Low-Cost Image Generation for Immersive
Multi-Screen Environments

Felix Rabe! Christian Frohlich! Marc Erich Latoschik!

'AI & VR Lab, Bielefeld University

Abstract: This paper describes the configuration of a cost-efficient monolithic render
server aimed at multi-screen Virtual Reality display devices. The system uses common Of-
The-Shelf (OTS) PC components and feeds up to 6 independent screens via 3 graphics pipes
with the potential to feed up to 12 screens. The internal graphics accelerators each use
at least 8 PCle lanes which results in sufficient bandwidth. Performance measurements are
provided for several benchmarks which compare the system’s performance to well established

network based render clusters.

Keywords: Low-cost image generation, render hardware, multi-screen rendering

1 Introduction

Since the middle of the 90th, professional graphics capabilities are entering the low-cost PC
market. Mainly driven by entertainment and gaming, the 3D graphics industry has primarily
focussed on dedicated PC graphics accelerator cards which support single or dual displays
as commonly expected to be found in desktop based systems. To utilize these graphics
engines for Immersive Projection Technology (IPT) systems is the main goal of graphics
cluster technology. The idea is to substitute the dedicated and proprietary intra-node CPU-
to-graphics high-speed interconnects of professional multi-pipe graphics hardware by OTS
(Of the Shelf) network interconnects to cluster multiple common PC based render systems
with 3D graphics accelerator cards for multi-screen environments. The technical challenge
here is how to distribute the render tasks between the interconnected nodes to minimize

bandwidth usage and latency and hence to conserve the limited network resources.

In this paper, we introduce the hardware and software setup of a PC based image genera-
tor (shown in figure 1). Its main differences from past approaches is its utilization of the now
available PC based serial intra-node interconnects instead of a network based interconnect.
Cluster-based graphics systems are usually considered low priced in comparison to dedicated
hardware. For example, a simple system driving 6 screens may be configured for less then
15.000,-EUR including the network infrastructure. Since our system a) does not require
every node to be a fully equipped PC and b) does not need any network infrastructure it
can be assembled for less then 3.000,-EUR. Still, the current system is configured to feed 6
independent displays using 3 independent hardware pipes with the potential to drive up to
12 independent displays.

Figure 1: The new system with 6 screens attached. It runs SPECviewperf® and distributes

the graphics output to each screen using Chromium.

2 Related Work

In general, generating images for multiple screens can be achieved using several ways. Figure
2 illustrates the basic interconnection scheme of a standard PC supporting one graphics card.
One limiting factor in the upcoming discussions is of course the pure graphics performance of
the graphics accelerator. As we will later see, we neglect this bottleneck since—compared to
the multi-pipe interconnection schemas discussed—it is of minor importance. The limiting
factors in the figure are the memory access and the peripheral access which may both be
determined by the underlying transport mechanism of the utilized chipset and/or the CPU
in case the CPU provides built-in communication facilities.

At the current time, a major technology shift in PC based computer architectures can be
observed. First, high-speed network interconnects like 10G Ethernet or Infiniband become
available to the mass-market. Second, CPU core clock rates have reached a limit which com-
plicates brute force clock rate acceleration. This is one of the main factors which motivates
current multi-core CPU architectures for future performance increases. Third, intra-node

connects like PCle (PCI Express) reach a performance high enough to allow for multi-pipe

Figure 2: Simple example of the interconnection scheme of a typical PC. the CPU is con-
nected to the memory utilizing a dedicated communication channel (1). The graphics card
is connected by the supported peripheral interconnect (2). Both connections may be limited

by the given chipset’s and/or CPU’s communication system.

)
o
)

5 gfx
—

gfx
net 14 CPU

memol
-

I m

[
=N

Figure 3: Network based graphics cluster. Multiple nodes with local memory and graphics

cards are interconnected by a network infrastructure (3).

systems being assembled by commodity PC hardware. Key-numbers of different interconnect

types are given in table 1.

Figure 3 illustrates a typical setup of nowadays network based graphics clusters. Several

nodes are interconnected using a network layer. Each node has its own memory and possibly

its own graphics card. Their local connection scheme is defined by the same boundary con-

ditions as in figure 2. The final image generation has to be synchronized between the nodes

using the available inter-node connection. For distributing graphics to generate multiple

images there are several principle ways:

Distributed application: Each node runs the same application in parallel and renders
the scene from a specific view. Only buffer swap synchronization data is send over the

network.

Distributed scene graph: Shared graph-based graphics data structure. Only attribute
changes are synchronized over the network. See, e.g., AVANGO [Tra99] or OpenSG
[RVB02][OSG].

Distributed display-traversal: A multi-pipe aware application directs drawing com-
mands to the appropriate pipes during the draw traversal. See, e.g., SGI®’s OpenGL
Performer™framework, SGI®’s OpenGL Multipipe™, or OpenSceneGraph [Com07].

Distributed graphics command: One (or sometimes multiple) node(s) produce(s) ren-
dering commands which are packed and sent over the network to be executed by the

graphics cards of the receiving nodes. See, e.g., Chromium [HHN*02].

Distributed images: One (or sometimes multiple) node(s) produce(s) final images which
are sent over the network and are displayed by the receiving nodes. See, e.g., SGI®’s
OpenGL Vizserver™

These graphics distribution schemes imply several possible bottlenecks which should be

reflected on the utilized hardware platform. The given distribution schemes greatly vary in

Type Theoretical bandwidth | bidirectional /
full-duplex /
dual channel

SGI® NUMAlink™4 | 3,2GB/s 6,4GB/s

HyperTransport™2.0 | 11,2GB/s 20,4GB/s

HyperTransport™3.0 | 20,8GB/s 41,6GB/s

Gigabit Ethernet 125MB/s 250MB/s

Myrinet 10G 1,2GB/s 2,3GB/s

10G Ethernet 1,2GB/s 2,4GB/s

Infiniband 12x 6GB/s 12GB/s

SGI® XIO 1,6GB/s 3,2GB/s

AGP 8x 2,1GB/s

PCle 1 lane 250MB/s 500MB/s

PCle 4 lanes 1GB/s 2GB/s

PCle 8 lanes 2GB/s 4GB/s

PCle 16 lanes 4GB/s 8GB/s

DDR2-667 Memory | 5,3GB/s 10,6GB/s

DDR2-800 Memory | 6,4GB/s 12,8GB/s

Table 1: Comparison chart between different inter-node and intra-node interconnects. The
upper top describe backplane interconnects. The upper middle entries describe inter-node
interconnects. The lower middle entries describe peripheral interconnects. At the bottom
DDR memory bandwidth is shown. The numbers represent theoretical net rates. Effective

throughput may vary greatly due to additional protocol overhead.

bandwidth requirements. The given list is sorted in increasing demand, where distributed
application has almost no bandwidth requirement and image distribution has the highest.
On the other hand, the schemas imply an inverse application complexity.

The serial intra-node connect PCle has far more potential. NVIDIA®’s SLI™or AMD™’s
(former ATI™s) CrossFire™technology already demonstrates the usage of two graphics ac-
celerators in one PC. To use just 2 cards is more a matter of the market demand for desktop
based 3D acceleration then a technological limit, as demonstrated by one of the same com-

pany’s latest products, the Quadro® Plex.

3 System Layout

In our prototype render system, we have assembled three high-end consumer graphics cards
into a system which supports 3 PCle 16 lanes slots. The general idea behind this architecture
is illustrated in figure 4. The network based inter-node connects of today’s cluster architec-
tures like, e.g., in [AMBRO5][DRE06], are substituted by intra-node connects. Intra-node

Figure 4: Intra-node multi-pipe system.

connects provide higher bandwidth and at the same time a lower latency due to unnecessary
network protocol overhead.

It took considerable effort to assemble a compatible system following that scheme due to
the up-to-dateness of the required components—most just arrived on the the market. There
were several obstacles, the first one was to find a motherboard that not only provided the
three PCle 16 lanes slots, but which physically separated all three slots far enough to let 3
double-width graphics cards to fit in. The second one was about power supply and cooling.
The system produces a lot of heat due to the closely packed graphics cards where each card
consumes a remarkable amount of energy (more then 140 watts). The third obstacle was the
installation of the linux operating system and the X-server configuration, since the board
required some special tweaks to enable its on-board peripherals like the network adapter.
The latter is a requirement since installing the 3 graphics cards does not enable any other

expansion card to be inserted into the system (see figure 5).

Figure 5: Top view of the assembled system. The expansion slot area (top left) is fully
equipped by the three double width consumer graphics cards (NVIDIA 8800GTX). The
1kW power supply directly supports up to 2 cards, the additional power lines are taken from

normal periphery connects.

The list of the main components assembled is as follows: 1 x Motherboard ASUS P5N32E-
SLI, 1 x CPU Intel Core™2 Quad Q6700 (2.66 GHz), 4 x RAM GEIL 1GB DDR2-667,
3 x Graphics cards ASUS 8800GTX, 1 x Power supply Galaxy 1kW, 1 x Server case with
120mm inblowing front fan.

The system runs with Ubuntu 6.10 Edgy Eft with an self-optimized Vanilla Kernel 2.6.20
rc2, and a X.Org 7.1.1 X-Server with NVIDIA-Linux-x86-1.0-9755 binary drivers. The X-
server is configured with six displays from :0.0 to :0.5. Furthermore Chromium 1.8 with some
own improvements for our CAVE environment is used on the new system to get comparable

results to the comparison system.

3.1 Principles

As illustrated, the assembled system follows an interconnection scheme which was histor-
ically supported by dedicated image generators like SGI® (OnyxInfinite Reality series).
This suggest to utilize an appropriate software graphics distribution scheme as formerly
developed for these types of hardware architectures, that is to use a distributed display-
traversal. For this initial setup this choice was currently deferred in favor for a distributed
graphics command approach. This approach has the advantage to let enable the utilization
of unmodified applications. Additionally, since it produces a remarkable communication
overhead, it is a good benchmark for the system’s throughput. If the machine sufficiently
handles this scheme, it will perform even better in the distributed scene graph or distributed

display-traversal.

3.2 Comparison System

Our comparison system is based on a client-server architecture. It consists of one applica-
tion server and six renderclients, one for every image generated for our three-sided CAVE
environment. The server’s configuration is as follows: 2 x AMD Opteron™ Processors 248
2.2 GHz, 4 x 1GB RAM, 1 x Graphics card GeForce 6600GT AGP, 1 x Server case with
120mm inblowing front fan. The six renderclients are configured identically with the follow-
ing components: 1 x CPU AMD Athlon™ 64 Processor 3000+, 1 x GB RAM, 1 x Gainward
GeForce 6800GT PCle 256MB RAM, 1 x Mainboard ASUS A8N-SLI, 1 x Server case with
120mm inblowing front fan.

The computers are interconnected via a Gigabit Ethernet LAN. We are currently in the
process of upgrading our network components to an Infiniband Architecture, but have not
done any testing up until now. As mentioned above, we are running a three-sided CAVE
with this architecure with two possible distribution paradigms. On the one hand we are
using distributed OpenGL with Chromium and on the the other hand a distributed scene-
graph using OpenSG. In the following sections we will show some Benchmarks comparing

our networked cluster with the low cost PC.

4 Benchmark I

The first benchmark approach was designed to evaluate the rendering performance of the
system—Tlocally as well as distributed—and to compare it to our current rendering-cluster
setup. To achieve this, the SPECviewperf® 9 benchmark set [Sta07] and ID Software’s

Quake IIT Arena’s timedemo benchmark were run. Both benchmarks were run locally on one
screen and afterwards distributed with Chromium from one to six screens. The distribution
paradigm of Chromium is based on a client server architecture. At the application node
a stream processing unit (SPU)—in our network setup a tilesort SPU—sends the graphics
commands to server nodes with render SPUs. This setup was adapted on the new server so
that it runs the application and distributes the graphics commands to local servers since one
server is needed for each screen to render.

The SPECviewperf® 9 benchmark is an OpenGL benchmark program. It is distributed
with different kinds of viewsets reassembling real-world applications. The main goal of using
SPECviewperf® was to have reliable and comparable benchmarking results for our system.

Quake IIT Arena’s timedemo benchmark was chosen, because the SPECviewperf® bench-
mark does not apply for the applications that are currently run in our VR-Lab, e.g. there are
no highly complex models. Also the new system has consumer graphic cards which are not
intended to run CAD applications. Furthermore the Quake III Arena engine is distributable
with Chromium since it just requires OpenGL 1.5, in contrary to newer OpenGL 2.0 based
games like Doom 3.

The SPECviewperf®, 9.0.3 for Linux/Unix, did not need any configuration, it runs in
1280x1024 resolution, which is the default resolution for the CAVE setup. It was run locally
on our new server, with Chromium distributing to a single screen, and with Chromium
distributing to six screens as shown in figure 1. To compare the results we ran it on one
screen and on all six screens in our current CAVE setup.

Quake IIT Arena, point-release 1.32, was also configured to render at 1280x1024. Further-
more the configuration included high geometric- and full texture detail, 32 bit color depth
and texture quality, as well as trilinear texture filtering. GL-extensions had to be turned off
since Chromium is not capable of handling them correctly, which resulted in major image-
errors. The timedemo was run with the standard four.dm_68 demo included with the game.
First it was run locally, then distributed with Chromium to one to six screens. Again, to
compare the results to the current CAVE setup it was run locally on our application-server

and then distributed with Chromium to one to six render-servers.

4.1 Results

The SPECviewperf® results (figure 6) and the Quake III Arena’s timedemo results (figure
7) show both that the new system outperforms our comparison system. The results lead also
to the conclusion, that the distribution with Chromium is a big loss in performance, like the

other benchmarks in the following sections show, too.

5 Benchmark I1

After knowing the basic system performance the second benchmark approach is designed to

evaluate how the new system performs in a setup resembling our CAVE environment. This

35 7

NS local C—1

= 30 NS 1 SPU ———1
< NS 6 SPUs ==
o 25 CS 1 SPU
& | CS 6 SPUs
5]
s 20
3 _
S 15 _ -
"8 o _
= 10
.eb _
D]
g 5

0 h —L-n' j] T

SPECviewperf viewset

Figure 6: SPECviewperf® benchmark results. NS refers to our new system and CS to our

comparison system, the number of SPUs refers here to the number of Chromium render

SPUs.

400 L\ New System —a—
Comparison System --¢--

350 -
300 \\

250 \\

200 (- \\

150 | - \\

100 R \H\\\\\\\E\\‘\\\»H

50 SahL TR th\\\\\\\E‘\§~“~f}“““*ﬂ

local 1 2 3 4 5 6
Chromium Render SPUs

Frames per second

Figure 7: Quake III Arena benchmark results.

means stereo projection onto two walls and the floor. In contrary to the first benchmark now
Chromium is used to set the view frustum for each render SPU. Furthermore the tilesort
SPU was configured in two ways. On the one hand it can send all graphics commands to each
renderclient, on the other hand it can perform culling and send only the graphics commands

which are needed to draw what is inside the defined view frustum.

Figure 8: a) Running Chromium city demo and b) running Quake III Arena in our CAVE

environment.

We used two benchmark programs. The first one was the city demo, which is distributed
with chromium. This program generates a city scene rotating around the user (see figure
8 a) and measures the frames per second rendered. The second one was Quake III Arena’s

timedemo (see figure 8 b).

To see the influence of the view frustum, we also tested with the city program for differ-
ences by using the same view frustum for all render SPUs in comparison to three different

view frustums like in our CAVE environment.

5.1 Results

The results for the city demo (table 2) still show that the new system outperforms the
comparison system. Furthermore it shows that the feature of Chromium’s tilesort SPU to
cull before sending the graphics commands to the renderclient improves the performances a
lot. It even slightly improves the performance to look into three different directions like in
our CAVE environment. Projecting onto the floor in case of the city demo means a great

amount vertices being culled, but this may very for different scenes.

The Quake III Arena’s timedemo results show also an improvement in framerate if the
tilesort SPU is culling. But since the Quake III Arena engine already performs culling, which
cannot be disabled, the results do not show the same improvement as using culling with the

city demo.

Broadcast Frustum
1 View | 3 Stereo-views | 1 View | 3 Stereo-views
New system: city FPS 71.37 66.94 162.56 176.3
Standard deviation 1.68 2.31 9.42 7.08
Comparison system: city FPS 34.39 34.12 84.98 92.48
Standrad deviation 0.05 0.13 4.7 2.63
New system: timedemo FPS — 54 — 88
Comparison system: timedemo FPS — 22 — 36

Table 2: Results of running Chromium’s city program and Quake III Arena’s timedemo
in a CAVE-like setup (3 stereo-views). Note that since Quake III Arena has been already

excessively tested during the first benchmark it is run here only with different views.

6 Benchmark III

Finally the third benchmark has been designed to evaluate the network performance and
to examine the slowdown of the system when using Chromium. The first test simply mea-
sures network throughput. Chromium provides a small test-suite to perform this task. The
npclient program will run on the application server and send packages to npservers over the
network. Again here we compared the new low-cost system to the network cluster system.
Another idea is to test different Chromium configurations, how the graphics commands
are distributed. The first one is to ignore Chromium’s client server architecture and just
to have a render SPU at the application node, so that there is no network distribution.
The second one is to have a pack SPU at the application node which simply packs the
graphics commands and sends them over a network connection—in this and the following
cases over the loopback device—to a server node with a render SPU. The third and fourth
configuration run a tilesort SPU at the application node which distributes the graphics
commands to a server node with a render SPU. The two tilesort configurations differ in
the point of distribution over the network: The frustum and broadcast method were tested.
As application we used again Quake III Arena’s timedemo so the results tie in with the

preceding benchmarks.

6.1 Results

The network performance test results (table 3) show that the comparison system’s through-
put is limited by the Gigabit Ethernet (5 runs, tiny variation). In contray the new system’s
limits (10 runs, huge variation) could result from packing and unpacking the data.

The overall performance is also affected Chromium’s distribution method configuration
(figure 9). If there is no distribution over a network the application performs as without
Chromium. If Chromium is configured with an application node that just packs the graphics

commands and sends them over a network connection there is a first big performance loss of

Bytes/buffer 10000 | 100000 | 1000000 | 10000000 | 100000000
New system (MB/s) 916.15 | 1325.4 | 894.33 701.32 676.58
Std. dev. 219.93 | 394.24 | 124.03 72.86 75.21
Comparison system (MB/s) | 102.96 | 101.29 | 98.73 98.72 99.7
Std. dev. 0.13 0 0 0 0

Table 3: Total network performance measurement with Chromium.

nearly 100 FPS (25%). Furthermore if Chromium is used for culling there is an even greater
performance loss of about 230 FPS (57.5%).

400
350
300
250 u
200 u
150 u n n
100 u n n
50 u u u
0

Frames per second

AppNode: Render SPU

AppNode: Pack SPU, ServerNode: Render SPU

AppNode: Tilesort SPU (Frustum), ServerNode: Render SPU
AppNode: Tilesort SPU (Broadcast), ServerNode: Render SPU

Figure 9: Running Quake III Arena’s timedemo with different Chromium configurations.

7 Conclusion & Future Work

In this Paper we have shown a low-cost image-generation solution for immersive multi-screen
environments, using a single computer based on regular consumer hardware. The presented
system feeds up to 6 independent screens and can be extended to feed up to 12 screens using
NVIDIA Quadro 4500 graphics boards. The system outperforms our current setup, which is
based on a networked client-server architecture by 120%. Still, the initial performance gain
of our prototype is not as high as we first expected. First of all one bottleneck is based on
the sysytem’s architecture. Though the Chromium renderserver as well as the application
itself are running on different CPU cores, they share the system’s main interconnection and
memory access. Other than with dedicated SMP systems, which often provide crossbar-like
architectures between the CPUs and the periphal components, I/O and interrupt/signal-
handling in consumer hardware is usually managed by only one node and possibly core. This
can result—as has already been discussed in sections 2 and 3—in several bottlenecks at the

communication channel from the CPU to the main memory and the periphal components

(the graphics cards). Secondly, another bottleneck is caused by Chromium’s distribution
paradigm. Distributing OpenGL commands to three internal graphics cards using the IP-
stack is a major overhead, especially for that type of architectures, where main—even local
loopback—mnetwork access may be dedicated to one specific core.

But nontheless the systems performance was all in all very satisfying. Consdering the
circumstances—taking into account the bottlenecks discussed above—the results are impres-
sive. Additonally thinking of the low costs, compared to a networked cluster or dedicated
image generators, it presents a very reasonable alternative with a high performance.

Future Work: Future work consists of using different graphics distribution paradigms,
for example a distributed scene graph or distributed display-traversal. The performance gain
towards a networked system should be higher than with Chromium’s distributed OpenGL
technique. Since Chromium’s distribution paradigm is not optimal for our system, we are
trying to implement some changes, to reduce the high data of OpenGL commands flow over
the IP-stack. In the next step we are going to compare this setup with a high performance

Infiniband network architecture.

References

[AMBRO05] Jérémie Allard, Clément Ménier, Edmond Boyer, and Bruno Raffin. Running
large vr applications on a pc cluster: the flowvr experience. In Immersive Pro-
jection Technology, October 2005.

[Com07] The OSG Community. OpenSceneGraph. http://www.openscenegraph.com,
April 2007.

[DRE06] Aidan Delaney and Karina Rodriguez-Echavarria. A low-cost linux based graph-
ics cluster for cultural visualisation in virtual environments. In Linux 2006,

Unwversity of Sussex, Brighton, june 2006.

[HHNT02] G. Humphreys, M. Houston, Y. Ng, R. Frank, S. Ahern, P. Kirchner, and
J. Klosowski. Chromium: A stream processing framework for interactive graph-

ics on clusters, 2002.
[OSG] OpenSG. http://www.opensg.org.

[RVB02] Dirk Reiners, Gerrit Vo, and Johannes Behr. OpenSG: Basic Concepts.
www.opensg.org/OpenSGPLUS /symposium /Papers2002/Reiners_Basics.pdf,
february 2002.

[Sta07] Standard Performance Evaluation Corporation. SPECviewperf® 9.
http://www.spec.org/gpc/opc.static/vp9info.html, April 2007.

[Tra99] Henrik Tramberend. A distributed virtual reality framework. In IEEE Virtual
Reality Conference, pages 14-21, 1999.

