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Abstract

Many limit theorems in probability theory are universal in the sense that the
limiting distribution of a sequence of random variables does not depend on the
particular distribution of these random variables. This universality phenomenon
motivates many theorems and conjectures in probability theory. For example
the limiting distribution in the central limit theorem for the suitably normalized
sums of independent random variables which satisfy some moment conditions are
independent of the distribution of the summands.

In this thesis we establish universality-type results for two classes of random
objects: random matrices and stochastic processes.

In the first part of the thesis we study ensembles of random matrices with depen-
dent elements. We consider ensembles of random matrices Xn with independent
vectors of entries (Xij , Xji)i 6=j . Under the assumption that max(EX4

12,EX4
21) <∞

it is proved that the empirical spectral distribution of eigenvalues converges in
probability to the uniform distribution on an ellipse. The axes of the ellipse are
determined by the correlation between X12 and X21. This result is called Elliptic
Law. Here the limit distribution is universal, that is it doesn’t depend on the
distribution of the matrix elements. These ensembles generalize ensembles of sym-
metric random matrices and ensembles of random matrices with independent entries.

We also generalize ensembles of random symmetric matrices and consider sym-
metric matrices Xn = {Xij}ni,j=1 with a random field type dependence, such that
EXij = 0, EX2

ij = σ2
ij , where σij may be different numbers. Assuming that the

average of the normalized sums of variances in each row converges to one and
Lindeberg condition holds true we prove that the empirical spectral distribution of
eigenvalues converges to Wigner’s semicircle law.

In the second part of the thesis we study some classes of stochastic processes. For
martingales with continuous parameter we provide very general sufficient condi-
tions for the strong law of large numbers and prove analogs of the Kolmogorov and
Brunk–Prokhrov strong laws of large numbers. For random processes with indepen-
dent homogeneous increments we prove analogs of the Kolmogorov and Zygmund–
Marcinkiewicz strong laws of large numbers. A new generalization of the Brunk–
Prokhorov strong law of large numbers is given for martingales with discrete times.
Along with the almost surely convergence, we also prove the convergence in average.
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Chapter 1

Introduction

Many limit theorems in probability theory are universal in the sense that the limiting
distribution of a sequence of random variables does not depend on the particular
distribution of these random variables. This universality phenomenon motivates
many theorems and conjectures in probability theory. For example let us consider a
sequence of independent identically distributed random variables Xi, i ≥ 1. Assume
that E|X1| <∞. Then

lim
n→∞

X1 + ...+Xn − nEX1

n
= 0 almost surely. (1.0.1)

This result is called the strong law of large numbers. If we additionally assume that
EX2

1 = σ2 < ∞ and normalize the sum X1 + ... + Xn by the factor σ
√
n then the

central limit theorem holds

lim
n→∞

P
(
X1 + ...+Xn − nEX1

σ
√
n

≤ x
)

=
1

2π

x∫
−∞

e−z
2/2dz. (1.0.2)

We see here explicitly that the right-hand sides of (1.0.1) and (1.0.2) are universal,
independent of the distribution of Xi. Results (1.0.1) and (1.0.2) were first proved
for independent Bernoulli random variables, P(Xi = 1) = P(Xi = 0) = 1/2, and
then extended to all distributions with finite first and second moment respectively.
Of course, the strong law of large numbers and the central limit theorem are only
one of many similar universality-type results now known in probability theory.

In this thesis we establish universality-type results for two classes of random
objects: random matrices and stochastic processes.

In the first part of the thesis we study the limit theorems for the random matrices
with dependent entries. We prove that the empirical spectral distribution converges
to some limit and this limit does not depend on the particular distribution of the
random matrix elements.

In the second part of the thesis we study stochastic processes and prove the strong
law of large numbers for martingales. For martingales with continuous parameter
we provide very general sufficient conditions for the strong law of large numbers and
prove analogs of the famous strong law of large numbers. Along with the almost
surely convergence we prove the convergence in average.
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1.1 Universality in random matrix theory

The study of random matrices, and in particular the properties of their eigenvalues,
has emerged from applications, first in data analysis and later from statistical
models for heavy-nuclei atoms. Recently Random matrix theory (RMT) has found
its numerous application in many other areas, for example, in numeric analysis,
wireless communications, finance, biology. It also plays an important role in
different areas of pure mathematics. Moreover, the technics used in the study of
random matrices has its sources in other branches of mathematics.

In this work we will be mostly interested in the behavior of an empirical spectral
distribution of a random matrix. In the sections below we define main objects and
introduce different ensembles of random matrices. We also give a brief survey of the
most useful methods to investigate convergence of a sequence of empirical spectral
distributions.

1.1.1 Empirical spectral distribution

Suppose A is an n×n matrix with eigenvalues λi, 1 ≤ i ≤ n. If all these eigenvalues
are real, we can define a one-dimensional empirical spectral distribution of the matrix
A:

FA(x) =
1

n

n∑
i=1

I(λi ≤ x), (1.1.1)

where I(B) denotes the indicator of an event B. If the eigenvalues λi are not all
real, we can define a two-dimensional empirical spectral distribution of the matrix
A:

FA(x, y) =
1

n

n∑
i=1

I(Reλi ≤ x, Imλi ≤ y), (1.1.2)

We also denote by FA(x) = EFA(x) and FA(x, y) = EFA(x, y) an expected
empirical distribution functions of the matrix A.

One of the main problems in RMT is to investigate the convergence of a sequence
of empirical distributions {FAn} (or FAn) for a given sequence of random matrices
An. Under convergence of {FAn} to some limit F we mean the convergence
in vague topology. Under convergence of {FAn} to the limit F we mean the
convergence almost surely or in probability in vague topology. If it doesn’t confuse
we shall omit the phrase "in vague topology". The limit distribution F , which
is usually non-random, is called the limiting spectral distribution of the sequenceAn.

Sometimes it is more convenient to work with measures then with corresponding
distribution functions. We define an empirical spectral measure of eigenvalues of
the matrix A:

µA(B) =
1

n
#{1 ≤ i ≤ n : λi ∈ B}, B ∈ B(T),
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Figure 1.1: Empirical density of the eigenvalues of the symmetric matrix n−1/2Xn

for n = 3000, entries are Gaussian random variables. On the left, each entry is
an i.i.d. Gaussian normal random variable. On the right, each entry is an i.i.d.
Bernoulli random variable, taking the values +1 and −1 each with probability 1/2.

where T = C or T = R and B(T) is a Borel σ-algebra of T.

1.1.2 Ensembles of random matrices

In this thesis we will focus on square random matrices with real entries and assume
that the size of the matrix tends to infinity. We shall restrict our attention to the
following ensembles of random matrices: ensembles of symmetric random matrices,
ensembles of random matrices with independent elements and ensembles of random
matrices with correlated entries.

Ensembles of symmetric random matrices. Let Xjk, 1 ≤ j ≤ k < ∞, be
a triangular array of random variables with EXjk = 0 and EX2

jk = σ2
jk, and let

Xjk = Xkj for 1 ≤ j < k <∞. We consider the random matrix

Xn = {Xjk}nj,k=1.

Denote by λ1 ≤ ... ≤ λn the eigenvalues of the matrix n−1/2Xn and define its
spectral distribution function FXn(x) by (1.1.1).

Let g(x) and G(x) denote the density and the distribution function of the standard
semicircle law

g(x) =
1

2π

√
4− x2I(|x| ≤ 2), G(x) =

∫ x

−∞
g(u)du.

For matrices with independent identically distributed (i.i.d.) elements, which have
moments of all orders, Wigner proved in [44] that Fn converges to G(x), later on
called “Wigner’s semicircle law“. See Figure 1.1 for an illustration of Wigner’s



4 Chapter 1. Introduction

semicircle law.

The result has been extended in various aspects, i.e. by Arnold in [3]. In the
non-i.i.d. case Pastur, [35], showed that Lindeberg’s condition is sufficient for the
convergence. In [25] Götze and Tikhomirov proved the semicircle law for matrices
satisfying martingale-type conditions for the entries.

In the majority of papers it has been assumed that σ2
ij are equal for all 1 ≤ i < j ≤ n.

Recently Erdős, Yau and Yin and al. study ensembles of symmetric random matri-
ces with independent elements which satisfy n−1

∑n
j=1 σ

2
ij = 1 for all 1 ≤ i ≤ n.

See for example the survey of results in [15].

In this thesis we study the following class of random matrices with martingale struc-
ture. Introduce the σ-algebras

F(i,j) := σ{Xkl : 1 ≤ k ≤ l ≤ n, (k, l) 6= (i, j)}, 1 ≤ i ≤ j ≤ n.

For any τ > 0 we introduce Lindeberg’s ratio for random matrices as

Ln(τ) :=
1

n2

n∑
i,j=1

E|Xij |2I(|Xij | ≥ τ
√
n).

We assume that the following conditions hold

E(Xij |F(i,j)) = 0; (1.1.3)

1

n2

n∑
i,j=1

E|E(X2
ij |F(i,j))− σ2

ij | → 0 as n→∞; (1.1.4)

for any fixed τ > 0 Ln(τ)→ 0 as n→∞; (1.1.5)

1

n

n∑
i=1

∣∣∣∣∣∣ 1n
n∑
j=1

σ2
ij − 1

∣∣∣∣∣∣→ 0 as n→∞; (1.1.6)

max
1≤i≤n

1

n

n∑
j=1

σ2
ij ≤ C, (1.1.7)

where C is some absolute constant.

Conditions (1.1.3) and (1.1.4) are analogues of the conditions in the martingale
limit theorems, see [26]. Conditions (1.1.6) and (1.1.7) gives us that in aver-
age the sum of variances in each row and column is equal to one. Hence, the
impact of each row and each column in average is the same for all rows and columns.

If the matrix elements Xjk, 1 ≤ j ≤ k <∞ are independent then conditions (1.1.3)
and (1.1.4) are automatically satisfied and a variant of the semicircle law for
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Figure 1.2: Eigenvalues of the matrix n−1/2X for n = 3000 and ρ = 0. On the left,
each entry is an iid Gaussian normal random variable. On the right, each entry is
an iid Bernoulli random variable, taking the values +1 and −1 each with probability
1/2.

matrices with independent entries but not identically distributed holds.

One can find applications of Wigner’s semicircle law for matrices which satisfy
conditions (1.1.3)– (1.1.7) in [25].

Ensembles of random matrices with independent entries. Let Xjk, 1 ≤
j, k <∞, be an array of independent random variables with EXjk = 0. We consider
the random matrix

Xn = {Xjk}nj,k=1.

Denote by λ1, ..., λn the eigenvalues of the matrix n−1/2Xn and define its spectral
distribution function FXn(x, y) by (1.1.2).

We say that the Circular law holds if FXn(x, y) (FXn(x, y) respectively) con-
verges to the distribution function F (x, y) of the uniform distribution in the unit
disc in R2. F (x, y) is called the circular law. For matrices with independent
identically distributed complex normal entries the Circular law was proved by
Mehta, see [31]. He used the explicit expression of the joint density of the complex
eigenvalues of the random matrix that was found by Ginibre [19]. Under some
general conditions Girko proved Circular law in [20], but his proof is considered
questionable in the literature. Recently, Edelman [14] proved convergence of
FXn(x, y) to the circular law for real random matrices whose entries are real
normal N(0, 1). Assuming the existence of the (4 + ε) moment and the existence
of a density, Bai, see [4], proved almost sure convergence to the circular law.
Under the assumption that EX2

11 log19+ε(1 + |X11|) < ∞ Götze and Tikhomirov
in [24] proved convergence of FXn(x, y) to F (x, y). Almost sure convergence of
FXn(x, y) to the circular law under the assumption of a finite fourth, (2 + ε)

and finally of the second moment was established in [34] by Pan, Zhou and by
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Tao, Vu in [40], [41] respectively. For a further discussion of the Circular Law see [6].

See Figure 1.2 for an illustration of the Circular law.

Ensembles of random matrices with correlated entries. Let us consider an
array of random variables Xjk, 1 ≤ j, k < ∞, such that the pairs (Xjk, Xkj), 1 ≤
j < k < ∞, are independent random vectors with EXjk = EXkj = 0,EX2

jk =

EX2
kj = 1 and EXjkXkj = ρ, |ρ| ≤ 1. We also assume that Xjj , 1 ≤ j < ∞, are

independent random variables, independent of (Xjk, Xkj), 1 ≤ j < k < ∞, and
EXjj = 0,EX2

jj <∞ . We consider the random matrix

Xn = {Xjk}nj,k=1.

Denote by λ1, ..., λn the eigenvalues of the matrix n−1/2Xn and define its spectral
distribution function FXn(x, y) by (1.1.2).

It is easy to see that this ensemble generalize previous ensembles. If ρ = 1 we have
the ensemble of symmetric random matrices. If Xij are i.i.d. then ρ = 0 and we
get the ensemble of matrices with i.i.d. elements.

Define the density of uniformly distributed random variable on the ellipse

g(x, y) =

 1
π(1−ρ2)

, (x, y) ∈
{
u, v ∈ R : u2

(1+ρ)2
+ v2

(1−ρ)2
≤ 1
}

0, otherwise,

and the corresponding distribution function

G(x, y) =

x∫
−∞

y∫
−∞

f(u, v)dudv.

If all Xij have finite fourth moment and densities then it was proved by Girko
in [21] and [22] that FXn converges to G. He called this result "Elliptic Law". But
similarly to the case of the Circular law Girko’s proof is considered questionable in
the literature. Later the Elliptic law was proved for matrices with Gaussian entries
in [39]. In this case one can write explicit formula for the density of eigenvalues of
the matrix n−1/2Xn. For a discussion of the Elliptic law in the Gaussian case see
also [17], [2, Chapter 18] and [29].

Figures 1.3 and 1.4 illustrate the Elliptic law for the two choices of the correlation
between elements X12 and X21, ρ = 0.5 and ρ = −0.5.

In this thesis we prove the Elliptic law under the assumption that all elements have
a finite fourth moment only. Recently Nguyen and O’Rourke, [32], proved Elliptic
law in general case assuming finite second moment only.
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Figure 1.3: Eigenvalues of the matrix n−1/2Xn for n = 3000 and ρ = 0.5. On
the left, each entry is an iid Gaussian normal random variable. On the right, each
entry is an iid Bernoulli random variable, taking the values +1 and −1 each with
probability 1/2.

Figure 1.4: Eigenvalues of the matrix n−1/2Xn for n = 3000 and ρ = −0.5. On
the left, each entry is an iid Gaussian normal random variable. On the right, each
entry is an iid Bernoulli random variable, taking the values +1 and −1 each with
probability 1/2.
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A motivation for such models of random matrices is the the following (see [39]).
The statistical properties of random matrices from this ensemble may be important
in the understanding of the behavior of certain dynamical systems far from equilib-
rium. One example is the dynamics of neural networks. A simple dynamic model
of neural network consists of n continues "scalar" degrees of freedom("neurons")
obeying coupled nonlinear differential equations ("circuit equations"). The cou-
pling between the neurons is given by a synaptic matrix Xn which, in general, is
asymmetric and has a substantial degree of disorder. In this case, the eigenstates
of the synaptic matrix play an important role in the dynamics particulary when the
neuron nonlinearity is not too big.

1.1.3 Methods

To prove convergence of ESD to some limit we shall apply different methods: the
moments method, the Stieltjes transforms method and the method of logarithmic
potential. We briefly discuss the main ideas underlying these methods.

Moment method. The basic starting point is the observation that the moments
of the ESD FXn can be written as normalized traces of powers of Xn:∫

R

xkdFXn =
1

n
Tr

(
1√
n
X

)k
.

Taking expectation we get∫
R

xkdFXn =
1

n
ETr

(
1√
n
X

)k
.

This expression plays a fundamental role in RMT. By the moment convergence
theorem the problem of showing that the expected ESD of a sequence of random
matrices {Xn} tends to a limit reduces to showing that, for each fixed k, the sequence

1

n
ETr

(
1√
n
X

)k
tends to a limit βk and then verifying the Carleman condition

∞∑
k=1

β
−1/2k
2k =∞.

The proof of the convergence of the ESD FXn to a limit almost surely or in prob-
ability sense usually reduces to the estimation of the second or higher moments
of

1

n
Tr

(
1√
n
X

)k
.
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We shall apply this method in Chapter 3 for symmetric matrices with Gaussian
entries.

Stieltjes transform method. We now turn to the Stieltjes transform method
which has turned out to be the most powerful and accurate tools in dealing with
the ESD of the random matrix. By definition Stieltjes transform of the distribution
function G(x) is

SG(z) =

∫
R

1

x− z
dG(x),

for all z ∈ C+. One has an inversion formula

G([a, b]) = lim
ε→0+

1

π

b∫
a

ImSG(x+ iε)dx,

where a, b are continuity points of G and a < b. For the ESD of the random matrix
n−1/2Xn one has

SXn(z) =

∫
R

1

x− z
dFXn =

1

n
Tr

(
1√
n
Xn − zI

)−1

.

The quantity in the right hand side of previous formula is the trace of the resolvent
of the matrix n−1/2Xn − zI. By Theorem B.2.3 to prove convergence of the ESD
to some limit F (x) one should show convergence of the Stieltjes transforms to the
corresponding limit and then show that this limit is the Stieltjes transform of F (x).
We will use this method in Chapters 2 and 3.

Method of logarithmic potential. It is well known that methods described
above fail to deal with non-hermitian matrices, see for the discussion [4] or [6].
Girko in his paper [20] used the well known and popular in classical probability
theory method of characteristic functions. Using V -transform he reduced the
problem to the problem for Hermitian matrices (n−1/2Xn− zI)∗(n−1/2Xn− zI). In
this thesis we will use related method – the method of logarithmic potential.

Denote by µn the empirical spectral measure of the matrix n−1/2Xn and recall the
definition of the logarithmic potential (see Appendix B.3)

Uµn(z) = −
∫
C

log |z − w|µn(dw).

Let s1(n−1/2Xn− zI) ≥ s2(n−1/2Xn− zI) ≥ ... ≥ sn(n−1/2Xn− zI) be the singular
values of n−1/2Xn− zI and define the empirical spectral measure of singular values
by

νn(z,B) =
1

n
#{i ≥ 1 : si(n

−1/2Xn − zI) ∈ B}, B ∈ B(R),
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We can rewrite the logarithmic potential of the measure µn via the logarithmic
moments of the measure νn:

Uµn(z) = −
∫
C

log |z − w|µn(dw) = −
∞∫

0

log xνn(z, dx).

This allows us to consider the Hermitian matrix (n−1/2Xn − zI)∗(n−1/2Xn − zI)
instead of the asymmetric matrix n−1/2Xn. Now we can apply all previous methods
to find the limiting measure νz for the sequence νn. Then using uniqueness properties
of logarithmic potential one can show that µn converges to the unique limit µ and
the logarithmic potential of the measure µ is equal to

Uµ(z) = −
∞∫

0

log xνz(dx),

The main problem here is that log(·) has two poles: at zero and on infinity. To
overcome this difficulty we shall explore the behavior of the singular values of the
matrix n−1/2Xn − zI and show uniform integrability of log(·) with respect to the
family νn, see Appendix B.3 for definition. The proof of the uniform integrability
is based on the estimation of the least singular value of a square matrix. Recently,
considerable progress has been achieved in this question. For a discussion see works
of Rudelson, Vershynin [37],Vershynin [43], Götze, Tikhomirov [24] and Tao, Vu [40].

1.2 Universality in the strong law of large numbers

Let {Xi}i≥1 – be a sequence of independent random variables, and denote Sn =

X1 + ...+Xn. We say that the strong law of large numbers holds if

lim
n→∞

Sn − ESn
n

= 0 a.s.

The strong law of large numbers was first proved by Borel for independent Bernoulli
random variables.

One of the first strong laws of large numbers for general random variables was
proved by Cantelli under the assumption EX4

i ≤ C for all i ≥ 1.

The most famous sufficient condition was established by Kolmogorov. He proved
the strong law of large numbers assuming that the following condition on variances
of Xi holds

n∑
i=1

E|Xi − EXi|2

n2
<∞. (1.2.1)

See [38] for the proof.
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Brunk and Prokhorov proved ([7] and [36]) that the sequence of arithmetic means
n−1Sn converges almost surely to zero if Xn is a sequence of independent random
variables with EXi = 0 and for some α ≥ 1

n∑
i=1

E|Xi|2α

nα+1
<∞, (1.2.2)

For α = 1 this result coincides with Kolmogorov’s theorem. The Kolmogorov
theorem and the Brunk–Prokhorov theorem were extended to the case of martingale
differences, see [9], [10].

It is natural to try to extend the Kolmogorov and Brunk–Prokhorov theorems re-
placing the normalizing constants n to other positive quantities. In the case α = 1

Loeve, [30], showed that the Kolmogorov theorem can be extended replacing n with
positive numbers bn, such that bn ≤ bn+1 and lim

n→∞
bn =∞. In [16], it was demon-

strated that for α > 1 in the Brunk–Prokhorov theorem for martingale difference as
normalizing constants one can take positive numbers bn which satisfy the condition
bn/bn+1 ≤ (n/(n+1))δ, δ > (α−1)/(2α). One should also instead of (1.2.2) assume
that

n∑
i=1

nα−1E|Xi|2α

b2αn
<∞. (1.2.3)

This assertion is derived in [16, Theorem 3.1], which, as it is pertinent to note, is
well known indeed (see, e.g., [9]).

Kruglov in [27] showed that in the Brunk–Prokhorov theorem one can take a se-
quence bn such that the condition (1.2.2) holds and there exists a sequence kn, n ≥ 1

such that

sup
n≥1

kn+1/kn = d <∞, 0 < b = inf
n≥1

bkn/bkn+1 ≤ sup
n≥1

bkn/bkn+1 = c < 1.

In this thesis a new generalization of the Brunk-Prokhorov strong law of large num-
bers is given. We consider a martingale {Yn, n ∈ N = {1, 2, . . . }}, Y0 = 0, relative
to the filtration {Fn, n ∈ N} and a sequence bn, n ∈ N of unboundedly increasing
positive numbers. We impose the conditions

∞∑
n=1

nα−1E|Yn − Yn−1|2α

b2αn
<∞, (1.2.4)

∞∑
n=1

nα−2
n∑
k=1

E|Yk − Yk−1|2α

b2αn
<∞ (1.2.5)

for some α ≥ 1, and prove that

lim
n→∞

Yn
bn

= 0 a.s. and lim
n→∞

E
∣∣∣∣max1≤k≤n Yk

bn

∣∣∣∣2α = 0.
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In some cases, these conditions are automatically satisfied. In particular, they are
satisfied under condition of the original Brunk-Prokhorov theorem.

For measurable separable martingales {Yt, t ∈ R+} with continuous parameter we
can prove analogs of above theorems. In this case we can substitute the condi-
tion (1.2.1) by the following condition

∞∫
1

dE|Yt|2α

t2α
<∞,

where α ≥ 1.

Now we turn our attention to independent and identically distributed random vari-
ables. If the random variables X1, X2, ... are independent and identically distributed
then it was proved by Kolmogorov, [38], that for the strong law of large numbers it
is sufficient to assume that E|X1| <∞. This result can be extended in the following
way. Let X1, X2, ... – be a sequence of independent identically distributed random
variables, and assume that with probability one

lim
n→∞

Sn
n

= C,

where C - some finite constant. Then E|X1| < ∞ and C = EX1. Hence for
independent identically distributed random variables the condition E|X1| < ∞ is
necessary and sufficient for convergence of Sn/n to some finite limit. One can
also show that almost sure convergence of Sn/n can be replaced by convergence in
average

lim
n→∞

E
∣∣∣∣Snn −m

∣∣∣∣ = 0.

Kolmogorov theorem due to Zygmund and Marcinkiewicz, see [30], can be extended
in the following way. Let X1, X2, ... – be a sequence of independent identically
distributed random variables. If E|X1|α <∞ for some 0 < α < 1, then

lim
n→∞

Sn

n1/α
= 0 a.s

If E|X1|α <∞ for some 1 ≤ α ≤ 2, then

lim
n→∞

Sn − nEX1

n1/α
= 0 a.s

In this thesis we also prove analogs of Kolmogorov and Zygmund–Marcinkiewicz
strong laws of large numbers for processes with independent homogeneous incre-
ments. Along with the convergence almost surely, we also prove the convergence in
average .

The classical laws of large numbers are applied in particular in the Monte Carlo
methods, e.g. to calculate high dimensional integrals. The proposed analogues of
the strong law of large numbers can be used for the same purposes.
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1.3 Structure of thesis

The structure of this thesis is as follows: In Chapter 2 we prove the Elliptic law
for matrices with finite fourth moment. In Chapter 3 we consider ensembles of
random matrices with martingale structure and prove that the empirical distribution
function converges to Wigner’s semicircle law. In Chapter 4 we establish the strong
law of large number for some classes of random processes and give rather general
sufficient conditions for convergence. All auxiliary results and necessary definitions
are presented in Appendices A– C .

1.4 Notations

Throughout this thesis we assume that all random variables are defined on a common
probability space (Ω,F ,P) and we will write almost surely (a.s) instead of P-almost
surely. Let Tr(A) denote the trace of a matrix A. For a vector x = (x1, ..., xn)

let ||x||2 := (
n∑
i=1

x2
i )

1/2 and ||x||3 := (
n∑
i=1
|xi|3)1/3. We denote the operator norm of

the matrix A by ||A|| := sup
||x||2=1

||Ax||2 and Hilbert–Schmidt norm by ||A||HS :=

(Tr(A∗A))1/2. By [n] we mean the set {1, ..., n} and let supp(x) denote the set of
all non-zero coordinates of x. We will write a ≤m b if there is an absolute constant
C depends on m only such that a ≤ Cb.





Chapter 2

Elliptic law for random matrices

In this chapter we consider ensembles of random matrices Xn with independent
vectors (Xij , Xji)i 6=j of entries. Under the assumption of a finite fourth moment for
the matrix entries it is proved that the empirical spectral distribution of eigenvalues
converges in probability to the uniform distribution on an ellipse. The axes of the
ellipse are determined by the correlation between X12 and X21. This result is called
Elliptic Law. Here the limit distribution is universal, that is it doesn’t depend on
the distribution of the matrix elements.

2.1 Main result

Let us consider real random matrix Xn(ω) = {Xij(ω)}ni,j=1 and assume that the
following conditions (C0) hold
a) Pairs (Xij , Xji), i 6= j are independent identically distributed (i.i.d.) random
vectors;
b) EX12 = EX21 = 0,EX2

12 = EX2
21 = 1 and max(E|X12|4,E|X21|4) ≤M4;

c) E(X12X21) = ρ, |ρ| ≤ 1;
d) The diagonal entries Xii are i.i.d. random variables, independent of off-diagonal
entries, EX11 = 0 and EX2

11 <∞.

Denote by λ1, ..., λn the eigenvalues of the matrix n−1/2Xn and define its empirical
spectral measure by

µn(B) =
1

n
#{1 ≤ i ≤ n : λi ∈ B}, B ∈ B(C).

Theorem 2.1.1 (Elliptic Law). Let Xn satisfies the condition (C0) and |ρ| < 1.
Then µn → µ in probability, and µ has the density g:

g(x, y) =

 1
π(1−ρ2)

, (x, y) ∈
{
u, v ∈ R : u2

(1+ρ)2
+ v2

(1−ρ)2
≤ 1
}

0, otherwise.

From now on we shall omit the index n in the notation for random matrices.

2.2 Gaussian case

Let the elements of the matrix X have Gaussian distribution with zero mean and
correlations

EX2
ij = 1 and EXijXij = ρ, i 6= j, |ρ| < 1.
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The ensemble of such matrices can be specified by the probability measure

P(dX) ∼ exp

[
− n

2(1− ρ2)
Tr(XXT − ρX2)

]
.

It was proved that µn
weak−−−→ µ, where µ has a density from Theorem 2.1.1, see [39].

We will use this result to prove Theorem 2.1.1 in the general case.

Remark 2.2.1. This result can be generalized to the ensemble of Gaussian complex
asymmetric matrices. In this case, the invariant measure is

P(dX) ∼ exp

[
− n

1− |ρ|2
Tr(XXT − 2 Re ρX2)

]
and E|Xij |2 = 1,EXijXji = |ρ|e2iθ for i 6= j. Then the limit measure has a uniform
density inside an ellipse which is centered at zero and has semiaxes 1 + |ρ| in the
direction θ and 1− |ρ| in the direction θ + π/2.

For a discussion of the Elliptic law in Gaussian case see also [17], [2, Chapter 18]
and [29].

2.3 Proof of the main result

To prove Theorem 2.1.1 we shall use the method of the logarithmic potential and
Lemma B.3.3.

Denote by s1(n−1/2X− zI) ≥ s2(n−1/2X− zI) ≥ ... ≥ sn(n−1/2X− zI) the singular
values of n−1/2X − zI and define the empirical spectral measure of singular values
by

νn(z,B) =
1

n
#{i ≥ 1 : si(n

−1/2X− zI) ∈ B}, B ∈ B(R),

We will omit the argument z in the notation of the measure νn(z,B) if it doesn’t
confuse.

Proof of Theorem 2.1.1. Due to Lemma B.3.3 our aim is to prove the convergence
of νn to νz, uniform integrability of log(·) with respect to {νn}n≥1 and show that
νz determines the elliptic law.

From Theorem 2.5.1 we can conclude the uniform integrability of log(·). The proof
of Theorem 2.5.1 is based on Theorem 2.4.1 and some additional results.

In Theorem 2.6.1 it is proved that νn
weak−−−→ νz in probability, where νz is some

probability measure, which doesn’t depend on the distribution of the elements of
the matrix X.
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If the matrix X has Gaussian elements we redenote µn by µ̂n.

By Lemma B.3.3 there exists a probability measure µ̂ such that µn
weak−−−→ µ̂ in

probability and Uµ̂(z) = −
∞∫
0

log xνz(dx). But in the Gaussian case µn
weak−−−→ µ

in probability and Uµ(z) = −
∞∫
0

log xνz(dx). We know that νz is the same for all

matrices which satisfy the condition (C0) and we have

Uµ̂(z) = −
∞∫

0

log xνz(dx) = Uµ(z).

From unicity of the logarithmic potential we conclude that µ̂ = µ.

Remark 2.3.1. One can also use Theorem 2.7.2 and substitute the elements of the
matrix Xn by Gaussian random variables, which satisfy the condition (C0).

2.4 Least singular value

Let sk(A) be the singular values of A arranged in the non-increasing order. From
the properties of the largest and the smallest singular values it follows

s1(A) = ||A|| = sup
x:||x||2=1

||Ax||2, sn(A) = inf
x:||x||2=1

||Ax||2.

To prove uniform integrability of log(·) we need to estimate the probability of the
event {sn(A) ≤ εn−1/2, ||X|| ≤ K

√
n}, where A = X − zI. We can assume that

εn−1/2 ≤ Kn1/2. If |z| ≥ 2K
√
n then the probability of the event is automatically

zero. So we can consider the case when |z| ≤ 2Kn1/2. We have ||A|| ≤ ||X||+ |z| ≤
3Kn1/2. In this section we prove the following theorem

Theorem 2.4.1. Let A = X−zI, where X is n×n random matrix satisfying (C0).
Let K > 1. Then for every ε > 0 one has

P(sn(A) ≤ εn−1/2, ||A|| ≤ 3K
√
n) ≤ C(ρ)ε1/8 + C1(ρ)n−1/8,

where C(ρ), C1(ρ) are some constants which can depend only on ρ,K and M4.

Remark 2.4.2. Mark Rudelson and Roman Vershynin in [37] and Roman Ver-
shynin in [43] found the bounds for the least singular value of matrices with inde-
pendent entries and symmetric matrices respectively. In this section we will follow
their ideas.

2.4.1 The small ball probability via central limit theorem

Let L(Z, ε) = supv∈Rd P(||Z − v||2 < ε) be a Levy concentration function of a
random variable Z taking values in Rd.
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The next statement gives the bound for Levy concentration function of a sum of
independent random variables in R.

Statement 2.4.3. Let {aiξi + biηi}i≥1 be independent random variables, Eξi =

Eηi = 0, Eξ2
i = 1,Eη2

i = 1, Eξiηi = ρ, max(Eξ4
i ,Eη4

i ) ≤ M4, max
1≤i≤n

|a−1
i bi| = O(1).

We assume that c1n
−1/2 ≤ |ai| ≤ c2n

−1/2, where c1, c2 are some constants. Then

L

(
n∑
i=1

(aiξi + biηi), ε

)
≤ Cε

(1− ρ2)1/2
+

C1

(1− ρ2)3/2n1/2
.

Proof. It is easy to see that

σ2 = E(
n∑
i=1

Zi)
2 =

n∑
i=1

|ai|2(1 + 2ρa−1
i bi + (a−1

i bi)
2) ≥ (1− ρ2)||a||22

and
n∑
i=1

E|aiξi + biηi|3 ≤
n∑
i=1

|ai|3E|ξi + a−1
i biηi|3 ≤ C ′||a||33,

where we have used the fact max
1≤i≤n

|a−1
i bi| = O(1). By Central Limit Theorem A.1.1

for arbitrary v ∈ R

P

(∣∣∣∣∣
n∑
i=1

(aiξi + biηi)− v

∣∣∣∣∣ ≤ ε
)
≤ P

(∣∣g′ − v∣∣ ≤ ε)+ C ′′
∑n

i=1 E|aiξi + biηi|3

σ3
,

where g′ has gaussian distribution with zero mean and variance σ2. The density of
g′ is uniformly bounded by 1/

√
2πσ2. We have

P

(
|
n∑
i=1

(aiξi + biηi)− v| ≤ ε

)
≤ Cε

(1− ρ2)1/2
+

C1

(1− ρ2)3/2n1/2
.

We can take maximum and conclude the statement.

Remark 2.4.4. Let us consider the case bi = 0 for all i ≥ 1. It is easy to show that

L

(
n∑
i=1

aiξi, ε

)
≤ C(ε+ n−1/2).

2.4.2 Decomposition of the sphere and invertibility

To prove Theorem 2.4.1, we shall partition the unit sphere Sn−1 into the two
sets of compressible and incompressible vectors, and show the invertibility of A

on each set separately. See Appendix A.2 for the definition of compressible and
incompressible vectors and their properties.

The following statement gives the bound for compressible vectors.
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Lemma 2.4.5. Let A be a matrix from Theorem 2.4.1 and let K > 1. There exist
constants δ, τ, c ∈ (0, 1) that depend only on K and M4 and such that the following
holds. For every u ∈ Rn, one has

P

(
inf

x
||x||2

∈Comp(δ,τ)
||Ax− u||2/||x||2 ≤ c4

√
n, ||A|| ≤ 3K

√
n

)
≤ 2e−cn. (2.4.1)

Proof. See [43, Statement 4.2]. The proof of this result for matrices which satisfy
condition (C0) can be carried out by similar arguments.

For incompressible vectors, we shall reduce the invertibility problem to a lower
bound on the distance between a random vector and a random hyperplane. For this
aim we recall Lemma 3.5 from [37]

Lemma 2.4.6. Let A be a random matrix from theorem 2.4.1. Let A1, ..., An denote
the column vectors of A, and let Hk denote the span of all columns except the k-th.
Then for every δ, τ ∈ (0, 1) and every ε > 0, one has

P( inf
x∈Incomp(δ,τ)

||Ax||2 < εn−1) ≤ 1

δn

n∑
k=1

P(dist(Ak, Hk) < τ−1ε). (2.4.2)

Lemma 2.4.6 reduces the invertibility problem to a lower bound on the distance
between a random vector and a random hyperplane.

We decompose matrix A = X− zI into the blocks(
a11 V T

U B

)
(2.4.3)

where B is (n− 1)× (n− 1) matrix and U, V random vectors with values in Rn−1.

Let h be any unit vector orthogonal to A2, ..., An. It follows that

0 =

(
V T

B

)T
h = h1V + BT g,

where h = (h1, g), and
g = −h1B

−TV

From the definition of h

1 = ||h||22 = |h1|2 + ||g||22 = |h1|2 + |h1|2||B−TV ||22

Using this equations we estimate distance

dist(A1, H) ≥ |(A1, h)| = |a11 − (B−TV,U)|√
1 + ||B−TV ||22
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It is easy to show that ||B|| ≤ ||A||. Let the vector e1 ∈ Sn−2 be such that
||B|| = ||Be1||2. Then we can take the vector e = (0, e1)T ∈ Sn−1 and for this
vector

||A|| ≥ ||Ae||2 = ||(V T e1,Be1)T ||2 ≥ ||Be1||2 = ||B||.

The bound for right hand sand of (2.4.2) will follow from the following statement

Lemma 2.4.7. Let matrix A be from Theorem 2.4.1. Then for all ε > 0

sup
v∈R

P

(
|(B−TV,U)− v|√

1 + ||B−TV ||22
≤ ε, ||B|| ≤ 3K

√
n

)
≤ C(ρ)ε1/8 + C ′(ρ)n−1/8, (2.4.4)

where B, U, V are determined by (2.4.3) and C(ρ), C1(ρ) are some constants which
can depend only on ρ,K and M4.

To get this bound we need several statements. First we introduce matrix and vector

Q =

(
On−1 B−T

B−1 On−1

)
W =

(
U

V

)
, (2.4.5)

whereOn−1 is (n−1)×(n−1) matrix with zero entries. The scalar product in (2.4.4)
can be rewritten using definition of Q:

sup
v∈R

P

(
|(QW,W )− v|√

1 + ||B−TV ||22
≤ 2ε

)
. (2.4.6)

Introduce vectors

W ′ =

(
U ′

V ′

)
Z =

(
U

V ′

)
, (2.4.7)

where U ′, U ′ are independent copies of U, V respectively. We need the following
statement.

Statement 2.4.8.

sup
v∈R

PW (|(QW,W )− v| ≤ 2ε) ≤ PW,W ′
(
|(QPJc(W −W ′),PJW )− u| ≤ 2ε

)
,

where u doesn’t depend on PJW = (PJU,PJV )T .

Proof. Let us fix v and denote

p := P (|(QW,W )− v| ≤ 2ε) .

We can decompose the set [n] into union [n] = J ∪Jc. We can take U1 = PJU,U2 =

PJcU, V1 = PJV and V2 = PJcV . By Lemma A.1.2

p2 ≤ P (|(QW,W )− v| ≤ 2ε, |(QZ,Z)− v| ≤ 2ε) (2.4.8)

≤ P (|(QW,W )− (QZ,Z)| ≤ 4ε) .
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Let us rewrite B−T in the block form

B−T =

(
E F

G H

)
.

We get

(QW,W ) = (EV1, U1) + (FV2, U1) + (GV1, U2) + (HV2, U2)

+ (ETU1, V1) + (GTU2, V1) + (FTU1, V2) + (HTU2, V2)

(QZ,Z) = (EV1, U1) + (FV ′2 , U1) + (GV1, U
′
2) + (HV ′2 , U

′
2)

+ (ETU1, V1) + (GTU ′2, V1) + (FTU1, V
′

2) + (HTU ′2, V
′

2)

and

(QW,W )− (QZ,Z) = 2(F(V2 − V ′2), U1) + 2(GT (U2 − U ′2), V1) (2.4.9)

+ 2(HV2, V2)− 2(HV ′2 , V
′

2).

The last two terms in (2.4.9) depend only on U2, U
′
2, V2, V

′
2 and we conclude that

p2
1 ≤ P

(
|(QPJc(W −W ′), PJW )− u| ≤ 2ε

)
,

where u = u(U2, V2, U
′
2, V

′
2 ,F,G,H).

Statement 2.4.9. For all u ∈ Rn−1

P
(

B−Tu

||B−Tu||2
∈ Comp(δ, τ) and ||B|| ≤ 3Kn1/2

)
≤ 2e−cn.

Proof. Let x = B−Tu. It is easy to see that{
B−Tu

||B−Tu||2
∈ Comp(δ, τ)

}
j

{
∃x :

x

||x||2
∈ Comp(δ, τ) and BTx = u

}
Replacing the matrix A with BT one can easily check that the proof of Lemma 2.4.5
remains valid for BT as well as for A.

Remark 2.4.10. The Statement 2.4.9 holds for B−T replaced with B−1.

Statement 2.4.11. Let A satisfies the condition (C0) and B be the matrix from
the decomposition (2.4.3). Assume that ||B|| ≤ 3K

√
n. Then with probability at

least 1− e−cn matrix B has the following properties:

a) ||B−TV ||2 ≥ C with probability 1− e−c′n in W ,

b) ||B−TV ||2 ≤ ε−1/2||B−T ||HS with probability 1− ε in V ,

c) ||QW ||2 ≥ ε||B−T ||HS with probability 1− C ′(ε+ n−1/2) in W .
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Proof. Let {ek}nk=1 be a standard basis in Rn. For all 1 ≤ k ≤ n define vectors by

xk :=
B−1ek
||B−1ek||

.

By Statement 2.4.9 vector xk is incompressible with probability 1 − e−cn. We fix
the matrix B with such property.
a) By the norm inequality ||U ||2 ≤ ||B||2||B−TU ||2. We know that ||B|| ≤ 3K

√
n.

By Lemma A.1.6 and Lemma A.1.7 ||U || ≥
√
n. Hence we have that ||B−1U || ≥ C

with probability 1− e−c′n.
b) By definition

||B−TV ||22 =

n∑
i=1

(B−1ek, V )2 =

n∑
i=1

||B−1ei||22(xk, V )2.

It is easy to see that E(V, xk)
2 = 1. So

E||B−TV ||22 =
n∑
i=1

||B−1ei||22 = ||B−1||2HS .

By the Markov inequality

P(||B−TV ||2 ≥ ε−1/2||B−1||HS) ≤ ε.

c) By Lemma A.1.3, Lemma A.2.3, Lemma A.1.5 and Remark 2.4.4 we get

P(||QW ||2 ≤ ε||B−1||HS) ≤ P(||B−TV ||2 ≤ ε||B−1||HS)

= P(||B−TV ||22 ≤ ε||B−1||2HS) = P(
n∑
i=1

||B−1ei||2(xi, V )2 ≤ ε2||B−1||2HS)

= P(
n∑
i=1

pi(xi, V )2 ≤ ε2) ≤ 2
n∑
i=1

piP((xi, V ) ≤
√

2ε) ≤ C ′(ε+ n−1/2).

Proof of Lemma 2.4.7. Let ξ1, ..., ξn be i.i.d. Bernoulli random variables with Eξi =

c0/2. We define J := {i : ξi = 0} and E0 := {|Jc| ≤ c0n}. From the large deviation
inequality we may conclude that P(E0) ≥ 1− 2 exp(−c2

0n/2). Introduce the event

E1 := {ε1/2
0

√
1 + ||B−TV ||22 ≤ ||B

−1||HS ≤ ε−1
0 ||QPJc(W −W ′)||2},

where ε0 will be chosen later.

From Statement 2.4.11 we may conclude that

PB,W,W ′,J(E1 ∪ ||B|| ≥ 3K
√
n) ≥ 1− C ′(ε0 + n−1/2)− 2e−c

′n.
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Consider the random vector

w0 =
1

||QPJc(W −W ′)||2

(
B−TPJc(V − V ′)
B−1PJc(U − U ′)

)
=

(
a

b

)
.

By Statement 2.4.9 it follows that the event E2 := {a ∈ incomp(δ, τ)} holds with
probability

PB(E2 ∪ ||B|| ≥ 3K
√
n|W,W ′, J) ≥ 1− 2 exp(−c′′n).

Combining these probabilities we have

PB,W,W ′,J(E0, E1, E2 ∪ ||B|| ≥ 3K
√
n)

≥ 1− 2e−c
2
0n/2 − C ′(ε0 + n−1/2)− 2e−c

′n − 2e−c
′′n := 1− p0.

We may fix J that satisfies |Jc| ≤ c0 and

PB,W,W ′(E1, E2 ∪ ||B|| ≥ 3K
√
n) ≥ 1− p0.

By Fubini’s theorem B has the following property with probability at least 1−√p0

PW,W ′(E1, E2 ∪ ||B|| ≥ 3K
√
n|B) ≥ 1−√p0.

The event {||B|| ≥ 3K
√
n} depends only on B. We may conclude that the random

matrix B has the following property with probability at least 1−√p0: either ||B|| ≥
3K
√
n, or

||B|| ≤ 3K
√
n and PW,W ′(E1, E2|B) ≥ 1−√p0 (2.4.10)

The event we are interested in is

Ω0 :=

(
|(QW,W )− u|√

1 + ||B−TV ||22
≤ 2ε

)
.

We need to estimate the probability

PB,W (Ω0 ∩ ||B|| ≤ 3K
√
n) ≤ PB,W (Ω0 ∩ (2.4.10) holds)

+PB,W (||B|| ≤ 3K
√
n ∩ (2.4.10) fails).

By the previous steps the last term is bounded by √p0.

PB,W (Ω0 ∩ ||B|| ≤ 3K
√
n) ≤ sup

B satisfies (2.4.10)
PW (Ω0|B) +

√
p0.

We can conclude that

PB,W (Ω0 ∩ ||B|| ≤ 3K
√
n) ≤ sup

B satisfies (2.4.10)
PW,W ′(Ω0, E1|B) + 2

√
p0.
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Let us fix B that satisfies (2.4.10) and denote p1 := PW,W ′(Ω0, E1|B). By State-
ment 2.4.8 and the first inequality in E1 we get

p2
1 ≤ PW,W ′

|(QPJc(W −W ′),PJW )− v| ≤ ε
√
ε0
||B−1||HS︸ ︷︷ ︸

Ω1


and

PW,W ′(Ω1) ≤ PW,W ′(Ω1, E1, E2) +
√
p0.

Further
p2

1 ≤ PW,W ′(|(w0,PJW )− v| ≤ 2ε
−3/2
0 ε, E2) +

√
p0.

By definition random vector w0 is determined by the random vector PJc(W −W ′),
which is independent of the random vector PJW . We fix PJc(W −W ′) and have

p2
1 ≤ sup

w0=(a,b)T :
a∈Incomp(δ,τ)

w∈R

PPJW

(
|(w0,PJW )− w| ≤ ε−3/2

0 ε
)

+
√
p0.

Let us fix a vector w0 and a number w. We can rewrite

(w0, PJW ) =
∑
i∈J

(aixi + biyi), (2.4.11)

where ||a||22 + ||b||22 = 1. From Lemma A.2.3 and Remark A.2.4 we know that at
least [2c0n] coordinates of vector a ∈ Incomp(δ, τ) satisfy

τ√
2n
≤ |ak| ≤

1√
δn
,

where δτ2/4 ≤ c0 ≤ 1/4. We denote the set of coordinates of a with this property
by spread(a). By the construction of J we can conclude that | spread(a)| = [c0n].
By Lemma A.1.5 we may reduce the sum (2.4.11) to the set spread(a). Now we will
investigate the properties of |bi|. Let us decompose the set spread(a) into the two
sets spread(a) = I1 ∪ I2, where
a) I1 = {i ∈ spread(a) : |bi| > Cn−1/2};
b) I2 = {i ∈ spread(a) : |bi| ≤ Cn−1/2},
and C is some big constant. From ||b||22 < 1 it follows that |I1| ≤ ĉ0n, where
c0 � ĉ0 and ĉ0 depends on C. For the second set I2 we have max

i∈I2
|a−1
i bi| = O(1).

By Lemma A.1.5 we get

P(|
∑

i∈spread(a)

(aixi + biyi)− w| < 2ε
−3/2
0 ε) ≤ P(|

∑
i∈I2

(aixi + biyi)− w′| < 2ε
−3/2
0 ε).

We can apply Statement 2.4.3

P(|
∑
i∈I2

(aixi + biyi)− w′| < 2ε
−3/2
0 ε) ≤ C1ε

−3/2
0 ε

(1− ρ2)1/2
+ C2(1− ρ2)−3/2n−1/2.
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It follows that

PB,W (Ω0 ∩ ||B|| ≤ 3K
√
n) ≤(

C1ε
−3/2
0 ε

(1− ρ2)1/2
+ C2(1− ρ2)−3/2n−1/2

)1/2

+ p
1/4
0 + 2

√
p0.

We take ε0 = ε1/2 and finally conclude

PB,W (Ω0 ∩ ||B|| ≤ 3K
√
n) ≤ C(ρ)ε1/8 + C ′(ρ)n−1/8,

where C(ρ), C ′(ρ) are some constants which depend on ρ,K and M4.

Proof of Theorem 2.4.1. The result of the theorem follows from Lemmas 2.4.5–
2.4.7.

Remark 2.4.12. It not very difficult to show that we can change matrix zI in
Theorem 2.4.1 by an arbitrary non-random matrix M with ||M|| ≤ K

√
n. Results

of the section 2.4.2 are based on Lemmas A.1.6 and A.1.7 which doesn’t depend
on shifts. It is easy to see that Statement 2.4.11 still holds true if we assume that
ε < n−Q for some Q > 0. Then we can reformulate Theorem 2.4.1 in the following
way: there exist some constants A,B > 0 such that

P(sn(X + M) ≤ εn−A, ||X + M|| ≤ K
√
n) ≤ C(ρ)n−B.

2.5 Uniform integrability of logarithm

In this section we prove the next result

Theorem 2.5.1. Under the condition (C0) log(·) is uniformly integrable in proba-
bility with respect to {νn}n≥1.

Before we need several lemmas about the behavior of singular values.

Lemma 2.5.2. If the condition (C0) holds then there exists a constant K := K(ρ)

such that P(s1(X) ≥ K
√
n) = o(1).

Proof. Let us decompose the matrix X into the symmetric and skew-symmetric
matrices:

X =
X + XT

2
+

X−XT

2
= X1 + X2.

In [42, Theorem 2.3.23] it is proved that for some K1 >
√

2(1 + ρ)

P(s1(X1) ≥ K1

√
n) = o(1). (2.5.1)

and for some K2 >
√

2(1− ρ)

P(s1(X2) ≥ K2

√
n) = o(1) (2.5.2)
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Set K = 2 max(K1,K2). From (2.5.1), (2.5.2) and inequality

s1(X) ≤ s1(X1) + s1(X2)

we may conclude the following bound

P(s1(X) ≥ K
√
n) ≤ P

({
s1(X1) ≥ K

√
n

2

}
∪
{
s1(X2) ≥ K

√
n

2

})
≤ P

(
s1(X1) ≥ K

√
n

2

)
+ P

(
s1(X2) ≥ K

√
n

2

)
= o(1).

Lemma 2.5.3. If the condition (C0) holds then there exist c > 0 and 0 < γ < 1

such that a.s. for n� 1 and n1−γ ≤ i ≤ n− 1

sn−i(n
−1/2X− zI) ≥ c i

n
.

Proof. Set si := si(n
−1/2X − zI). Up to increasing γ, it is sufficient to prove the

statement for all 2(n− 1)1−γ ≤ i ≤ n− 1 for some γ ∈ (0, 1) to be chosen later. We
fix some 2(n − 1)1−γ ≤ i ≤ n − 1 and consider the matrix A′ formed by the first
m := n − di/2e rows of

√
nA. Let s′1 ≥ ... ≥ s′m be the singular values of A′. We

get
n−1/2s′n−i ≤ sn−i.

By Ri we denote the row of A′ and Hi = span(Rj , j = 1, ...,m, j 6= i). By
Lemma A.2.1 we obtain

s′−2
1 + ...+ s′−2

n−di/2e = dist−2
1 +...+ dist−2

n−di/2e .

We have

i

2n
s−2
n−i ≤

i

2
s′−2
n−i ≤

n−di/2e∑
j=n−i

s′−2
j ≤

n−di/2e∑
j=1

dist−2
j , (2.5.3)

where distj := dist(Rj , Hj). To estimate dist(Rj , Hj) we would like to apply
Lemma A.1.8, but we can’t do it directly, because Rj and Hj are not independent.
Let’s consider the case j = 1 only. To estimate the distance dist1 we decompose the
matrix A′ into the blocks

A′ =

(
a1,1 Y

X B

)
,

where X ∈ Rm−1, Y T ∈ Rn−1 and B is an m− 1 × n − 1 matrix formed by rows
B1, ..., Bm−1. We denote by H ′1 = span(B1, ..., Bm−1). From the definition of the
distance

dist(R1, H1) = inf
v∈H1

||R1 − v||2 ≥ inf
u∈H′

||Y − u||2 = dist(Y,H ′1)



2.5. Uniform integrability of logarithm 27

and
dim(H ′1) ≤ dim(H1) ≤ n− 1− i/2 ≤ n− 1− (n− 1)1−γ .

Now the vector Y and the hyperplane H ′1 are independent. Fixing realization of
H ′1, by Lemma A.1.8, with n,R,H replaced with n − 1, Y,H ′1 respectively, we can
obtain that

P(dist(Y,H ′1) ≤ 1

2

√
n− 1− dim(H ′1)) ≤ exp(−(n− 1)δ).

Using this inequality it is easy to show that

P

⋃
n�1

n−1⋃
i=d2(n−1)1−γe

n−di/2e⋃
j=1

{
dist(Rj , Hj) ≤

1

2

√
i

2

} <∞.

Now by the Borel-Cantelli lemma and (2.5.3) we can conclude the statement of the
lemma.

Proof of Theorem 2.5.1. To prove Theorem 2.5.1 we need to show that there exist
p, q > 0 such that

lim
t→∞

lim
n→∞

P
(∫ ∞

0
xpνn(dx) > t

)
= 0 (2.5.4)

and
lim
t→∞

lim
n→∞

P
(∫ ∞

0
x−qνn(dx) > t

)
= 0. (2.5.5)

By Lemma 2.5.2 there exists the set Ω0 := Ω0,n = {ω ∈ Ω : s1(X) ≤ Kn1/2} such
that

P(Ω0) = 1− o(1). (2.5.6)

We conclude (2.5.4) from (2.5.6) for p = 2.

We denote Ω1 := Ω1,n = {ω ∈ Ω : sn−i >
ci
n , n

1−γ ≤ i ≤ n− 1}. Let us consider the
set Ω2 := Ω2,n = Ω1∩{ω : sn ≥ n−B−1/2}, where B > 0. We decompose probability
from (2.5.5) into two terms

P
(∫ ∞

0
x−qνn(dx) > t

)
= I1 + I2,

where

I1 := P
(∫ ∞

0
x−qνn(dx) > t,Ω2

)
,

I2 := P
(∫ ∞

0
x−qνn(dx) > t,Ωc

2

)
.

We can estimate I2 by

I2 ≤ P(sn(X−
√
nzI) ≤ n−A,Ω0) + P(Ωc

0) + P(Ωc
1).
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From Theorem 2.4.1 it follows that

P(sn(X−
√
nzI) ≤ n−B,Ω0) ≤ C(ρ)n−1/8. (2.5.7)

By Lemma 2.5.3
lim
n→∞

P(Ωc
1) = 0. (2.5.8)

From (2.5.6), (2.5.7) and (2.5.8) we conclude

lim
n→∞

I2 = 0.

To prove (2.5.5) it remains to bound I1. From the Markov inequality

I1 ≤
1

t
E
[∫ ∞

0
x−qνn(dx)I(Ω2)

]
.

By the definition of Ω2

E
[∫

x−qνn(dx)I(Ω2)

]
≤ 1

n

n−dn1−γe∑
i=1

s−qi +
1

n

n∑
i=n−dn1−γe+1

s−qi

≤ 2nq(B+1/2)−γ + c−q
1

n

n∑
i=1

(n
i

)q
≤ 2nq(B+1/2)−γ + c−q

∫ 1

0
s−qds.

If 0 < q < min(1, γ/(B + 1/2)) then the last integral is finite.

2.6 Convergence of singular values

Let Fn(x, z) be the empirical distribution function of the singular values s1 ≥ ... ≥ sn
of the matrix n−1/2X− zI which corresponds to the measure νn(z, ·).
In this section we prove the following theorem

Theorem 2.6.1. Assume that the condition (C0) holds true. There exists a non-
random distribution function F(x, z) such that for all continues and bounded func-
tions f(x), a.a. z ∈ C and all ε > 0

P
(∣∣∣∣∫

R
f(x)dFn(x, z)−

∫
R
f(x)dF(x, z)

∣∣∣∣ > ε

)
→ 0 as n→∞,

Proof. First we show that the family {F(z, x)}n≥1 is tight. From the strong law of
large numbers it follows that∫ ∞

0
x2dF(x, z) ≤ 1

n2

n∑
i,j=1

X2
ij → 1 as n→∞.

Using this and the fact that si(n−1/2X − zI) ≤ si(n
−1/2X) + |z| we conclude the

tightness of {Fn(z, x)}n≥1. If we show that Fn weakly converges in probability to
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some function F , then F will be distribution function.

Introduce the following 2n× 2n matrices

V =

(
On n−1/2X

n−1/2XT On

)
, J(z) =

(
On zI

zI On

)
(2.6.1)

where On denotes n× n matrix with zero entries. Consider the matrix

V(z) := V − J(z). (2.6.2)

It is well known that the eigenvalues of V(z) are the singular values of n−1/2X− zI
with signs ±.

It is easy to see that the empirical distribution function Fn(x, z) of eigenvalues of
the matrix V(z) can be written in the following way

Fn(x, z) =
1

2n

n∑
i=1

I{si ≤ x}+
1

2n

n∑
i=1

I{−si ≤ x}. (2.6.3)

There is one to one correspondence between Fn(x, z) and Fn(x, z)

Fn(x, z) =
1 + sgn(x)Fn(|x|, z)

2

Hence it is enough to show that there exists a non-random distribution function
F (x, z) such that for all continues and bounded functions f(x), and a.a. z ∈ C

P
(∣∣∣∣∫

R
f(x)dFn(x, z)−

∫
R
f(x)dF (x, z)

∣∣∣∣ > ε

)
→ 0 as n→∞. (2.6.4)

We denote the Stieltjes transforms of Fn and F by Sn(x, z) and S(x, z) respectively.
Due to the relations between distribution functions and Stieltjes transforms, see
Theorem B.2.3, (2.6.4) will follow from

P(|Sn(α, z)− S(α, z)| > ε)→ 0 as n→∞, (2.6.5)

for a.a. z ∈ C and all α ∈ C+.
Set

R(α, z) := (V(z)− αI2n)−1. (2.6.6)

By definition Sn(α, z) = 1
2n TrR(α, z). We introduce the following function

sn(α, z) := ESn(α, z) =
1

2n

2n∑
i=1

E[R(α, z)]ii,

One can show that

sn(α, z) =
1

n

n∑
i=1

E[R(α, z)]ii =
1

n

2n∑
i=n+1

E[R(α, z)]ii
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We also denote s(α, z) := S(α, z). By the Chebyshev inequality and Lemma 2.8.1
it is straightforward to check that

|sn(α, z)− s(α, z)| → 0 as n→∞. (2.6.7)

implies (2.6.5).

By the resolvent equality we may write

1 + αsn(α, z) =
1

2n
ETr(VR(α, z))− ztn(α, z)− zun(α, z).

Introduce the notation
A :=

1

2n
ETr(VR)

and represent A as follows

A =
1

2
A1 +

1

2
A2,

where

A1 =
1

n

n∑
i=1

E[VR]ii, A2 =
1

n

n∑
i=1

E[VR]i+n,i+n.

First we consider A1. By definition of the matrix V, we have

A1 =
1

n3/2

n∑
j,k=1

EXjkRk+n,j .

Note that

∂R

∂Xjk
= − 1√

n
R[eje

T
k+n]R,

where we denote by ei the column vector with 1 in position i and zeros in the other
positions. Applying Lemma 2.8.3 we obtain

A1 = B1 + B2 + B3 + B4 + rn(α, z).

where

B1 = − 1

n2

n∑
j,k=1

E[R[eje
T
k+n]R]k+n,j = − 1

n2

n∑
j,k=1

E(Rk+n,j)
2

B2 = − 1

n2

n∑
j,k=1

E[R[ek+ne
T
j ]R]k+n,j = − 1

n2

n∑
j,k=1

ERjjRk+n,k+n

B3 = − ρ

n2

n∑
j,k=1

E[R[eke
T
j+n]R]k+n,j = − ρ

n2

n∑
j,k=1

ERk+n,kRj+n,j

B4 = − ρ

n2

n∑
j,k=1

E[R[ej+ne
T
k ]R]k+n,j = − ρ

n2

n∑
j,k=1

ERkjRk+n,j+n.
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Without loss of generality we shall assume from now on that EX2
11 = 1 because the

impact of the diagonal is of order O(n−1).

From ||R||HS ≤
√
n||R|| ≤

√
nv−1 it follows

|B1| ≤
1

n2

n∑
j,k=1

EX2
jkE(Rk+n,j)

2 ≤ 1

nv2
.

Similarly we get

|B4| ≤
1

v2n
.

By Lemma 2.8.1 B2 = −s2
n(α, z)+ε(α, z). By Lemma 2.8.2 B3 = −ρt2n(α, z)+ε(α, z).

We obtain that
A1 = −s2

n(α, z)− ρt2n(α, z) + δn(α, z).

Now we consider the term A2. By definition of the matrix V, we have

A2 =
1

n3/2

n∑
j,k=1

EXjkRj,k+n.

By Lemma 2.8.3 we may write expansion

A2 = C1 + C2 + C3 + C4 + rn(α, z). (2.6.8)

where

C1 = − 1

n2

n∑
j,k=1

E[R[eje
T
k+n]R]j,k+n = − 1

n2

n∑
j,k=1

ERjjRk+n,k+n

C2 = − 1

n2

n∑
j,k=1

E[R[ek+ne
T
j ]R]j,k+n = − 1

n2

n∑
j,k=1

E(Rj,k+n)2

C3 = − ρ

n2

n∑
j,k=1

E[R[eke
T
j+n]R]j,k+n = − ρ

n2

n∑
j,k=1

ERjkRj+n,k+n

C4 = − ρ

n2

n∑
j,k=1

E[R[ej+ne
T
k ]R]j,k+n = − ρ

n2

n∑
j,k=1

ERj,j+nRk,k+n.

It is easy to show that

|C2| ≤
1

v2n
, |C3| ≤

1

v2n
.

By Lemma 2.8.1 C1 = −s2
n(α, z) + εn(α, z). By Lemma 2.8.2 C4 = −ρu2

n(α, z) +

εn(α, z). We obtain that

A2 = −s2
n(α, z)− ρu2

n(α, z) + δn(α, z).

Finally we get

A = −s2
n(α, z)− ρ

2
t2n(α, z)− ρ

2
u2
n(α, z) + εn(α, z).



32 Chapter 2. Elliptic law for random matrices

Now we will investigate the term ztn(α, z) which we may represent as follows

αtn(α, z) =
1

n

n∑
j=1

E[V(z)R]j+n,j =
1

n

n∑
j=1

E[VR]j+n,j − zsn(α, z).

By definition of the matrix V, we have

αtn(α, z) =
1

n3/2

n∑
j,k=1

EXjkRj,k − zsn(α, z) =

D1 + D2 + D3 + D4 − zsn(α, z) + rn(α, z),

where

D1 = − 1

n2

n∑
j,k=1

E[R[eje
T
k+n]R]j,k = − 1

n2

n∑
j,k=1

ERj,jRk+n,k

D2 = − 1

n2

n∑
j,k=1

E[R[ek+ne
T
j ]R]j,k = − 1

n2

n∑
j,k=1

ERj,k+nRj,k

D3 = − ρ

n2

n∑
j,k=1

E[R[eke
T
j+n]R]j,k = − ρ

n2

n∑
j,k=1

ERj,kRj+n,k

D4 = − ρ

n2

n∑
j,k=1

E[R[ej+ne
T
k ]R]j,k = − ρ

n2

n∑
j,k=1

ERj,j+nRk,k.

By the similar arguments as before we can prove that

|D2| ≤
1

v2n
, |D3| ≤

1

v2n

and D1 = −sn(α, z)tn(α, z) + εn(α, z), D4 = −ρsn(α, z)un(α, z) + εn(α, z). We
obtain that

αtn(α, z) = −sn(α, z)tn(α, z)− ρsn(α, z)un(α, z)− zsn(α, z) + δn(α, z).

Similar we can prove that

αun(α, z) = −sn(α, z)un(α, z)− ρsn(α, z)tn(α, z)− zsn(α, z) + δn(α, z).

Finally we have the system of equations

1 + αsn(α, z) + s2
n(α, z) = (2.6.9)

− ρ

2
t2n(α, z)− z

2
tn(α, z)− ρ

2
u2
n(α, z)− z

2
un(α, z) + δn(α, z)

αtn(α, z) = (2.6.10)

− sn(α, z)tn(α, z)− ρsn(α, z)un(α, z)− zsn(α, z) + δn(α, z)

αun(α, z) = (2.6.11)

− sn(α, z)un(α, z)− ρsn(α, z)tn(α, z)− zsn(α, z) + δn(α, z).
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It follows from (2.6.10) and (2.6.11) that

(α+ sn)(ztn + ρt2n) = −sn(zρun + zρt)− ρ2sntnun − |z|2sn + δn(α, z)

(α+ sn)(zun + ρu2
n) = −sn(zρun + zρt)− ρ2sntnun − |z|2sn + δn(α, z).

Hence, we can rewrite (2.6.9)

1 + αsn(α, z) + s2
n(α, z) + ρ2t2n(α, z) + ztn(α, z) = δn(α, z). (2.6.12)

From equations (2.6.10) and (2.6.11) we can write the equation for tn(
α+ sn −

|ρ|2s2
n

α+ sn

)
tn =

ρzs2
n

α+ sn
− zsn + δn(α, z). (2.6.13)

Let us denote

∆ =

(
α+ sn −

|ρ|2s2
n

α+ sn

)
.

After simple calculations we get

(α+ sn)(ztn + ρt2n) =

− sn
(

2ρ2|z|2s2
n

(α+ sn)∆
− z2ρsn

∆
− z2ρsn

∆

)
− |ρ|2sn

(
ρzs2

n

(α+ s)∆
− zsn

∆

)(
ρzs2

n

(α+ s)∆
− zsn

∆

)
− |z|2sn + δn(α, z).

Let us denote yn := sn and wn := α + (ρt2n + ztn)/yn. We can rewrite the equa-
tions (2.6.9), (2.6.10) and (2.6.11) in the following way

1 + wnyn + y2
n = δn(α, z) (2.6.14)

wn = α+
ρt2n + ztn

yn
(2.6.15)

(α+ yn)(ztn + ρt2n) = (2.6.16)

− yn
(

2ρ2|z|2y2
n

(α+ yn)∆
− z2ρyn

∆
− z2ρyn

∆

)
− |z|2yn

− |ρ|2yn
(

ρzy2
n

(α+ yn)∆
− zyn

∆

)(
ρzy2

n

(α+ yn)∆
− zyn

∆

)
+ δn(α, z).

Remark 2.6.2. If ρ = 0 then we can rewrite (2.6.14), (2.6.15), and (2.6.16)

1 + wnyn + y2
n = δn(α, z)

wn = α+
ztn
yn

(wn − α) + (wn − α)2yn − |z|2yn = δn(α, z).

This equations determine the circular law, see [24].
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Figure 2.1: Empirical density of the eigenvalues of the matrix V for n = 2000.
entries are Gaussian random variables. On the left ρ = 0 (Circular law case). On
the right ρ = 0.5 (Elliptic law case).

We can see that the first equation (2.6.14) doesn’t depend on ρ. Hence the first
equation will be the same for all models of random matrices described in the
introduction. On the Figure 2.1 we draw the distribution of eigenvalues of the
matrix V for ρ = 0 (Circular law case) and ρ = 0.5 (Elliptic law case).

Now we prove the convergence of sn to some limit s0. Let α = u + iv, v > 0.
Using (2.6.12) we write

α(sn − sm) = −(sn − sm)(sn + sm)− ρ2(tn − tm)(tn + tm)− z(tm − tm) + εn,m.

By the triangle inequality and the fact that |sn| ≤ v−1

|sn − sm| ≤
2|sn − sm|

v2
+
ρ2|tn − tm||tn + tm|

v
+
|z||tn − tm|

v
+
|εn,m|
v

. (2.6.17)

From (2.6.13) it follows that

((α+ sn)2 − ρ2s2
n)tn = ρzs2

n − zαsn − zs2
n + εn.

We denote ∆n := ((α+ sn)2 − ρ2s2
n). Again by the triangle inequality

|∆m||tn − tm| ≤ |tm||∆n −∆m| (2.6.18)

+
2|ρ||sn − sm|+ 2|z||sn − sm|

v
+ |z||α||sn − sm|+ |εn,m|.

We can find the lower bound for |∆m|:

|∆m| = |α+ (1− ρ)sm||α+ (1 + ρ)sm| (2.6.19)

≥ Im(α+ (1− ρ)sm) Im(α+ (1 + ρ)sm) ≥ v2,

where we have used the fact that Im sm ≥ 0. From definition of ∆n it is easy to see
that

|∆n −∆m| ≤ 2|α||sn − sm|+
2(1 + ρ2)|sn − sm|

v
. (2.6.20)
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We can take |u| ≤ C, then |α| ≤ v+C. From (2.6.17),(2.6.18),(2.6.19) and (2.6.20)
it follows that there exists constant C ′, which depends on ρ, C, z, such that

|sn − sm| ≤
C ′

v
|sn − sm|+ |ε′n,m(α, z)|.

We can find v0 such that
C ′

v
< 1 for all v ≥ v0.

Since ε′n,m(α, z) converges to zero uniformly for all v ≥ v0, |u| ≤ C and sn, sm
are locally bounded analytic functions in the upper half-plane we may conclude by
Montel’s Theorem (see [11, Theorem 2.9]) that there exists an analytic function s in
the upper half-plane such that lim sn = s. Since sn are Nevanlinna functions, (that
is analytic functions mapping the upper half-plane into itself) s will be a Nevanlinna
function too and there exists non-random distribution function F (z, x) such that

s(α, z) =

∫
dF (z, x)

x− α
.

The function s satisfies the equations (2.6.14), (2.6.15), and (2.6.16).

2.7 Lindeberg’s universality principe

It this section we will work with the random matrices X which satisfy the following
conditions (C1):
a) Pairs (Xij , Xji), i 6= j are independent random vectors;
b) EXij = EXji = 0,EX2

ij = EX2
ji = 1;

c) E(XijXji) = ρ, |ρ| ≤ 1;
d) The diagonal entries Xii are independent of off-diagonal entries, EXii = 0 and
EX2

ii <∞;
e) For all fixed τ > 0 Lindeberg’s condition holds

Ln(τ) :=
1

n2

n∑
i,j=1

E|Xij |2I(|Xij | ≥ τ
√
n)→ 0 as n→∞. (2.7.1)

Remark 2.7.1. It is easy to see that the condition (C1) follows from the condition
(C0).

Let Fn(x, z) be the empirical distribution function of the singular values
s1 ≥ ... ≥ sn of the matrix n−1/2X− zI which corresponds to the measure νn(z, ·).
Similar we define the function Gn(x, z) if the matrix X satisfies (C1) and has
Gaussian elements.

We prove the following theorem.
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Theorem 2.7.2. Under the condition (C1) for all continues and bounded functions
f(x), a.a. z ∈ C and all ε > 0

P
(∣∣∣∣∫

R
f(x)dFn(x, z)−

∫
R
f(x)dGn(x, z)

∣∣∣∣ > ε

)
→ 0 as n→∞.

Let us introduce the matrices V,J(z),V(z) by formulas (2.6.1), (2.6.2) and the
empirical distribution function Fn(x, z) of the matrix V(z) by the formula (2.6.3).
Similarly we define Gn(x, z). Due to one to one correspondence between Fn(x, z)

and Fn(x, z) it is enough to show that for all continues and bounded functions f(x),
and a.a. z ∈ C

P
(∣∣∣∣∫

R
f(x)dFn(x, z)−

∫
R
f(x)dGn(x, z)

∣∣∣∣ > ε

)
→ 0 as n→∞. (2.7.2)

We denote the Stieltjes transforms of Fn and Gn by Sn(x, z) and Ŝn(x, z) respec-
tively. Due to the relations between distribution functions and Stieltjes trans-
forms, (2.7.2) will follow from

P(|Sn(α, z)− Ŝn(α, z)| > ε)→ 0 as n→∞, (2.7.3)

for a.a. z ∈ C and all α ∈ C+.
Set

R(α, z) := (V(z)− αI2n)−1.

By definition Sn(α, z) = 1
2n TrR(α, z). We introduce the following function

sn(α, z) := ESn(α, z) =
1

2n

2n∑
i=1

E[R(α, z)]ii,

Similarly we can define ŝn(α, z). One can show that

sn(α, z) =
1

n

n∑
i=1

E[R(α, z)]ii =
1

n

2n∑
i=n+1

E[R(α, z)]ii

By the Chebyshev inequality and Lemma 2.8.1 it is straightforward to check that

|sn(α, z)− ŝn(α, z)| → 0 as n→∞. (2.7.4)

implies (2.7.3).

We divide the proof of (2.7.4) into the two subsections 2.7.1 and 2.7.2.

Note that we can substitute τ in (2.7.1) by a decreasing sequence τn tending to zero
such that:

Ln(τn)→ 0 as n→∞, (2.7.5)

and limn→∞ τn
√
n =∞.
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2.7.1 Truncation

In this section we truncate and centralize the elements of the matrix X. We de-
fine the matrices X(c) = [XijI(|Xij | ≤ τn

√
n)]

n
i,j=1 and V(c) replacing X by X(c)

in (2.6.1). Denote the empirical distribution function of eigenvalues of V(c)(z) by
F

(c)
n (x, z). Due to [4, Theorem A.43] the uniform distance between the empirical

distribution functions Fn(x, z) and F (c)
n (x, z) can be estimated by

sup
x
|Fn(x, z)− F (c)

n (x, z)| ≤ 1

2n
Rank(V(z)−V(c)(z)).

The right hand side can be bounded by

min

1,
1

n

∑
i≤j

I(|Xij | ≥ τn
√
n)

 .

Denote ξn := 1
n

∑
i≤j I(|Xij | ≥ τn

√
n). It is easy to see that

Eξn ≤
1

τ2
nn

2

∑
i≤j

EX2
ijI(|Xij | ≥ τn

√
n)→ 0 (2.7.6)

and
E(ξn − Eξn)2 ≤ 1

n3τ2
n

∑
i≤j

EX2
ijI(|Xij | ≥ τn

√
n) = o

(
1

n

)
. (2.7.7)

By the Bernstein’s inequality

P(|ξn − Eξn| ≥ ε) ≤ 2 exp

(
− ε2n

nE(ξn − Eξn)2 + ε

)
.

By (2.7.6), (2.7.7) and the Borel-Cantelli Lemma we conclude that a.s.

sup
x
|Fn(x, z)− F (c)

n (x, z)| → 0 as n→∞.

Now we centralize the entries of X(c). Define the matrices X =
[
X

(c)
ij − EX(c)

ij

]n
i,j=1

and V replacing X by X in (2.6.1). Denote the empirical distribution function of
eigenvalues of V(z) by Fn(x, z).

Let L(F,G) be the Levy distance between the empirical distribution functions of
eigenvalues of matrices A and B. If A and B are normal matrices, then it is proved
in [4, Corollary A.41] that

L3(F,G) ≤ 1

n
Tr[(A−B)(A−B)∗], (2.7.8)

Using (2.7.8) we can write

L3(F (c)
n (x, z), Fn(x, z)) ≤ 1

2n
Tr[(V(c)(z)−V(z))(V(c)(z)−V(z))∗]

≤ 1

n2

∑
i≤j
|EXijI(|Xij | ≤ τ

√
n)|2 ≤ 1

n2

∑
i≤j

EX2
ijI(|Xij | ≥ τ

√
n)| → 0.
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In what follows assume from now that |Xij | ≤ τn
√
n, τn → 0 as n → ∞. We also

have that EXij = EXji = 0. One may also check that

1

n2

n∑
i,j=1

|EX2
ij − 1| ≤ 2Ln(τn). (2.7.9)

2.7.2 Universality of the spectrum of singular values

In this section we prove that one can substitute the matrix X which satisfies (C0) by
the matrix Y with Gaussian elements. Define the matrix Z(ϕ) = X cosϕ+ Y sinϕ

and introduce the following 2n× 2n matrix

V(ϕ) =

(
On n−1/2Z(ϕ)

n−1/2ZT (ϕ) On

)
,

where On denotes n× n matrix with zero entries. The matrix V(0) corresponds to
V from (2.6.1) and V(π/2) is

V(π/2) =

(
On n−1/2Y

n−1/2YT On

)
,

Consider the matrix
V(z, ϕ) := V(ϕ)− J(z).

Set
R(α, z, ϕ) := (V(z, ϕ)− αI2n)−1.

Introduce the following function

sn(α, z, ϕ) =
1

2n

2n∑
i=1

E[R(α, z, ϕ)]ii,

Note that sn(α, z, 0) and sn(α, z, π/2) are Stieltjes transforms of V(z, 0) and
V(z, π/2) respectively.
Obviously we have

sn(α, z,
π

2
)− sn(α, z, 0) =

∫ π
2

0

∂sn(α, z, ϕ)

∂ϕ
dϕ. (2.7.10)

To simplify the arguments we will omit arguments in the notations of matrices and
Stieltjes transforms. We have

∂V

∂ϕ
=

1√
n

n∑
i=1

n∑
j=1

∂Zij
∂ϕ

(eie
T
j+n + ej+ne

T
i ),
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where we denote by ei the column vector with 1 in the position i and zeros in the
other positions. We may rewrite the integrand in (2.7.10) in the following way

∂sn
∂ϕ

= − 1

2n
TrR

∂V

∂ϕ
R (2.7.11)

= − 1

2n3/2

n∑
i=1

n∑
j=1

TrR
∂Zij
∂ϕ

eie
T
j+nR

− 1

2n3/2

n∑
i=1

n∑
j=1

TrR
∂Zij
∂ϕ

ej+ne
T
i R

=
1

2n3/2

n∑
i=1

n∑
j=1

∂Zij
∂ϕ

uij +
1

2n3/2

n∑
i=1

n∑
j=1

∂Zij
∂ϕ

vij ,

where uij = −[R2]j+n,i and vij = −[R2]i,j+n. We estimate only the first term
in (2.7.11), which we denote by

A =
1

2n3/2

n∑
i=1

n∑
j=1

∂Zij
∂ϕ

uij .

For all 1 ≤ i ≤ j ≤ n introduce the random variables

ξij := Zij , ξ̂ij :=
∂Zij
∂ϕ

= − sinϕXij + cosϕYij ,

Using Taylor’s formula one may write

uij(ξij , ξji) = uij(0, 0) + ξij
∂uij
∂ξij

(0, 0) + ξji
∂uij
∂ξji

(0, 0)

+ Eθ(1− θ)ξ2
ij

∂2uij
∂ξ2

ij

(θξij , θξji)

+ 2Eθ(1− θ)ξijξji
∂2uij
∂ξij∂ξji

(θξij , θξji)

+ Eθ(1− θ)ξ2
ji

∂2uij
∂ξ2

ji

(θξij , θξji),

where θ has a uniform distribution on [0, 1] and is independent of (ξij , ξji). Multi-
plying both sides of the last equation by ξ̂ij and taking mathematical expectation
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on both sides we have

Eξ̂ijuij(ξij , ξji) = Eξ̂ijuij(0, 0)

+ Eξ̂ijξij
∂uij
∂ξij

(0, 0) + Eξ̂ijξji
∂uij
∂ξji

(0, 0)

+ E(1− θ)ξ̂ijξ2
ij

∂2uij
∂ξ2

ij

(θξij , θξji)

+ 2E(1− θ)ξ̂ijξijξji
∂2uij
∂ξij∂ξji

(θξij , θξji)

+ E(1− θ)ξ̂ijξ2
ji

∂2uij
∂ξ2

ji

(θξij , θξji).

It is easy to check that Eξ̂ijuij(0, 0) = 0.

Set

A1
ij := Eξ̂ijξij

∂uij
∂ξij

(0, 0), A2
ij := Eξ̂ijξji

∂uij
∂ξji

(0, 0),

A3
ij := E(1− θ)ξ̂ijξ2

ij

∂2uij
∂ξ2

ij

(θξij , θξji),

A4
ij := 2E(1− θ)ξ̂ijξijξji

∂2uij
∂ξij∂ξji

(θξij , θξji),

A5
ij := E(1− θ)ξ̂ijξ2

ji

∂2uij
∂ξ2

ji

(θξij , θξji).

We can rewrite the term A in the following way A = A1 + ...+ A5, where

Ak =
1

2n3/2

n∑
i,j=1

Akij ,

and k = 1, ..., 5.

We first estimate the term A1. The bound for the term A2 may be obtained in the
similar way. It is easy to see that

ξ̂ijξij = −1

2
sin 2ϕX2

ij + cos2 ϕXijYij − sin2 ϕXijYij +
1

2
sin 2ϕY 2

ij .

The random variable Yij and the vector (Xij , Xji) are independent. Using this fact
we conclude that

EXijYij
∂uij
∂ξij

(0, 0) = EYijEXijE
∂uij
∂ξij

(0, 0) = 0, (2.7.12)

EY 2
ij

∂uij
∂ξij

(0, 0) = E
∂uij
∂ξij

(0, 0), (2.7.13)

EX2
ij

∂uij
∂ξij

(0, 0) = EX2
ijE

∂uij
∂ξij

(0, 0). (2.7.14)



2.7. Lindeberg’s universality principe 41

A direct calculation shows that the derivative of uij = −[R2]ji is equal to

∂uij
∂ξij

=

[
R2 ∂Z

∂ξij
R

]
j+n,i

+

[
R
∂Z

∂ξij
R2

]
j+n,i

=
1√
n

[R2eie
T
j+nR]j+n,i +

1√
n

[R2ej+ne
T
i R]j+n,i

+
1√
n

[Reie
T
j+nR

2]j+n,i +
1√
n

[Rej+ne
T
i R

2]j+n,i

=
1√
n

[R2]j+n,i[R]j+n,i +
1√
n

[R2]j+n,j+n[R]ii

+
1√
n

[R]j+n,i[R
2]j+n,i +

1√
n

[R]j+n,j+n[R2]ii.

Using the obvious bound for the spectral norm of the matrix resolvent ||R|| ≤ v−1

we get ∣∣∣∣∂uij∂ξij

∣∣∣∣ ≤ C√
nv3

. (2.7.15)

From (2.7.12)–(2.7.15) and (2.7.9) we deduce

|A1| ≤
C

v3n2

n∑
i,j=1

|EX2
ij − 1| ≤ CLn(τn)

v3
.

Now we estimate the term A3. For the terms Ak, k = 4, 5 it is straightforward to
check that the same bounds hold. By the direct calculation on may show that the
second derivative of uij = −[R2]j+n,i is equal to

∂2uij
∂ξ2

ij

= −
[
R2 ∂V

∂ξij
R
∂V

∂ξij
R

]
j+n,i

−
[
R
∂V

∂ξij
R2 ∂V

∂ξij
R

]
j+n,i

−
[
R
∂V

∂ξij
R
∂V

∂ξij
R2

]
j+n,i

= T1 + T2 + T3.

Let’s expand the term T1

T1 = −
[
R2 ∂V

∂ξij
R
∂V

∂ξij
R

]
j+n,i

= T11 + T12 + T13 + T14, (2.7.16)

where we denote

T11 = − 1

n
[R2]j+n,i[R]j+n,i[R]j+n,i, T12 = − 1

n
[R2]j+n,i[R]j+n,j+n[R]ii,

T13 = − 1

n
[R2]j+n,j+n[R]ii[R]j+n,i, T14 = − 1

n
[R2]j+n,j+n[R]i,j+n[R]ii.

Using again the bound ||R|| ≤ v−1 we can show that

max(|T11|, |T12|, |T13|, |T14|) ≤
C

nv4
.
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From the expansion (2.7.16) and the bounds of T1i, i = 1, 2, 3, 4 we conclude that

|T1| ≤
C

nv4
.

Repeating the above arguments one can show that

max(|T2|, |T3|) ≤
C

nv4
.

Finally we have ∣∣∣∣∣∂2uij
∂ξ2

ij

(θξij , θξji)

∣∣∣∣∣ ≤ C

nv4
.

Using the fact that |ξij | ≤ τn
√
n we deduce the bound

|A3| ≤
Cτn
v4

.

From the bounds of Ak, k = 1, ..., 5, it immediately follows that

|sn(α, z,
π

2
)− sn(α, z, 0)| ≤ Cτn

v4
+
CLn(τn)

v3
.

We may turn τn to zero and conclude the statement of Theorem 2.7.2.

2.8 Some technical lemmas

Lemma 2.8.1. Under the condition (C0) for α = u+ iv, v > 0

E

∣∣∣∣∣ 1n
n∑
i=1

Rii(α, z)− E

(
1

n

n∑
i=1

Rii(α, z)

)∣∣∣∣∣
2

≤ C

nv2
.

Proof. To prove this lemma we will use Girko’s method. Let X(j) be the matrix X

with the j-th row and column removed. Define the matrices V(j) and V(j)(z) as
in (2.6.1) and R(j) by (2.6.6). It is easy to see that

Rank(V(z)−V(j)(z)) = Rank(VJ−V(j)J) ≤ 4.

Then

1

n
|Tr(V(z)−αI)−1−Tr(V(j)(z)−αI)−1| ≤ Rank(V(z)−V(j)(z))

nv
≤ 4

nv
. (2.8.1)

We introduce the family of σ-algebras Fi = σ{Xj,k, j, k > i} and conditional math-
ematical expectation Ei = E(·|Fi) with respect to this σ-algebras. We can write

1

n
TrR− 1

n
ETrR =

1

n

n∑
i=1

Ei TrR− Ei−1 TrR =
n∑
i=1

γi.
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The sequence (γi,Fi)i≥1 is a martingale difference. By (2.8.1)

|γi| =
1

n
|Ei(TrR− TrR(i))− Ei−1(TrR− TrR(i))| (2.8.2)

≤ |Ei(TrR− TrR(i))|+ |Ei−1(TrR− TrR(i))| ≤ C

vn
.

From the Burkholder inequality for martingale difference (see [38])

E

∣∣∣∣∣
n∑
i=1

γi

∣∣∣∣∣
2

≤ K2E

(
n∑
i=1

|γi|2
)

and (2.8.2) it follows

E

∣∣∣∣∣ 1n
n∑
i=1

Rii(α, z)− E

(
1

n

n∑
i=1

Rii(α, z)

)∣∣∣∣∣
2

≤ K2E(
n∑
i=1

|γi|2) ≤ K2
C

nv2
.

Lemma 2.8.2. Under the condition (C0) for α = u+ iv, v > 0

E

∣∣∣∣∣ 1n
n∑
i=1

Ri,i+n(α, z)− E

(
1

n

n∑
i=1

Ri,i+n(α, z)

)∣∣∣∣∣
2

≤ C

nv4
.

Proof. As in Lemma 2.8.1 we introduce the matrices V(j) and R(j). We have

VJ = V(j)J + eje
T
j VJ + VJeje

T
j + ej+ne

T
j+nVJ + VJej+ne

T
j+n

By the resolvent equality R−R(j) = −R(j)(V(z)−V(j)(z))R

1

n

n∑
k=1

(Rk,k+n −R
(j)
k,k+n) =

=
1

n

n∑
k=1

[R(j)(eje
T
j VJ + ej+ne

T
j+nVJ + VJeje

T
j + VJej+ne

T
j+n)R]k,k+n

= T1 + T2 + T3 + T4.

Let us consider the first term. The arguments for other terms are similar.

n∑
k=1

[R(j)eje
T
j VJR]k,k+n = TrR(j)eje

T
j+nVJR =

2n∑
i=1

[R(j)R]ij [eje
T
j+nVJ]ji.

From max(||R(j)||, ||R||) ≤ v−1 and the Hölder inequality it follows that

E

∣∣∣∣∣
n∑
k=1

[R(j)eje
T
j VJR]k,k+n

∣∣∣∣∣
2

≤ C

v4
.

By the similar arguments as in Lemma 2.8.1 we can conclude the statement of the
Lemma.



44 Chapter 2. Elliptic law for random matrices

Lemma 2.8.3. Under the condition (C0) for α = u+ iv, v > 0

1

n3/2

n∑
j,k=1

EXjkRk+n,j =

=
1

n2

n∑
j,k=1

E
[
∂R

∂Xjk

]
k+n,j

+
ρ

n2

n∑
j,k=1

E
[
∂R

∂Xkj

]
k+n,j

+ rn(α, z),

where
|rn(α, z)| ≤ C√

nv3
.

Proof. By Taylor’s formula

EXf(X,Y ) = f(0, 0)EX + f ′x(0, 0)EX2 + f ′y(0, 0)EXY (2.8.3)

+ E(1− θ)[X3f ′′xx(θX, θY ) + 2X2Y f ′′xy(θX, θY ) +XY 2f ′′yy(θX, θY )]

and

Ef ′x(X,Y ) = f ′x(0, 0) + E(1− θ)[Xf ′′xx(θX, θY ) + Y f ′′xy(θX, θY )] (2.8.4)

Ef ′y(X,Y ) = f ′y(0, 0) + E(1− θ)[Xf ′′xy(θX, θY ) + Y f ′′yy(θX, θY )],

where θ has a uniform distribution on [0, 1]. From (2.8.3) and (2.8.4) for j 6= k∣∣∣∣∣EXjkRk+n,j − E
[
∂R

∂Xjk

]
k+n,j

− ρE
[
∂R

∂Xkj

]
k+n,j

∣∣∣∣∣ ≤
≤ (|Xjk|3 + |Xjk|)

∣∣∣∣∣∣
[
∂2R

∂X2
jk

(θXjk, θXkj)

]
k+n,j

∣∣∣∣∣∣
+ (|Xkj |2|Xjk|+ |Xkj |)

∣∣∣∣∣∣
[
∂2R

∂X2
kj

(θXjk, θXkj)

]
k+n,j

∣∣∣∣∣∣
+ (2|Xjk|2|Xkj |+ |Xjk|+ |Xkj |)

∣∣∣∣∣
[

∂2R

∂Xjk∂Xkj
(θXjk, θXkj)

]
k+n,j

∣∣∣∣∣ .
Let us consider the first term in the sum. The bounds for the second and third
terms can be obtained by the similar arguments. We have

∂2R

∂X2
jk

=
1

n
R(eje

T
n+k + en+ke

T
j )R(eje

T
n+k + en+ke

T
j )R = P1 + P2 + P3 + P4,

where

P1 =
1

n
Reje

T
n+kReje

T
n+kR

P2 =
1

n
Reje

T
n+kRen+ke

T
j R

P3 =
1

n
Ren+ke

T
j Reje

T
n+kR

P4 =
1

n
Ren+ke

T
j Ren+ke

T
j R.
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From |Ri,j | ≤ v−1 it follows that

1

n5/2

n∑
j,k=1

E|Xjk|α|[Pi]n+k,j | ≤
C√
nv3

for α = 1, 3 and i = 1, ..., 4.

For j = k

1

n2

∣∣∣∣∣∣
n∑
j=1

E
[
∂R

∂Xjj

]
j+n,j

∣∣∣∣∣∣ =
1

n2

n∑
j=1

(ER2
j+n,j + E|Rj,jRj+n,j+n|) ≤

C

nv2
.

Hence we can add this term to the sum

ρ

n2

n∑
j,k=1
j 6=k

E
[
∂R

∂Xkj

]
k+n,j

.





Chapter 3

Semicircle law for a class of
random matrices with dependent

entries

In this chapter we study ensembles of random symmetric matrices and consider
symmetric matrices Xn = {Xij}ni,j=1 with a random field type dependence, such
that EXij = 0, EX2

ij = σ2
ij , where σij may be different numbers. Assuming that

the average of the normalized sums of variances in each row converges to one and
Lindeberg condition holds true we prove that the empirical spectral distribution of
eigenvalues converges to Wigner’s semicircle law.

3.1 Introduction

Let Xjk, 1 ≤ j ≤ k < ∞, be triangular array of random variables with EXjk = 0

and EX2
jk = σ2

jk, and let Xjk = Xkj for 1 ≤ j < k < ∞. We consider the random
matrix

Xn = {Xjk}nj,k=1.

Denote by λ1 ≤ ... ≤ λn eigenvalues of matrix n−1/2Xn and define its spectral
distribution function by

FXn(x) =
1

n

n∑
i=1

I(λi ≤ x),

where I(B) denotes the indicator of an event B. We set FXn(x) := EFXn(x). Let
g(x) and G(x) denote the density and the distribution function of the standard
semicircle law

g(x) =
1

2π

√
4− x2I(|x| ≤ 2), G(x) =

∫ x

−∞
g(u)du.

Introduce the σ-algebras

F(i,j) := σ{Xkl : 1 ≤ k ≤ l ≤ n, (k, l) 6= (i, j)}, 1 ≤ i ≤ j ≤ n.

For any τ > 0 we introduce Lindeberg’s ratio for random matrices as

Ln(τ) :=
1

n2

n∑
i,j=1

E|Xij |2I(|Xij | ≥ τ
√
n).
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We assume that the following conditions hold

E(Xij |F(i,j)) = 0; (3.1.1)

1

n2

n∑
i,j=1

E|E(X2
ij |F(i,j))− σ2

ij | → 0 as n→∞; (3.1.2)

for any fixed τ > 0 Ln(τ)→ 0 as n→∞. (3.1.3)

Furthermore, we will use condition (3.1.3) not only for the matrix Xn, but for
other matrices as well, replacing Xij in the definition of Lindeberg’s ratio by
corresponding elements.

For all 1 ≤ i ≤ n let B2
i := 1

n

∑n
j=1 σ

2
ij . We need to impose additional conditions

on the variances σ2
ij given by

1

n

n∑
i=1

|B2
i − 1| → 0 as n→∞; (3.1.4)

max
1≤i≤n

Bi ≤ C, (3.1.5)

where C is some absolute constant.

Remark 3.1.1. It is easy to see that the conditions (3.1.4) and (3.1.5) follow from
the following condition

max
1≤i≤n

∣∣B2
i − 1

∣∣→ 0 as n→∞. (3.1.6)

The main result of the paper is the following theorem

Theorem 3.1.2. Let Xn satisfy conditions (3.1.1)–(3.1.5). Then

sup
x
|FXn(x)−G(x)| → 0 as n→∞.

Let us fix i, j. It is easy to see that for all (k, l) 6= (i, j)

EXijXkl = EE(XijXkl|F(i,j))) = EXklE(Xij |F(i,j)) = 0.

Hence the elements of the matrix Xn are uncorrelated. If we additionally assume
that the elements of the matrix Xn are independent random variables then condi-
tions (3.1.1) and (3.1.2) are automatically satisfied. The following Theorem 3.1.2
follows immediately in the case when the matrix Xn has independent entries.

Theorem 3.1.3. Assume that the elements Xij of the matrix Xn are independent
for all 1 ≤ i ≤ j ≤ n and EXij = 0, EX2

ij = σ2
ij. Assume that Xn satisfies

conditions (3.1.3)–(3.1.5). Then

sup
x
|FXn(x)−G(x)| → 0 as n→∞.
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Figure 3.1: Spectrum of matrix Xn.

The following example illustrates that without condition (3.1.4) convergence to
Wigner’s semicircle law doesn’t hold.

Example 3.1.4. Let Xn denote a block matrix

Xn =

(
A B

BT D

)
,

where A ism×m symmetric random matrix with Gaussian elements with zero mean
and unit variance, B is m × (n −m) random matrix with i.i.d. Gaussian elements
with zero mean and unit variance. Furthermore, letD be a (n−m)×(n−m) diagonal
matrix with Gaussian random variables on the diagonal with zero mean and unit
variance. If we set m := n/2 then it is not difficult to check that condition (3.1.4)
doesn’t hold. We simulated the spectrum of the matrix Xn and illustrated a limiting
distribution on Figure 3.1.

Remark 3.1.5. We conjecture that Theorem 3.1.2 (Theorem 3.1.3 respectively)
holds without assumption (3.1.5).

Define the Levy distance between the distribution functions F1 and F2 by

L(F1, F2) = inf{ε > 0 : F1(x− ε)− ε ≤ F2(x) ≤ F1(x+ ε) + ε}.

The following theorem formulates Lindeberg’s universality scheme for random ma-
trices.

Theorem 3.1.6. Let Xn,Yn denote independent symmetric random matrices with
EXij = EYij = 0 and EX2

ij = EY 2
ij = σ2

ij. Suppose that the matrix Xn satisfies
conditions (3.1.1)–(3.1.4), and the matrix Yn has independent Gaussian elements.
Additionally assume that for the matrix Yn conditions (3.1.3) and (3.1.4) hold.
Then

L(FXn(x), FYn(x))→ 0 as n→∞.
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In view of Theorem 3.1.6 to prove Theorem 3.1.2 it remains to show convergence to
semicircle law in the Gaussian case.

Theorem 3.1.7. Assume that the entries Yij of the matrix Yn are independent
for all 1 ≤ i ≤ j ≤ n and have Gaussian distribution with EYij = 0, EY 2

ij = σ2
ij.

Assume that conditions (3.1.3)–(3.1.5) are satisfied. Then

sup
x
|FYn(x)−G(x)| → 0 as n→∞.

Remark 3.1.8. For related ensembles of random covariance matrices it is well
known that spectral distribution function of eigenvalues converges to the Marchenko–
Pastur law. In this case Götze and Tikhomirov in [23] received similar results to [25].
Recently Adamczak, [1], proved the Marchenko–Pastur law for matrices with mar-
tingale structure. He assumed that the matrix elements have moments of all orders
and imposed conditions similar to (3.1.4). Another class of random matrices with
dependent entries was considered in [33] by O’Rourke.

From now on we shall omit the index n in the notation for random matrices.

3.2 Proof of Theorem 3.1.6

We denote the Stieltjes transforms of FX and FY by SX(z) and SY(z) respectively.
Due to the relations between distribution functions and Stieltjes transforms, the
statement of Theorem 3.1.6 will follow from

|SX(z)− SY(z)| → 0 as n→∞. (3.2.1)

Set

RX(z) :=

(
1√
n
X− zI

)−1

and RY(z) :=

(
1√
n
Y − zI

)−1

.

By definition

SX(z) =
1

n
TrERX(z) and SY(z) =

1

n
TrERY(z).

We divide the proof of (3.2.1) into the two subsections 3.2.1 and 3.2.2.

Note that we can substitute τ in (3.1.3) by a decreasing sequence τn tending to zero
such that

Ln(τn)→ 0 as n→∞. (3.2.2)

and limn→∞ τn
√
n =∞.
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3.2.1 Truncation of random variables

In this section we truncate the elements of the matrices X and Y. Let us omit the
indices X and Y in the notations of the resolvent and the Stieltjes transforms.

Consider some symmetric n× n matrix D. Put X̃ = X + D. Let

R̃ =

(
1√
n
X̃− zI

)−1

.

Lemma 3.2.1.
|TrR− Tr R̃| ≤ 1

v2
(TrD2)

1
2 .

Proof. By the resolvent equation

R = R̃− 1√
n
RDR̃. (3.2.3)

For resolvent matrices we have, for z = u+ iv, v > 0,

max{||R||, ||R̃||} ≤ 1

v
. (3.2.4)

Using (3.2.3) and (3.2.4) it is easy to show that

|TrR− Tr R̃| = 1√
n
|TrRDR̃| ≤ 1

v2
(TrD2)

1
2 .

We split the matrix entries as X = X̂ + X̌, where X̂ := XI(|X| < τn
√
n) and

X̌ := XI(|X| ≥ τn
√
n). Define the matrix X̂ = {X̂ij}ni,j=1. Let

R̂(z) :=

(
1√
n
X̂− zI

)−1

and Ŝ(z) =
1

n
ETr R̂(z).

By Lemma 3.2.1

|S(z)− Ŝ(z)| ≤ 1

v2

 1

n2

n∑
i,j=1

EX2
ijI(|Xij | ≥ τn

√
n)

1/2

= v−2L
1
2
n (τn).

From (3.2.2) we conclude that

|S(z)− Ŝ(z)| → 0 as n→∞.

Introduce the centralized random variables Xij = X̂ij−E(X̂ij |F(i,j)) and the matrix
X = {Xij}ni,j=1. Let

R(z) :=

(
1√
n
X− zI

)−1

and S(z) =
1

n
ETrR(z).
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Again by Lemma 3.2.1

|Ŝ(z)− S(z)| ≤ 1

v2

 1

n2

n∑
i,j=1

EX2
ijI(|Xij | ≥ τn

√
n)

1/2

= v−2L
1
2
n (τn).

In view of (3.2.2) the right hand side tends to zero as n→∞.

Now we show that (3.1.2) will hold if we replace X by X. For all 1 ≤ i ≤ j ≤ n

E(X
2
ij |F(i,j))− σ2

ij

= E(X
2
ij |F(i,j))− E(X̂2

ij |F(i,j))− E(X̌2
ij |F(i,j)) + E(X2

ij |F(i,j))− σ2
ij .

By the triangle inequality and (3.1.2), (3.2.2)

1

n2

n∑
i,j=1

E|E(X
2
ij |F(i,j))− σ2

ij | (3.2.5)

≤ 1

n2

n∑
i,j=1

E|E(X2
ij |F(i,j))− σ2

ij |+ 2Ln(τn)→ 0 as n→∞.

It is also not very difficult to check that condition (3.1.4) holds true for the matrix
X replaced by X.
Similarly, one may truncate the elements of the matrix Y and consider the matrix
Y with the entries YijI(|Yij | ≤ τn

√
n). Then one may check that

1

n2

n∑
i,j=1

|EY 2
ij − σ2

ij | → 0 as n→∞. (3.2.6)

In what follows assume from now on that |Xij | ≤ τn
√
n and |Yij | ≤ τn

√
n. We shall

write X,Y instead of X and Y respectively.
In what follows assume from now on that |Xij | ≤ τn

√
n and |Yij | ≤ τn

√
n.

3.2.2 Universality of the spectrum of eigenvalues

To prove (3.2.1) we will use a method introduced in [5]. Define the matrix Z :=

Z(ϕ) := X cosϕ + Y sinϕ. It is easy to see that Z(0) = X and Z(π/2) = Y. Set
W := W(ϕ) := n−1/2Z and

R(z, ϕ) := (W − zI)−1.

Introduce the Stieltjes transform

S(z, ϕ) :=
1

n

n∑
i=1

E[R(z, ϕ)]ii.

Note that S(z, 0) and S(z, π/2) are the Stieltjes transforms SX(z) and SY(z) re-
spectively.
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Obviously we have

S(z,
π

2
)− S(z, 0) =

∫ π
2

0

∂S(z, ϕ)

∂ϕ
dϕ. (3.2.7)

To simplify the arguments we will omit arguments in the notations of matrices and
Stieltjes transforms. We have

∂W

∂ϕ
=

1√
n

n∑
i=1

n∑
j=1

∂Zij
∂ϕ

eie
T
j ,

where we denote by ei the column vector with 1 in position i and zeros in the other
positions. We may rewrite the integrand in (3.2.7) in the following way

∂S

∂ϕ
= − 1

n
ETrR

∂W

∂ϕ
R (3.2.8)

= − 1

n3/2

n∑
i=1

n∑
j=1

ETrR
∂Zij
∂ϕ

eie
T
j R

=
1

n3/2

n∑
i=1

n∑
j=1

E
∂Zij
∂ϕ

uij ,

where uij = −[R2]ji.
For all 1 ≤ i ≤ j ≤ n introduce the random variables

ξij := Zij , ξ̂ij :=
∂Zij
∂ϕ

= − sinϕXij + cosϕYij ,

and the sets of random variables

ξ(ij) := {ξkl : 1 ≤ k ≤ l ≤ n, (k, l) 6= (i, j)}.

Using Taylor’s formula one may write

uij(ξij , ξ
(ij)) = uij(0, ξ

(ij)) + ξij
∂uij
∂ξij

(0, ξ(ij)) + Eθθ(1− θ)ξ2
ij

∂2uij
∂ξ2

ij

(θξij , ξ
(ij)),

where θ has a uniform distribution on [0, 1] and is independent of (ξij , ξ
(ij)). Mul-

tiplying both sides of the last equation by ξ̂ij and taking mathematical expectation
on both sides we have

Eξ̂ijuij(ξij , ξ(ij)) = Eξ̂ijuij(0, ξ(ij)) + Eξ̂ijξij
∂uij
∂ξij

(0, ξ(ij)) (3.2.9)

+ Eθ(1− θ)ξ̂ijξ2
ij

∂2uij
∂ξ2

ij

(θξij , ξ
(ij)).

By independence of Yij and ξ(ij) we get

EYijuij(0, ξ(ij)) = EYijEuij(0, ξ(ij)) = 0. (3.2.10)
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By the properties of conditional expectation and condition (3.1.1)

EXijuij(0, ξ
(ij)) = Euij(0, ξ(ij))E(Xij |F(i,j)) = 0. (3.2.11)

By (3.2.9), (3.2.10) and (3.2.11) we can rewrite (3.2.8) in the following way

∂S

∂ϕ
=

1

n2

n∑
i,j=1

Eξ̂ijξij
∂uij
∂ξij

(0, ξ(ij)) +
1

n2

n∑
i,j=1

Eθ(1− θ)ξ̂ijξ2
ij

∂2uij
∂ξ2

ij

(θξij , ξ
(ij))

= A1 + A2.

It is easy to see that

ξ̂ijξij = −1

2
sin 2ϕX2

ij + cos2 ϕXijYij − sin2 ϕXijYij +
1

2
sin 2ϕY 2

ij .

The random variables Yij are independent of Xij and ξ(ij). Using this fact we
conclude that

EXijYij
∂uij
∂ξij

(0, ξ(ij)) = EYijEXij
∂uij
∂ξij

(0, ξ(ij)) = 0, (3.2.12)

EY 2
ij

∂uij
∂ξij

(0, ξ(ij)) = σ2
ijE

∂uij
∂ξij

(0, ξ(ij)). (3.2.13)

By the properties of conditional mathematical expectation we get

EX2
ij

∂uij
∂ξij

(0, ξ(ij)) = E
∂uij
∂ξij

(0, ξ(ij))E(X2
ij |F(i,j)). (3.2.14)

A direct calculation shows that the derivative of uij = −[R2]ji is equal to

∂uij
∂ξij

=

[
R2 ∂Z

∂ξij
R

]
ji

+

[
R
∂Z

∂ξij
R2

]
ji

=
1√
n

[R2eie
T
j R]ji +

1√
n

[R2eje
T
i R]ji +

1√
n

[Reie
T
j R

2]ji +
1√
n

[Reje
T
i R

2]ji

=
1√
n

[R2]ji[R]ji +
1√
n

[R2]jj [R]ii +
1√
n

[R]ji[R
2]ji +

1√
n

[R]jj [R
2]ii.

Using the obvious bound for the spectral norm of the matrix resolvent ||R|| ≤ v−1

we get ∣∣∣∣∂uij∂ξij

∣∣∣∣ ≤ C√
nv3

. (3.2.15)

From (3.2.12)–(3.2.15) and (3.2.5)–(3.2.6) we deduce

|A1| ≤
C

n2v3

n∑
i,j=1

E|E(X2
ij |F(i,j))− σ2

ij | → 0 as n→∞. (3.2.16)
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It remains to estimate A2. We calculate the second derivative of uij

∂2uij
∂ξ2

ij

= −
[
R2 ∂V

∂ξij
R
∂V

∂ξij
R

]
ji

−
[
R
∂V

∂ξij
R2 ∂V

∂ξij
R

]
ji

−
[
R
∂V

∂ξij
R
∂V

∂ξij
R2

]
ji

= T1 + T2 + T3.

Let’s expand the term T1

T1 = −
[
R2 ∂V

∂ξij
R
∂V

∂ξij
R

]
ji

= T11 + T12 + T13 + T14, (3.2.17)

where we denote

T11 = − 1

n
[R2]ji[R]ji[R]ji, T12 = − 1

n
[R2]ji[R]jj [R]ii,

T13 = − 1

n
[R2]jj [R]ii[R]ji, T14 = − 1

n
[R2]jj [R]ij [R]ii.

Using again the bound ||R|| ≤ v−1 we can show that

max(|T11|, |T12|, |T13|, |T14|) ≤
C

nv4
.

From the expansion (3.2.17) and the bounds of T1i, i = 1, 2, 3, 4 we conclude that

|T1| ≤
C

nv4
.

Repeating the above arguments one can show that

max(|T2|, |T3|) ≤
C

nv4
.

Finally we have ∣∣∣∣∣∂2uij
∂ξ2

ij

(θξij , ξ
(ij))

∣∣∣∣∣ ≤ C

nv4
.

Using the assumption |ξij | ≤ τn
√
n and the condition (3.1.4) we deduce the bound

|A2| ≤
Cτn
v4

. (3.2.18)

We may turn τn to zero and conclude the statement of Theorem 3.1.6
from (3.2.7), (3.2.8), (3.2.16) and (3.2.18).

3.3 Proof of Theorem 3.1.7

We prove the theorem using the moment method. It is easy to see that the moments
of FY(x) can be rewritten as normalized traces of powers of Y:∫

R
xkdFY(x) = E

1

n
Tr

(
1√
n
Y

)k
.
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It is sufficient to prove that

E
1

n
Tr

(
1√
n
Y

)k
=

∫
R
xkdG(x) + ok(1).

for k ≥ 1, where ok(1) tends to zero as n→∞ for any fixed k.
It is well known that the moments of semicircle law are given by the Catalan numbers

βk =

∫
R
xkdG(x) =

{
1

m+1

(
2m
m

)
, k = 2m

0, k = 2m+ 1.

Furthermore we shall use the notations and the definitions from [4]. A graph is a
triple (E, V, F ), where E is the set of edges, V is the set of vertices, and F is a
function, F : E → V ×V . Let i = (i1, ..., ik) be a vector taking values in {1, ..., n}k.
For a vector i we define a Γ-graph as follows. Draw a horizontal line and plot the
numbers i1, ..., il on it. Consider the distinct numbers as vertices, and draw k edges
ej from ij to ij+1, j = 1, ..., k, using ik+1 = i1 by convention. Denote the number
of distinct ij ’s by t. Such a graph is called a Γ(k, t)-graph.

Two Γ(k, t)-graphs are said to be isomorphic if they can be converted each other
by a permutation of (1, ..., n). By this definition, all Γ-graphs are classified into
isomorphism classes. We shall call the Γ(k, t)-graph canonical if it has the following
properties:
1) Its vertex set is {1, ...., t};
2) Its edge set is {e1, ..., ek};
3) There is a function g from {1, ..., k} onto {1, ..., t} satisfying g(1) = 1 and
g(i) ≤ max{g(1), ..., g(i− 1)}+ 1 for 1 < i ≤ k;
4) F (ei) = (g(i), g(i+ 1)), for i = 1, ..., k, with the convention g(k + 1) = g(1) = 1.

It is easy to see that each isomorphism class contains one and only one canonical
Γ-graph that is associated with a function g, and a general graph in this class can
be defined by F (ej) = (ig(j), ig(j+1)). It is easy to see that each isomorphism class
contains n(n− 1)...(n− t+ 1) Γ(k, t)-graphs.

We shall classify all canonical graphs into three categories. Category 1 consists
of all canonical Γ(k, t)-graphs with the property that each edge is coincident with
exactly one other edge of opposite direction and the graph of noncoincident edges
forms a tree. It is easy to see if k is odd then there are no graphs in category 1.
If k is even, i.e. k = 2m, say, we denote a Γ(k, t)-graph by Γ1(2m). Category 2

consists of all canonical graphs that have at least one edge with odd multiplicity.
We shall denote this category by Γ2(k, t). Finally, category 3 consists of all other
canonical graphs, which we denote by Γ3(k, t).

It is known, see [4, Lemma 2.4], that the number of Γ1(2m)-graphs is equal to
1

m+1

(
2m
m

)
.
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We expand the traces of powers of Y in a sum

Tr

(
1√
n
Y

)k
=

1

nk/2

∑
i1,i2,...,ik

Yi1i2Yi2i3 ...Yiki1 , (3.3.1)

where the summation is taken over all sequences i = (i1, ..., ik) ∈ {1, ..., n}.

For each vector i we construct a graphG(i) as above. We denote by Y (i) = Y (G(i)).

Then we may split the moments of FY(x) into three terms

E
1

n
Tr

(
1√
n
Y

)k
=

1

nk/2+1

∑
i

EYi1i2Yi2i3 ...Yiki1 = S1 + S2 + S3,

where
Sj =

1

nk/2+1

∑
Γ(k,t)∈Cj

∑
G(i)∈Γ(k,t)

E[Y (G(i))],

and the summation
∑

Γ(k,t)∈Cj is taken over all canonical Γ(k, t)-graphs in category
Cj and the summation

∑
G(i)∈Γ(k,t) is taken over all isomorphic graphs for a given

canonical graph.

From the independence of Yij and EY 2s−1
ij = 0, s ≥ 1, it follows that S2 = 0.

For the graphs from categories C1 and C3 we introduce further notations.
Let us consider the Γ(k, t)-graph G(i). Without loss of generality we assume
that il, l = 1, ..., t are distinct coordinates of the vector i and define a vector
it = (i1, ..., it). We also set G(it) := G(i). Let ĩt = (i1, ..., iq−1, iq+1, ..., it) and
ît = (i1, ..., ip−1, ip+1, ..., iq−1, iq+1, ..., it) be vectors derived from it by deleting the
elements in the position q and p, q respectively. We denote the graph without the
vertex iq and all edges linked to it by G(ĩt). If the vertex iq is incident to a loop
we denote by G′(it) the graph with this loop removed.

Now we will estimate the term S3. For a graph from category C3 we know that k
has to be even, i.e. k = 2m, say. We illustrate the example of a Γ3(k, t)-graph in
Figure 3.2. This graph corresponds to the term Y (G(i3)) = Y 2

i1i1
Y 2
i1i2

Y 4
i2i3

Y 2
i3i3

.
We mention that EY 2s

ipiq
≤s σ2s

ipiq
. Hence we may rewrite the terms which correspond

to the graphs from category C3 via variances.

In each graph from category C3 there is at least one vertex incident to a loop with
multiplicity greater or equal to two or an edge with multiplicity greater then two.
It is possible as well that both cases occur.

Suppose that there is a vertex, let’s say i1, which is incident to a loop with multiplic-
ity s ≥ 1. It remains to consider the remaining 2(m−s) edges. We will consequently
delete edges and vertices from the graph using the following algorithm:
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Figure 3.2: Graph Γ3(10, 3).

1. If the number of distinct vertices is equal to one we should go to step (3).
Otherwise, we take a vertex, let’s say iq, q 6= 1, such that there are no new
edges starting from it. We also take a vertex ip which is connected to iq by an
edge of this graph. There are three possibilities:

(a) There is a loop incident to vertex iq with multiplicity 2a, a ≥ 1. In this
case we estimate

1

nm+1

∑
G(i)∈Γ(2m,t)

E[Y (G(i))] ≤a
1

nm+1

∑
it

E[Y (G′(it))]σ
2a
iqiq .

Applying the inequality n−1σ2
iqiq
≤ B2

iq
≤ C2, a times we delete all loops

incident to this vertex;

(b) There is no loop incident to iq, but the multiplicity of the edge from ip
to iq is equal to 2. In this case we estimate

1

nm+1

∑
G(i)∈Γ(2m,t)

E[Y (G(i))] ≤ 1

nm+1

∑
ĩt

E[Y (G(ĩt))]
n∑

iq=1

σ2
ipiq .

We may delete the vertex iq and the two coinciding edges from ip to iq
using condition (3.1.5);

(c) There is no loop incident to iq, but the multiplicity of the edge from ip
to iq is equal to 2b, b > 1. In this case we estimate

1

nm+1

∑
G(i)∈Γ(2m,t)

E[Y (G(i))] ≤b
1

nm+1

∑
ĩt

E[Y (G(ĩt))]

n∑
iq=1

σ2b
ipiq .

Here we may use the inequality n−1σ2
ipiq
≤ B2

ip
≤ C2, b − 1 times and

consequently delete all coinciding edges except two. Then we may apply
(b);

2. go to step (1);
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3. in this step one may use the bound

1

ns+1

n∑
i1=1

EY 2s
i1i1 ≤s

1

ns+1

n∑
i1=1

σ2s
i1i1 ≤

C2(s−1)

n2

n∑
i1=1

σ2
i1i1

≤ C2(s−1)τ2
n +

C2(s−1)

n2

n∑
i1=1

EY 2
i1i1I(|Yi1i1 | ≥ τn

√
n)

≤ C2(s−1)τ2
n + C2(s−1)Ln(τn) = os(1),

where we have used the inequality n−1σ2
i1i1
≤ B2

i1
≤ C2.

Applying this algorithm we get the bound

1

nm+1

∑
G(i)∈Γ(2m,t)

E[Y (G(i))] ≤m C2(m−1)(τ2
n + Ln(τn)) = om(1).

If there are no loops, but just an edge with multiplicity greater then two, then we
can apply the above procedure again and use in the step (3) the following bound
for s ≥ 2

1

ns+1

n∑
i1,i2=1
i1 6=i2

EY 2s
i1i2 ≤s

1

ns+1

n∑
i1,i2=1

σ2s
i1i2 ≤

C2(s−2)

n3

n∑
i1,i2=1

σ4
i1i2

≤ C2(s−2) τ
2
n

n2

n∑
i1,i2=1

σ2
i1i2 +

C2(s−2)

n3

n∑
i1,i2=1

σ2
i1i2EY

2
i1i2I(|Yi1i2 | ≥ τn

√
n)

≤ C2(s−1)τ2
n + C2(s−1)Ln(τn) = os(1),

where we have used the inequality n−1σ2
i1i2
≤ B2

i1
≤ C2 and (3.1.5).

As an example we recommend to check this algorithm for the graph in Figure 3.2.

It is easy to see that the number of different canonical graphs in C3 is of order
Om(1). Finally for the term S3 we get

S3 = om(1).

It remains to consider the term S1. For a graph from category C1 we know that
k has to be even, i.e. k = 2m, say. In the category C1 using the notations of
it, ĩt, ît, jt, j̃t and ĵt we take t = m+ 1.
We illustrate on the left part of Figure 3.3 an example of the tree of noncoincident
edges of a Γ1(2m)-graph for m = 5. The term corresponding to this tree is
Y (G(i6)) = Y 2

i1i2
Y 2
i2i3

Y 2
i2i4

Y 2
i1i5

Y 2
i5i6

.

We denote by σ2(im+1) = σ2(G(im+1)) the product of m numbers σ2
isit

, where
is, it, s < t are vertices of the graph G(im+1) connected by edges of this graph. In
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Figure 3.3: On the left, the tree of noncoincident edges of a Γ1(10)-graph is shown.
On the right, the tree of noncoincident edges of a Γ1(10)-graph with deleted leaf i6
is shown .

our example, σ2(im+1) = σ2(i6) = σ2
i1i2

σ2
i2i3

σ2
i2i4

σ2
i1i5

σ2
i5i6

.

If m = 1 then σ2(i2) = σ2
i1i2

and

1

n2

n∑
i1,i2=1
i1 6=i2

σ2
i1i2 =

1

n

n∑
i1=1

[
1

n

n∑
i2=1

σ2
i1i2 − 1

]
+ 1 + o(1), (3.3.2)

where we have used n−2
∑n

i1=1 σ
2
i1i1

= o(1). By (3.1.4) the first term is of order
o(1). The number of canonical graphs in C1 for m = 1 is equal to 1. We conclude
for m = 1 that

S1 = n−2
∑
Γ1(2)

n∑
i1,i2=1
i1 6=i2

σ2
i1i2 = 1 + o(1),

Now we assume that m > 1. Then we can find a leaf in the tree, let’s say
iq, and a vertex ip, which is connected to iq by an edge of this tree. We have
σ2(im+1) = σ2(ĩm+1) · σ2

ipiq
, where σ2(ĩm+1) = σ2(G(ĩm+1)).

In our example we can take the leaf i6. On the right part of Figure 3.3 we have drawn
the tree with deleted leaf i6. We have σ2

ipiq
= σ2

i5i6
and σ2(ĩ6) = σ2

i1i2
σ2
i2i3

σ2
i2i4

σ2
i1i5

.
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It is easy to see that

1

nm+1

∑
im+1

σ2(im+1) =
1

nm+1

∑
ĩm+1

σ2(ĩm+1)
n∑

iq=1

σ2
ipiq + om(1)

=
1

nm

∑
ĩm+1

σ2(ĩm+1)

 1

n

n∑
iq=1

σ2
ipiq − 1

 (3.3.3)

+
1

nm

∑
ĩm+1

σ2(ĩm+1) (3.3.4)

+ om(1),

where we have added some graphs from category C3 and used the similar bounds
as for the term S3. Now we will show that the term (3.3.3) is of order om(1). Note
that

1

nm

∑
ĩm+1

σ2(ĩm+1)

∣∣∣∣∣∣ 1n
n∑

iq=1

σ2
ipiq − 1

∣∣∣∣∣∣ (3.3.5)

=
1

n

n∑
ip=1

∣∣∣∣∣∣ 1n
n∑

iq=1

σ2
ipiq − 1

∣∣∣∣∣∣ 1

nm−1

∑
îm+1

σ2(ĩm+1).

We can sequentially delete leafs from the tree and using (3.1.5) write the bound

1

nm−1

∑
îm+1

σ2(ĩm+1) ≤ C2(m−1). (3.3.6)

By (3.3.6) and (3.1.4) we have shown that (3.3.3) is of order om(1). For the second
term (3.3.4), i.e.

1

nm

∑
ĩm+1

σ2(ĩm+1)

we can repeat the above procedure and stop if we arrive at only two vertices in the
tree. It the last step we can use the result (3.3.2). Finally we get

S1 =
1

nm+1

∑
Γ1(2m)

∑
im+1

σ2(im+1) =
1

m+ 1

(
2m

m

)
+ om(1),

which proves Theorem 3.1.7.





Chapter 4

Strong law of large numbers for
random processes

In this chapter for martingales with continuous parameter we provide sufficient
conditions for the strong law of large numbers and prove analogs of the Kolmogorov,
Zygmund–Marcinkiewicz, and Brunk–Prokhrov strong laws of large numbers. A new
generalization of the the Brunk–Prokhorov strong law of large numbers is given for
martingales with discrete times. Along with the almost surely convergence, we also
prove the convergence in average .

4.1 Extension of the Brunk–Prokhorov theorem

In works [27] and [16] generalizations of the Brunk–Prokhorov theorem are given.
What follows below is a new generalization of the Brunk-Prokhorov theorem. We
can take arbitrary positive numbers as normalizing constants, if they form an un-
boundedly increasing sequence. Generality of normalizing constants is achieved by
imposing an additional condition on the random variables. In some cases, this con-
dition is automatically satisfied. In particular, it is satisfied under condition of the
original Brunk–Prokhorov theorem.

Theorem 4.1.1. Let {Yn, n ∈ N = {1, 2, . . . }} be a martingale relative to filtration
{Fn, n ∈ N} and bn, n ∈ N be a sequence of unboundedly increasing positive numbers.
Assume Y0 = 0. If

∞∑
n=1

nα−1E|Yn − Yn−1|2α

b2αn
<∞, (4.1.1)

∞∑
n=1

nα−2
n∑
k=1

E|Yk − Yk−1|2α

b2αn
<∞ (4.1.2)

for some α ≥ 1, then

lim
n→∞

Yn
bn

= 0 a.s. and lim
n→∞

E
∣∣∣∣max1≤k≤n Yk

bn

∣∣∣∣2α = 0. (4.1.3)

Proof. If α = 1, then condition (4.1.2) follows from condition (4.1.1). From condi-
tion (4.1.1) and the Kronecker lemma [30, p. 252] it follows that lim

n→∞
E|Yn/bn|2 = 0.

This and the Doob inequality for moments

E( max
1≤k≤n

|Yk|)2 ≤ 4E|Yn|2
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imply the second statement of (4.1.3). Textbook [30, p. 407] contains proof that
condition (4.1.1) implies the first condition of (4.1.3). Below, we assume that α > 1.
Using the generalization of the Doob inequality in [38, p. 687], we obtain for any
ε > 0

ε2αP{sup
k≥n

|Yk|
bk

> ε} = lim
m→∞

ε2αP{ sup
n≤k≤m

|Yk|
bk

> ε}

≤ E|Yn|2α

b2αn
+

∞∑
k=n+1

E|Yk|2α − E|Yk−1|2α

b2αk
.

(4.1.4)

Let us prove the second statement of (4.1.3). Thanks to the Doob inequality for mo-
ments, it is sufficient to show that lim

n→∞
E|Yn/bn|2α = 0. According to the Burkholder

inequality [10, p. 396], there exists a constant Cα, such that

E|Yn|2α ≤ Cαnα−1
n∑
k=1

E|Yk − Yk−1|2α.

This and the Holder inequality imply that

E|Yn|2α ≤ Cαnα−1
n∑
k=1

E|Yk − Yk−1|2α.

It is sufficient to prove that

lim
n→∞

nα−1

b2αn

n∑
k=1

E|Yk − Yk−1|2α = 0. (4.1.5)

According to the Kronecker lemma, it follows from condition (4.1.2) that

lim
n→∞

1

b2αn

n∑
k=1

kα−1E|Yk − Yk−1|2α = 0. (4.1.6)

We denote by An the sum in (4.1.6) and c0 = 0,

ck = E|Y1 − Y0|2α + · · ·+ E|Yk − Yk−1|2α.

Using the Abel transformation, we can write the sum in the following form:

An =

n∑
k=1

kα−1E|Yk − Yk−1|2α = nα−1cn +
n−1∑
k=1

(kα−1 − (k + 1)α−1)ck.

Thanks to the inequality (k + 1)α−1 − kα−1 ≤ 2αkα−2 the following estimation is
valid:

An ≥ nα−1cn − 2α
n−1∑
k=1

kα−2ck.
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We denote the latter sum by Bn. According to the Kronecker lemma, condi-
tion (4.1.2) implies that lim

n→∞
Bn/b

2α
n = 0. From this and (4.1.6) it follows that

0 = lim
n→∞

An/b
2α
n ≥ lim sup

n→∞
nα−1cn/b

2α
n − lim

n→∞
2αBn/b

2α
n = lim sup

n→∞
nα−1cn/b

2α
n .

Statement (4.1.5) is proved.
Let us prove that

lim
n→∞

∞∑
k=n+1

E|Yk|2α − E|Yk−1|2α

b2αk
= 0. (4.1.7)

The series can be estimated as follows:
∞∑

k=n+1

E|Yk|2α − E|Yk−1|2α

b2αk
= −E|Yn|2α

b2αn+1

+
∞∑

k=n+1

( 1

b2αk
− 1

b2αk+1

)
E|Yk|2α

≤ Cα
∞∑

k=n+1

( 1

b2αk
− 1

b2αk+1

)
kα−1

k∑
j=1

E|Yj − Yj−1|2α

= Cα
(n+ 1)α−1

b2αn+1

n+1∑
k=1

E|Yk − Yk−1|2α + Cα

∞∑
k=n+2

kα−1E|Yk − Yk−1|2α

b2αk

+Cα

∞∑
k=n+2

(kα−1 − (k − 1)α−1)

b2αk

k−1∑
j=1

E|Yj − Yj−1|2α.

Let us recall, that kα−1 − (k − 1)α−1 ≤ 2αkα−2. Thanks to these estimations,
conditions (4.1.1), (4.1.2) and statement (4.1.5), (4.1.7) are fulfilled.

The second statement in (4.1.3), (4.1.4) and (4.1.7) implies that sequence sup
k≥n
|Yk|/bn

converges by probability to zero as n → ∞. It decreases monotonically and thus
converges almost everywhere to zero.

Remark 4.1.2. In work [16] it was shown that condition (4.1.2) follows from condi-
tion (4.1.1), if for some δ > (α− 1)/(2α) the ratio bn/nδ increases with an increase
of n ∈ N. In particular, condition (4.1.2) follows from condition (4.1.1) at bn = n

for all n ∈ N. The theorem was proved by Chow with this choice of normalizing
constant [10, p. 397].

4.2 Strong law of large numbers for martingales with
continuous parameter

Theorem 4.2.1. Let {Yt, t ∈ R+} be a measurable separable martingale relative
to filtration {Ft, t ∈ R+} and f(t), t ≥ 0, be an unboundedly increasing positive
function. If

∞∫
1

dE|Yt|α

fα(t)
<∞ (4.2.1)
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for some α ≥ 1, then

lim
t→∞

sup
0≤s≤t

Ys

f(t)
= 0 a.s. (4.2.2)

Proof. We may assume that function f(t), t ≥ 1, is right continues. In the opposite
case, it can be replaced by function f(t + 0) = lim

s↓t
f(s), t ≥ 1. It is easy to see

that it is right continuous and almost everywhere coincides with f for the Lebesgue
measure. Note that the function g(t) = inf{s : f(s) > t}, t ≥ 1, is right continuous,
unboundedly increases, and satisfies the inequalities 2n+1 ≥ f(g(2n)) ≥ 2n for all
n ∈ N = {1, 2, . . . }, beginning with some number n0. below, we will assume that
n0 = 1. By the Doob inequality [13, p. 285] for moments, we obtain

εα
∞∑
n=1

P sup
g(2n)≤t≤g(2n+1)

|Yt|
f(t)

> ε ≤
∞∑
n=1

E|Yg(2n+1)|α

fα(g(2n))
. (4.2.3)

The series on the right is convergent. This is due to (4.2.1) and the following
relations:

∞∑
n=1

E|Yg(2n+1)|α

2αn
=
∞∑
n=1

1

2αn
( n∑
k=1

(E|Yg(2k+1)|α − E|Yg(2k)|α) + E|Yg(2)|α
)

= C +
∞∑
k=1

g(2k+1)∫
g(2k)

dE|Yt|α
∞∑
n=k

1

2αn
= C + C1

∞∑
k=1

1

2α(k+2)

g(2k+1)∫
g(2k)

dE|Yt|α

≤ C + C1

∞∑
k=1

g(2k+1)∫
g(2k)

dE|Yt|α

fα(t)
≤ C + C1

∞∫
1

dE|Yt|α

fα(t)
<∞,

where C,C1 – are some positive constants.

Because of the convergence of the series of the left in (4.2.3) by the Borel-Cantelli
lemma, the sequence {

sup
g(2n)≤t≤g(2n+1)

|Yt|/f(t)

}
n≥1

converges to zero almost surely. Consequently,

lim
t→∞

Yt
f(t)

= 0 a.s. (4.2.4)

We denote by Ω′ the set of elementary events, for which (4.2.4) is true. For all
ω ∈ Ω′ and ε > 0 there are s(ω, ε) > 0, such that

|Ys|/f(s) < ε for all s ≥ s(ω, ε),

and, consequently, for any t > s(ω, ε) inequality

sup
0≤s≤t

|Ys(ω)|/f(t) ≤ sup
0≤s≤s(ω,ε)

|Ys(ω)|/f(t) + ε
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is fulfilled. This implies (4.2.2), since number ε > 0 can be chosen arbitrary small
and P (Ω′) = 1.

4.3 Analogues of the Kolmogorov and Prokhorov-Chow
theorems for martingales

The following theorem presents the analogue of the Kolmogorov and Prokhorov-
Chow theorems for martingales.

Theorem 4.3.1. Let {Yt, t ∈ R+} be a measurable separable martingale relative to
some filtration {Ft, t ∈ R+}. If

∞∫
1

dE|Yt|2α

t2α
<∞ (4.3.1)

for some α ≥ 1, then

lim
t→∞

sup
0≤s≤t

Ys

t
= 0 a.s. and lim

t→∞
E

 sup
0≤s≤t

|Ys|

t

2α

= 0. (4.3.2)

Proof. The first statement in (4.3.2) follows from Theorem 4.2.1. By inequalities

∞∑
n=1

E|Yn+1|2α − E|Yn|2α

(n+ 1)2α
<

n+1∫
n

dE|Yt|2α

t2α
<

∞∑
n=1

E|Yn+1|2α − E|Yn|2α

n2α

we obtain that condition (4.3.1) is equal to the following condition
∞∑
n=1

E|Yn+1|2α − E|Yn|2α

n2α
<∞.

Hence, by Kronecker lemma,

lim
n→∞

E
∣∣∣∣Ynn

∣∣∣∣2α = lim
n→∞

1

n2α

n∑
k=1

(E|Yk|2α − E|Yk−1|2α) = 0.

For any t ≥ 1 exists nt ∈ N, such that nt ≤ t < nt + 1.The second statement
in (4.3.2) follows from inequalities

E( sup
0≤s≤t

|Ys|/t)2α ≤ (2α/(2α− 1)2αE|Yt|2α/t2α ≤ (2α/(2α− 1)2αE|Ynt+1|2α/n2α
t

The theorem is proved

Remark 4.3.2. Theorems 4.2.1 and 4.3.1 are valid for the difference Yt = Xt−EXt,

where {Xt, t ∈ R+} – is a measurable separable random process with independent in-
crements. It is enough to say that under the conditions of these theorems, difference
Xt − EXt, t ∈ R+, is a martingale relatively the natural filtration.
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4.4 The strong law of large numbers for homogeneous
random processes with independent increments

It is natural to assume that the known strong laws of large numbers for sums of inde-
pendent random variables have their analogues for homogeneous random processes
with independent increments.

Theorem 4.4.1. (i). Let {Xt, t ∈ R+} is a separable homogeneous random process
with independent increments. Assume that EX1 = 0, if E|X1|α <∞ and α ≥ 1. If
E|X1|α <∞ for some α ∈ (0, 2), then

lim
t→∞

sup
0≤s≤t

Xt

t1/α
= 0 a.s. and lim

t→∞
E

 sup
0≤s≤t

|Xs|

t1/α

α

= 0. (4.4.1)

(ii). If for some constants α ∈ (0, 2) and c ∈ R = (−∞,∞)

lim
t→∞

Xt − ct
t1/α

= 0 a.s.,

then E|X1|α <∞ and c = EX1 for α ≥ 1.

Proof. (i). We can assume that X0 = 0. Otherwise, instead of Xt we can take

Xt − X0. Random variables Xn is the sum Xn =
n∑
k=1

(Xk − Xk−1) of independent

identically distributed random variables. By the Chatterjee theorem [8], we have

lim
n→∞

Xn

n1/α
= 0 a.s. and lim

n→∞
E
(
Xn

n1/α

)α
= 0. (4.4.2)

Using the reasoning of the proof of Theorem 4.2.1, we can be sure that the first
statement of (4.4.2) implies the first statement of (4.4.1). To prove the second
statement of (4.4.1) we need the Doob inequality [13, p. 303], whereby

E(max
s∈Sn

|Xs|)α ≤ E( max
0≤k<2n

|
k∑
j=1

(Xj2−nt −X(j−1)2−nt)|)α ≤ 8E|Xt|α

for any n ∈ N, t > 0, α ≥ 1, where Sn = {k2−nt : k = 0, ..., 2n − 1}. Hence, due to
the separability of random process {Xt, t ≥ 0} it follows that

E( sup
0≤s≤t

|Xs|)α ≤ 8E|Xt|α.

By this inequality and the second statement of (4.4.2) we obtain the second
statement of (4.4.1) for α ∈ [1, 2).

It remains for us to prove the second statement of (4.4.1) for α ∈ (0, 1). By
the separability and homogeneity of random process with independent increments
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{Xt, t ≥ 0}, functions Yn = sup
n≤t≤n+1

|Xt − Xn|, n ∈ N, are independent identically

distributed random variables. We denote by [s] the integer part of s > 0. For any
t > 1 and s ∈ (0, t] we have

|Xs| ≤ |X[s]|+ Y[s] ≤
[s]∑
k=1

|Xk −Xk−1|+ Y[s] ≤ 2

[t]∑
k=1

Yk

and consequently

E( sup
0≤s≤t

|Xs|)α ≤ 2α
[t]∑
k=1

EY α
k = 2α[t]EY α

1 .

This implies the second statement of (4.4.1) for α ∈ (0, 1), if EY α
1 <∞.

Let us prove that EY α
1 <∞. We first show that all medians ms of random variable

Xs are limited. We assume the opposite: that, e.g., lim
n→∞

msn =∞ for some sequence
sn ∈ [0, 1], n ∈ N.We may assume that sequence {sn}n≥1 converges to some number
s ∈ [0, 1]. By homogeneity, random process {Xt, t ≥ 0} is stochastically continuous.
The distribution functions of random variables Xsn , n ∈ N, thus converge to the
distribution function of random variable Xs. By Theorem 1.1.1 in work [28], the
following inequalities are valid:

ls ≤ lim inf
n→∞

ls,n ≤ lim sup
n→∞

rs,n ≤ rs,

where ls, ls,n, rs, rs,n – the minimum and maximum medians of random variables
Xs and Xsn . We arrive at a contradiction, because both ls and rs are finite, and,
consequently, d = sup

0≤s≤1
|ms| <∞. By the symmetrization inequality in [30, p. 261]

we have
P ( sup

0≤s≤1
|Xs −ms| ≥ y) ≤ 4P (|X1| ≥ y).

Using integration by parts, we obtain the inequality

E( sup
0≤s≤1

|Xs −ms|)α ≤ 4E|X1|α.

Thus
Y1 = sup

0≤s≤1
|Xs| ≤ sup

0≤s≤1
|Xs −ms|+ d,

then
EY α

1 ≤ 4E|X1|α + dα <∞.

(ii). We continue to assume that X0 = 0. Random variable Xn is the sum Xn =
n∑
k=1

(Xk − Xk−1) of independent identically distributed random variables. With

assumption lim
n→∞

(Xn − cn)/n1/α = 0 a.s. Hence, due to the Kolmogorov theorem
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for α = 1 and the Zygmund–Marcinkiewicz theorem for some α ∈ (0, 2), α 6= 1, we
get E|X2−X1|α <∞ and c = E(X2−X1) for α ∈ [1, 2). It remains to be notes that
the random variables X1 and X2−X1 are identically distributed and, consequently,
E|X1|α = E|X2 −X1|α and c = EX1. The theorem is proved.
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Some results from probability and
linear algebra

A.1 Probability theory

Theorem A.1.1 (Central Limit Theorem). Let Z1, ..., Zn be independent random
variables with EZi = 0 and finite third moment, and let σ2 =

∑n
i=1 E|Zi|2. Consider

a standard normal variable g. The for every t > 0:∣∣∣∣∣P
(

1

σ

n∑
i=1

Zi ≤ t

)
− P (g ≤ t)

∣∣∣∣∣ ≤ Cσ−3
n∑
i=1

E|Zi|3,

where C is an absolute constant.

Lemma A.1.2. Let event E(X,Y ) depends on independent random vectors X and
Y then

P(E(X,Y )) ≤ (P(E(X,Y ), E(X,Y ′))1/2,

where Y ′ is an independent copy of Y .

Proof. See in [12].

Lemma A.1.3. Let Z1, ..., Zn be a sequence of random variables and p1, ..., pn be
non-negative real numbers such that

n∑
i=1

pi = 1,

then for every ε > 0

P(

n∑
i=1

piZi ≤ ε) ≤ 2

n∑
i=1

piP(Zi ≤ 2ε).

Proof. See in [43].

We recall definition of Levy concentration function

Definition A.1.4. Levy concentration function of random variable Z with values
from Rd is a function

L(Z, ε) = sup
v∈Rd

P(||Z − v||2 < ε).
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Lemma A.1.5. Let SJ =
∑

i∈J ξi, where J ⊂ [n], and I ⊂ J then

L(SJ , ε) ≤ L(SI , ε).

Proof. Let us fix arbitrary v. From independence of ξi we conclude

P(|SJ − v| ≤ ε) ≤ EP(|SI + SJ/I − v| ≤ ε|{ξi}i∈I) ≤ sup
u∈R

P(|SI − u| ≤ ε).

Lemma A.1.6. Let Z be a random variable with EZ2 ≥ 1 and with finite fourth
moment, and put M4

4 := E(Z − EZ)4. Then for every ε ∈ (0, 1) there exists p =

p(M4, ε) such that
L(Z, ε) ≤ p.

Proof. See in [37].

Lemma A.1.7. Let X = (X1, ..., Xn) be a random vector in Rn with independent
coordinates Xk.
1. Suppose there exist numbers ε0 ≥ 0 and L ≥ 0 such that

L(Xk, ε) ≤ Lε for all ε ≥ ε0 and all k.

Then
L(X, ε) ≤ (CLε)n for all ε ≥ ε0,

where C is an absolute constant.
2. Suppose there exist numbers ε > 0 and p ∈ (0, 1) such that

L(Xk, ε) ≤ Lε for all k.

Then there exist numbers ε1 = ε1(ε, p) > 0 and p1 = p1(ε, p) ∈ (0, 1) such that

L(X, ε) ≤ (p1)n.

Proof. See [43, Lemma 3.4].

Lemma A.1.8. There exist γ > 0 and δ > 0 such that for all n� 1 and 1 ≤ i ≤ n,
any deterministic vector v ∈ C and any subspace H of Cn with 1 ≤ dim(H) ≤
n− n1−γ, we have, denoting R := (X1, ..., Xn) + v,

P(dist(R,H) ≤ 1

2

√
n− dim(H)) ≤ exp(−nδ).

Proof. See [41, Statement 5.1].
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A.2 Linear algebra and geometry of the unit sphere

Lemma A.2.1. Let 1 ≤ m ≤ n. If A has full rank, with rows R1, ..., Rm and
H = span(Rj , j 6= i), then

m∑
i=1

si(A)−2 =
m∑
i=1

dist(Ri, Hi)
−2.

Proof. See [41, Lemma A.4].

Definition A.2.2. (Compressible and incompressible vectors) Let δ, τ ∈ (0, 1). A
vector x ∈ Rn is called sparse if |supp(x)| ≤ δn. A vector x ∈ Sn−1 is called
compressible if x is within Euclidian distance τ from the set of all sparse vectors.
A vector x ∈ Sn−1 is called incompressible if it is not compressible. The sets of
sparse, compressible and incompressible vectors will be denoted by Sparse = Sparse
(δ), Comp = Comp (δ, τ) and Incomp = Incomp(δ, τ) respectively.

Lemma A.2.3. If x ∈ Incomp(δ, τ) then at least 1
2δτ

2n coordinates xk of x satisfy

τ√
2n
≤ |xk| ≤

1√
δn
.

Remark A.2.4. We can fix some constant c0 such that

1

4
δτ2 ≤ c0 ≤

1

4
.

Then for every vector x ∈ Incomp(δ, τ) | spread(x)| = [2c0n].

Proof. See in [37].
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Methods

B.1 Moment method

In this section we present results which give the method to investigate under what
conditions the convergence of moments of all fixed orders implies the weak con-
vergence of the sequence of the distribution functions. Let {Fn} be a sequence of
distribution functions.

Theorem B.1.1. A sequence of distribution functions {Fn} converges weakly to a
limit if the following conditions are satisfied:

1. each Fn has finite moments of all orders.

2. For each fixed integer k ≥ 0 the k-th moment of Fn converges to a finite limit
βk as n→∞.

3. If two right-continuous functions F and G have the same moment sequence
{βk}, then F = G+ const.

Proof. See [4].

One need to verify condition 3) of the Theorem B.1.1. The following theorem gives
condition that implies 3).

Theorem B.1.2 (Carleman). Let {βk = βk(F )} be the sequence of moments of the
distribution function F . If the Carleman condition

∞∑
k=1

β
−1/2k
2k =∞.

is satisfied, then F is uniquely determined by the moment sequence {βk}.

Proof. See [4].

B.2 Stieltjes transform method

Definition B.2.1. The Stieltjes transform of the distribution function G is a func-
tion

SG(α) =

∫
R

dG(x)

x− α
, α ∈ C+.
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Theorem B.2.2 (Inversion formula). For any continuity points a < b of G, we
have

G([a, b]) = lim
ε→0+

1

π

b∫
a

ImSG(x+ iε)dx,

Proof. See [4].

For the ESD of the random matrix n−1/2Xn one has

SXn(z) =

∫
R

1

x− z
dFXn =

1

n
Tr

(
1√
n
Xn − zI

)−1

.

The following theorem gives the method to investigate convergence of the ESD to
some limit.

Theorem B.2.3. Let FXn be the ESD of the random matrix n−1/2Xn and set
FXn = EFXn. Then

1. FXn(x) converges almost surely to F (x) in the vague topology if and only if
SXn(z) converges almost surely to S(z) for every z in the upper half-plane;

2. FXn(x) converges in probability to F (x) in the vague topology if and only if
SXn(z) converges in probability to S(z) for every z in the upper half-plane;

3. FXn(x) converges almost surely to F (x) in the vague topology if and only if
ESXn(z) converges almost surely to S(z) for every z in the upper half-plane.

Proof. See [42].

B.3 Logarithmic potential

Definition B.3.1. The logarithmic potential Um of measure m(·) is a function
Um : C→ (−∞,+∞] defined for all z ∈ C by

Um(z) = −
∫
C

log |z − w|m(dw).

Definition B.3.2. The function f : T → R, where T = C or T = R, is uniformly
integrable in probability with respect to the sequence of random measures {mn}n≥1

on (T,B(T)) if for all ε > 0:

lim
t→∞

lim
n→∞

P

 ∫
|f |>t

|f(x)|mn(dx) > ε

 = 0.
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Let s1(n−1/2Xn− zI) ≥ s2(n−1/2Xn− zI) ≥ ... ≥ sn(n−1/2Xn− zI) be the singular
values of n−1/2Xn− zI and define the empirical spectral measure of singular values
by

νn(z,B) =
1

n
#{i ≥ 1 : si(n

−1/2Xn − zI) ∈ B}, B ∈ B(R).

We can rewrite the logarithmic potential of µn via the logarithmic moments of
measure νn by

Uµn(z) = −
∫
C

log |z − w|µn(dw) = − 1

n
log

∣∣∣∣det

(
1√
n
Xn − zI

)∣∣∣∣
= − 1

2n
log det

(
1√
n
Xn − zI

)∗( 1√
n
Xn − zI

)
= −

∞∫
0

log xνn(dx).

This allows us to consider the Hermitian matrix (n−1/2Xn − zI)∗(n−1/2Xn − zI)
instead of the asymmetric matrix n−1/2X.

Lemma B.3.3. Let (Xn)n≥1 be a sequence of n×n random matrices. Suppose that
for a.a. z ∈ C there exists a probability measure νz on [0,∞) such that
a) νn

weak−−−→ νz as n→∞ in probability
b) log is uniformly integrable in probability with respect to {νn}n≥1.
Then there exists a probability measure µ such that
a) µn

weak−−−→ µ as n→∞ in probability
b) for a.a. z ∈ C

Uµ(z) = −
∞∫

0

log xνz(dx).

Proof. See [6, Lemma 4.3] for the proof.
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Stochastic processes

In this chapter we introduce all necessary definitions and theorems from the theory
of stochastic processes. See [18] for the discussion of stochastic processes.

C.1 Some facts from stochastic processes

Definition C.1.1. Function of two variables X(t, ω) = ξ(t), defined for all t ∈
T, ω ∈ Ω, taking values in a metric space X, F-measurable for all t ∈ T , is called
stochastic process. The set T is a domain of stochastic process and the space X is a
codomain of stochastic process.

Definition C.1.2. Stochastic processes X1(t, ω) and X2(t,Ω) determined on the
common probability space are stochastically equivalent if for all t ∈ T

P(X1(t, ω) 6= X2(t, ω)) = 0.

Let us consider a sequence of random variables Xi, then it is well known that supiXi

is a random variable. It follows immediately from

{ω ∈ Ω : sup
i
Xi > x} =

∞⋃
i=1

{ω ∈ Ω : Xi > x} ∈ F .

Now let us consider stochastic process Xt. In this case it may occur that suptXt is
not a random variable. To overcome this difficulty we should introduce the definition
of a separable process.

Definition C.1.3. Stochastic process is called separable it there exist the countable
and dense set of points {tj}j≥1 ⊂ T and the set N ⊂ Ω, P(N) = 0, such that for all
open G ⊂ T and all closed set F ∈ X the sets

{ω : Xtj (ω) ∈ F, tj ∈ G}, {ω : Xt(ω) ∈ F, t ∈ G}

differ only on subsets of N .

Separability is not very strict condition. Under rather general assumptions on T

and X there exists a separable process which is equivalent to a given one.

Theorem C.1.4. Let X be a separable locally compact space and T – arbitrary
separable space. For all Xt(ω) defined on T , taking values in X, there exists a
stochastically equivalent copy X̃t(ω) taking values in X̃ which is a compact extension
of X.
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Proof. See [18].

In this thesis we consider the case T = R+ and X = R. Then the statement of
Theorem C.1.4 is automatically satisfied.

Definition C.1.5. Stochastic process Xt is called process with independent incre-
ments if for all t0 < t1 < ... < tk from T the random variables X(t0), X(t1) −
X(t0), ..., X(tk)−X(tk−1) are independent.

Definition C.1.6. Stochastic process Xt is called homogenous if

Law(Xt+s −Xs) = Law(Xt −X0), s, t ∈ T.

Definition C.1.7. Stochastic process Xt, t ∈ T defined on the stochastic basis
(Ω,F , (Ft)t∈T ,P) is called martingale, if Xt is Ft-measurable, EXt < ∞, t ∈ T ,
and

E(Xt|Fs) = Xs, s ≤ t, s, t ∈ T.
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