling stops if NC samples

û are found or the number of trials Nre is exceeded. If less than NC samples Û were

found in {Si}, the reliability is verified by algorithm P for one further separation

of the regions {Si}.
The sample set Uk in step k is merged with the set Û to constitute the new

sample set Uk+1 for step k + 1: Uk+1 = Uk ∪ Û . The obtained set of samples is

then used for training of the ELM. The sampling algorithm stops if P (S) = 1 or

performs a rejection sampling on the subregions Ski where P (Ski ) = 0 then starting

with iteration step k + 1. A pseudo code of the learning procedure is provided by

Alg. 1.

Furthermore, it is shown in the following section that this sampling strategy is

highly effective - only few samples are needed to incorporate the constraint reliably

in comparison to random sampling.

Illustrative Example. An ELM with R = 100 hidden layer neurons is supposed

to learn an R2 → R map of four two-dimensional Gaussian distributions. The

centers of the single distributions are µ1...4 = (±0.5,±0.5)T and the respective

variance of the distributions are σ1...4 = 1
5 . Ntr = 500 samples are used for training,

Nte = 500 for testing, and Nre = 104 for rejection sampling. Also Gaussian noise

with an amplitude of 0.1 is added to the training data. The network was trained by

BIP with µBIP = 0.2 beforehand (according to 11). The regularization parameter

α = 10−4 was obtained by line search. Simultaneously, an artificial constraint is

supposed to be satisfied by the network after learning: the maximal output of the

network is restricted to y(x) ≤ 0.4 = c for all x ∈ S = [−1, 1]2, where c is the
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Algorithm 1: Constraint Learning with Sampling Strategy

initialize ELM randomly
require ELM y(·), data set D, constraint L, region S, reliability ε, sample
increment NC, max. rejection trials Nre, and learning parameters α and µ
train ELM with BIP and then with RR: µ, α→ new ELM y(·)
set k = 0, Uk = ∅, {S0} = {S}
repeat

repeat
build Û = {û ∈ {Si} : L(û) > 0 & P (Si) 6= 1} with NC samples (Nre trials)
if rejection sampling found NC samples

merge sample matrices: Uk+1 = Uk ∪ Û
learning with quadratic program: D,Uk+1, α→ new ELM y(·)
increase k ← k + 1

else

break
end if

end repeat

collect p = P (L, y,S, ε) and subregions {Si} where P (Si) 6= 1
until p is true
return y(·)

output bound. Note, that the output of the network is interpreted as 0th derivative

according to Eq. (5) and Eq. (2) and is thus consistent with the proposed framework

when choosing M = 0. In each step, the algorithm adds NC = 3 constraints to the

learning until no violation can be assessed anymore. The reliability for the discrete

constraints is set to ε = 0.01. A cell is divided along its longest side into two

equal parts, if the reliability was not verified in the respective step. This defines the

structure of the subregions.

Fig. 2 summarizes the results of the task. The first row shows the outputs of the

network in the first, fourth and the last (12th) iteration of the learning, while the

second row visualizes the corresponding outcome of the reliability verification. In the

plots of the second row: green boxes show regions where the constraint is verified, red

boxes where the constraint is violated and crosses mark samples in U obtained by

the iteration process. Obviously, the constraint is violated before the iteration starts

- see Fig. 2 (left column). After some iterations of the algorithm, the maximal out-

put of the network in S shrinks due to the addition of samples of the constraint. The

right hand side of the figure demonstrates that the constraint is fulfilled after twelve

iterations, e.g. on basis of 36 discrete ui, sampling the constraint. The error for the

respective iteration-steps are: E1
tr = 0.087, E1

te = 0.090, E4
tr = 0.134, E4

te = 0.136,

E12
tr = 0.160 and E12

te = 0.160. The trade-off between the satisfaction of the con-

straint and the learning of the data set clearly shows-up in the errors which become

bigger in each step of the iteration. Note that the samples are only placed where the

mapping produces high output values. Moreover, the cells produced by the recursive

step in Eq. (12) are small in the region where the network’s output y is close to
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Figure 2. Iteration of the learning algorithm. Green boxes show regions where the constraint is

verified, red boxes where the constraint is violated and crosses mark samples in U obtained by the

iteration process. The maximal output bound is strongly violated by the unconstrained learner
(left). The output of the network shrinks in each step of the iteration (center). The constraint is

satisfied and proofed (right).

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

iteration steps

re
la

ti
v
e

 c
o

n
s
tr

a
in

t 
v
io

la
ti
o

n

 

 

sampling strategy

random sampling

Figure 3. Proposed sampling strategy vs. random sam-

pling.

the upper bound c. This is due to

the fact that the remainder rem

becomes big in comparison to the

difference of network output y and

the output bound c = 0.4. Fig. 3

shows the results for two different

sampling strategies. The plot vi-

sualizes the relative violation C̄
NS

by testing the fulfillment of the

constraint at NS = 106 randomly

drawn and uniformly distributed

discrete points in S = [−1, 1]2 -

where C̄ is the number of points in

S where the constraint is not sat-

isfied. It demonstrates that a sam-

pling strategy as proposed in this contribution is superior to a random sampling.

5. Application in Automatic Control: Bionic Handling Assistant

Finally, a real world application from engineering is presented, i.e. the control of the

bionic handling assistant (BHA) shown in Fig. 4. The BHA is a pneumatically actu-

ated, award-winning 14 robotic platform 15,16 manufactured by Festo. The actuation
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principle with several segments of continuous parallel components has gathered in-

creasing interest in robotics research over the last decade 17,18. It belongs to a new

class of soft and lightweight robots with pneumatic chambers which allows for a safe

physical interaction between robots and humans. The downside of its biologically

inspired design is that hardly any analytic models are available for control, which

qualifies learning as an essential tool for its application. It is therefore a prototypi-

cal engineering application where learning is the method of choice, constraints are

known from the physical plant, but data sampling is very expensive and must be

done with great efficiency.

Figure 4. The bionic handling assistant BHA (left). The segments and respective length sensors
of the BHA (right).

The most fundamental control capability necessary to use the BHA is to con-

trol the actuator lengths. The actuation itself operates with pneumatics, which is

not sufficient for a reliable positioning of the robot: air pressure only describes a

force, and friction with the addition of physical hysteresis effects cause different

outcomes for the same pressure. In order to avoid this problem, the BHA has cable

potentiometers (see Fig. 4 (right)) that allow to sense the outer length of the ac-

tuators providing geometric information about the robot shape. Controlling these

lengths can, in principle, be done with standard schemes like proportional-integral-

derivative-control (PID). The fundamental problem is that these approaches rely

on quick and reliable feedback from the robot, while the BHA only provides very

delayed and noisy feedback due to its pneumatic actuation. Consequently, the con-

trol would need to be applied with very low gains, which corresponds to only slow

movements. At this point, learning can largely help to leverage the opportunities

provided by the BHA. We improve the control of the actuator lengths by learning

the inverse mapping from some desired actuator length to the pressure necessary

to reach it in a mechanical equilibrium. These models allow a direct estimation of a

reasonable control signal that can be applied on the robot very aggressively, without

waiting for delayed feedback.
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It is known in advance that the ground-truth behavior per axis is strictly

monotonous, since higher pressure in one actuator physically leads to an exten-

sion of the actuator itself. Formulated as a constraint, it is necessary for the learner

to reflect this behavior in order to be applicable in a closed control loop without

leading to an amplification of errors.

The main difficulty for the learning is that training data are expensive and noisy.

For each ground truth point of training data, some pressure needs to be applied

on the real robot. This pressure must be active until the physical deformations of

the robot have reached a mechanical equilibrium, which can take up to 20 seconds

for a single data point. During this physical equilibration process, the visco-elastic

properties of the elastic material result in slightly different equilibrium lengths every

time. This process can be seen as highly inhomogeneous noise and requires multiple

repetitions of the same experiment to obtain a reasonable basis for data driven

learning. Furthermore, the high amount of noise sometimes causes the learner to

violate the constraint of strictly monotonous behavior, if this prior knowledge is

not explicitly incorporated in form of constraints. Note that the constraints, which

can easily be expressed through the derivatives, also serve to keep the number

of training samples small. Where no direct data are available, constraints quasi

substitute actual data and can be generated artificially from prior knowledge. This

is the key for faithful interpolation between sparse data points. This is desired

because the samples recorded from the real robotic system are expensive in many

respects.

Data Set. In order to learn the inverse models for length control we consider the

three main segments (see Fig. 4 (right)) in isolation, each of which comprises three

actuators, without a significant loss of accuracy. Hence, the goal for each segment

is to learn a model that maps the desired length (meter) of the three actuators to

the three necessary pressures (milli-bar).

For each segment, we explored the pressure space by applying pressures between

minimum and maximum value in five equidistant steps. This results in a pressure

grid comprising 5×5×5 = 125 samples. For each pressure, the resulting combination

of three lengths was recorded. In order to deal with the inherent variation due to

the visco-elastic material we repeated this process five times with different traversal

orderings, so that 625 samples per segment are available for learning. The minimum

and maximum pressures, and the resulting length ranges are collected in Tab. 1.

The grid for the applied pressures of segment one is illustrated in Fig. 5 (left). The

corresponding length values recorded on the robot are shown in Fig. 5 (right). The

data are clearly non-linear, with strong interactions of components and has huge

gaps in the middle part of the target data, for which generalization is critical. All

this makes the task evidently difficult to learn.

An appropriate error measure is to compute the per-axis average-deviation from
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Table 1. Properties of the BHA data sets for the different segments.

Segment Max. Press. Min. Press. Max. Len. Min. Len. # Samples # Trials

1 800 mbar 0 mbar 0.32 m 0.16 m 625 5

2 1000 mbar 0 mbar 0.33 m 0.15 m 625 5
3 1200 mbar 0 mbar 0.29 m 0.16 m 625 5
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Figure 5. Data set for segment 1. Pressure grid with five samples per dimension (left) and the

corresponding length values (right).

the measured ground truth value:

E =
1

N

∑
i

1

D

∑
d

‖pressured(i)− yd(length(i))‖ , (13)

where N is the number of samples in the evaluated data set and D = 3 is the input

and output dimensionality.

As mentioned before, the ground-truth behavior per axis is supposed to be

strictly monotonous for each segment. Rephrased in mathematical terms, the learner

y therefore needs to fulfill the following properties:

Ld(u) = − ∂

∂ud
yd(u) < 0 : ∀u ∈ S , (14)

where d = 1, 2, 3 is the output dimension, u is an input for the respective segment,

and S is the three-dimensional input space defined by the minimal and maximal

length of the segment (see Tab. 1). In order to rephrase this definition in terms of

Eq. (2), we set mi = i, γi = 1 and c = 0.

Results. The performance of three different constrained models is evaluated on

the BHA data. We tested a linear model (LM), a partially monotonic multi-layer

perceptron (PMMLP) 3 and the ELM model - introduced in this paper.

The ELMs used in the experiments have R = 300 hidden layer neurons and are

optimized by BIP with µBIP = 0.2. The regularization parameters α = 10−5, 10−3,

and 10−2 are obtained by line search for the segments 1,2, and 3 respectively. The
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input space of the ELM where the constraint is implemented is defined by the mor-

phology of the BHA and its physical restrictions stated in Tab. 1. Nre = 106 samples

are used for rejection sampling. Additionally, a lower bound of c = 100 mbar/meter

(defined with some tolerance ε = 100 mbar/meter) is implemented. Only networks

where the algorithm terminates successfully were taken into account in the experi-

ments.

The results are obtained by cross-validation over the five trials measured by the

error function in Eq. (13). For each fold four trials are used for training and one trial

is used for testing the generalization ability of the models. Afterwards, the errors are

averaged over the five folds. We tested 100 different network initializations and state

the training and test errors of the best performing models in Tab. 2. The mapping

Table 2. Best training/test errors for the different

models out of 100 initializations.

Segment LM PMMLP ELM

1 50.1/54.0 39.84/46.24 30.77/39.76

2 64.5/69.0 47.69/56.19 36.29/49.77
3 60.9/68.2 50.03/60.40 43.80/58.23

ability of the LM is too poor to capture enough structure encoded in the BHA data

- the errors are large. The PMMLP performs better than the LM since it induces

non-linearity. Unfortunately, a tuning of the PMMLP needs to be done manually; its

performance is depending on the experience of the tuning expert. The mapping of

the PMMLP can be further optimized by use of more sophisticated tuning methods

regarding the number of neurons, but a specific tuning remains difficult since the

performance of the model is highly depending on the initialization of the weights.

The ELM - in contrast - performs significantly better although it was provided with

the same number of parameters in the hidden layer.

In order to show the quality of the produced mapping by the PMMLP and ELM,

also the mean and standard deviation over the different initializations are stated in

Tab. 3. In order to make the results comparable, both networks are provided with

the same number of neurons. The mean performance of the ELM is close to the

Table 3. Mean training errors± standard deviation of the training

errors / mean test errors ± standard deviation of the test errors
for 100 initializations.

Segment PMMLP ELM

1 43.60±2.09/49.96±1.91 31.01±0.11/39.92±0.10
2 51.04±1.93/59.39±1.86 36.61±0.15/50.13±0.14
3 55.31±3.20/65.78±3.05 43.89±0.06/58.40±0.09
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best performance. The standard deviation of the errors is very low in comparison to

the PMMLP. The main reason for this is the use of BIP and ridge regression pro-

ducing a task-specific representation in the hidden layer irrespective of the random

initialization and additionally regularizing the read-out layer which was rigorously

analyzed in 11,24.

The experiments show that the ELM is outperforming the other models signifi-

cantly. One essential reason is that the two competing models (LM, PMMLP) fulfill

the constraint globally by means of model selection, although only a dimension-

wise monotony is required. This overly conservative model selection of LM and

PMMLP reduces their approximation capability too much. However, to the best

of the authors’ knowledge there is no simple way to implement the desired partial

constraint through a model selection mechanism, which underscores the flexibility

of the presented approach. The effort of quadratic optimization and verification of

the learned ELM function pays off, because the local implementation of the con-

tinuous constraint (if enforced only in the previously defined region S of the input

space) leaves more degrees of freedom in the model for approximation of the actual

non-linear mapping.

6. Conclusion

The presented approach shows that the ELM is particularly well suited to include

prior knowledge into the learned function by means of adding constraints which

are linear functions of arbitrary derivatives. Quadratic optimization can guaran-

tee fulfillment of such constraints after learning in discrete points, whereas the step

towards continuous constraints needs additional effort. The ELM’s architecture mo-

tivates an efficient verification algorithm, which is based on a worst-case approx-

imation of the Taylor expansion of the learned function. To derive the respective

bounds is only possible because derivatives and maxima can be analytically deter-

mined due to the special form of the ELM. Together with an iterative sampling, this

approach provides all the tools to combine the full representational power of the

ELM with guarantees on the performance of the learned function, which are crucial

in many engineering and automatic control applications. The flexibility to define

constraints locally and selectively in continuous regions distinguishes the presented

ELM approach from other schemes that for instance guarantee monotonicity by

means of a-priori model selection.

The real world example provides both an interesting illustrative application

and additional insight on the usefulness of the proposed scheme. It demonstrates a

typical case, where data-driven learning is needed because no analytic models are

available, but is difficult because sampling can be done only in the real world and is

expensive and noisy. Prior knowledge in form of constraints provides additional and

necessary information to the learner. It defines how to generalize from training data,

even though exhaustive sampling is impossible. The results are very encouraging

and actually the learned controller was used in a further learning level to obtain an
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inverse mapping through exploration on the real robot (19, video 20).

Obviously, the iterative verification and sampling algorithm becomes expensive

with increasing output dimensionality of the learned function and will not be prac-

tical in very high dimensions. However, in many applications in automatic control,

the output is a control signal and will be rather one- or low-dimensional. In such

cases, the proposed scheme is very efficient, optimally uses the special architectural

setting of the ELM to compute all necessary quantities, and provides guarantees on

particular constraints without introducing too much architectural bias. We expect

that this treatment can open new application domains in particular for technical

systems for data driven learning, where reliability is crucial and traditionally only

analytic modeling has been possible.
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