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1 Introduction

In this work, business cycles, which are short-term fluctuations in macroe-

conomic time series, will be analyzed. This work is focussing mainly on the

work of Kauermann, Teuber, and Flaschel (2012), Teuber (2012b) and Teu-

ber (2012a) in which the business cycles have been estimated simultaneously

with a new, state-of-the-art estimation technique which revolutionizes the

business cycle discussion. The approach takes the phrase business cycles

more literally such that it will be assumed that the detrended time series fol-

low a circular or elliptical trajectory over time. The underlying model uses

a non-parametric approach to avoid specifying the structure of the unknown

function. In more detail, a penalized spline approach will be used such that

just the smoothness of the estimated function needs to be determined. It will

be assumed that the time series can be decomposed into a long-term trend,

which will be estimated in standard textbooks with the Hodrick-Prescott

filter, a short-term component, which represents the business cycles with a

length of more than one year and less than twelve years, and the residuals,

which are white noise. Kauermann, Teuber, and Flaschel (2012) and Flaschel,

Kauermann, and Teuber (2005) analyzed in more detail the long-term trends,

which are known as Friedman and Goodwin cycles for the underlying time

series. The short-term cycles have been the focus of the work of Kauermann,

Teuber, and Flaschel (2012) and Proaño, Flaschel, Diallo, and Teuber (2008)

and helped to provide evidence for several macroeconomic hypotheses due

to the fact that the approach allows the time series to be decomposed in an

objective way into a short-term and long-term component. Teuber (2012b)

extended the work by Kauermann, Teuber, and Flaschel (2012) to estimate

not only two time series simultaneously, but also any arbitrary number of

time series. Furthermore, the topic has been investigated in more detail by

Teuber (2012b), generating not only a methodology to date business cycles
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but also to calculate instantaneously the duration of the business cycles and

to smoothly identify any possible business cycle stage. Teuber (2012a) used

a three-dimensional model instead of a two-dimensional model. Similar to

the work of Teuber (2012b), the model was extended to estimate not only

three time series but any arbitrary number of time series simultaneously.

It is remarkable that even though econometricians as well as statisticians

have overcome the hurdles of parametric models for decades, most economi-

cal researchers still use parametric or awkward extensions to analyze and es-

timate time series. Thanks to the work of O’Sullivan (1988), Eubank (1989),

Wahba (2003), Fan and Gijbels (1996), as well as Eilers and Marx (1996), the

non-parametric estimation techniques and smoothers have become popular

and are standard in any serious statistical tool. Ruppert, Wand, and Carroll

(2003) give in their book numerous examples of the flexibility of the penalized

spline approach, and how this model can be used in different research fields.

In chapter 3, the statistical ground work will be presented: In chapter 3.1 the

linear regression will be extended to a broader family of distributions. The

non-parametric approach of penalized splines and B-splines will be shown in

chapters 3.2 and 3.3, respectively. The mixed model, which consists of fixed

and random effects, will be described in chapter 3.4. The Generalized Addi-

tive Model will be discussed in chapter 3.5 and chapter 3 will be concluded in

chapter 3.6 with an example of how to use the previous approaches to model

time-varying coefficients.

In chapter 4, the statistical models presented in chapter 3 will be applied

to discuss several economic models. In chapter 4.1, the work of Ernst and

Teuber (2006) for the European Socio-Economic Models of a Knowledge-

based Society (ESEMK) will be presented in which the cyclicality of fiscal

policies in OECD countries will be calculated using a time-varying coefficient
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model.

The penalized spline approach was used by Flaschel, Tavani, Taylor, and

Teuber (2008) to get a structuralist model of the wage-price spiral with non-

linear demand pressure terms. The penalized spline approach is an elegant

technique to estimate the first derivative of an estimated function, and given

the nature of the approach a confidence and/or prediction interval can be

calculated.

The research for the Organisation for Economic Co-operation and Develop-

ment (OECD), which was published by Ernst and Teuber (2008) and Ernst

and Teuber (2012), will be presented in chapter 4.3. The statistical tools pre-

sented in chapter 3 were useful for analyzing the Dutch tax benefit system

and the life cycle employment. The research was very useful for calibrating

an overlapping generation model for the Dutch economy.

In chapter 5, the statistical model of Kauermann, Teuber, and Flaschel (2012)

will be presented in more detail. A multivariate approach which decomposes

the time series into a long-term component and a short-term component,

which are known as business cycles in standard textbooks, will be discussed.

It will be assumed that the short-term component can be explained by a de-

terministic and a stochastic part, namely white noise. Furthermore, it will be

assumed that the deterministic part describes a circular or elliptical structure

over time. The radius and the angle of the unknown circular function will

be left unspecified and a penalized spline approach will be used to estimate

the function. The short-term and long-term time series will be estimated in

a two-stage approach such that the ”best” long-term trend will be used to

estimate the short-term fluctuations.
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An extension of the two-dimensional model given by Teuber (2012b) will

be shown in chapter 5.2. In this section, the two-dimensional circle will be

reformulated: First, a two-dimensional ellipse will be defined, which allows

the model to be more flexible, as it will be shown. Mathematically, the model

can be extended in this form to fit not only two, but any numbers of time

series, which be shown in chapter 6.3 and by Teuber (2012b).

Teuber (2012a) extended the two-dimensional model by Kauermann, Teu-

ber, and Flaschel (2012) to use more than two time series. Instead of polar

coordinates, the three-dimensional model will be preferred, such that spher-

ical coordinates will be used. Given the more complex structure, the model

encompasses a long-term cycle structure which might be wanted if a longer-

term structure is reasonable. Teuber (2012a) extended the model, in a similar

way as in Teuber (2012b) in the two-dimensional case, to be able to fit not

just three time series but an arbitrary number of time series, as shown in

section 5.3.

The empirical results of the statistical model in chapter 5 will be presented in

chapter 6. Kauermann, Teuber, and Flaschel (2012) analyzed the bivariate

trajectory of the employment rate and the inflation as well as the employment

rate and the wage share for the US. The trajectory of the long-term trends

show a circular form over a period of 50 years. The Goodwin and Fried-

man cycles are well known in standard textbooks and have been confirmed

using the new statistical approach. The short-term fluctuations have been

discussed in more detail by Proaño, Flaschel, Diallo, and Teuber (2008) and

will be presented in chapter 6.1 such that the length of cycles, the causality

as well as the leading and lagging characteristic will be shown for different

political regimes. Furthermore, the chapter will discuss the findings of the

work by Flaschel, Groh, Kauermann, and Teuber (2008).
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The extended two-dimensional model formulated by Teuber (2012b) has been

applied to the leading, coincident and lagging indicators provided by the Con-

ference Board and will be shown in chapter 6.3. The three-dimensional model

developed by Teuber (2012a) has been applied to the same data set and the

results will be shown in chapter 6.4. It should be noted that the models

by Kauermann, Teuber, and Flaschel (2012), Teuber (2012b), and Teuber

(2012a) are not only state-of-the-art from a statistical point of view, but also

provide new insights for the business cycle discussion.
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2 Business Cycles

Business cycles refer to a fluctuation in the economy either locally or glob-

ally which occurs for several quarters and in general follows a certain pattern

which is repeated constantly over time. Burns and Mitchell (1946) defined

business cycles as a ”type of fluctuations in the aggregate economic activ-

ity”. Long and Plosser (1983) agreed with this definition and stated that

”business cycles refers to the joint time-series behavior of a wide range of

economic variables”. Instead of observing these fluctuations directly in the

time plot of a time series, one has to derive the ”detrended” time series of the

growth variables; see figure 2.1 for the GDP of the US from the year 1947.

The ”detrended” time series will reveal the fluctuations quite well.

Lucas (1977) redefines business cycles as ”the deviation of the Gross Na-

tional Product from a trend”, which can differ from an exponential growth

rate over time. Kydland and Prescott (1990) propose ”a curve which stu-

dents of business cycles and growth would draw in” and suggest using the

Hodrick and Prescott (1997) filter. Although the trend is essential to define a

good estimation of the fluctuations, there is at this time no ”optimal” way to

distinguish the trend from the fluctuations. Stock and Watson (1999) prefer

in their extensive work the band pass filter developed by Baxter and King

(1999).

Both methods have in common that the smoothing parameters need to be

adjusted to find an ”optimal” amount of smoothness of the trend function.

Hodrick and Prescott (1997) and Kydland and Prescott (1990) used a fixed

smoothing parameter (λ = 1600), which was subjectively proposed for one

particular time series. Baxter and King (1999) and Stock and Watson (1999)

choose the tuning parameter pair (p = 6 and q = 32) because they pointed
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Figure 2.1: Real US Gross Domestic Product (GDP) over time: The upper plot

shows the real US GDP (black line) and the long-term trend (red line) estimated

by the Hodrick-Prescott filter(λ = 1600). The lower plot shows the deviation of

the observed real GDP from the long-term trend (black line); the long-term trend

is equal to the horizontal axis at level zero (red line).

out that a cycle should last at least six and at most 32 quarters.

In the following sections, different kinds of fluctuations, and in particular

business cycles, will be discussed in more depth. A classification of cyclical-

ities by the length of a ”typical” cycle is a first starting point: Short-term

cycles usually last one year or less, medium-term cycles (among them the
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business cycles) with a length of more than a year and less than 12 years,

and long-term cycles of more than 12 years. Furthermore, a brief overview

of different economic models will be given to explain the cyclical behavior of

the economy, which will be concluded with the Real business cycle theory.

The chapter will be concluded with an empirical analysis of business cycles

and an outlook on the following chapters.

2.1 Cyclicality in Economies

The definition of business cycles by Burns and Mitchell (1946) refers to ”eco-

nomic activities of nations that organize their work mainly in business en-

terprises”. In this context, the fluctuations might be explained best from

a microeconomic-based macroeconomy, which means that economic fluctu-

ations can be observed as business cyclicalities/ fluctuations which will not

be compensated by competitors and thus will be observed on an aggregated

level. For example, business activities might fluctuate due to consumption

habits: Restaurants are facing on an individual and aggregated level cycli-

calities (measured by customers and/or revenues) either by demand and/or

supply in the form of opening hours which are in the best case ”optimized”

subject to the cyclicality of demand over the day (with peaks around lunch

and diner time) and/or week (with higher revenue either during the week or

at weekends).

Most economic (aggregated) numbers however will not be calculated on an

instant or daily basis, such that the short cyclicalities will in general not be

discussed but have to be taken into account, if numbers of longer periods are

to be calculated. For instance, the weekly reported new jobless claims has

calendar effects if the number of weekdays differ due to holidays. Further-

more, it is obvious that monthly (raw) data for February might often differ
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if the time series is not representing a level but a growth number. These

calendar effects have to be accounted for as they might be the results of

short-term fluctuations and/or economic activities.

More prolonged fluctuations are seasonal effects, which are most often cycles

over the year. Numerous industries and sectors are face fluctuations over the

year which are to some degree explainable due to the kind of business. For

instance, the demand for heating oil, ice cream, sun lotion, fruit, and winter

or summer clothing fluctuates over the year due to time-varying preferences

and needs of customers as well as the supply. These might be influenced by

the weather, such that the seasonal effect is not necessarily identical over the

years in terms of timing, magnitude, and length.

It is worth noting that these seasonal effects which are characterized by a

cycle length of a year might have an effect on more prolonged cycles. A bad

harvest or a hurricane season might have an enormous effect on the following

years either in terms of supply and/or a shift in demand.

Long-term fluctuations like the Kuznets (1934), Kuznets (1930), and Kon-

dratieff (1984) waves are longer than the typical business cycles and might

affect or be the underlying trend of the business cycles. The infrastructural

investment waves by Kuznets are supposed to last 15-25 years and the tech-

nology cycles by Kondratieff 45-60 years. Although both long-term cycles

might influence the business cycles directly via stronger/weaker long-term

growth, which might be interpreted as a trend of the underlying time series,

the explicit relationship will be neglected in general. It is worth noting that

the interaction of medium-term cycles and long-term cycles is not one-sided,

such that even business cycles events, for instance the oil price shock in the

’70’s or the financial crisis (2008-2009), might have an effect on the longer
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cycles, which might determine the end of a new cycle. This new normality

might be observed in different growth rates in production and/or new infla-

tion/interest rate regimes.

Although the source of the medium-term (business) cycles and their length

differ over time and between theories, the medium-term cycles face the same

patterns as the short- and long-term cycles. Burns and Mitchell (1946) state

that ”a cycle consists of expansions occurring at about the same time in many

economic activities, followed by similarly general recession, contractions, and

revivals which merge into the expansion phase of the next cycle”. The char-

acteristic of the economic fluctuation can be stylized as cycles which however

vary in duration from more than one year to ten or twelve years as defined

by Burns and Mitchell (1946).

The National Bureau of Economic Research (NBER) provides for the US

the dates of peaks and troughs of the business cycles, where a recession is

”defined as a significant decline in economic activity spread across the econ-

omy, lasting more than a few months, normally visible in real GDP, real

income, employment, industrial production, and wholesale-retail sales.” The

NBER does not define a recession in terms of two consecutive quarters of

decline of real GDP; see http://www.nber.org/cycles.html.

2.2 Business Cycles in the Classical, Keynesian, Mon-

etarism, Neo-Classical, and New-Keynesian View

Business cycles are easy to describe but hard to explain, not only because

business cycle theory is a source of controversy. Mainstream theories are

numerous and differ in the source of fluctuations and will be discussed here

in a chronological order of appearance.
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The classical school of thought started with Smith (1776) in which all eco-

nomic agents are completely rational and markets clear instantaneously due

to equilibrium forces. If the economy operates below natural output, nominal

wages and prices will be cut, such that the production will reach the natural

output. Following Say’s Law (aggregated supply creates its own aggregated

demand), the price will adjust such that demand will equal supply. Unem-

ployment can be treated in this thought as a too slow reaction of wages on the

labor supply, similar to the goods market where prices (here wages) should

adjust immediately to reach natural output (here employment). The govern-

ment has to ensure competition and any fiscal intervention is unwanted. The

quantity theory of money suggests that inflation will not affect the optimal

decisions, which results in no business cycle measured in real output, but in

fluctuations in prices.

”The General Theory of Employment, Interest and Money” by Keynes (1936)

was the start of the Keynesian revolution where no self-correction has been

modelled due to the sticky prices. Wages will not be adjusted instantly

due to minimum wages and/or contracts as well as the bargaining power of

unions. In contrast to the Classical model, Keynes assumed that demand

creates supply. The effective demand depends on the interest rates which

are determined by money supply, such that money is no longer neutral. The

government is able to intervene if markets do not clear via government expen-

ditures, tax changes, money supply, and/or transfer payments. As a result,

the Keynesian view is able to explain unemployment as well as fluctuations

in aggregated demand.

The Monetarism view by Friedman (1957), Friedman (1968) and Friedman

(2008) is based on the Classical view but has been extended by imperfect
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information. The labor supply depends on the expected real wage based on

expectations on the inflation. The presence of imperfect price information

allows the output to deviate from the long-run natural output, which can

be interpreted as business cycles. The labor market will clear at a natural

rate of unemployment. The government should reduce restrictions (minimum

wages, unions) to keep the natural rate of unemployment low. The markets

are expected to clear by themselves such that the government should not

intervene. Furthermore, the money supply should be transparent in a way to

grow with output and avoid inflation via wage-price spiral due to anticipation

of money supply shocks.

The Neo-Classical model is based on Friedman’s model, but agents form ra-

tional expectations based on the available information, such that prediction

errors can be treated as random and independent, which is a main difference

in the assumptions of the Monetarism view. In accordance to the Classical

model, the markets clear instantaneously by assumption, and the labor mar-

ket will clear at the natural rate of unemployment. However, if money supply

changes are announced, firms and households adapt their forecasts such that

the effect vanishes; unannounced money supply changes will be adapted later

via prices and wages such that, all in all, money is neutral. The economic

output will deviate from natural output due to random deviations from fore-

casts and thus explains business cycles.

The Neo-Keynesian view is based on contract-based wages and price stick-

iness, such that markets do not clear instantaneously. Business cycles are

caused by supply and demand shocks as well as monetary shocks which are

hampered by sticky prices. However, the government can intervene similarly

to the Keynesian model via stabilizers in the form of taxes, transfers, and ex-

penditures. Furthermore, monetary policy in the form of money supply will
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affect the interest rate, which will influence the effective demand via business

investments.

2.3 Real Business Cycle Theory

In the real business cycle models, random fluctuations in productivity are the

cause of economic fluctuations. The models by Kydland and Prescott (1982)

and Long and Plosser (1983) are based on rational expectations given by the

groundwork of Lucas (1977). Under the assumptions of complete price and

wage flexibility and rational expectations, the theory explains economic fluc-

tuations caused by technology shocks as well as natural shocks. Lucas (1980)

notes that the equilibrium models of business cycles, which are based on Ar-

row and Debreu (1954), Arrow (1963) and Debreu (1959) contingent claims

approach, describe an equilibrium path of fluctuations. In former models,

the fluctuations were treated as deviations from equilibrium such that the

economy has to converge back to the equilibrium over time.

Kydland and Prescott (1982) point out that neither factories nor ships are

built in a day, such that a multiple-period construction is crucial to explain

aggregated fluctuations. A competitive equilibrium model for one individual

with a non-time separable utility function in one good economy has been

modelled. The current utility thus depends on past work time choices, which

admits greater intertemporal substitution of leisure (and working time). The

equilibrium of the Robinson Crusoe economy with a noisy productivity pa-

rameter will be approximated to calibrate the model to measure the US

economy. The selected parameters led to a good fit of the real output, con-

sumption, investment, inventories, productivity, and real interest rates for

the post-war period in terms of standard deviation and/or correlation with

output.
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Long and Plosser (1983) built a Robinson Crusoe economy with iid shocks

which lead to serial- and auto-correlated output shocks in different sectors.

The infinitely long-living individuals choose their preferred consumption-

production plans over several commodities produced in different sectors. A

shock in one sector will be ”transferred” via the production technology into

other sectors. The uncorrelated shocks lead to positive serial correlation and

positive cross-sectional correlation. Long and Plosser (1983) point out that,

similar to the Kydland and Prescott (1982) model, efforts to stabilize the

economy can only serve to make consumers worse off.

Backus, Kehoe, and Kydland (1992) point out that ”real business cycle theo-

ries have accounted for many of the features of postwar US business cycles”.

They extend the one-economy model to a two-country economy model such

that an economy ”can borrow and lend in international markets by running

trade surpluses and deficits”. The model was designed to explain the corre-

lation between output fluctuations in different countries, which are assumed

to derive from different technology shocks across countries but will be ”ex-

ported” and ”imported”, respectively. Backus, Kehoe, and Kydland (1992)

extent the Kydland and Prescott (1982) model and assumed in their open

economy model that labor is immobile but capital mobile. The model has

been calibrated to reflect the US and the European economic system: US

output and consumption are modelled quite well, while investment seems to

be too high in terms of variability. The model is not able to depict the trade

balance in a numerical manner. Furthermore, it is not able to show the cor-

rect cyclicality of real output across countries, but positive correlations for

consumption can however be verified.

All in all, even the simple business cycle models seem to depict the em-
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pirical evidence of business cycles, but a simultaneous explanation seems to

need a more sophisticated or at least elaborated model.

2.4 Empirical Analysis of Business Cycles

Given the theoretical background of the equilibrium models, more and more

statistical approaches have been used to capture the behavior of the business

cycles. Stock and Watson (1999) compare seventy macro-economic time se-

ries with the real output. Besides a graphical representation, the relationship

was also captured by the autocorrelation statistic and the Granger causalities.

Hamilton (1989) and Hamilton (2005) uses discrete Markov switching mod-

els to estimate univariate time series, and on the other hand the estimations

produce as a by-product time series which can identify periods of recessions

and the average duration of recessions as well as boom times. Stock (1987)

shows that most of the statistical approaches can only be used in a univariate

case. Furthermore, Stock (1987) distinguishes between the observed (linear)

calendar time and the (non-linear) economic time, such that the business

cycle pattern can be described by the economic time scale in a simpler form.

Although this approach works well for the univariate case, it seems that the

model will fail if it is extended to the multivariate case.

For the purpose of this work, the concept of business cycles will be discussed

from a different perspective. The economic fluctuations stylized in figure 2.2

show that the trend is essential to identify the cycle of boom, recession, de-

pression and expansion.

In general, the real GDP is used as an anchor or, better named, as a ref-

erence cycle which will be compared to the other time series. In figure 2.3,

the (stylized) fluctuations of the real GDP (black curve) and the industry
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Figure 2.2: Stylized business cycle formation: The real GDP (black lines) oscil-

lates around the long-term trend (red line), such that the peak/”boom” is followed

by a decline (either in absolute or in relative terms) which is called ”recession”

until it bottoms out in ”depression”, which ends with the new ”expansion” until a

new ”boom”/peak is reached.

production (green curve) are shown, which is an example for a pro-cyclical

time series which means that industry production peaks roughly when the

reference time series (real GDP) peaks. Furthermore, the industry produc-

tion is neither leading nor lagging, such that the time series differ in the

magnitude of the amplitudes at first glance.
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Figure 2.3: Real GDP fluctuation and a coincident time series: The real GDP

(black line) and industrial production (green line) coincides.

The unemployment rate is an example of a counter-cyclical time series and

is shown in figure 2.4. Whenever the GDP (black curve) is increasing, the

unemployment rate (red curve) decreases, and vice versa. Obviously, the em-

ployment rate is pro-cyclical, such that the employment rate and real GDP

coincides in a stylized view.

Furthermore, a distinction in terms of timing can be made, such that time

series might lead, coincide, or lag the reference time series, namely real GDP.

In figure 2.5, the leading indicator (green curves) peaks first, which is fol-
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Figure 2.4: Real GDP fluctuation and a counter-cyclical time series: The real

GDP (black line) and unemployment rate (red line) are counter-cyclical.

lowed by the coincident indicators (black curve) and the lagging indicators

(red curve). The magnitude of the amplitudes is not of interest for this clas-

sification asthe time series can be scaled for the purpose of visualization.

The green curve in figure 2.5 is from data provided by the Conference Board

which since January 1959 has provided the US Leading Index constructed

out of ten economic indicators, namely average weekly hours (manufactur-

ing), average weekly initial jobless claims, manufacturers’ new orders (con-

sumer), vendor performance (slower deliveries), manufacturers’ new orders
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Figure 2.5: Conference Board leading, coincident and lagging indicators: Leading

indicators (green line), coincident indicators (black line) and lagging indicators (red

line).

(capital), building permits (new private housing units), stock prices (500

common stocks), M2 money supply, interest rate spread, and index of con-

sumer expectations.

The black curve in figure 2.5 is given by the Conference Board which has pro-

vided the US Coincident Composite of 4 coincident indicators since January

1959. The four coincident indicators are unequally weighted combinations

of the employees on non-agricultural payrolls, personal income less transfer
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payments, industrial production and manufacturing, and trade sales. This

means, referring back to figure 2.3, that the indicators coincide more or less

with the real GDP.

Furthermore, the Conference Board provides the US Lagging Economic indi-

cators, the red curve in figure 2.5, which consists of a total of seven lagging

composite indicators, namely average duration of unemployment, inventories

to sales ratio (manufacturing and trade), labor cost per unit of output (man-

ufacturing), average prime rate, commercial and industrial loans, consumer

installment credits to personal income ratio, and consumer price index for

services.

In figure 2.6, the two-dimensional trajectories of the leading, coincident, and

lagging indicators are shown. The trajectories of the two-dimensional plot of

the pro-cyclical time series are shown in the three upper-left graphics turning

clockwise. They have in common that the leading time series is measured on

the y-axis and the lagging time series on the x-axis. The trajectory of the

two pro-cyclical time series in the lower-right graphics are however turning

counter-clockwise. Here, the leading time series is measured on the x-axis

and the lagging time series on the y-axis. The time lag of the two time series

will influence the trajectory in the way that the curve is more elliptical if

the lag is small and the trajectory is more circular if the time lag is getting

bigger. Figure 2.6 shows that no cycle is alike and that they vary in timing,

amplitude, positioning, and length.

The graphical presentation shown in figure 2.6 is not new to economists,

but it shows that the cyclicality should not be measured by the correlation

due to the non-linear relation of the two time series. However, the cyclicality

can be measured recalling the nature of cycles.
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Figure 2.6: Smoothed two-dimensional trajectories of leading indicators, coin-

cident indicators, and lagging indicators: First row: Middle plot (coincident vs

lagging), right hand plot (leading vs lagging); second row: Left hand plot (lagging

vs coincident), right hand plot (leading vs coincident); third row: Left hand plot

(lagging vs leading), middle plot (coincident vs leading). The arrows indicate the

trajectory path over time.

Under the assumption, that the classification of the Conference Board is

valid, the trajectory of the price Phillips curve with the unemployment rate

on the x-axis (counter-cyclical coincident time series) and the inflation on

the the y-axis (lagging time series) is turning clockwise. The Goodwin cycles
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with the employment rate (coincident time series) on the y-axis and the la-

bor cost per unit of output (lagging time series) are turning clockwise. Both

observations have been confirmed by theory and empirical research, and are

well-known.

In chapter 5, a model will be presented to describe and estimate business

cycles which can be treated as circles (cycles) similar to those shown in fig-

ure 2.6. The results of the estimated time series are presented in chapter 6.

The statistical ground work for the circular presentation is given in the next

two chapters and is needed to model the time-variation in the cyclicality of

economic time series.
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3 Generalized Linear Models, Penalized Splines,

B-Splines, Generalized Linear Mixed Mod-

els, and Generalized Additive Models

In this chapter modern statistical tools will be discussed which are being used

more and more these days due to their availability in most statistical pack-

ages. Classical statistical methods for regression and time series analysis are

in most cases straightforward if the error terms are normal. The Ordinary

Least Squares (OLS) or also called Linear Regression (LR) method is easy

to use and to interpret. However, in most cases the assumption of normal

errors is too stringent, such that a more generalized tool for non-Gaussian

data must be used. In other cases, the relationship between the regressor and

the other variable(s) is not known or not wanted to be specified in advance.

Furthermore, other analysis requires the testing of a linear relationship for

which the linear regression technique might not be the preferred choice to

test the hypothesis.

In the following chapter 3.1 a generalization of the OLS method will be pre-

sented where the regression for a broader range of distributions, namely the

family of exponential distributions, is possible and among them the Gaussian,

binomial, multinomial, Poisson, exponential, negative binomial and gamma

distributions are named. The most important advantage of the Generalized

Linear Model (GLM) is that the general theoretical framework allows the use

of a statistical tool (nowadays already standard in the main-stream statistical

programs like S-Plus, R, Matlab, Stata, and SAS) for the regression, so only

the underlying distribution needs to be specified.

Furthermore, the penalized spline regression technique, which will be ex-
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plored in chapter 3.2, is a very powerful tool and can be used for scatterplot

smoothing to get a first inspection of the (plotted) data. The advantage of

penalized splines over the kernel estimation technique is one reason why the

tool is a standard package in most statistical software programs. Due to the

construction of penalized splines, the computing time can be dramatically

reduced and the model is more flexible to use and to interpret if a parametric

variable is included in the model. The selection of the smoothing parameter

is fully worked out as will be shown in this work. In the following sections, a

generalized version which can be used for the family of exponential distribu-

tions will be described so that the technique is useable for most applications.

Afterwards, in chapter 3.3 a special case of penalized spline basis, namely

B-splines, and the corresponding penalty matrix will be introduced.

In chapter 3.4, the (Generalized Linear) Mixed Model (GLMM) will be ex-

plained not only to introduce random effects, but also to show the linkage

to the penalized splines approach such that the smoothing parameters can

be selected in a more elegant way via the Restricted Maximum Likelihood

(REML) technique. Nevertheless, random effects can be used if panel data

for different groups (which consist of one or more individual observations)

are collected and allow group-specific analysis of the parameters and/or test

for these parameters.

In chapter 3.5, the (Generalized) Additive Model (GAM) will be introduced

which allows the estimation of a model which should include more than one

non-linear function to describe the relationship to the regressor.

The chapter will be concluded with an example in chapter 3.6 in which the

previously mentioned frameworks will be used to estimate (time-) varying

coefficients.
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It is worth mentioning that the models can be combined and even para-

metric elements can be introduced such that a semi-parametric estimation

can be used if preferred.

3.1 Generalized Linear Models

The extension of the linear regression model will be shown in these sub-

sections so that non-normal response distributions and/or non-linear trans-

formations can be modelled. McCullagh and Nelder (1989) introduced the

generalized version of the linear models for which the response variable be-

longs to a specific family of distributions, namely the exponential family,

which will be shown in the following sections.

3.1.1 Distribution of the Exponential Family

The variable Y belongs to the distribution of the exponential family if the

probability density function can be written in the form

f(y) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
(3.1)

with the location parameter θ, also called canonical parameter or natural pa-

rameter, the scale parameter φ, also called nuisance or dispersion parameter,

and the known functions a, b, and c corresponding to the type of exponential

family.

If the distribution of the random variable Y can be written in the form

of equation (3.1) then the expected value is

E (Y ) = µ = b′(θ) (3.2)

and the variance is

Var (Y ) = σ2 = b′′(θ) a(φ) (3.3)
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with b′ and b′′ as the first and second derivatives of the known function b.

Instead of modelling the mean µ as a linear function of the predictors x

for the random variable Y , an one-to-one continuously differentiable, invert-

ible transformation function g will be introduced, such that equation (3.2)

can be written as

E (Y ) = µ = g−1(η) = g−1(xTβ) (3.4)

with g as link function, η as linear predictor, x as design vector of dimension

p, and β as vector of the unknown parameters of dimension p which needs

to be estimated. The inverse of the link function g will be defined as the

response function h, i.e. g−1 = h.

It is worth mentioning that the model is assumed to be a linear model, i.e.

η = xTβ (3.5)

and furthermore, one should remember that the expected value µ will be

transformed (or linked) instead of the raw data y. This is important because,

in general, a model where g(y) is linear on x is not the same as a generalized

linear model where g(µ) is linear on x. As shown above, a specific generalized

linear model is fully characterized by the type of the exponential family and

the link function.

3.1.2 Maximum Likelihood Estimation

An important feature of the generalized model is that the same methodology

to fit the data, namely the maximum likelihood estimation technique, can be

used. The likelihood function for the distribution in equation (3.1) is

L(y, x, β, φ) =
n∏
i=1

exp

(
yiθi − b(θi)
a(φi)

+ c(yi, φi)

)
(3.6)
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with ηi = xTi β. In practice, the log-likelihood function

l(y, x, β, φ) =
n∑
i=1

(
yiθi − b(θi)
a(φi)

+ c(yi, φi)

)
(3.7)

=:
n∑
i=1

li(y, x, β, φ) (3.8)

will be preferred, with li as individual likelihood function.

Remembering equation (3.4) θi = µ−1(h(xTi β)), one can reformulate equation

(3.3) as a function depending on β

V ar(Yi) = Σi(β) (3.9)

as variance function of the i-th observation.

The individual score function is the first derivative of the individual log-

likelihood function, i.e.

si(β) =
∂li
∂β

(3.10)

=
∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂β

(3.11)

=
yi − µi
a(φi)

1

b′′(θi)

∂µi
∂ηi

xi
T (3.12)

= (yi − µi)Σi(β)−1∂µi
∂ηi

xi
T (3.13)

using equations (3.9) and (3.2) to reformulate equations (3.12) to (3.13).

Defining the Jacobian of the response function h as Di(β) := ∂h(ηi)/∂η, the

individual score function can be written as

si(β) = xi
TDi(β)Σi(β)−1(yi − µi) (3.14)

with the matrix

Wi(β) = Di(β)Σi(β)−1Di(β)T . (3.15)
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The Fisher information (matrix), also called expected information (matrix),

is the expected value of the (negative) second derivative of the log-likelihood

function. The calculation for the individual Fisher information of the i-th

observation

Ii(β) = E
(
si(β) si(β)T

)
(3.16)

= xTi Di(β)Σi(β)−1Di(β)Txi (3.17)

= xTi Wi(β)xi (3.18)

= E

(
−∂

2li(β)

∂β∂βT

)
(3.19)

will be preferred for the sake of simplicity.

Defining the first derivative of µ with respect to β evaluated at ηi, i.e.

Zi(β) := ∂µ/∂β (3.20)

= xTi Di(β) (3.21)

the score function in equation (3.13) can then be written as

si(β) = Zi(β)Σ−1
i (β)(yi − µi(β)) (3.22)

and the Fisher information in equation (3.17) as

Ii(β) = Zi(β)Σ−1
i (β)Zi(β)T (3.23)

which is valid for generalized linear models with the simplification in equa-

tion (3.21) as well as for the rather general case in equation (3.20) and even

for the non-linear exponential family models which will be used later on.
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Given the score function in equation (3.21)

s(β) =
n∑
i=1

si(β) (3.24)

and the Fisher information matrix in equation (3.23)

I(β) =
n∑
i=1

Ii(β) (3.25)

a Fisher scoring algorithm with the Fisher scoring iterations defined as

β̂
(k+1)

= β̂
(k)

+ I
(
β̂

(k)
)−1

s
(
β̂

(k)
)

for k = 0, 1, 2, . . . (3.26)

can be used, given an initial suitable parameter vector β̂
(0)

.

3.1.3 Examples of the Exponential Family

In this subchapter several distributions which belong to the family of ex-

ponential distributions will be introduced to set the ground for the follow-

ing chapters because of their suitable characteristics for describing macro-

economic data. Among the family of exponential distributions, the Gaussian

(normal) one, which is for most economists the default distribution to es-

timate data, will be presented. In this case, the Generalized Linear Model

converges to the well-known Linear Regression. In the most simple version

the Ordinary Least Squares (OLS) approach is a special case of the GLM

approach which will be shown below. Further examples of the Bernoulli,

Poisson, and gamma distributions will be given in more detail.

For the Gaussian distribution the probability density function in equation

(3.1) is characterized by b(θ) = 0.5θ2, a(φ) = φ2 and c(y, φ) = −0.5 log(2πφ2)−
0.5 y

2

φ2 . It can be seen by applying equations (3.2) and (3.3) that the expected

value is µ = b′(θ) = θ and the variance is σ2 = b′′(θ) a(φ) = φ2. For the
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sake of simplicity the natural link function, namely the identity function, for

the Gaussian distribution will be used such that µ = η = xTβ holds. The

individual score function can be written as

si(β) =
yi − µi
φ2

xTi (3.27)

which can easily be seen using equation (3.14). Given equation (3.16), the

Fisher information matrix can be calculated via equation (3.19) which is in

this case given by

Ii(β) = xi
T 1

φ2
xi . (3.28)

Assuming homoscedasticity and remembering equations (3.4) and (3.5), the

Fisher scoring in equation (3.26) can be written as

β̂
(k+1)

= β̂
(k)

+ (XTX)−1XT (y − µ) (3.29)

= β̂
(k)

+ (XTX)−1XTy − (XTX)−1XTµ (3.30)

= β̂
(k)

+ (XTX)−1XTy − (XTX)−1XTXβ̂
(k)

(3.31)

= (XTX)−1XTy (3.32)

which is the OLS estimator.

The probability function for the binomial distribution in the form in equa-

tion (3.1) is characterized by θ(µ) = log
(

π
1−π

)
, b(θ) = log(1 + exp(θ)) and

c(y, θ) = 0 and a(φ) = 1. The expected value is given by equation (3.2) as

E (y) = µ = b′(θ) =
exp(θ)

1 + exp(θ)
= π (3.33)

remembering that θ(µ) = log
(

π
1−π

)
. The variance in equation (3.3) can be

written as

Var (y) = σ2 = b′′(θ)a(φ) =
exp(θ)

(1 + exp(θ))2
. (3.34)
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Instead of the natural link function η = log
(

π
1−π

)
= g(π) or rewritten as

h(η) = exp(η)
1+exp(η)

= π, other link functions can be used. Instead of the logistic

regression, often the probit model using the link function π = Φ(η) = h(η)

with Φ as cumulative normal probability function will be used. Further-

more, the complementary log-log model using the link function π = 1 −
exp(− exp(η)) = h(η) which can be written as g(π) = log(− log(1− π)) can

be used to model binomial data. In the case of the natural link function,

i.e. the logistic regression, one gets Zi(β) = xTi Di(β) with Di(β) = ∂h
∂η

(ηi) =
exp(ηi)

(1+exp(ηi))2
such that the score function in equation (3.24) can be written as

si(β) = Zi(β)Σ−1
i (yi − µi) (3.35)

and the Fisher information in equation (3.25)

Ii(β) = Zi(β)Σ−1
i Zi(β)T , (3.36)

with µi = exp(ηi)
1+exp(ηi)

. For the estimation of the unknown parameter(s) β, the

Fisher scoring method should be used with the initial parameter(s) β(0).

The probability function for the Poisson distribution can be written in the

form of equation (3.1) with a(φ) = 1, b(θ) = exp(θ) and c(y, θ) = − log(y!).

Using the natural link function θ(µ) = log(λ), the expected value in equation

(3.2) can be written as

E (y) = µ = b′(θ) = exp(θ) = λ (3.37)

and the variance in equation (3.3) can be written as

Var (y) = σ2 = b′′(θ)a(φ) = exp(θ) = λ . (3.38)

Instead of the natural (inverse) link function h(η) = exp(η) and g(µ) = log(µ)

other link functions can be used. Recalling Di(β) = ∂h
∂η

(ηi) = exp(ηi) and

Zi(β) = xTi Di(β), the score function can be written as

si(β) = Zi(β)Σ−1
i (yi − µi) (3.39)
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and the Fisher information as

Ii(β) = Zi(β)Σ−1
i Zi(β)T , (3.40)

with µi = exp(ηi). For the Poisson regression an explicit solution is not

available, such that the Fisher scoring algorithm should be applied with the

initial parameter(s) β(0).

The gamma distribution can be expressed in the form of equation (3.1) set-

ting θ(µ) = −µ−1, a(φ) = φ−1, b(θ) = − log(θ) and c(y, θ) = φ−1 log( y
eta

) −
log(yΓ(φ−1)). The natural (inverse) link function will be used, such that

h(η) = − 1
η

and g(µ) = − 1
µ
. The expected value given in equation (3.2) can

be written as

E (y) = µ = b′(θ) = −1

θ
= µ (3.41)

and the variance in equation (3.3) can be written as

Var (y) = σ2 = b′′(θ)a(φ) =
1

θ2

1

φ
=
µ2

φ
. (3.42)

Setting Di(β) = ∂h
∂η

(ηi) = 1
η2
i

and Zi(β) = xTi Di(β), the score function can

be written as

si(β) = Zi(β)Σ−1
i (yi − µi) (3.43)

and the Fisher information as

Ii(β) = Zi(β)Σ−1
i Zi(β)T , (3.44)

with µi = 1
ηi

. For the gamma distribution no explicit solution is available,

such that the Fisher scoring algorithm is the preferred choice to estimate the

unknown parameter(s) β, starting with the initial parameter(s) β(0).
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Besides the four distributions introduced in this subchapter, more distri-

butions belong to the family of exponential distributions which will not be

discussed in this work explicitly. But, given the probability density function

in equation (3.1), the maximum likelihood estimation can easily be applied

given the above guidance.

3.2 Penalized Splines

The penalized spline regression technique is a regression without assuming

a specific functional form linking the explanatory variable with the depen-

dent variable(s). However, it will be assumed that the functional form is a

”smooth” function. The penalized spline regression technique is often referred

to as a non-parametric or non-linear regression, although it can be treated

as an over-parameterized regression due to numerous parameters. Whether

the solution of a penalized spline regression is linear or non-linear depends

on the model setup, such that it results in a linear or a non-linear regres-

sion. For more details about non-parametric smoothing techniques and in

particular penalized splines, see O’Sullivan (1988), Silverman (1985), Eu-

bank (1989), Parker and Rice (1985), Hastie and Tibshirani (1990), Eilers

and Marx (1996), Ruppert, Wand, and Carroll (2003), or Ruppert, Wand,

and Carroll (2009) for an extensive introduction.

For the sake of simplicity, the univariate case will be discussed in this sub-

section, where the observation pairs (xi, yi) for i = 1, . . . , n are given and it

is assumed that one can write

E (y|x) = f(x) (3.45)

with f as an unknown, but smooth function. For the univariate, linear

regression of first order, the function f is assumed to be

f(x) = β0 + β1x (3.46)
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which would imply the corresponding basis

X =


1 x1

...
...

1 xn

 . (3.47)

For the spline regression a sequence of knots over the support of x are defined,

namely κ1 < . . . < κK where the number of knots is relatively small compared

to the number of observations; in most cases K = max(0.2n, 40) is a suitable

choice. The corresponding basis for a (truncated) linear spline basis is defined

as

X :=


1 x1 (x1 − κ1)+ . . . (x1 − κK)+

...
...

...
...

1 xn (xn − κ1)+ . . . (xn − κK)+

 (3.48)

with the operator (·)+ = max{·, 0} as linear spline basis function. In this

case the function f would be described by linear functions ”knot” together at

each knot point κ·. More generally, the corresponding basis of a (truncated)

linear spline basis of q-th order is defined as

X :=


1 x1 . . . xq1 (x1 − κ1)

q
+ . . . (x1 − κK)q+

...
...

...
...

...

1 xn . . . xqn (xn − κ1)
q
+ . . . (xn − κK)q+

 (3.49)

for q = 0, 1, ... and with the operator (·)q+ := max{·, 0}q. It is assumed that

the unknown function can be described given the spline basis, i.e.

f(x) = Xβ (3.50)

such that the unknown parameters β need to be estimated. Using a sim-

ple, unconstrained estimation, the resulting estimated function f̂ would be

heavily overfitted, meaning that the estimated function is too flexible and
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responds to small changes, which might appear to be random. For this rea-

son, constraints on the estimation will be used to circumvent the problem

such that instead of the unconstrained likelihood function a constrained (or

latter called penalized) likelihood function will be maximized. The unknown

function f will be estimated solving the problem

min
β
−

n∑
i=1

li(yi, β) (3.51)

under the constraint

βTDβ ≤ c (3.52)

with a penalty matrix D and an arbitrary constant c. Or, rewritten as

Lagrange function

−
n∑
i=1

li(yi, β) +
1

2
λ
(
βTDβ − c

)
(3.53)

with an arbitrary constant c and λ as Lagrange multiplier. Ruppert, Wand,

and Carroll (2003) show that instead of solving the Lagrange function (3.53),

the penalized likelihood function

n∑
i=1

li(yi, β)− 1

2
λβTDβ (3.54)

can be maximized with λ ≥ 0. The Lagrange multiplier λ in equation (3.54)

will be called a smoothing parameter, because the amount of smoothness will

be determined by the parameter, similar to the constant c in the constraint

shown in equation (3.52). For λ = 0, the estimation is unconstrained and

leads to the most wiggly estimation. For λ→∞, the effect of the spline basis

vanishes and depending on the design matrix X and the penalty matrix D,

a less complex solution will be achieved.
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For the case of Gaussian response data, the solution of the problem in equa-

tion (3.54) is given by

β̂(λ) =
(
XTX + λD

)−1
XTy (3.55)

and the unknown function is estimated by

f̂λ = Xβ̂(λ) = X
(
XTX + λD

)−1
XTy . (3.56)

It is worth noting, that in this case the regression type is a linear regression

due to the linear relationship of the estimated response and the observed

response variable, i.e.

ŷ = Pλy (3.57)

with

Pλ = X
(
XTX + λD

)−1
XT (3.58)

as projection matrix, also sometimes called hat-matrix or smoother matrix.

For unconstrained regression techniques, the complexity of the used model

can be measured by the degrees of freedom which are given by the trace of

the projection matrix, and is in general the number of used parameters. The

generalized version

tr (Pλ) = tr
(
X
(
XTX + λD

)−1
XT
)

= tr
(
XTX

(
XTX + λD

)−1
)

=: df(λ) (3.59)

will give the equivalent number of parameters, also called equivalent degrees

of freedom or estimated degrees of freedom, which is a positive, finite real

number.
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For one of the various different suitable choices for a penalty matrix, here a

(truncated) linear spline basis of q-th order will be defined in equation (3.49),

the penalty matrix is given by

D = 0q+1×q+1 ⊕ Ik (3.60)

with 0n×m as n ×m matrix which contains only zeros, Id as d × d identity

matrix, the operator defined as An×m ⊕ Bp×q :=

(
A 0n×q

0p×m B

)
. In this

case, the penalizing term in equation (3.52) can be written as

βTDβ = β2
q+1 + . . .+ β2

q+K . (3.61)

For this model, the degrees of freedom vary between q + 1 for λ → ∞ and

q + 1 +K for λ = 0. In the case of λ→∞, the model converges to

f(x) = β0 + β1x+ . . .+ βqx
q (3.62)

which is a parametric polynomial regression model of q-th order.

3.3 B-Splines

Eilers and Marx (1996) propose a so-called B-splines basis and a suitable

penalty matrix where the order of the penalty can be set to suit the desire of

the user. de Boor (1978) illustrates the construction of a (general) B-spline

basis in more depth. Eilers and Marx (1996) show that a B-spline basis of

q-th order consists of q + 1 polynomial pieces each of degree q which join at

q inner knots. At these joining points, up to order q − 1, the derivatives are

continuous. B-splines are positive on a domain spanned by q + 2 knots and

are zero everywhere else. Except at the boundaries, the B-spline overlaps

with 2q polynomial pieces of its neighbors. At any given point x there are

q + 1 B-splines non-zero.
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Given the knots κ1 < . . . < κK over the support of the variable x, the

B-splines of order q = 0 are defined as

Bj, 0(x) =

{
1 if κj ≤ x < κj+1

0 else
(3.63)

and for higher orders q ∈ N recursively as

Bj, q(x) =
x− κj
κj+q − κj

Bj, q−1(x) +
κj+q+1 − x

κj+q+1 − κj+1

Bj+1, q−1(x) (3.64)

which are shown for the order q = 0, 1, 2, and 3 in figure 3.1.

Given the same sequence of knots, the truncated spline basis X of q-th order

defined in equation (3.49) can be constructed by the corresponding B-spline

basis of q-th order which is set to B := (Bj, q)j=1,...,K . This means, that there

exists a matrix LX,B so that X = LX,BB holds. Furthermore, there exists a

matrix LB,X so that B = LB,XX holds.

Given the parameters θ := (θ1, . . . , θK)T ∈ RK , the function f will be defined

as weighted linear combination of a q-th order B-spline basis, i.e.

f(x) :=
K∑
j=1

Bj, q(x)θj . (3.65)

Eilers and Marx (1996) propose a generalized p-th order penalty of the form

K∑
j=p+1

(∆pθj)
2 (3.66)

with the difference operator ∆p of p-th order. Defining the matrix Lp as

matrix representation of the difference operator then in matrix-vector writing

the penalty in equation (3.67) can be written as

θTLT
p Lpθ = θTDpθ (3.67)
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Figure 3.1: Isolated and overlapping B-splines for different degrees constructed

with a given set of knots: First row: Degree zero, second row: Degree one, third

row: Degree two, Fourth Row: Degree three. Each colored line (black, red, green,

blue, and light blue) represents a different B-spline.

with penalty matrix Dp := LT
p Lp.

Maximizing the penalized likelihood similar to (3.54), the fitted function

f converges to a polynomial of degree p − 1 if the smoothing parameter is

large, i.e. λ→∞, and if the B-spline basis is at least of order p, i.e. q ≥ p.

For the selection of the optimal amount of smoothness, the smoothing pa-
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rameter should minimize the Akaike Information Criterion (AIC) as proposed

by Eilers and Marx (1996). The AIC originally proposed by Akaike (1974)

trades off the ”goodness of fit” against the complexity of a model measured

by the degrees of freedom. In the general form, the AIC is defined as

AIC(λ) := −2
n∑
i=1

li(yi, θ, λ) + 2df(λ) (3.68)

with θ as parameters which maximize the (penalized) likelihood in equation

(3.54) given the smoothing parameter λ and df(λ) as corresponding degrees of

freedom, defined in equation (3.59). For the case of Gaussian data, equation

(3.68) can be written as

AIC(λ) := log(RSS(λ)) + 2
df(λ)

n
(3.69)

with n as number of observations and RSS as residual sum of squares, i.e.

RSS(λ) :=
∑n

i=1

(
yi − f̂λ(xi)

)2

.

But, the selection can also be based on cross-validation for which the i-th

observation will be left out to estimate the response of the i-th observation,

i.e.

CV(λ) :=
1

n

n∑
i=1

(
yi − f̂−iλ (xi)

)2

(3.70)

which can be written in a simpler form if the regression is linear; see equation

(3.57). In the case of a linear relationship, i.e. f̂(xi) =
∑

j pijyj, with the

projection matrix P = (pij)i,j=1,...,n, one may simplify

f̂−iλ (xi) =
∑
j 6=i

pij
1− pii

yj (3.71)

=
1

1− pii
f̂λ(xi)−

pii
1− pii

yi (3.72)



Page 43 Chapter 3

such that the cross-validation criterion in equation (3.70) can be written as

CV(λ) :=
1

n

n∑
i=1

(
yi − f̂λ(xi)

1− pii

)2

. (3.73)

Craven and Wahba (1979) replaced pii by the average, i.e.
∑n

i=1 pii/n =

tr (P) /n = df(λ)/n such that the generalized cross-validation will be defined

as

GCV(λ) :=
1

n

n∑
i=1

(
yi − f̂λ(xi)
1− df(λ)/n

)2

. (3.74)

Unfortunately, a general recommendation of which criterion should be pre-

ferred is not possible. Usually, the AIC, CV, and GCV methods lead to

different ”optimal” smoothing parameters, so one should not trust the auto-

matic smoothing parameter selectors blindly.

3.4 Random Effects and (Generalized) Linear Mixed

Models

Laird and Ware (1982) extended the linear model for Gaussian data and in-

troduced random effects which vary by group. An illustrative example and

introduction is given by Wand (2003), where the random effects have been

introduced to analyze group-specific intercepts. Furthermore, random effects

can be used to allow for group-specific covariates effects, which would be

interpreted as group-specific slopes.

The response variable yij is the j-th out of ni observations for the i-th out

of m groups. The data set might either be balanced, i.e. n1 = . . . = nm,

or unbalanced if there are at least two groups i1 and i2 for which ni1 6= ni2

holds. For each observation the p fixed effect regressors xij1, . . . , xijp are

given which usually include the intercept, i.e. xij1 ≡ 1 ∀ i, j. The unknown
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fixed-effect coefficients are identical for each group, i.e. β1, . . . , βp do not

depend on i. The random-effect regressors will be denoted as zij1, . . . , zijq

and the corresponding random-coefficients ui1, . . . , uiq have to be predicted

for all groups i = 1, . . . , m. Usually, the random effects vary by group and

are unlike the fixed-effects parameters β1, . . . , βp no parameters which need

to be estimated, but random variables which need to be predicted.

The (linear) mixed effect model, which consists of fixed and random effects,

can be written as

yij = xij1β1 + . . .+ xijpβp + zij1ui1 + . . .+ zijquiq + εij . (3.75)

Defining

y =



y11

...

y1n1

y21

...

y2n2

...

ym1

...

ymnm



, ε =



ε11

...

ε1n1

ε21

...

ε2n2

...

εm1

...

εmnm



, X =



x111 . . . x11p

...
...

x1n11 . . . x1n1p

x211 . . . x21p

...
...

x2n21 . . . x2n2p

...
...

xm11 . . . xm1p

...
...

xmnm1 . . . xmnmp



, u =



u11

...

u1q

u21

...

u2q

...

um1

...

umq



,

Zi =


xi11 . . . xi1q

...
...

xini1 . . . xiniq

 ∀ i = 1, . . . ,m and Z = Z1 ⊕ . . .⊕ Zm
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with the operator An×m ⊕Bp×q :=

(
A 0n×q

0p×m B

)
, the equation (3.75) can

be written in matrix-vector form as

y = Xβ + Zu + ε (3.76)

with (
u

ε

)
∼ N

((
0

0

)
,

(
Ψ 0

0 Σ

))
(3.77)

with Ψ as (co-)variance matrix for the random effects and Σ as (co-)variance

matrix for the residuals.

To estimate the mixed effect model, the unknown parameters β and the

(co-)variance matrices Ψ and Σ need to be estimated using the Restricted

Maximum Likelihood regression technique (REML) and the random effects

u will be predicted using best prediction (BP), i.e. û = E (u|y).

The (log) likelihood for the model in equation (3.77) is given by

l(β, Ψ, Σ) = −1

2

[
n log(2π) + log |V|+ (y −Xβ)TV−1(y −Xβ)

]
(3.78)

with the (co-)variance matrix

V = Cov (y) = ZΨZT + Σ (3.79)

remembering equations (3.76) and (3.77).

Solving equation (3.78) for β the best linear unbiased estimator (BLUE)

is given by

β̂ =
(
XTV−1X

)−1
XTV−1y (3.80)
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which is the standard maximum likelihood estimator.

Plugging equation (3.80) into the likelihood function in equation (3.78) gives

the profile (log) likelihood for V, i.e.

lP (V) = −1

2

[
n log(2π) + log |V|+ yTV−1(I−X(XTV−1X)−1XTV−1)y

]
for which the maximum likelihood estimation will give Ψ and Σ and thus V.

However, Searle, Casella, and McCulloch (1992) prefer the restricted (log)

likelihood, which can be written as

lR(V) = lP (V)− 1

2
log
∣∣XTV−1X

∣∣ (3.81)

to account for the degrees of freedom for the fixed effects in the model, which

is more accurate for small sample sizes. Given β, Ψ, and Σ, the best linear

predictor (BLP) for the random effects is given by

ũ = ΨZTV−1(y −Xβ) . (3.82)

Alternatively, defining the combined design matrix C =
(
X Z

)
and the

matrix D = 0⊕Ψ, the BLUE can be written as(
β̃

ũ

)
=
(
CTΣ−1C + D

)−1
CTΣ−1y (3.83)

which is from a notational point of view similar to equation (3.55) in which

the (co-)variance matrix is set to the identity matrix.

Using equation (3.83), the covariance of the predictions is given as

Cov

((
β̃

ũ

))
=
(
CTΣ−1C + D

)−1
(3.84)

and the conditional covariance matrix as

Cov

((
β̃

ũ

)
|u

)
=
(
CTΣ−1C + D

)−1
CTΣ−1C

(
CTΣ−1C + D

)−1
. (3.85)
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The main advantage of the mixed model solution is to be able to treat a

spline model as a mixed model. Rewriting the model from subsection 3.2 for

the Gaussian case as (penalized) truncated spline basis of first order as

yi = β0 + xiβ1 +
K∑
k=1

(xi − κk)+uk + εi (3.86)

with the residuals εi ∼ N (0, σ2
ε ) and the coefficients are assumed to be

normally distributed, i.e. uk ∼ N (0, σ2
u), then equation (3.86) can be written

in matrix-vector form as

y = Xβ + Zu + ε (3.87)

with (
u

ε

)
∼ N

((
0

0

)
,

(
σ2
uI 0

0 σ2
ε I

))
. (3.88)

For the model above in equation (3.87) and (3.88), the covariance matrices

are given by Ψ = σ2
uI and Σ = σ2

ε I. The amount of smoothness will be

determined by λ = σ2
ε

σ2
u
.

Solving the model in equations (3.87) and (3.88) via maximum likelihood,

is equivalent to the penalized spline approach; see(
β̂

û

)
= arg min

β,u
(y −Xβ − Zu)T (y −Xβ − Zu) + λuTu (3.89)

=
(
CTC + λD

)−1
CTy (3.90)

with the combined design matrix C =
(
X Z

)
and the penalty matrix

D = 0⊕ I.
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The extended generalized linear mixed model (GLMM) will be used if the

response y belongs to the distribution of exponential family such that the

conditional density is given by

f(y|u) = exp
(
yT (Xβ + Zu)− 1T b(Xβ + Zu) + 1T c(y)

)
(3.91)

and the random effects are assumed to still be normally distributed, i.e.

u ∼ N (0, Ψ) . (3.92)

Similar to the GLM, the linear predictor is given by

η = Xβ + Zu (3.93)

and the the conditional expected value is given by

E (y|u) = µ = h(η) (3.94)

given a known link function h.

From a practical point of view, the calculation of β, Ψ, and Σ involves the

integration over Rq for the random-effects coefficients u such that a Laplace

approximation is needed; see McCulloch and Searle (2001). The simultane-

ous calculation of the parameters β, Ψ, Σ, and random effects u are based on

posterior modes from a Bayesian view. In this case, the estimation equation

for the fixed and random effects is given by(
XTWX XTWZ

ZTWX ZTWZ + Ψ−1

)(
β̂

û

)
=

(
XTHTΣ−1 (y − µ+ Hη)

ZTHTΣ−1 (y − µ+ Hη)

)
(3.95)

with the definitions H = ∂µ
∂ηT

and W = HTΣ−1H. The vector
(
β̂
T

ûT
)T

will be calculated iteratively and for the general case no close-form solution

can be provided.
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3.5 Generalized Additive Models

In subsections 3.2 and 3.3, the response variable was explained by just one

single variable. In this subsection, a multi-dimensional approach, known as

(Generalized) Additive Model (GAM), will be introduced. For the sake of

simplicity only two variables and a Gaussian response will be assumed, but

the extension with more variables is straight forward given the guidance be-

low and a generalization for response variables which belong to the family of

exponential distributions can easily be done if one recalls the previous sub-

sections.

Similar to equation (3.45), the expected value is assumed to be given by

E (yi) = β0 + f1(xi1) + f2(xi2) (3.96)

with the unknown functions f1 and f2. Analog to the previous one-dimensional

version, the functions f1 and f2 are assumed to be smooth. Furthermore, as-

sume that the unknown function can be modeled by (truncated) linear splines

of first order, i.e.

f1(x) = β1x+

K1∑
k=1

(x− κk, 1)+uk, 1 (3.97)

and

f2(x) = β2x+

K2∑
k=1

(x− κk, 2)+uk, 2 (3.98)

but higher orders or a different spline basis can be used. The knots for the

first and second variables are κ1, 1 < . . . < κK1, 1 and κ1, 2 < . . . < κK2, 2,

respectively, which can be selected independently and the number of knots

can differ, i.e. K1 6= K2 is allowed.
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Using the equations (3.97) and (3.98), the equation (3.96) can be written

in matrix-vector form as

E (y) = Xβ + Z1u1 + Z2u2 (3.99)

with X =
(

1 xi1 xi2

)
i=1,...,n

, β =
(
β0 β1 β2

)T
, uj =

(
u1,j . . . uKj ,j

)T
and Zj =

(
(xij − κ1,j)+ . . . (xij − κKj , j)+

)
i=1,...,n

for j = 1, 2. Defining

Z =
(
Z1 Z2

)
, u =

(
uT1 uT2

)T
, the equation (3.99) can be written in the

well-known form

E (y) = Xβ + Zu (3.100)

which was already analyzed in the previous subsections.

Assuming furthermore

E

((
u

ε

))
= 0 (3.101)

and

Cov

((
u

ε

))
=


σ2
u, 1I 0 0

0 σ2
u, 2I 0

0 0 σ2
ε I

 , (3.102)

the maximum likelihood estimation is given by

ŷ = C
(
CTC + D(λ)

)−1
CTy (3.103)

for the Gaussian case with C =
(
X Z

)
, D(λ) = λ1D1 + λ2D2, D1 =

0 ⊕ I ⊕ 0, D2 = 0 ⊕ 0 ⊕ I, and λ1 and λ2 as smoothing parameters for the

functions f1 and f2, respectively.
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Interpreting the model as a mixed model, the smoothing parameters will

be given by λ1 = σ2
ε

σ2
u,1

and λ2 = σ2
ε

σ2
u,2

such that the degrees of freedom for the

REML estimation are needed. Similar to the previous subsections the total

degrees of freedom, recalling equation (3.103), are given by

dffit = tr
(
C
(
CTC + D(λ)

)−1
CT
)

(3.104)

= tr
((

CTC + D(λ)
)−1

CTC
)

(3.105)

and for this model, the degrees of freedom for the function fj are given by

dfj = tr
(
Dj

(
CTC + D(λ)

)−1
CTC

)
+ 1 (3.106)

for j = 1, 2 and df0 = 1 accounting for the intercept. Remember that the

degrees of freedom are additive, i.e. dffit = df0 + df1 + df2.

Using equation (3.84), the covariance matrix can be written as

Cov

((
β̂

û− u

))
= σ2

ε

(
CTC + D(λ)

)−1
(3.107)

and using equation (3.85), the conditional covariance matrix can be written

as

Cov

((
β̂

û

)
|u

)
= σ2

ε

(
CTC + D(λ)

)−1
CTC

(
CTC + D(λ)

)−1
. (3.108)

3.6 Varying Coefficients Model

Given the observations (ti, xi, yi) for i = 1, . . . , n, a model will be analyzed in

which the response variable y will be described by the covariate x depending

on the variable t. Instead of the static model E (y|x) = β0 + β1x, a model

will be assumed in which the coefficients will vary with the variable t. In this

example, a simple model with varying coefficients of the form

E (y|x, t) = β0(t) + β1(t)x (3.109)
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will be described. More complicated as well as even less complicated models

can obviously be handled with this example, but here for the sake of sim-

plicity just the model in equation (3.109) with Gaussian response data will

be analyzed. Following Hastie and Tibshirani (1993), for each value t, the

linear relationship between the regressor y and the variable x will hold. If

the variable t represents time, then the model can be called a time-varying

coefficients model. In this case, the intercept and the slope of the linear re-

lationship varies over time, but it is assumed that β0(·) and β1(·) are smooth

functions over the variable t.

Using a (truncated) spline basis of first order, the model in equation (3.109)

can be written as

E (y|x, t) = β0 + β0, tti +
K∑
k=1

uk, 0(ti − τk)+ (3.110)

+β1xi + β1, ttixi +
K∑
k=1

uk, 1(ti − τk)+ · xi

with the knots τ1 < . . . < τK build over the support of the variable t.

Defining

y =
(
y1 . . . yn

)T
, X =

(
1 ti xi xiti

)
i=1,...,n

,

Z =
(

(ti − τ1)+ . . . (ti − τK)+ (ti − τ1)+xi . . . (ti − τk)+xi

)
i=1,...,n

,

β =
(
β0 β0, t β1 β1, t

)T
, u =

(
u1,0 . . . uK,0 u1,1 . . . uK,1

)T
,

D0 = IK×K ⊕ 0K×K and D1 = 0K×K ⊕ IK×K

allows the model in equation (3.110) to be rewritten in matrix-vector form

as

E (y) = Xβ + Zu (3.111)
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which can be estimated maximizing the penalized likelihood

− 1

2
(y −Xβ − Zu)T (y −Xβ − Zu)− 1

2
λ0u

TD0u−
1

2
λ1u

TD1u (3.112)

with the smoothing parameters λ0 and λ1 which might be selected via REML.
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4 Application of GLM, GLMM, GAM, and

Penalized Splines Regression Techniques

4.1 Cyclicality of Fiscal Policies in OECD Countries

The financial crisis in 2008 led to a domino effect in which smaller economies

like Iceland but also bigger European countries like Greece, Portugal, Spain,

Ireland, and Italy tumbled (or are still tumbling) and only a collective in-

tervention of the ECB and EU with the help of the IMF stopped the bigger

dominos from falling. Given the model in this chapter, the baseline model al-

lows us to measure how interest rate changes like for the European countries

might change the fiscal condition of the states, or how a GDP shock or how

long-run GDP growth rates might affect the debt situation. Furthermore, the

models might measure which countries will be effected the most by a GDP

shock, if and how well austerity measures have been implemented, and if an

equilibrium GDP growth rate is achievable.

If one dares to cry wolf, the numbers crunched should be based on reli-

able and dated numbers. Like the canary in the mine, the canary should

not be left at the entrance but should be placed at the point which is most

critical. Although Lane (2003) argued that recent research has received in-

creasing attention, most of the estimations are based on static parameters,

so the question arises whether these fancy models are reliable. For instance,

Lane (2003), who examined the cyclicality of fiscal policies in OECD coun-

tries, just used ordinary least square regressions, which by definition do not

account for structural breaks. Any political change would only effect the

next year’s regression by a small proportion due to the averaging effect. This

would mean that the canary would live until there is on average not enough

oxygen. Calderon and Schmidt-Hebbel (2003) confirmed a structural break
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for the Latin American countries and used rolling windows as an alternative.

Persson and Tabellini (2003) discuss not only country-by-country differences

but also changes over time. However, it was Aghion and Marinescu (2006)

who started to emphasize the time-varying effect with much more effort.

However, a penalized spline model was used by Ernst and Teuber (2006)

to replicate and expand the model of Aghion and Marinescu (2006), who

analyzed the relationship between the growth of an economy and the cycli-

cality of government debt. Aghion and Marinescu (2006) stated that the

fiscal policy should affect the economic growth primarily in the short run,

and in the long run it will depend upon structural characteristics of the econ-

omy. The model focuses mainly on the cyclicality of fiscal deficit of various

OECD countries over time. From a statistical point of view, the analysis

might involve a (time-) varying coefficient model with random effects to ac-

count for the structural difference of the countries. Unfortunately, the model

presented by Aghion and Marinescu (2006) has not been formulated in any

way to test for time-varying coefficients nor to test for random (or even fixed)

effects which can measure the structural differences of countries. Due to the

insufficiency of the estimation technique of Aghion and Marinescu (2006),

Ernst and Teuber (2006) used in their joint work for the ESEMK project

another approach to overcome the problem, which will be presented below.

4.1.1 The Baseline Model

For the empirical investigation of the kind of cyclicality of fiscal policies,

Aghion and Marinescu (2006) started with the baseline model for public

debt growth as a function of the output gap given by the tax-rate smoothing

model by Barro (1979).

It will be assumed that the new debt less interest payments measured in
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GDP units can be explained by the temporary deviation derived from an

economic shock (measured by the output gap) which influences directly the

tax and expenditure side due to less collected taxes and/or more transfer pay-

ments. Deviations from the ”normal”expenditure path (for example austerity

measures) are expected to influence the debt level directly. Furthermore, the

new debt level (measured in GDP) might be influenced by the real interest

burden, which can be modelled as a (country-specific) constant growth of

debt. For the estimation it is useful to define the variables as (percentage)

values of GDP to avoid heterogeneous residuals (which might be increas-

ing proportionally with the GDP) such that the regressor will be defined as
bt−bt−1−it

yt
with bt as government debt, it as interest payments and yt as GDP

at time t. The first covariate describes the deviation of the debt path due

to a deviation from the ”normal” GDP growth path measured by the output

gap, i.e. x1t := ygap
gt
yt

, with gt as government expenditure at time t. The im-

pact of the deviation from the normal expenditure path will be measured by

the second covariate for which the normal level gt will be set to the Hodrick-

Prescott filtered trend of the expenditure. Using the definition above, the

second covariate can be written as x2t := (log(gt)− log(gt))
gt
yt

. The new

debt amount will be influenced by the interest payment represented by the

third covariate x3t := bt−1

yt
which is the last period’s debt level measured in

GDP. The country-specific structural characteristics will be represented by

a constant coefficient, such that the corresponding parameter is different for

each country, either fixed or random.

The model presented by Aghion and Marinescu (2006) can be written as

bj,t − bj,t−1 − ij,t
yj,t

= β1jtygap,j,t
gj,t
yj,t

+ β2jt

(
log(gj,t − log(gj,t))

) gj,t
yj,t

+β3jt
bj,t−1

yj,t
+ β4jt + εj,t (4.1)
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with the country,specific residuals εj,t ∼ N (0, σ2
ε,j) for the country j.

Note that the coefficients β1jt, β2jt, β3jt, and β4jt depend not only on the

country j, but also on the time t. In standard panel data analysis, the

coefficients would not vary over time. Furthermore, in this context, the co-

efficients might be treated either as fixed effects or random effects. However,

a more stringent model set β·jt ≡ β·t, such that each country would react

to the covariate in the same way and the structural differences would either

be expressed by those coefficients which might differ across countries or by

the different values of the covariates, for instance level of expenditure and or

debt burden.

Aghion and Marinescu (2006) remind us that the case β1jt = −1 and β2jt = 1

would correspond with tax smoothing and the coefficient β3jt is expected to

be the growth rate of real GDP less the interest rate. If the coefficient is

less than the expected value, then a mean-reverting effect to a target debt-

to-GDP value is wanted by the government which might differ from zero.

If the coefficient β1·· is above zero, then a procyclical deficit policy had been

implemented by the government which is far from tax-rate smoothing. It is

more interesting to differentiate if the government is implementing a more

counter-cyclical deficit policy, i.e. β1·· < −1, or if the coefficient is less than

the tax smoothing level, i.e. if −1 < β1·· < 0.

4.1.2 Regression Techniques

A linear regression technique would treat each time point t as an equally

weighted observation point and would lead to constant estimated coefficients

over time t. The model might be differentiated if country-specific coefficients

are wanted and explicitly defined or if identical coefficients are assumed.
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Rewriting the model in equation (4.1) as

yjt = β1jtx1jt + β2jtx2jt + β3jtx3jt + β4jt + εjt (4.2)

for the sake of clarification with covariates defined in subsection 4.1.1. As-

suming Gaussian response variables, the expected value can be written as

µjt = β1jtx1jt + β2jtx2jt + β3jtx3jt + β4jt . (4.3)

Aghion and Marinescu (2006) proposed weighting the time points τ ∈ (t −
5, t+4) equally to estimate the coefficients β··t at time t. Using the notation in

equation (4.2), the weighted sum of the squared residuals will be minimized

for each point in time t ∈ (t1, . . . , tn) and each country j to estimate the

parameters β1, . . . , β4, i.e.

arg min
β1jt, β2jt, β3jt, β4jt

tn∑
τ=t1

ωτ (yjt − µjt)2 (4.4)

with the weights ωτ = 1 if τ ∈ (t−5, t+4) and otherwise zero. Although the

choice of using only ten time points might be in an economic view reasonable,

the (subjective) choice of the bandwidth for the estimation is in a statistical

sense doubtful and an automatic data-driven bandwidth should be preferred

over a choice out of the blue.

For the second estimation approach Aghion and Marinescu (2006) propose

using a Gaussian distribution to weight the time points. Furthermore, the

standard deviation for the weighting is set to σ = 5, such that the weight is

defined as ωτ = 1√
2π52

exp
(
−0.5

(
τ−t
5

)2)
used in equation (4.4). The two ap-

proaches can be treated as kernel estimators, see Nadaraya (1964)and Watson

(1964) for more information, with a uniform and Gaussian kernel function,

respectively. Obviously, the two bandwidths do not correspond to the same
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amount of smoothness, such that the estimation of the second proposed kernel

is by definition smoother. But, as in the first approach, the main shortcom-

ing of the approach is the subjective and the more than questionable choice

of smoothing parameters, which do not correspond to the smoothness of the

first choice, meaning that nearly the same result might have resulted with an

adjustment of the bandwidth of the kernel estimator.

Furthermore, Aghion and Marinescu (2006) assume in their third proposal

that the coefficients can be described by an AR(1) process, i.e.

βcjt = βcjt−1 + ucjt (4.5)

with the residuals ucjt ∼ N (0, σ2
u,c) for all coefficients c = 1, . . . , 4. A max-

imum likelihood approach carries out the variances σ2
u,1, σ

2
u,2, σ

2
u,3, σ

2
u,4 and

σ2
ε,j for each country j.

The recursive notation in equation (4.5) can be written as

βcjt = βcj0 +
t∑
t=1

ucjt (4.6)

with an initial start value βcj0 and the cumulative sum of residuals ucj·.

The model in equation (4.6) can be written as a random effect model with

a spline basis of 0-th order, either truncated linear splines or B-splines. Re-
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calling chapter 3, the model in equation (4.2) can be written as

yjt = β1j0x1jt +
K∑
k=1

1{t≥τk}u1kx1jt

+β2j0x2jt +
K∑
k=1

1{t≥τk}u2kx2jt

+β3j0x3jt +
K∑
k=1

1{t≥τk}u3kx3jt

+β4j0 +
K∑
k=1

1{t≥τk}u4k + εjt (4.7)

with the indicator function 1{x} which is 1 if the condition x is true and

zero otherwise. The knots are given for this approach by τi = t0i+1 for

i = 1, . . . , nj − 1 and thus Kj = nj − 1.

Defining

yj =
(
yj1 . . . yjnj

)T
, Xj =

(
x1jt x2jt x3jt 1

)
t=1,...,nj

,

βj =
(
β1j0 . . . β4j0

)T
,

uj =
(
u11 . . . u1K u21 . . . u2K . . . u41 . . . u4K

)T
,

Zj =
(
1{t≥τ1}x1jt . . . 1{t≥τK}x1jt . . . 1{t≥τ1}x4jt . . . 1{t≥τK}x4jt

)
t=1,...,nj

with x4·· = 1 and

εj =
(
εj1 . . . εjnj

)T
allows the writing of equation (4.7) as

yj = Xjβj + Zjuj + εj (4.8)

for the countries j = 1, . . . , m.
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For the univariate case, each country can be estimated using equation (4.8)

and the penalty matrices D1 = Ik ⊕ 0k ⊕ 0k ⊕ 0k, D2 = 0k ⊕ IK ⊕ 0k ⊕ 0k,

D3 = 0k ⊕ 0k ⊕ IK ⊕ 0k and D4 = 0k ⊕ 0k ⊕ 0k ⊕ IK with the corresponding

smoothing parameters λ1, . . . , λ4.

The linear mixed model can be estimated recalling λc = σ2
ε

σ2
u,c

for c = 1, . . . , 4

which would preferably be selected via (RE)ML.

The combined design matrix in equation (4.8), namely Cj =
(
Xj Zj

)
, is

of dimension n× 4n, such that the dimension is too large for an unrestricted

estimation. Either the smoothing parameters should be large enough so that

dffit ≤ n or another spline basis should be used. Recalling the last chapter,

a spline basis built over less knots and a different order might be used. Ernst

and Teuber (2006) used in their work for the ESEMK project a B-spline basis

of second order with Kj = min(nj/5, 40) knots equally spaced over time t and

a first order penalty matrix, i.e. D = LTL with L =


1 −1 0 0

0
. . . . . . 0

0 0 1 −1

. In

the extreme case of no restriction on the parameters, Kj degrees of freedom

will be used and in the case of the most stringent restriction, i.e. λ→∞, the

degrees of freedom will be 1 which coincides with a constant parameter over

time. Furthermore, due to the maximum likelihood approach, the hypothesis

of σ2
u,c = 0 can be tested given the asymptotic distribution of the maximum

likelihood parameters.

The AR model written in the form of the penalized spline model is too

overloaded with respect to the number of knots so that fewer knots and/or

different spline bases were used by Ernst and Teuber (2006), which is shown

in the following section.



Page 63 Chapter 4

4.1.3 Empirical Results

The type of cyclicality of the public debt is the main point of interest in

the research of Aghion and Marinescu (2006) and Ernst and Teuber (2006),

meaning that the estimation of the coefficient β1·· is in focus. Ernst and

Teuber (2006) use a penalized spline model shown in equation (4.8) with a

B-spline basis of second order, penalty matrices of first order, and equally

spaced knots over time interval with Kj = min(nj/5, 40) knots.

Figure 4.1 shows the time-dependent estimates for the OECD countries with

its confidence bands. It is worth noting that for most countries the coefficients

are (nearly) constant over time. A close look at the confidence bands reveals,

that from a statistical point of view even some of the non-linear curvatures

are not likely to withstand a statistical test. Furthermore, the estimated β̂1··

coefficients vary around the value -1, such that on average tax smoothing

is targeted. Even though the conclusion is true on average, the confidence

bands of some countries do not include the value -1. The analysis reveals that

some countries have a pro-cyclical public debt policy while most countries

implement counter-cyclical policies. Looking at the confidence bands more

closely, one can see that there is not a single country which has its confidence

bands completely above zero at all points in time. Furthermore, the analy-

sis shows that the coefficients vary over time and between countries. Some

countries implemented a pro- and counter-cyclical fiscal debt policy over the

period which can be verified looking at their confidence bands. It seems re-

markable that no major trend is visible, as there is no single time-variant

function which differs only slightly over the period. Even in the later years,

there is no common trend recognizable for the EMU countries.

In figure 4.2, the time structure of the cyclical public debt coefficient is

shown for Canada (black curve), France (red curve), and Germany (green
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Figure 4.1: Estimation of the time-varying policy debt cyclicality coefficient a1jt

for the OECD countries over time.

curve) which is from a curvature point of view nearly identical and dif-

fers only on the level (intercept). All three countries are characterized by

a counter-cyclical public debt policy which was the strongest in the ’70s. At

the beginning of the ’80s, the counter-cyclicality was becoming weaker and

has been slightly increasing since.

Figure 4.3 reveals that the curvature of the cyclicality of the UK (black

curve), Japan (red curve), and the US (green curve) is nearly identical. Look-

ing at the confidence bands this hypothesis is hard to reject. The cyclicality
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Figure 4.2: Estimation of the time-varying policy debt cyclicality coefficient a1jt

for selected OECD countries over time, namely Canada (black line), France (red

line), and Germany (green line).

in the UK and Japan became more counter-cyclical from the ’80s to the be-

ginning of the ’90s and has been nearly constant since. In the US, the cycli-

cality was nearly constant in the ’70s nearly constant, then started to get

more counter-cyclical until the beginning of the new century and has nearly

been on a high counter-cyclical level since then. It is remarkable that all

three countries seem to follow the same trend, which starts at different time

points. Furthermore, the public debt policy in the UK was pro-cyclical in

the ’70s and has been counter-cyclical since the ’90s. Japan and the US were

both on a weaker counter-cyclical level in the ’70s (β1·· > −1) than nowadays
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Figure 4.3: Estimation of the time-varying policy debt cyclicality coefficient a1jt

for selected OECD countries over time, namely the United Kingdom (black line),

Japan (red line), and the United States (green line).

and have been becoming more counter-cyclical since the ’90s (β1·· < −1).

4.1.4 Extension of the basic model

The model in equations (4.1) and (4.2) does not differentiate which kind of

government expenditure is the reason for the change in the public debt. A

model in which the expenditures will be differentiated in more detail is pre-

ferred, so the expenditure gj,t will be split into three variables, namely the

non-wage expenditures g1,j,t, the wage expenditures g2,j,t and the investment
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Figure 4.4: Estimation of the time-varying policy debt cyclicality coefficient a1jt

for selected OECD countries over time, namely Germany (black line), Italy (red

line), and the Netherlands (green line). Solid line with small dots: Penalized spline

regression; broken line with big dots: Kalman filter.

of the government g3,j,t at each time t and for each country j. Therefore, the

variables x5jt =
(
log(g1,j,t)− log(g1,j,t)

) g1,j,t
yj,t

, x6jt =
(
log(g2,j,t)− log(g2,j,t)

) g2,j,t
yj,t

and x7jt =
(
log(g3,j,t)− log(g3,j,t)

) g3,j,t
yj,t

will be defined to replace x2,j,t in the

equation (4.2), i.e.

yjt = β1jtx1jt + β5jtx5jt + +β6jtx6jt + β7jtx7jt + β3jtx3jt + β4jt + εjt (4.9)

which is the extended model analyzed by Ernst and Teuber (2006).
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Figure 4.5: Estimation of the time-varying policy debt cyclicality coefficient

a1jt for selected OECD countries over time, namely Finland (black line), Austria

(red line), Iceland (green line) and Japan (blue line). Solid line with small dots:

Penalized spline Regression; broken line with big dots: Kalman filter.

The estimation of the extended model in equation (4.9) reveals no major

trend over time or between the countries for the cyclicality of the public debt

policy, either. However, some countries form a cluster with the same curva-

ture of the function β1·· over time, as already seen in the previous section.

Figure 4.4 shows the estimated coefficients of Germany (black curve), Italy

(red curve), and the Netherlands (green curve) which follow nearly the same

structure over time. The counter-cyclicality of the three countries was around
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the tax smoothing level of -1 and got closer to zero from the end of ’70s to-

wards the end of ’80s and has had a more counter-cyclical pattern since the

mid-1990s. Italy is the only country which implemented a pro-cyclical pub-

lic debt policy and not followed the trend to a (more) counter-cyclical fiscal

policy from the ’90s onwards. However, apart from the different levels, the

curvature is roughly the same, which is confirmed by looking more closely at

the confidence bands.

In figure 4.5, another cluster of countries is shown, namely Finland (black

curve), Austria (red curve), Iceland (green curve), and Japan (blue curve).

All the countries share nearly the same trend over time, which is negative

sloping. Austria and Iceland had been pro-cyclical at the beginning of the

’80s and downward sloped to a counter-cyclical policy with an estimated co-

efficient slightly above the current -1 level. In contrast, Finland and Japan

had been in the ’70s at a level close to -1 and been stronger counter-cyclical

since then, and are now at a level significantly below -1. The same is true for

this group as for the group, shown in figure 4.4, that apart from the level, the

curvature could be the same over time, indicated by overlapping confidence

regions at any point in time (if adjusted correctly for the level).

4.2 Structuralist Model of the Wage-Price Spiral with

Non-Linear Demand Pressure Terms

Flaschel, Tavani, Taylor, and Teuber (2008) introduced the results of a non-

parametric estimation of the wage Phillips curve into a simplified version

of the model by Flaschel and Krolzig (2006). The resulting non-linearity in

the wage inflation employment relation translates into a non-linearity in the

reduced form of the model, namely the wage-price spiral.
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4.2.1 Cross-over Wage-Price Dynamics

Lets start with a simplified version of the wage-spiral model from Flaschel

and Krolzig (2006) with the structural form

ẇ

w
= βw

(
U
l − U l

)
+ κw

(
ṗ

p
+ ηx

)
+ (1− κw)(π + ηx) (4.10)

ṗ

p
= βp

(
U
c − U c

)
+ κp

(
ẇ

w
− ηx

)
+ (1− κp)π (4.11)

with U l as labor unemployment rate, U c as capital unemployment rate, U
l

and U
c

as NAIRU values of labor and capital unemployment rate, respec-

tively, ηx as Harrod-neutral technical change rate and π as inflationary cli-

mate, ẇ
w

as wage inflation, and ṗ
p

as price inflation. For the sake of simplifi-

cation, the growth rate of technology is set to zero, i.e. ηx ≡ 0, which would

not affect the structure of the model because it will only affect the level of

intercept in this model; see Flaschel, Tavani, Taylor, and Teuber (2008).

The model in the equations (4.10) and (4.11) can be written as

ẇ

w
= βw ((1− e)− (1− e)) + (1− κw)π + κw

ṗ

p

= βw(e− e) + (1− κw)π + κw
ṗ

p
(4.12)

ṗ

p
= βp ((1− u)− (1− u)) + (1− κp)π + κp

ẇ

w

= βp(u− u) + (1− κp)π + κp
ẇ

w
(4.13)

with the labor and capital employment rate e := 1 − U l and u := 1 − U c,

respectively, and the NAIRU of labor and capital employment as e := 1−U l

and u := 1− U c
, respectively.

In matrix-vector form, the model in the equations (4.12) and (4.13) can be
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written as (
1 −κw
−κp 1

)ẇw − πṗ

p
− π

 =

(
βw(e− e)
βp(u− u)

)
. (4.14)

Defining κ = (1 − κpκw)−1, the solution of the model in equation (4.14) is

given by ẇw − πṗ

p
− π

 = κ

(
1 κw

κp 1

)(
βw(e− e)
βp(u− u)

)
. (4.15)

Remembering the absence of productivity growth, the growth of wage share

ψ = w/p/x is given by

ψ̇

ψ
=

ẇ

w
− ṗ

p
= κ ((1− κp)βw(e− e)− (1− κw)βp(u− u)) (4.16)

which shows the wage share response to both utilization rates, namely of

labor and capital.

4.2.2 A Generalized Additive Model to Estimate the Phillips Curve

In the model presented by Flaschel, Tavani, Taylor, and Teuber (2008), the

wage Phillips curve is described by the price inflation, the (log) wage share,

the employment rate, and the price inflation climate. Therefore, the wage

Phillips curve as a Generalized Additive Model is given by

E

(
ẇ

w

)
= f1

(
ṗ

p

)
+ f2 (ψ) + f3 (e) + f4 (π) (4.17)

with the unknown and unspecified functions f1, . . . , f4. It is easily justifiable

that the wage inflation can be treated as Gaussian distributed, so that the

response variable can be modelled as

yt = f1(x1t) + f2(x2t) + f3(x3t) + f4(x4t) + εt (4.18)
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with y = ẇ
w

, x1 = ṗ
p
, x2 = logψ, x3 = e, x4 = π and the normal residuals

ε. The model in equation (4.18) had been estimated using a penalized spline

approach, i.e.

l(θ) = −(y −Cθ)T (y −Cθ)/σ2 − λ1θ
TD1θ − . . .− λmθTDmθ (4.19)

with the combined design matrix Z =
(
X Z

)
which contains the fixed

effect design matrix X =
(

1 x1t . . . xq11t . . . xmt . . . xqmmt

)
t=1,...,n

and

the random effect matrix Z =
(
Z1 . . . Zm

)
which are constructed us-

ing a linear spline basis of qj-th order for the j-th covariate, i.e. Zj =(
(xjt − κ1,j)

qj
+ . . . (xjt − κKj ,j)

qj
+

)
t=1,...,n

with the knots κ1,j < . . . < κKj ,j

over the support of xj.

In this example, different orders of the truncated polynomial have been used.

On the one hand, the degrees of freedom for some functions should not be

too high, so that for those functions an order of the first degree is used. On

the other hand, for some coefficients more degrees of freedom are justifiable

and a higher order will be used to estimate a smooth first derivative. To

keep the model simple, the same number of knots for all covariates has been

used, i.e. K1 = . . . = Km ≡ K. The main diagonal of the penalty matrix Dl

contains a 1 if the index belongs to the truncated spline basis Zl, and oth-

erwise the elements are zero, i.e. Dl = (dij)i,j=1,...,mK+q+1 with q =
∑m

i=1 qi

and dij = 1{i=j}1{i∈{q+2+(l−1)K,...,q+1+lK}}.

The smoothing parameters which control the complexity of the structure

of the unknown functions f· will be selected via REML to avoid misleading

parameters in the case of misspecified autocorrelated errors; see Krivobokova

and Kauermann (2007). In the case of no penalization of the j-th covariate,

i.e. λj = 0, the function fj contains qj+K degrees of freedom. If the function

is fully penalized, i.e. λj →∞, the function fj is a function of order qj.
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In a first step, Flaschel, Tavani, Taylor, and Teuber (2008) have set the

orders of the spline bases to one, i.e. q1 = . . . = q4 ≡ 1 to avoid misleading

estimators due to too many degrees of freedom even if λj = ∞. The esti-

mation shows that the price inflation and the wage share are linearly linked

to the wage inflation. The employment rate and the price climate are linked

in a non-linear way, in particular the function f3 has more than three de-

grees of freedom, such that in the next step a higher polynomial order will

be used, here q3 = 2, to estimate smooth first derivatives of the function f3.

The corresponding estimation is nearly similar to the first one, such that in

the latter model, the first derivative can be estimated be referring back to

equation (4.18).

Given the model in equation (4.18), the first derivative with respect to the

j-th covariate is given by

∂y

∂xj
=
∂fj(xj)

∂xj
(4.20)

and the first derivative of the estimated function is given by

∂ŷ

∂xj
=
∂f̂j(xj)

∂xj
(4.21)

with f̂j(xj) = ĉ+ xjβ̂j1 + . . .+ x
qj
j β̂jqj + Zjθ̂j given the predicted coefficient

θ̂j =
(
θ̂q+2+(j−1)K , . . . , θ̂q+1+jK

)T
and the estimated coefficients β̂. Given

the construction of the design matrices, the equation (4.21) can be written

as

∂ŷ

∂xj
= Xj,pβ̂ + Zj,pθ̂j (4.22)

with the first derivative of the design matrix for the fixed and random effect

design matrices with respect to the j-th covariate which is given by

Xj,p :=
dX

d xj
=
(

0 . . . 0 1 2xjt . . . qjx
qj−1
j,t 0 . . . 0

)
t=1,...,n

(4.23)



Section 4.2 Page 74

and

Zj,p :=
dZj

d xj
=
(
qj(xj,t − κ1,j)

qj−1
+ . . . qj(xj,t − κK,j)

qj−1
+

)
t=1,...,n

(4.24)

respectively. Remember that
dZj
d xi

= 0n×K if i 6= j.

Also remembering, that the advantage of being able to write the (first) deriva-

tive of the estimated function in the format in equation (4.22) is that confi-

dence bands can easily be estimated, referring to the asymptotic distribution

of maximum likelihood estimations.

4.2.3 Non-linearities in the Wage Demand-Pressure Term

The estimation in the previous section gives rise to the non-linear relationship

between wage inflation and demand pressure on the labor market shown in

figure 4.6: The curve is increasing up to an employment rate of roughly 92%,

then has an almost flat or at most slightly decreasing region, and increases

for employment levels above 94%.

The estimated first derivative of the estimated function shows a non-linear

relation. The first increasing portion is virtually linear; at an employment

rate of about 91%, the curve becomes concave until an inflexion point around

93.5% employment rate, after which the curve increases and becomes convex

again. Eventually, there is another inflexion point around an employment

rate of roughly 95.5%, and the final portion of the curve is increasing but

concave.

Although the US labor market is not internationally known for the strength

of its labor unions, a standard economic institution behind the behavior of

the curve could lay on a bargaining power argument relative to labor supply.

For high levels of unemployment, the workers’ bargaining power is small:
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Figure 4.6: Estimated wage inflation for different levels of the employment rate:

Upper plot shows the estimated wage inflation (black line) and the confidence re-

gions (grey-shaded area) given the employment rate. The lower plot shows the

estimated first derivative of the wage inflation (black line) with respect to the em-

ployment rate; the shaded region represents the corresponding confidence regions.

They (or the labor union representing them) will be satisfied with only small

increases or even decreases in the nominal wage in order to increase the em-

ployment rate. Corresponding to the center of the curve, there is a flat region

where labor is resisting wage inflation and decreases at the given expected

price inflation, a situation widely familiar through Keynes’ discussion of it.

Finally, as soon as the economic activity is above a NAIRU-type full employ-
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ment rate, workers will exercise their increased bargaining power in requiring

significantly more than proportional increases in wage inflation (as compared

to price inflation).

Similarly, for the price Phillips curve, Flaschel, Tavani, Taylor, and Teuber

(2008) are described the price inflation (y) by the covariates wage inflation

(x1), the log of the wage share (x2), the utilization rate (x3) and the price

inflation climate (x4). But, in contrast to the wage Phillips curve the func-

tional shape of the price Phillips curve with respect to the utilization rate is

not distinctively different from a linear curve (as was the functional shape of

the wage Phillips curve with respect to the employment rate), which is the

reason why the visualization of the price Phillips curve estimation has been

omitted.

4.3 The Dutch Tax Benefit System and Life Cycle Em-

ployment

Kotlikoff and Rapson (2006) asks in their work if it pays at the margin to

work and save because highly advanced computer technology and software

to unfold the incredibly complex US fiscal system. Their research is not only

important from an individual perspective to calculate an optimal path given

the current state, but also from a political point of view because the ”amazing

complexity of the fiscal system” and the various components of the systems

are being developed with little or no thought to their interaction.

The effective marginal tax rate is enormously high for low income individu-

als because at a given threshold not only wage taxes have to paid, but more

importantly welfare transfers will be cut. At first glance, a flat tax might be

favored just by high-income earners. Conesa and Krueger (1999) analyzed the
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voting distribution for new tax regimes vs. an already implemented regime

for different scenarios. It should be noted that the favoring of a tax regime

does not only depend on the age (or time to retirement), but also within

cohorts different tax regimes might be favored due to accumulated capital

stock, productivity level, and income. In economies with social welfare and

progressive tax regimes, the voting distribution within cohorts is not neces-

sarily linear in the meaning of just one income (or wealth) threshold to split

the cohort into two groups favoring one or the other tax regime.

Bloemen (2007) investigated the wealth effect on the early retirement rates by

elderly workers which can be observed empirically and was confirmed in his

model. However, French (2003) observed that social security benefits, health,

and borrowing constraints are less important determinants of job exit at older

ages. Furthermore, Määttänen and Poutvaara (2007) analyzed the effect of

earnings test for old-age benefits because in some countries the earnings test

and/or wealth-test is implemented with respect to federal retirement, social,

and unemployment benefits.

For the analysis of the effects of new tax regimes, it is unavoidable to use an as

realistic as possible tax regime for the economy. This means that not only tax

breaks but also earning/income and wealth-tests for social, unemployment,

and retirement welfare should replicate the current laws. Furthermore, the

level of welfare transfers are crucial to the analysis. However, most research

stops at this level when it comes to calibrating their model. It is clear that

the more time points (cohorts) are used in the model, the better the results

should be. From a computational point of view yearly time steps can be

handled and from a reliability point of view the grid is fine enough. Survival

probabilities, productivity over the working age, as well as probabilities of

losing the job can be approximated quite well on a yearly basis. However,
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the calibration of most models normally lacks a good estimation technique

of survival probabilities, the age productivity, transition probabilities of pro-

ductivity, as well as the probabilities of suffering unemployment or finding a

new job based on the productivity and age.

Given the conclusion by French (2003), the complex analysis of the imple-

mented tax regimes is sensitive to small changes, such that realistic mod-

elling/calibration is crucial. Ernst and Teuber (2008) and Ernst and Teuber

(2012) calibrated an overlapping generation model with search unemployment

for the Netherlands to assess the impact of tax-benefit reforms on labor sup-

ply. For the calibration the DNB Household Survey with data over 14 years

was used to estimate the age-productivity profiles and transition probabili-

ties for income levels the better calibration allowing more light to be shone

on the tax reform discussion.

4.3.1 The Overlapping Generation Model

The overlapping generation model by Ernst and Teuber (2008) and Ernst

and Teuber (2012) is based on the model by Auerbach and Kotlikoff (1987)

and Kotlikoff and Rapson (2006) in which each household optimizes their

consumption, working hour, and labor market participation decisions. The

economic life of an individual starts at age 18 and ends with certain death

at age 100 if the individual does not pass away before this age. The max-

imum number of periods an individual lives is therefore 83 periods and the

probability of surviving the current period is given by the survival probabil-

ity 0 ≤ s(t) ≤ 1, which was estimated through the use of the Dutch death

statistics. The life span of each individual is divided into working life (age

18-65) and retirement (age 66-100) with a certain time of retirement.

Each cohort consists of three groups, namely the inactive group, which only
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has access to social assistance, the unemployed group, which receives earning-

related unemployment benefits, and employed individuals, who receive a wage

depending on their individual profitability. The profitability depends on their

individual profitability and an age dependent cohort productivity. At the

age of 65, each cohort will become inactive and will receive a basic pension.

Furthermore, each household can consume or save for future periods via

accumulated wealth. If a household with positive accumulated wealth dies

before certain death at age 100, the wealth will be distributed across cohorts.

Each household maximizes its intertemporal utility by making an optimal

arbitrage between work and leisure over its life cycle. The optimal labor sup-

ply comprises the decision to participate on the labor market, the number of

hours worked, and participation itself, which is costly.

Households have to pay wealth and consumption taxes as well as income

taxes and receive transfers in the form of a basic pension, social assistance,

and unemployment benefits.

During the working life the households decide in the first step if participation

is wanted or if the wealth stock and/or transfers will be used for consump-

tion, which determines the next period’s wealth stock. Participating workers

optimize the labor input conditional on being employed, the consumption,

and the next period’s wealth stock.

Households which are retired need to optimize their consumption to deter-

mine the next period’s wealth stock. Note that each households needs to

optimize expected utility due to the uncertainty of surviving the current pe-

riod, except for the retired household at age 100 in which the wealth stock

will be fully consumed due to the certain death at the end of the period.
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Wealth accumulated by the household sector is used by firms for produc-

tion investment. Moreover, firms will decide upon total hours worked by

opening vacancies to fill available jobs, taking the decision on average hours

as given. Jobs are filled through a search and matching process on the labor

market, leaving some markets unrealized and thereby generating unemploy-

ment even in steady state. In order to maximize the net present value of

their profits, firms select their flows of investments and vacancies.

Wages are negotiated at the firm level. As a first approximation to a Nash-

bargaining distribution of profits, wages are determined as a weighted average

between the marginal contribution of an additional worker to the firms’ prof-

its and the worker’s fall-back option, i.e. social assistance.

The schedule for marginal effective tax rates on labor income is taken from

OECD (2006), such that statutory tax rates for different income brackets and

various social benefits have been included. General tax credits and work-

related tax credits have been used which have been calibrated for a single

household and a married couple with two children to identify the burden

of different tax-benefit reforms on these groups. The VAT of 19% and the

wealth tax of 1.2% represent the current tax situation in the Netherlands.

In the Beveridge-type social security system of the Netherlands, benefits are

exclusively financed out of tax revenues.

Social assistance is available for non-participating households subject to a

capital income test, whereby all capital income above 15% of the average

wage is deducted from social assistance. In order to integrate the idea that

younger people face a higher risk of inactivity without any replacement in-

come, a relative wage profile has used to adjust the replacement income
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accordingly.

Unemployment insurance is granted for periods during which the individ-

ual is participating but without a job. The replacement income covers 70%

of the last salary but is limited to 30% of the average salary.

The Beveridge-style state pension amounts to 30% of the average wage, which

constitutes a social safety net and represents 34% of pensioners’ average earn-

ings; see OECD (2006).

Reforms of tax benefits and/or the pension system impose a balanced-budget

rule. The government pays out state pensions and social benefit exclusively

by levying taxes. In addition, the government finances (unproductive) gov-

ernment spending at an arbitrary rate of GDP. The model abstracts from

budget deficits and public debt. Should a budget surplus occur, these addi-

tional budgetary resources made available by lowering replacement rates or

raising the marginal income tax rates or raising the marginal tax of pension-

ers and are redistributed to households via lower consumption taxes.

4.3.2 Calibrating the Model and Determining the Equilibrium

Distribution of Work and Consumption

In order to obtain a reliable estimation of the life cycle tax burden and a

household’s labor supply decisions, the model has been calibrated using the

DNB Household Survey. In particular, in order to properly reflect distri-

butional consequences of different tax-benefit systems, a Markov transition

matrix with ten different income deciles and an unemployment state has

been estimated with the use of the DNB Household Survey. This transition

matrix indicates the probabilities with which individuals in different income

strata persist at their current (relative) income level or move up or down
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from one period to the other. As the transition probability changes over

time, the matrix has been estimated time-dependently over the entire work-

ing life span. Moreover, age productivity profiles have been estimated for an

average worker and used to modulate the wage over each cohort’s working

age. Finally, the survival probabilities for each age group have been taken

directly from Statistic Netherlands - and for the last year (at age 100) has

been set to zero.

The estimation (calibration) of the individual and age productivity will be

discussed in more detail in the next subsection. The remaining parameters

have been calibrated by Ernst and Teuber (2008) and Ernst and Teuber

(2012) to measure the Dutch economy.

Given the parameters as well as the tax and benefit regimes, a finite value

approach has been chosen to calculate the equilibrium distribution of con-

sumption and working hours due to the fact that life ends with certainty at

age 100. For each age, the optimal path of consumption and worked hours

for each value out of a large, but finite number of capital stocks has been

calculated recursively. The equilibrium value is then determined by selecting

the path with the highest net present value of the individual’s utility.

4.3.3 Estimation of the Productivity over the Life Cycle

The productivity of a worker depends on several covariates which might be

fixed or random. The age and therefore the work history as well as the skills

and education are the most important factors to determine the productivity

of a worker. Both, Ernst and Teuber (2008) and Ernst and Teuber (2012),

used the log of wage per hour to get a proxy of the productivity of a worker

which implies that the (hourly) wage measures the productivity of a worker

or at least its expected productivity. Although this proxy is obviously not a
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perfect linkage of an individual level, on the aggregate level the simplification

might hold to a certain extent.

For the age-dependent function over time, different approaches have been

used by economists so far: Määttänen and Poutvaara (2007) have blindly

copied the estimation of Floden and Lindé (2001), who proposed a polyno-

mial of second order to estimate the age-dependent productivity function.

Börsch-Supan, Ludwig, and Winter (2006) copied one-by-one the estimation

function of Fitzenberger, Hujer, MaCurdy, and Schnabel (2001), who pre-

ferred a polynomial of third order; French (2003) used a polynomial of fourth

order. From an economic point of view, the more complex functions might

be preferable due to the fact that the other models are nested in them. The

(estimated) second order model has some shortcomings in the design due to

the fact that the productivity of a worker does not peak at the age of 50

and is symmetrical around that age. From a statistical point of view, the

estimation of polynomial functions of higher orders are not reliable due to

the high estimation errors of the coefficients, which leads to wide confidence

bands of the estimated productivity function. It is worrisome that none of

the authors have shown that their models and/or the additional parameters

are significant in a statistical sense.

Ernst and Teuber (2008) and Ernst and Teuber (2012) used a (Generalized)

Additive Mixed Model approach to estimate the productivity, i.e.

yit = f(t) + xitβ + ui + εit (4.25)

with yit as the productivity of the individual i at time t measured by the log

wage per hour, xit as covariates for the individual i at time t, β as unknown

parameters, ui as idiosyncratic productivity level of the individual i, and

εit as residuals for each individual i = 1, . . . ,m at each point in time (age)
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t = ti, . . . , ti.

The idiosyncratic level of productivity ui is a random covariate which de-

termines individual productivity which accounts for example for the skill

of a worker, the wage premium/discount due to the company, and a wage

difference due to location and/or industry of the job. The fixed covariates

account for observable indicators which (might) influence the productivity

and/or wage of a worker, which are in this case the education, which can

vary over time, and the year to account for (wage) inflation by introducing

dummy variables.

The age-dependent productivity function f should measure the wage/productivity

structure of a worker over time without accounting for a different education,

to circumvent the fade-in effect of better educated workers at the beginning

of the (working) life and to avoid a misspecification of the function due to

effects of early retirement of workers towards the end of the (working) life.

The calendar year could also be modelled as a random effect, but has been

modelled solely as a fixed effect for the sake of simplification.

Ernst and Teuber (2008) and Ernst and Teuber (2012) assumed that the

unknown function f can be described by a truncated spline basis of first

order, i.e.

f(t) = a0 + a1t+
∑
k

= 1K(t− τk)+αk (4.26)

with K equidistant knots 18 ≤ τ1 < . . . < τK ≤ 65 over the support of the

age and used an REML approach to predict the random effect coefficients

αk ∼ N (0, σ2
α). The degrees of freedom will be determined by the variance

σ2
α which is two if σ2

α = 0, and K + 2 if σ2
α →∞.
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The estimated function f shown in figure 4.7 is from a statistical point of

view significantly different to the estimated functions of the functions men-

tioned above. It is worth noting, that the strong increase of productivity

at a young age is not due to a better (scholarly) education nor due to the

fact that better educated workers start working later and thus receive higher

salaries. The productivity measured by the salary is increasing the strongest

at the beginning of the working life, which might be due to the effect that

the workers might learn the most (or become more productive) when they

start their jobs, which represents a steep learning curve.

The estimation shows that learning on the job (or at least aging) will be

rewarded by higher salaries and/or fewer working hours for the same salary.

The drop towards the end of the (working) life is remarkable, although it is

questionable if the productivity is decreasing or if just the wage per hour is

decreasing.

The idiosyncratic shock of a randomly chosen individual is given by the

sum of the individual random level of productivity u and the residual ε, i.e.

sit = ui+εit. Ernst and Teuber (2008) and Ernst and Teuber (2012) defined a

discretized version of the idiosyncratic shock in their overlapping generation

model. In the general form the variable s will be discretized to a variable ds

with c different classes with equal mass such that

dsit = j if
(j − 1)N

c
≤

ti∑
t′=ti

1{si′,t′≤si,t} <
jN

c
(4.27)

with N as the total number of observations and the classes j = 1, . . . , c. The

0-th class will be introduced to account for unemployment, i.e. dsit = 0 if

the individual i is unemployed at time t.
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Figure 4.7: Estimation of the age-productivity function: The estimated pro-

ductivity (black line) over the working life with confidence regions (grey-shaded

area).

It is worth noting that the empirical analysis has shown that the idiosyn-

cratic shock of an individual will most likely be the same one as the one just

one period earlier. With the exception of unemployment (class zero), the

change of the idiosyncratic shock from one period to another is in most cases

moderate. This phenomenon increases in strength, the older the individual

is. The unemployment state is a special case: A worker with a high idiosyn-

cratic shock (for instance dsit = c) is more likely to become unemployed than

to be in the worst decile (i.e. dsit+1 = 1).
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The persistence in the same shock category is increasing with the age of

the worker and the probabilities for extreme changes is higher for younger

workers. An age-dependent transitory matrix was therefore preferred.

Due to the definition of the idiosyncratic shock ds, a Generalized Linear

Model will be used to model the age-dependent relationship so that the prob-

ability of the worker i being in the l-th class in the next period if the worker

was at time t in class k is given by

P (dsit+1 = l|dsit = k, t) =
exp(βkl0 + βkl1t)
c∑

q=0

exp(βql0 + βql1t)

(4.28)

with the unknown coefficients β··0 and β··1. For the reason of normalization,

the coefficients β0l0 and β0l1 will be set to zero without the loss of generality,

i.e. β0l0 ≡ 0 ≡ β0l1 for all l = 0, . . . , c. The model has been estimated via

Fisher scoring, presented in chapter 3.1.

4.3.4 Conclusion

The analysis concludes that for people with life-time careers, the well func-

tioning second pillar pension funds provide adequate old age retirement in-

come. A reduction in the state pension is likely to increase participation

through postponed (early) retirement, without aggravating poverty among

pensioners. More generally, a budget-neutral reduction of both the pension

entitlement and income tax rates would substantially reduce the net present

value of the tax burden over the working life, in particular for lower-income

earners.

Interestingly, the introduction of a flat tax would help to decrease the tax bur-

den over the life cycle substantially both for low and for high income groups,
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while it would increase it only moderately for medium income households.

Such a shift in the life cycle tax burden would raise total hours worked by

6-8%. Furthermore, the introduction of the flat tax would change the shape

of the life cycle tax burden with respect to the income, such that the function

would be monotonically increasing instead of being u-shaped. This would be

from an idealistic point of view a much ”fairer” tax scheme. The introduction

of a 34% to 37% flat tax rate, would both increase the participation rate and

increase the hours worked, and a VAT increase of 2.9 percentage points to

0.5 percentage points would balance the federal budget.

4.3.5 Outlook

In the model by Ernst and Teuber (2008) and Ernst and Teuber (2012),

the productivity age profile was exogenously given, although estimated with

a state-of-the-art regression technique estimated. However, an individual

might be incentivized by the tax regime to increase his own productivity

either by education, on-the-job training, basic and advanced training, or re-

training. Obviously, education is competing with labor and free-time which

lowers not only the wage but also the utility due to less free time. Basic

training might be the first choice for young individuals to increase the educa-

tional level and therefore the human capital. Otherwise, the individual will

be furthermore rewarded by wage. However, one should remark that students

might ”finance” their life not only by intertemporal borrowing but, also with

wages earned by low-skilled jobs. Advanced training, however, might be an

additional accelerator of human capital to outpace the peers and climb up

the productivity ladder. The decision to be lazy at the job, on the other

hand, leads to a relative decrease of productivity although not necessarily on

the absolute level. Unemployed people might not only choose to participate

in the working life again via a job search, but to invest in their human capital

either via second-chance education or re-training. However, the tax regime,
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the accumulated capital stock, and accumulated human capital/productivity

is critical to the optimal path of consumption, education, and work time.

Ludwig and Vogel (2010) showed in their two-period overlapping genera-

tion model that education effort increases with aging, such that the question

arises if this is equivalent to a postponed (early) retirement in the case of an

introduction of a flat tax regime. Peterman (2011) analyzes two models in

which education is endogenously chosen: In the first model, the individuals

are learning-by-doing while in the second model they are learning-or-doing.

In the learning-by-doing model, the shift from the current US tax scheme to

a flat capital and wage tax leads to on average higher capital taxes (21.5%

vs. 17.6%) and on average lower labor taxes (23.3% vs. 24.4%), such that

the GDP increases by 0.6%, the capital stock by 2.5%, and average hours by

0.2%. In the case of learning-or-doing, the shift to a flat tax would lead to on

average lower capital taxes (14.3% vs. 15.0%) and on average higher labor

taxes (24.3% vs. 23.5%), but the GDP increases by 2.7% while the capital

stock increases by 5.4% and average worked hours by 0.6%.

The question about the optimal tax regimes in the presence of endogenously

education, however, increases the complexity, as one can see in the models by

Ludwig and Vogel (2010) and Peterman (2011). A change of the tax regime

does not only have an effect on the output, accumulated capital stock, and la-

bor market, but also on the human capital due to the effects on educational

efforts. This means that an imprudent tax regime shift might negatively

impact the economy even though the new law was implemented for the best.
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5 Long-Term Centers, Bivariate Cycles, and

Generalized Loops

In this chapter an approach to model multivariate time series will be dis-

cussed. For this purpose it will be assumed that the trajectory of the time

series follows a circular or elliptical path over time. For detrended time series

the trajectory path should be centered around the point of origin, i.e. (0, 0),

for a two-dimensional time series analysis. In the more general form, it will

be assumed that the circular function g fluctuates around the center γ. In-

stead of modelling the observed time series E (ỹ) = γ + g, the detrended

time series E (y) = E (ỹ − γ) = g will be preferred.

In chapter 5.1, the two-dimensional model will be discussed in more depth

similar to the work of Kauermann, Teuber, and Flaschel (2012). The model

will be extended in chapter 5.2 to be able to describe elliptical trajectories.

This model can be used to extend the basic model in a multivariate approach

so that more than two time series can be modelled simultaneously. In chap-

ter 5.3, the extension of the two-dimensional loop model will be extended to

a three-dimensional approach. Similar to chapter 5.2, the three-dimensional

model can be generalized to model more than three time series simultane-

ously.

5.1 Basic Bivariate Loops Model

In this chapter two time series will be modelled simultaneously, for which it

will be assumed that the two-dimensional trajectory follows a circular path

over time. For the sake of simplicity a model with the center γ = 0 will

be discussed first. Rewriting the unknown functions in polar coordinates

leaves the angle and the radius as unknown functions over time, such that
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a penalized spline approach will be used to allow the circles to vary over

time in terms of duration and magnitude. Due to the fact that a (penalized)

likelihood function will be maximized, the estimation and properties of es-

timates can be calculated with reference to the maximum likelihood theory.

Linking the penalized spline model with the Generalized Linear Mixed Model

approaches allows us to determine the smoothing parameters via REML es-

timation, shown in chapter 3. The confidence regions and the handling of

correlated errors will be discussed. Furthermore, a center will be introduced

that allows the long-term trend of the time series to be estimated simultane-

ously. The approach for the long-term trend can be treated as a generalized

form of the Hodrick-Prescott filter, but this approach is even more flexi-

ble. Two simulations will show the capability of the bivariate cycle approach

which is quite promising for the analysis of business cycles as one can see in

chapter 6.

5.1.1 Modelling Bivariate Cycles using Penalized Splines

Assume the data points (yt1, yt2) will be observed in pairs with t as index

referring to the time point. Furthermore, the data points are assumed to be

noisy observations of a smooth two-dimensional function g(t) = (g1(t), g2(t))
T ,

where g is smooth in the following sense. The trajectory g follows loops or

circles around the origin, and both the velocity as well as the radius have

no rapid changes. In particular this means, that locally and ignoring the

implicit role of t, g1(·) is a smooth function of g2(·) and vice versa. More

precisely we formulate g(t) in the polar coordinate functions

radius: ρ(t) =
√
g1(t)2 + g2(t)2 (5.1)

angle: φ(t) = arctan

(
g2(t)

g1(t)

)
+ 1{g1(t)<0}

[
1{g2(t)>0} − 1{g2(t)<0}

]
π (5.2)
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which are smooth functions in t, where 1{.} is the indicator function. Clearly,

smoothness of ρ(t) refers to smooth changes of the radius while smoothness

of φ(t) means circular smoothness with jumps every 2π. Retransformation

allows the writing of g(t) as

g(t) =
(
ρ(t) cosφ(t) ρ(t) sinφ(t)

)T
(5.3)

Assuming that yt = (yt1, yt2)
T are noisy observations of g(t), i.e.

yt = g(t) + εt (5.4)

with εt = (εt1, εt2)
T as residuals. For simplicity, and to make the machin-

ery of estimation running, the residuals εt are assumed to be independent

over time, but it seems necessary to allow for correlation between εt1 and εt2.

With normality assumed, denote εt ∼ N(0,Σε) with Σε as covariance matrix.

The functions ρ(t) and φ(t) are estimated using a penalized spline approach in

the style of Eilers and Marx (1996) and Ruppert, Wand, and Carroll (2003),

which is shown in chapter 3.2 and 3.3, respectively. Setting therefore

ρ(t) = exp (ρ̃(t)) = exp {Bρ(t)bρ} (5.5)

where Bρ(t) is a spline basis built over the support of t. The exp{·} link in

(5.5) is used for technical reasons to ensure a positive radius and ρ̃(t) is the

linear combination of the splines, i.e. ρ̃(t) = Bρ(t)bρ. The spline basis is cho-

sen in a rich manner with knots for spline functions placed every 4-5 observed

time points. A more theoretical investigation on how many spline functions

should be chosen asymptotically is provided for example in Ruppert (2002).

In principle, the choice of the basis functions in Bρ(·) is left to the user and

any spline shape function could be used. For simplicity, both in terms of nu-

merical behavior and notation, a B-spline basis of third order as introduced

in de Boor (1978) and in chapter 3.3 will be preferred. The B-spline basis is
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built from piecewise polynomials connected at knots τ0 < τ1 < . . . < τK . In

this work, equidistant knots covering the support of t have been used.

The change of the angle φ(t) will be modelled analog to the radius which

is accommodated by setting

φ(t) = mod
(
φ̃(t)

)
= mod

(
Bφ(t)bφ

)
(5.6)

where mod(x) = 2π
(
x
2π
−
⌊
x
2π

⌋)
and bxc returns the smallest integer value

of x. Again φ̃(t) is the linear combination of the splines. Note that mod(·)
is used for graphical reasons only and the discontinuity is not a technical

problem. In fact, we have for instance sin(φ(t)) = sin(φ̃(t)). The spline basis

Bφ(t) in equation (5.6) can in principle be chosen differently from Bρ(t), but

to keep the procedure simple Bφ(t) = Bρ(t) will be preferred.

Assuming normality for the residuals, the log likelihood can be written as

l(b,Σε) = −n
2

log|Σε| −
1

2

n∑
i=1

(yi − g(ti))
T Σ−1

ε (yi − g(ti)) (5.7)

with b = (bTρ ,b
T
φ ) and g(·) as defined in equation (5.3).

Simple parameter maximization of the likelihood in equation (5.7) would

provide unsatisfactory estimates since bases Bρ(t) and Bφ(t) were chosen

to be high dimensional and the corresponding estimates would be jagged.

Therefore, a penalized fit is instead pursued, by imposing a penalty on bρ

and bφ. This is achieved by maximizing the penalized likelihood

lP (b,Σε;λb) = l(b,Σε)−
1

2
λρb

T
ρDρbρ −

1

2
λφb

T
φDφbφ (5.8)

with λb = (λρ, λφ) as penalty parameters and Dρ and Dφ as penalty matrices.
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As has been suggested in Eilers and Marx (1996), a smooth fit is achieved

if spline coefficients of adjacent B-splines are of the same order. This is

achieved by imposing a penalty on first or higher order differences of the el-

ements on bρ and bφ. In the simplest case we penalize bρl − bρl−1, which can

be written in matrix form as Lbρ with L as (p− 1)× p dimensional contrast

matrix where p is the dimension of bρ. Setting now Dρ = LT
ρLρ leads to the

penalty matrix in equation (5.8). The same applies to the construction of Dφ.

Statistical properties of the estimate as well as optimization with respect

to the smoothing parameter λρ and λφ are given in the following sections.

5.1.2 Estimation and Properties of Estimates

Reformulating the model in equation (5.4) by defining B(t) = diag(Bρ(t),Bφ(t))

with diag(·) as block diagonal matrix, this yields the linear predictor as

η(t) = B(t)b. We denote the derivative of g(·) with respect to η by

∇g(t) = ρ(t)

(
cosφ(t) sinφ(t)

− sinφ(t) cosφ(t)

)
. (5.9)

which allows us to write the first derivative of equation (5.8) as

∂lP (b, λb)

∂b
=

n∑
i=1

BT (ti)∇g(ti)Σ
−1
ε (yti − g(ti))−D(λb)b = 0,(5.10)

where D(λb) is a block diagonal of the form diag (λρDρ, λφDφ). Solving

∂lP (·)/∂b = 0 provides the penalized estimate which can be calculated in

the ordinary way using a Newton Raphson procedure (or Fisher scoring).

Accordingly, the penalized Fisher matrix results to

I(b, λb) = −E

(
∂2lP (b, λb)

∂b∂bT

)
=

n∑
i=1

BT (ti)∇g(ti)Σ
−1
ε ∇g(ti)

TB(ti) + D(λb) . (5.11)
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Moreover, conventional likelihood theory can be used to derive asymptotic

properties for b̂, keeping the penalty parameter fixed. Under the technical

assumption that design points ti at which observations are collected become

dense the variance of the estimate is asymptotically given by

Var

(
ˆ̃ρ(t0)
ˆ̃φ(t0)

)
= B(t0)I

(
b̂, λb

)−1

I
(
b̂;λb = 0

)
I
(
b̂, λb

)−1

BT (t0). (5.12)

Based on this result, the variance for radius and angle estimates is then

obtained by the delta rule

Var
(
ρ̂(t), φ̂(t)

)
≈ Ĉ(t)Var

(
ˆ̃ρ(t), ˆ̃φ(t)

)
Ĉ(t)T (5.13)

with C(t) = diag
(

exp
(

ˆ̃ρ(t)
)
, 1
)

, where, as motivated above, the mod(·)
function is ignored. Accordingly, the variance for the cycle estimate g(t)

results as

Var(ĝ(t)) ≈ Ĝ(t)Var(ˆ̃ρ(t), ˆ̃φ(t))Ĝ(t)T (5.14)

with

Ĝ(t) = ρ̂(t)

(
cos φ̂(t) − sin φ̂(t)

sin φ̂(t) cos φ̂(t)

)
(5.15)

where the results follow directly in the line of Ruppert, Wand, and Carroll

(2003).

5.1.3 Numerical and Practical Adjustments

For each point in time, the estimates and confidence intervals for the fitted

functions g1(t) and g2(t) will be obtained. However, the confidence regions for

the fitted two-dimensional curves (g1(t), g2(t)) are of greater interest. These

are achieved using the asymptotic arguments from above and constructing a

confidence ellipse at time point t through

CRg(t) =
{
y ∈ R2|(y − ĝ(t))TVar(ĝ(t))−1(y − ĝ(t)) ≤ χ2

2, 0.95

}
(5.16)
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with χ2
2, 0.95 as 95% Quantile of a χ2 distribution with two degrees of freedom.

One should note that the confidence ellipses are constructed pointwise and a

global confidence level for CR is therefore not easily available. This is, how-

ever, a standard problem in smoothing. Moreover, the confidence ellipse does

not mirror the variability due to the estimation of the smoothing parameter.

For simplicity, these two issues will not be investigated in more depth here,

but see also Mao and Zhao (2003), or Härdle and Marron (1991) for a more

theoretical consideration of these points.

For time-dependent data it is generally difficult to distinguish between trend

and correlation. For P-spline smoothing it has been shown in Krivobokova

and Kauermann (2007) that residual correlation in a normal smoothing model

has only a weak influence on the resulting fitted trend of Maximum Likelihood

or Restricted Maximum Likelihood (REML) smoothing parameter selection.

Kauermann, Teuber, and Flaschel (2012) conjecture that this result also

holds for the non-normal model fitted here, but don’t have formal proof. In-

stead, they exemplify the point with some simulations. In general, of course,

a unique decomposition of trend and correlation is impossible. It should also

be noted that in principle a two-step fitting can be pursued. First, a mean

structure can be fitted which is then used to estimate the temporal correla-

tion from the residuals. This is again used to recalculate both, the fit as well

as the smoothing parameter.

5.1.4 Generalized Linear Mixed Models and Laplace Approxima-

tion

It has shown to be advantageous, both in terms of numerics and theory, to link

spline smoothing with linear mixed models; see for instance chapter 3. For

penalized spline smoothing this connection has been demonstrated in Wand
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(2003), as shown in chapter 3. This idea was extended here by formulating

the penalization as an a priori distribution on the spline coefficients. This is

available with the following reformulation:

yt|b ∼ N (g(t),Σε) Lb ∼ N (0,Λb) (5.17)

with g(t) as defined in equation (5.3) and L = diag (Lρ,Lλ) and Λb = Λb(λb)

as block diagonal having Ikρλ
−1
ρ and Ikφλ

−1
φ on the diagonal where kρ and kφ

are the dimensions of spline bases Bρ and Bφ, respectively.

Now, penalty parameter λ = (λρ, λφ) expresses the a priori precision, that is

1/λ gives the a priori variance for spline coefficients treated as random co-

efficients. Integrating out Lb, the marginal log likelihood is obtained based

on the mixed model in equation (5.17), i.e.

lmm (Σε, λb) = log

∫
1

|Λb|1/2
exp{lp (b,Σε;λb)}dLb (5.18)

The objective is now to maximize the marginal likelihood in (5.18) with re-

spect to λb and Σε and predict the spline coefficients b to achieve a smooth fit.

Note that maximization with respect to λb provides an estimate for the

amount of penalization required. Apparently, due to the non-linear link used

for the mean structure, the likelihood in equation (5.18) does not yield an

analytic solution. Instead, a Laplace approximation can be used in the line

of Breslow and Clayton (1993) or Lindstrom and Bates (1990). In the follow-

ing, it is shown that the penalized fit from above is equivalent to a posterior

mode estimate in the mixed model.

First, the equivalence between penalized spline smoothing with B-splines

and mixed models for the simple smoothing model

E (y| t) = g (B(t)b) (5.19)
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with B(t) as B-spline basis of dimension k and order p, will be derived. Ex-

tensions to the bivariate fitting routine described in section 5.1.1 are straight

forward. Let u := Lb with L as difference matrix of order p such that

L ∈ Rk×(k−p). Completing L by adding linearly independent rows such that

ũ =

(
u0

u

)
=

(
L0

L

)
b = L̃b (5.20)

with L̃ invertible. For fitting the penalty λbTDb will be imposed on b, where

D = LTL. This penalty will be comprehended as a priori normal distribu-

tion for u = Lb ∼ N(0, I(k−p)/λ) with Ik−p. Integrating out u leaves the

remaining (unpenalized) parameter u0. This leads to the marginal likelihood

for u0 and λ given through

lmm (λ,u0) = log

∫
exp (lp(u, λ)) du (5.21)

with lp(u, λ) as penalized log likelihood defined through

log
{
f (y|u)ϕ

(
u, I(k−p)/λ

)}
(5.22)

where f(y|u) is the density of y given the linear predictor B(t)b = B(t)L̃−1ũ

and ϕ(·) is the normal density.

Laplace approximation with respect to u and maximization with respect to

the remaining parameter u0 leads to the maximized marginal log likelihood

lmm(λ, û0) ≈ lp

(
b̂, λ

)
− 1

2
log

∣∣∣∣I(k−p)λ

∣∣∣∣
−1

2
log

∣∣∣∣∣∣(0, I(k−p)) (L̃−1)T
∂2lp

(
b̂, λ

)
∂b∂bT

L̃−1

(
0

I(k−p)

)∣∣∣∣∣∣
≈ lp(b̂, λ)− 1

2
log

∣∣∣∣F(b̂, λ
) I(k−p)

λ

∣∣∣∣ (5.23)
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with

F (b, λ) =
(
0, I(k−p)

)
(L̃−1)T I (b, λ) L̃−1

(
0

I(k−p)

)
. (5.24)

The latter simplification results by replacing the second order derivative by

the Fisher information in equation (5.11). It is also not difficult to show

that b̂ is the solution to the penalized score given in equation (5.10) with

û =
(
ûT0 , û

T
)

= L̃b̂.

Differentiating equation (5.23) with respect to λ yields

0 = −b̂TLTLb̂ +
(k − p)
λ

− tr
(
F−1

(
b̂, λ

))
. (5.25)

To simplify numerics and since F−1 (b, λ) is of order O(n−1) the formula will

be approximated with

tr
(
F−1 (b, λ)

)
≈ tr

((
(L̃−1)T I (b, λ) L̃−1

)−1
)

= tr
(
I−1 (b, λ) LTL

)
(5.26)

which suggests the estimating equation

λ̂ =
b̂TDb̂ + tr

(
I−1
(
b̂, λ

)
D
)

k − p
(5.27)

with D = LTL. It is thereby worth pointing out that equation (5.29) does

not provide an analytic solution since the right-hand-side also depends on λρ

through b̂ρ. Equation (5.29) can however be used in a backfitting style such

that b̂ will be estimated through equation (5.10) by keeping λ fixed. In the

next step, b̂ is considered as fixed and update λ through equation (5.29).

Iteration between these two steps mirrors the backfitting iterations; see also

Krivobokova and Kauermann (2007) for a justification of this algorithm as

Newton procedure.
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Applying equation (5.29), the smoothing parameter λ = (λρ, λφ) can be cho-

sen to maximize the (Laplace approximated) marginal likelihood such that

the smoothing parameter for the radius is implicit given by

1

λ̂ρ
=

tr
{

(I(b, λ)−1)ρρ Dρ

}
+ b̂TρDρb̂ρ

kρ
(5.28)

and the smoothing parameter for the angle by

1

λ̂φ
=

tr
{

(I(b, λ)−1)φφ Dφ

}
+ b̂TφDφb̂φ

kφ
(5.29)

respectively.

Finally, based on the Laplace approximation likelihood an estimate for Σε is

defined through

Σ̂ε =

n∑
i=1

{yi − ĝ(ti)}{yi − ĝ(ti)}T

n
+O(n−1). (5.30)

which is well-known.

5.1.5 Short-Term Fluctuations and Long-Term Trends

In the previous sections, the center for cycles had been set to zero, which

implies that the series yt1 and yt2 are stationary without any long-term trend.

Apparently this is a stringent assumption which will be weakened now to

a more practical situation. To do so, the model in equation (5.4) will be

replaced by

yt = γ(t) + g(t) + εt (5.31)

where γ(t) = (γ1(t), γ2(t))
T is the long-term trend around which g(t) is os-

cillating.
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In equation (5.31), the mean structure had been decomposed into a long-

term trend γ(t) and the shorter phase oscillation g(t). In time series analysis

the decomposition of trends and seasonal effects is well established; see for in-

stance Brockwell and Davis (1987). Unlike in classical time series, the phase

lengths of these cycles are unknown and the objective is to estimate these

from the data.

The canonical candidate for long-term trend estimation is the Hodrick and

Prescott (1997) filter. It leaves, however, the unsatisfactory requirement of

choosing a penalty parameter λ, which Hodrick and Prescott are setting to

λ = 1600. From a statistical point of view fixing the smoothing parame-

ter in advance is unsatisfactory and a data-driven criterion seems preferable.

Therefore, a smooth approach is pursued by fitting γ(t) again using penalized

spline fitting, such that the long-term trend will be written as

γ(t) =

(
Bγ,1(t)θγ,1

Bγ,2(t)θγ,2

)
=: Bγ(t)θγ (5.32)

where Bγ,l(t) are spline bases chosen complex enough to capture the long-

term trends for l = 1 and 2. Using a B-spline basis for Bγ,l(t) with the same

knots as for the estimation of g(t), the spline coefficient θγ is now estimated

in a penalized form with penalty θTγ,lL
T
γLγθγ,l for l = 1, 2, and Lγ as differ-

ence matrix.

In principle, the penalty could be formulated as a priori normality and the

resulting structured mixed model can be fitted. To keep the numerics simple

and understandable, a hybrid two-step procedure is undertaken. This means

that the long-term trend γ(t) will be estimated first, and then the business

cycle structure g(t) will be fitted to the residuals ỹt = yt − γ(t). This hy-

brid approach appears justifiable since the objective is the estimation of the
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shorter phase structure g(t) in its dependence on the longer cycle. Therefore,

the long-term trend γ l(t) will be fitted component-wise with given penalty

parameters λγ = (λ1, λ2), given by

γ l(t) = Bγ,l(t)
(
BT
γ,lBγ,l + Dγ(λl)

)−1
BT
γ,lYl = Sl(λl)Yl (5.33)

for l = 1, 2 with Yl = (y1l, . . . , ynl)
T and Bγ,l as matrix built from bγ,l(ti),

for i = 1, . . . , n and Sl(λl) as smoothing matrix.

In particular, for the long-term trend any possible correlation among the

components of y will be ignored. The resulting residuals ỹt are assumed

to be distributed according to equation (5.17) with yt replaced by ỹt. In a

second step estimate ĝ(t) is obtained based on the observations corrected by

the long-term trend.

It remains for us to select appropriate penalty parameters for λγ for which

an Akaike-based criterion is proposed. This allows a grid search for λγ to be

used such that the minimum value for

AIC(λγ) = n log

∣∣∣∣∣
n∑
i=1

(yi − γ̂(ti)− ĝ(ti)) (yi − γ̂(ti)− ĝ(ti))
T

∣∣∣∣∣
+2dfγ + 2dfg (5.34)

has to be found where γ̂(·) is the penalized fit with penalty parameters λγ

and ĝ(·) is the fit based on ỹt using the Mixed Model formulation from above.

The degrees of freedom of the fits are calculated from

dfγ = tr
(
Bγ

(
BT
γBγ + Dγ(λγ)

)−1
BT
γ

)
(5.35)

and

dfg = tr

(
I
(
b̂, λ̂b

)−1

I
(
b̂,λb = 0

))
. (5.36)

similar to chapter 3.
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5.1.6 Simulation

The performance and capability of the routine described above will be demon-

strated with a simulation study. For this purpose an artificial time series will

be simulated which is given by the noisy observations of the trajectory around

the unit circle, i.e.

ỹt1 = sin(2πt) + εt1 (5.37)

ỹt2 = cos(2πt) + εt2 (5.38)

with the independent residuals εt1, εt2 which are normally distributed, i.e.

εt1 ∼ N (0, 0.252) and εt2 ∼ N (0, 0.252), and t ranging from 0 to 1 in n = 200

equidistant steps. The long-term fluctuations are overlaid with a short-term

trend such that

yt1 = ỹt1 + 0.5 cos(10πt) (5.39)

yt2 = ỹt2 + 0.5 sin(10πt). (5.40)

For the numerical estimations the same B-spline bases of order 3, i.e. Bρ =

Bφ = Bγ,1 = Bγ,2, and the same penalty matrices of order 2, i.e. Dρ = Dφ =

Dγ have been used.

In figure 5.1 the simulated data and the corresponding estimates are shown.

This figure is therefore organized as follows: The first two plots show the

two time series yt1 and yt2. The resulting long-term trend estimate is su-

perimposed as a solid line. The final estimate γ̂(t) + ĝ(t) is shown with

confidence bands for both series. The bottom row shows the observations

(yt1, yt2) with the long-term trend γ̂(t) (bottom left plot) and the residuals

(ỹt1, ỹt2) = (yt1 − γ̂1(t), yt2 − γ̂2(t)) with the fitted shorter phase structure

ĝ(t). Finally, the two right-hand-side plots show the fitted radius ρ̂(t) (upper

right-hand-side plot) and the fitted angle φ̂(t) (bottom right-hand-side plot).
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Figure 5.1: Estimation of simulated time series using a circular regression ap-

proach: The upper left-hand and middle plot: Observations (black dots), estimated

long-term trend (black line), and estimated short-term fluctuations around long-

term trend (colored line) with confidence regions (grey-shaded area) over time

for first and second time series, respectively. Upper right hand plot: Detrended

observations (black dots), trajectory of short-term trend (colored line), and their

confidence regions (grey shaded area). The lower left-hand plot: Observations

(black dots), long-term trend (black line), trajectory of short-term trend around

long-term trend (colored line), and confidence regions (grey-shaded area). Middle

and right-hand plot: Radius and angle over time (colored line), and their confi-

dence regions (grey-shaded area).
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Figure 5.2: Colored contour plot of AIC function given the degrees of freedom

of long-term trend functions: For each pair of degrees of freedoms for the first and

second long-term trend of the time series the AIC function value is shown in the

contour plot. Color scheme: Green (low range), orange to brown (middle range),

brown to white (high range) based on geographical contour maps.

Given the estimation in figure 5.1, the separation of long-term trend and

the short-term fluctuation seems adequate for the data. The smoothing pa-

rameters for the long-term trend are thereby selected following the Akaike

criterion proposed above. The corresponding shape of AIC(λa) is shown ex-
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emplarily in figure 5.2. Clearly the existence of two phases is visible in the

AIC function, where the value of AIC is given for the resulting degrees of

freedom for γ1(t) and γ2(t).

Furthermore, the angle is estimated nearly linearly, indicating a constant

rotation speed for g(t). In the same way, the radius is about constant over

time. It can be seen that the true function is reproduced for this simulation,

which is promising for the application of real world data.

5.2 Extension of the Bivariate Loops Model

The basic model of the bivariate loop approach will be extended in this chap-

ter. For this purpose, the main findings will be briefly recapitulated in the

next section so that the extension to a more general approach is straight-

forward. The introduction of two additional parameters allows not only the

fitting of two-dimensional circular trajectories but also elliptical oscillations,

such that the radius and the angle might be from a degrees of freedom per-

spective less complex functions. A reformulation of this extended model

allows us to generalize the model so that multivariate time series can be

estimated using the two-dimensional loop approach. Similar to the previ-

ous model, the properties of the model and the selection of the smoothing

parameters will be discussed before a numerical simulation concludes this

chapter.

5.2.1 The Basic Model

Let the observations (yi1, yi2, ti) with index i = 1, . . . , n be ordered by the

latter time series which represents the time points of the observation, i.e.

t := t1 < . . . < ti < . . . < tn =: t.
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It will be assumed that the first two time series y•1 := (y11, . . . , yn1)
T and

y•2 := (y12, . . . , yn2)
T are noisy observations of an unknown two-dimensional

function g̃, such that the structural part of the model can be written as

E

((
yi1

yi2

)
| ti

)
= g̃(ti) :=

(
g1(ti)

g2(ti)

)
. (5.41)

In accordance to Kauermann, Teuber, and Flaschel (2012), it will be assumed

that the trajectory g̃ follows a loop over time around the center γ(t) :=

(γ1(t), γ2(t))
T , such that the function can be written in polar coordinates as

g̃(t) := ρ(t)

(
cosφ(t)

sinφ(t)

)
+

(
γ1(t)

γ2(t)

)
(5.42)

with ρ representing the radius and φ the angle. Although the center plays

a key role in describing a loop, the center is set to be the point of origin

for the sake of simplicity. One can think of using the transformed data

ỹi1 = yi1 − γ1(ti) and ỹi2 = yi2 − γ2(ti) instead of the original data without

the loss of generality.

Assuming that the polar coordinate functions can be expressed by the func-

tions

ρ(t) = exp(Bρ(t)θρ) (5.43)

and

φ(t) = Bφ(t)θφ (5.44)

with Bρ(t) and Bφ(t) as B-spline bases built over the support of the time[
t; t
]
. Even though the number of knots and/or the order of the basis can

differ, for the practical estimations the same basis will be used.
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For the estimation of the parameters θρ and θφ, the (log) likelihood has

to be derived and is given by

l(y; θρ, θφ) =
n∑
i=1

log fY (yi•; θρ, θφ) (5.45)

with yi• := (yi1, yi2)
T , y := (y1•, . . . ,yn•)

T and fY (·) as the assumed den-

sity function for the observations. But instead of maximizing the likelihood

directly, the penalized likelihood

lp(y; θρ, θφ, λρ, λφ) := l(y; θρ, θφ)− 1

2
λρθ

T
ρDρθρ −

1

2
λφθ

T
φDφθφ(5.46)

is preferred with Dρ and Dφ as appropriate penalty matrices and λρ and λφ

as the resulting smoothing parameters. Similar to the B-spline basis, the

same penalty matrices for the angle and the radius are used for the estima-

tions.

Assuming that the observations y•1 and y•2 are normally distributed, then

one gets for fY (·) the bivariate normal density function, i.e.

fY (y) =
1

(2π)m/2| det Σ|1/2
× exp

[
−1

2
(y − g̃)TΣ−1(y − g̃)

]
(5.47)

with m = 2 for this case.

Defining B(ti) := Bρ(ti) ⊕ Bφ(ti), ∇g̃(ti) := ρ(ti)T(φ(ti)), T(φ(ti)) :=(
cosφ(ti) − sinφ(ti)

sinφ(ti) cosφ(ti)

)
, D̃(λ) := (λρDρ) ⊕ (λφDφ) with λ := (λρ, λφ) and

the operator defined as An×m ⊕Bp×q :=

(
A 0n×q

0p×m B

)
, the score function

for θ := (θTρ , θ
T
φ )T is given by

sθ(θ, λ, Σε) :=
n∑
i=1

(∇g̃(ti)B(ti))
T Σ−1

ε (yi• − g̃(ti))− D̃(λ)θ.(5.48)
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This leads to the expected second derivative which is equal to the negative

(penalized) Fisher information matrix given by

F(θ, λ, Σε) :=
n∑
i=1

(∇g̃(ti)B(ti))
T Σ−1

ε (∇g̃(ti)B(ti)) + D̃(λ) (5.49)

and a Newton-Raphson procedure can be applied to derive the maximum

likelihood estimation for θ, similar to chapter 5.1.

5.2.2 An Extension of the Basic Model

Instead of using the basic model an extension will be presented which can

lead to ”better” estimations. For this purpose, different intercepts for the

radius and the angle for the two time series will be introduced, such that the

model is given by

g(t) =

(
g1(t)

g2(t)

)
:=

(
exp(Bρ(t)θρ + ρ01) cos(φ(t) + φ01)

exp(Bρ(t)θρ + ρ02) sin(φ(t) + φ02)

)
(5.50)

=

(
exp(Bρ(t)θρ) cos(φ(t))

exp(Bρ(t)θρ + ρ0) sin(φ(t) + φ0)

)
=:

(
ρ1(t) cosφ1(t)

ρ2(t) sinφ2(t)

)
with ρ0 := ρ02− ρ01 as the shift in the radius and φ0 := φ02−φ01 as the shift

in the angle.

The main advantage of the model in equation (5.50) in contradiction to the

model in equation (5.42) is that the basic model leads to wiggly estimations

even though the true radius and the true angle are linear functions, if

(a) the shift in the angle is unequal to zero. A graphical illustration is

shown in figure 5.3 for a true shift φ0 = −π
4
. The basic model leads to

an overly complex fit because the radius and the angle change rapidly

over time. The formulation in equation (5.50) describes the elliptic

model in a less complex way.
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Figure 5.3: Trajectory of shifted circular function explained in example (a):

Trajectory follows an elliptical pattern instead of a circular one.

(b) the shift in the radius is unequal to zero, which is illustrated in figure

5.4, where ρ0 = log 2 is chosen. Similar to (a) the basic model is too

complex and the more flexible model leads to a better fit with fewer

degrees of freedom.

These two examples above show that a more flexible model is desired re-

sulting by a ”validation-by-eye”, because the fit seems to be smoother and

therefore results in narrower confidence regions.
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Figure 5.4: Trajectory of shifted circular function explained in example (b):

Trajectory follows a prolate circle instead of a round one.

In accordance to the definitions given in section 5.2.1, the definitions

∇g(t) := (ρ1(t) ⊕ 0) T(φ1(t)) + (0 ⊕ ρ2(t))T(φ2(t)),

C(ti) :=
(
∇g(ti)B(ti) , (0⊕ 1)∇g(ti)

)
and

D(λ) := D̃(λ)⊕ 02×2
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are given with the operator defined as An×m⊕Bp×q :=

(
A 0n×q

0p×m B

)
. The

first derivative with respect to θ :=
(
θTρ , θ

T
φ , ρ0, φ0

)T
can be expressed as

sθ(θ, λ, Σε) :=
n∑
i=1

C(ti)
TΣ−1

ε (yi• − g(ti))−D(λ)θ. (5.51)

and the Fisher matrix is equal to

F(θ, λ, Σε) :=
n∑
i=1

C(ti)
TΣ−1

ε C(ti) + D(λ) (5.52)

which are needed for the Fisher scoring.

5.2.3 Generalized Two-Dimensional Loops

Once modelling bivariate time series by loops it seems natural to extend the

model to higher dimensions so that more than two time series can be esti-

mated simultaneously. The first suggestion is to project a two-dimensional

loop into a higher dimension.

Observing m+1 different time series (yi1, . . . , yim, ti) with index i = 1, . . . , n

and ti ∈ [t, t] as the corresponding time points, for the structural part of the

model it will be assumed that

E



yi1
...

yim

 | ti
 = Ag̃(ti) = Aρ(ti)

(
cosφ(ti)

sinφ(ti)

)
(5.53)

holds.

Without loss of generality, the linear combination can be set for all i =

1, . . . ,m to

Ai = (ai1, ai2) = (exp(ρ0i) cosφ0i , − exp(ρ0i) sinφ0i) (5.54)
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such that equation 5.53 can be written as

Ag̃(ti) =


exp(ρ01)ρ(t) [cosφ01 cosφ(t)− sinφ01 sinφ(t)]

...

exp(ρ0m)ρ(t) [cosφ0m cosφ(t)− sinφ0m sinφ(t)]



=


exp(ρ01 + Bρ(t)θρ) cos (φ01 + Bφ(t)θφ)

...

exp(ρ0m + Bρ(t)θρ) cos (φ0m + Bφ(t)θφ)



=:


ρ1(t) cosφ1(t)

...

ρm(t) cosφm(t)

 =:


g1(t)

...

gm(t)

 =: g(t) . (5.55)

Obviously for m = 2 time series, the generalized model in equation (5.55) is

equal to the extended model in equation (5.50).

The advantage of formulating the projection matrix A as in equation (5.54)

is the possibility of both an appropriate interpretation and a simultaneous

estimation.

For the likelihood estimation the definitions D(λ) := D̃(λ) ⊕ 02m×2m and

∇gB(ti) :=

(
A∇g̃(ti)B(ti) , ⊕mj=1gj(ti) , ⊕mj=1(−ρj(ti) sinφj(ti))

)
are given,

such that the first derivative with respect to θ :=
(
θTρ , θ

T
φ , ρ01, . . . , ρ0m, φ01, . . . , φ0m

)T
is given by

sθ(θ, λ, Σε) :=
n∑
i=1

∇gB(ti)
TΣ−1

ε (yi• − g(ti))−D(λ)θ (5.56)

and the negative (expected) second derivative as

F(θ, λ, Σε) :=
n∑
i=1

∇gB(ti)
TΣ−1

ε ∇gB(ti) + D(λ), (5.57)
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which can be applied for the Fisher scoring to derive the maximum likelihood

estimations. To avoid any confusion given the definitions and the solutions

defined in equations (5.56) and (5.57), the dimensions of the variables will

be given. Assuming that the B-spline matrix Bφ(ti) and Bρ(ti), are given as

Kφ × 1 and Kρ × 1, respectively, then the dimension of the square matrix

D(λ) is Kρ +Kφ + 2m×Kρ +Kφ + 2m, of the parameter vector θ is Kρ +

Kφ + m + m × 1, of the matrix ∇gB(ti) is m × Kρ + Kφ + m + m, of the

co-variance matrix Σ is m × m and of the i-th observation yi• and their

expected trend g(ti) are m × 1. The dimension of the first derivative with

respect to θ, defined in equation (5.56), is therefore Kρ+Kφ+2m×1 and the

dimension of the negative (expected) second derivative, defined in equation

(5.57), is therefore Kρ +Kφ + 2m×Kρ +Kφ + 2m, as one can easily see.

5.2.4 Variance of Estimations

One of the many advantages of penalized splines is the possible linkage to

Generalized Linear Mixed Models shown in the previous chapters. Treating

the coefficients θ as random variables, which are normally distributed, one

can derive by a Laplace approximation a maximum likelihood estimation for

the smoothing parameters; see Kauermann, Teuber, and Flaschel (2012) and

chapter 5.1.4. The resulting estimations are given for the radius function as

λ̂ρ =
tr
(
D
(
(1, 0)T

)−
D
(
(1, 0)T

))
tr
(
F
(
θ̂, λ̂, Σ̂ε

)
D ((1, 0)T )

)
+ θ̂

T
D ((1, 0)T ) θ̂

(5.58)

and for the angle function as

λ̂φ =
tr
(
D
(
(0, 1)T

)−
D
(
(0, 1)T

))
tr
(
F
(
θ̂, λ̂, Σ̂ε

)
D ((0, 1)T )

)
+ θ̂

T
D ((0, 1)T ) θ̂

, (5.59)
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with D− as the generalized inverse of the matrix D. The maximum likelihood

estimation for the (co-) variance matrix is given by

Σ̂ε =

n∑
i=1

(yi• − ĝ(ti)) (yi• − ĝ(ti))
T

n
(5.60)

similar to the estimation in the previous chapter.

With these maximum likelihood estimators the variance of the estimated

functions can be obtained by defining the term

∆ηρ(t) := (1m×1 ⊗Bρ(t) , 0m×1 ⊗Bφ(t) , Im , 0m×m) (5.61)

for the linear predictor of the radius and the term

∆ηφ(t) := (0m×1 ⊗Bρ(t) , 1m×1 ⊗Bφ(t) , 0m×m , Im) (5.62)

for the linear predictor of the angle, such that the term

∆φ(t) := (⊕ni=1ρi(t)) ∆ηφ(t) (5.63)

for the radius and the term

∆φ(t) := ∆ηφ(t) (5.64)

for the angle, can be defined to get the term

∆g(t) := ∇gB(t) (5.65)

for the loop function.

The variance for the loop function is then given by

Var (ĝ(t)) = ∆g(t)F
(
θ̂, λ̂, Σ̂ε

)−1

F
(
θ̂, 0, Σ̂ε

)
F
(
θ̂, λ̂, Σ̂ε

)−1

∆g(t)T(5.66)
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for the radius given by

Var (ρ̂(t)) = ∆ρ(t)F
(
θ̂, λ̂, Σ̂ε

)−1

F
(
θ̂, 0, Σ̂ε

)
F
(
θ̂, λ̂, Σ̂ε

)−1

∆ρ(t)
T(5.67)

and for the angle given by

Var
(
φ̂(t)

)
= ∆φ(t)F

(
θ̂, λ̂, Σ̂ε

)−1

F
(
θ̂, 0, Σ̂ε

)
F
(
θ̂, λ̂, Σ̂ε

)−1

∆φ(t)T(5.68)

respectively, for all t ∈ [t, t].

The resulting (95%-) confidence region based on the asymptotic of the max-

imum likelihood theory yields

CRg(t) = {y ∈ Rm| (y − ĝ(t))TVar(ĝ(t))−1(y − ĝ(t)) ≤ χ2
m, 0.95

}
(5.69)

with χ2
m, 0.95 as the 95% quantile of the χ2 distribution with m degrees of

freedom.

5.2.5 Simulations

Similar to the simulations in section 5.2.2, more simulations will be presented

here where each simulation contains n = 200 equidistant time points over the

support [t, t] = [0, 1].

The first simulation S1 is given by the data described by the model(
yi1

yi2

)
=

(
sin(3πti)

sin(3πti + π
4
)

)
+

(
εi1

εi2

)
(5.70)

for i = 1, . . . , n and with the residuals (εi1, εi2)
T iid∼ N (0, 0.252I2), which is

the example (a) given in section 5.2.1.

The estimated functions are shown in figure 5.5. The left-hand-side plots
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are estimated by the basic model and the right-hand-side plots by the gen-

eralized (or extended) model. In the first row the functions g1 and g2 are

illustrated over time. The second row shows the trajectory of the loop func-

tion g. In the third and fourth rows the radius (ρ1 and ρ2) and the angle (φ1

and φ2) are plotted against time.

The second simulation S2 is given by the data described by the model(
yi1

yi2

)
=

(
sin(3πti)

2 cos(3πti)

)
+

(
εi1

εi2

)
(5.71)

for i = 1, . . . , n and with the residuals (εi1, εi2)
T iid∼ N (0, 0.252I2), which is

the example (b) given in section 5.2.1.

The estimated functions are presented in figure 5.6 in the same way as the

simulation S1 above.

The third simulation S3 is an example of the generalized model which can

be used for multivariate time series, generated by the model
yi1

yi2

yi3

 = A3

(
sin(2πti)− 0.5 cos(10πti)

cos(2πti)− 0.5 sin(10πti)

)
+


εi1

εi2

εi3

 (5.72)

for i = 1, . . . , n and with the residuals (εi1, εi2, εi3)
T iid∼ N (0, 0.252I3) and

A3 =


1 cos 0 1 sin 0
3
2

cos π
2

3
2

sin π
2

11
6

cos 5π
6

11
6

sin 5π
6

.

The estimation of the simulation S3 is shown in figure 5.7. The upper left-

hand-side plot shows the functions g1, g2, and g3 over time. The other figures

show the trajectories of g1 vs g2 (upper right-hand-side plot), g1 vs g3 (lower
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Figure 5.5: Estimations of simulation S1 given in equation 5.70: Upper row:

Basic circular model; lower row: Extended circular model. First column: Obser-

vation of first (black dots) and second time series (red dots), and their estimations

(first time series: black line, second time series: Red line) and their confidence

regions (grey-shaded areas). Second column: Observations (dots), estimation (col-

ored lines), and confidence regions (grey-shaded areas). Third column: Estimated

radius for first (black line) and second (red line) time series. Fourth column:

Estimated angle for first (black line) and second (red line) time series.
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Figure 5.6: Estimations of simulation S2 given in equation 5.71: Upper row:

Basic circular model; lower row: Extended circular model. First column: Obser-

vation of first (black dots) and second time series (red dots), and their estimations

(first time series: Black line, second time series: Red line) and their confidence

regions (grey-shaded areas). Second column: Observations (dots), estimation (col-

ored lines), and confidence regions (grey-shaded areas). Third column: Estimated

radius for first (black line) and second (red line) time series. Fourth column:

Estimated angle for first (black line) and second (red line) time series.
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Figure 5.7: Estimations of simulation S3 given in equation 5.72: Observations

(dots), estimation (colored lines), and confidence regions (grey-shaded areas). Up-

per left-hand plot: Time series over time (black: y1, red: y2, green: y3). Upper

right-hand plot: y1 vs y2; lower left-hand plot: y1 vs y3; lower right-hand plot: y2

vs y3.

left-hand-side plot), and g2 vs g3 (lower right-hand-side plot).

The inclusion of more time series is shown in simulation S4 given by the
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model


yi1
...

yi6

 = A6

(
sin(2πti)− 0.5 cos(10πti)

cos(2πti)− 0.5 sin(10πti)

)
+


εi1
...

εi6

 (5.73)

for i = 1, . . . , n and with the residuals (εi1, . . . , εi6)
T iid∼ N (0, 0.252I6) and

A6 =


A3

25
12

cos 13π
12

25
12

sin 13π
12

137
60

cos 77π
60

137
60

sin 77π
60

147
60

cos 87π
60

147
60

sin 87π
60

.

For the fourth simulation only a few graphics are shown: In figure 5.8 the

same time series as for the simulation S3 are shown and in figure 5.9 some

additional time series are plotted. In figure 5.9 on the first row on the left-

hand-side all functions g4, . . . , g6 are plotted against time. Furthermore, the

trajectories of g3 vs g4 (first row, right-hand-side), g4 vs g5 (second row, left-

hand-side), and g5 vs g6 (second row, right-hand-side) are presented.

Obviously, one sees that the first three estimated time series of the simulation

S4 are of ”better”quality than in the simulation S3 because more information

(here via more time series) is available, meaning that the confidence regions

are narrower.

The simulations S3 and S4 have been repeated N = 500 times and the

coverage probabilities are graphically illustrated in figure 5.10. The upper

figure shows the coverage probability for S3, the middle figure of the first

three time series of S4, and the lower figure of all six time series of S4, which

leads to the conclusion that the estimation will be improved if more time

series are included.
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Figure 5.8: Estimations of simulation S4 given in equation 5.73: Observations

(dots), estimation (colored lines), and confidence regions (grey-shaded areas). First

row left-hand plot: Time series over time (black: y1, red: y2, green: y3). First

row right-hand plot: y1 vs y2; second row left-hand plot: y1 vs y3; second row

right-hand plot: y2 vs y3. Third row left-hand plot: Time series over time (black:

y4, red: y5, green: y6).

5.3 The Basic and the Extended Three-Dimensional

Loops Model

The basic model presented in chapter 5.1 and the extended as well as the

generalized model presented in chapter 5.2 for the multivariate time series
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Figure 5.9: Estimations of simulation S4 given in equation 5.73: Observations

(dots), estimation (colored lines), and confidence regions (grey-shaded areas). First

row left-hand plot: Time series over time (black: y4, red: y5, green: y6). First

row right-hand plot: y4 vs y5; second row left-hand plot: y4 vs y6; second row

right-hand plot: y5 vs y6.

can be extended to be formulated to capture a higher dimensional ball move-

ment. The complexity of the three-dimensional circular movement model is

strongly increasing compared to the two-dimensional model. It is worth not-

ing that from a mathematical (theoretical) exercise, the model can easily be

extended to higher dimension, but the numerical applicability of the model

decreases with each new dimensions included. Nonetheless, the extension



Page 125 Chapter 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Figure 5.10: Coverage probabilities for different simulations: Coverage proba-

bilities for simulation S3 (upper plot) and S4 (lower plot), based on N = 500

repeated simulations.

will be presented for the sake of completeness so that the user can choose the

preferred model depending on the data at hand.

Therefore, the model will be introduced with the basic model for three time

series. Similar to the two-dimensional model, the extension of the three-

dimensional model shown in section 5.3.2 is straightforward and can be used

for the generalized version for more than the three time series shown in sec-

tion 5.3.3. The properties of the estimation and the smoothing parameters
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are analogously given as in the previous models.

5.3.1 Basic Three-Dimensional Model

Another possibility to describe m = 3 time series is a three-dimensional loop,

whereby the observations will be described using three-dimensional polar

coordinates. The structural part of the observations (yi1, yi2, yi3, ti) with

index i = 1, . . . , n will be written as

E



yi1

yi2

yi3

 | ti
 = g̃(ti) :=


g1(ti)

g2(ti)

g3(ti)

 (5.74)

for which it will be assumed that the three-dimensional loop function can be

expressed in spherical polar coordinates, i.e.

g̃(t) := ρ(t)


cos υ(t) cosφ(t)

cos υ(t) sinφ(t)

sin υ(t)

+


γ1(ti)

γ2(ti)

γ3(ti)

 (5.75)

around the center γ(t) := (γ1(t), γ2(t), γ3(t))
T which is set for the sake of

simplicity to the point of origin, i.e. γ(t) ≡ (0, 0, 0)T without the loss of

generalization. The radius function ρ is the (Euclidean) distance between

g̃ and the center. The (azimuth) angle function φ represents the angle be-

tween the function g̃ projected onto the xy-plane and the positive x-axis.

The (zenith) angle υ represents the angle between the line from the center

and the function g̃ projected onto the xy-plane and the line from the center

to function g̃; see figure 5.11.

Similar to the previous model it will be assumed that the polar coordinate

functions can be expressed by

ρ(t) = exp(Bρ(t)θρ) (5.76)

φ(t) = Bφ(t)θφ (5.77)
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Figure 5.11: Three-dimensional point measured with spherical coordinates.

and

υ(t) = Bυ(t)θυ (5.78)

with the B-spline bases Bρ(·), Bφ(·), and Bυ(·) over the support of the time

[t, t].

The unknown parameters θ := (θTρ , θ
T
φ , θ

T
υ )T are estimated using the max-

imum likelihood approach, but instead of using the (log) likelihood like in

equation (5.45) the penalized form

lp(y; θ, λ) := l(y; θ)− 1

2
λρθ

T
ρDρθρ −

1

2
λφθ

T
φDφθφ −

1

2
λυθ

T
υDυθυ(5.79)
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will be preferred with the smoothing parameters λ := (λρ, λφ, λυ) and the

penalty matrices Dρ, Dφ, and Dυ.

Defining,

B(t) := Bρ(t)⊕Bφ(t)⊕Bυ(t)

D̃(λ) := (λρDρ)⊕ (λφDφ)⊕ (λυDυ)

∇g̃(t) := ρ(t)


cos υ(t) cosφ(t) − cos υ(t) sinφ(t) − sin υ(t) cosφ(t)

cos υ(t) sinφ(t) cos υ(t) cosφ(t) − sin υ(t) sinφ(t)

sin υ(t) 0 cos υ(t)


given the operator defined as An×m ⊕Bp×q :=

(
A 0n×q

0p×m B

)
.

Under the assumption that the observations are normally distributed, the

score equation for θ is given by

sθ(θ, λ, Σε) :=
n∑
i=1

(∇g̃(ti)B(ti))
T Σ−1

ε (yi• − g̃(ti))− D̃(λ)θ (5.80)

and the Fisher matrix can be expressed as

F(θ, λ, Σε) :=
n∑
i=1

(∇g̃(ti)B(ti))
T Σ−1

ε (∇g̃(ti)B(ti)) + D̃(λ).(5.81)

Obviously the estimation depends on the order of the three time series,

namely which is the first, second, and third time series, due to the differ-

ent functional forms given by the definition of the model in equation (5.75),

such that either one has to be sure of the order of the time series or one has

to estimate and compare the three different combinations of the time series

and then select the best model. Because of this problem the extension of the

basic model is an advantage.
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5.3.2 Extended Model

Similar to section 5.2 in which the equivalency of the extended model and

the generalized model is shown, here a linear combination will be introduced

such that

E



yi1

yi2

yi3

 | ti
 = Ag̃(ti) =: g(ti) :=


g1(ti)

g2(ti)

g3(ti)

 (5.82)

represents the extended model with g̃(·) given in equation (5.75). Each row

of the projection matrix is set without loss of generality to

Ai = (ai1, ai2, ai3) = exp(ρ0i) (cos υ0i cosφ0i, − cos υ0i sinφ0i, sin υ0i)(5.83)

for i = 1, 2, 3 such that the equation (5.82) can be written as

g(t) =


ρ(t) exp(ρ01) [cos υ01 cos υ(t) (cosφ01 cosφ(t)− sinφ01 sinφ(t)) + sin υ01 sin υ(t)]

ρ(t) exp(ρ02) [cos υ02 cos υ(t) (cosφ02 cosφ(t)− sinφ02 sinφ(t)) + sin υ02 sin υ(t)]

ρ(t) exp(ρ03) [cos υ03 cos υ(t) (cosφ03 cosφ(t)− sinφ03 sinφ(t)) + sin υ03 sin υ(t)]


(5.84)

=


exp(Bρ(t)θρ + ρ01) [cos υ01 cos υ(t) cos(φ01 + φ(t)) + sin υ01 sin υ(t)]

exp(Bρ(t)θρ + ρ02) [cos υ02 cos υ(t) cos(φ02 + φ(t)) + sin υ02 sin υ(t)]

exp(Bρ(t)θρ + ρ03) [cos υ03 cos υ(t) cos(φ03 + φ(t)) + sin υ03 sin υ(t)]


(5.85)

=:


ρ1(t) [cos υ01 cos υ(t) cosφ1(t) + sin υ01 sin υ(t)]

ρ2(t) [cos υ02 cos υ(t) cosφ2(t) + sin υ02 sin υ(t)]

ρ3(t) [cos υ03 cos υ(t) cosφ3(t) + sin υ03 sin υ(t)]

 (5.86)

Recalling the score function and the Fisher matrix in the previous section and

remembering that the extended model is a simple linear combination of the

basis model, the score function and Fisher matrix can be straightforwardly



Section 5.3 Page 130

calculated, such that these steps will be omitted in this section. However,

the generalized form presented below can also be used for m = 3 time series,

which is then equivalent to the extended model presented here.

5.3.3 Generalized Three-Dimensional Model

In the generalized model, the m + 1 time series (yi1, . . . , yim, ti) with i =

1, . . . , n and m ≥ 3 are observed. Using the definition for the projection

matrix A in equation (5.83) for i = 1, . . . ,m the structural part of the model

should be written in the form of the extended model, i.e.

E



yi1
...

yim

 | ti
 = Ag̃(ti) = g(ti) (5.87)

=


ρ1(t) [cos υ01 cos υ(t) cosφ1(t) + sin υ01 sin υ(t)]

...

ρm(t) [cos υ0m cos υ(t) cosφm(t) + sin υ0m sin υ(t)]


Defining

θ := (θTρ , θ
T
φ , θ

T
υ , ρ01, . . . , ρ0m, φ01, . . . , φ0m, υ01, . . . , υ0m)T (5.88)

D(λ) := D̃(λ)⊕ 03m×3m (5.89)

and

∇gB(t) :=
(
A∇g̃(t)B(t) , ⊕mj=1gj(t) , −⊕mj=1 ρj(t) cos υ0j cos υ(t) sinφj(t) ,

⊕mj=1(cos υ0j sin υ(t)− sin υ0j cos υ(t) cosφj(t))
)

, (5.90)

such that the first derivative of the likelihood with respect to θ can be written

as

sθ(θ, λ, Σε) :=
n∑
i=1

∇gB(ti)
TΣ−1

ε (yi• − g(ti))−D(λ)θ (5.91)
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and the negative (expected) second derivative

F(θ, λ, Σε) :=
n∑
i=1

∇gB(ti)
TΣ−1

ε ∇gB(ti) + D(λ), (5.92)

which are necessary for the Fisher scoring algorithm to get the maximum

likelihood estimations. To avoid any confusion given the definitions and the

solutions defined in equations (5.91) and (5.92), the dimensions of the vari-

ables will be given. Assuming that the B-spline matrix Bφ(t), Bρ(t), and

Bυ(t) are given as Kφ× 1, Kρ× 1, and Kυ × 1, respectively, then the dimen-

sion of the square matrix D(λ) is Kρ +Kφ +Kυ + 3m×Kρ +Kφ +Kυ + 3m,

of the parameter vector θ is Kρ +Kφ +Kυ +m+m+m× 1, of the matrix

∇gB(ti) is m × Kρ + Kφ + Kυ + m + m + m, of the co-variance matrix Σ

is m×m, and of the i-th observation yi• and their expected trend g(ti) are

m × 1. The dimension of the first derivative with respect to θ, defined in

equation (5.91), is therefore Kρ+Kφ+Kυ +3m×1 and the dimension of the

negative (expected) second derivative, defined in equation (5.92), is therefore

Kρ +Kφ +Kυ + 3m×Kρ +Kφ +Kυ + 3m.

Similar to the two-dimensional model, the smoothing parameters are given

by the Laplace approximation, which yields for the radius

λ̂ρ =
tr
(
D
(
(1, 0, 0)T

)−
D
(
(1, 0, 0)T

))
tr
(
F
(
θ̂, λ̂, Σ̂ε

)
D ((1, 0, 0)T )

)
+ θ̂

T
D ((1, 0, 0)T ) θ̂

(5.93)

for the azimuth angle

λ̂φ =
tr
(
D
(
(0, 1, 0)T

)−
D
(
(0, 1, 0)T

))
tr
(
F
(
θ̂, λ̂, Σ̂ε

)
D ((0, 1, 0)T )

)
+ θ̂

T
D ((0, 1, 0)T ) θ̂

(5.94)

and for the zenith angle

λ̂υ =
tr
(
D
(
(0, 0, 1)T

)−
D
(
(0, 0, 1)T

))
tr
(
F
(
θ̂, λ̂, Σ̂ε

)
D ((0, 0, 1)T )

)
+ θ̂

T
D ((0, 0, 1)T ) θ̂

. (5.95)
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Analog to the previous models, the variance of the fitted function is given by

Var (ĝ(t)) = ∆g(t)F
(
θ̂, λ̂, Σ̂ε

)−1

F
(
θ̂, 0, Σ̂ε

)
F
(
θ̂, λ̂, Σ̂ε

)−1

∆g(t)T(5.96)

for all t ∈ [t; t] with ∆g(t) := ∇gB(t) defined above and the (co-) variance

of the residuals estimated by

Σ̂ε =

n∑
i=1

(yi• − ĝ(ti)) (yi• − ĝ(ti))
T

n
(5.97)

similar to the previous models.

Given the variance in equation (5.96), the (95%-) confidence region based

on the asymptotic of the maximum likelihood theory yields

CRg(t) = {y ∈ Rm| (y − ĝ(t))TVar(ĝ(t))−1(y − ĝ(t)) ≤ χ2
m, 0.95

}
(5.98)

with χ2
m, 0.95 as the 95% quantile of the χ2 distribution with m degrees of

freedom.

5.3.4 Simulations

This section will be concluded with a simulation to show how the model be-

haves and how the time series might look if the underlying trend follows a

three-dimensional loop structure. The simulation contains n = 200 equidis-

tant time points t over the support from zero to one. For the simulation the

three-dimensional loop functions
g1(t)

g2(t)

g3(t)

 = ρ(t)


cos υ(t) sinφ(t)

cos υ(t) cosφ(t)

sin υ(t)

 (5.99)
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Figure 5.12: Trend of simulation given in equation 5.99: On the main diagonals

the trend is plotted over time. In the others plots, the trajectories of the trend is

plotted over time.

with ρ(t) = exp(1 + t), υ(t) = 2πt, and φ(t) = 10πt are given. Furthermore,

defining the shifts ρ01 = 0, ρ02 = 0.1, ρ03 = 0.2, υ01 = 0, υ02 = 0.125π,

υ03 = 0.25π, φ01 = 0, φ02 = 0.25π, and φ03 = 0.5π to build the matrix A
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Figure 5.13: Estimation of the simulated data given in equation 5.99. Raw data

are shown as dots whilst the lines represent the expected values over time. Black:

First function; red: Second function; green: Third function.

given as

A =


exp ρ01 cos υ01 cosφ01 exp ρ01 cos υ01 sinφ01 exp ρ01 sin υ01

exp ρ02 cos υ02 cosφ02 exp ρ02 cos υ02 sinφ02 exp ρ02 sin υ02

exp ρ03 cos υ03 cosφ03 exp ρ03 cos υ03 sinφ03 exp ρ03 sin υ03

(5.100)



Page 135 Chapter 5

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ● ●

● ●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ● ●

●
●

● ●

●
● ●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

8

t

y 1

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ● ●

● ●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ● ●

●
●

● ●

●
● ●

●

●
●

●

●
●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
● ● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●

●

●
●

●
●

●

● ●

●
●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●

● ●

● ● ●
●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

t

y 2

●
●

●

● ●

●
●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

●

●
●

●

● ●

● ● ●
●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ● ●

●

● ●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

● ●

●

●
●

●

● ●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●
● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
8

−
6

−
4

−
2

0
2

4

t

y 3

●

●

●

●

● ●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ● ●

●

● ●

●

● ● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

● ●

●

●
●

●

● ●

●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●

● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●
● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

Figure 5.14: Estimation of the simulated data given in equation 5.99 one by one.

Raw data are shown as dots whilst the colored lines represent the expected values

over time. The thin black line shows the true trend.

to get the trend as a linear combination of the three basic three-dimensional

loop structure functions, i.e.


µ1(t)

µ2(t)

µ3(t)

 =


g1(t)

g2(t)

g3(t)

AT . (5.101)
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The noisy observations are then given by
y1t

y2t

y3t

 =


µ1(t)

µ2(t)

µ3(t)

+


ε1t

ε2t

ε3t

 (5.102)

with iid normal errors εit ∼ N (0, 0.25) for each time point t and all three

functions i = 1, 2, 3.

In figure 5.12, the trend is shown graphically. On the main diagonal the

trend of each function is plotted over time. In the other sub-figures, the

trajectory over time is plotted such that one can see that the trend has

short-term fluctuations and a long-term trend, although in this simulation

the center of the three-dimensional ball structure is constant, namely the

point of origin. This means that the long-term trend is implicitly given by

the zenith angle function.

The artificial time series have fitted quite well, as one can see for the three

time series together in figure 5.13 and separately in figure 5.14. In the latter

figure, the trend is shown as a solid black line whilst the estimated function is

shown as a colored line. Given the complex structure, the estimation seems

to fit the model quite well, showing that an empirical estimation might be

promising at this stage.
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6 Interpreting the Business Cycles Analysis

6.1 Business and Long-Phase Cycles in Inflation and

Income Distribution

Econometric studies often focus on the methodological level as well as in

empirical research on the problem of how to separate the business cycle from

the trend in macroeconomic time series. However, economic growth theory

in its advanced form provides us with insights into which economic ratios

may exhibit a secular trend (like capital intensity when not measured in ef-

ficiency units) and which ones will not (like the output-capital ratio or the

rate of employment as two measures of macroeconomic factor utilization). In

contrast to a variety of econometric studies, macrodynamic growth theory

therefore generally uses appropriate ratios or growth rates in its analytical

investigations. In particular, ratios are used that allow for the determination

of steady state positions and which therefore should not exhibit a trend in

the very long run.

In applying the methodology developed in this work we will in fact con-

centrate on secularly trendless magnitudes, namely the employment rate on

the external labor market, the wage share in national income, and the in-

flation rate (here of producers’ prices). There are a variety of smaller as

well as larger macrodynamic models in the tradition of Friedman (1968) and

Goodwin (1967) which show the existence of persistent cycles in the interac-

tion between the employment rate and the wage share on the one hand and

the employment rate and the inflation rate on the other hand which tend to

be long-phased when simple constant parameter estimates are used for their

numerical investigation (see also Atkinson 1969). In these models the ordi-

nary business cycle fluctuations must therefore be explained by something
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else, namely by systematic variations in the parameters of the model which

then add cycles of period lengths of about eight years to the fifty-years cycles

these models are generating when used with average or constant parameter

values. Based on earlier work (see Flaschel, Kauermann, and Teuber 2005)

we now investigate the working hypothesis that there are long-phase cycles

interacting with business cycles in the data as far as employment, income

distribution, and inflation are concerned.

The method developed in this work now in fact allows us to check this hypoth-

esis in a way much more refined than just using the Hodrick-Prescott filters

with an arbitrarily given λ parameter. Moreover, we pursue the hypothesis

in the spirit of the two-dimensional phase plots of the employment–inflation

cycle and the employment–income distribution cycle of the literature on the

Friedman inflation cycle and the Goodwin growth cycle.

Applying the technique developed, leads to the estimates shown in figure

6.1 and figure 6.2. First focus on inflation dynamics, figure 6.1. One can

see that the unemployment rate is leading compared to the inflation rate in

the long-phase cycle (the solid lines in the two time series plots top-left). In

the bottom figure showing angle estimate φ̂(t) we see moreover that there

are approximately six business cycles surrounding these long-phase cycles, as

φ̂(t) crosses about six times the 2π full circle, marked as horizontal dashed

lines. This finding is in line with Chiarella, Flaschel, and Franke (2005) and

other work. The fitted angle also shows that the anti-clockwise rotation of

the long-phase cycle is by and large also characterized by the business cycles

surrounding it, though there are exceptions to this rule (periods at the begin-

ning and the end of the considered time span); see also the figure top-right.

Note that we follow the tradition here which uses the unemployment rate in

place of the employment rate on the horizontal axis (the latter would give
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rise to an anti-clockwise orientation of the business and the long-phase cycles

shown in these figures).

The long-phase cycle (bottom left plot of figure 6.1) indicates that 50 years of

data are indeed needed in order to get the indication of the existence of such

a cycle. We observe that long periods where unemployment and inflation

are both rising (i.e., where stagflation occurs) and also periods where the

opposite takes place and therefore falling unemployment rates do not lead to

rising inflation rates immediately. We stress again that our extraction of the

business cycle component as shown in figure 6.1, through a phase as well as

a radius plot, is an integral part of our treatment of the long-phase evolution

of the economy.

With respect to the other long-phase cycle model, the Goodwin (1967) growth

cycle model, we now have to look at figure 6.2. As far as the evolution of

the wage share (top-left plot) is concerned we now have more volatility, as

was the case with the inflation rate. This may be due to the involvement of

labor productivity as a constituent part of the definition of the wage share.

Nevertheless one can see a single long-phase cycle in the solid line shown in

the time series presentation of the wage share. Again, the employment rate

is leading with respect to this long-phase cycle in the wage share. We know

from Goodwin (1967) and the numerous articles that followed his approach

that the interaction of the employment rate with the wage share is generating

a clockwise motion. In this regard, we can confirm that the cycles of business

cycle frequency are moving in a clockwise fashion, as is suggested by the again

basically downward sloping angle line shown bottom-right in figure 6.2. To

the right of this figure we see again (if minor cycles are ignored) now by and

large seven business cycles overlaid over the long-phase cycles, as also shown

in the figure bottom-right. Looking at the long-phase cycle (bottom-middle
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Figure 6.1: Estimation of unemployment rate and price inflation using a circular

regression approach: The upper left-hand and middle plot: Observations (black

dots), estimated long-term trend (black line), and estimated short-term fluctua-

tions around long-term trend (colored line) with confidence regions (grey-shaded

area) over time for first and second time series, respectively. Upper right hand

plot: Detrended observations (black dots), trajectory of short-term trend (colored

line), and their confidence regions (grey-shaded area). The lower left-hand plot:

Observations (black dots), long-term trend (black line), trajectory of short-term

trend around long-term trend (colored line), and confidence regions (grey-shaded

area). Middle and right-hand plot: Radius and angle over time (colored line) and

their confidence regions (grey-shaded area), respectively.
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Figure 6.2: Estimation of wage share and employment rate using a circular

regression approach: The upper left-hand and middle plot: Observations (black

dots), estimated long-term trend (black line), and estimated short-term fluctua-

tions around long-term trend (colored line) with confidence regions (grey-shaded

area) over time for first and second time series, respectively. Upper right hand

plot: Detrended observations (black dots), trajectory of short-term trend (colored

line), and their confidence regions (grey-shaded area). The lower left-hand plot:

Observations (black dots), long-term trend (black line), trajectory of short-term

trend around long-term trend (colored line), and confidence regions (grey-shaded

area). Middle and right-hand plot: Radius and angle over time (colored line) and

their confidence regions (grey-shaded area), respectively.
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plot) we indeed see a cycle that is nearly closed (and thus approximately of

fifty years’ length) and that is moving clockwise as suggested by the simple

Goodwin (1967) growth cycle model (see Solow 1990 for early comments on

an empirical phase plot of this cycle) and its many extensions.

We conclude that the method developed in this paper provides a helpful

approach to the separation of long-phased cycles that describe the evolution

from high to low inflation regimes and from high to low wage share regimes

from cycles of business cycle frequency. This method therefore allows in a

distinct way the discussion of long waves in inflation and income distribution

in modern market economies after World War II.

6.2 Are the US Business Cycles Real Cycles?

In this section the focus is primarily on the short-term fluctuations of the

economic time series. Although, as has been shown in the previous sections,

the specification of the long-term trend is essential for the estimation of the

short-term trend, here the focus lies on the discussion of the short-term trend,

with the long-term trend taken as given. The short-term trend is presented

in the figures 6.3 and 6.4. One should remember that the scale of the short-

term trend and the residuals of the long-term trend (i.e. observation minus

long-term trend) does not account for absolute values but for the deviation

from the secular trend. This would mean that the plots in figure 6.3 measure

the percentage point deviation from the moving long-term trend, which was

already shown in the previous section.

Focussing on the short-term trend of the price Phillips curve, namely figure

6.3, one can see eight different time frames in which the 50 year history of

data points and estimations have been separated. Unfortunately, the separa-
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Figure 6.3: Detrended price inflation and unemployment rate and estimated

short-term fluctuations over time: Detrended observations (dots), estimated short-

term trend (colored lines), and confidence regions (grey-shaded areas) separated

into different time periods: (a) 1955Q1-1962:Q2, (b) 1961Q3-1970Q4, (c) 1970Q2-

1976Q3, (d) 1976Q1-1982Q3, (e) 1982Q1-1991Q4, (f) 1991Q2-1994Q3, (g) 1994Q1-

1997Q4, and (h) 1997Q2-2004Q4.

tion into the time frames is arbitrary, or better said subjective, because the

business cycles are, as already mentioned and shown in this work, not perfect

circles, meaning such that the end points are not connected. Although with

the goodwill to imagine a circle and accounting for estimation error, it is

hard to deny (even in a statistical sense) for most of the time frames that the

cycles are connected or at least that the confidence regions of the end points

do overlay.

One way to start separating the history of data into different time frames

could be to select predefined economic states, for instance ”start of the boom
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Figure 6.4: Detrended wage share and employment rate and estimated short-term

fluctuations over time: Detrended observations (dots), estimated short-term trend

(colored lines), and confidence regions (grey-shaded areas) separated into different

time periods: (a) 1955Q1-1959:Q2, (b) 1958Q4-1965Q2, (c) 1964Q4-1972Q3, (d)

1972Q1-1977Q3, (e) 1977Q1-1984Q2, (f) 1983Q4-1994Q4, (g) 1994Q2-1998Q1, and

(h) 1997Q3-2004Q4.

period”, ”end of the boom period”, or ”start of recession”. However, the ob-

jective definition of each such economic state would be problematic, taking

into account that most researchers and research institutes define the eco-

nomic states with the help of the real GDP growth, which has been ignored

in this example. Furthermore, due to the fact that the cycles are not perfect

in the sense of repeating the same trajectory from one cycle to the other

cycle, the separation using the predefined economic states might be incon-

clusive. Nevertheless, for the sake of progress, the separation was done by

eye, meaning that those time points which seemed to fit to describing a cy-

cle - at least from the eye (of the author) - were selected. But it is still



Page 145 Chapter 6

debatable how the time frames were selected and even if the selected cycles

qualify as a ”full business cycle”. Looking at plot (a) in figure 6.3, one could

argue that the shown plot could qualify to account for one or even two cycles.

However, taking the cycle shown in plot (a) in figure 6.3 as given, one can see

that the one and only cycle is turning counter-clockwise, meaning that the

unemployment rate is leading the price inflation. Interestingly, comparing

plot (a) with plot (b), the time frame for the second cycle is much longer

although the magnitude (radius) is much lower. Normally one might expect,

as in plots (c), (d), and (e) which show three different, but nearly similar, cir-

cular patterns with a larger radius, that these trajectories would take much

longer to be formed than for those cycles which are narrower. It is doubtful

if the circles in plots (f) and (g) would qualify as ”full business cycles”, due

to their length and magnitude. However, the last cycle in plot (h) would at

least qualify as a full cycle for which the confidence regions of the end points

overlay.

Looking at the different cycles in figure 6.3, one can see that the rotation

of the cycles changes over time. In the first period from 1955 to 1962, shown

in plot (a), the cycles are turning counter-clockwise, which means that the

unemployment rate is leading price inflation. In the second period from the

end of 1961 to 1994, shown in plots (b) to (f), the cycles now turn clockwise,

which means that the price inflation is leading the unemployment rate. In

the last time frame from 1994 until now, shown in plots (g) and (h), the

cycles are turning counter-clockwise, which means that the unemployment

rate is leading the price inflation again.

Focussing on the wage share/employment rate short-term fluctuations shown

in figure 6.4, one can determine eight circles, similar to the previous case. It
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should be remarked that the cycles for the wage share/employment rate differ

in terms of the pattern, magnitude, timing, and turning rotation compared

with price inflation/unemployment rate short-term cycles. The cycles shown

in plots (a), (c), (d), (e), and (h) are nearly perfect cycles with overlapping

end point confidence regions. However, the magnitudes and lengths of cycles

do differ from four to eight years. Although the cycle in plot (g) is complete in

the sense of overlapping confidence regions, it is debatable if the cycle would

qualify as a ”full business cycle” from an economic as well as a graphical and

statistical point of view. Then again, plots (b) and (f) are not perfect cycles

from a pattern point of view, but would qualify, with greater conviction, as

business cycles compared to the previously described ones, as shown in plot

(g). Another aspect which makes the cycle in plot (g) unique compared to

the other ones is the turning rotation: Only the cycle in plot (g) is turning

counter-clockwise, while all other cycles are turning clockwise. This means

that the employment rate is leading the wage share.

6.3 Estimating the Leading, Coincident, and Lagging

Indicators Using Generalized Two-Dimensional Loops

In this chapter, the analysis is focussing on the leading, coincident, and lag-

ging indicators defined by the Conference Board and described in chapter

2.4. Due to the fact that three time series are estimated simultaneously,

Teuber (2012b) used the generalized two-dimensional loop model presented

in chapter 5.2.3.

For the estimation of the model in equation (5.55) the growth rates of the

three leading, coincident, and lagging indicators, defined by the Conference

Board, from January 1960 to December 2010 have been used. Here, the

growth rates are defined as the 12-month differences of the logarithmic val-
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ues of each indicator.

Instead of using an ordinary Hodrick-Prescott filter, a penalized spline re-

gression with autocorrelated residuals is preferred. Obviously, the residuals

resulting from an Hodrick-Prescott filter are autocorrelated in this case such

that the Hodrick-Prescott filter should not be used from a statistical point of

view if the autocorrelation exceeds a value of roughly 0.3; see Krivobokova

and Kauermann (2007) for a discussion on the effect of misspecified autocor-

relation structures for penalized splines and therefore the Hodrick-Prescott

filter.

For the estimation, several long-term centers γ have been estimated on a

grid of different degrees of freedoms and then the generalized loops regres-

sion technique was used to fit the remaining deviations from the long-term

trend. Here, the best choice will be shown, remembering that the long-term

fluctuations do not come out of the blue, but have been selected using a hy-

brid approach.

The process of separating the long-term trend out of the given data is deli-

cate because of the trade-off between short-term and long-term fluctuations.

The more structure one is allowing for the long-term trend, the less profound

the short-term fluctuations might be. Assuming a normal Hodrick-Prescott

filter, then more or less the average values of the observations around the

current time points will be used to estimate the best fit. This means that

it will be assumed that the short-term trend values around these observa-

tion time points cancels each other out. However, if the short-term trend is

fluctuating around the long-term trend in waves, a misspecified window for

the time points used, might lead to completely misspecified long-term trends,

such that the short-term fluctuations might not be estimated correctly any-
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more. Therefore, firstly an autocorrelated residual structure will be assumed

and secondly a judgemental degree of freedom for the selection process is

important, meaning that the structure of the long-term trend - as well as the

Hodrick-Prescott filter - should not be used blindly.

In figure 6.5, the growth rates for the indicators are shown as dots and

the corresponding long-term fluctuations as solid lines (leading indicators:

Green; coincident indicators: Black; lagging indicators: Red). It should be

noted that the long-term fluctuations differ from each other but the cycli-

cality character can still be observed. Furthermore, fluctuations of longer

frequencies can be seen in the long-term trends; for example the long-term

trend of growth rates is higher in the ’60s and ’90s and lower around the late

’70s/early ’80s and starts declining at the beginning of the new century. This

means that similar to the work of Kauermann, Teuber, and Flaschel (2012),

here the long-term fluctuations form a full cycle with a length of roughly 40

to 50 years.

Focussing now on the short-term fluctuations calculated using the ”detrended”

growth rates, the resulting short-term fluctuations are shown in figure 6.6

(leading indicators: Green; coincident indicators: Black; lagging indicators:

Red). It is worth noting that the two-dimensional loop structure is capable

of fitting the three economic time series. This means that the underlying

business cycles can be described using polar coordinates and, furthermore,

this means that the time series follow each other on this cyclical pattern,

meaning that the terms ”leading”, ”coincident”, and ”lagging” are well chosen

not just from a timely point of view but also from a cyclical point of view.

Figure 6.7 shows how well each individual time series has been fitted using

the generalized two-dimensional loops approach.



Page 149 Chapter 6

●

●

●
●

●

●
●

●●●

●

●

●●
●●

●

●
●

●●

●

●

●
●

●
●●
●

●●

●
●

●
●

●

●
●
●
●●
●●●

●
●
●

●●
●●●●●

●
●●

●

●
●●●

●●●
●●
●
●

●
●
●
●●
●

●
●
●

●●●
●

●
●●

●

●●

●

●
●
●
●

●

●

●

●

●
●
●

●
●●

●

●
●
●

●

●
●●●

●●●

●

●●

●
●

●●

●

●
●

●●

●●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●
●
●

●

●
●
●
●

●
●

●
●
●

●

●

●

●
●
●
●

●●
●●

●

●

●●

●
●
●●
●

●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●●

●●
●
●
●
●
●
●
●

●

●
●

●
●●

●

●●
●
●
●
●●
●
●

●
●

●
●
●
●

●
●
●
●
●
●

●

●
●

●

●
●
●

●

●
●
●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●
●
●

●

●●

●

●
●
●
●
●

●
●●●●

●●
●
●●●

●●

●
●
●
●
●
●

●

●●
●

●●●
●
●

●●●
●
●●●

●
●
●●●

●●
●

●

●●
●
●
●
●
●●

●●
●

●

●●●
●●●

●

●

●

●
●

●

●

●
●●●●

●

●
●

●●

●
●

●●●●

●●●

●●
●
●●

●●●●●
●●●

●●●●

●●
●●●

●●
●●●●●

●

●
●●
●●●

●●
●

●

●●

●
●●
●
●●●

●●●●
●●
●●
●●●

●●
●

●●●●
●
●

●
●
●●
●●
●●
●●●●

●
●
●
●
●
●
●

●

●
●

●●●
●
●

●

●

●

●●

●

●●

●●
●

●
●
●●●●

●

●
●

●
●
●
●●
●●●●●●●●

●
●
●
●
●●●

●
●●
●
●●
●●●

●

●

●●
●
●
●

●●●

●●

●

●

●
●●●●

●●●

●●

●●

●●●●●●●●●
●●
●
●

●
●

●

●
●

●
●

●●

●

●

●
●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●

●●●
●
●
●●

1960 1970 1980 1990 2000 2010

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

Time

gr
ow

th
 r

at
es

●●

●

●

●●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●
●
●
●●

●

●

●

●

●●●
●

●
●

●
●
●●
●
●●

●●
●

●
●●●

●
●

●●
●●
●
●

●
●

●

●●●

●●
●
●
●
●

●
●

●●
●

●●

●

●●
●
●

●

●●

●●

●

●●

●

●
●
●

●●
●

●●
●

●

●
●

●
●
●
●

●

●

●

●●●
●
●
●●
●●●●●

●

●

●
●

●●

●●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●●

●

●

●

●●

●
●

●●
●

●

●

●
●
●

●●

●

●

●

●
●
●

●

●●
●

●
●
●●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●

●
●

●

●

●
●

●

●

●●●
●
●
●

●
●

●●

●
●●
●●

●
●
●

●
●●
●
●

●
●

●
●

●
●

●

●
●●●

●●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●
●
●
●

●
●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●
●

●
●

●

●

●●
●
●●●

●
●
●

●●

●●●

●

●

●
●

●●
●●●

●

●●
●●

●●
●●
●●
●
●●
●●●

●
●

●

●●
●

●●
●

●
●

●

●
●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●

●●
●●

●●●

●●
●●

●

●●

●●

●

●

●

●
●
●

●●
●●

●

●●●

●●
●

●●●
●

●

●●

●

●

●
●●●

●
●●
●

●
●

●

●
●

●●

●●●
●●●

●●●●

●●●

●●
●
●●
●●

●

●
●●

●

●●●
●
●●

●●
●
●●

●
●●

●●

●
●
●

●

●●
●

●

●
●
●

●
●

●

●

●●●
●

●●

●●

●

●●

●
●●

●●●●
●

●

●●

●
●
●●
●
●

●

●

●
●
●
●●●

●

●
●●

●

●●

●●

●

●

●

●

●
●
●

●

●●●
●
●

●

●
●●
●●
●

●
●●●

●
●●●

●●●
●
●
●
●
●
●●●

●

●●

●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●
●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●
●

●●●●

●
●
●
●

●
●●

●
●
●●

●

●

●
●
●

●

●
●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●
●●

●

●

●

●●●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●
●

●●
●

●
●

●

●
●

●
●

●
●
●

●

●

●
●

●
●

●●●

●

●
●

●●●

●
●●

●

●

●
●
●●
●
●

●

●●
●
●
●

●
●

●

●
●

●

●

●●●

●
●●●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

●●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●●●●●●

●

●
●

●●

●●

●

●●

●
●●

●

●

●●

●

●●
●●

●

●

●

●●
●

●●
●

●●●
●
●
●●
●

●
●

●

●

●
●

●
●

●

●
●●●

●

●

●
●
●
●●
●
●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●
●
●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●

●

●
●
●

●

●

●●●

●●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●

●
●

●
●

●

●

●●

●●
●
●

●
●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

Figure 6.5: Raw growth rates (12-month logarithmic differences) as dots and

estimated long-term trend as solid lines. Green: Leading indicators; black: Co-

incident indicators; red: Lagging indicators. Source: Conference Board, January

1960 - December 2010.

The shift of the angle for the leading indicators compared to the coinci-

dent indicators has been estimated to be φ̂02 = −1.170 with an estimated

standard error of 0.0339. The lagging indicators lag the coincident indicators,

based on the shift in the angle by φ̂03 = 1.324 with an estimated standard

error of 0.0372. This would mean that if a full cycle takes five years, then

the leading indicators lead roughly by 0.93 years and the lagging indicators

lag the coincident indicators by roughly 1.05 years. However, the shift in the
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Figure 6.6: Detrended growth rates (dots) and estimated short-term trends (solid

lines). Green: Leading indicators; black: Coincident indicators; red: Lagging

indicators.

angle is set to be fixed while the frequency/speed of the cycles varies over

time.

In figure 6.8, the trajectories of the two-dimensional short-term trends are

shown for each combination of the three time series. The main structure,

i.e. the angle and radius, can be seen in each sub-figure, however the plots

differ slightly due to the shift in the angle and the radius as well as the non-

constant cyclicality pattern. The shift of the angle can be seen by the tilt of
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Figure 6.7: Detrended growth rates (dots) and estimated short-term trend (solid

lines). First panel: Leading indicators; second panel: Coincident indicators; third

panel: Lagging indicators.

the different cycles while the shift of the radius can only be seen by looking

at the scale of the axes. It is interesting that the lagging indicators and the

leading indicators both have a positive radius shift, i.e. ρ̂03 = 0.4803 with an

estimated standard error of 0.0311 and ρ̂02 = 1.0751 with an estimated stan-

dard error of 0.0273. This means that the fluctuations of the growth rates for

the lagging indicators have a 61.6% stronger magnitude than those of the co-

incident indicators, and the magnitude of the leading indicators growth rates

fluctuations are roughly 193% stronger than those of the coincident indica-
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Figure 6.8: Two-dimensional trajectories of leading, coincident, and lagging in-

dicators over time. Estimated function: Rainbow-colored lines; confidence region:

Grey-shaded ellipse.

tors. The fact that the leading indicators fluctuate from a magnitude point

of view more strongly than the coincident indicators comes as no surprise,

however it is not the naive supposition that the lagging indicators fluctuate

more strongly than the coincident indicators. However, the same pattern

can be observed for the estimated standard deviations of the residuals, i.e.

σ̂1 = 0.004650 for the coincident indicators, σ̂2 = 0.009567 for the leading

indicators, and σ̂3 = 0.007459 for the lagging indicators.
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Figure 6.9: Left-hand-side: Estimated radius function over time. Right-hand-

side: Estimated angle over time.

Looking at figure 6.9, on the left hand side the fitted radius and on the right

hand side the fitted angle have been plotted and are both wiggly, meaning

that no cycle is alike nor is any circle a perfect cycle with constant radius or

constant speed. This means that a non-linear radius and angle function was

necessary to fit the three time series using the generalized two-dimensional

loops approach. The National Bureau of Economic Research (NBER) cites

the business cycle dates for the last 150 years, meaning that reference dates

for peaks and troughs as well as the duration of business cycles are available.

The Business Cycle Dating Committee normally determines business cycle
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peaks and troughs with a publication lag of roughly one year, so at the mo-

ment eight cycles have been identified by the committee for the data at hand.

In figure 6.10, the time intervals, starting from the current NBER peak until

reaching the corresponding NBER trough, has been shaded grey. The figure

shows that the main downward slowing trends can be measured quite well

using the coincident indicators. However, not all steep declines have been de-

termined by the NBER Business Cycle Dating Committee. Normally, most

of the academic research on business cycles would stop at this point, but the

approach presented here might shed more light on the insights of the business

cycles. Therefore, not only the fitted short-term fluctuations and raw data

might be used to determine the stage of the cycles but also the fitted angle.

Due to the fact that the sinus and cosine functions have a periodicity of 2π,

the angle function is invariant to the addition of multipliers of 2π. Therefore,

in figure 6.11 the angle function will be plotted on the [0, 2π] interval.

Focussing on the angle at the recession start dates (reported NBER peak)

and on the angle at the recession end dates (reported NBER trough), the esti-

mated angles and their confidence regions are plotted in figure 6.12. Looking

at the plot on the left hand side, one can see that the angles at the NBER

peaks vary a lot. However, the average upper confidence region is slightly

negative (shown as upper broken line in the figure) and the average lower

confidence regions is slightly negative (shown as lower broken line in the fig-

ure). Furthermore, the statistical null hypothesis that the angle at NBER

peaks times is zero cannot be rejected at a 95% significance level. Looking

at the angle during reported NBER trough times, one can see that the esti-

mated angles and their confidence regions are much narrower and fluctuating

around 0.5π. The average upper confidence level is slightly above 0.5π while
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Figure 6.10: Detrended growth rates of coincident indicators. Dots: raw data;

rainbow-colored line: Estimated short-term trend; grey-shaded area: NBER reces-

sion times.

the average lower confidence region is slightly below 0.5π. The statistical

null hypothesis that the angle at reported NBER troughs coincides with an

angle of 0.5π cannot be rejected at a 95% significance level.

Following the results, this would mean that an angle between 0 and 0.5π

would suggest a recession. Going one step further, one might conclude that

an angle between 0.5π and π would suggest a recovery, an angle between π

and 1.5π a boom time, and an angle between 1.5π and 2π a contraction time.
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Figure 6.11: Estimated angle over time on the [0; 2π] interval. Grey-shaded

area: NBER recession times.

This means that, given the model, one might not only classify the current

stage of the economy into the four business cycle phases, but one can even

instantly classify within the class the stage of the cycle; for instance one can

differentiate just by the angle if at the current time point the business cycle

is in an early recovery or in a late recovery phase.

Now, let us go one step further: If the thresholds defined above are cor-

rect, then one could easily classify the different business cycle stages just by

using the estimated angle. Therefore, with the help of figure 6.11 and the
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Figure 6.12: Left-hand-side: Estimated angle at NBER recession start dates.

Right-hand-side: Estimated angle at NBER recession end dates. Rainbow-colored

line: Estimated angle; grey-shaded area: Confidence regions. Upper broken lines:

Average upper confidence region; lower broken lines: Average lower confidence

regions.

data at hand, one would get the classifications shown in table 6.1.

It should be noted that cycles 2, 3, and 8 in table 6.1 have not been de-

termined by the NBER Business Cycle Dating Committee. Furthermore, the

cycles ”9-1” and ”9-2” show an irregular pattern in that the angle is turning

the rotation twice, meaning that the regular stages ”recession-recovery-boom-
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Cycle recession recovery boom contraction

1 1960:1 1960:12-1961:1 1961:11 1962:6

2 1962:10-1962:11 1963:2-1963:3 1963:7-1963:8 1964:2-1966:2

3 1966:12 1967:7 1968:1-1968:2 1968:10-1969:2

4 1969:11 1970:11 1971:9 1973:3-1973:4

5 1974:2 1975:5 1977:9 1977:12

6 1980:8 1981:4 1981:7 1981:10

7 1982:7 1983:7 1984:3 1985:10-1986:1

8 1986:4-1986:6 1987:5-1987:6 1987:12-1988:2 1989:7-1989:9

9-1 1991:4-1991:5 1992:12-1993:1 1994:8-1994:10 1995:9-1996:1

9-2 1996:10-1997:7 1998:3-1999:12 2001:1

10 2001:9-2001:10 2003:9-2003:12 2004:12-2005:1 2008:4

11 2009:4-2009:5 2010:5 2010:10-2010-12

=̂ NBER trough =̂ NBER peak

Table 6.1: Start dates of various business cycles stages. Recession start corre-

sponds to NBER troughs. contraction start corresponds to NBER peak.

contraction”does not hold and instead the pattern ”recession-recovery-boom-

contraction-boom-contraction-recession”had been observed. This means that

the cycles ”9-1” and ”9-2” might qualify as only one full cycle. In figure 6.13,

the nine cycles are separately plotted for the coincident vs. lagging indicators.

One can see directly that no cycle is alike, in terms of speed, magnitude, du-

ration, location, and ”completeness”. However, the pattern can be observed

quite well and it seems worth noting that the model captures the cyclicality

and sheds new light onto the business cycle discussion.

Another aspect which will be captured by the NBER is the duration of

a business cycle. Given their data, one can see not only that each dura-
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Figure 6.13: Two-dimensional trajectories of estimated short-term fluctuations

of the coincident and lagging indicators. Colored line: Estimated short-term trend;

grey-shaded area: Confidence ellipse; dots: Detrended growth rates. Plots are split

to cover the eleven business cycles defined in table 6.1.
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tion differs from cycle to cycle but also that the long-term trend changes

over time. For instance, the recession duration post-World War II cycles is

shorter on average than in the older days (1854-1919: 22 months; 1919-1945:

18 months; 1945-2009: 11 months). However, the cycle length is expanding

based on peak-to-peak (1854-1919: 49 months; 1919-1945: 53 months; 1945-

2009: 66 months) and trough-to-trough (1854-1919: 48 months; 1919-1945:

53 months; 1945-2009: 73 months) measurements. It is interesting to note,

that the lengths of cycles differ based on the measurement, which is plausible

if one remembers the functional form of the estimated angle.

Given the possibility of classifying any stage of the business cycles with the

help of the estimated angle functions, one could easily approximate the dura-

tion of a cycle for each time point. However, there is a much more elegant way

to calculate the instantaneous frequency of a business cycle. Assuming a cycle

with a linearly increasing/decreasing angle, for instance g1(t) = ρ(t) cosφ(t)

with φ(t) = p · t and ρ(t) > 0, the corresponding duration of a cycle is 2π
|p| .

More generally, the instant business cycle duration will be defined as

duration(t) =
2π

|φ′(t)|
if φ′(t) 6= 0 (6.1)

for any point in time t.

Given the B-spline structure, the estimation of the first derivative can be

calculated using the B-splines basis B′(t) = ∂B(t)
∂t

and the estimated coeffi-

cients θ̂ such that one can estimate the duration by

̂duration(t) = 2π · |B′(t)θ̂|−1 if B′(t)θ̂ 6= 0 (6.2)

for any point in time t.

Unfortunately, the estimation of the angle function is too wiggly to get any
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Figure 6.14: Estimated instantaneous duration of business cycles using the esti-

mated angle.

useful information out of the function to approximate the duration; see there-

fore figure 6.14. But if the angle function is approximated using a function

with fewer degrees of freedom, then the corresponding estimated duration

function will be less wiggly, as one can see in figure 6.15 for various degrees

of freedom (black: df=8, red: df=6, green: df=4, blue: df=3, cyan: df=2).

As one can see, the main trend for the duration estimates changes over time:

The duration of the business cycles is lower in the ’60s to the late ’80s and

then increasing from the early ’90s until today. On average a cycle length is

about five years, but in earlier times (1960-1990) a cycle length is more like
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Figure 6.15: Estimated instantaneous duration of business cycles using an angle

function with fewer degrees of freedom. Black: df=8; red: df=6; green: df=4;

blue: df=3; cyan: df=2.

four years, while nowadays a full business cycle takes more like six to eight

years. However, the ”real” duration varies from cycle to cycle. Using the

NBER classification, one can see that the estimated duration fits quite well

into the pattern calculated by the NBER Business Cycle Dating Committee

determination using the peak-to-peak (1960-1990: 4.78 years and 1990-2009:

8.81 years) and trough-to-trough (1960-1990: 4.92 years & 1990-2009: 8.86

years) measurements.
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6.4 Estimating the Leading, Coincident, and Lagging

Indicators Using Three-Dimensional Loops

Another way to estimate the leading, coincident, and lagging indicators de-

fined by the Conference Board was shown by Teuber (2012a) who uses the

generalized three-dimensional loop model presented in section 5.3, and in

particular equation (5.87).

Instead of using an ordinary Hodrick-Prescott filter, a hybrid approach has

been used. The generalized loops will be fitted given a long-term trend, and

the deviation of the raw from the short-term trend, i.e. yt−g(t) = γ(t) +εt,

will then be used to fit the long-term trend γ. These two steps will be re-

peated until both functions, namely the short-term (g) and long-term trend

(γ), converge. The main advantage is that a misspecified long-term trend in

the first step will not have an irreparable effect.

In figure 6.16, the growth rates for the indicators are shown as dots and

in the upper figure the estimated long-term fluctuations are shown as solid

lines (leading indicators: green; coincident indicators: black, lagging indica-

tors: red). In the lower figure, in addition to the estimated long-term trend,

the ”longer” three-dimensional fluctuation defined by the zenith angle func-

tion, i.e. ρ̂(t) sin υ̂(t), has been added such that the resulted long-term trend

looks much more moderate. However it should be noted that the long-term

trend differs from the Hodrick-Prescott filter a lot.

Focussing on the three-dimensional loop structure, for which the estimation

is shown in figure 6.17, one can see that the detrended growth rates have

been fitted quite well, though the estimation might be improved. However,

it is remarkable that a three-dimensional loop structure with few degrees



Section 6.4 Page 164

●
●

●
●

●
●
●

●●●

●

●
●●
●●

●

●
●
●●

●

●

●
●
●●●●

●●
●●
●
●
●
●
●
●●●

●●●●
●●
●●●●●●●

●●●

●

●●●●
●●●●●

●●

●
●●●●

●
●●
●
●●●●

●●●
●
●●
●
●●
●●
●

●
●
●
●●
●
●●●●

●●●
●
●●●●●●●

●
●●

●●
●●
●
●●
●●

●●

●●

●

●●●
●
●●●

●
●

●

●●●
●
●
●●●

●

●●
●●
●
●
●
●
●●●●

●●●●

●

●

●●
●●●●●

●

●

●

●●
●
●●●

●●

●
●
●

●

●

●

●

●
●●●●●●

●
●●

●●
●●
●
●●●

●
●
●●
●●●

●
●●●

●
●●●●

●
●●

●
●
●●
●●
●●
●
●
●

●●

●
●●
●
●

●
●●●●

●

●

●
●
●
●

●

●

●

●
●

●●●●

●

●
●●●●

●

●

●
●
●
●

●

●
●

●

●
●

●●
●●●●●●

●

●
●●
●
●
●●
●●
●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●
●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●

●●●
●
●
●
●●
●
●
●●●

●●●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●●

●●●
●●●

●●●
●●
●●●●●●●

●
●●●●●●●●●

●

●●
●
●●●●●●●●

●●●●●●
●●●

●●
●
●●●●●●

●
●●●

●●
●●●●●●

●
●●●

●●
●
●
●●●●●●●

●
●
●
●●
●

●●
●●●

●●●●●●●
●●
●●●

●●
●●●●●●●●

●●●
●●●●

●●
●●●●

●●●●

●
●●●●●

●●●
●●
●

●

●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●
●
●●
●●

●●
●

●

●
●
●●●●

●●

●●

●

●

●
●

●

●
●
●●●●

●●●

1960 1970 1980 1990 2000 2010

−
0.

15
−

0.
05

0.
05

0.
15

Time

gr
ow

th
 r

at
es

●●

●
●
●●●

●

●
●●
●

●
●

●●

●

●

●
●
●●●●

●●

●
●

●

●

●●●●
●●
●●●●●●●

●●●
●●●●●

●
●●●●●

●

●●
●
●●●

●●●●●●
●●●●●

●●
●
●●●●

●
●●
●●
●
●●
●

●●
●

●●●
●●●

●
●●

●●●
●
●
●
●
●●●●

●●●●●●●●
●
●

●●
●●
●●
●

●

●●
●●●

●

●●
●
●●
●

●●
●

●
●
●●

●●
●●●

●

●
●●
●

●●

●
●
●
●
●●
●
●●●●●●●

●●●

●

●
●

●

●

●
●

●
●
●●
●
●

●
●

●

●

●●
●
●
●●●●

●●
●●

●●
●●●

●●
●●
●
●
●●
●●
●●
●
●
●●
●

●
●●●

●●
●
●●●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

●
●

●
●●

●●
●
●

●
●
●
●
●
●●●

●●
●
●
●
●

●

●
●

●

●

●

●
●
●●
●●
●
●●
●●
●●
●●
●
●
●●●●●●

●●●
●●
●●●

●
●

●●
●●●●●

●
●●●

●
●●●●

●●●●●●
●●
●●
●
●●●

●●●●●

●
●●●

●
●●●

●
●●●

●
●●
●
●
●

●●
●●●●

●●●
●●
●●
●
●●
●●

●
●
●
●●
●
●●●●●

●●●
●●
●
●●●

●
●
●●
●
●
●
●●●●●●●

●●
●
●
●
●●
●●●●●●

●●●●
●●●

●●●
●●●●

●
●●●

●
●●●

●●●
●●●●●

●
●●
●●
●●●

●
●●●

●
●●●

●●●

●

●●●
●

●●

●●

●

●●

●●
●
●●●●●●

●●
●●
●●●

●
●
●
●●●●●●

●
●●●

●

●●
●●
●

●
●
●
●●
●
●
●●●●

●

●
●●●●●

●
●●●●●

●●●●●●●
●
●●●●●●

●
●●
●
●
●●●●●

●●

●

●
●
●

●

●
●
●
●

●●
●
●●
●

●
●

●
●

●●
●
●

●

●

●●●
●●

●
●
●
●

●

●

●

●

●

●

●●

●●

●

●
●
●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●
●
●●●

●

●●●●
●●●

●
●●●

●●
●●
●
●
●●●

●
●●

●
●●
●●●●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●●

●●

●
●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●
●
●
●
●●●●

●●●

●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●
●
●●●

●

●
●
●●
●

●

●●
●
●●●

●●●
●

●

●

●

●●

●
●

●

●●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●●
●

●

●
●
●
●●
●●
●

●●

●

●
●
●●
●●●

●
●
●●
●
●
●●●

●
●●
●●●

●●●
●
●

●
●●●

●●

●

●●
●●
●
●●

●

●
●

●

●
●●●

●
●●●

●

●

●

●
●●

●
●
●

●
●
●

●●

●
●
●

●
●

●

●
●
●

●●
●●●

●

●

●●
●

●

●

●●

●
●
●●●

●●●

●●
●
●

●
●
●●●●●●●

●
●●

●●

●●
●
●●

●●●

●

●

●●

●
●●●●

●
●
●

●●●
●●●

●●●
●●●●●

●●
●

●
●
●
●
●
●
●
●●●

●
●

●
●●●

●●
●●

●
●

●

●
●
●
●●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●
●●
●●●●

●●●

●
●

●●
●
●
●
●
●
●

●●●
●
●

●
●

●
●
●
●
●

●●●

●●

●●
●

●
●●

●

●●●
●
●

●●

●

●●
●

●

●

●
●
●●●●

●
●

●●
●●
●

●
●●
●●●●

●●●
●
●●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●

●
●

●
●

●
●
●

●●●

●

●
●●
●●

●

●
●
●●

●

●

●
●
●●●●

●●
●●
●
●
●
●
●
●●●

●●●●
●●
●●●●●●●

●●●

●

●●●●
●●●●●

●●

●
●●●●

●
●●
●
●●●●

●●●
●
●●
●
●●
●●
●

●
●
●
●●
●
●●●●

●●●
●
●●●●●●●

●
●●

●●
●●
●
●●
●●

●●

●●

●

●●●
●
●●●

●
●

●

●●●
●
●
●●●

●

●●
●●
●
●
●
●
●●●●

●●●●

●

●

●●
●●●●●

●

●

●

●●
●
●●●

●●

●
●
●

●

●

●

●

●
●●●●●●

●
●●

●●
●●
●
●●●

●
●
●●
●●●

●
●●●

●
●●●●

●
●●

●
●
●●
●●
●●
●
●
●

●●

●
●●
●
●

●
●●●●

●

●

●
●
●
●

●

●

●

●
●

●●●●

●

●
●●●●

●

●

●
●
●
●

●

●
●

●

●
●

●●
●●●●●●

●

●
●●
●
●
●●
●●
●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●
●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●

●●●
●
●
●
●●
●
●
●●●

●●●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●●

●●●
●●●

●●●
●●
●●●●●●●

●
●●●●●●●●●

●

●●
●
●●●●●●●●

●●●●●●
●●●

●●
●
●●●●●●

●
●●●

●●
●●●●●●

●
●●●

●●
●
●
●●●●●●●

●
●
●
●●
●

●●
●●●

●●●●●●●
●●
●●●

●●
●●●●●●●●

●●●
●●●●

●●
●●●●

●●●●

●
●●●●●

●●●
●●
●

●

●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●
●
●●
●●

●●
●

●

●
●
●●●●

●●

●●

●

●

●
●

●

●
●
●●●●

●●●

●●

●
●
●●●

●

●
●●
●

●
●

●●

●

●

●
●
●●●●

●●

●
●

●

●

●●●●
●●
●●●●●●●

●●●
●●●●●

●
●●●●●

●

●●
●
●●●

●●●●●●
●●●●●

●●
●
●●●●

●
●●
●●
●
●●
●

●●
●

●●●
●●●

●
●●

●●●
●
●
●
●
●●●●

●●●●●●●●
●
●

●●
●●
●●
●

●

●●
●●●

●

●●
●
●●
●

●●
●

●
●
●●

●●
●●●

●

●
●●
●

●●

●
●
●
●
●●
●
●●●●●●●

●●●

●

●
●

●

●

●
●

●
●
●●
●
●

●
●

●

●

●●
●
●
●●●●

●●
●●

●●
●●●

●●
●●
●
●
●●
●●
●●
●
●
●●
●

●
●●●

●●
●
●●●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

●
●

●
●●

●●
●
●

●
●
●
●
●
●●●

●●
●
●
●
●

●

●
●

●

●

●

●
●
●●
●●
●
●●
●●
●●
●●
●
●
●●●●●●

●●●
●●
●●●

●
●

●●
●●●●●

●
●●●

●
●●●●

●●●●●●
●●
●●
●
●●●

●●●●●

●
●●●

●
●●●

●
●●●

●
●●
●
●
●

●●
●●●●

●●●
●●
●●
●
●●
●●

●
●
●
●●
●
●●●●●

●●●
●●
●
●●●

●
●
●●
●
●
●
●●●●●●●

●●
●
●
●
●●
●●●●●●

●●●●
●●●

●●●
●●●●

●
●●●

●
●●●

●●●
●●●●●

●
●●
●●
●●●

●
●●●

●
●●●

●●●

●

●●●
●

●●

●●

●

●●

●●
●
●●●●●●

●●
●●
●●●

●
●
●
●●●●●●

●
●●●

●

●●
●●
●

●
●
●
●●
●
●
●●●●

●

●
●●●●●

●
●●●●●

●●●●●●●
●
●●●●●●

●
●●
●
●
●●●●●

●●

●

●
●
●

●

●
●
●
●

●●
●
●●
●

●
●

●
●

●●
●
●

●

●

●●●
●●

●
●
●
●

●

●

●

●

●

●

●●

●●

●

●
●
●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●
●
●●●

●

●●●●
●●●

●
●●●

●●
●●
●
●
●●●

●
●●

●
●●
●●●●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●●

●●

●
●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●
●
●
●
●●●●

●●●

●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●
●
●●●

●

●
●
●●
●

●

●●
●
●●●

●●●
●

●

●

●

●●

●
●

●

●●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●●
●

●

●
●
●
●●
●●
●

●●

●

●
●
●●
●●●

●
●
●●
●
●
●●●

●
●●
●●●

●●●
●
●

●
●●●

●●

●

●●
●●
●
●●

●

●
●

●

●
●●●

●
●●●

●

●

●

●
●●

●
●
●

●
●
●

●●

●
●
●

●
●

●

●
●
●

●●
●●●

●

●

●●
●

●

●

●●

●
●
●●●

●●●

●●
●
●

●
●
●●●●●●●

●
●●

●●

●●
●
●●

●●●

●

●

●●

●
●●●●

●
●
●

●●●
●●●

●●●
●●●●●

●●
●

●
●
●
●
●
●
●
●●●

●
●

●
●●●

●●
●●

●
●

●

●
●
●
●●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●
●●
●●●●

●●●

●
●

●●
●
●
●
●
●
●

●●●
●
●

●
●

●
●
●
●
●

●●●

●●

●●
●

●
●●

●

●●●
●
●

●●

●

●●
●

●

●

●
●
●●●●

●
●

●●
●●
●

●
●●
●●●●

●●●
●
●●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●

●
●

●
●

●
●
●

●●●

●

●
●●
●●

●

●
●
●●

●

●

●
●
●●●●

●●
●●
●
●
●
●
●
●●●

●●●●
●●
●●●●●●●

●●●

●

●●●●
●●●●●

●●

●
●●●●

●
●●
●
●●●●

●●●
●
●●
●
●●
●●
●

●
●
●
●●
●
●●●●

●●●
●
●●●●●●●

●
●●

●●
●●
●
●●
●●

●●

●●

●

●●●
●
●●●

●
●

●

●●●
●
●
●●●

●

●●
●●
●
●
●
●
●●●●

●●●●

●

●

●●
●●●●●

●

●

●

●●
●
●●●

●●

●
●
●

●

●

●

●

●
●●●●●●

●
●●

●●
●●
●
●●●

●
●
●●
●●●

●
●●●

●
●●●●

●
●●

●
●
●●
●●
●●
●
●
●

●●

●
●●
●
●

●
●●●●

●

●

●
●
●
●

●

●

●

●
●

●●●●

●

●
●●●●

●

●

●
●
●
●

●

●
●

●

●
●

●●
●●●●●●

●

●
●●
●
●
●●
●●
●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●
●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●

●●●
●
●
●
●●
●
●
●●●

●●●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●●

●●●
●●●

●●●
●●
●●●●●●●

●
●●●●●●●●●

●

●●
●
●●●●●●●●

●●●●●●
●●●

●●
●
●●●●●●

●
●●●

●●
●●●●●●

●
●●●

●●
●
●
●●●●●●●

●
●
●
●●
●

●●
●●●

●●●●●●●
●●
●●●

●●
●●●●●●●●

●●●
●●●●

●●
●●●●

●●●●

●
●●●●●

●●●
●●
●

●

●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●
●
●●
●●

●●
●

●

●
●
●●●●

●●

●●

●

●

●
●

●

●
●
●●●●

●●●

1960 1970 1980 1990 2000 2010

−
0.

15
−

0.
05

0.
05

0.
15

Time

gr
ow

th
 r

at
es

●●

●
●
●●●

●

●
●●
●

●
●

●●

●

●

●
●
●●●●

●●

●
●

●

●

●●●●
●●
●●●●●●●

●●●
●●●●●

●
●●●●●

●

●●
●
●●●

●●●●●●
●●●●●

●●
●
●●●●

●
●●
●●
●
●●
●

●●
●

●●●
●●●

●
●●

●●●
●
●
●
●
●●●●

●●●●●●●●
●
●

●●
●●
●●
●

●

●●
●●●

●

●●
●
●●
●

●●
●

●
●
●●

●●
●●●

●

●
●●
●

●●

●
●
●
●
●●
●
●●●●●●●

●●●

●

●
●

●

●

●
●

●
●
●●
●
●

●
●

●

●

●●
●
●
●●●●

●●
●●

●●
●●●

●●
●●
●
●
●●
●●
●●
●
●
●●
●

●
●●●

●●
●
●●●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

●
●

●
●●

●●
●
●

●
●
●
●
●
●●●

●●
●
●
●
●

●

●
●

●

●

●

●
●
●●
●●
●
●●
●●
●●
●●
●
●
●●●●●●

●●●
●●
●●●

●
●

●●
●●●●●

●
●●●

●
●●●●

●●●●●●
●●
●●
●
●●●

●●●●●

●
●●●

●
●●●

●
●●●

●
●●
●
●
●

●●
●●●●

●●●
●●
●●
●
●●
●●

●
●
●
●●
●
●●●●●

●●●
●●
●
●●●

●
●
●●
●
●
●
●●●●●●●

●●
●
●
●
●●
●●●●●●

●●●●
●●●

●●●
●●●●

●
●●●

●
●●●

●●●
●●●●●

●
●●
●●
●●●

●
●●●

●
●●●

●●●

●

●●●
●

●●

●●

●

●●

●●
●
●●●●●●

●●
●●
●●●

●
●
●
●●●●●●

●
●●●

●

●●
●●
●

●
●
●
●●
●
●
●●●●

●

●
●●●●●

●
●●●●●

●●●●●●●
●
●●●●●●

●
●●
●
●
●●●●●

●●

●

●
●
●

●

●
●
●
●

●●
●
●●
●

●
●

●
●

●●
●
●

●

●

●●●
●●

●
●
●
●

●

●

●

●

●

●

●●

●●

●

●
●
●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●
●
●●●

●

●●●●
●●●

●
●●●

●●
●●
●
●
●●●

●
●●

●
●●
●●●●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●●

●●

●
●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●
●
●
●
●●●●

●●●

●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●
●
●●●

●

●
●
●●
●

●

●●
●
●●●

●●●
●

●

●

●

●●

●
●

●

●●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●●
●

●

●
●
●
●●
●●
●

●●

●

●
●
●●
●●●

●
●
●●
●
●
●●●

●
●●
●●●

●●●
●
●

●
●●●

●●

●

●●
●●
●
●●

●

●
●

●

●
●●●

●
●●●

●

●

●

●
●●

●
●
●

●
●
●

●●

●
●
●

●
●

●

●
●
●

●●
●●●

●

●

●●
●

●

●

●●

●
●
●●●

●●●

●●
●
●

●
●
●●●●●●●

●
●●

●●

●●
●
●●

●●●

●

●

●●

●
●●●●

●
●
●

●●●
●●●

●●●
●●●●●

●●
●

●
●
●
●
●
●
●
●●●

●
●

●
●●●

●●
●●

●
●

●

●
●
●
●●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●
●●
●●●●

●●●

●
●

●●
●
●
●
●
●
●

●●●
●
●

●
●

●
●
●
●
●

●●●

●●

●●
●

●
●●

●

●●●
●
●

●●

●

●●
●

●

●

●
●
●●●●

●
●

●●
●●
●

●
●●
●●●●

●●●
●
●●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●

●
●

●
●

●
●
●

●●●

●

●
●●
●●

●

●
●
●●

●

●

●
●
●●●●

●●
●●
●
●
●
●
●
●●●

●●●●
●●
●●●●●●●

●●●

●

●●●●
●●●●●

●●

●
●●●●

●
●●
●
●●●●

●●●
●
●●
●
●●
●●
●

●
●
●
●●
●
●●●●

●●●
●
●●●●●●●

●
●●

●●
●●
●
●●
●●

●●

●●

●

●●●
●
●●●

●
●

●

●●●
●
●
●●●

●

●●
●●
●
●
●
●
●●●●

●●●●

●

●

●●
●●●●●

●

●

●

●●
●
●●●

●●

●
●
●

●

●

●

●

●
●●●●●●

●
●●

●●
●●
●
●●●

●
●
●●
●●●

●
●●●

●
●●●●

●
●●

●
●
●●
●●
●●
●
●
●

●●

●
●●
●
●

●
●●●●

●

●

●
●
●
●

●

●

●

●
●

●●●●

●

●
●●●●

●

●

●
●
●
●

●

●
●

●

●
●

●●
●●●●●●

●

●
●●
●
●
●●
●●
●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●
●●
●●●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●

●●●
●
●
●
●●
●
●
●●●

●●●
●●
●●
●●
●●●●

●●●
●●
●●●●●●●●●

●●●
●●●

●●●
●●
●●●●●●●

●
●●●●●●●●●

●

●●
●
●●●●●●●●

●●●●●●
●●●

●●
●
●●●●●●

●
●●●

●●
●●●●●●

●
●●●

●●
●
●
●●●●●●●

●
●
●
●●
●

●●
●●●

●●●●●●●
●●
●●●

●●
●●●●●●●●

●●●
●●●●

●●
●●●●

●●●●

●
●●●●●

●●●
●●
●

●

●●●●●●●●
●●
●●
●●●●●●●●●●●●●

●●
●
●●
●●

●●
●

●

●
●
●●●●

●●

●●

●

●

●
●

●

●
●
●●●●

●●●

●●

●
●
●●●

●

●
●●
●

●
●

●●

●

●

●
●
●●●●

●●

●
●

●

●

●●●●
●●
●●●●●●●

●●●
●●●●●

●
●●●●●

●

●●
●
●●●

●●●●●●
●●●●●

●●
●
●●●●

●
●●
●●
●
●●
●

●●
●

●●●
●●●

●
●●

●●●
●
●
●
●
●●●●

●●●●●●●●
●
●

●●
●●
●●
●

●

●●
●●●

●

●●
●
●●
●

●●
●

●
●
●●

●●
●●●

●

●
●●
●

●●

●
●
●
●
●●
●
●●●●●●●

●●●

●

●
●

●

●

●
●

●
●
●●
●
●

●
●

●

●

●●
●
●
●●●●

●●
●●

●●
●●●

●●
●●
●
●
●●
●●
●●
●
●
●●
●

●
●●●

●●
●
●●●●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

●
●

●
●●

●●
●
●

●
●
●
●
●
●●●

●●
●
●
●
●

●

●
●

●

●

●

●
●
●●
●●
●
●●
●●
●●
●●
●
●
●●●●●●

●●●
●●
●●●

●
●

●●
●●●●●

●
●●●

●
●●●●

●●●●●●
●●
●●
●
●●●

●●●●●

●
●●●

●
●●●

●
●●●

●
●●
●
●
●

●●
●●●●

●●●
●●
●●
●
●●
●●

●
●
●
●●
●
●●●●●

●●●
●●
●
●●●

●
●
●●
●
●
●
●●●●●●●

●●
●
●
●
●●
●●●●●●

●●●●
●●●

●●●
●●●●

●
●●●

●
●●●

●●●
●●●●●

●
●●
●●
●●●

●
●●●

●
●●●

●●●

●

●●●
●

●●

●●

●

●●

●●
●
●●●●●●

●●
●●
●●●

●
●
●
●●●●●●

●
●●●

●

●●
●●
●

●
●
●
●●
●
●
●●●●

●

●
●●●●●

●
●●●●●

●●●●●●●
●
●●●●●●

●
●●
●
●
●●●●●

●●

●

●
●
●

●

●
●
●
●

●●
●
●●
●

●
●

●
●

●●
●
●

●

●

●●●
●●

●
●
●
●

●

●

●

●

●

●

●●

●●

●

●
●
●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●
●
●●●

●

●●●●
●●●

●
●●●

●●
●●
●
●
●●●

●
●●

●
●●
●●●●

●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●

●

●

●●

●●

●
●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●
●
●
●
●●●●

●●●

●

●
●
●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●
●
●●●

●

●
●
●●
●

●

●●
●
●●●

●●●
●

●

●

●

●●

●
●

●

●●
●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●●●
●
●

●

●

●

●

●●
●

●

●
●
●
●●
●●
●

●●

●

●
●
●●
●●●

●
●
●●
●
●
●●●

●
●●
●●●

●●●
●
●

●
●●●

●●

●

●●
●●
●
●●

●

●
●

●

●
●●●

●
●●●

●

●

●

●
●●

●
●
●

●
●
●

●●

●
●
●

●
●

●

●
●
●

●●
●●●

●

●

●●
●

●

●

●●

●
●
●●●

●●●

●●
●
●

●
●
●●●●●●●

●
●●

●●

●●
●
●●

●●●

●

●

●●

●
●●●●

●
●
●

●●●
●●●

●●●
●●●●●

●●
●

●
●
●
●
●
●
●
●●●

●
●

●
●●●

●●
●●

●
●

●

●
●
●
●●

●

●

●
●
●

●

●

●●
●
●

●
●

●

●

●

●
●●
●●●●

●●●

●
●

●●
●
●
●
●
●
●

●●●
●
●

●
●

●
●
●
●
●

●●●

●●

●●
●

●
●●

●

●●●
●
●

●●

●

●●
●

●

●

●
●
●●●●

●
●

●●
●●
●

●
●●
●●●●

●●●
●
●●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●

Figure 6.16: Raw growth rates (12-month logarithmic differences) as dots and

estimated long-term trend as solid lines. Green: Leading indicators; black: Coinci-

dent indicators; red: Lagging indicators. Source: The Conference Board, January

1960 - December 2010.

of freedom describes the complex data structure at hand quite impressively.

Furthermore, the solid black lines in figure 6.17 show the ”longer-term”part of

the three-dimensional loop structure without the short-term fluctuation part

resulting solely from the zenith angle function, i.e. ρ̂(t) sin υ(t). It is worth

noting that this long-term structure had been already observed by Kauer-

mann, Teuber, and Flaschel (2012) for two more pairs of economic time series

using their two-dimensional loop structure. And now, this structure has been
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Figure 6.17: Detrended growth rates (dots) and estimations of the leading in-

dicators (first row), coincident indicators (second row), and lagging indicators

(third row). The colored line represents the estimated function using the three-

dimensional loop structure whilst the black solid line represents the ”longer-term”

trend derived from the zenith angle function. Grey-shaded areas indicate time

frames of NBER defined recession time points.

confirmed by the estimation of the three Conference Board indicators, too.

The long-term cycle length is roughly 40 years. However, given the esti-
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mation of the angle functions, one can define the cycle duration by

durationυ(t) =
2π

|υ̂′(t)|
(6.3)

and

durationφ(t) =
2π

|φ̂′(t)|
. (6.4)

The upper plot in figure 6.18 shows the duration of the zenith cycle, estimated

at any given time point. One can see that until the new century, the cycle

duration was slightly below 40 years and then suddenly increased strongly,

which might be an inaccuracy due to the boundary problem. The average

duration over the last 50 years has been roughly 40 years and confirms the

findings of Kauermann, Teuber, and Flaschel (2012).

The lower plot in figure 6.18 shows the estimated duration of the azimuth

cycle, which is more or less decreasing over time. Over the last 50 years, the

average cycle length was about five years, which is nearly the same dura-

tion which the National Bureau of Economic Research has calculated for the

post-World War II business cycles.

Given the estimation of the three Conference Board indicators, the lead-

ing/lagging character has been clearly confirmed. The estimated shift in

the (azimuth) angle of the leading indicator to the coincident indicator is

φ̂02 − φ̂01 = −1.0321, and the estimated shift of the lagging indicator to the

coincident indicator is φ̂03 − φ̂01 = 1.0415. This would translate into a 9.86

month lead by the leading indicators and a 9.95 month lag by the lagging

indicators compared to the coincident indicators, if the cycle length is five

years. However, the cycle length - as one can see in figure 6.18 - is varying

over time and so is the lagging/leading shift measured in time.
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Figure 6.18: Instantaneous business cycle duration. Upper plot duration of the

longer-term zenith cycle. Lower plot duration of the short-term azimuth cycle.

Grey-shaded areas indicate time frames of NBER defined recession time points.

Furthermore, it is interesting that the shift in the radius has nearly the

same ratio for the three time series as the ratio for the standard deviations

of the residuals. The estimated standard deviations of the three time series

are σ̂1 = 0.01146 for the coincident indicators, σ̂2 = 0.02184 for the leading

indicators, and σ̂1 = 0.01193 for the lagging indicators. Given the shift in the

radius of the leading vs. the coincident indicators, i.e. ρ̂02−ρ̂01 = 0.7692, and

of the lagging vs. coincident indicators, i.e. ρ̂03− ρ̂01 = 0.2206, this translates

into roughly a 2.158× and a 1.247× stronger magnitude of short-term fluc-



Section 6.4 Page 168

tuations of the leading and lagging vs. the coincident indicators, respectively.

However, from a statistical point of view a difference in the shift of the

zenith angle could not be confirmed, suggesting that the leading and lagging

character of the time series are more of a short-term character.

Unfortunately, the estimated azimuth angle function cannot be used to reverse-

engineer the peak and trough dates provided by the National Bureau of Eco-

nomic Research Business Cycle Dating Committee. The angles and their

confidence regions are shown in figure 6.19, which shows the estimated an-

gles in a ”business cycle clock”. Unfortunately, only a main trend but no

meaningful generalization can be drawn from this analysis, so it is not (at

least from a statistical point of view) possible to use the estimation to date

or define the stages of the economy using this estimated three-dimensional

loop structure.
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Figure 6.19: Business cycle clock set by the estimated azimuth angle function.

Left plot shows the point estimation (colored lines) and the confidence regions

(grey-shaded area) of the angle at NBER provided peak dates. Right plot shows

the point estimation (colored lines) and the confidence regions (grey-shaded area)

of the angle at NBER provided trough dates.
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7 Summary

In this work several non-parametric estimation techniques have been intro-

duced and developed to shed light on several economic problems. First,

based on the brief history of business cycles in chapter 2, their definition,

their evolvement over time and several empirical studies were shown. Fur-

thermore, some problems were highlighted and discussed in that chapter.

In chapter 3 several modern statistical models were discussed which build

the groundwork for a sound modelling and testing of the economic hypoth-

esis presented in chapter 4. It should be noted that without the statistical

models in chapter 3, the modelling and estimation of the circular models in

chapter 5 would have been more a theoretical exercise and the findings pre-

sented in chapter 6 would not have been possible.

It is remarkable that even though the statistical groundwork has been known

for a long time, many economists avoid using these techniques to bring their

data sets and models to life. The benefits of the models, presented in chap-

ter 3, are enormous, especially considering to their easy accessibility in most

statistical packages. The effort of an OLS analysis compared to a GLM

or a GAM analysis is negligible. Furthermore, the even more complex and

well-known Kalman filter and Hodrick-Prescott filter are nested models, as

already shown in chapter 3, so these tools should be preferred.

The Generalized Linear Models shown in chapter 3.1 scale the usability of

linear models not only for normal data but also to the whole family of ex-

ponential distributions, among them for instance the binomial, multinomial,

Poisson, gamma, and exponential distributions. This means that even more

data sets can be handled with the same well-sounded model.
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Penalized splines, shown in chapter 3.2, and the Generalized Additive Mod-

els, shown in chapter 3.5, are handy tools to test for non-linearities in data

sets. Most real world relationships are not linear or static over time, so a

suitable framework to estimate these relationships is needed. In chapter 3.6

an example of time-varying coefficients is provided, allowing one to easily

test if the relationship of variables is dynamically changing over time.

Ernst and Teuber (2006), as shown in chapter 4.1, used a penalized spline

model to model time-varying coefficients to test for and estimate the dynamic

debt policy of OECD countries. Another example which had been modelled

based on the introduced statistical models is shown by Flaschel, Tavani,

Taylor, and Teuber (2008) and in chapter 4.2. Here, the non-linearity of

the models was used not only to test for non-linear relationships, but also

to get as a by-product the first derivative of the estimated function. The

confidence regions of the first derivative were analyzed which is bearly possi-

ble using most other techniques. Furthermore, Ernst and Teuber (2008) and

Ernst and Teuber (2012), as shown in chapter 4.3, used a penalized spline

approach with random effects to estimate the non-linear age-productivity

function. Without this approach it is nearly impossible to predict the ran-

dom effects which were essential for the estimation of transitory probabilities

of the idiosyncratic productivity shocks of workers. Here, the multinomial

variables were estimated using the Generalized Linear Model introduced in

chapter 3.1.

The circular model, shown in chapter 5, which has been extensively discussed

by Kauermann, Teuber, and Flaschel (2012), Flaschel, Kauermann, and Teu-

ber (2005), Flaschel, Tavani, Taylor, and Teuber (2008), Proaño, Flaschel,

Diallo, and Teuber (2008), Flaschel, Groh, Kauermann, and Teuber (2008),

Teuber (2012b), and Teuber (2012a) would not have been possible to model
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adequately without the statistical tools shown in chapter 3. As already men-

tioned in chapter 2, no business cycle is alike and they differ in timing and

magnitude making a static model useless. Furthermore, as shown in chapter

5, the center (long-term trend) is essential for the estimation of the short-

term fluctuations, such that at least a test or, even better, a modelling of

a moving center should be preferred. The model developed by Kauermann,

Teuber, and Flaschel (2012) lacks the possibility to model more than two

time series, while Teuber (2012b) improved the two-dimensional model to fit

any arbitrary number of time series. Furthermore, the way Teuber (2012b)

interpreted the modelling is much more elegant in terms of a reduction of

complexity. Teuber (2012a) extended the model and used spherical coordi-

nates instead of polar coordinates, which was an elegant way to account for

long-term cycles confirmed in the previous works.

This work concludes with the estimation and discussion of the long-term and

short-term fluctuations of different time series. In chapter 6, the dynamic of

the unemployment rate/price inflation trajectories and wage share/employment

rate trajectories was analyzed. Here, not only were the short-term cycles ver-

ified, but also long-term cycles with a length of 40-50 years were observed.

The transformation of the Cartesian coordinates of the observations to po-

lar coordinates was crucial in modelling the short-term fluctuations. The

magnitude, measured by the radius, the speed/persistence of business cycles,

measured by the angle, and the leading/lagging character, modelled by a

separate coefficient (shift of angle), can easily be examined within this frame-

work and had shed light on the discussion of business cycles, as one can see in

chapters 6.3 and 6.4, and in the work by Teuber (2012b) and Teuber (2012a).

Furthermore, another handy framework was established to separate the long-

term trend from the short-term fluctuations, such that the clumsy Hodrick-
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Prescott filter with a predefined smoothing parameter was avoided due to the

fact that this model is already nested in the more elegant penalized spline

model. In the light of the empirical studies presented in chapter 6, it seems

that the Hodrick-Prescott filter (with the parameter λ = 1600) uses too many

degrees of freedom, and a less complex long-term component should be pre-

ferred. Although the estimations in chapters 6.2, 6.3, and 6.4 use slightly

different approaches to determine the long-term and short-term trend and

handle different data sets, in all models a long-term trend with a cyclicality

of roughly 40 to 50 years was observed. Furthermore, all estimations show

that the short-term cycles do vary from one cycle to another in terms of mag-

nitude, speed, duration, and location. However, an average cycle length of

five years was confirmed with the models in chapter 6. The dating of business

cycle peaks and troughs, however, differs slightly from the dates provided by

the NBER Business Cycle Dating Committee and, furthermore, more busi-

ness cycles were observed. It should be noted that the provided methodology

seems to handle the dating procedure much better due to the fact that the

model in chapter 5 provides confidence regions which allow not only a point

estimate of a business cycle date to be given, but also a confidence region.
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