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Abstract

Learning to coordinate high-dimensional motor systems is a fundamental task for
humans as well as robots. Traditional approaches to the computational learning of
coordination skills rely on an exhaustive exploration of possible actions, which is not
feasible in high dimensions. This thesis investigates reaching as a prototypical coordi-
nation problem and introduces the concept of goal babbling for the learning of reaching
skills in high-dimensional domains. Goal babbling is inspired by studies about infant
development that show that already newborns attempt goal-directed movements, even
if they can not perform them successfully. This thesis develops methods that bootstrap
reaching skills by mimicking such early goal-directed movements, and demonstrates
their success in high dimensions.

The methods developed in this thesis implement goal babbling for the learning of
inverse models as a direct mean to solve coordination problems. Theoretical results
show how such inverse models can be learned by means of goal babbling. This thesis
introduces the first algorithm that can learn inverse models by fitting observed data
even when the coordination problem contains solution sets that are not convex, which
has been a severe limitation of previous algorithms. It is shown that the approach
allows for a bootstrapping that scales almost constantly with respect to the dimension
of the action space, which is opposed to the exponential cost of exhaustive exploration.
Experiments demonstrate that goal babbling constitutes a positive feedback loop be-
tween exploration and learning during the initial bootstrapping of skills. In an online
learning scenario this is shown to permit substantial speedups of learning and to allow
for human-level learning speed. Reaching with a bionic robot trunk is investigated as
a practical scenario that is very hard to solve without learning due to the lack of ana-
lytical models and non-stationary system behavior. Extensive real-world experiments
demonstrate the practical feasibility and usefulness of the goal babbling approach on
this challenging platform.
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Chapter 1

Introduction

“From the motor chauvinist’s point of view the entire purpose of the human
brain is to produce movement. Movement is the only way we have of
interacting with the world. All communication, including speech, sign
language, gestures and writing, is mediated via the motor system. All
sensory and cognitive processes may be viewed as inputs that determine
future motor outputs.” [Wolpert et al., 2001]

1.1 Motivation

The human body possesses more than 600 skeletal muscles [Welsh and Llins, 1997].
Performing purposeful actions to achieve some behavioral goal requires a high degree
of coordination of these many degrees of freedom. Yet, human infants are born without
the most basic coordination skills like reaching for an object [Konczak et al., 1997],
which poses the learning of sensorimotor coordination as a fundamental problem in
human development. The ability to learn sensorimotor coordination from scratch also
allows to master the change induced by varying environments or body growth, and
to learn more complex tasks like writing or riding a bicycle [Wolpert et al., 2001].
Understanding this ability to learn, and utilizing it for modern robotics systems is
one of the major goals of the research fields of cognitive [Kopp and Steil, 2011] and
developmental robotics [Lungarella et al., 2003, Asada et al., 2009].

This thesis investigates the learning of reaching skills, as an exemplary coordination
skill, from a perspective of robotics and machine learning. The problem of reaching
is to find motor commands (e.g. joint angles of a robot arm) that move the robot’s
end-effector (e.g. the gripper) towards some desired position in space. This problem
setup is not only illustrative, but very prototypical for other problems of sensorimotor
coordination: it asks the very general question of how to achieve some behavioral goals
by means of actions. The skill of reaching itself is also fundamental for both robots and
humans, since the positioning in space is necessary for any use of the robot’s gripper
or the human’s hand. Already standard robots with well known geometry and mass
distribution largely benefit from learning for the purpose of accurate and agile motor
coordination [Nguyen-Tuong and Peters, 2011]. Learning is even more important for
new generations of robots that combine mechanical flexibility, elastic material, and
lightweight actuation like pneumatics. Such robots are often inspired by biological
actuators like octopus arms [Laschi et al., 2009], elephant trunks [Korane, 2010] (see
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Chapter 1 Introduction

Figure 1.1: The Bionic Handling Assistant mimics an elephant trunk.

figure 1.1), or human biomechanics [Hosoda et al., 2012], and provide enormous po-
tential for the physical interaction between the robot and the world, and in particular
between robots and humans. The downside of their biologically inspired design is that
analytic models for their control are hardly available and difficult to design. This
qualifies learning as an essential tool for their successful application.

Successful reaching skills can be well understood with the notion of internal models
[Wolpert et al., 1998], whereas forward models predict the outcome of an action and
inverse models suggest actions in order to achieve a desired outcome. The bootstrap-
ping of internal models without explicit prior-knowledge requires experience that has
to be generated by exploration. Machine learning approaches thereby traditionally
rely on an exhaustive exploration of all possible motor commands, frequently gener-
ated by means of an entire random procedure, which is referred to as “motor babbling”
[Bullock et al., 1993, Demiris and Dearden, 2005]. After the data generation phase,
learning and coordination can be phrased in a variety of ways [D’Souza et al., 2001,
Sun and Scassellati, 2005, Reinhart and Steil, 2011]. Yet, exhaustive exploration can
not be achieved on high-dimensional motor systems such as modern humanoid robots,
bionic elephant trunks, or the human body. The sheer number of combinations of
commands for different actuators is too large to be explored in the lifetime of any
learning agent. Successful application of exploration and learning on robots like the
Bionic Handling Assistant demands approaches that yield useful results even without
fully exploring the space of possible motor commands. Therefore,

the overarching goal of this thesis is to develop concepts and methods that
allow for an efficient bootstrapping of reaching skills in high dimensions.

The central inspiration to solve this challenge comes from studies on infant develop-
ment. Infants display an enormous efficiency when bootstrapping their repertoire of
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1.2 Outline

sensorimotor skills: they display rudimentary reaching skills already four months after
birth [Thelen et al., 1996], which are successively refined during the first year of life.
Although this does not involve all of the more than 600 muscles, it does at least involve
arm, head [Thelen and Spencer, 1998], and torso [Rochat, 1992], which is still clearly
too high-dimensional to be fully explored within four months of life. Mimicking this
efficient bootstrapping requires insight into the exploratory movements performed by
infants. The methods in this thesis draw inspiration from [von Hofsten, 1982] in order
to organize exploration in an efficient manner. Von Hofsten showed that already new-
borns attempt goal-directed reaching movements, even if they can not perform them
successfully. This thesis investigates such early goal-directed actions as mechanism for
exploratory bootstrapping of coordination skills. Therefore the new concept of “goal
babbling” is introduced, implemented, analyzed, and used to solve the coordination of
the Bionic Handling Assistant.

1.2 Outline

Chapter 2 provides a general formalism of coordination problems (2.1) and basic ter-
minology of how such problems can be solved with internal models (2.2). The sections
2.3 and 2.4 discuss standard methods of learning such internal models.

Chapter 3 introduces the approach and methodology of this thesis. Existing ap-
proaches for the learning of internal models are reviewed and criticized in the light
of infant developmental studies. The concept of goal babbling is introduced as an ap-
proach to exploratory learning based on early goal-directed movements. The chapter
discusses which particular methods should be used to study this concept and lays out
distinct and detailed research goals for this thesis.

Following these goals, the chapters 4 and 5 investigate how inverse models can
be learned by means of goal babbling. Chapter 4 presents a theoretical analysis of
learning in purely linear domains, which shows the necessity of exploratory noise (as
opposed to previous approaches [Sanger, 2004]) in order to find suitable actions for
the behavioral goals. Chapter 5 investigates learning in non-linear domains in which
learning from arbitrary exploratory data can fail due to inconsistent solutions [Jordan
and Rumelhart, 1992], and shows how goal-directed exploration allows to solve this
problem. The experiments provided in this chapter show first evidence for the efficiency
of the approach to scale to high-dimensional systems.

The chapters 6 and 7 consider the practicability of the approach in real-world scenar-
ios. Chapter 6 concerns the absolute speed of learning by investigating the dynamics of
online-learning during goal babbling. Empirical results show that reaching skills can
be bootstrapped within few hundred movements even in high-dimensional domains,
which is feasible on a real robot and competitive with human learning [Sailer et al.,
2005]. Finally, chapter 7 demonstrates the practical use of the developed method to
learn reaching with the Bionic Handling Assistant (see figure 1.1).

Chapter 8 summarizes the findings on a conceptual and methodological level and
discusses current limitations, as well as newly emerging research questions.
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Chapter 2

Autonomous Learning of Coordination
Skills

This chapter introduces the basic problem formulation of coordination that is used in
this thesis and gives an overview of standard methods to solve it by means of learning.

2.1 The Coordination Problem

The present work considers an agent that can execute actions q ∈Q, where Q is the
action space that subsumes all possible actions of the agent. Each action causes an
outcome x∈X in some observation space. The unique causal relation between both
variables is formally defined by some forward function f that describes the functioning
of the agent’s body or generally the world in which the agent is behaving:

f : Q→ X, f(q) = x (2.1)

Thereby actions q and observations x are considered to be multi-dimensional variables
in a continuous space:

Q⊆Rm, X⊆Rn (2.2)

The dimension of the actions m is usually referred to as the number of degrees of
freedom (DOF), and n is the dimension of the task. A general assumption is that
any outcome x∈X can be achieved by some action q ∈Q, which can be formulated
for any f and Q by defining X as the image of f : X = f(Q). Hence, f must
be a surjective function with n ≤ m. Furthermore, f is assumed to be continuous
throughout this thesis, which is realistic for reaching problems and other examples
discussed in this section. This very general relation of an action and observation
space is illustrated in figure 2.1. If there are multiple actions q1 6= q2 that cause the
same outcome f(q1) = f(q2) this is referred to as redundancy : the domain provides
more different actions than necessary to achieve any possible outcome. Domains with
n < m generally have outcomes x that can be achieved by an infinite number of
different actions. However, also domains with n = m can contain a discrete number of
solutions. The scope of this thesis are domains in which n is rather low-dimensional
(such as n = 3), but m can be very high-dimensional, which is realistic in many
real-world scenarios.
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Chapter 2 Autonomous Learning of Coordination Skills

Action space

q1

q2

x1

f(q)
x2

Observation 
space

q3

Figure 2.1: Action and observation space are connected by a forward function f that
maps actions to their causal outcome. Since the action space is considered
to have at least the dimension of the observation space, several actions can
have the same outcome.

The coordination problem arises when the agent is asked to cause some desired
outcome, or goal1 x∗ ∈ X∗ out of a set X∗ ⊆ X. The agent can not cause that
outcome directly, but it has to estimate an appropriate action q̂ that results in the
observation of x∗, such that f(q̂) = x∗. Hence, it has to know how to achieve a goal.
In the most abstract way, the agent’s skill to solve that problem for all goals in X∗

can be denoted by some mechanism Ω that receives a goal as input and returns an
appropriate action. This mechanism is not necessarily a mathematical function of x∗,
but may have an internal state τ . The agent solves the coordination problem when
the actions suggested by Ω always lead to the observation of x∗:

f(Ω(x∗, τ)) = x∗ ∀ x∗∈X∗ ∀ τ . (2.3)

For the learning of such coordination skills, the agent does not know the underlying
forward function f . The only elementary mechanism to probe knowledge is to query
the forward function by choosing some exploratory action q, performing it and observ-
ing the outcome x. It is generally not possible to probe the reverse direction: there is
no direct way to probe a correct solution q∗ that solves a given goal x∗. The sections
2.2 to 2.4 provide an overview of standard approaches to the learning of coordination
skills Ω based on this problem formulation.

1Throughout this thesis the star (∗) of variables or sets indicates some desired state. Corresponding
variables without star indicate possible or actual states. In contrast, the hat notion (̂ ) refers to
variables that are estimated values of something.
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2.1 The Coordination Problem

Figure 2.2: A robot arm with two joints shown in a stretched (top) and bent (bottom)
posture. The left side shows the arms configuration, while the right side
illustrates the action (joint) space. The marker in the joint space shows
the current posture. Coordinating the height x of the effector can be done
with a variety of joint angles q. Blue and red contours show redundancy
manifolds, i.e. actions q that lead to the same observation x, as indicated
by correspondingly colored lines on the left side.

Examples

A minimal example for a coordination problem with redundancy is shown in figure 2.2:
a robot arm with two revolute joints (m = 2) shall be used for reaching. For a minimal
scenario, the reaching only concerns the height of the effector (n = 1). Hence, the
action space Q (here also “joint-space”) comprises all possible combinations to position
the joints inside Q = [−π;π]2. Assuming that each of the two links of the robot has a
length of 0.5m, the observation space of all possible effector heights is X = [−1m; 1m].
Left and right movements of the effector are ignored in this minimal example. The
redundancy appears in form of manifolds through the 2-DOF joint space, on which all
joint angles apply the same effector height. Some of these manifolds are visualized by
colored contours (see figure 2.2, right). The geometry of the arm defines the forward
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Chapter 2 Autonomous Learning of Coordination Skills

function f(q) as

f(q) = 0.5 · sin(q(1)) + 0.5 · sin(q(1) + q(2)), (2.4)

where q(1) and q(2) are the first and second component of q. The coordination problem
here is to find and select joint angles q that causes the observation of some desired
effector height x∗. Since q and x follow a geometric relation, this scenario is also
known as kinematics. The experiments in this thesis follow this basic setup. However,
realistic scenarios comprise a substantially larger number of degrees of freedom. Also,
they comprise more task dimensions than n = 1, but usually not more than three
(spatial position of the effector) or six (including the 3D orientation of the effector).
An instance of kinematics that is not based on joint-angles, but on the length of various
effectors, is investigated in chapter 7.

Another coordination problem that has been formulated in this way is quadruped
walking : Baranes et al. set up a walking mechanism by defining some parametrized
movement pattern that moves the four legs in a rhythmic manner [Baranes and
Oudeyer, 2011]. The m = 24 parameters are interpreted as actions q. The causal
outcome when applying such a movement for a certain time is that the robot has
moved to some position (u, v) with orientation φ on the floor, which gives x = (u, v, φ)
with n = 3. Hence, the forward function is a conjunction of the movement model
that converts parameters to motor movement, and the physical way the movements
interact with each other and with the ground. The coordination problem is to find
appropriate movement parameters q whenever the robot is asked to move to some
desired position x∗.

Hypothetical examples along these lines go much further: for instance Sanger dis-
cussed learning how to play golf [Sanger, 2004]. Like walking, this concerns dynamic
movements, which could be encoded by a fixed-length sequence of intermediate steps
or with a generic parametrization. An outcome could be the two-dimensional stopping-
position of the golf ball on the green.

Wu et al. investigated the generation of facial expressions on a robot head, such
that the expression is perceived to display various emotions [Wu et al., 2009]. Ac-
tions in that case are positions for m = 27 servo-motors that move an elastic skin
on the robot’s face. The resulting facial expression is evaluated by measuring n = 12
“facial action units” [Ekman and Friesen, 1978] that describe features of various emo-
tional expressions. The forward function in this domain is the deformation physics
of the skin, plus someone’s perception (or an artificial recognition) of its expression.
The coordination problem is to provoke some desired expression by means of motor
commands.

Related Problem Formulations

The formulation of the world behavior as described in equation (2.1) neglects cases
in which the outcome x of an action q depends on some state s of the world or the
own body. For instance the interplay of forces or torques with the movement of rigid-
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2.2 Internal Models for Coordination

body systems can only be described in a state-dependent manner. In that scenario a
forward function could, for instance, describe the acceleration of the body caused by
some joint-torque, based on the state comprising current geometry and velocities of
the different body-parts [Featherstone and Orin, 2007]. Coordination problems then
arise when a torque is needed that results in some desired acceleration [Peters and
Schaal, 2007, 2008]. A state-dependency is synthetically introduced in instantaneous
kinematics formulations for robot control [Waldron and Schmiedeler, 2007, D’Souza
et al., 2001]. This formulation investigates the relation between derivatives q̇ and ẋ in
kinematic domains. The relation of these variables depends on the state s = q. This
state-dependency is straight-forward to derive mathematically, and yet synthetical
because it is based on the existence of a state-less forward function f as described in
equation (2.1).

State-dependent coordination problems are a clear escalation of the state-less prob-
lem investigated in this thesis. In reverse, however, the state-less scenario is fundamen-
tal to the understanding of coordination problems with state, and exposes substantial
challenges as described in the remainder of this thesis.

Another problem domain that is concerned with the choice of actions is reinforce-
ment learning, in which the world’s feedback to the agent does not consist of a multi-
dimensional result x, but a scalar reward that needs to be maximized [Sutton and
Barto, 1998]. Typical setups do not contain multiple goals, but one desired behavior
that is encoded in a reward function (e.g. [Theodorou et al., 2010]). The contextual
bandits problem [Langford and Zhang, 2008] is a sub-problem in reinforcement learn-
ing that has a similar structure to the coordination problem investigated in this thesis.
In such a problem, an agent receives some context, which can be interpreted as a goal.
The agent chooses an action and receives a reward based on context and action.

The crucial difference between the coordination problem in this thesis and the gen-
eral reinforcement learning scenario is the rich feedback of an outcome x versus the
sparse feedback of a reward. While rewards certainly describe the more general setup,
many problems do provide a rich outcome-feedback, such as the examples discussed
in this section.

2.2 Internal Models for Coordination

The mastery of coordination skills as defined in the last section can be well under-
stood with the notion of internal models [Wolpert et al., 1998]. Internal models are
functions that are available to the agent and describe relations between actions and
their outcomes. A forward model f̂ approximates the world’s forward function f and
predicts the outcome of an action:

f̂(q) = x̂ . (2.5)

An inverse model g suggests an action necessary to achieve a desired outcome

g(x∗) = q̂ . (2.6)

9
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Action space

q
1

q
2

x
f(q)

x*

q
g(x*)

Observation 
space

^

Figure 2.3: An inverse model g suggests an action q̂ necessary to achieve a goal x∗

and thereby directly solves the coordination problem.

Internal models are widely believed to have a central role in human sensorimotor coor-
dination, and are believed to be located in the cerebellum [Flanagan and Wing, 1997,
Wolpert et al., 1998, Kawato, 1999]. Computational models of such cerebellar func-
tioning assume that combinations of forward and inverse models are stored and used
for a variety of different tasks [Haruno et al., 1999, 2001, Wolpert and Kawato, 1998].
Internal models are not only argued to be important for sensorimotor coordination,
but also hypothesized to be systematically involved in higher cognitive processes [Ito,
2008].

Coordination with Inverse Models

Internal models can be used in a variety of ways to solve different coordination prob-
lems [Jordan, 1996, Nguyen-Tuong and Peters, 2011]. The most straightforward way
is to directly use an inverse model for the coordination (see figure 2.3):

Ω(x∗, τ) = g(x∗) = q̂ . (2.7)

The inverse model implements a direct functional relation from goal to action and
thereby selects exactly one action q̂ for a given goal x∗. Therefore, the state variable
τ is empty, which largely simplifies equation (2.3) that describes the mastery of a
coordination problem:

f(g(x∗)) = x∗ ∀ x∗ ∈ X∗ . (2.8)

Hence, if g solves the coordination problem, it must be a right-inverse function of f
on the set of goals X∗.
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Action space

q1

q2

x
f(q)

Observation 
space
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x*

x̂f(q)^
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Figure 2.4: A forward model f̂ predicts the outcome x̂ of some action q. The co-
ordination problem can be solved only indirectly with such a model. A
standard scheme is to compute corrective actions ∆q based on a desired
change ∆x of the outcome. This requires to analytically differentiate the
forward model and to analytically invert the derivative locally.

Coordination with Forward Models

Forward models are predictors that can be used to predict the outcome of some hy-
pothetical action q, without actually performing the action. Forward models can not
solve the coordination problem directly. Indirect mechanisms to use them for coordi-
nation are, however, widely used, and define a process that dynamically searches for
an appropriate action q by using the known output and shape of f̂ . A variety of nu-
merical search algorithms can be used in this domain, see [Waldron and Schmiedeler,
2007].

Many standard robots with analytically known kinematic forward functions are
actuated by search mechanisms based on the inverse Jacobian matrix of the forward
model [Liegeois, 1977, Baillieul, 1985, Gienger et al., 2005]. The approach starts from
some initial action q. For the kinematic control of robots this is typically the current
physical joint configuration. The current outcome x is observed, that can generally
differ from the goal x∗, and a corrective movement ∆x is attempted towards the goal
(see figure 2.4). Obtaining the necessary corrective action ∆q requires a local analytic
inversion of the forward function. For local movements it holds that

∆q = J(q)−1 ·∆x , with J(q) =

(
δfi(q)

δqj

)
i,j

∈ Rn×m . (2.9)

Hence, the forward model must be analytically differentiated in order to obtain the
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Chapter 2 Autonomous Learning of Coordination Skills

Jacobian matrix J(q). Then, the Jacobian matrix needs to be inverted. In redundant
domains with n < m there are infinitely many solutions to that inversion. The selection
of one particular action depends on the way the matrix is inverted, in contrast to the
inverse model approach which selects a solution directly from the model.

When the corrective action ∆q is known, it is integrated on the initial action q and
the new action q + ∆q is executed. New corrections ∆x are iteratively applied until
the goal x∗ is reached. Within the notion introduced in the last section, the overall
coordination skill Ω is an iterative search process that is based on the forward model
f . In contrast to coordination with inverse models (see equation 2.7), this approach
has a state τ = q. It combines some mechanism C that utilizes the forward model
f to compute corrective actions based on the current state q and the goal x∗, and a
mechanism I that integrates these corrective actions on the state q and executes them:

Ω(x∗, τ) = Ω(x∗, q) = I (C(f, q, x∗), q) . (2.10)

This scheme makes very indirect use of the internal forward model2, which appears
deeply nested into analytical mechanisms inside equation (2.10). The coordination
skill is not solved by the forward model, but solutions are selected by the mechanisms
I and C. Consequently, the evaluation how well the scheme solves the coordination
skill is substantially harder than evaluating an inverse model for coordination (see
equation 2.8). Often “[...] the evaluation is based on the accuracy of the model itself
rather than on its control capabilities”[Salaün et al., 2010], whereas a full evaluation
would require iterative solution attempts from all possible states τ = q.

Yet, the scheme is important for many studies on the learning of sensorimotor
coordination, which either propose to learn a forward model in order to apply such
coordination schemes and mimic traditional ways of robotic motor control (see section
2.3), or to use corrective actions as learning signal (see section 2.4).

Feedforward vs. Feedback Control

The notion of forward and inverse models is not to be confused with the control
theory terms of feedforward control and feedback control [Jordan, 1996]. Feedback
control describes coordination mechanisms that incorporate world feedback like the
currently observed outcome x into the selection of the next action. It is also possible
that the action q can not be perfectly executed such as a joint configuration of a robot
that can not be applied, or has not yet been applied due to timing constraints, which
can be fed back into the coordination mechanism. Feedforward control describes a
coordination mechanism that operates without such feedback.

The advantage of feedback controllers is that they typically yield high accuracies in
matching x and x∗, because initial errors can be iteratively corrected. Their drawback
is that they can not be used if feedback is not available, and that noisy or delayed

2In kinematic robotics domains the entire skill Ω [Ulbrich et al., 2012], or the inversion mechanism C
[Gienger et al., 2005] is often referred to as “inverse kinematics”. This notion is not to be confused
with an “inverse model” g of kinematics as discussed in this chapter, which is not present in this
scheme.
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feedback can cause unstable behavior [Xu et al., 2002, Jordan, 1996]. The opposite
holds for feedforward controllers. They typically result in residual deviations between
x and x∗, but are insensitive to missing, inaccurate, or delayed feedback.

The typical use of inverse models as described in this section is a feedforward con-
trol scheme. The coordination with forward models based on inverse-Jacobians is a
feedback control scheme. However, this association of model and control type is not
mandatory: Forward models can also be used for feedforward controllers [Pattacini
et al., 2010]. Chapter 7 makes use of a scheme that extends the inverse-model-based
feedforward scheme with a feedback controller.

2.3 Exhaustive Learning of Forward Models

The learning of forward models for sensorimotor coordination is a heavily investigated
and widely used method in motor learning literature. Learning forward models allows
to resemble coordination mechanisms that are typically used for the control of robots
with analytically known forward functions, and the actual learning appears to be a
standard regression problem:

• There is a ground truth functional relation f that is to be approximated by the
learned forward model f̂ .

• For any input q of the model, the correct output x (or in stochastic domain the
output distribution P (x|q)) can be queried by executing the forward function.

Hence, it is possible to collect a data set D = {(q0, x0), . . . , (qL−1, xL−1)} and learn
the forward model, parameterized with some adaptable parameters θ, by reducing the
prediction error EP on the data set

EP (D, θ) =
1

2L

L−1∑
l=0

||f̂(ql, θ)− xl||2 ≈
∫
q
||f̂(q, θ)− f(q)||2P (q)dq , (2.11)

which approximates the expected prediction error based on the input distribution
P (q) of the actions. This view of the input distribution exposes a central difference
between forward model learning for coordination and standard regression problems:
P (q) usually corresponds to some (at least empirically) known real world distribution
that expresses how likely, and thus relevant, certain inputs to the learner are. For
instance in digit recognition [LeCun and Cortes, 1998], the inputs are images with
several hundred pixels. Yet, not all possible pixel images are equally likely or even
possible within that task.

For the learning of a coordination skill, it is usually not known which actions are
relevant to the solution of the coordination problem, and in fact it largely depends on
the search mechanism used on top of the forward model which action will be used.
Since no knowledge on the “true” distribution P (q) during coordination is available,
the standard approach is to assume a uniform distribution of all possible actions q ∈ Q,
which corresponds to an exhaustive sampling in the action space.
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Chapter 2 Autonomous Learning of Coordination Skills

The most frequently used approach to realize this is to sample actions in an entirely
random manner [Sun and Scassellati, 2004, 2005, Dearden and Demiris, 2005, Nori
et al., 2007, Sturm et al., 2008, Salaün et al., 2010], which is often referred to as
“motor babbling” [Bullock et al., 1993, Demiris and Dearden, 2005]. After a distinct
phase of data generation, the second step is to learn the forward model based on
the generated data, which can then, in a third distinct phase, be used to solve the
coordination problem.

The exhaustive sampling of actions can usually be done in low-dimensional domains.
Yet, it does not provide a feasible method when Q is high-dimensional. Generally, the
cost of such exploration mechanisms must be assumed to be exponential in the action
dimension m, because each dimension of q needs to be explored with all combinations
of values of the other dimensions. Exploring five different values per dimension in
a m = 5 dimensional domain results is 55 = 3125 actions to be explored, which is
typically feasible. Applying the same pattern in m = 20 dimensions already gives
520 ≈ 9, 5 · 1013 actions, which is clearly too much to be explored within the lifetime
of any agent.

Several approaches have been suggested to improve the feasibility of learning forward
models for coordination. One is concerned with the incorporation of prior knowledge.
For the reaching coordination of standard robots with revolute joints, it is indeed
possible to exploit that there are only revolute joints. An approach to identify the
analytic parameters of such kinematic chains was presented in [Hersch et al., 2008].
Related to that idea, Ulbrich et al. presented a method that exploits the fact that
revolute joints only produce circular movements when one joint is moved. Their ap-
proach allows to make an exact match f̂ = f for revolute joint robots if the training
data does not contain noise. Within their formulation it is possible to exactly pinpoint
the number of examples needed to 3m [Ulbrich et al., 2012]. It is reasonable to assume
that approaches without prior knowledge need substantially more examples in order
to learn an accurate forward model for all actions. Still, 3m is not applicable in high
dimensions, and results in more than three billion exploratory actions in m = 20.

Another approach utilizes the exploration concept of active learning. This approach
intertwines data generation and learning and attempts to iteratively generate examples
that are maximally informative for learning [Settles, 2010]. Several studies have shown
that this concept allows to reduce the absolute number of examples necessary to learn
accurate forward models [Baranes and Oudeyer, 2009, Martinez-Cantin et al., 2010].
While active learning can avoid the generation of uninformative examples (for instance
for inputs where the forward model is already accurate), it can not avoid the exhaustive
character of the exploration. Active learning still aims at the error reduction over the
entire input distribution P (q) of the learner [Cohn et al., 1996].

Related Approach: Associative Models

An approach that exhibits a similar overall organization of exploration, learning, and
coordination uses associative methods in order to represent and learn a coordination
skill. Instead of learning internal models as described in this chapter, they attempt
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to learn possible combinations of q and x in an associative memory. When these
combinations are retrieved, a dynamical search process [Walter et al., 2000, Lopes
and Damas, 2007] allows to query various relations, in particular q → x and x → q,
but also combinations in which only particular dimensions are given. In recurrent
neural network implementations this selection is done by the inherent dynamics of the
network [Butz et al., 2007, Reinhart and Steil, 2008, 2011].

These models contain a forward model, since the functional relation q → x can be
queried. An inverse model as a function is typically not included, since the result-
ing action q for a target x∗ can depend of the internal state of the search process or
dynamical system. The overall organization of the existing studies follows the same
three phases of the exhaustive forward model learning: exhaustive data generation,
then learning of all possible q/x combinations, then exploitation for the specific coor-
dination problem.

2.4 Learning of Inverse Models

Inverse models correspond to a direct solution of the coordination problem. It is
straightforward to solve coordination with an inverse model (equation 2.7) and to
evaluate how well it performs during learning: equation (2.8) denotes that an inverse
model must be a right-inverse function of f in order to solve the coordination prob-
lem. The condition compares the goals x∗ with the outcomes x = f(g(x∗)) in the
observation space. For a finite set of goals X∗ = {x∗0, . . . , x∗K−1} this directly leads
to the performance error EX , which measures how close an inverse estimate3 with
parameters θ is to a solution:

EX(X∗, θ) =
1

2K

K−1∑
k=0

||f(g(x∗k, θ))−x∗k||2 ≈
∫
x∗
||f(g(x∗, θ))−x∗||2P (x∗)dx∗ . (2.12)

In this case, the input distribution P (x∗) of the learner is typically known at least as an
empirical set. When X∗ is not a finite, but continuous set, it is reasonable to assume
a uniform distribution: in contrast to forward model learning the input space of the
model is typically low-dimensional, so that it can be effectively sampled. However,
optimizing this error functional is clearly not a regression problem, since the learner’s
output is not compared to a ground truth value, and in particular it is not directly
possible to query a ground truth output.

Error-based Learning in the Observation Space

Error-based approaches repeatedly perform a goal-directed exploration step in order
to measure the actual position x when trying to reach for a target x∗:

q = g(x∗, θ) , x = f(q) . (2.13)

3In this thesis the term “inverse estimate” is used, instead of “inverse model”, to indicate that some
g(·, θ) is not readily trained, but learning is currently in progress.
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Chapter 2 Autonomous Learning of Coordination Skills

Then, a parameter-change is attempted that causes a direct correction of the obser-
vation along ∆x = (x∗ − x).

A frequently used approach is to realize this by gradient descent on the performance
error EX . Differentiating EX with respect to the parameters gives the performance
gradient for the single goal x∗:

∂EX

∂θ
=
∂g(x∗, θ)

∂θ

T ∂f(q)

∂q

T

(x− x∗) =
∂g(x∗, θ)

∂θ

T

J(q)T (x− x∗) (2.14)

The first term ∂g(x∗,θ)
∂θ

T
is specific to the learner and known for any function approxi-

mation scheme. The last term (x − x∗) is known from the exploration step. Yet, the
scheme requires to know the Jacobian matrix J(q) of the forward function, which is
not directly accessible in the coordination problem. Computing this exact gradient
requires analytic knowledge about the forward function.

A gradient descent step on this error with some step-width η can be written as:

∆θ = −η∂E
X

∂θ
= −η∂g(x∗, θ)

∂θ

T

J(q)T (x− x∗)

= η
∂g(x∗, θ)

∂θ

T

J(q)T (x∗ − x) = η
∂g(x∗, θ)

∂θ

T

J(q)T∆x︸ ︷︷ ︸
∆q

,

Hence, the scheme tries to achieve some corrective outcome ∆x by means of some
corrective action4 ∆q. This ∆q has a tight relation to the feedback control schemes
based on the differentiation of forward models. While these feedback control schemes
are typically driven with the pseudo-inverse of the Jacobian matrix (see equation 2.9),
it is also possible to use the transpose of the Jacobian [Wolovich and Elliot, 1984,
Baillieul, 1985], as it is present in the performance gradient. Hence, the knowledge of
the term J(q)T∆x could directly solve the coordination problem by means of feedback
control.

In feedback-error learning [Kawato, 1990] it is simply assumed that a mechanism to
derive this corrective action, and thus a feedback controller, is already given, which
leads to successful and stable results for learning [Miyamura and Kimura, 2002]. Learn-
ing with distal teacher [Jordan and Rumelhart, 1992] avoids a pre-existing controller,
but requires to first learn a forward model f̂ . The corrective action ∆q can then be
approximated by analytically differentiating the forward model. However, this scheme
directly inherits the scalability problems of forward model learning as discussed in the
last section, since it requires an exhaustive exploration before the inverse model can
be learned.

An alternative approach has been developed in [Porrill et al., 2004, Porrill and Dean,
2007], that operates directly on the desired observation change ∆x, without deriving a

4In literature on physiological motor learning this term is often called “motor error” [Kawato and
Gomi, 1992]. Yet, this wording is not used throughout this thesis in order to avoid confusion with
other error measures.
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Figure 2.5: Multiple actions (a-c) for the same effector height x are located on a non-
convex solution set. The average action (d) results in a different height.

corrective action ∆q. Instead, the approach starts with an initially inaccurate inverse
model and learns to virtually shift the goals x∗ along ∆x. However, that scheme only
works if the initial inverse estimate is already very close to a solution and can not be
used for bootstrapping.

The critical aspect of these approaches is that the learning of the actual inverse
model requires prior-knowledge. Feedback-error learning and the distal teacher ap-
proach require to derive a corrective action. This mechanism alone could solve the
coordination problem. More importantly, it requires knowledge about the forward
function f over the entire set of actions Q, since the learning schemes require that a
corrective action can be queried for any q. This dependency is most visible in learn-
ing with distal teacher, because it requires an explicit, exhaustive pre-exploration in
order to learn the forward model. Accordingly, this approach is not suitable for a
bootstrapping of inverse models in high dimensions, because either prior knowledge,
or an inefficient exhaustive pre-training is required. The approach to shift inputs to
the inverse model is likewise unable to bootstrap a coordination skill since it requires
a good initial solution.

Example-based Learning in the Action Space

Another approach is to learn inverse models directly from examples collected by explo-
ration. Similar to the learning of forward models, a data setD = {(q0, x0), . . . , (qL−1, xL−1)}
is collected by starting exploration in the action space, and observing the outcomes of
the selected actions. Then the learning of the inverse model is treated as regression
problem by fitting the inverse model to the exploratory data. Here the action error
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Figure 2.6: Non-convex solution sets forbid learning an inverse model from random
data-sets (green points). The suggested solutions (colored postures left,
and correspondingly colored markers right) do not reach the desired height.

EQ measures in action space how well the inverse estimate already describes D:

EQ(D, θ) =
1

2L

L−1∑
l=0

||g(xl, θ)− ql||2 . (2.15)

If the coordination problem does not contain redundancy, there is an implicit ground-
truth function f−1 to which g is fitted. In this case, a valid inverse model can be
learned from arbitrary data sets D. For low-dimensional n and m = n this is typically
done with exhaustive motor babbling [Kuperstein, 1988].

Problems arise in the case of redundancy. In the data set it holds that xl = f(ql),
so that the action error can be rewritten as:

EQ(D, θ) =
1

2L

L−1∑
l=0

||g(f(ql), θ)− ql||2 . (2.16)

Compared to the performance error (equation 2.12) which corresponds to learning a
right-inverse function as necessary for coordination, this error corresponds to learning
a left inverse function such that g(f(q)) = q. While right-inverses are an ill-posed
problem in redundant domains, such left-inverse functions do not exist : when different
actions qi evaluate to the same outcome f(qi) = x, there is no function g that could
reconstruct the original action. When multiple examples with qi 6= qj and xi = xj are
used for learning, this leads to averaging. In non-linear redundant domains the sets
of redundant solutions can generally have a non-convex shape, such that averaging
leads to invalid solutions [Jordan and Rumelhart, 1992]. This effect is illustrated in
figure 2.5 based on the toy-example of inverse kinematics introduced in section 2.1.
The redundancy manifolds, illustrated as colored lines in the action space (right),
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Figure 2.7: An inverse model is trained with an expert-generated data set that con-
tains exactly one valid action for any desired outcome.

have an oval, non-convex shape. If several actions with the same effector height are
averaged, this leads to an action with a different effector height. The effect on an
entire inverse model is shown in figure 2.6. In this domain an inverse model can be
visualized by a n = 1 dimensional manifold through the action space. Suggested
actions q = g(x∗) for several color-coded values of x∗ are shown as markers in the
action space and corresponding postures are visualized on the left side. The inverse
model solves the coordination problem if each of these suggested actions lies exactly on
the manifold with the corresponding color. This is clearly not the case in the example,
which has been trained with 250 random actions, shown as green dots. Arbitrary or
random data sets can not be used to learn inverse models when non-convex solution
sets exist. Special solutions have been proposed for cases with only a discrete number
of solutions and n = m: a very dense sampling in such domains can be used to segment
the action space and then learn one inverse estimate for each segment [Demers and
Kreutz-Delgado, 1992].

Learning inverse models in general redundant domains can not be done with ex-
haustive sampling. Yet, there is no principle need to know the entire action space.
In redundant domains an inverse model selects one valid action for each goal. Hence,
only one solution needs to be known. Figure 2.7 illustrates the learning of an inverse
model from a data set containing exactly one possible path of solutions. The training
data (green dots) passes each of the redundancy manifolds exactly one time, and thus
contains no inconsistent solutions with qi 6= qj and xi = xj . On such a data set, it is
possible to represent a partial left inverse function that is only a left-inverse of f on
the training data, such that g(f(ql)) = ql. Then, it is straightforward to show that
the inverse model is also a right-inverse on the training data:

g(f(ql)) = ql ⇒ f(g(f(ql))) = f(ql) ⇔ f(g(xl)) = xl . (2.17)

Hence, the coordination problem can be solved if the observed outcomes xl also span
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the set of goals X∗. A potential advantage, if an exploration strategy to generate
such data autonomously could be devised, is that the training data only covers an
n-dimensional subspace within the m-dimensional set of actions. Since n is typically
small, such spaces can be sampled efficiently which provides a direct account to scal-
ability to many degrees of freedom.

Generating such an exploratory data set that (i) contains all goals in X∗ as outcomes
xl and (ii) does not contain inconsistent actions is, however, far from trivial. Prior to
the work described in this thesis, the only known way was to let an expert generate the
data set [Rolf et al., 2009], which reflects deep prior knowledge about the particular
coordination problem.

Related Approach: Differential Inverse Models

Problem formulations that typically allow to learn inverse models from arbitrary data
sets are differential formulations like differential kinematics [Mel, 1991, D’Souza et al.,
2001] or inverse dynamics [Peters and Schaal, 2008, Nguyen-Tuong et al., 2008]. An
inverse model in a differential kinematics formulation represents corrective actions di-
rectly with a model g(∆x, q) = ∆q. When ∆x and ∆q correspond to small movements
the non-convexity can typically be neglected, since the redundancy manifolds of dif-
ferentiable functions are locally linear, and thus locally convex [D’Souza et al., 2001].
This scheme is highly related to the feedback control based on learned forward models.
The idea is to directly learn the, otherwise computed, corrective action for feedback
control. It therefore inherits the problem that the entire action space (which is also
the coordination skill’s space of states τ = q) must be known in order to fully solve the
coordination problem. Consequently, the approaches for learning such models start
with an exhaustive motor babbling [D’Souza et al., 2001, Peters and Schaal, 2008],
after which the model can be refined while performing goal-directed actions.
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Chapter 3

A Framework for Goal Babbling

“Instead of trying to produce a programme to simulate the adult mind,
why not rather try to produce one which simulates the child’s?” [Turing,
1950]

3.1 Inspiration from Infant Development

The standard models for the learning of coordination skills discussed in the last chapter
demand either an exhaustive exploration of all actions, or prior knowledge about the
action space and forward function. Therefore the acquisition of the coordination skill
is divided into separate stages of (random) exploration, learning, and exploitation of
the learned mechanisms. However, exhaustive exploration does neither provide an
explanation of infants’ efficiency in sensorimotor development, nor does it provide a
feasible approach for artificial agents to learn in high-dimensional domains.

Nevertheless, the generation of random actions by means of motor babbling has been
repeatedly motivated [Kuperstein, 1988, Bullock et al., 1993, Caligiore et al., 2008] by
Piaget’s view on infant development [Piaget, 1953]. Piaget suggested that development
is organized in distinct stages and that, at first, infants do not perform purposeful ac-
tions. “The implication of [Piaget’s] proposal is that the early behavior of the neonate
is essentially random and insensitive to contextual information. Recent research sug-
gests that some re-thinking of this extreme position is necessary” [Bertenthal, 1996].
Contrary to Piaget’s suggestions, and the random motor babbling approach, infant
developmental studies over the last three decades have found conclusive evidence for
coordinated behavior even in newborns. Examples include orienting towards sounds
[Clifton et al., 1981], tracking of visual targets [Bloch and Carchon, 1992], and ap-
parent reflexes that have been re-discovered as goal-directed actions [van der Meer
et al., 1995, van der Meer, 1997]. “These behaviors are fragile and inconsistent, which
explains why they were overlooked for quite some time” [Bertenthal, 1996].

In the case of reaching, it has been shown that newborns attempt goal-directed move-
ments already few days after birth [von Hofsten, 1982, Rönnqvist and von Hofsten,
1994]. Von Hofsten showed that, when salient objects are in the visual field, infants
produce more arm movements towards that object, than movements away from it.
This indicates a strong role of “learning by doing” instead of random exploration and
that infants learn to reach by trying to reach: “Before infants master reaching, they
spend hours and hours trying to get the hand to an object in spite of the fact that

21



Chapter 3 A Framework for Goal Babbling

they will fail, at least to begin with” [von Hofsten, 2004]. From a machine learning
point of view, these findings motivate to devise methods that closely intertwine explo-
ration, learning, and exploitation, instead of organizing these aspects in distinct and
subsequent stages.

Findings of early goal-directed actions are complemented by studies investigating the
structure of infants’ reaching attempts over the course of development. When infants
perform the first successful reaching movements around the age of four months, these
movements are controlled in an entire feedforward manner [Clifton et al., 1993, Out
et al., 1998]. This strongly indicates the use of an inverse model as discussed in the last
chapter, which selects one solution and applies it without corrections. The importance
of feedforward control does not diminish over the course of development, which is well
known from prism-glass experiments [Baily, 1972], but the skill is later on augmented
by mechanisms that allow for more adaptive movements and error corrections by means
of visual feedback [Bushnell, 1985]. Moreover, the earliest reaching movements are
rather jerky and suboptimal in the sense that the distribution and timing of muscular
forces is more complicated than actually necessary [Konczak et al., 1995, 1997, Berthier
and Keen, 2005].

In short, infants appear to follow a very efficient pathway, on which one initial
solution is learned, and directly used for goal-directed behavior. Only later on these
movements are gradually optimized and become more adaptive. While this pathway is
very intuitive, it is orthogonal to the motor-babbling approach which first attempts to
gather full knowledge about the sensorimotor space, from which particular solutions
can be derived afterwards.

3.2 Concept: Goal Babbling

The general idea that connects early goal-directed movements and initial feedforward
control is to take redundancy as an opportunity to reduce the demand for exploration,
instead of a burden that has to be dealt with. If there are multiple ways to achieve
some behavioral goal, there is no inherent need to know all of them. Of course, this
requires an exploration mechanism that can generate relevant training data without
exhaustive exploration. The hypothesis of this thesis is that early goal-directed move-
ments do not only reflect an early exploitation of knowledge, but that they constitute
the very mechanism to generate that knowledge by exploration, and therefore enable
an efficient learning of valid solutions for the coordination problem. Consequently,
the first distinct research goal of this thesis concerns the general mechanism of goal-
directed exploration:

Research goal 1: Conceptualize and understand early goal-directed move-
ments as mechanism for the bootstrapping of coordination skills.

As a basis for this investigation, this thesis introduces the notion of “goal babbling”
(based on the first mentioning in [Rolf et al., 2010c]):
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Definition: Goal babbling is the bootstrapping of a coordination skill
by repetitively trying to accomplish multiple goals related to that skill.

A central aspect is, of course, trying to accomplish goals, which corresponds to in-
fants’ attempts to perform goal directed movements. Still, several other aspects of
this definition need to be highlighted in order to distinguish this concept from other
approaches:

• Goal babbling aims at the bootstrapping of coordination skills. In contrast, goal-
directed exploration has been used in several approaches to sensorimotor learn-
ing, but has only been used for fine-tuning of well initialized models [D’Souza
et al., 2001, Peters and Schaal, 2007], or requiring other prior knowledge [Kawato,
1990, Jordan and Rumelhart, 1992, Porrill et al., 2004].

• Goal babbling defines this as a repeated process, which implies that the skill
acquisition is incremental and ongoing, as opposed to stage-like organizations of
exploration and learning [Bullock et al., 1993, Demiris and Dearden, 2005].

• Goal babbling applies to domains with multiple related goals. In the coordination
problem formulation in section 2.1 this is naturally given by a set of goals situated
in a continuous observation space. Even if one goal can not be achieved, the
learner can observe the outcome and learn how to achieve that state if desired.
This exploration across multiple goals stands in contrast to typical scenarios
in reinforcement learning, in which only a single desired behavior is considered
[Theodorou et al., 2010], and also algorithms in coordination domains which
perform goal-directed exploration in order to achieve a single goal [Schaal and
Atkeson, 1994].

• Goal babbling considers the “trying to accomplish” itself as a primary mech-
anism, in contrast to conceptualizations of intrinsic motivations [Oudeyer and
Kaplan, 2008] that consider goals or more general intentions within active learn-
ing architectures. The latter one focuses on the role of active learning, while this
concept focuses on the distinct impact of goal-directed exploration.

Given this research goal and the definition of goal babbling, several questions need to
be asked:

• Is goal babbling possible at all, and what are the mechanisms necessary to enable
it? Early studies have consequently failed to enable a goal-directed bootstrapping
in a reliable manner [Oyama and Tachi, 2000, Sanger, 2004]. This question will
be addressed in the chapters 4 and 5.

• Does it actually permit a bootstrapping that is scalable to high dimensions? This
question will be addressed mainly in the chapters 5 and 6.

• What are observable characteristics of such a bootstrapping process that closely
intertwines exploration and learning? Results along this question will be dis-
cussed in the chapters 4 to 6.
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Chapter 3 A Framework for Goal Babbling

3.3 Method: Learning Inverse Models from Examples

Goal babbling does not refer to a particular algorithm, but to a concept that can be
methodically investigated by various means. An approach that has been proposed in
parallel to the work described in this thesis, and is compatible with the concept of
goal babbling, has been introduced in [Baranes and Oudeyer, 2010a]. Baranes’ model
attempts to learn an instance-based associative memory in which a search algorithm
can be applied, which can be viewed as the learning of a partial forward model [Baranes
and Oudeyer, 2013]. Goal babbling then generates a distribution of actions that can
be quickly exploited and does not need to sample the entire action space.

In contrast to Baranes’ model, this thesis investigates the learning of inverse models
by means of goal babbling, and therefore focuses on learning the coordination skill
directly, without relying on analytical inversion mechanisms. This approach resembles
infants’ developmental pathway, which serves as an example of efficiency, by acquiring
at first one valid solution that can be used for feedforward control.

Focusing on inverse models leaves a choice between error-based and example-based
learning. The demand for a bootstrapping mechanism clearly disqualifies error-based
methods due to their inherent need for prior knowledge. Hence, this thesis focuses
on example-based learning of inverse models as a method to investigate goal babbling.
Learning inverse models by fitting examples was believed to be impossible due to the
non-convex solution sets in non-linear redundant domains [Jordan and Rumelhart,
1992]. Consequently, the second research goal concerns this methodological aspect:

Research goal 2: Enable the learning of inverse models from examples
in non-linear and redundant domains.

Finding an exploration scheme that can realize this goal clearly needs to cope with
non-convex solution sets. Previous studies have only shown how to deal with non-
convexity locally, either by reformulating the problem into a differential one [D’Souza
et al., 2001], or by using prior knowledge to start learning from a well-initialized state
[Schenck, 2008]. Chapter 5 will introduce a method to deal with non-convexity directly
and through the entire bootstrapping process. However, non-convexity is not the
only problem to deal with. While non-convexity makes it difficult to handle multiple
solutions q for the same outcome x, the initial problem is to find at least one correct
solution to realize the desired outcomes in X∗ and, hence, to invert the causal relation
of the forward function in a reliable manner. This inversion of causality is a general
problem for exploration schemes, since the direction x→ q can not be directly queried
within the coordination problem. Random motor babbling can theoretically solve
the problem because it simply explores all actions, such that the necessary ones are
also explored. This, however, is practically not feasible in high-dimensional domains.
The inversion of causality has a distinct characteristic in goal-directed exploration
schemes which tend to get stuck in only partial solutions of the coordination problem
[Atkeson, 1989, Oyama and Tachi, 2000, Sanger, 2004], in which only a subset of X∗

can be successfully realized. The general pattern to solve that problem is to introduce
exploratory noise into the process [Peters and Schaal, 2007, Schenck, 2008]. Chapter
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3.3 Method: Learning Inverse Models from Examples

4 investigates goal babbling with exploratory noise and provides a general theoretical
framework that describes the relation between example-based learning (minimizing
EQ) and error-based learning (minimizing EX) in linear domains.

After enabling goal babbling, and particularly learning inverse models from ex-
amples, the consequential goal is to make this method practically useful in high-
dimensional real-world scenarios:

Research goal 3: Devise a practical algorithm for goal babbling that is
scalable, fast, and applicable in real-world scenarios.

A first investigation of scalability is provided in chapter 5. However, the question of
absolute speed is mainly discussed in chapter 6. For a practical application, the number
of examples needed for learning must be small enough to be executed in reasonable
time. Chapter 6 shows that the learning can, even in high-dimensional domains, be
fast enough if online learning is applied. The experiments point out that goal babbling
constitutes a positive feedback loop during bootstrapping, in which exploration and
learning reinforce each other. This positive feedback loop is identified as an important
conceptual property of goal babbling. Experiments demonstrate that it allows to
achieve human-level learning speed.

Chapter 7 finally investigates the practical use of the approach to learn the inverse
kinematics of the Bionic Handling Assistant. The application of goal babbling on this
bionic robot faces several practical problems not investigated in the other chapters
like sensory noise, delayed execution of actions, actions that are not executable due to
physical limits, and non-stationary system behavior. The experiments show that goal
babbling can deal with these challenges and yields accurate inverse models. Further,
chapter 7 shows how an additional feedback controller can be used on top of the inverse
model, which is otherwise only used for feedforward control. This scheme allows to
utilize the insensitivity of feedforward control to noisy and delayed feedback by means
of the learned inverse model, plus the ability to fine-tune the movement by feedback
control if necessary.
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Chapter 4

Inversion of Causality in Linear Domains

Learning inverse models from examples is a barely theoretically investigated topic in
machine learning literature. Previous studies only provided negative results by show-
ing the impossibility to learn from non-convex solution sets [Jordan and Rumelhart,
1992] or by showing failure modes of simple goal-directed exploration schemes [Sanger,
2004]. This chapter studies the theoretical basis of inverse model learning by investi-
gating linear domains. Linear domains do not contain non-convex solution sets, and
yet allow to study the effect of redundancy. An early theoretical study of the example-
based learning of inverse models by means of goal-directed exploration was presented
in [Sanger, 2004]. Sanger showed that even in simple non-linear domains, without
redundancy, such learning can fail when the model is not well initialized. The inves-
tigation in this chapter complements this negative outcome with an analysis of linear
redundant cases. Learning inverse models from examples is investigated by comparing
its learning gradients, that are shaped by the explored examples, against the perfor-
mance gradient that serves as a reference direction through the space of parameters of
the learner. The analysis first re-investigates the setup of Sanger and shows additional
failure modes that are caused by redundancy. Then it is shown that the addition of
exploratory noise to goal-directed exploration leads to the discovery of valid solutions,
and thereby solves the inversion of causality, which are moreover optimal in a least-
squares sense. Parts of the content of this chapter have been published in [Rolf and
Steil, 2012b, 2013a].

4.1 Two Spaces and their Gradients in Linear Domains

In a linear domain, the relation between actions q ∈ Q ⊆ Rm and outcomes x ∈ X ⊆
Rn is given by a linear forward function:

x = f(q) = M · q . (4.1)

The real-valued matrix M ∈Rn×m with n≤m is thereby assumed to have full rank
rank(M)=n. This implies that f is surjective, i.e. that any outcome x in Rn can be
achieved by some action q in Rm and therefore expresses that the coordination problem
is solvable. For n = m this formulation does not contain redundancy, but there is an
exact one-to-one relation between actions q in outcomes x in Rn. For n < m there are
infinitely many solutions q for any outcome x, which appear as linear subspaces in Rm.
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Chapter 4 Inversion of Causality in Linear Domains

Figure 4.1: The learning gradient −∂EX(W )
∂W is shown in the parameter space of a

simple example with M = (0.5, 0.5)∈R1×2 and learning parameters W ∈
R2×1. Any value W is straightly pulled towards MW =1.

Such linear redundancy manifolds are obviously convex, so that different solutions can
be safely averaged.

In correspondence to a linear forward function, an inverse model can be denoted with
a linear representation, using parameters W ∈ Rm×n that are adaptable by learning:

g(x∗,W ) = W · x∗ . (4.2)

Considering some set of goals X∗ ⊆ X, the mastery of coordination can then be re-
phrased by a simple linear algebra expression. Generally, an inverse model has to
be a right-inverse function of f in order to solve the coordination problem (compare
equation 2.8):

f(g(x∗)) = x∗ ∀ x∗ ∈ X∗

⇔ MWx∗ = x∗ ∀ x∗ ∈ X∗.

Assuming that the set of goals X∗ spans the entire space X further simplifies the
condition to:

f(g(x∗)) = x∗ ∀ x∗ ∈ X∗ ⇔ MW = 1n. (4.3)

Hence, W must be a right inverse matrix of M in order to solve the coordination
problem. This equation is exactly solvable in W . For n<m it is ill-posed and multiple
solutions W exist.
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4.1 Two Spaces and their Gradients in Linear Domains

As introduced in section 2.4, the performance error measures how well an inverse
model solves the coordination problem, and therefore the deviation from the right-
inverse condition (4.3). For a linear forward function and inverse models, and a finite
set of goals X∗ = {x∗0, . . . , x∗K−1}, this error functional is:

EX(X∗,W ) =
1

2K

K−1∑
k=0

||f(g(x∗k,W ))− x∗k||2 =
1

2K

K−1∑
k=0

||MWx∗k − x∗k||2 . (4.4)

Computing the derivative with respect to W gives the performance gradient :

∂EX(X∗,W )

∂W
=
∂EX(X∗,W )

∂W
= MT(MW−1n)X∗ (4.5)

with X∗=
1

K

K−1∑
k=0

x∗kx
∗T
k ∈Rn×n.

Figure 4.1 shows the performance gradient in relation to correct right inverse solutions.
An exemplary problem is chosen with a forward matrix M = (0.5, 0.5) ∈R1×2. The
figure shows the parameter space of W ∈R2×1. Right inverse matrices fulfill MW =11

or in scalar notation MW =1. These solutions give ∂EX

∂W =0. The performance gradient
drives any value of W straight to that solution manifold. As argued in chapter 2, this
gradient is not directly accessible during learning and the example-based approach
used in this thesis avoids the detour to estimate it. Yet, the performance gradient
serves as an important theoretical tool. It expresses the steepest direction in the
parameter space to improve the performance of coordination. Consequently, it serves
as a reference direction, which must be at least roughly followed by any learning
mechanism.

Learning an inverse model from examples generally considers a data setD={(xl, ql)}l
which has been generated by performing actions ql and observing the outcomes xl =
f(ql) = Mql. The initial analysis does not assume a particular exploration mechanisms
to generate the actions ql, so that the data set can have arbitrary structure. Learning
is performed by fitting the inverse model to that data, which is done by reducing the
action error (compare equation (2.15)):

EQ(D,W ) =
1

2L

L−1∑
l=0

||g(xl,W )− ql||2 =
1

2L

L−1∑
l=0

||WMql − ql||2 (4.6)

Using the correlation matrices

Q =
L−1∑
k=0

qlql
T and X =

L−1∑
k=0

xlxl
T = MQMT

the corresponding action gradient can be derived, which is utilized to reduce EQ by
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Chapter 4 Inversion of Causality in Linear Domains

means of gradient descent:

∂EQ(D,W )

∂W
=
∂EQ(Q,W )

∂W
= (WM−1m)QMT . (4.7)

Learning an inverse model from examples can only succeed if following the action
gradient (minimizing EQ) also reduces the performance error EX . Therefore, the
action gradient does not have to be identical with the performance gradient, but must
have at least a non-negative angle to the performance gradient, which means that
both gradients must not differ by more than 90°. For the general case with non-linear
forward functions and arbitrary data sets such positive angles can obviously not be
guaranteed, since learning from such data fails in the presence of non-convex solution
sets. For the linear case, however, a tight relation between both gradients can be
shown:

Theorem 1. For any data set D, the action gradient is related to the performance
gradient on the observed {xl} positions by

MTM
∂EQ(Q,W )

∂W
=
∂EX(X,W )

∂W
. (4.8)

Proof.

MTM
∂EQ(Q,W )

∂W

(4.7)
= MTM(WM−1m)QMT

= MT(MWM−M)QMT = MT(MW−1n)MQMT

= MT(MW−1n)X (4.5)
=

∂EX(X,W )

∂W

Both gradients have a non-negative angle since MTM is a positive semi-definite ma-
trix. Minimizing EQ by gradient descent will never increase the performance error on
the observed positions {xl}. For n=m, MTM is even positive definite which guaran-
tees a positive angle. Hence, learning a right inverse function is generally possible by
minimizing EQ in linear domains. For n<m, MTM becomes singular and the action
gradient can project into its nullspace, leaving the performance error unchanged. This
makes the redundant case mildly more complicated, but not as difficult as the general
non-convex case, for which no angle can be guaranteed for arbitrary data sets. Gener-
ally, theorem 1 qualifies example-based learning as a sound mechanism for obtaining
inverse models in linear domains. Note, however, that this theorem does not give a
direct relation to the performance on the actual goals EX(X∗,W ). Whether a right
inverse for all goals X∗ can be learned still depends on what data set D is generated
by exploration and whether the observations {xl} span the entire space X.
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4.2 Fixpoint Analysis for Explorative Learning

4.2 Fixpoint Analysis for Explorative Learning

How the parameters W are adapted during learning depends on how the data set
D, generated by exploration, shapes the action gradient. The general mechanism of
learning from examples is to apply gradient descent on EQ. Starting from some initial
parameter value W0, the parameters are iteratively updated with the learning equation

Wt+1 = Wt − η
∂EQ(Q,W )

∂W
. (4.9)

Mastering a coordination skill requires to obtain a right-inverse function, to that the
most important question is whether learning converges to a W that satisfies MW =1n.
In order to check for this behavior, the following analysis investigates the fixpoints of
the learning equation depending on D. A fixpoint Wt+1 =Wt is obviously given if and
only if the action gradient becomes zero. The following two theorems provide general
conditions for which combinations of parameter values W and data sets D the action
gradient becomes zero.

Theorem 2 (Sufficient fixpoint condition). If W is a partial left inverse of M on the
explored actions (i.e. WMql=ql∀ql∈D), then W is a fixpoint of equation (4.9).

Proof.
WMql = ql∀ql∈D ⇔WMQ = Q⇔ (WM − 1m)Q = 0

Right-multiplication with MT gives:

⇒ (WM − 1m)QMT (4.7)
=

∂EQ(Q,W )

∂W
= 0

Sanger [Sanger, 2004] showed for goal-directed exploration that this condition is
also sufficient in the non-linear case with n=m. In fact, this condition is very general
because it indicates that the action error in equation (4.6) is zero. The learner already
fits the data which directly results in a zero gradient. In a linear system with n=m, the
condition is also necessary because M is a square matrix with full rank. Therefore the
right-multiplication with MT in the proof is reversible and which implies equivalence
between partial-left inverse condition and zero gradient. For redundant systems (n<
m) the condition is not necessary, since left inverse functions do not exist on arbitrary
data sets. If, for instance, data is generated entirely within the nullspace ofM , different
qi 6= qj are generated which evaluate to xi =xj = 0. Such data can not be fitted with
any inverse estimate since multiple target-outputs are given for identical input. A
more general condition for fixpoints is given by:

Theorem 3 (Necessary fixpoint condition). If W is a fixpoint of learning equation
(4.9), then W is a (partial) right inverse of M on the observed positions xl, i.e.
MWxl=xl ∀ xl∈D.
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Proof.

∂EQ(Q,W )

∂W
= 0

⇒ M
∂EQ(Q,W )

∂W
= 0

(4.7)⇔ M(WM − 1m)QMT = (MW − 1n)MQMT = (MW − 1n)X = 0

⇔ MWX = X
⇔ MWxl = xl ∀ xl∈D

This theorem states a very important and non-trivial property of example-based
learning in linear domains: Learning from examples corresponds to learning a left-
inverse function, because the action error evaluates on g(f(ql))−ql, but which can not
generally succeed because left-inverses do not exist on arbitrary data sets in redundant
domains. However, learning is guaranteed to lead to, at least partial, right-inverses for
any data set, which corresponds to solving the coordination problem. Like theorem 2
this statement becomes an equivalence for n=m (here because the left-multiplication
with M is reversible). Both theorems can be summarized by

WMql = ql∀ l ⇒
∂EQ(W )

∂W
= 0 ⇒ MWxl = xl∀ l .

Only for n=m these conditions are equivalent. This asymmetry for n<m is the second
result on the impact of redundancy, additionally to the gradients losing their strictly
positive relation in theorem 1. According to theorem 3, learning from examples will
always result in a right inverse solution on the outcomes xl contained in the data set.
If the outcomes do not span the entire space X∗ (if X does not have full rank), the
solution will only be valid in the corresponding subspace.

4.2.1 Plain Goal-Directed Exploration

These fixpoint conditions for general data sets now allow to investigate right inverse
learning driven by particular exploration processes. Early approaches to goal-directed
exploration have been discussed for the generation of data D in [Sanger, 2004] and

[Oyama and Tachi, 2000]. A data set Dt = {(x(t)
k , q

(t)
k )}k is newly generated for

each learning step t. The current inverse estimate g(x∗,Wt) is evaluated on X∗ =

{x∗0, ..., x∗K−1} to select actions q
(t)
k :

q
(t)
k = g(x∗k,Wt) = Wtx

∗
k , x

(t)
k = f(q

(t)
k ) = MWtx

∗
k ,

which corresponds to “trying to reach” by means of the current inverse estimate,
and observing the outcome. A learning step according to equation (4.9) is performed
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4.2 Fixpoint Analysis for Explorative Learning

Figure 4.2: The learning gradient −∂ÊQp (W )
∂W during plain goal-directed exploration is

shown in the parameter space. Right inverse matrices with MW = 1 are
fixpoints, but the exploration can get stuck in the Nullspace MW =0.

and the process repeats. Using this definition allows to derive the matrices Q and X
depending on the current value of W :

Q[W ] =

K−1∑
k=0

q
(t)
k q

(t)
k

T
=

K−1∑
k=0

(Wx∗k)(Wx∗k)
T = WX∗W T , and

X[W ] = MQ[W ]MT .

Inserting Q into the action gradient (equation 4.7) gives the gradient that is followed
during plain goal-directed exploration:

∂ÊQp (W )

∂W
= (WM − 1m)Q[W ]MT = (WM − 1m)WX∗W TMT (4.10)

Theorem 3 guarantees that fixpoints of the learning equation are partial right inverses.
In plain goal-directed exploration the observed matrix X can generally lose rank, either
because W does not have full rank, or because W projects into the nullspace of M :

n = rank(W ) = rank(Q[W ]) = rank(X[W ])

It can be seen directly that all valid right inverses are fixpoints: replacing MW = 1n
in the gradient results in zero. Also, W = 0 is a fixpoint in plain goal-directed
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exploration, but which is not a valid right inverse of M . This case represents a partial
solution in a zero-dimensional subspace as described in theorem 3. Generally, solutions
for observed subspaces of X can occur as fixpoints. Figure 4.2 illustrates learning on
this gradient for the example with M = (0.5, 0.5). As predicted by theorem 1, the
gradient does never point in the opposite direction of ∂EX/∂W . In the example,
fixpoints lie on MW =0 or MW =1. MW =1 represents the set of correct solutions to
the right inverse problem. If the learner is initialized with MW0>0, it will converge
to such a solution. Otherwise it will stop in MW = 0 which is not a solution to the
right inverse problem, but only a partial solution for the zero-dimensional subspace
x = 0. Note that theorem 2 correctly describes the fixpoints MW =1 and W =0. Such
values of W will never generate inconsistent data qi 6= qj , xi = xj . For the remaining
fixpoints, W lies entirely in the Nullspace of M , but is not zero itself. These fixpoints
MW =0,W 6=0, are only described by theorem 3 which gives the necessary condition.
Gray lines show exemplary trajectories on which Wt is changed during learning. The
directions are entirely concentric, as Wt is moved on straight paths away from W =0
for 0<MW<1, or towards W =0 for MW<0 and MW>1. Hence, Wt never changes
its column space which can be shown for the general case by factorizing the gradient:

∂ÊQp (W )

∂W
= W ·

[
(MW − 1n)X∗W TMT

]︸ ︷︷ ︸
P

= W · P .

The right multiplication with P ∈Rn×n transforms W into the gradient, which means
that both have the same column space. Then W has still the same column space after
a gradient update.

Plain goal-directed exploration can lead to the discovery of a valid right inverse
solution. However, it sticks to only partial solutions if it is not well initialized and can
therefore not reliably solve the inversion of causality. The exploration does not allow
for an orienting towards new stimuli because it remains in a fixed column space.

4.2.2 Exploratory Noise

Plain goal-directed exploration does not contain exploratory noise, which can result in
degenerated data sets within subspaces. The following analysis investigates the impact
of such exploratory noise, i.e. exploring actions that do not exactly correspond to the
suggestion of the inverse estimate q = g(x∗,W ). Exploratory noise can be injected by
generating examples with a perturbed variation of inverse estimate1 g. In the linear
case this perturbation can be formulated by choosing actions with some generating
matrix Wgen, that is a perturbed version of W :

q
(t)
k = W (t)

genx
∗
k with W (t)

gen ∼Wt + ε .

1The proofs in this section can be derived analogously for additive noise on the actions, such that
q
(t)
k = Wtx

∗
k+ε. The only difference for the analysis is that the term trace(X∗) in the expected ac-

tion matrix disappears, but which leaves the full rank and the fixpoints unchanged. The advantage
of perturbing g instead will become visible in chapter 5.

34



4.2 Fixpoint Analysis for Explorative Learning

The components of the perturbation ε ∈ Rm×n are chosen i.i.d. with zero mean and
variance σ2. Examples for multiple perturbations can be collected and used for one
gradient step according to the learning equation (4.9). This analysis assumes that
enough data is collected to approximate the learning process by the expectation of
this exploration process. The expected action matrix that is generated during such
exploration is:

Q[W ] = E
[
(W + ε)X∗(W + ε)T

]
ε

= E
[
WX∗W T +WX∗εT + εX∗W T + εX∗εT

]
ε

This gives E[WX∗εT ]ε =E[εX∗W T ]ε = 0 because E[ε] = 0. Expanding the last term
gives:

E[εX∗εT ]ε = E

(n−1∑
l=0

(
n−1∑
k=0

εi,kx
∗
k,l)εj,l

)
i,j


ε

Since εi,k and εj,l are by definition un-correlated unless i= j and k= l, the expected
matrix is diagonal with the components:

E
[(
εX∗εT

)
i,j

]
ε

=

{∑n−1
k=0 x

∗
k,kσ

2 if i = j,

0 else.

Thus, the matrix is scalar with

E[εX∗εT ]ε = trace(X∗)σ21m ,

which gives the expected action matrix

Q[W ] = WX∗W T + trace(X∗)σ21m . (4.11)

Unlike the loss of rank in plain goal-directed exploration, this matrix has full rank,
which also results in full rank for X:

Proposition 1. For σ2 > 0: rank(Q) = m , rank(X) = n

Proof. rank(Q) = m: The symmetric form WX∗W T in equation 4.11 is positive-
semidefinite. The second term is scalar and thus positive-definite for σ2 > 0. The sum
of a positive-semidefinite and a positive-definite matrix is also positive-definite, which
implies full rank.
rank(X) = rank(MQMT ) = n then follows from basic linear algebra.

The full rank of X implies that all fixpoints of the learning equation are valid right
inverse functions:

Proposition 2. For σ2 > 0, any fixpoint W of the learning equation (4.9) is a right
inverse of M .
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Figure 4.3: Learning gradient −∂ÊQ

∂W (W ) for noise σ2 = 0.2 The introduction of ex-
ploratory noise lets the inverse estimate converge to the Moore-Penrose
pseudoinverse.

Proof. Theorem 3 states that MWX = X for any fixpoint. Since X has full rank it is
possible to right-multiply with X−1 which gives:

MWX = X ⇒ MW = 1n

Hence, the introduction of exploratory noise remedies the flaw of plain goal-directed
exploration to result in only partial solutions. For a full analysis, Q[W ] can be inserted
into the gradient equation (4.7) in order to obtain the gradient on which learning
proceeds:

∂ÊQ(W )

∂W
= (WM−1m)(WX∗W T + trace(X∗)σ21m)MT .

Using this equation, it can be shown that the exploration does not only yield valid
right inverse function, but results in a unique fixpoint even in redundant domains:

Theorem 4. For σ2 > 0, the unique fixpoint of the learning equation (4.9) is the
Moore-Penrose pseudoinverse: W = M# = MT (MMT )−1.

Proof. The pseudoinverse can be derived from the fixpoint equation by utilizing the
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previous resultMW = 1n. Expanding the gradient first gives for α = trace(X∗)σ2 > 0:

0 =
∂ÊQ

∂W
= WMWX∗W TMT +WMα1mM

T

− WX∗W TMT − α1mMT

Substituting MW with 1n gives

WX∗ + αWMMT −WX∗ − αMT = αWMMT − αMT = 0

⇔ WMMT = MT

⇔ W = MT (MMT )−1

Figure 4.3 illustrates the learning gradient with exploratory noise σ2 = 0.2. The
qualitative behavior is drastically changed compared to exploration without noise (fig-
ure 4.2). Noise removes the erroneous fixpoints on MW = 0. The gradient is not
concentric around W =0 anymore and allows W to change the column space. On the
solution manifold MW = 1 the gradient pulls W towards the pseudoinverse, which is
W =M# =(1.0, 1.0)T in the example.

4.3 Numeric simulation results

In order to illustrate the theoretical findings, this section provides numerical simula-
tion results for goal-directed exploration with and without exploratory noise. Forward
functions are chosen with random forward matrices M in n= 3 and m= 10 dimen-
sions. The components of the forward matrices were drawn from a normal distribution
N (0.0, 1.0) and then normalized to ||M ||2 = 1.0, where || · ||2 is the l2 norm. 50 dif-
ferent forward matrices were chosen, each with 50 different random initializations
of W , also drawn component-wise from N (0.0, 1.0). Plain goal-directed exploration
(σ = 0.0) was performed with a step-width η = 0.2. Goal-directed exploration with
noise was simulated with η=0.2, σ=0.2, and 30 random perturbations ε ∼ N (0.0, σ2)
within each learning step. Both setups were simulated with three target positions
x∗ ∈ {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T }.

Figure 4.4(a) shows how the distance from the right-inverse condition MW =1n

Einvt = ||MWt − 1n||2 / ||1n||2 (4.12)

develops over time. Exploration with noise solves the problem exactly in all trials:
the error reaches numeric limits (1.2 · 10−16 ± 5 · 10−17) after approximately t=3200.
Without noise the error can not be reduced to zero. Only few individual trials (below
the 10% quantile) reach Einv≈0.0, which incidentally hit a good initialization. Most
trials get stuck in partial solutions.
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Figure 4.4: Correct solutions with MW = 1n are only found with noise (σ2 = 0.2),
whereas W approaches the pseudoinverse. Bold lines show median values,
thin lines the 10% and 90% quantiles and the filled areas correspond to
the range between the 25% and 75% quantiles.
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4.4 Discussion

In order to illustrate theorem 4, the deviation E# from the Moore-Penrose pseu-
doinverse was measured (for the σ=0.2 setup only):

E#
t = ||Wt −M#||2 / ||M#||2 (4.13)

E#,p
t = ||E[Wt|M ]−M#||2 / ||M#||2 (4.14)

The measure E#,p indicates how well the population average of W (for a fixed M)
fits the pseudoinverse. Figure 4.4(b) shows how both measures develop over time.
The population-average measure decreases continuously and reaches a value of 8.2 ·
10−3 ± 1.4 · 10−3, which corresponds to a very good fit of the 30 matrix entries to
the pseudoinverse. Not all trials show a monotonic behavior in E#

t as indicated by
the temporary increase of the quantiles above 50% around t= 200. In some regions
of the parameter space the inverse estimates initially spread into different directions,
before they come close to the solution manifold (MW = 1n) and move towards the
pseudo-inverse. This behavior is well visible in the upper left, and lower right corner
of Figure 4.3. The error development shows that between t = 1000 and t = 10000,
E# is still decreasing significantly while Einv is already very close to zero, which
displays the optimization of “redundant” parameters inside the set of correct solutions
MW =1n. Note that theorem 4 shows the fixpoint for the expected gradient. For a
finite number of samples there remain small random movements on MW =1n around
M# that prevent E# from decreasing exactly to zero. For n = 3 and m = 10, this
solution manifold has 21 dimensions in the 30 dimensional parameter space, since only
9 dimensions are bound by MW =13. In the experiments E# nevertheless reaches a
low level of 5 · 10−2 ± 1 · 10−2.

4.4 Discussion

This chapter has investigated the theoretical basis of learning inverse models from
examples. When the forward function is linear, learning can generally proceed from
arbitrary data sets because performance gradient and action gradient have a non-
negative angle. The fixpoint analysis shows that learning inverse models from exam-
ples leads, in linear domains, always to partial right-inverse functions which solve the
coordination problem at least for those observations in the data set. If the data set
does not span the entire observation space, the learned inverse models are only valid
in the corresponding subspace, which leads to the failure of plain goal-directed explo-
ration. Sanger already described a failure mode in which the learner already fits the
self-generated data [Sanger, 2004]. This analysis is complemented by the analysis of
redundancy in this chapter which shows that plain goal-directed exploration can also
get stuck in the Nullspace of the forward function, where data can not be fitted due
to different target outputs for identical input of the learner. Contrary to such nega-
tive results, the analysis of exploratory noise provides the first affirmative results on
goal-directed exploration: if noise is added, the exploration does not only succeed in
inverting the causal relation between actions and outcomes, but results in the unique
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Chapter 4 Inversion of Causality in Linear Domains

Moore-Penrose pseudoinverse, which is the least-squares solution.
Albeit linear domains are considerably simpler than non-linear ones, they allow to

study the relation between left- and right-inverses, and in particular the effect of redun-
dancy, which explicitly includes high-dimensional action spaces. The analysis showed
that redundancy weakens the relation between performance and action gradient, which
is strictly positive without redundancy, but only non-negative when linear redundancy
is present, plus it leads to additional failure modes when plain goal-directed causes
degenerated data sets. However, redundancy does not impair the functioning of goal-
directed exploration when exploratory noise is included, which is an important results
for the overall scope of this thesis to consider the bootstrapping of coordination skills
in high-dimensional domains. In linear domains it is not strictly necessary to perform
exploration in a goal-directed manner, since learning can be successful from arbitrary
– also random – data sets. This situation changes when non-convex solution sets oc-
cur in non-linear domains. The next chapter investigates this case on the basis of
goal-directed exploration as presented in this linear-case analysis.
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Chapter 5

Coordination Problems with Non-Convex
Solution Sets

The analysis of linear domains shows that goal babbling can solve the inversion of
causality and that the presence of multiple solutions for the same goal still allows
for successful learning when the redundancy manifolds are linear subspaces. Many
practically relevant coordination problems, however, are non-linear and have solution
sets that are not convex. This prohibits learning from arbitrary data sets [Jordan
and Rumelhart, 1992], because averaging of examples with the same outcome can lead
to actions with a different outcome (see section 2.4). Prior to the work described in
thesis, no method was known to learn inverse models in the presence of non-convex
solution sets. This chapter investigates how goal babbling allows to deal with that
problem and provides the first algorithm that can learn inverse models from examples,
even in the presence of non-convex solution sets. The methods and results presented
in this chapter have been published in [Rolf et al., 2010c].

Plain Goal-Directed Exploration: revisited

As a starting point to understand goal babbling in domains with non-convex solution
sets, figure 5.1 shows the failure of plain goal-directed exploration [Oyama and Tachi,
2000, Sanger, 2004] for the toy-example of inverse kinematics as illustrated in section
2.1. The figure shows how the inverse estimate changes over the course of learning in
the action space. Examples (xk, qk) (green dots) are iteratively generated by query-
ing the inverse estimate with different goals x∗k. An inverse model that solves the
coordination problem would place all colored markers on the solution set with the cor-
responding color, which is clearly not achieved by plain goal-directed exploration. Of
course, this scheme can not solve the inversion of causality, as analyzed in the previous
chapter, but it allows a concise view on two additional problems in non-linear redun-
dant domains: Firstly, the exploration scheme is exposed to arbitrary drifts through
the action space. In figure 5.1(d) the inverse estimate has already approached the
boundary of the action space and afterwards completely degenerates into the limits.
Secondly, the exploration scheme generates inconsistent examples although the explo-
ration is clearly not exhaustive. The inverse estimate crosses the non-convex solution
sets multiple times (for instance the redly colored manifolds in figure 5.1(b)-(d)) so
that averaging leads to erroneous results. Section 5.1 presents an in-depth analysis
of this problem and proposes a solution scheme. Based on that scheme, section 5.2
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Chapter 5 Coordination Problems with Non-Convex Solution Sets

(a) (b)

(c) (d)

Figure 5.1: Learning dynamics with plain goal-directed exploration from (a) to (d).
Learning occurs from inconsistencies, as the controlled manifold intersects
some redundancy manifolds multiple times. The estimate drifts in its or-
thogonal direction, where no training data is available.
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5.1 Non-convex Solution Sets during Goal Babbling

Figure 5.2: (Left) Space of target positions x∗. A linear target motion shall be pro-
duced between two targets. (Right) Space of results x = f(g(x∗)). An
inconsistency occurs e.g. when the grid is folded. The formerly straight
line now has a circular shape.

formulates an algorithm that re-integrates exploratory noise to solve the inversion of
causality, and a mechanism to prevent arbitrary drifts.

5.1 Non-convex Solution Sets during Goal Babbling

Two examples (xA, qA) and (xB, qB) are inconsistent, if they represent the same out-
come xA = xB but different actions qA 6= qB which can not be averaged without
provoking a different outcome (f(α · qA+(1−α) · qB) 6= xA). Regardless of the kind of
exploration that is used to generate samples, two examples with exact same effector
pose will rarely be found. Resolving inconsistencies solely based on the samples is
therefore hardly possible. The central step to understand and resolve inconsistencies
is to consider the example generation method itself, instead of considering isolated
examples.

Structure of Inconsistencies Generally, an exploration mechanism can denoted to
generate examples from some set of actions Qexpl ⊆ Q. For random motor babbling
this set is Qexpl = Q. Goal-directed exploration, however, generates examples in a very
structured manner by exploring only actions that suggests by the inverse estimate, such
that Qexpl = g(X∗). Even in that case, inconsistent examples can be generated, but the
structure of goal-directed exploration restricts the number of ways inconsistencies can
occur: Assume that two inconsistent examples qA 6= qB, xA =xB are generated in the
goal-directed exploration (qA, qB ∈ Qexpl = g(X∗)). An important, first observation

43



Chapter 5 Coordination Problems with Non-Convex Solution Sets

is that these two examples must have been generated by two different goals x∗A 6=x∗B.
If the goals were identical, then also the actions would be the same, since x∗A = x∗B ⇒
g(x∗A) = g(x∗B). Hence, inconsistent examples can only be generated if two different
goals lead to the observation of the same outcome. This allows to utilize goals as
a reference structure which can be compared to the actually observed outcomes. A
hypothetical example is illustrated in figure 5.2: a set of two-dimensional goals is
arranged in a grid-structure. The right side shows how that grid is deformed by
performing a goal-directed exploration step g(x∗) and observing the outcome f(g(x∗))
for all of the goals. Inconsistencies can occur when different goals x∗A 6= x∗B evaluate to
the same outcome xA = xB. This implies that the corresponding grid of outcomes must
have a certain degree of self-overlap, such as a folding in the example illustration. It is
hardly possible to detect this case solely based on the isolated examples (e.g. the grid’s
vertices). In particular, exact matches xA=xB do not necessarily occur on finite data
sets. Yet, the self-overlap becomes clearly visible if the two-dimensional topological
grid-structure (also the grid’s edges which indicate topological vicinity) of the goals is
considered. Such topological distortions can be detected by first generating examples
for all goals on such a grid, and then checking for crossings of the grid’s edges – or
hyper-edges in more than two dimensions. This, however, would require to analyze
the entire set of goals at once in a computationally rather expensive operation. This
thesis proposes a simpler scheme that is based on executing and analyzing continuous
paths of actions, which are performed between different goals. This corresponds to the
physical act of reaching, which generally requires the execution of physical movement
paths. Moreover, considering paths paves the way towards an online learning scheme
that is introduced in chapter 6.

Suppose, the inverse estimate is used to attempt a linear target movement between
x∗A and x∗B (see figure 5.2, left), i.e. to perform “trying to reach” from x∗A to x∗B.
The system starts with an action qA, corresponding to x∗A. Subsequently, targets
x∗t are interpolated between x∗A and x∗B and each of them results in an examples
qt = g(x∗t ), xt = f(qt) so that the final action is qB. At the beginning and the end
of the movement, the same outcome xA = xB is observed. When the intermediate
outcomes xt are observed while trying to follow that straight path, two cases can
occur:

1. The observed outcomes change while using the inverse estimate g(x∗) to follow
the goals between x∗A and x∗B. Since the observation returns to the same outcome
xA = xB, the intermediate movement must have a closed shape (see figure 5.2,
right). The goal is to follow a straight line, i.e. to keep the movement direction
constant, but the observed movement direction changes.

2. The observed outcome remains constant, in spite of different actions between
qA and qB. This case can occur when the inverse estimate moves exactly along
one redundancy manifold. In the case of reaching, this means that the robot is
moving its joints, but the effector position does not change, which is characterized
by a minimum of movement efficiency.
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5.1 Non-convex Solution Sets during Goal Babbling

Hence, inconsistencies during goal-directed exploration occur only if either (i) un-
intended changes of movement direction or (ii) movements with zero efficiency are
present, which both can be detected from observation of the movement.

Path-based Inconsistency Resolution The general idea how to use these insights
about the structure of inconsistencies is to assign weights wt ∈ R for each example
(xt, qt) along a continuous movement path. Unintended changes of movement direction
can be tackled with a scheme that bases upon a special case: If the observed movement
direction never deviates by 90° or more from the intended movement direction, circular
shapes as shown in figure 5.2 can not occur. This fact is utilized in the following
weighting scheme:

wdirt =
1

2

(
1 + cos^(x∗t − x∗t−1, xt − xt−1)

)
. (5.1)

Thereby ^(x∗t−x∗t−1, xt−xt−1) is the angle between the intended and actual movement
direction of the effector. If both are identical the angle is 0.0° and the weight becomes
wdirt = 1.0. If the observed movement has the exact opposite direction, the angle is
180.0° and the weight becomes wdirt =0.0. If a circular motion occurs for a linear target
motion, one half of the motion receives a higher weight than the other one and the
inconsistency can be broken. If the estimate g(x∗) is rather accurate and the intended
movement direction can always be realized, all samples receive full weight 1.0.

The second case of an inconsistency (low movement efficiency) can be resolved by
weighting with the ratio of effector motion and joint motion, which becomes 0.0 if the
joints move without effector motion:

weff
t =

||xt − xt−1||
||qt − qt−1||

. (5.2)

Since both weights are necessary for inconsistency resolution, they are multiplied
such that an example is ignored if any of the two criteria assigns a weight zero:

wt = wdirt · w
eff
t . (5.3)

The weighting scheme relies on the temporal order of examples along the trajectory,
since the actual and the last sample is taken into account. In particular, it relies on
goals: unintended changes of movement direction can only be detected if there is an
intended direction. The path based exploration generates an n-dimensional manifold
within the joint space, where the information about continuity along this manifold
allows for evaluation of the movement directions. It is this very information structure
that allows for a resolution of inconsistencies and distinguishes the proposed scheme
from all previous ones. The rules are local in space and time, since only the immediate
temporal and spatial context is considered. Therefore both rules are imperfect, since
only one movement direction can be observed at a time. However, the experiments in
this chapter show that the rules are sufficient to resolve inconsistencies.
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5.2 Structured Variation and Regularization

The overall algorithm to learn inverse models by means of goal babbling is organized
in epochs. In each epoch, the first step is to select a sequence of goals x∗t . In order
to apply the weighting scheme as described above, this sequence consists of piecewise
linear movements. At first, a sequence of k = 1 . . .K goals x∗k·L is randomly chosen
from the set of goals X∗. Then, successive goals are connected by a linear path with
l = 1 . . . L intermediate goals:

x∗k·L+l =
L− l
L
· x∗k·L +

l

L
· x∗(k+1)·L, (5.4)

This scheme generates K ·L temporally ordered goals x∗t which cover the set of goals
X∗ and are the starting point for goal directed exploration.

Structured Variation for Efficient Exploration Chapter 4 has pointed out the im-
portance of exploratory noise. The most simple possible way to insert such noise is
to add i.i.d. noise (for instance Gaussian noise) to each action qt before executing it.
However, such noise would affect the information structure that is necessary to resolve
inconsistent examples. Moreover, it is not very practical for a physical execution of
reaching movements, which would be erratic and jerky. In order to obtain a continuous
mechanism for exploratory noise that allows to apply the weight-based inconsistency
resolution, this thesis proposes to distort the entire inverse estimate, instead of isolated
actions. In the linear case analysis in chapter 4 this has been achieved by adding a
random term to the matrix W inside the inverse estimate. In the general, non-linear
case this can be formulated by adding a small perturbation term Ev(x∗) to the inverse
estimate:

gv(x∗) = g(x∗) + Ev(x∗). (5.5)

Examples are then generated with this structured variation instead of the actual inverse
estimate: qvt = gv(x∗t ), x

v
t = f(qvt ). The set of examples generated for a variation v is

denoted as
Dv = {

(
f(gv(x∗t )), g

v(x∗t )
)
}t. (5.6)

The assumptions and arguments for the inconsistency resolution still hold, since gv(x∗)
is again a function and spans a n dimensional manifold in the action space along the
respective path. For a given set of examples Dv, the weighting scheme can be applied
as proposed above. The index v is added to identify weights for examples of a specific
variation:

wv
dir

t =
1

2

(
1 + cos^(x∗t − x∗t−1, x

v
t − xvt−1)

)
, (5.7)

wv
eff

t =
||xvt − xvt−1||
||qvt − qvt−1||

, (5.8)

wvt = wv
dir

t · wveff

t . (5.9)
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5.2 Structured Variation and Regularization

Home Postures for Regularization Structured variations and the weighting scheme
allow to solve the inversion of causality and to deal with the possible generation of
inconsistent examples. Another problem that is specific to plain goal-directed explo-
ration is that the inverse estimate is exposed to uncontrolled drift (see figure 5.1),
which can degenerate the performance of the inverse estimate. A developmentally
plausible, and technically feasible way to prevent such drifts has been proposed in-
dependently in [Rolf et al., 2010c] and [Baranes and Oudeyer, 2010a]: Instead of
permanently performing goal-directed movements, the learner returns to a “rest” or
“home” position after some time, which corresponds to executing some action qhome.
For biological motor coordination this could, for instance, correspond to relaxing all
muscles and resting for a while. The central insight for the learning of inverse models
is that such an action can not only be used as a starting point for goal-directed move-
ments, but it can be directly used for learning. For an initial algorithm formulation,
this idea is integrated in the most simple possible way: In each epoch, the example
qv0 =qhome, xv0 =f(qhome)=xhome is added to the data set generated with goal-directed
exploration:

Dv ←− {(f(qhome), qhome)} ∪ Dv (5.10)

The “home” example receives the full weight wv0 =1.0.

A home position is a stable point in exploration, and thus in learning. The inverse
estimate will generally tend to reproduce the connection between qhome and xhome if
it is used for learning: g(xhome) ≈ qhome. The easiest way to achieve the result of
applying the home posture is: applying the home posture. This stable point largely
prevents the inverse estimate to drift away. Learning can start around the home
posture and proceed to other targets.

Exploration and Learning Algorithm In each epoch, example data (and correspond-
ing weights) from multiple different variations gv(x∗), v = 1...V is combined for learn-
ing, where V ∈ N is the number of different variations. The complete set of examples
is then

D = (xhome, qhome) ∪
⋃
v

Dv

= (xhome, qhome) ∪
⋃
v

{
(
f(gv(x∗t )), g

v(x∗t )
)
}t=0...T .

The multiple variations allow to discover new, relevant action by chance which solves
the problem of plain goal-directed exploration to reliably invert causality. All direc-
tions in the action space are locally covered if the number of variation V exceeds the
action dimension m.

In the learning step, the parameters θ of the inverse estimate g(x∗, θ) are updated
using the generated examples (xvt , q

v
t ), t = 0...T (including the home posture) and
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Algorithm 1 Goal babbling pseudocode for non-linear domains

Require: Forward function: f(q)
Require: Home posture qhome

Require: Set of target positions: X∗

Initialize learner: θ ← θ0, g(x∗)← g(x∗, θ)
for Number of epochs do

Select target sequence from X∗: x∗t , t = 1 . . . T (Equation 5.4)
D ← ∅
for v = 1 . . . V do

Select disturbance term: Ev(x∗)
Get variation: gv(x∗) = g(x∗) + Ev(x∗)
Generate examples: Dv ← {

(
f(gv(x∗t )), g

v(x∗t )
)
}t

Compute weights wvt (Equations 5.7, 5.8 and 5.9)
Add home posture: Dv ← Dv ∪ (f(qhome), qhome)
D ← D

⋃
Dv

end for
Reduce error EQw (θ) on D using gradient descent

end for

weights wvt in a regression step to reduce the weighted action error

EQw (D, θ) =
∑
v

∑
t

wvt · ||g(xvt , θ)− qvt ||2. (5.11)

Any regression algorithm can be used for this step (e.g. linear regression schemes).

The overall procedure works in epochs. The inverse estimate is initialized with
some parameters θ. The experiments in this chapter use a random initialization such
that the inverse estimate generates actions closely around the home posture for all
goals. Within one epoch, examples are generated from multiple variations, weights
are assigned and the learning is performed with the examples. The next epoch repeats
the procedure with the updated inverse estimate. The entire procedure is also detailed
in algorithm 1.

The introduction of multiple variations in the exploration locally adds multiple so-
lutions. However, if the disturbance terms Ev(x) have numerically small values, these
solutions are located in a small region in the joint space. Therefore the error induced
by the non-convexity problem is generally very small and can safely be neglected. The
weighting based on intended movement directions prevents learning from significantly
inconsistent examples. The efficiency weighting allows to “select” examples generated
by different variations. Solutions with higher movement efficiency (see equation 5.2)
will receive a higher weight and therefore dominate the learning [Peters and Schaal,
2008]. This causes the inverse estimate to be aligned along such optimal configura-
tions. The averaging is therefore constructive (compared to the destructive averaging
in motor babbling) which is only possible due to the combination of variation and
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weighting. In fact, striving for such optimal movement efficiency is not a luxury for
the learning of inverse models. It is necessary to resolve inconsistent solutions and
guide the exploration systematically towards new targets.

5.3 Examples

Learning Dynamics An example of inverse kinematics learning with this goal bab-
bling algorithm for the minimal 2-DOF problem (see figure 2.2) is shown in figure
5.3. The inverse estimate is initialized in a small region around the home posture,
which is set to qhome = (0.0, 0.0). The next images show the progress of the method
after several epochs. Each image shows the current inverse estimate together with the
currently generated example data. The aim is to control the effector’s height within
the full range from -1.0m to 1.0m. Initially, only heights around f(qhome) = 0m are
reachable. Target positions between the extremes -1.0m and 1.0m are tried to reach
from the very beginning, although these attempts are not successful at first.

Three qualitative stages can be observed in the progress of bootstrapping the inverse
kinematics. These stages are not preprogrammed, but they arise naturally from the
learning dynamics. In the first stage (orientation), the manifold spanned by the inverse
estimate is still close to the home posture. Only a small set of effector poses x can
be observed, such that the weighted action error EQw is rather small (similar to the
case of a constant function g(x∗)). Triggered by the exploration of variations, the
inverse estimate starts to align with the correct movement directions and for optimal
movement efficiency. Thereby the weights of the examples slowly increase.

Once the inverse estimate is aligned with optimal directions, the second stage (ex-
pansion) can be observed. The extrapolation of the inverse estimate causes a rapid
expansion of the inverse estimate in the joint space. This stage is characterized by a
rapid decrease of the performance error. Due to the efficiency weighting, the expansion
approximately follows the steepest, most efficient direction. The inverse estimate is
aligned nearly orthogonal to the redundancy manifolds.

The expansion saturates when the ridge of the forward kinematics is hit. More
expansion would not discover new effector positions, but only introduce more incon-
sistencies since the same redundancy manifolds would be crossed again. Examples
generated beyond the ridge are, however, filtered out by the weighting of correct
movement directions (equation 5.7). Then the third stage (tuning) can be observed.
The inverse estimate finds the non-linearities that are necessary to reach for the ex-
treme positions and to further optimize the movement efficiency. The performance
error decreases slowly until it converges.

In particular, this example of learning inverse models visualizes how goal bab-
bling differs from exhaustive exploration. The method never samples the entire two-
dimensional actions space. Instead, it explores the local surrounding of the inverse
estimate, which has a one-dimensional structure since n = 1. The same image can be
drawn for higher dimensions: even if the same task is learned with more degrees of
freedom, the exploration will only explore locally around a n = 1 dimensional man-
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(a) The inverse estimate is initialized around the home posture.

(b) Orientation: the inverse estimate has aligned with the steepest direction.

(c) Expansion: the performance error decreases rapidly.

(d) Tuning: the inverse estimate finds the necessary non-linearities to reach for extreme positions.

Figure 5.3: The inverse estimate is initialized around zero in joint space. During goal
babbling it unfolds successively and reaches an accurate solution.
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(a) Outcome for qhome=(0.0, π
2

) (b) Two possible outcomes for qhome=(π
2
, 0.0), which is a singularity

of the forward kinematics.

Figure 5.4: The inverse estimate can be shaped by the choice of the home posture,
which is shown as green circle. Learning is still possible from a singularity
as start point. However, learning can no longer proceed if the joint limits
are hit.

ifold in the arbitrarily high-dimensional action space. Redundant choices of action
are systematically ignored in order to learn one coherent solution to the coordination
problem.

Influence of the Home Posture The home posture is an open parameter of the
exploration procedure, which can be used to shape the inverse estimate, and to control
which way is used to resolve the redundancy. The goal babbling algorithm works
robustly for a wide range of home postures. An example of a different home posture is
shown in figure 5.4(a). The inverse estimate aligns with the optimal efficient movement
direction with respect to the home posture, which acts as origin. The algorithm
can also be successful, if the home posture is placed in a singularity, as shown in
figure 5.4(b). In that case multiple ways exist to leave the singularity with optimal
movement efficiency (two in the example). This symmetry is broken by the randomized
exploration of variations. The learning can get stuck if the inverse estimate hits
the joint limits, such that a further local improvement of the inverse estimate is not
possible, see figure 5.4(b). Goal Babbling shares this problem with feedback-error
learning and learning with distal teacher. All three approaches operate iteratively,
based on local improvements. Although error-based methods do not make explicit
use of a home posture, they require an initial placement of the inverse estimate and
cannot proceed if local improvements are not possible. Home postures that cause such
ill-posedness are, however, biologically not plausible for systems that need to bootstrap
their motor repertoire. Also, they are easy to avoid engineering-wise by choosing a
position in the center of the action space and nearby the target positions that are tried
to reach.
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5.4 Experiments

In this section, results of the goal babbling algorithm for reaching with different robot
morphologies are shown. The experiments start by extending the simple 2-DOF arm
(see figure 2.2) by more degrees of freedom and finish with goal babbling on a humanoid
morphology. All experiments use polynomial regression [Poggio and Girosi, 1990] to
represent the inverse estimate g(x∗, θ). The input vector x∗ ∈ Rn is expanded by a
feature mapping ΦP (x∗) ∈ Rp which calculates all polynomial terms of the entries of
x∗. Thereby P is the maximum degree of the polynomial terms and p is the number
of polynomial terms that can be calculated from an n dimensional vector. For a
two dimensional input vector x= (x(1), x(2)) and a polynomial degree P = 2, ΦP (x)

calculates the terms (1.0, x(1), x(2), x
2
(1), x(1) ·x(2), x

2
(2))

T ∈ R6. A linear regression with
parameters θ=W operates on these features:

g(x∗,W) = W · ΦP (x∗), W ∈ Rp×m. (5.12)

The entries of the regression matrix W are adapted by gradient descent in the weighted
action error as defined in equation (5.11). The learning rate is set to 0.2. Before
exploration and learning proceed, W is set to zero and few random adaptions are
performed such that g(x∗,W) produces joint angles in a range of 0.1 radian around
the home posture.

Linear perturbation terms are used for exploration:

Ev(x∗) = A · x∗ + b, A ∈ Rm×n, b ∈ Rm. (5.13)

The values of A and b are chosen randomly, such that the perturbation of any joint-
angle never exceeds a range R within the bounded set of target positions X∗:

Ev(x) = (e1, . . . , em)T , |ei| <= R ∀ i = 1 . . .m, x ∈ X∗.

The mean euclidean deviation DX is used as error measure in order to assess the
accuracy of the inverse models on the set of goals X∗:

DX(X∗, θ) = DX(X∗,W) =
1

K

k<K∑
k=0

||f(g(x∗k,W))− x∗k|| . (5.14)

In contrast to the performance error (see equations 2.12 and 4.4), this measure does
not evaluate on the squared deviation between f(g(x∗)) and x∗, but on the ordinary
distance between both values. While the square value is important for theoretical
investigations, the error DX is well suited for experimental evaluations because it
can be easily interpreted as average distance between desired and actual outcome in
cartesian coordinates.

Due to the coherent initialization in the home posture, the error variances across
trials in the following experiments are considerably lower than in the linear domain
experiments presented in chapter 4, which used entirely random initializations. There-
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fore, the temporal characteristics of different parameter values are directly compared
by the average error across trials in order to provide a compact overview. The variance
is illustrated by additional minimum and maximum values for the final epoch.

5.4.1 Planar Arm: 1D Coordination Task

The first experiments concern the simulated robot arm in figure 2.2. The arm with
initially two degrees of freedom (m= 2) is used to coordinate only the height of the
end effector (n=1). If only one dimension is coordinated, K = 1 linear target motion
is enough to cover the whole space of goals. This target movement spans the entire
range between x∗ = −1.0m and x∗ = 1.0m with L = 25 intermediate steps. The home
posture is qhome=~0 such that the arm is stretched and at height 0.0.

The most important parameter of the algorithm is the exploration range R. Figure
5.5(a) shows results for R varying between 0.05 and 1.0 radian over 10000 epochs and
for 20 independent trials. The number of variations was set to V =20 and third order
polynomials (P =3) are used for regression.

The left plot shows the mean euclidean deviation (see equation 5.14) over time
for different values of R. The error decreases continuously. The qualitative stages
orientation, expansion and tuning can be identified in all curves, where the expansion
shows a rapid decrease of the error. High values like R = 1.0 display the fastest
convergence, but remain at a higher absolute error. The right plot shows the final
error reached after 10000 epochs. For R=0.05 not all inverse estimates are converged
after that time, depending on the initialization. For R = 0.1 or higher, all trials
have converged and show a very low error (1-2cm for an arm length of 1m). An
increase of error is visible for high values of R. Here examples are rather distant and
the residual averaging error between the variations has a higher impact compared to
small values of R. For R= 1.0 the examples are generated in almost the entire joint
space. However, the error is – in contrast to motor babbling – still small since the
inconsistency resolution filters large portions of the generated examples. Although the
speed varies, the general success of the goal babbling algorithm is rather insensitive
to the concrete exploration range.

Figure 5.5(b) shows the same setup, but the exploration range is fixed to R=0.2 and
the polynomial degree P is varied. The temporal characteristics of the error do not
differ significantly for different polynomial degrees. Higher polynomial degrees allow a
more accurate approximation of the examples. While first and second order polynomi-
als do not yield a very accurate inverse estimate, the error reaches few millimeters for
higher polynomial degrees (ca. 3mm error for P = 10). The averaging error between
variations must therefore be smaller than 3mm. The error has converged in all cases
and shows – depending on the expressiveness of the polynomials – a good performance.
Goal babbling was successful for all values of P and in all independent trials.

For the overall scope of this thesis, the most important question is how the method
scales with the degrees of freedom m. Results for up to 50 degrees of freedom are
shown in figure 5.5(c). For each value of m the arm was divided in segments of equal
length, whereas the arm length is kept constant at 1m. For instance, an arm with
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(a) Higher exploration ranges R cause a faster convergence, but higher residual error.
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(b) Polynomial with higher degrees P reach more accuracy, while the learning speed does not differ.
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(c) Successful bootstrapping of inverse kinematics is possible also for 50 DOF.

Figure 5.5: Performance of goal babbling over 10000 epochs for the planar arm,
whereas only the height is coordinated (n = 1). The left plots show the er-
ror over time, averaged over 20 independent trials. The maximum, average
and minimum final error of 20 trials are shown of the right side.
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m=10 comprises 10 segments with each 10cm length. Parameters R=0.2 and V =20
are used in order to compare the results to the previous experiments. The results
show a rapid and reliable decrease of the error for all values of m and in all trials. The
simulated arm with 50 degrees of freedom can be coordinated with an accuracy of 2cm
after 10000 epochs. The method is systematically successful for such hyperredundant
setups.

5.4.2 Planar Arm: 2D Coordination Task

The experiments continue with the simulated planar arm, but increase the dimension
of the coordination task. Instead of coordinating only the height (n = 1), the 2D
position of the effector (n = 2) is considered. The position is encoded in cartesian
coordinates with origin in the base of the arm. The step from n=1 to n=2 is essential
to show the validity of the movement direction weighting for redundancy resolution
(equation 5.7). In 1D the angle between intended and actual movement direction can
only be 0.0° or 180.0°. In n=2 arbitrary angles can occur. Since the weighting scheme
only uses the immediate temporal and spatial context, each goal position must be
passed from different directions for a correct resolution of inconsistencies.

The aim in this set of experiments is to gain control over a part of the possibly reach-
able positions as shown in figure 5.7. The set of goal positions is shown as a grid. The
home posture is set to a slightly curved shape, since a stretched position corresponds
to a singularity in the 2D task. Learning would still be possible from that position,
as either an “elbow-up” or “elbow-down” configuration could be chosen. However, it
takes more time for the exploration to leave the singularity. A new sequence of targets
x∗t is generated in each epoch. K=15 goals are randomly selected from the target grid
shown in figure 5.7. One after the other is connected by a linear target motion with
L= 7 intermediate target positions (l = 0 . . . L− 1). As in the n= 1 experiment, the
target selection does not depend on learning progress and X∗ does not change over
time. However, in n = 1 one linear motion covers the entire target space. In n = 2
multiple linear series are required.

The experiments of the n = 1 case are entirely repeated with this n = 2 setup.
The results are summarized in figure 5.6. The algorithm requires more epochs for
convergence than in the n = 1 setup. Except for the speed, all results can be repro-
duced for n = 2. Again parameters P = 3, R = 0.2 and V = 20 are used as default
values, and one redundant degree of freedom is incorporated, such that m = 3. Higher
exploration ranges (see figure 5.6(a)) result in a faster convergence. The converged
performance error only shows marginal differences across values of R. In all cases
the error converges below 2cm. Only for very small exploration ranges the error has
not yet converged after 100000 epochs. The variation of polynomial degrees P (see
figure 5.6(b)) shows a good and reliable performance for all P ≥ 2. In the case of
2D position control, linear models (P = 1) are not expressive enough to represent an
accurate inverse solution.

Also for the 2D coordination task, goal babbling is successful for hyperredundant
setups. Figure 5.6(c) shows results for up to 50 degrees of freedom. An example
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(a) Higher exploration ranges R cause a faster convergence, but higher residual error.
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(b) Polynomial with higher degrees P reach more accuracy, while the learning speed does not differ.
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(c) Successful bootstrapping of inverse kinematics is possible also for 50 DOF.

Figure 5.6: Performance of goal babbling over 10000 epochs for the planar arm, where
the 2D position of the effector is coordinated (n = 2). The left plots show
the error over time, averaged over 20 independent trials. The maximum,
average and minimum final error of 20 trials are shown of the right side.
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(a) Target positions x∗ are
shown as gray grid. The
arm shows the home
posture.

(b) The actually reached positions f(g(x∗)) are shown as black
grid. Multiple postures g(x∗) are overlaid to show how the
redundancy is resolved.

Figure 5.7: An inverse estimate for 2D position coordination of a planar 10 DOF arm
generated with the goal babbling algorithm. A third order polynomial was
used as approximation model. The inverse estimate is very accurate as the
reached positions are close to the target positions. The inverse estimate
makes efficient use of all degrees of freedom.

solution g(x∗) for m=10 is shown in figure 5.7. Goal babbling reliably yields accurate
inverse estimates for n=2. The results confirm that the weighting-based resolution of
inconsistencies is valid, although it only uses local information.

5.4.3 Humanoid robot: 3D Coordination Task

A further increase of complexity is investigated with a kinematic simulation of a hu-
manoid robot (see figure 5.8), where m=15 degrees of freedom need to be coordinated.
Five joint angles are controlled in each arm: three rotational joints in the shoulder,
one in the elbow, and the rotation of the hand around the forearm axis. Four virtual
joints are controlled in the hip: its orientation around all three spatial axes and the
height over ground. The hip degrees of freedom are implemented by means of leg
motion, whereas the leg joints are automatically adjusted to realize the desired hip
pose [Takenaka, 2006]. As additional degree of freedom, the head-pan direction is
controlled. This joint is, like the joints in the left arm, irrelevant for the task. The
kinematic structure is rather complex compared to the planar arm, as the joints have
offsets and rotate the hands around different axis. Since the ranges of the possible
angles differ significantly between different joints, the values are normalized to the
range qi ∈ [−1.0; 1.0] ∀i=1...15.

This experiment concerns the coordination of the 3D spatial position of the right
hand (n= 3). Nine degrees of freedom are relevant for this task (five in the arm and
four in the hip). The set of target positions is defined in a cube with 20cm edge length
in front of the upper body (see figure 5.10). A sequence of targets x∗t is generated
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Figure 5.8: Humanoid robot morphology used for reaching in 3D. Figure from [Rolf
et al., 2010b].

newly in each epoch according to equation (5.4) with K=50 goals L=10 intermediate
steps. Default parameters values are P =3, R=0.2 and V =25.

The results are shown in figure 5.9. The mean euclidean deviation is shown over time
for different exploration ranges R and polynomial degrees P . For n=3 it takes more
time for the inverse estimate to orient with the correct movement directions. The error
decreases slowly, but continuously. The temporal curves, but also the converged errors
have the same characteristics as in the planar arm experiments. Higher exploration
ranges cause faster convergence but higher residual errors. The performance benefits
from higher polynomial degrees, indicating that the full expressiveness of the model
can be used. Already linear models (P = 1) yield accurate inverse estimates with
performance errors around 1.5cm inside the cube of targets. An example solution
with a third order polynomial is shown in figure 5.10. The task-relevant degrees of
freedom in the hip and in the right arm are used effectively. The task-irrelevant joints
are stabilized in an approximately fixed position, which is the most efficient way to deal
with irrelevant joints. The algorithm shows a reliable performance also on humanoid
morphologies with complex kinematic structure in three dimensions.

5.5 Discussion

Inverse models can not be learned from arbitrary data sets in non-linear redundant
domains due to the non-convex solution sets that forbid averaging. Inconsistent exam-
ples can also occur during goal-directed exploration although it generates examples in
a highly structured manner. The analysis presented in this chapter, however, showed
that during this exploration, inconsistencies can only occur in very specific ways. Con-
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(a) Higher exploration ranges R cause a faster convergence, but higher residual error.
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(b) Polynomial with higher degrees P reach more accuracy, while the learning speed does not differ.

Figure 5.9: Performance of goal babbling over 100000 epochs for the humanoid robot,
where the 3D position of the right hand is coordinated (n = 3). The left
plots show the error over time, averaged over 5 independent trials. The
maximum, average and minimum final error of 5 trials are shown of the
right side.
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Figure 5.10: An inverse estimate for the humanoid morphology generated with goal
babbling. Goal positions are located in a cube with 20cm edge length in
front of the body. Several postures show how the inverse estimate reaches
for the corners. All relevant degrees of freedom are effectively used. Irrel-
evant degrees of freedom (e.g. in the left arm) stay approximately fixed.
Figure from [Rolf et al., 2010c].

sidering goals as a reference structure allows to detect and remove them by means of
a simple weighting scheme that considers continuous paths of movements. This is
possible solely from information that is directly observable, like current movement
directions and amplitudes. This stands in contrast to error-based methods for the
learning of inverse models [Kawato, 1990, Jordan and Rumelhart, 1992], which rely
on an error-signal that is not directly observable and needs to constructed by prior
knowledge.

The weighting based resolution is thereby rather heuristic, although it is motivated
by strict logic about the geometry and structure of goal-directed exploration. The
weighting scheme only considers one position and direction at a time. It is plausible
that there are pathologic cases when this is not sufficient and the entire space of goals
needs to be considered, as it is visualized in figure 5.2. However, the experiments show
conclusively that this heuristic scheme is successful, at least when learning starts locally
in a home posture. It is likewise plausible that such pathologic cases can generally
not be reached during this highly structured and regularized learning procedure. A
nevertheless important aspect for future work is to extend the theory developed for
linear cases to this setup.

The experiments show that the goal babbling algorithm allows to learn inverse
models for different morphologies, in domains with entirely different dimensions, for a
wide set of parameter values, and without prior knowledge about the structure of the
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corresponding coordination problems. This chapter has therefore introduced the first
algorithm that can learn inverse models from examples in spite of non-convex solution
sets [Jordan and Rumelhart, 1992]. Together with chapter 4, this work has clearly
fulfilled the research goal to enable example-based learning of inverse models.

The number of examples necessary thereby largely depends on the task dimension n.
Three-dimensional tasks like reaching on the humanoid morphology requires more
examples to cover the sets of goals X∗ and observations X. This increase of cost for
higher n is very natural: a task with n = 3 can be viewed as three interfering tasks
with n = 1 at the same time, which is intuitively more difficult than a single one-
dimensional task. Typical tasks, however, are substantially lower dimensional than
the corresponding action space with dimension m. The experiments in this chapter
provide a first indication that goal babbling indeed permits an excellent scalability
to high dimensional action space. For a fixed task dimension n, the exploratory cost
barely depends on the action dimension m, and even additional, irrelevant degrees
of freedom do not impair the performance. This stands in harsh contrast to motor
babbling, which does not take into account the task and does not allow to scale to
high-dimensional action spaces. This scalability can be achieved with goal babbling
because it does not attempt to learn all different solutions to the same outcome in
redundant domains. In particular when goal babbling is used to learn inverse models
– as it is approached in this thesis – only one solution is essentially explored and
represented. This behavior is well visible in figure 5.3: only a n-dimensional manifold
is explored at a time, even if the action space has a much higher dimension.

On a conceptual level it can be summarized that goal babbling is a successful strat-
egy for the bootstrapping of coordination skills. Two mechanisms are necessary to
enable this approach, besides the elementary formulation of plain goal-directed ex-
ploration as presented in [Oyama and Tachi, 2000, Sanger, 2004]. Exploratory noise
is necessary to avoid a degeneration of example data into subspaces. In redundant
domains, a regularization mechanism is necessary that prevents unstable drifts into
unknown regions of the action space. This can be effectively solved by using a home
posture as starting and return point for learning and exploration. An important char-
acteristic of goal babbling is the highly structured exploration across goals instead of
arbitrary random actions. This is clearly visible even from a distal perspective, since
examples are only collected on a low-dimensional manifold in the action space. This
structure does not only permit to scale to high-dimensional action spaces, but this very
structure can be exploited to resolve inconsistent solutions by using goals as reference.
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Chapter 6

Online Learning Dynamics during Goal
Babbling

The previous two chapters have shown that goal babbling allows for a successful
learning of inverse models. This chapter concerns the practical applicability of the
approach and investigates the absolute speed of learning. The algorithm formulation
of the previous chapter relies on the collection of several examples for various goals
and variations. The experiments already showed that the approach is rather scalable
to high-dimensional action spaces. The absolute number of necessary examples, how-
ever, is comparably high since each epoch can contain several thousand examples and
several hundred to thousand epochs are necessary depending on the task dimension.

This chapter first revises the data generation formulation in order to generate move-
ment paths that are entirely continuous in time. The previous chapter motivated to
switch between a discrete number of different variations because each of these varia-
tions can be seen as a simple function that permits a concise analysis of the structure
of inconsistent solutions. This chapter relaxes the constraint to organize exploration
in such a discrete way and introduces a formulation that continuously blends between
variations. This step is important for the application of reaching on a real robot, since
the movements must be physically continuous. Based on this formulation, this chapter
investigates how the demand for examples can be reduced by applying online learning,
i.e. performing a learning step after each generated example. Distinct measurements
of the bootstrapping speed show that the method scales with almost constant, and
very low exploratory cost across different dimensions of action spaces. The exploration
formulation introduced in this chapter as well as the experiments have been published
in [Rolf et al., 2011].

6.1 Online Learning in the Loop

Online learning with gradient descent is a widely used approach for a variety of machine
learning problems [Rumelhart et al., 1986, Jordan and Rumelhart, 1992, Bottou and
LeCun, 2004, Peters and Schaal, 2007]. Instead of performing a “batch” gradient step
on an entire data set, single examples are selected in order to perform a gradient step.
In machine learning tasks with fixed data sets, online learning is typically regarded
as a stochastic approximation of batch gradients. This implies that online gradient
learning is a sound mechanism to reduce some error functional and that it exposes
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(a) Learning with uninformed exploration (b) Goal babbling

Figure 6.1: Uninformed exploration processes like motor babbling allows to under-
stand online gradient learning as a stochastic approximation of batch gra-
dients. During goal babbling, exploration and learning mutually inform
each other. This loop breaks the assumptions of the stochastic gradient
approximation and leads to very particular learning dynamics that are
investigated and exploited in this chapter.

characteristics that are comparable to those of batch gradient learning.

The fundamental assumption that underlies the idea of a stochastic approxima-
tion is that examples must be drawn (i) independently and (ii) identically distributed
from some real-world or empirical data distribution [Bottou, 1998]. These assump-
tions typically hold when forward models are learned by means of motor babbling.
The distribution of examples in that case is a uniform distribution over all actions.
Each example is chosen from that distribution, so that they are identically distributed.
Typically, an entirely new example is chosen in each step so that they are also inde-
pendent1. Even if learning and exploration are temporally intertwined by means of
online learning, the exploration is not informed by the learning, but purely random
(see figure 6.1(a)). Hence, the stochastic approximation holds which implies that for
motor babbling, there is no fundamental difference between batch and online learning.

Goal babbling follows an entirely different organization of exploration and learning.
Not only the learning is informed by exploration, but also the exploration is informed
by learning (see figure 6.1(b)) when goal-directed movements are attempted. Thereby
the learning forms, and continuously changes the distribution of example data (see
section 4.2.2). Initially only examples close to the home posture are explored, before
learning starts to unfold the inverse estimate which leads to generation of different
example distributions (see figure 5.3). Examples during this initial bootstrapping are
clearly not identically distributed. When online learning occurs from continuous paths,

1This is not the case when random paths of actions are considered, such as [Schillaci and Hafner,
2011]
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examples are also temporally correlated and thus not independent.

The use of temporally correlated examples is known to cause the problem of “catas-
trophic interference” [McCloskey and Cohen, 1989]. Although this problem is barely
theoretically solved [Biehl and Schwarze, 1995, Sollich and Barber, 1996], there are
practical solutions that are based on the formulation of local learning mechanisms,
and that are used in the following experiments (see section 6.2.3). The consequences
of a “loop” between exploration and learning, and the resulting change of example
distributions, are not generally clear. Of course, goal babbling can not be done in a
pure batch manner since it defines an incremental process. However, the results in this
chapter will challenge the view to regard online learning steps as an approximation
of the iterative batch updates used in the previous chapter. The experiments provide
evidence showing that this loop during goal babbling is in fact a positive feedback loop
that permits substantial, non-trivial speedups of learning.

6.2 Online Goal Babbling Formulation

As a first step towards an online implementation, this section introduces an exploration
formulation that generates entirely continuous paths. The general pattern of goal-
directed exploration is the same as in the previous chapters. In each timestep t, an
action qt is explored and the outcome is observed:

xt = f(qt). (6.1)

In order to generate examples, the algorithm starts with an initial inverse estimate
g(x∗, θ0) that always suggests the home posture: g(x∗, θ0) = const = qhome. Then
continuous paths of target positions x∗t are iteratively chosen from the set of goals X∗.
Exploration tries to reach for these targets with the inverse estimate:

qt = g(x∗t , θt) + Et(x
∗
t ). (6.2)

The outcome xt is observed and the parameters θt of the inverse estimate are updated
immediately before the next example is generated. The perturbation term Et(x

∗) adds
exploratory noise in order to discover new positions or more efficient ways to reach for
the targets. This allows to unfold the inverse estimate and finally find correct solutions
for all positions in the set of goals X∗.

6.2.1 Continuous Path Generation

Beyond isolated timesteps t, the exploration is organized into reaching movements,
which are counted by an index r. Each movement describes a linear path with a fixed
number L of intermediate timesteps, which is set to L = 25 throughout this chapter.
Hence, a movement r starts at timestep t = rL and ends at timestep t = (r + 1)L.
The starting point of each movement is the last point of the previous movement, such
that the exploration is entirely continuous in t.
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Redundancy
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q
q
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(a) A linear goal-directed path shown in the action space.

Redundancy
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g −1,

q

q
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q= home

(b) A subsequent homeward movement in the action space.

Redundancy
Manifolds

(c) 1000 successive examples.

Figure 6.2: Online goal babbling in the action space of example figure 2.2. (a) The
inverse estimate is used for trying to move from x∗kL (here−1) to some other
target x∗(k+1)L (here +1). (b) The effector moves from the last goal-directed

action back to the home posture. Figure (c) shows how the perturbation
terms cover the local surrounding of the inverse estimate.
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6.2 Online Goal Babbling Formulation

Goal-directed movements are thereby performed in the same way as in the previous
chapter. Starting from some goal x∗rL, a new goal for t = (r + 1)L is randomly drawn
from X∗ and these endpoints are linearly interpolated with l = 1 . . . L steps:

x∗r·L+l =
L− l
L
· x∗r·L +

l

L
· x∗(r+1)·L . (6.3)

An example is generated for each of these targets according to equations (6.1) and (6.2).

The initial target (t=0) is the outcome of the home posture: x∗0 = f(qhome). In the
first movement, the system tries to move to another target x∗L which is drawn from
X∗. Between the timesteps 0 and L, the target positions are defined by the linear
sequence between x∗0 and x∗L. Afterwards a new target x∗2L is chosen from X∗ and the
second movement is attempted from x∗L to x∗2L. An exemplary movement generated
in this way is shown in figure 6.2(a).

During these goal-directed movements, each example receives a weight wt in order
to resolve inconsistent solutions (see section 5.1):

wdirt =
1

2

(
1 + cos^(x∗t − x∗t−1, xt − xt−1)

)
, (6.4)

weff
t = ||xt − xt−1|| · ||qt − qt−1||−1 , (6.5)

wt = wdirt · w
eff
t . (6.6)

While the generation of goal-directed movements follows the same pattern as de-
scribed in the previous chapter, the integration of a home posture demands a different
mechanism when continuous paths are desired. Algorithm 1 simply added the home
posture qhome with the corresponding outcome xhome to the set of training data, which
corresponds to a discrete and potentially huge jump from the performance of the last
goal x∗. In order to generate continuous movements, this jump is explicitly interpo-
lated. After the execution of a linear goal-directed path r, a randomized decision is
made whether the next movement (r + 1) is also goal-directed (equation 6.3), or the
next movement approaches the home posture. The probability phome for a “homeward”
movement is set to phome = 0.1 throughout this chapter. Such movements are modeled
by a linear path in action space: the system moves from the last goal-directed action
qr·L to its home posture qhome, whereas equation (6.2) is replaced by the following
expression:

qr·L+l =
L− l
L
· qr·L +

l

L
· qhome . (6.7)

For every generated joint configuration, the resulting effector pose is observed (equa-
tion 6.1) and learning is applied online in the same way as for goal-directed move-

ments. These examples are only weighted with wt = weff
t , because targets x∗t for the

evaluation wdirt do not exist during this homeward movement2. After the home pos-
ture has been reached, a goal-directed movement is attempted from the initial target

2An alternative formulation of this behavior that allows for an elegant implementation is to assume

“virtual” goals x∗t
!
= xt, which implies wdirt = 1.
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Chapter 6 Online Learning Dynamics during Goal Babbling

x∗(r+1)·L = f(qhome). An example of this movement type is shown in figure 6.2(b).

Using this formulation of goal-directed and homeward movements allows for an
intuitive assessment of exploratory costs. In contrast to epochs that consist of distinct
paths, variations, and isolated home examples, the entire exploration can be assessed
with the number of movements r that have already been executed. In the case of
reaching this measure of time is also more meaningful than counting the number of
isolated examples, since physically continuous movements must be executed in any
way on a real robot.

6.2.2 Structured Continuous Variation

In order to generate continuous paths of actions, the above formulation of goal-directed
and homeward movements needs to complemented with a formulation of exploratory
noise that is likewise continuous in time. The previous formulation in chapter 5 used
random linear function that are added to the inverse estimate in order to perform goal-
directed movements with that variation. Therefore a discrete number of variations
is chosen and goal-directed paths are performed with each of them. A temporally
continuous re-formulation of this scheme can be found by considering a random walk
of linear perturbation terms. At any point in time the perturbation is modeled by a
linear function:

Et(x
∗) = At · x∗ + bt, At ∈ Rm×n, bt ∈ Rm (6.8)

Initially, all entries ei0 of the matrix A0 and the vector b0 are chosen i.i.d. from a
normal distribution with zero mean and variance σ2:

ei0 ∼ N (0, σ2), (6.9)

In order to explore different variations of the inverse estimate over time, these param-
eters slowly varied with a normalized Gaussian random walk. A small value δit+1 is
chosen from a normal distribution N (0, σ2

∆) with σ2
∆�σ2, and added to the previous

value eit. The variance of the resulting value is the sum of the individual variances
σ2 +σ2

∆. In order to maintain a stable amplitude of the perturbations, this term is

normalized with the factor
√
σ2/(σ2+σ2

∆), which keeps the overall amplitude stable
at σ:

δit+1 ∼ N (0, σ2
∆) , (6.10)

eit+1 =

√
σ2

σ2 + σ2
∆

· (eit + δit+1) ∼ N (0, σ2) . (6.11)

Hence, Et(x
∗) is a slowly changing linear function. It is smooth at any time, which

is important for the evaluation of the weighting scheme that resolves inconsistent
solutions. It is furthermore zero centered and limited to a fixed variance which leads
to a local exploration around the inverse estimate (see figure 6.2(c)). This process can
indeed be seen as an online approximation of the discrete variations in chapter 4 and
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6.2 Online Goal Babbling Formulation

Algorithm 2 Online Goal Babbling Formulation

Require: Forward function: f(q)
Require: Home posture qhome

Require: Set of target positions: X∗

Initialize learner: θ ← θ0 such that g(x∗, θ) = qhome

Initialize variation: E0(x∗) (Equation 6.9)
Origin for new movement paths: x∗(e) ← xhome, q(e) ← qhome

The first movement is goal-directed: G← true
while true do

if G is true then
Chose x∗(new) from X∗

end if
for l = 1 . . . L do

if G is true then
Interpolate goal x∗t = L−l

L · x
∗
(e) + l

L · x
∗
(new)

Generate goal-directed action qt (Equation 6.2)
else

Interpolate towards homeposture qt = L−l
L · q(e) + l

L · q
home

end if
Observe outcome xt (Equation 6.1) and compute weight wt (Equation 6.6)
Update inverse model with (xt, qt, wt) and update variation (Equation 6.11)

end for
if G is true then
x∗(e) ← x∗(new), q(e) ← qt

Set G← false with probability phome

else
x∗(e) ← xhome, q∗(e) ← qhome

G← true
end if

end while

5, which allows to solve the inversion of causality (compare figure 5.3). The entire
exploration procedure is summarized in algorithm 2.

6.2.3 Incremental Regression Model

For learning during this goal babbling algorithm, a regression mechanism for the in-
verse estimate g(x∗) is needed that can cope with the temporally correlated presen-
tation of examples during continuous movements. The experiments in the previous
chapter did not expose this problem: although the examples are generated along tem-
porally ordered paths, the examples were presented to the learner all together. When
examples are used for learning in their temporal order, “catastrophic interference”
[McCloskey and Cohen, 1989] can degenerate the entire learning. This thesis follows a
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Chapter 6 Online Learning Dynamics during Goal Babbling

standard approach to contain this problem by means of locally linear learning [Ritter,
1991, Atkeson et al., 1997]. The inverse estimate consists of different linear functions
g(k)(x), which are centered around prototype vectors p(k) and active only in its close
vicinity which is defined by a radius d. The function g(x∗) is a linear combination of
these local linear functions, weighted by a Gaussian responsibility function b(x):

g(x∗) =
1

n(x∗)

K∑
k=1

b

(
x∗−p(k)

d

)
· g(k)

(
x∗−p(k)

d

)
b(x) = exp

(
− ||x||2

)
n(x) =

K∑
k=1

b

(
x−p(k)

d

)
g(k)(x) = W (k) · x+ o(k)

The normalization n(x) scales the sum of influences of the components to unity, which
is known as soft-max.

The inverse estimate is initialized with a single local function with center p(1) =
f(qhome), that outputs the constant value qhome (W (1) = 0m×n and o(1) = qhome).
New local functions and their prototype vectors are added dynamically. Whenever the
learner receives an input x, that has a distance of at least d to all existing prototypes,
a new prototype pK+1 = x is created. In order to avoid abrupt changes in the inverse
estimate, the function gK+1(x) is initialized such that its insertion does not change the
local behavior of g(x∗) at the position x. The offset vector oK+1 is set to the value of the
inverse estimate before the insertion of the new local function: oK+1 = g(x). A simple
way to initialize the weight matrix is to use the average weights of topological neighbors
[Fritzke, 1995], but which does not necessarily reflect the input-output behavior of g at

the position x. The exact behavior is characterized by the Jacobian matrix J(x)= ∂g(x)
∂x

of the learner. For the experiments in this chapter, the weight matrix is initialized
accordingly: WK+1 = J(x).

In each timestep, the inverse estimate is fitted to the currently generated example
(xt, qt) by reducing the weighted action error:

EQw = wt · ||qt − g(xt)||2 .

The parameters θ = {W (k), o(k)}k of g(x∗) are updated using online gradient descent
on EQw with a learning rate η:

W
(k)
t+1 = W

(k)
t − η ∂EQw

∂W (k)
,

o
(k)
t+1 = o

(k)
t − η

∂EQw

∂o(k)
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6.2 Online Goal Babbling Formulation

(a) After r = 10 reaching movements.
DX
r = 0.225, Dhome

r = 0.615
(b) After r = 100 reaching movements.

DX
r = 0.064, Dhome

r = 0.942

(c) After r = 1000 reaching movements.
DX
r = 0.011, Dhome

r = 0.995
(d) After r = 10000 reaching movements.

DX
r = 0.002, Dhome

r = 0.737

Figure 6.3: Example of the bootstrapping dynamics for a five DOF arm with learning
rate η=0.1. The inverse estimate rapidly finds valid solutions as the actual
positions (black grid) become congruent with the targets (gray grid). Blue
postures show how the redundancy is resolved.
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Figure 6.4: Statistics of the bootstrapping dynamics for two different learning rates.
(a) The euclidean deviation DX decreases rapidly over the number of move-
ments. A ten times higher learning rate results in a speed up of approx. 20.
(b) The distance from the home posture initially increases as the inverse
estimate unfolds. High learning rates η initially select less comfortable
solutions which are then gradually optimized.

6.3 Experiments

This section investigates the functioning and learning dynamics of the online goal
babbling formulation. The coordination problem is to learn reaching in the 2D plane
(n = 2) with a planar revolute joint robot arm. The problem setup is identical to
section 5.4.2. An example with five degrees of freedom is shown in figure 6.3. The
target positions x∗ are arranged in the gray grid structure. The black grid shows the
actually reached positions (x = f(g(x∗))). Initially, the inverse estimate is fixed at the
home position, but expands rapidly towards the target positions. After a number of
movements, target and actual grids are in congruence. An accurate inverse estimate
has been bootstrapped. Blue postures show configurations generated by the inverse
estimate for several different target positions and thus how the redundancy is resolved.

Three different experimental measures are used to assess the temporal characteristics
of the bootstrapping:

1. Accuracy of the bootstrapped inverse models.

2. Comfort of the selected solution.

3. Speed of the bootstrapping process.

The accuracy is measured in the same way as in the previous chapter: The mean
euclidean deviation DX (see also equation 5.14) measures the distance between the
goal positions x∗k ∈ X∗ and the actually reached position, where DX

r indicates the
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value after performing r movements:

DX
r = DX(X∗, θrL) =

1

K

k<K∑
k=0

||f(g(x∗k, θrL))− x∗k|| .

In order to assess the comfort of the selected solutions, Dhome measures how far the
suggested postures are away from the home posture:

Dhome
r = Dhome(X∗, θrL) =

1

K

k<K∑
k=0

∣∣∣∣∣∣qhome − g(x∗k, θrL)
∣∣∣∣∣∣ (6.12)

This measure can not be zero for a bootstrapped model, because the home posture
has to be left in order to reach for different targets. Nevertheless it allows to compare
how comfortably different inverse estimates resolve the redundancy.

The speed of bootstrapping is assessed by measuring the number of movements until
a certain percentage of independent trials has reached some accuracy level:

S(Q, dX) = argmin
r

(
Q ≤ p

(
DX
r ≤ dX

) )
(6.13)

For instance, S(0.9, 0.1) counts the number of reaching movements, until 90% of the
trials have reached a error below or equal to 0.1. The statistics presented in this
section are all computed over 100 independent trials.

6.3.1 Effects of the Learning Rate

The most important variable for online learning from goal-directed exploration is the
learning rate η. In supervised learning from fixed data sets, online learning is used
as stochastic approximation of batch methods. In goal-directed exploration, however,
the data set is not fixed but continuously constructed by the learner. This interweaved
relation of data generation and learning leads to non-trivial effects with respect to the
choice of the learning rate.

The default parameters for this experiment are σ = 0.05, σ∆ = 0.005 and d= 0.1.
The home posture is set to a slightly bent shape with the effector at zero height, which
is realized by setting the first joint to −π

3 and the remaining joints to π
6 . Figure 6.4(a)

shows the development of the error DX
r over the number of movements r for the 5

DOF planar arm with a total length of 1m. Bold lines show the median error, thin
lines the 10% and 90% quantiles and the filled areas correspond to the range between
the 25% and 75% quantiles. For both η=0.1 and η=0.01 the error decreases reliably
and an accurate inverse model is obtained. Obviously the bootstrapping is faster for
the higher learning rate, but the speedup does not scale with the factor 10 between
the learning rates. For η= 0.1 the error has reached a median level of 0.04 after 100
movements. For η=0.01 it takes 2000 movements to reach the same error level. Hence,
the bootstrapping is 20 times faster for the high learning rate, although the rate itself
is only 10 times higher.
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Figure 6.5: Bootstrapping results for various learning rates between 0.001 and 0.5.
(a) The number of movements needed to reach 10% of the initial error
decreases rapidly for higher learning rates. (b) The euclidean deviation
after 107 movements is very low for all learning rates. Very low learning
rates are not fully converged. (c) The final distance from the home posture
increases gradually for higher learning rates.
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The distance from the home posture Dhome
r for the same trials is shown in figure

6.4(b) and displays another qualitative effect of the learning rate. Low learning rates
let the distance from the home posture increase gradually as the inverse estimate un-
folds. It finally reaches a stable level which corresponds to a comfortable solution.
High learning rates, in contrast, cause a rapid increase with high variance. The boot-
strapping initially sticks to the very first solution that is observed due to the random
perturbation term. This can result in a less comfortable redundancy resolution. After
several thousand movements, the distance decreases again as comfortable solutions
receive higher weights weff and dominate the learning in the long term.

An example trial for η = 0.1 is shown in figure 6.3. Already after 10 movements
the inverse estimate has expanded from the home posture and is roughly aligned with
the correct movement directions, and rapidly expands further. After 1000 movements,
the inverse estimate starts to consolidate the redundancy resolution and the selected
postures become closer to the home posture.

Results for a high range of learning rates [0.001; 0.5] are summarized in figure 6.5.
The bootstrapping speed is continuously increased for higher learning rates. Figure
6.5(a) shows the number of movements, until the euclidean deviation DX is reduced
to 10% of its initial value (S(Q, 0.1 ·DX

0 ), quantiles Q shown are 10, 25, 50, 75, 90).
For the highest rate η=0.5, 50% of the trials have reached this level already after 34
movements (S(0.5, 0.1·DX

0 ) = 34). Non-trivial speedups can be seen across the several
orders of magnitude span of learning rates. While the speedup between η= 0.01 and
η=0.1 is approximately 20, the speedup from η=0.001 and η=0.01 is even 50, which
is substantially more than the factor 10 between the learning rates. After a total
number of 107 movements the trials for all learning rates have reached an error in the
millimeter range (figure 6.5(b)). For very low learning rates the inverse estimates are
not fully converged, as indicated by the slightly increased error. For high learning
rates both final error and the home posture distance (figure 6.5(c)) increase gradually.

The enormous learning-rate dependent speedups can not be explained by considering
online learning as a stochastic approximation of batch gradient learning. The central
reason for these speedups is the ongoing change of the example distribution due to the
incremental and informed character of the goal-directed data-generation. Because the
creation of each example is already informed by learning from the previous examples,
learning does not only improve the inverse estimate, but will also result in a more
informative next example. This example will in turn improve the inverse estimate
which can then generate an even more informative example in the subsequent timestep.
This phenomenon can be seen as a positive feedback loop (see figure 6.6). This feedback
loop is also present for incremental batch updates as used in the previous chapter,
but only becomes tight in an online scenario. Higher learning rates imply a higher
“gain” in this loop and accelerate the bootstrapping over the sheer values of the
learning rates. The presence of a positive feedback loop also explains the overshoot
of the home-distance for high learning rates, since any observed movement direction
can be reinforced in the beginning of the learning process. This leads to the very
rapid selection of solutions, which can be suboptimal, but which are incrementally
regularized by the weighting scheme and the home posture.
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Figure 6.6: Goal babbling defines a positive feedback loop in which exploration and
learning reinforce each other during the bootstrapping. The learning rate
determines the amplitude of the learning process and thereby acts as gain
of the feedback loop.

6.3.2 Scalability

The overall scope of this thesis is the design of exploration mechanisms that scale
to high-dimensional action spaces. While the previous chapter has already shown
the general feasibility in high dimensions, the following experiments assess the exact
bootstrapping speed. In order to directly compare to the previous experiment with five
degrees of freedom, the experiments consider the same setup, but the arm is split in m
segments of equal length, each actuated by one joint. Hence, an arm with 20 degrees of
freedom comprises 20 segments of length 0.05m. The home posture is chosen as −π

3 for
the first joint and 2π

3(m−1) for the remaining joints, which generalizes the bent shape
used in the previous experiment to varying dimensionalities. The target positions
are identical to those in the first experiment as indicated in figure 6.7. For a fair
comparison between different dimensionalities, the perturbation term that generates
variations needs to be scaled: if the variability per joint is constant, it has a higher
effect on the end effector for high dimensional systems. This leads to a faster discovery
of effector positions but also more instability. The deviation of outcomes σX can be
approximated for an entirely stretched arm as a function of the joint variability σ and
the number of DOF m:

σX = σ ·
√
m+ 1

2
. (6.14)

For this experiment σ is scaled such that σX is constant at 0.05 ·
√

3 which is the
variability in the five DOF experiment. The update parameter is set to σ∆ = 0.1 ·σ.
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(a) After r = 10 reaching movements.
DX
r = 0.353, Dhome

r = 0.262
(b) After r = 100 reaching movements.

DX
r = 0.038, Dhome

r = 1.173

(c) After r = 1000 reaching movements.
DX
r = 0.004, Dhome

r = 0.940
(d) After r = 10000 reaching movements.

DX
r = 0.002, Dhome

r = 0.922

Figure 6.7: Example of the bootstrapping dynamics for 20 degrees of freedom. The
inverse estimate unfolds with high speed also in high dimensions. The
selected postures get smoother and more comfortable over time.
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Figure 6.8: Statistics of the bootstrapping dynamics for 20 and 50 degrees of free-
dom. Both euclidean deviation (a) and home posture distance (b) show
a very similar behavior for 20 and 50 DOF. Goal Babbling scales without
substantial extra cost in high dimensions.

The learning rate is set to η=0.1.

An example trial for m= 20 is shown in figure 6.7. The behavior over time, and
in particular the speed of bootstrapping, is very similar to the previous five DOF
example. The deviation DX between goals and outcomes is reduced very rapidly
during the first 100 movements. After 1000 movements the inverse estimate is already
very accurate, but does not yet use optimally comfortable joint configurations. These
are further optimized in the following movements as the configurations get smoother
and the average distance to the home posture decreases. Figure 6.8 shows a comparison
between m= 20 and m= 50 over time. The temporal characteristics of the euclidean
deviation are virtually identical in the two cases and also compared to the m = 5
experiment (see figure 6.4). Also the home distance values show the same behavior,
with slightly increased values for m=50 in the intermediate movements.

Results for values of m between 2 and 50 are summarized in figure 6.9. The most
important result is that the median bootstrapping speed is virtually constant across
the entire range of m. Even for 50 degrees of freedom, 50% of the trials have reached
the 10% error level after after 128 movements (S(0.5, 0.1 · DX

0 ) = 128). However,
the distribution becomes increasingly heavy-tailed as the values for the 90% quantile
S(0.9, 0.1·DX

0 ) grow very slowly (e.g. S(0.9, 0.1·DX
0 )=364 for m=50). The 90% curve

in the plot has an approximately linear shape, which indicates an empirical relation
S(0.9, 0.1 · DX

0 ) ∼ log(m) due to the logarithmic scale. After a total number of 106

movements the euclidean deviation is approximately constant and very low at 1mm.
Only for m = 2 it is even lower with almost zero variance. Here the problem does
not contain local redundancy, but only two separated choices “elbow up” and “elbow
down” that can not be flipped by local perturbations. Higher values of m allow to
modify the redundancy resolution continuously, which causes minor averaging errors.
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Figure 6.9: Bootstrapping results for various numbers of joints. (a) The number of
movements needed to reach 10% of the initial error increases only very
gradually. (b) The euclidean deviation after 106 movements is very low in
all cases. (c) The final distance from the home posture.
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6.4 Discussion

This chapter has proposed an online formulation of goal babbling for the learning of
inverse models. Exploration is organized along entirely continuous movement paths
which prepares the practical use for reaching with a physical robot. Therefore a
continuous formulation of exploratory noise, and a continuous integration of a home
posture for regularization have been formulated.

The experimental evaluation shows that online learning during goal babbling is
not only possible, but highly beneficial. The experiments show that the proposed
algorithm is both highly scalable and very fast in bootstrapping inverse models. The
measurement of the bootstrapping speed reveals that the algorithm scales with almost
constant exploratory cost between two and 50 degrees of freedom. This result shows
that the concept of goal babbling can indeed be implemented such that an efficient
bootstrapping is possible, and is highly important for the practical use in real-world
scenarios.

In terms of absolute speed, the online implementation provides a several orders of
magnitude speedup compared to the batch update formulation in chapter 5, which
requires several thousand epoch with few hundred movements in each epoch in order
to solve the coordination of the planar arm morphology. The online algorithm only
requires few hundred movements all together for the same task which is a speed that
has not been achieved with any previous learning approach to coordination problems.
This speed is also sufficient in practical scenarios when exploratory movements must
be conducted physically. In fact, this speed is competitive with human learning [Sailer
et al., 2005]: Sailer and Flanagan investigated how adults learn to solve novel coordina-
tion tasks, for which the participants had no prior knowledge. The authors found that
participants need few hundred point-to-point movements until they can approximately
achieve the desired outcomes.

The comparison between learning curves for different learning rates reveals the rea-
son for the enormous speed of the online algorithm: the interplay between exploration
and learning during goal babbling constitutes a positive feedback loop in which both
processes inform and accelerate each other. Learning leads to more informative ex-
amples which lead to faster learning. This phenomenon can not be explained by the
traditional view of online learning steps as a stochastic approximation of batch pro-
cesses. Two successive online learning steps in this scenario have a stronger impact
than a learning signal that averages two examples without learning in between, since
the second example is already informed by the first one. It is therefore plausible that
the formation of a positive feedback loop is not particular to the algorithm described
in this chapter, but a direct conceptual property of goal babbling, which defines explo-
ration as a process that is goal-directed and informed by previous learning steps.
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Chapter 7

Application on a Bionic Elephant Trunk

Figure 7.1: The Bionic Handling Assistant mimics an elephant trunk.

This chapter demonstrates the practical use of goal babbling on the Bionic Handling
Assistant (BHA) [Grzesiak et al., 2011] which is a new, award-winning [D. Zukunft-
spreis 2010] continuum robot platform inspired by elephant trunks and manufactured
by Festo (see figure 7.1). The robot is pneumatically actuated and made almost com-
pletely out of polyamide which makes it very flexible and lightweight (ca. 1.8kg).
In contrast to standard robots with revolute joints, this robot moves by means of
continuous deformations of the entire morphology, which is referred to as continuum
kinematics [Jones and Walker, 2007]. Continuous deformations correspond to infinitely
many mechanical degrees of freedom, which can neither be sensed, actuated, nor sim-
ulated. Deformations that are caused by a finite number of actuators on the robot,
however, can be assumed to have effects that are (within certain limits) predictable
and reproducible. Numerous studies investigate how such behavior can be analytically
modeled [Hannan and Walker, 2003, Jones and Walker, 2006, Godage et al., 2011, Rolf
and Steil, 2012a], but these approaches are limited to be approximations that can not
capture the full complexity of continuous deformations.

Even if the behavior of a particular robot can be described exactly, the analytical
modeling reaches its practical limit for robots with elastic elements. Such robots, like
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the BHA, face additional problems with non-stationary behaviors due to hysteresis
effects, visco-elasticity, and wear out effects of the mechanically exposed material.
Learning becomes an essential tool in such scenarios in order to capture otherwise un-
modeled non-linear behaviors of the continuous deformations and the ongoing changes
and drifts in the actuation. An efficient approach to exploration and learning is even
more important when the robot is non-stationary. If the action space is too high-
dimensional to explore it exhaustively even once, then it is particularly pointless to
attempt a full re-exploration in order to react to a change. A first indication that
goal babbling allows for the mastery of such change has been provided in [Rolf et al.,
2010a].

This chapter uses goal babbling in order to learn the inverse kinematics of the BHA,
which is used to perform reaching movements. Section 7.1 introduces the details and
the particular challenges of the BHA, as well as the experimental setup. Section
7.2 proposes several minor re-formulations of the online goal babbling algorithm in
order to practically deal with these challenges. The sections 7.3 and 7.4 then apply
the algorithm and show extensive real-world experiments with the BHA, as well as
simulation experiments that allow to investigate the impact of non-stationary behavior
in more detail. The results presented in this chapter have been published in [Rolf and
Steil, 2013b].

7.1 Bionic Handling Assistant Setup

7.1.1 Actuation and Sensing

The BHA comprises three main segments, each with three pneumatic bellow actua-
tors, a ball-joint as wrist, also actuated by three actuators, and a three finger gripper
actuated by one bellow actuator. The experiments in this chapter only use the main
segments, so that m= 9 actuated degrees of freedom are used. Each actuator can be
supplied with compressed air, which unfolds and extends the actuator. The combina-
tion of three actuators per segment then allows to bend, and – in contrast to standard
robots with revolute joints – stretch the entire robot.

For a reliable positioning, it is not sufficient to control the pressure alone: Friction,
hysteresis and non-stationarities can cause largely different postures when supplying
the same pressure several times. In particular during dynamic movements the pres-
sure is not sufficient to determine the posture or position of the robot, since it only
expresses a force on the actuators. This force reaches an equilibrium with the mechan-
ical tension of the bellows after some time, so that the robot stands still. This physical
process can, however, take up to 20 seconds because of a strong mechanical interplay
between different actuators. Since pressure does not provide reliable information about
the robot’s position and movement in space, reaching solely concerns the geometric
information from the BHA’s length-sensors (see figure 7.2). These sensors permit to
determine the outer length of each actuator. Although they do not allow for a “direct”
actuation like pulling, the length values can be controlled by dynamically adjusting
the pressure in each actuator. The system comprises a length-controller that performs
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7.1 Bionic Handling Assistant Setup

Figure 7.2: The kinematic structure of the BHA comprises three main segments, each
consisting of three parallel pneumatic bellow actuators. The length of these
actuators can be determined with cable-potentiometers.

this task automatically by means of PID-control and an additional, learned feedfor-
ward controller [Neumann et al., 2013]. Although this controller works accurately, the
execution of a length-command takes a certain amount of time and the length-sensing
is rather noisy. Hence, performing an action (i.e. applying some effector length) can
generally not be done perfectly or even instantaneously. In order to disentangle desired
and measured length values, this chapter refers to the desired length as q∗ ∈ R9, while
the measured actual length is referred to as q ∈ R9.

The forward kinematics function of this robot is not exactly known analytically,
although approximations exists (see Sec. 7.4). For the experiments, the end-effector
position is measured with a [Vicon] motion tracking system. Auto-reflective markers
allow to measure the position with high accuracy by means of triangulation. The
central position inside the gripper’s palm is used as measurement and its cartesian
value is referred to as x∈Rn, n=3. This measurements probes the unknown forward
function f(q) = x. This function can not be evaluated directly for the BHA, but
examples x and q can be observed on the physical robot.

7.1.2 Accuracy and Limits

Although the length of the actuators can be controlled, there are limitations to the
positioning accuracy that need to be considered for learning experiments. The first
important property of the BHA’s morphology is that even minimal changes of the
actuator lengths can lead to large, and direction-wise inhomogeneous changes of the
effector position. In order to illustrate this phenomenon, the end-effector position for
200 random postures has been recorded, each drawn i.i.d. from normal distribution
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Figure 7.3: Effector positions for an i.i.d. variation of the nine actuator lengths.
Already a deviation of 5mm on each actuator-length causes several cen-
timeters sideward movement (x1 axis) of the end-effector, but only small
stretching movements in the top/down direction (x3 axis).

around a stretched position qi = 0.225m ∀ i = 1 . . . 9 with standard-deviation 5mm per
actuator. Figure 7.3 shows the resulting positions of the end-effector from a sidewise
perspective. The resulting distribution extends to almost 15cm sideward deviation (the
first axis, x1), while top/down stretching movements (x3) only vary within ±2cm. The
standard deviations of the generated distribution are 4.4cm in x1 and x2 direction and
0.6cm in x3 direction. The large amplitude of sideward movements implies a very high
sensitivity of the end-effector position to length-changes. In reverse, a positioning of
the end-effector with low deviation (e.g. 1cm) requires a control of the actuator lengths
with sub-millimeter accuracy. This is clearly difficult to achieve on the BHA due to
long delays in the pneumatic actuation, and strong sensory noise in the length-sensing
(ca. 1mm amplitude).

In order to obtain a baseline how accurately the BHA’s end-effector can be posi-
tioned, P = 20 entirely random postures qp have been chosen. These postures were set
as target for the length-controller, which had time to reach and stabilize each posture
for 20 seconds. This procedure was repeated R = 20 times with different permuta-
tions of p. Each time the resulting cartesian end-effector position xrp has been recorded.
The results are condensed by the distance of these positions from the average position
per qp:

xp =
1

R

∑
r

xrp ,

Drep =
1

P

∑
p

1

R

∑
r

||xrp − xp|| ,
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Before the experiments

Pressure [bar] Length [m]

0 0 0 0.1825 0.1873 0.1834

0 0 1.2 0.1727 0.1782 0.2513

0 1.2 0 0.1748 0.2681 0.1749

1.2 0 0 0.2545 0.1757 0.1760

.....

1.2 1.2 1.2 0.2476 0.2647 0.2338

After the experiments

Pressure [bar] Length [m]

0 0 0 0.1839 0.1870 0.1859∗

0 0 1.2 0.1750 0.1783 0.2581∗∗

0 1.2 0 0.1754 0.2709∗ 0.1744

1.2 0 0 0.2615∗∗ 0.1761 0.1771

.....

1.2 1.2 1.2 0.2538∗∗ 0.2654 0.2388∗∗

Table 7.1: Measured actuation limits for the three parallel actuators in the third seg-
ment before and after the learning experiments. Changes of more than
2.5mm are marked with ∗, changes of more than 5mm with ∗∗.

where || · || is the euclidean norm. Results show that Drep = 0.0047m. Hence, the
end-effector can only positioned with approximately 5mm accuracy.

A central problem for the control of the BHA is that the limits, in which the ac-
tuator lengths can be controlled, are very narrow, but not exactly known. Limits for
the pressure are easily formulated: each actuator has a minimum pressure of 0bar.
The maximum pressures are 0.9bar, 1bar, and 1.2bar for the first, second and third
segment, so that the set of possible pressure combinations is a hyper-rectangle in nine
dimensions. In contrast, the set of possible length combination is clearly not a hyper-
rectangle. This is illustrated in the first part of table 7.1: combinations of min./max.
pressure were supplied to the three actuators in the third segment, and the resulting
three actuator lengths were recorded. Two effects are clearly visible:

1. The different actuators have different limits, even within the same segment, due
to visco-elasticity and wear out effects. This is particularly visible in the last line
of the table, where maximum pressure for each actuator generates significantly
different lengths.

2. There are significant interdependencies between the limits of different actuators:
The maximum reachable length (i.e. the length for maximum pressure) depends
on the length of the other actuators.

Such combinations of min. and max. pressure give some insight into the structure of
the length-ranges. Yet, the analytic shape of the set of possible length combinations is
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not known. For the coordination problem that implies that not only f in not explicitly
known, but also the action space Q ⊂ R9 is unknown. Each vector in Q represents
a length-combination that is reachable for the robot. Each vector that is not in Q
can not be reached. Q is not only not known, it is not stationary. The upper part
of table 7.1 was recorded before the experiments described in section 7.3. The same
procedure has been repeated after the experiments and shows that the limits have
changed significantly (lower part of table 7.1). For instance the maximum values in
the last column have changed by 6-7mm which is substantially above sensory noise
and can cause large changes of the effector positions. For practical experimentation
with the BHA this means that whenever some posture q∗ is desired, it is not even clear
whether the posture can be reached.

7.1.3 Kinematic Coordination Problem

Reaching for some desired cartesian position x∗ ∈ R3 with this robot means to find
some posture, i.e. a combination of lengths q, that results in a end-effector position
x=x∗. The following experiments consider the learning of reaching skills for the set
of targets illustrated in figure 7.4. A side view is shown in figure 7.4(a): the target
positions are the 24 vertices of the red grid, which is shown in relation to the BHA. A
three-dimensional workspace is constructed from this plain grid by rotating it around
five different angles. Figure 7.4(b) shows the resulting workspace in a 3D view from
above. The overall set of targets X∗ comprises K=120 target positions x∗k, which are
the vertices of the three-dimensional grid. Note that the “gaps” in the 3D visualization
are only for visual orientation. The goal of the experiments is to learn an inverse model
g(x∗) for the volume enclosed in this set of targets.

7.2 Online Goal Babbling Formulation

In order to solve the coordination problem on the BHA by means of goal babbling, the
experiments in this chapter essentially rely on the exploration and learning formulation
presented in chapter 6. However, several changes are proposed in order to deal with
the BHA in an optimal way.

Action Execution and Observation An important difference between the simulation
experiments presented throughout the previous chapters, and physical reaching on the
BHA is that actions can not always be performed perfectly. Sending a set of desired
lengths q∗ to the length controller does not necessarily result in the exact achievement
or these lengths, but in an actual posture q. The actions that are suggested by the
goal babbling scheme are generally desired lengths q∗t . Whenever a command q∗t is
sent to the controller, the outcome xt can simply be observed. If the command q∗t has
not been achieved at the time of observation, both sizes do not correspond to a sample
of the underlying forward function:

q∗t 6= qt ⇒ xt 6= f(q∗t ) .
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(a) (b)

Figure 7.4: An inverse model is learned for the red workspace, shown (a) from a
sidewise perspective in 2D, and (b) from a top view in 3D.

For the exploration algorithm this implies that commands and actual postures must
be strictly separated. Only the current observation xt and sensed posture qt reflect a
causal, physical relation and therefore correspond to a sample of the forward function

xt = f(qt).

Hence, examples (xt, qt) are used for learning, instead of relying on q∗t and learning from
(xt, q

∗
t ). In most situations the deviation between q∗t and qt along continuous movement

paths is not very large. Yet, the distinction is very important if the deviation is large
which is mostly caused by the narrow actuation ranges. The algorithm can only find
correct solutions within these actuation ranges if they are also respected in the example
data.

Internal Coordinate Representation While all evaluations in this chapter are per-
formed in cartesian coordinates in order to provide easily understandable distances in
meters, the learning is performed in a different coordinate system. Since the explo-
ration is based on the sampling of continuous paths it is desirable to have a convex
workspace, which allows to sample a linear path between any two points. In order to
achieve that for the given set of targets, the proposed algorithm formulation uses an
internal coordinate system for the observations and goals that is based on angular co-
ordinates. Therefore the following transformation is applied before spatial coordinates
x=(x1, x2, x3)T are used for learning:

ψ(x) = ( sgn(x3)·||x||, ^(x,u1), ^(x,u2) )T ,
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where u1 and u2 are the unit vectors along the first and second axis. The first
component of ψ : R3 → R3 represents the radial component, i.e. the distance of some
point from the BHA’s base. The last two components express angles. The set of
targets covers a convex set after the transform so that linear paths can be sampled
without leaving the set. This coordinate system is consistently used for exploration
and learning by considering goals ψ∗t = ψ(x∗t ) and observations ψt = ψ(xt).

Path Generation with Homogeneous Velocity Chapter 6 has formulated the explo-
ration of continuous point-to-point paths that have a fixed number of intermediate
steps L. The advantage of this formulation is that it permits to use the number of
movements as a coherent and intuitive measure of time and exploratory cost. How-
ever, it generates movements with highly inhomogeneous velocity because the distance
between successive goals x∗t−1 and x∗t depends on the distance between the end-points
of the movement. Reasonable velocities for physical movement of the BHA are rather
limited. Very rapid movements are only possible in a ballistic manner without control
of intermediate behavior, so that it is advantageous to limit the velocity if coordinated
behavior is desired. Very slow movements, on the other hand, can be obscured by a
low ratio between actual movement and sensory noise.

In order to cope with this aspect, this chapter revises the path generation such
that the distances between successive goals are constant, so that more homogeneous
velocities are generated. Therefore the end-points of the movement are again chosen
randomly from X∗, but the number of intermediate steps varies. In the internal
coordinate system this scheme is denoted as

ψ∗t+1 = ψ∗t +
δψ

||Ψ∗r − ψ∗t ||
· (Ψ∗r − ψ∗t ) . (7.1)

where Ψ∗r is the end-point of the movement and δψ is the step-length between successive
time-steps. If the last goal has been closer than δψ to the end-point, the next goal
is set to the end-point ψ∗t+1 = Ψ∗r and a new end-point Ψ∗r+1 is chosen for the next
movement.

Each goal ψ∗t generates an action, in the same way as described in the previous
chapter, by “trying to reach” with the inverse estimate plus the variation term:

q∗t = g(ψ∗t , θt) + Et(ψ
∗
t ). (7.2)

The generation of homeward paths through the action space Q occurs accordingly
with a step-length δq:

q∗t+1 = q∗t +
δq

||qhome − q∗t ||
· (qhomel − q∗t ) . (7.3)

If q∗t has been closer than δq to the home posture, the next action is q∗t+1 =qhome, and
a goal-directed movement is attempted afterwards.
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Balancing of Variation Terms A final, minor re-formulation concerns the perturba-
tion term Et that generates variations of the inverse estimate. This term has the exact
same linear form as described in the previous chapter:

Et(ψ
∗) = At · ψ∗ + bt, At ∈ Rm×n, bt ∈ Rm .

However, the amplitudes of At and bt are controlled separately instead of assigning
the same amplitude σ to both of them. The update rule for both A and b is the same

(see equations 6.9 and 6.11), but with amplitudes σ(A) and σ
(A)
∆ for the entries of A,

and σ(b) and σ
(b)
∆ for the entries of b.

This allows to balance the exploration of new directions by A and new positions by
b for varying numerical amplitudes of the goals. The goal positions in the BHA setup
have a higher numerical amplitude than the cartesian positions of the planar arm setup
in chapter 6. This would make the term At ·ψ∗ predominant in the perturbation term,
but which can be balanced by separate amplitudes for A and b.

Algorithm Except the changes listed above, the algorithm used in this chapter has the
same organization as the previous formulation in chapter 6. Learning and exploration
start in the home posture. Continuous goal-directed paths are successively generated
and the inverse estimate g(ψ∗, θ) is updated in each step. The examples (ψt, qt) are
weighted accordingly to the previous chapters. Including the notation of the internal
coordinate system the weighting scheme is

wdirt =
1

2

(
1 + cos^(ψ∗t − ψ∗t−1, ψt − ψt−1)

)
,

weff
t = ||ψt − ψt−1|| · ||qt − qt−1||−1 ,

wt = wdirt · w
eff
t .

After a goal-directed movement has reached its end-point, a homeward movement
is performed with probability phome. The entire formulation is summarized in algo-
rithm 3.

7.3 BHA Experiments

This section presents experiments with online goal babbling on the physical BHA
robot. A first investigation illustrates how the reaching performance develops during
learning. Then a method for local error correction is presented, which reduces residual
errors due to non-reachable target postures.

The central measure of learning progress is again the mean euclidean deviation,
which measures the distance between actual and desired cartesian positions:

DX(X∗, θ) =
1

K

k<K∑
k=0

||f(g(x∗k, θ))− x∗k|| .
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Algorithm 3 Modified Online Goal Babbling Formulation

Require: Home posture qhome

Require: Set of target positions: X∗

Initialize learner: θ ← θ0 such that g(ψ∗, θ) = qhome

Initialize variation: E0(ψ∗)
Goals and actions: ψ∗0 ← ψhome, q∗0 ← qhome

The first movement is goal-directed: G← true
while true do

if G is true then
Chose end-point x∗ from X∗, set Ψ∗ = ψ(x∗)
while δψ < ||ψ∗t −Ψ∗|| do

Interpolate new goal ψ∗t (Equation 7.1)
Generate goal-directed action q∗t = g(ψ∗t , θ) + E(ψ∗t )
Apply q∗t on the robot
Observe resulting posture qt and effector position ψt, compute weight wt.
Update inverse model with (ψt, qt, wt) and update variation

end while
Set G← false with probability phome

else
while δq < ||q∗t − qhome|| do

Interpolate action q∗t towards home posture (Equation 7.3)
Apply q∗t on the robot
Observe resulting posture qt and effector position ψt, compute weight wt.
Update inverse model with (ψt, qt, wt) and update variation

end while
ψ∗ ← ψhome

G← true
end if

end while
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Target step-length δψ 0.01

Posture step-length δq 0.002m

Home probability phome 0.1

Perturbation amplitude σ(A) 0.0025

Perturbation amplitude σ(b) 0.005

Perturbation change-rate σ
(A)
∆ 0.1 · σ(A)

Perturbation change-rate σ
(b)
∆ 0.1 · σ(b)

Local learning distance d 0.1

Learning rate η 0.05

Table 7.2: Parameters used for exploration and learning.

All experiments use the locally-linear regression formulation introduced in section
6.2.3. The parameter values used for the experiments are summarized in table 7.2.

7.3.1 Learning to Reach on the BHA

The exploration and learning algorithm is applied on the BHA in three independent
trials. The set of targets X∗ is used as illustrated in figure 7.4. The sampling rate
on the robot is 5Hz : in each second, five targets ψ∗t are generated and the resulting
samples are used for learning. With the target step length δψ = 0.01 in angular
coordinates this corresponds to an approximate target velocity of 5 cms , which is suitable
for the robot. The home posture qhome was set to a straight shape with a length of
0.225m for each actuator. In each trial, the method used T = 90000 samples, which
corresponds to five hours real time.

Every 9000 samples the learning was interrupted in order to measure the current
performance on the set of K = 120 targets shown in figure 7.4. The current inverse
estimate g(·, θt) was used to estimate the posture q∗k=g(ψ∗k, θt). The length controller
had 20 seconds time to reach and stabilize q∗k. Statistics of the euclidean deviations
between the targets x∗k and the actually observed positions xk are shown in figure
7.5(a) for all three trials. The initial error is approximately 30cm, which corresponds
to the average distance of the home position, in which the learner is initialized, and the
different target positions. Subsequently the exploration procedure reduces the error
rapidly. After T = 90000 the errors consistently reach a mean level of ca. 2cm and
a median level of ca. 1.5cm in all three trials. For an average robot-length of 80cm
this corresponds to 2−3% relative error, which already includes the general execution
uncertainty of 5mm (see section 7.1.2). The learning clearly succeeds to bootstrap
the reaching skill on the robot. The remainder of this section closely investigates
the details of this performance curve, the reasons for residual errors, and how they
can be removed by further exploitation of the learned inverse model with a feedback
controller.

Figure 7.6 shows a more detailed view on the first trial. Histograms of the euclidean
deviations are shown for t= 0, t= 9000, and t= 90000. The initial histogram simply
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Figure 7.5: The mean euclidean deviation in cartesian coordinates (a) is reliably re-
duced in all three trials. The mean reaches approx. 2cm and the median
value 1.5cm. A decomposition into angular (b) and radial (c) compo-
nents shows that the two-dimensional angular sub-problem is solved al-
ready within the first 9000 samples.
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Figure 7.6: Histograms of the initial (a) euclidean deviations, and the deviations after
t= 9000 (b) and after t= 90000 (c) samples. The initial histogram shows
the ring structure of the target set, ongoing learning reduces the errors
consistently. At t=9000 the learner still has to make strong extrapolation,
which lead to outliers (several points with errors above 10cm), but which
are consolidated by further learning.
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shows the distances of the initial posture from the four “rings” of the target grid.
Further histograms show that the error is reduced continuously, but also that few,
isolated targets show a comparably high residual error. The right side of the figure
shows the behavior of the learner in the 3D space. The red grids again shows the set
of targets. The blue grids show the measured behavior of the inverse estimate when
trying to reach for the targets, i.e. the observed positions xk=f(g(ψk)). Already after
t=9000 the positions are spread out along the angular directions, but do not yet cover
the volume of the target set. After t= 90000 the learner has also discovered how to
stretch along the radial axis, and target and actual grid are in good correspondence.

Stretching seems to be a simple movement on the robot: in a straight position
all actuators need to be extended and the effector moves upwards. In fact, it is
the most difficult movement: it requires a highly coordinated motor action, and the
robot will deviate substantially if only one degree of freedom does not follow this
movement. Due to the very restrictive actuation limits it is also necessary to include
all three segments into the movement in order to reach from the very bottom of
the workspace to the very top. In contrast, angular motions are much simpler and
can be done in a lot of different ways. Due to the high sensitivity of the robot to
movements in these directions (see figure 7.3) they are also easily discovered during
autonomous exploration. Since the combination of goal-directed exploration and online
learning forms a positive feedback-loop during the initial bootstrapping, the learner can
basically master angular movements already after a few minutes. Radial stretching
movements have lower sensitivity which implies a lower gain in the feedback loop.
Hence, it requires more time to learn this movement direction.

This behavior occurs consistently over the three trials: Figure 7.5(b) and (c) show
a decomposition of the euclidean deviation into angular and radial components. For
the angular component, xk and x∗k are both projected onto the unit-sphere with radius
1m, such that the radial component is erased, and the euclidean distance between the
projected points is measured. This component is only evaluated for the central of the
three target “layers” (see figure 7.4). The top and bottom layer are not considered
in order to blend out the difficulties of stretching movements for this evaluation. The
radial error is the difference between the first components of ψ(xk) and ψ(x∗k), which
is evaluated for all target positions. The plots show that the angular error component
is reduced from 30cm to 2cm already in the first evaluation episode, and further
stabilizes around 1.3cm. The bootstrapping and fine-tuning of radial movements takes
significantly more time in all three trials. The difficulty to discover (and also control)
stretching movements, while other directions are that simpler to find is very specific
for the BHA’s trunk morphology that combines bending and stretching. After all, this
problem is solved by the exploration procedure.

7.3.2 Local Error Correction

While the average performance during learning quickly reaches a good level, there
remain rather isolated outliers. This behavior is particularly visible in figure 7.6(b),
where few targets are only reached with an error of more than 10cm. These outliers
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Figure 7.7: Cartesian feedback control on a simple robot with three revolute joints
(a). If an inverse model suggests a posture that can not be executed due
to actuation ranges (b), a shifting of the target position allows to exploit
the redundancy and nevertheless reach the target (c).

are largely consolidated during learning, but a “heavy tail” in the error-histogram
remains (see figure 7.6(c)). The reason for this behavior is grounded in the inevitable
process of generalization and interference inside the regression of g. During the initial
bootstrapping of a motor skill this is an enormously useful mechanism: already based
on the first examples x the learner generalizes and makes extrapolations for other
targets x∗. These extrapolations are, of course, not perfect but allow a quick coverage
of the workspace.

Once the learner has roughly covered the workspace, this interference can become
more problematic due to the highly constrained actuation limits of the BHA. Mov-
ing through the entire set of targets requires to operate very closely to the limits of
the possible length configurations Q. Any data used for learning lies inside Q since
the values of qt have been observed on the robot. Interference, however, can cause
a projection of g beyond Q for other positions x than that one currently used for
learning (xt). Suppose the current learning step is done on an example (xt, qt). Due
to interference, the learner’s output is changed at another position x 6=xt to g(x)=q∗

and q∗ /∈ Q. When the inverse estimate is now used to reach for x, it would suggest
q∗ which is not reachable. On the robot, this results in a different posture q. This
mismatch q∗ 6=q is referred to as an execution failure. Due to the high angular move-
ment sensitivity of the BHA already minor execution failures cause large deflections of
the end-effector, and thus high deviations of the cartesian effector position. The tight
connection between cartesian deviations and execution failures is shown in table 7.3.
The upper part shows the final deviations in cartesian coordinates for all three trials.
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Feedforward Control with Learned Model

Mean Dx [m] Median Dx [m] Failure-Corr.

Trial 1 0.0186 0.0155 0.832

Trial 2 0.0184 0.0149 0.728

Trial 3 0.0209 0.0162 0.845

Additional Feedback Control

Mean Dx [m] Median Dx [m] Failure-Corr.

Trial 1 0.0074 0.0067 -0.045

Trial 2 0.0088 0.0080 0.101

Trial 3 0.0071 0.0064 0.017

Table 7.3: Euclidean deviations in cartesian coordinates without, and with cartesian
feedback control on top of the inverse model. The controller removes errors
induced by execution failures, as indicated by the erased failure correlation.

The last column shows the failure correlation for the final evaluation after t=90000:

C q
x = % [ ||x∗k − xk||, ||q∗k − qk|| ]k , (7.4)

where % ∈ [−1 : 1] is the Pearson correlation coefficient. It measures how well devia-
tions in cartesian coordinates are correlated with the occurrence of execution failures.
The table shows very high positive correlation in all three trials, which indicates that
the largest deviations are indeed caused by execution failures.

Although the interference is rather limited by the locally linear learning, it is suffi-
cient to cause the heavy-tailed error-distributions. Also, the projection outside Q is
hardly avoidable, since Q is not even known and changes during operation. The final
experiment on the real BHA shows how the impact of such execution failures can be
mitigated by means of an additional feedback controller. Figure 7.7(a) illustrates a
simplified domain with a planar robot arm comprising three revolute joints. A learned
inverse model is used to reach some target position x∗ (figure 7.7(b)). The suggested
posture q∗ would indeed solve the task, but is not executable since the last joint has
reached its actuation limit and can not be bent further downwards. The resulting
posture q ends up in a position x 6=x∗. When an inverse model g has been established,
feedback control can be applied without further learning by applying cartesian correc-
tions: the target position is virtually shifted towards some value x̂∗t and the posture
q∗t = g(x̂∗t ) is applied on the robot, which results in a posture qt and an effector posi-
tion xt (see figure 7.7(c)). The shifting of goals thereby follows the currently observed
cartesian error et=x∗ − xt:

x̂∗0 = x∗ , x̂∗t = x̂∗t−1 + α · et−1

This procedure is guaranteed to converge to the target position x̂∗t = x∗ if a shift of
targets α · et−1 always results in an actual effector movement that has a positive angle
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Figure 7.8: Cartesian performance of a learned model when cartesian feedback control
is applied on top (compare figure 7.6(c)).

to the desired movement ( ^(et−1, xt − xt−1) < 90°). If, however, the inverse estimate
is not able to generate a positive movement direction, the control can diverge. It
is possible that the limited actuator is driven even deeper into its limit during this
feedback-controlled movement, since also the feedback-controller is not aware of Q.
However, an important strength of the goal babbling methodology introduced in this
thesis is that it can incorporate many degrees of freedom. The weighting scheme based
on movement efficiency then causes learning to efficiently distribute movements over all
actuators. This behavior can be exploited by the feedback control, even if one actuator
is blocked. As long as other actuators are movable, the inverse estimate involves them
to reach for x̂∗t which brings the observed effector position xt closer to x∗.

The final inverse estimates of all trials are evaluated with this procedure. For each
target ψ∗k, the initial inverse estimate q∗ = g(ψ∗k) was sent to the length controller
and was active for five seconds before the feedback control was activated. Then the
feedback control on top of g was applied with 5Hz and gain α= 0.02 for 15 seconds,
so that the overall evaluation time per target was 20 seconds, consistently with other
evaluations in this chapter. Results for the first trial are shown in figure 7.8: the heavy-
tail in the error histogram has disappeared (compare figure 7.6(c)) and the maximum
error is below 3cm. The performance in 3D shows an excellent match between targets
x∗k (red) and actual positions xk (blue).

Results for all three trials are shown in table 7.3 (bottom). The mean euclidean
deviations are reduced to 7 − 9mm and the median deviations to 6 − 8mm, which
is a substantial improvement and close to the accuracy baseline of 5mm. While the
amplitude of execution failures (not shown) is not reduced by the feedback control,
the failure correlation has dropped to zero. No divergence of the feedback control
was observed in the experiment. These results clearly show that the combination of
a kinematically efficient inverse estimate that exploits all degrees of freedom, and a
cartesian feedback controller can cope with the problem of execution failures.
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Figure 7.9: The simulated BHA models each segment of the robot as torus section.

7.4 Non-Stationary Behavior in Simulation

The experiments on the physical BHA have shown the success of the goal babbling
method for the trunk morphology. Thereby a significant change of the actuation
ranges Q has been observed. Other changes like drifting sensors or slight changes of
the true forward function f due to visco-elasticity are known to occur but are hard
to capture. This section complements the previous experiments with learning in a
simulated environment in which such non-stationary behaviors can be controlled.

7.4.1 Kinematic Simulation of the Bionic Handling Assistant

An open source implementation [Rolf, 2012] of a constant curvature continuum kine-
matics model is used in order to simulate the kinematics of the BHA. This model
assumes that bending and stretching movements of each robot segment behave like a
torus section (see figure 7.9), which allows to infer the coordinate transformations for
the forward kinematics. The model allows to predict the end-effector position x of the
BHA based on the actuator lengths q with an average accuracy of 1cm [Rolf and Steil,
2012a]. Instead of applying a length on the robot, the end-effector position is simply
computed with this library: x = fsim(q).

An important aspect of the true kinematic problem on the BHA are the actuation
ranges Q. Since this set is also not known analytically, the minimum/maximum pres-
sure results recorded on the real BHA (see table 7.1) are used to simulate it. The eight
combinations of min./max. pressure were recorded for each segment separately. The
possible length combinations Qsim

(i) ∈R
3 for a segment i are modeled by the convex hull

of the resulting eight lengths. The possible lengths of different segments are assumed
to be independent: Qsim=Qsim

(1) ×Qsim
(2) ×Qsim

(3) . When the exploration suggests some
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Figure 7.10: Performance for (a) shrinking ranges and (b) for drifting sensors.

posture q∗ /∈ Qsim, it is projected onto the surface of Qsim:

q = c(q∗) =

q
∗ if q∗ ∈ Qsim,

argmin
q̂∈Qsim

||q∗ − q̂|| else.

7.4.2 Varying Ranges and Sensory Drifts

The first investigation concerns varying actuation ranges Qsim. Three independent
trials are performed for a direct comparison with the real BHA results, each with
T = 90000 examples and parameters identical to the previous experiments. Learning
initially runs on a stationary system for T(s) = 45000 examples. Between T(s) = 45000
and T = 90000 the ranges of two actuators are continuously reduced. Both the min-
imum and maximum values are narrowed by 30% for the first actuator of segment 2
and the second actuator of segment 3. The progress of this narrowing is linear in t.
The evaluation shows how the learning procedure can deal with this change, as well
as how the performance develops if learning is stopped at the onset of non-stationary
behavior. Results are shown in figure 7.10(a). Ongoing learning reduces the error
even after the onset of change. When learning is turned off, the error increases slowly.
While the increase of the average error is comparably mild, there are drastic differ-
ences in the maximum errors over the target set X∗: The first simulated trial exposes
a maximum error of 5.5cm after T = 90000. When learning is turned off, the same
trial results in 10% of the target positions with more than 10cm error (max. 20cm).

A different kind of non-stationary behavior on robotic systems is the drift of sensor
values, when the physical sensors are not repeatedly calibrated. Such behavior of the
BHA is modeled in simulation by defining a drift function d : R9 → R9 that distorts
the measurements of the actuator-lengths:

d(q) = (19 + β · diag(~s)) · q + β · ~o ,
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(a) (b)

Figure 7.11: Simulation of morphological growth of the BHA from half its size (a) to
its full scale (b).

where ~s and ~o are a linear distortion. β allows to scale its impact. When the learner
operates with a length q, the “true” lengths with respect to effector position and ranges
are d(q):

f ′(q) = fsim(d(q)) , c(q∗) = d−1 ( c (d(q∗)) ) .

Again, three trials are simulated over T = 90000, with a sensory drift beginning at
T(s) = 45000. The entries of ~s and ~o where drawn from a normal distribution with
deviation 0.05 independently for each trial. The drift amplitude β was linearly scaled
from 0.0 to 1.0 between T(s) and T . Results are shown in figure 7.10(b). Without
learning, the error increases significantly and reaches a average level of 8 − 10cm.
With enabled learning the error is approximately stabilized, although the amplitude
and rate of the drift are too strong to further reduce the error as in the previous
experiment.

7.4.3 Morphological Growth

The last experiment deals with a non-stationary behavior that is, in particular in its
amplitude, not a problem on the real BHA, but shows that the method can deal with
even more drastic changes. Learning is performed on a growing simulation of the BHA.
The simulation starts with a BHA that is scaled to half of its original size and grows
to full size between T(s) = 45000 and T = 90000 (see figure 7.11). The change goes
on linearly and concerns the radius of the simulated segments, the actuation ranges,
as well as the reachable workspace. In order to assess the learning performance for
a workspace with varying size, the resulting errors are normalized to 1

γD
X , where

γ∈ [0.5; 1.0] is the current relative size of the simulated BHA. The results (figure 7.12)
show that the performance without learning degenerates to almost initial error values.
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Figure 7.12: When learning is turned of during morphological growth, the error in-
creases rapidly. Ongoing learning stabilizes and slightly reduces the error.

With enabled learning the median error is nevertheless decreasing, while the mean error
is approximately constant. This experiment generates the largest gap between learning
and non-learning during non-stationary behavior. Although the morphological change
extinguishes the learned performance when learning is turned off, the change seems to
comparably easy to track during learning.

7.5 Discussion

The experiments in this chapter demonstrate that online goal babbling allows to boot-
strap the inverse kinematics of the pneumatically actuated Bionic Handling Assistant.
The method is robust enough to cope with the inherent sensory noise, delays during the
execution, and the varying actuator ranges. The successful learning of reaching skills is
an important milestone for the practical applicability of such systems in real world sce-
narios. The method is thereby fast enough to perform on the robot in reasonable time.
90000 samples along continuous movement paths were used during the experiments.
This corresponds to approximately 1000 crossings of the three-dimensional cartesian
workspace, which is a plausible result considering the 100 movements necessary for
two-dimensional tasks (compare chapter 6), and an excellent result considering the
additional challenge of non-stationary system behavior. The algorithm has used nine
degrees of freedom of the robot. Compared to the previous experiments in this the-
sis this is only mildly high-dimensional, but clearly high-dimensional enough to make
exhaustive exploration unfeasible. The scalability experiments in chapter 6, together
with the practical demonstration in this chapter, suggest that the method can also be
practically useful in much higher-dimensional domains.

The learned coordination skill represents a direct, “feedforward” mapping from de-
sired effector position to actuator lengths. Residual inaccuracies are unavoidable for
feedforward control schemes. Yet, the experiments have shown that such errors can be
handled with an additional cartesian feedback controller if necessary. The controller
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exploits the learner’s efficient use of all actuators, which even allows to correct errors
that are caused by the narrow actuation ranges. The use of feedforward control is
highly beneficial for a pneumatic robot: delays usually only allow to apply feedback-
control with very low gains, which implies slow movements. A feedforward controller
can quickly estimate the necessary motor commands which can be applied immedi-
ately. This is particularly useful due to the narrow actuation ranges, for which the
learned model has already stored valid solutions while a pure feedback controller needs
to search for them newly during each movement.

Besides learning on the non-stationary robot, the experiments have shown in simula-
tion how the method copes with various changes like changing ranges, drifting sensors
and even morphological growth. For each of these setups the performance degenerates
significantly without learning, but is stable or improves for ongoing learning. Goal
babbling provides an elegant way to deal with such behavior because it defines an
incremental and ongoing process. This process is always based on currently observed
data, and thus grounded on the current system behavior. Most importantly, it does
not require an exhaustive exploration of the motor system. This could not even be
done once on robots with many degrees of freedom like the BHA, so that a tracking
of ongoing changes would even conceptually not be possible. Goal babbling discards
redundant choices if multiple actions exist to solve the same goal. Hence, it only sam-
ples a low-dimensional sub-manifold in the space of motor commands, which can be
quickly explored. Online learning then quickly reacts to a changing environment and
allows to adapt to changes efficiently.
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Chapter 8

Conclusion

8.1 Summary

High-dimensional motor systems can not be fully explored within the lifetime of any
learning agent. Based on this simple observation, this thesis has criticized conven-
tional methods to bootstrap coordination skills based on exhaustive exploration, and
formulated the overarching goal to develop concepts and methods that allow for an
efficient bootstrapping of reaching skills in high-dimensional domains. Inspired by in-
fant developmental studies, which show that already newborns attempt goal-directed
actions, the first goal was to conceptualize and understand early goal-directed actions
as a bootstrapping mechanism for coordinations skills. For this purpose, the con-
cept of goal babbling was introduced in chapter 3. Experimental results throughout
this thesis show that goal babbling indeed allows for a successful, scalable, and rapid
bootstrapping of coordination skills.

This thesis has investigated how goal babbling can be implemented in order to learn
inverse models from examples. In redundant domains, inverse models select one of
the infinitely many ways to achieve some goal, which provides the chance to solve a
coordination skill without knowing all solutions. Chapters 4 and 5 have demonstrated
the validity of this idea with theoretical and experimental results. Thereby the second
goal has been achieved, i.e. to enable the learning of inverse models from examples
at all. Chapter 4 has investigated the theoretical basis of example-based learning of
inverse models, and provided several important results for linear domains. It has been
shown that the learning gradients of error-based and example-based learning have a
non-negative angle, and that learning from examples always leads to the acquisition
of at least partial solutions in linear domains. Using that theoretical framework, new
failure modes for goal-directed exploration without noise [Sanger, 2004] have been
shown. Most importantly, a proof was given that, if noise is added to goal-directed
exploration, goal babbling does not only find a valid solution and thereby solve the in-
version of causality, but results in the unique least-squares solution. Chapter 5 showed
that also the non-convexity problem [Jordan and Rumelhart, 1992] can be solved by
means of goal babbling and provided the first algorithm that can learn inverse models
from examples when non-convex solution sets are present. Based on the information
structure of goal-directed exploration, it has been shown that inconsistent solutions
can occur only in very characteristic ways, which can be detected and removed by
means of a simple weighting scheme. While the non-convexity problem appears to be
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a rather technical aspect, this solution sheds an interesting light on the concept of
goal babbling. Goal babbling is a more structured approach to exploration than ran-
dom motor babbling, which can be successfully exploited by using goals as a reference
structure against which observed movements can be checked and assessed. Based on
that solution, a first experimental proof of scalability was provided by showing the
success in up to 50 dimensions for reaching with a planar arm. The generality of the
algorithm was shown by the learning of full-body reaching on a humanoid morphology.

The third goal was to devise a scalable, fast, and practical algorithm that is ap-
plicable in real-world scenarios. Chapter 6 presented an online learning formulation
of goal babbling and showed that it can bootstrap inverse models for planar robot
arms within few hundred movements, which is competitive to human learning [Sailer
et al., 2005]. This speed of learning is enabled by the close interplay of goal-directed
exploration and learning. Learning from one example leads to a better estimate in
the next exploration step, which in turn allows for a more effective learning step. The
experiments show that an increase of the learning rate results in a speedup that is
proportionally greater than the actual increase of the learning rate. This result shows
that goal babbling constitutes a positive feedback loop in which learning and the gen-
eration of useful examples reinforce each other during bootstrapping. Measurements
of the learning speed in relation to the dimension of the action space show that the
algorithm scales with virtually constant exploratory cost between two and 50 degrees
of freedom, with only slowly increasing cost for the slowest trials. Chapter 7 has shown
that the method allows to bootstrap the inverse kinematics of the BHA, which is a
practically relevant use-case due to the lack of analytical knowledge about this robot,
and the difficulty to deal with its narrow and constantly changing actuation limits.
The experiments show that the method can deal with sensory noise and delays as well
as non-stationary behavior, which also provides the practical proof that goal babbling
allows for a successful and efficient bootstrapping of coordination skills.

8.2 Discussion

Learning inverse models is a fundamental task in sensorimotor learning. If inverse
models can be obtained, they directly represent a solution of a coordination problem.
This solution can be applied without iterating toward some position and relying on
possibly noisy or delayed feedback. This property is clearly useful for reaching on
pneumatic robots like the BHA, but may be even fundamental for other coordination
problems like facial expressions [Wu et al., 2009] or golf [Sanger, 2004], in which
feedback takes substantial time or which must be solved in the first trial without
iteratively approaching the goal. This thesis has introduced the first algorithm that
can learn such inverse models from self-generated examples, in spite of non-convex
solution sets. Compared to other approaches to the solution of coordination problems,
the particular technological strength of the methods developed in this thesis is therefore
their simplicity : Firstly, learning obtains an immediate solution of the coordination
problem, instead of relying on complex analytical search or inversion mechanisms that
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typically work on top of learned forward models. Secondly, the learning process itself
uses simple example-data, which is technically straightforward and can be achieved
with any function approximation scheme. In contrast to learning with distal teacher
[Jordan and Rumelhart, 1992] and Jacobian-based methods [Sun and Scassellati, 2004],
the learner does not have to be differentiated, which allows to treat the function
approximation as a black box and permits to use learners for which input-to-output
derivatives can not be trivially obtained [Jäger, 2001]. Thirdly, goal babbling defines
an incremental and ongoing bootstrapping mechanism. In contrast to strictly staged
approaches like motor babbling, this does not require a delicate decision when to stop
exploration and to start goal-directed behavior.

In contrast to random motor babbling strategies, goal babbling provides a consistent
approach for high-dimensional systems. Goal babbling leaves out redundant choices
of actions and focuses on behaviorally relevant data. Experiments in this thesis have
shown that the online algorithm displays enormous scalability with almost constant
cost, which is opposed by the exponential cost of exhaustive exploration. Several
very recent studies have already adopted the goal babbling concept based on [Rolf
et al., 2010c, 2011]. The studies confirm the direct superiority of goal babbling over
motor babbling by showing that it needs less examples for a successful bootstrapping,
or yields better performance after a fixed number of examples [Jamone et al., 2011,
Stalph and Butz, 2012, Hartmann et al., 2012]. A direct numerical comparison between
both approaches is, of course, only possible when motor babbling is applicable at all,
despite being potentially inefficient. This is not the case for inverse models which can
not be learned from random data sets.

A comparison between different implementations of goal babbling, that have been
recently proposed, shows that the online algorithm presented in chapter 6 clearly out-
performs other published results. The approach memory-based approach with goal
babbling [Baranes and Oudeyer, 2010b] was shown to require several ten to hundred
thousand examples for the 2D coordination of planar robot arm with m = 15, which
is substantially more than the few hundred movements (few thousand examples) nec-
essary for the algorithm in this thesis, and includes a more complex organization of
movements. Jamone et al. presented quantitative results for a simple 3D reaching
problem with m = 7, which likewise requires several million examples [Jamone et al.,
2011]. Stalph et al. presented a model based on goal babbling that learns the 3D con-
trol of an anthropomorphic arm with m = 7 and showed that bootstrapping can be
successful within few hundred thousand examples [Stalph and Butz, 2012]. This result
is closest to the several ten thousand examples required for the BHA, as presented in
chapter 7. Yet, Stalph’s setup did not involve such particular challenges like narrow
actuation ranges and directional inhomogeneities like on the BHA. How these different
implementations of goal babbling relate in higher dimensions is currently not clear,
since none of the studies has systematically investigated how the exploratory cost de-
pends on the dimensionality of the action space. It is, however, plausible that the
exploratory cost of forward-model-based approaches increases faster than presented
for the learning of inverse models in this thesis. Even if forward models are learned
only in a certain regime, their input dimension increases with m, such that more ex-
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amples are locally necessary for coordination in high dimensions, while inverse models
have a low input dimension n.

On a conceptual level, the questions whether goal babbling works at all and whether
it is an enabler for efficient bootstrapping can clearly be answered positively. Two
important mechanisms can be identified to enable goal babbling: firstly, plain goal-
directed exploration gets stuck in partial solutions, which makes exploratory noise
mandatory. This thesis has used a noise formulation that distorts the inverse estimate.
Other approaches have used explicit random action between goal-directed movements
[Baranes and Oudeyer, 2010b], explicit random actions locally around the action sug-
gested by the inverse estimate [Schenck, 2008], additive gaussian noise on corrective
actions [Stalph and Butz, 2012], or entirely random corrective action in case of previ-
ously unexplored regimes [Jamone et al., 2011]. Secondly, a regularization mechanism
is necessary that prevents arbitrary drifts into unexplored regions of the action space.
The work presented in this thesis, and the model in [Baranes and Oudeyer, 2010a]
have independently proposed the use of a home posture, to which the learner returns
after a while and is thereby driven into a known regime. Another approach has been
presented in [Jamone et al., 2011], which uses nullspace projections to stabilize the
regime of corrective actions, which is a well known method for the analytical control
of robots [Liegeois, 1977].

Two important aspects have been identified as observable characteristics of goal
babbling: firstly, its structuredness compared to random explorations is a direct con-
sequence of the attempt to solve behavioral goals. This very structure has been used
to solve the non-convexity problem in chapter 5. Secondly, goal babbling unfolds
a positive feedback loop, which enables a very rapid bootstrapping. Such feedback
loops in exploratory learning have not been described before, although they are ar-
guably present in any scenario in which learning and exploration are coupled in a way
such that learning improves exploration and vice versa. This is particularly clear for
exploitation-based algorithms in reinforcement learning. A possible reason why this
has not been observed is that the amplitude of the speedup depends on how rapidly a
learner can generalize and in particular generate extrapolations. If a learner exposes
only slow or little generalization, the next exploration step will only marginally benefit
from learning and the positive feedback loop is practically inhibited.

Concludingly, this thesis has introduced the concept of goal babbling, and showed
that it allows to solve coordination problems in high dimensions. Several theoretical
results for linear domains have been proven. The methods developed in this thesis
provide the first successful approach to learn inverse models from examples when
non-convex solution sets are present. The online algorithm substantially outperforms
other published methods and can perform with human-level learning speed. Besides
various theoretical and technological advances, and the practical usage on the BHA,
an important contribution of this thesis is the concept of goal babbling itself, which
provides new vocabulary to foster research on sensorimotor learning, and has already
started to do so.
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8.3 Outlook

In order to focus on the very principles of scalable sensorimotor learning and to enable
the learning of inverse models from examples, several practical and theoretical topics
have not been directly addressed, and new questions arise from the present work.
For instance, this thesis has not investigated the generation and selection of goals
themselves. A method that approaches the dynamical selection of goals based on active
learning has been presented in [Baranes and Oudeyer, 2010a]. Recent progress along
these lines has been generated by active learning formulations based on competence-
progress [Oudeyer and Kaplan, 2008], i.e. trying to generate examples that improve
the mastery of a skill, opposed to knowledge-based formulations that seek for generic
new information, despite being potentially irrelevant for a certain task. A related
problem that is largely unsolved for high-dimensional scenarios is to discover what
observations are possible, instead of predefining a set of reachable goals. The demand
for a known set of goals is an important restriction of current algorithmic approaches
to goal babbling. Competence-progress approaches make a first step in that direction
because they detect that unachievable goals to not result in progress, but still require
to specify an explicit, and preferably small, superset of achievable observations. In
low-dimensional domains this problem can be solved by simple motor babbling which
will generate all possible outcomes. Enabling this discovery of possible outcomes, and
therefore potential goals, in high-dimensional domains is an important objective for
future work.

This thesis has focused on the learning of exactly one valid solution to the coordi-
nation problem by means of learning an inverse model. This approach consistently
tackles the problem that not all actions can be explored in the lifetime of an agent. If
not everything can be explored, it is likewise impossible that all actions can ever be
exploited. However, it can be necessary to know more than one solution in order to
react to varying contexts or environments. A typical scenario is reaching with dynam-
ical obstacle avoidance, which demands for an execution of movements that navigate
around the obstacle. Approaches that learn forward models or corrective actions po-
tentially express solutions to react to such circumstances, but solve the problem only
partially. The agent does not only have to know multiple solutions, it has to select
them in an appropriate and context-aware manner. In the case of obstacle avoidance
this has only been achieved with complex analytical schemes that require substan-
tial knowledge about the geometry of the obstacle and the own body [Khatib, 1986,
Park et al., 2008]. Future work in this direction needs to investigate how exploration
schemes can discover alternative solution when they are needed, and how they can be
represented and leveraged in a task-appropriate manner. A related problem is to deal
with discrete branches of solutions. Exploratory learning that is based on incremental
and local updates like goal babbling can not directly discover such different branches.
Coordination approaches that use corrective actions can represent such solutions, but
typically not exploit them because they get stuck in intermediate local minima. Asso-
ciative approaches like [Reinhart and Steil, 2011] appear to be suitable approach for the
representation and exploitation of such branches, but efficient exploratory mechanisms
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Chapter 8 Conclusion

have to be investigated to generate appropriate training data.
The theoretical work in this thesis has mostly concerned linear domains. The exten-

sion to non-linear domains is an obvious and important direction for future work. The
linear analysis, and the analysis of the information structure of possibly inconsistent
solutions during goal babbling, establish the necessary ground for a deeper investiga-
tion. Relevant questions in this area clearly concern the theoretical soundness of the
algorithm in non-linear domains. Another important aspect are the online learning
dynamics. Even for learning with fixed data sets, online learning is barely theoreti-
cally understood when examples are not chosen independently and randomly [Biehl
and Schwarze, 1995, Sollich and Barber, 1996]. A better theoretical understanding
of these aspects could not only support empirical results, but also connect this re-
search to other domains of machine learning and lead to the development of improved
algorithms that exploit the learning dynamics in an optimal manner.
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