
Grounding an Internal Body Model of a Hexapod Walker
Control of Curve Walking in a Biologically Inspired Robot

Malte Schilling1,2, Jan Paskarbeit2, Josef Schmitz2, Axel Schneider2, and Holk Cruse2

Abstract— While internal models are a prerequisite for
higher-level function, they have to be grounded in lower-
level function serving sensorimotor control. In this paper we
introduce an internal body model for the control of a hexapod
walker. The internal model deals with a highly complex robotic
structure of 22 degrees of freedom and coordinates the single
joint movements to achieve an overall stable and adaptive
walking behavior. It is implemented as a hierarchical recurrent
neural network consisting of different levels of abstraction
which are tightly intertwined. We demonstrate the feasibility
of the concept by applying the model to a simulated robot
and show how the different levels of the body model interact
and how this allows to scale the model even further. While
the internal model is used in this context explicitly for motor
control, it is also a predictive model and can be applied for
sensor fusion. We discuss how in this way such an internal
model offers the flexibility to be utilized in motor control and
to be used for planning ahead by a cognitive expansion of the
movement controller.

I. INTRODUCTION

Cognitive function have been found to be based on
lower-level and motor control related function [13]. Plan-
ning ahead—following [16] as the defining characteristic
of cognition—in this sense recruits [1] internal models
originally co-evolved in the context of action [26] in a form
of internal simulation [11]. While this provides a grounding
for internal models, i.e., they are directly anchored in the
sensorimotor system, the internal models are in addition
required to be flexible. Only a flexible model allows to
be applied in a new context. In this way, for example, a
predictive model can be exploited as an internal simulator
to anticipate consequences of possible actions and to select
only an appropriate one when facing a never experienced and
possibly harmful situation.

An internal model of the body [4] can be assumed as a cen-
tral representation and has been found active in quite diverse
tasks besides motor control [28], perception of movements
[14], planning [9] and, in the case of humans, even language
[19]. The body model appears to serve different functions.
First, in motor control it has to solve the inverse kinematic
problem to coordinate whole body movements. Second, as
there are multiple noisy, but redundant sensory information in

*This work has been supported by the Center of Excellence Cognitive
Interaction Technology (EXC 277), by the EC-IST EMICAB project # FP7–
270182 and by a DAAD postdoctoral fellowship.

1M. Schilling is with the International Computer Science Institute
Berkeley (CA), 1947 Center Street, Suite 600, 94704 Berkeley (CA), USA
malteschilling at googlemail.com

2M. Schilling, J. Paskarbeit, J. Schmitz, A. Schneider, and H. Cruse are
with the Center of Excellence Cognitive Interaction Technology, University
of Bielefeld, Germany

s0

s1

s2

f1

r1
f0

a) b)

bo
dy

coxa femur
tibia

γ

β

α

↺
coxa

z

x

y
leg target vector

Fig. 1. The body model for the six-legged walker is divided into two
layers. The lower layer contains six networks, each representing one leg (a).
The upper layer (b) represents the body and the six legs, which are only
represented by vectors pointing towards the tip of each leg. On this level the
leg is described with reference to the respective body segment. Both layers
are connected via the shared representation of the target position of the leg
and are implemented as recurrent neural networks. α, β, and γ denote the
three joint angles.

biological systems, it is important to integrate the redundant
information and to fuse the sensory data. Third, predictive
models are already important in motor control to account
for the delay of sensory feedback. But in addition they are
a prerequisite for the ability to plan ahead.

In this paper, we present a recurrent neural network
approach for an internal model of the body which addresses
all three tasks mentioned. We want to focus here on the
inverse function and show how this type of model can be
applied to the control of a simulated six-legged walking
robot. As this robot has a high number of degrees of
freedom, the overall complexity will be distributed onto two
levels of representation. We will explain how these levels
are interconnected. The work presented demonstrates the
feasibility of the approach for very complex manipulator
structures and how an internal model of the body can be
grounded that can be also used for prediction and sensor
fusion.

II. MMC BODY MODEL

The task of the body model is to control the walking of
a six-legged robot. Each leg consists of three joints. The
central body of the robot consists of three segments that
are coupled via two universal joints. Therefore, the robot
has 22 degrees of freedoms in total. During walking not all
the legs are on the ground at the same time. But even with
only three legs on the ground—as during tripod walking—
there are still at least 13 degrees of freedom which have to
be controlled and which are directly coupled. Therefore, it
is helpful to distribute the complexity onto different levels
of representation (Fig. 1). In our approach we divide the
complexity onto two levels. On the lower level, each leg is
represented. The kinematics of the leg are described through



the three joints and the lengths of the segments. Together,
these elements constitute a target vector of the leg. On the
higher level, only the position of the foot point with respect to
the body segment is represented abstracting away the detailed
joint angle representation required to actually control the
leg itself. The level of body representation is constituted by
vectors representing the foot points of the legs with respect
to the body and by the representation of the single body
segments (see Fig. 2). All of these vectors are represented as
three dimensional vectors. The coupling between the levels is
given through the shared representation of the target position
of the leg.

The body model is represented by a recurrent neural
network based on the MMC principle. In the following, we
will first explain the general MMC approach and will then
introduce the MMC body model for the six legged walker.
We will briefly explain the leg networks, but want to focus
mainly on how the different leg networks can be integrated
in the body model.

A. The general MMC approach

The Mean of Multiple Computation (MMC) principle [5]
allows to find solutions for kinematic problems. Already
quite simple manipulator structures can be intractable from
a mathematical point of view and no closed solution can
be found. For example, a human arm can be considered to
consist of three segments (upper arm, lower arm and hand)
and having seven degrees of freedom. The arm is redundant,
meaning there are many possible solutions to reach for a
point in three dimensional space and one can not provide a
direct mathematical solution. This is a problem for many
control approaches and usually requires the introduction
of additional constraints. In contrast, the MMC approach
exploits the redundancy and as it distributes the complexity
onto a local level, it still can find solutions for manipulators
with a—in principle unlimited—high number of degrees of
freedom.

In the Mean of Multiple Computations approach the kine-
matics are decomposed into local relationships. A local rela-
tionship consists usually only of three variables and describes
how these are related. In the example of a manipulator arm,
one could think of these variables as the vectors of the seg-
ments. Relating two variables often requires the introduction
of additional auxiliary variables, e.g., when relating the first
and second segment one has to introduce a diagonal vector
as a new auxiliary variable. In the end, one can derive from
the kinematics of a manipulator a large set of equations and
each variable (including the auxiliary variables) is contained
in multiple of these computations. Next, to come up with
a Mean of Multiple Computation network, one has to take
for each variable all the computations that contain this
variable and solve the equations for this variable. This results
in Multiple Computations for each variable. For a given
manipulator configuration all this multiple equations will
give the same result. But when one changes via an external
input this change is propagated through the equations also
onto other connected variables. In this case, the Multiple

Computations may provide different solutions. The different
solutions are simply integrated through calculation of the
Mean value of all the Multiple Computations.

In this way, the Mean of Multiple Computation approach
constitutes an iterative approach to calculate the kinematics
of a manipulator. Usually, one wants to include into the
integration of the multiple computations also the current
value of the variable. This introduces low pass properties
into the system and prevents oscillations.

The computation of the equations and the integration can
be at the same time interpreted as a recurrent neural network.
The weight matrix of this network is constituted by the
equations which describe the relations between the variables.
The whole network is acting as an autoassociator and the at-
tractor space is formed by the encoded kinematic constraints.
In a stable state an MMC net represents a manipulator
configuration and all the equations for one variable yield
the same result. But the network can now be used to solve
any kinematic problem. For example, to solve the inverse
kinematic problem only a target position for the manipulator
has to be enforced onto the network. This disturbs the stable
state of the network, but the disturbance is spread to multiple
connected equations and all variables are slightly changed
to account for the introduced error. Over time, the network
settles again in a harmonic state. The network minimizes
the overall error of the network which leads to a solution of
the inverse kinematics, or—if there is no solution—at least
the network comes as close to a solution as possible (When
thinking of reaching movements of an arm, the target position
could be simply out of reach. The MMC network would
provide an arm configuration in which the arm is pointing
towards the target.). In this way, MMC networks have been
used for the solution of inverse, forward and any mixed
kinematic problems (for details on the three segmented arm
example and the complete derivation of a network for the
example see [23]; there it is also shown how the MMC
principle can be applied to complex representations of joint
angles as typically used in robotics).

B. Overview of the MMC Leg Level

The MMC body model consists of two layers (see Fig. 1).
On the lower level, each leg is represented as a kinematic
chain consisting of three leg segments. The three segments
are interconnected and attached to the body through three
joints each providing one degree of freedom. The leg net-
works for the control of the leg are implemented as MMC
networks using joint angle representations. In general, this
can be realized by employing a transformation representa-
tion like dual quaternions to represent the kinematics of
the manipulator [23]. We applied this to the insect leg in
the past [21], but as the insect leg only consists of three
degrees of freedom, it is possible to even simplify such an
MMC network using redundant trigonometric relationships.
Importantly, both types of MMC leg networks—and MMC
networks in general—are forming recurrent neural networks
acting as autoassociators.



r1

r3

r5

r4

r2

r0

f0
f1

s0

s1

s2

r0

f0
f1s0

s1

s2

delta0

a) b)

top view top view

Fig. 2. Vectors constituting the body model (view from above). In a) the
two vectors describing the foot point with respect to the segments are shown
(dashed lines). Leg and body segments shown in bold. b) shows how the
vectors are changed when the model is pulled at the front (delta vector)
and the foot points are kept in place.

Such an MMC network has several advantages compared
to an explicit computation. First, the network is able to solve
forward, inverse and any mixed kinematic problems in a
few iteration steps. Second, explicit computations of inverse
kinematics—if possible at all—often involve the application
of inverse functions of sine and cosine functions which
require case distinctions or lead to singularities. These are
not required in the case of the MMC leg networks. Third, for
cases where no solution is possible (e.g., when a target point
of the leg is situated outside the workspace and therefore
unreachable), the net still converges to a stable and geometric
valid solution which is minimizing the error (in the example,
this would be the leg pointing into the direction of a far away
target).

The leg networks constitute the lower level of the body
model. The MMC networks compute the control signals for
the joint motors during stance movement, i.e., when the
leg is on the ground and therefore, the leg forms a closed
kinematic chain with all the other legs currently touching the
ground. A vector pointing to the foot of the leg is provided
by the higher level body network to the leg network which
calculates corresponding joint angles as control signals and
pushes these down to the joint motors. In the next section,
we will explain how the target vectors of the leg networks
are integrated into the higher level body model.

C. The Higher-level Body Network

We will use a complex MMC body model of a six-legged
walker (that is a hierarchically organized model of the legs
and the body) to control targeted movements of the leg for
the stance movement. The function of the body model is
to mediate the coupling between the single legs. During a
movement these vectors have to be moved in a coherent way.
While the body moves to the front, the feet should stay on the
same place on the ground, i.e., the relative position between
the feet should not change. As the model still has a high
number of degrees of freedom, this is still a hard problem and
not directly computable. Therefore, we apply the idea of the
passive motion paradigm to this problem. The body model

can be thought of as a real stick model of the manipulator.
When we now pull this model at the front with a rubber
band, the front segment will move in this direction and the
other body segments, the legs and the interconnecting joints
will just follow the movement [17].

We use the MMC principle to encode the constraints
describing the kinematics of the body model as described
above (for details on the derivation of the equations from the
kinematic structure see [23]). A movement is now produced
by pulling at the tip of the modeled body which disturbs the
state of the network. The network distributes the disturbance
onto all variables and all vectors have to be changed in order
to account for the error. This relaxation of the network is
constrained and driven by the encoded kinematic constraints
that form the attractor space of the network. The network
settles in a state that minimizes the overall error and at the
same time represents a valid configuration for the robotic
structure. This configuration can be used to control the
simulated robot, i.e., we use the resulting representation
of the target position of the leg as an input for the lower
level representation of the leg geometry that produces joint
movements.

In the following, we want to explain some details of
the body model. As the hexapod walker moves around,
there is no fixed global reference system inherently given.
Approaches in the past have applied the MMC principle for
a hexapod walker with respect to a fixed world coordinate
system [20]—we will deviate from this solution as it is one of
our goals to develop from the bottom-up how representations
are grounded. A body-centered reference system appears to
be an early representation and only later-on other represen-
tations grounded in the former might have been developed
[4]. Besides, the solution presented here uses a much smaller
number of involved equations and is therefore simpler. As a
consequence, the vectors in the body model (see Fig. 2 and
4) are not representing absolute positions, but relative ones.

When setting up the Mean of Multiple Computation net-
work it is difficult to encode the leg target vectors (as the
vectors going from the base of the first joint down to the
end point of the leg, see Fig. 1 a) as such as the body
segments themselves can be moved with respect to each other
while these leg target vectors are attached to a fixed part of
the segment. We would have to ensure this as a constraint
during every iteration. Therefore, we describe the relative
position of a foot point with respect to the segment by
introducing two vectors. First, the f vector starts at the front
of the respective body segment and goes down to the foot
point. Secondly, the r vector connects the rear of the body
segment with the foot point of the leg. These two vectors are
used inside the MMC body network as the representation of
the target position of the leg (Fig. 1 b). Together with the
body segment it is straightforward to derive the leg target
vector which is needed on the lower-level to compute the
corresponding joint angles. This transformation can be given
as a simple neural network, but has to be applied only once
when the information of the foot position is passed down
from the body network to the leg level. We have trained



r0

f0

s0

a)

t = 0 t = 1

delta1
b)

r0

f0
s0

c)

r0

f0
s0

s1

delta1

t = 2

Fig. 3. Introduction of the delta0 vector into the equations: delta0
describes a displacement—a relative pull onto the body segment (a). In
(b) it is shown how this affects the different equations: the segment vector
is directly altered by this delta0 vector and the f0 vector, too. The r0
vector remains the same. The overall error stemming from the delta0 vector
can be propagated to the next segment which then is also pulled and also
participating in compensating for the disturbance (c). In this way the whole
network representing the body model can be driven.

simple feedforward networks for such simple transformations
in the past [20].

As we are only using relative and local relations, we
cannot specify from the outside a new target position for
the robot in world coordinates and also can not just simply
specify a new target vector with respect to the current body
reference system as this changes over time and we would
have to keep track of such a target position. Therefore, we
take the idea of the pulled movement literally and introduce
a pull vector (delta0 for the first segment) which is attached
to the front body segment. In a settled state of the network
this vector is zero. But when we introduce a constant pull,
it adds a displacement during each iteration and disturbs the
equations. It constantly drives all the connected variables and
acts like an explicit error term. This term is included in the
equations containing the first body segment. Fig. 3 illustrates
how now for the f0-vector a new value is calculated after an
iteration step (this is done in the same way for the other legs,
too).

An equation taking part in the computations of an MMC
network represents how the new value of a variable can
be calculated from current values of related variables. Such
equations are deduced from closed chains of vectors describ-
ing the kinematics and we restrict ourselves only to use local
relationships, i.e., relationships consisting of a small number
of variables (usually three, forming all together a triangle
described by the vectors). Here, we introduce a new variable
which represents an explicit error or displacement term
(delta0). As shown in Fig. 3 a) delta0 explicitly represents
the displacement of segment number zero in between two
time steps. From this, we can derive equations for the
depending variables for the next time step (Fig. 3 b):

s0(t+ 1) = s0 + delta0(t)

f0(t+ 1) = −delta0(t)− s0(t) + r0(t)

r0(t+ 1) = −s0(t) + f0(t) = r0(t) (1)

Importantly, only the f0 and segment (s0) vector are affected
by the delta0 vector. But this change spreads through the
equations to all other connected variables (including the r0
vectors). These equations are now integrated into the set of
equations used to calculate a new value for a variable.

In principle, in MMC networks all variables can be

top view

a)

foot5-4

foot5-2foot4-3

foot5-3

foot5-0
foot5-1

foot4-2

foot4-1

foot3-0

foot4-0

foot3-1

foot3-2

foot2-1

foot1-0

foot2-0

b)

top view

r3

r4

r0

f0
s0

s1

s2

foot4-3

foot3-0

foot4-0

Fig. 4. Introduction of the vectors connecting the foot points. a) vectors
connecting the foot points of the legs. b) example configuration during
walking, only three legs are on the ground (front left, middle right, hind
left. Bold line: body segments.

changed freely. But for some of the variables certain re-
strictions should apply, e.g., in Fig. 3 b) one can see that
the new segment vector s0 has become longer than the
segment. Therefore, one can introduce external constraints
which are applied after every iteration. In the case of the
segment length, the s0 vector will have to be shortened which
introduces another disturbance into the network (the network
is in a non-harmonic state and is still moving through the
attractor space). When—at some point in time—we set the
delta0 vector to zero, we delete all external disturbances and
the network will settle during a few iteration steps and will
compensate also for the internal disturbance which stems
from the application of the non-linear constraints.

We can also exploit this internally produced error: Until
now, we only have explained how the first segment is pulled
through the explicit disturbance vector introduced by us. But
how are the other body segments adopt the movement, what
is pulling the next body segment? Actually, the first segment
pulls at the second segment (in direction of its movement)—
and this pull corresponds to the error vector from above (Fig.
3 c). The vector that we use for compensation of the length
change can be also used as a displacement for the following
body segment (and in the same way a delta vector can be
derived for the last body segment):

delta1(t+ 2) = r0(t+ 1)− f0(t+ 1)− s0(t+ 1) (2)

An important aspect of the MMC body network are the
relations between the foot points of the walker (Fig. 4). As
we have argued above, we use relative relations between all
the participating variables. These describe, on the one hand,
the embodied relations, i.e., a leg or a segment. On the other
hand, the foot point relations relate the body model to the
environment: These vectors are situated and they provide a
connection from the body to the surroundings. The foot point
vectors constitute something like a world for the agent. They
provide an embodied frame of reference to which the world
can relate and in which global references can be anchored.
One important aspect is that these vectors are not allowed to
change because as the insect can attach with their tarsi to the



Pulling the internal model at the front (0.4, 0.0)

t = 0 t = 25 t = 50 t = 75 t = 100

Fig. 5. Example run of the internal body model (time from left to right), shown are different snapshots of the simulation (in the top a view from above,
below a perspective view from the side and top). Shown are only the f vectors for the legs which are currently on the ground (producing the stance
movement). In the fourth picture all the legs are on the ground while they are all switching from stance to swing (swing to stance respectively) behavior.

ground the feet are fixed on the ground. We can derive all
possible connections between the feet (15 overall, shown in
Fig. 4 a) and from this we can derive closed chains of vectors
which can be used to set up equations (e.g., for the left front
leg and the right middle leg, we can setup an equation as
illustrated in Fig. 4 b): f0 = −s0 + f3 + foot3−0). From
this, we achieve for each leg variable (both, the r and the f
vectors) 5 additional equations, but most of the time only a
few of these can be used. When the robot is walking, part
of his legs are in the air while making a swing movement.
For these legs, we cannot exploit the foot vectors as the feet
are not fixed anymore and the relative position between the
feet changes (for an example during tripod walking, see Fig.
4 b).

Therefore, the controller [8] which selects for each leg
which movement to produce (there are only two possibilities:
a swing movement (for details on how the swing movement
is controlled see [25]) moving the leg to the front or the
stance movement pushing the leg backwards and moving
the body forward) has to inform the body model about
which feet are on the ground and thus shall be included in
the computations of the body model. As all the relations
are described directly as part of a neural network, this
modulation through the higher level controller can easily be
included—a leg in the air is inhibiting all its contributions
in the body model.

The MMC network is constituted by all these equations
describing multiple computations for each variable. The mul-
tiple computations are integrated through mean calculation.

III. SIMULATION RESULTS
The body model has been implemented as described

above. The internal model was used to compute the joint
trajectories of the legs being in stance mode (for details
on how the swing movement is controlled see [25]). As
explained, the internal model consists of two layers—a body
layer and a layer consisting of the six leg networks. This
model is pulled from the outside in the walking direction
and provides corresponding representations of the target
position of the leg (and segment orientations) to the overall
movement of the body. A disturbance vector (describing the

displacement) is set in the body model and the network is
advanced one iteration step. In our simulations, the body
model has not to settle to a complete harmonic state before
the foot point position can be passed down from the body
level to the leg networks. One iteration step per control step
has shown to be sufficient, as the network continues to relax
to a stable state over the following control steps applied, even
though these might introduce new disturbances. The resulting
foot point positions are translated into leg target vectors and
these are forced onto the MMC leg models which are then
advanced further. The leg networks settle quickly (a couple of
iteration steps) into a stable state and provide corresponding
values for the joints. When a leg is in stance mode, these
values are taken to control the joints of the simulated robot
(these values are used as target values for the individual joint
motor, for details on the actuation of the individual joint see
[18]).

In Fig. 5 we show an example of a straight movement
(to the right) as represented by the neural network model.
The explicit pull vector is set and drives the activation of the
network, first it moves the front segment and the attached
legs. Then the activation is propagated to the other segments.
As can be seen, the body adopts the movement while the
feet keep in place. Shown are only the f vectors for the
legs on the ground. These vectors are the vectors which are
shared with the lower leg level and which are pushed onto the
leg networks as the leg target vectors. The leg network then

Pulling the internal model at the front (0.2, 0.1)

t = 0 t = 25 t = 100

Fig. 6. Example run of the internal body model (time from left to right),
shown are different snapshots of the simulation when the body model is
pulled to the front and left. The segments are following this direction and
the legs support the movement. Shown are only the f vectors for the legs
that are currently on the ground (producing the stance movement).



a) b) c)

Forward walking with body Model

Fig. 7. Simulated robot walking forward using the internal body model. Red
and green vertical bars illustrate the position of the anterior extreme position
(AEP) and posterior extreme position (PEP) of each leg, respectively.

produces the corresponding stance movement. Fig. 6 shows
another simulation, this time the body model is pulled to
the front and the left. Again, the model follows the induced
movement.

We have applied the model to a robot in a dynamic
simulation. The robot is controlled by a biological inspired
controller termed Walknet [8]. The general idea is that each
leg has its own controller deciding which movement to
perform. This decision is based on the current sensory state
of the leg, but also influenced by the state of the neighboring
legs. It has been proven in the past to lead to stable
walking behaviors and be especially good at adapting to even
severe disturbances [24]. While the swing net is controlled
by a simple neural network [25], the stance movement is
controlled by the body model. The Walknet controller has to
inform the body model about which legs are currently fixed
on the ground. These legs constitute the current manipulator
configuration that is realized by the network. Fig. 7 shows
a picture series of the walking robot using the internal body
model.

To use the body model to negotiate a curve, only the pull
vector acting on the body model has to be adjusted and has
to point in the direction the animal should walk to. The body
model is pulled (at the front of the first segment) into this
direction and all the standing legs are following as well as
the segments. In Fig. 8 we show an example run in which
the pull vector is set to the front and left of the animal (left

a)a) b)

c) d)

Curve walking with body Model

Fig. 8. Simulated robot walking a turn to the left using the internal body
model. The internal body model is constantly pulled to the front and the
left. Red and green vertical bars illustrate the position of AEP and PEP of
each leg, respectively.

and down in the figure). As can be seen, the robot is taking
a slight turn which is initiated by the body segments turning
slowly into the direction of the curve and which is supported
by the adapted leg trajectories.

IV. DISCUSSION

Different notions of body representations can be found
in the literature (for a recent review see [7]). It is usually
distinguished between body schema and body image. The
body schema is the sensorimotor representation that is based
on afferent and efferent information and that is utilized in
guiding action. The body image, on the other hand, subsumes
all other types of representations not involved in action, e.g.,
conceptual or emotional ones and it is usually associated with
conscious aware representations (as the notion of a body
image is quite broad it has been proposed to differentiate
more and to partition the concept of body image in multiple
representation [7]).

The model presented here falls into the category of body
schema. It is important to note that the current geometrical
state of the body is represented as an activation of the
network and is not encoded at some place of the recurrent
network. The MMC model captures the general functional
and geometric relationships of the body (for an extension
integrating also dynamic characteristics of body movements
see [22]). It does not represent specific segment sizes. In this
way, the model provides a set of general bodily character-
istics which allows to be applied on different bodies. This
flexibility makes the body model applicable for diverse tasks.
It can be used in different contexts, e.g., for the control of
the own body or for the perception of someone else’s body.

In a recent review, Hoffmann et al. [12] summarized
work on the application of body representation in robotics
concluding that body schemas can be used to improve the
behavior of robots. Body schemas are applied in robotics in
different forms. While some are completely predetermined,
it has become more and more important that body schemas
can adapt to structural changes and are—at least partially—
learnt. In self-calibrating approaches the general topological
structure of a body is given and only the parameters are
learned (e.g., in [10] from the topology of the robot and
parts of the kinematics the robot is able to learn the rest
of the kinematic parameters through self-observation). Other
approaches try to come up with a body schema starting from
scratch (an impressive example is the work by Bongard [2]
in which a starfish like robot synthesizes a body scheme and
a simple walking behavior and can adapt both even when
one leg of the robot is shortened). Most of these approaches
have been applied only to quite simple robotic structures
(Bongard’s robot consists of eight degrees of freedom)
and lots of the work focus on the learning of visuomotor
coordination of arm movements [12]. The presented MMC
model deals with a much more complex body structure and
provides a hierarchically organized model which can be
further extended. We are not dealing with learning as such
of the model, as the underlying structure is assumed partly
innate [3] and is nonetheless quite flexible.



Besides that, typical approaches of employing a body
schema usually only concentrate on task specific models
serving a specific function (the inverse kinematic function) or
explicitly distinguish between inverse and forward kinematic
models [27]. While this not only requires a large number
of—partially redundant—models, it also hinders transfer
of knowledge between models [6]. In contrast, the MMC
model is a flexible body model which can be recruited
for different function (forward and inverse). At the same
time, it provides a principle to exploit redundancy, not only
from the kinematic description, but also from sensory input.
This appears to be an important property as most biological
systems consist of a multitude of sensors which often pro-
vide redundant data, e.g., the hand position measurement is
influenced by skin, joints, muscle, eyes, and even the ears
[15]. It has been proposed that the brain integrates these
different multimodal influences as a form of weighted mean
computation [15] like is done in the MMC model.

V. CONCLUSIONS
We have introduced an internal model of the body im-

plemented as a recurrent neural network. The body model
consists of two layers which are connected through a shared
representation of the target position of the leg. A detailed
description of the leg has been provided in [23] showing how
an MMC type model can be used to mediate between joint
angle representations and a Cartesian target space for the leg.
Here, we presented how a body model can be structured onto
different levels and how the different layers can be integrated.
We have applied the body model for a hexapod walker with
overall 22 degrees of freedom and used the body model to
coordinate the movement of all legs touching the ground
and to control the actuation of the joints between the body
segments. We demonstrated how the body model can be used
to negotiate the joint movements for forward walking and for
walking in curves.

We are currently applying the leg model to integrate
multimodal sensory data and in this way to cancel out noise
by exploiting the encoded structural information and the
predictive information on the anticipated movements. We
will use the body model in a next step also as a forward
model for planning ahead. The body model will be driven in
an internal simulation loop [11] as a replacement for the body
itself, allowing to try out possibly dangerous behaviors in
simulation before applying them to the real robot. This would
allow the robot to cognitively solve movement problems
without getting harmed.

REFERENCES

[1] M. Anderson, “Neural reuse: A fundamental organizational principle
of the brain,” Behavioral and Brain Sciences, vol. 33, pp. 254–313,
2010.

[2] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118 –
1121, November 2006.

[3] G. Carruthers, “Types of body representation and the sense of embod-
iment,” Consciousness and Cognition, vol. 17, no. 4, pp. 1302 – 1316,
2008.

[4] H. Cruse, “Feeling our body - the basis of cognition?” Evolution and
Cognition, vol. 5, no. 2, pp. 162–173, 1999.

[5] H. Cruse, U. Steinkühler, and C. Burkamp, “Mmc - a recurrent neural
network which can be used as manipulable body model,” in From
animals to animats 5, R. Pfeifer, B. Blumberg, J.-A. Meyer, and
S. Wilson, Eds., 1998, pp. 381–389.

[6] P. R. Davidson and D. M. Wolpert, “Internal models underlying grasp
can be additively combined.” Experimental Brain Research, vol. 155,
no. 3, pp. 334–340, Apr 2004.

[7] F. de Vignemont, “Body schema and body image–pros and cons,”
Neuropsychologia, vol. 48, no. 3, pp. 669 – 680, 2010.

[8] V. Dürr, J. Schmitz, and H. Cruse, “Behaviour-based modelling
of hexapod locomotion: Linking biology and technical application,”
Arthropod Structure & Development, vol. 33, no. 3, pp. 237–250, 2004.

[9] D. T. Gilbert and T. D. Wilson, “Prospection: Experiencing the future,”
Science, vol. 317, no. 5843, pp. 1351–1354, 2007.

[10] M. Hersch, E. L. Sauser, and A. Billard, “Online learning of the body
schema,” I. J. Humanoid Robotics, vol. 5, no. 2, pp. 161–181, 2008.

[11] G. Hesslow, “Conscious thought as simulation of behaviour and
perception,” Trends in Cognitive Sciences, vol. 6, no. 6, pp. 242–247,
2002.

[12] M. Hoffmann, H. Marques, A. H. Arieta, H. Sumioka, M. Lungarella,
and R. Pfeifer, “Body schema in robotics: a review,” IEEE Trans.
Auton. Mental Develop., vol. 2, no. 4, pp. 304–324, December 2010.

[13] M. Jeannerod, Motor Cognition — What Action tells the Self. Uni-
versity Press, Oxford, 2006.

[14] F. Loula, S. Prasad, K. Harber, and M. Shiffrar, “Recognizing people
from their movement,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 31, no. 1, pp. 210–220, 2005.

[15] T. R. Makin, N. P. Holmes, and H. H. Ehrsson, “On the other hand:
Dummy hands and peripersonal space,” Behavioural Brain Research,
vol. 191, no. 1, pp. 1–10, 2008.

[16] D. McFarland and T. Bösser, Intelligent behavior in animals and
robots. MIT Press, Cambridge, MA, 1993.

[17] F. Mussa-Ivaldi, P. Morasso, and R. Zaccaria, “Kinematic networks
distributed model for representing and regularizing motor redundancy,”
Biological Cybernetics, vol. 60, no. 1, pp. 1–16, 1988.

[18] J. Paskarbeit, J. Schmitz, M. Schilling, and A. Schneider, “Layout
and construction of a hexapod robot with increased mobility,” in
IEEE/RAS-EMBS International Conference on Biomedical Robotics
and Biomechatronics, 2010, pp. 621–625.

[19] F. Pulvermüller, “Brain mechanisms linking language and action,”
Nature Reviews Neuroscience, vol. 6, no. 7, pp. 576–582, July 2005.

[20] M. Schilling and H. Cruse, “Hierarchical MMC Networks as a
manipulable body model,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN 2007), Orlando, FL, 2007,
pp. 2141–2146.

[21] M. Schilling, J. Paskarbeit, A. Schneider, and H. Cruse, “Flexible
internal body models for motor control–on the convergence of con-
strained dual quaternion mean of multiple computation networks,” in
Proceedings of the International Joint Conference on Neural Networks,
2012, in-press.

[22] M. Schilling, “Dynamic equations in MMC networks: Construction of
a dynamic body model,” in Proc. of The 12th International Conference
on Climbing and Walking Robots and the Support Technologies for
Mobile Machines (CLAWAR), 2009.

[23] ——, “Universally manipulable body models — dual quaternion
representations in layered and dynamic MMCs,” Autonomous Robots,
vol. 30, no. 4, pp. 399–425, 2011.

[24] M. Schilling, H. Cruse, and P. Arena, “Hexapod Walking: an expansion
to Walknet dealing with leg amputations and force oscillations,”
Biological Cybernetics, vol. 96, no. 3, pp. 323–340, 2007.

[25] M. Schumm and H. Cruse, “Control of swing movement: influences
of differently shaped substrate,” Journal of Comparative Physiology
[A], vol. 192, no. 10, pp. 1147–1164, 2006.

[26] L. Steels, “Intelligence with representation,” Philosophical Transac-
tions: Mathematical, Physical and Engineering Sciences, vol. 361, no.
1811, pp. 2381–2395, 2003.

[27] D. M. Wolpert and M. Kawato, “Multiple paired forward and inverse
models for motor control,” Neural Networks, vol. 11, no. 7-8, pp.
1317–1329, 1998.

[28] D. Wolpert, R. Miall, and M. Kawato, “Internal models in the
cerebellum,” Trends in Cognitive Sciences, vol. 2, no. 9, pp. 338–347,
1998.


