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ABSTRACT 

Modern computer techniques and large memory capacities make it possible to produce an 

enormous amount of biological data stored in huge databases. This data is indispensable for 

scientific progress but does not necessarily lead to insight about the functionality of biological 

systems. Hence, an approach is needed to achieve usable information from this huge amount 

of data. A mathematical model provides a means for summarizing and structuring 

experimental data in order to simplify the communication of knowledge progress with other 

researchers. Additionally, it improves the understanding of the living system and allows the 

directed design of experiments by predicting system behavior under specific conditions and 

proofs with experiments. 

To enable the processing of experimental data to usable new insights about biological 

systems, a general, universally usable modeling process for biological systems has been 

developed in this work. This modeling process requires several mathematical methods to 

achieve a “well-working” parameterized model which is able to predict the behavior of the 

underlying system and forms the basis for optimizing biological processes. Therefore, an 

environment has been developed which comprises mathematical methods and tools for 

covering all steps of the established modeling process. 

Petri nets with their various extensions are a universal graphical modeling concept for 

representing biological systems in nearly all degrees of abstraction. They provide an intuitive 

and generally comprehensible way for representing and communicating experimental data and 

knowledge of biological systems. Despite several works and publications with Petri net 

approaches, there is a serious problem regarding the lacking unity of concepts, notations, and 

terminologies. The definition of Petri nets is not standardized; every author has personal 

definitions which are partly not accurate enough, not common, or even contradictory. In this 

work, to show the research community the power of Petri nets, they are defined precisely 

together with the corresponding processes, which are essential for simulation. A formalism 

has been developed which is able to represent nearly all kinds of biological processes. It is 

called extended Hybrid Petri Nets and abbreviated with xHPN. This formalism has been 
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further extended by providing the Petri net elements with biological meaning and this 

extension is called xHPNbio (extended Hybrid Petri Nets for biological applications). 

To use Petri nets as a graphical modeling language for biological systems, the Petri nets, for 

their part, have been modeled by the object-oriented modeling language Modelica. Modelica 

was developed and promoted by the Modelica Association since 1996 for modeling, 

simulation, and programming of primarily physical and technical systems and processes and 

has become the de-facto standard for hybrid, multidisciplinary modeling. Each Petri net 

element, place and transition, is described by a model in the Modelica language defined on the 

lowest level by discrete (event-based), differential, and algebraic equations. The developed 

Petri net components models are structured in a Modelica library called PNlib (Petri Net 

library). An appropriate Modelica-tool then enables graphical and hierarchical modeling, 

hybrid simulation, and animation. 

To simplify the modeling process and, in addition, to give all involved researchers an adapted 

view of the model at a specific level of detail, the models have to be constructed in a 

hierarchical structure. The Petri nets on the one hand and the Modelica language on the other, 

enables hierarchical modeling concepts by wrapping the basic Petri net elements into sub-

models which represent specific processes or reactions used many times in the same or in 

different models. Wrappers for common biological reactions and processes are summarized in 

the Modelica library PNproBio (Petri Nets for process modeling of Biological systems). 

In addition to the modeling concept (xHPN) and libraries (PNlib and PNproBio), appropriate 

mathematical methods are needed for analyzing the established models in order to determine 

the model parameters, evaluate their robustness towards small changes, simulate 

deterministically as well as stochastically, and optimize and control the underlying biological 

processes. All these mathematical methods are available within one MATLAB-tool, called 

AMMod (Analysis of Modelica Models). Together with the powerful xHPN formalism and 

the PNlib as well as the PNproBio, all steps of the modeling process are covered by this new 

environment. 

The general modeling procedure as well as the applicability of the developed concepts and 

tools is shown exemplarily by modeling the xanthan production of Xanthomonas campestris 

bacteria. 
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1 INTRODUCTION 

1.1 MOTIVATION 

Conditioned by the huge memory capacity and the possibilities of modern computer 

techniques, new data is produced incessantly in all imaginable areas of life. This pertains also 

to the biological sciences; modern high throughput experiments generate an enormous 

amount of data stored in large databases. This data is indispensable but does not necessarily 

lead to insight about the functionality of biological systems. Hence, the question arises: How 

is it possible to achieve usable knowledge from this huge amount of data? 

One possible approach is to transform the data of biological systems as well as knowledge 

about functions, interactions, and relationships into a mathematical model. A mathematical 

model provides a means for summarizing and structuring experimental data in order to 

simplify the communication of knowledge progresses with other researchers. Additionally, it 

improves the understanding of the living system and allows the directed design of 

experiments by predicting the system behavior under specific conditions and proving by 

experimentation. Models cannot replace experiments but they can help plan them and improve 

as such the employment of resources. The modeling approach enables a ranking of the 

experiments to execute those where are most economical in terms of both time and financial 

costs. This economical aspect of modeling and simulation is of great interest. The in-silico 

design of experiments with virtual cells is used, for example, in the development of 

pharmaceuticals to reduce animal testing. 

Once a model is established, hypotheses about system properties and behavior can be derived. 

These hypotheses can be validated in parallel by in-silico and in-vitro experiments. 

Simulation data is produced in-silico by simulating the model and experimental data is gained 

in-vitro from the wet-lab. Such an iterative process leads to new knowledge about the 

regarded systems. But the cycle of simulations and wet-lab experiments can also be 

performed successively. Then, the in-silico simulations firstly identify the experiments which 

are indeed necessary and optimize the experimental design. 
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In general, a strong interaction is essential between experimental data collection and 

theoretical computer-based modeling and simulation. Hence, investigators from the 

disciplines biology, mathematics, informatics, and systems science have to work together 

interdisciplinarily. The biologists provide biological phenomena to investigate, the required 

experimental data and a first visualization of the model. This first visualization is specified by 

system scientists, and mathematicians as well as computer scientists therefore contribute the 

necessary modeling, simulation, and analysis tools. 

Numerous model formalisms have been proposed for modeling and simulation biological 

systems (see e.g. (Wiechert 2002)). Generally, it has to be distinguished between qualitative 

and quantitative approaches. Qualitative models represent only the fundamental compounds, 

their interaction mechanisms, and the relationships between them while quantitative models 

describe, in addition, the time-related changes of the components. Hence, a qualitative model 

is the basis for every quantitative model and the mentioned improved data basis enables us to 

extend qualitative models to quantitative ones today. Beyond this, quantitative model 

formalisms can be further divided into discrete and continuous approaches as well as 

deterministic and stochastic techniques. 

The decision as to which modeling approach is used is difficult and strongly influenced by the 

availability of data. If all kinetic data is known, models consisting of ordinary differential 

equations are mostly the first choice while in the absence of kinetic data only qualitative 

approaches are usable. An additional difficulty arises in the demand of simultaneously having 

a model which is easy to understand and an abstraction of the real system as well as a detailed 

and nearly complete description of it. Besides, the modeling process of biological systems is 

further complicated by incomplete knowledge, noisy and inaccurate data, and different ways 

of representing data and knowledge. 

Petri nets with their various extensions are a universal graphical modeling concept for 

representing biological systems in nearly all degrees of abstraction. They support the 

qualitative modeling approach as well as the quantitative one. Once a qualitative Petri net 

model has been established, the quantitative data can be added successively. Furthermore, the 

biological processes can be modeled discretely as well as continuously and, in addition, 

discrete and continuous processes can also be combined within one Petri net model to so-

called hybrid Petri nets (see e.g. (David and Alla 2001)). The Petri net formalism with all its 

extensions is so powerful that all other formalisms are included and, hence, only one 

formalism is needed regardless of the approach (qualitative vs. quantitative, discrete vs. 
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continuous, deterministic vs. stochastic) which is appropriate for the respective system. The 

Petri net formalism is easy to understand for all researchers from the different disciplines 

(biology, mathematics, informatics, and system sciences) which have worked together in the 

modeling process and is an ideal way for intuitive representing and communicating 

experimental data and knowledge of biological systems. Petri nets allow hierarchical 

structuring of models and offer the possibility of different detailed views for every observer of 

the model. 

To use Petri nets as a graphical modeling concept for biological systems, the Petri nets, for 

their part, have to be modeled textually by an appropriate language. The object-oriented 

modeling language Modelica, developed and promoted by the Modelica Association since 

1996 for modeling, simulation, and programming primarily of physical and technical systems 

and processes (Modelica Association 2010), is ideally suited for this task. Modelica has 

become the de-facto standard for hybrid, multidisciplinary modeling. Each Petri net element, 

place and transition, can be described with the aid of a model in the Modelica language 

defined on the lowest level by discrete (event-based), differential, and algebraic equations. An 

appropriate Modelica-tool then enables graphical and hierarchical modeling, hybrid 

simulation, and animation. 

However, model construction based on such a strong formalism alone is not all that is needed 

for a good working model which can be simulated. Usually, the constructed model comprises 

several parameters like speed constants or yield coefficients which have to be estimated. 

Several databases are already available which summarize these specific parameters, for 

example, the database BRENDA, which provides a collection of enzyme functional data 

(Schomburg et al. 2002). If the required parameters are not listed in databases or publications, 

they have to be estimated by experiments. But sometimes these experiments are too 

expensive, imprecise, or not even feasible. In these cases, specific mathematical optimization 

methods can provide means to adapt the model behavior to the given experimental data as 

well as possible. This procedure is called parameter estimation. Direct linked with it is the 

sensitivity analysis of model parameters which identify, optimize, reduce, and verify the 

model. 

Furthermore, particular mathematical optimization methods enable the optimization of 

biological processes, called process optimization. This plays an important role in industrial 

biotechnology. Based on a model, it is thus possible to control biological processes in the best 

possible way and to gain maximum product yields from the cultivated organisms. 
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1.2 OBJECTIVES 

The main objective of this work is the development of a general, universally usable 

modeling process for biological systems from observing a phenomenon to a “well-working” 

parameterized model which is able to predict the behavior of the underlying system and forms 

the basis for optimizing biological processes. 

Directly connected to this is the aim to provide researchers from different disciplines an 

environment which comprises methods and tools for covering all steps of the developed 

modeling process. Therefore, specific adapted mathematical concepts, formalisms, and 

methods are of crucial importance to enable 

 Data preprocessing and relationship analysis, 

 Graphical, hierarchical modeling,  

 Deterministic and stochastic hybrid simulation and animation,  

 Parameter estimation, 

 Sensitivity analysis, and 

 Process optimization. 

As mentioned before, it has become apparent that Petri nets with their various extensions are 

the ideal modeling formalism which is universally applicable for all different kinds of 

biological phenomena. They provide an intuitive and generally comprehensible way for 

representing and communicating experimental data and knowledge of biological systems. 

Despite several works and publications with Petri net approaches, there is a serious problem 

regarding the lacking unity of concepts, notations, and terminologies. The definition of Petri 

nets is not standardized; every author has his/her own definitions which are partially not 

accurate enough, not common, or even contradictory. Hence, to show the research community 

the power of Petri nets, they need to be precisely defined together with the corresponding 

processes which are essential for the simulation. This has been done within this work; based 

on the Petri net initially introduced by Carl Adam Petri in 1962 (Petri 1962), a formalism has 

been developed which is able to represent nearly all kinds of biological processes. It is now 

called extended Hybrid Petri Nets and abbreviated with xHPN. 

This clear and precise definition alone is not sufficient. Once a Petri net model is created, one 

would like to simulate it for predicting the behavior under different parameter settings, for 

example, to optimize the experimental design. Therefore, the precise definitions of Petri nets 
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and their corresponding processes are an imperative necessity. The Petri nets for their part, 

have to be modeled with an appropriate language. As mentioned before, the object-oriented 

modeling language Modelica is ideally suited for this task. A proper Modelica-tool then 

enables the graphical and hierarchical modeling, hybrid simulation and animation of Petri 

nets. Within this work, an innovative Modelica Petri net library has been developed called 

PNlib (see also Proß and Bachmann 2009, Proß and Bachmann 2011a, Proß and Bachmann 

2011b, Proß and Bachmann 2012b). 

To simplify the modeling process itself and, in addition, to give all involved researchers an 

adapted view of the model at a specific level of detail, the models have to be constructed 

within a hierarchical structure. The Petri nets on the one hand and the Modelica language on 

the other enables such hierarchical modeling concepts by wrapping the basic Petri net 

elements into sub-models which represent specific processes or reactions used many times in 

the same or in different models. Wrappers for common biological reactions and processes are 

summarized in the Modelica library PNproBio (Petri Nets for process modeling of Biological 

systems) (see also Proß et al. 2009, Proß and Bachmann 2011a, Proß and Bachmann 2011b, 

Proß and Bachmann 2012a). 

In addition to the modeling concept (xHPN) and tool (PNlib and PNproBio), appropriate 

mathematical methods are needed for analyzing the established models in order to determine 

the model parameters, evaluate their robustness towards small changes, simulate 

deterministically as well as stochastically, and optimize and control the underlying biological 

processes. All these mathematical methods are available within one MATLAB-tool, called 

AMMod (Analysis of Modelica Models). Together with the powerful xHPN formalism and 

the PNlib, all steps of the modeling process are covered by this new environment (see also 

Proß and Bachmann 2012a). 

1.3 STRUCTURE 

This work is structured in the following way, which is also depicted in Figure 1.1. At first, 

related works are presented to strengthen the demand of a powerful modeling formalism, a 

new modeling tool, and analysis methods especially for biological systems. 
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Chapter 3 comprises the basics which are needed to realize the modeling process. Thereby, 

the first section introduces the Modelica language concepts which are essential for modeling 

the components of xHPN, places and transitions, for their part with the Modelica language. 

The next section comprises optimization methods to enable parameter estimation and process 

optimization of biological models. Several local, global, and hybrid optimization methods are 

presented which are applicable to solve the respective optimization problem. Additionally, 

methods for sensitivity analysis are proposed in Section 3.3 to improve the procedure of 

parameter estimation and to reduce the model complexity. 

 
Figure 1.1: The structure of this work 

Chapter 4 precisely defines the developed Petri net concepts from the basic one up to the 

extended hybrid Petri nets (xHPN) and serves as the basis for the implementation of the 

xHPN formalism in order to model and simulate biological processes. 
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Chapter 5 describes the developed modeling process and how the basic concepts, presented 

in Chapter 3, and the xHPN formalism are particular adapted for biological processes. 

In Chapter 6, it is described how the Modelica language is used for implementing the 

components of xHPN structured in a Modelica library called PNlib. Additionally, the 

modeling, simulation, and animation of xHPN with the Modelica-tool Dymola are described. 

Furthermore, the Modelica library PNproBio (Petri Nets for process modeling of Biological 

systems) is presented which comprises wrappers for common biological reactions to simplify 

the modeling process and, in addition, to improve the view of a model. Thereafter, it is 

explained how Dymola and Matlab/Simulink are connected to establish a bridge from PNlib, 

the modeling-tool, to AMMod, the analysis tool. The functionality and usage of this analysis 

tool for Modelica models is then described in the next section. 

Chapter 7 demonstrates exemplarily the modeling process as well as the application of the 

tools developed in this work by the xanthan production of Xanthomonas campestris 

bacteria. Thereby, the chapter focuses on describing the general procedure of modeling but 

not on the selected example. Hence, no new insights about the bacteria and the xanthan 

production are presented due to using pseudo experimental data; but rather the usage of the 

developed environment is shown as well as the power and suitability is proven. Thereby, all 

steps of the modeling process are performed exemplarily by models with different 

complexities. Furthermore, the performance of the optimization methods for parameter 

estimation and process optimization are tested and rated. Additionally, sensitivity analysis is 

applied in order to improve the parameter estimation procedure. Moreover, a stochastic Petri 

net model of the xanthan production is constructed to compare the results of the stochastic 

hybrid simulation with those of the deterministic hybrid simulation. 

Finally, Chapter 8 summarizes and discusses the results of this work and provides an outlook 

of ongoing and further extension possibilities. It is shown that the developed modeling and 

analysis concepts are not restricted to biological processes; they are universally usable for 

nearly all processes like business processes, production processes, traffic processes etc. Most 

of all it has come to light that the xHPN formalism in Modelica is an ideal all-round 

modeling concept for graphical and hierarchical modeling, simulation, and optimization of 

various hybrid processes. 
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2 RELATED WORKS 

This chapter comprises related works corresponding to this study. At first, Petri net 

approaches for modeling biological processes are introduced and the demand for a precise 

definition of Petri nets and their corresponding processes which are necessary for simulation 

is clarified. Afterwards, tools dealing with the hybrid Petri net formalism are listed, in 

particular, two common tools, Cell Illustrator and Snoopy, are presented which support the 

modeling of biological systems by means of the hybrid Petri net formalism. The last section 

comprises already existing Petri net approaches in Modelica and makes clear why these 

approaches are not sufficient for modeling biological systems. 

2.1 PETRI NET APPROACHES FOR MODELING 

BIOLOGICAL PROCESSES 

The Petri net formalism was first introduced by Carl Adam Petri in 1962 for modeling and 

visualization of concurrency, parallelism, synchronization, resource sharing, and non-

determinism (Petri 1962). A Petri net is a graph with two different kinds of nodes, called 

transitions and places; thereby, places and transitions are connected by arcs. Every place in a 

Petri net can contain an integer number of tokens. These tokens initiate transitions to fire 

according to specific conditions. These firings lead to changes of the tokens in the places. 

Reddy et al. propose firstly to apply this formalism for biological network modeling in order 

to represent and analyze metabolic pathways in a qualitative manner (Reddy et al. 1993). 

Thereby, places represent biological compounds such as metabolites, enzymes, and cofactors 

which are part of biochemical reactions. These biochemical reactions are modeled by 

transitions and their stoichiometry is represented by the arc weights. In addition, the tokens 

indicate the presence of compounds. Reddy et al. showed that the Petri nets were a suitable 

approach for qualitative analysis of metabolic pathways. Properties of Petri nets such as 

liveness, reachability, reversibility, fairness, structural reduction, and invariants were applied 

to identify characteristics of the modeled systems. 
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Hofestädt adapted the Petri net formalism to metabolic network modeling (Hofestädt 1994). 

His approach allows the combination of analytic and discrete modeling in order to model 

metabolic processes in a natural manner by a new specialized graphical representation based 

on Petri nets. 

Moreover, Hofestädt and Thelen expanded the approach of Reddy by introducing functional 

Petri nets to enable quantitative modeling of biochemical networks (Hofestädt and Thelen 

1998). Thereby, the arc weights are functions which depend on concrete markings of places in 

order to model kinetic effects. The tokens then represent the concentration level of a 

biological compound. 

Due to the fact that a random behavior of molecular reactions at low concentrations has been 

observed in many experiments, Goss and Peccoud introduced stochastic Petri nets (Goss and 

Peccoud 1998). A stochastic transition fires not instantaneously but with a time delay 

following an exponential distribution which may depend on the token numbers of the places. 

They illustrated their method by examples of gene regulation and biochemical reactions. 

A reasonable way for modeling concentrations of biological compounds is by places 

containing real token numbers instead of integers and transitions which fire as a continuous 

flow specified by an assigned speed. The transformation from the discrete to the continuous 

Petri net concept was first introduced by David and Alla in 1987 (David and Alla 1987) and 

they replaced the term token by mark because tokens relate mostly to integer quantities. 

Furthermore, Alla and David proposed combining the discrete and the continuous Petri net 

concept to so-called hybrid Petri nets (Alla and David 1998). A hybrid Petri net contains 

discrete places with integer tokens and discrete transitions with time delays as well as 

continuous places with non-negative real marks and continuous transitions with firing speeds. 

Matsuno et al. used this approach for modeling gene regulatory networks by discrete and 

continuous processes (Matsuno et al. 2000). They improved this approach further by adding 

the properties of functional Petri nets to it so that the arcs as well as the speeds of the 

transitions are functions depending on the marks of the places (Matsuno et al 2003). This 

modification is called hybrid functional Petri nets. Additionally, they extended the hybrid 

functional Petri nets by two specific arcs, called test and inhibitor arcs (Matsuno et al 2003), 

to accomplish the modeling of inhibition and activation mechanisms of biological reactions. If 

places are connected with test or inhibitor arcs to transitions, their markings are not changed 

during the firing processes. The markings are only read to influence the time of firing. In the 
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case of a test arc, the connected place must have more tokens than the arc weight and in the 

case of an inhibitor arc, the connected place needs less tokens than the arc weight to enable 

firings of the transition. Chen and Hofestädt as well as Doi et al. demonstrated the 

applicability of this approach by modeling molecular networks (Chen and Hofestädt 2003, 

Doi et al. 2004). 

Moreover, Nagasaki et al. extended the hybrid functional Petri nets further by types with 

which various data types can be regarded to model more complex biological processes which 

involve various kinds of biological information and data (Nagasaki et al. 2004). They called 

this approach hybrid functional Petri nets with extensions (HFPNe). 

Despite these mentioned works and publications, there is a serious problem because of the 

lacking unity of concepts, notations, and terminologies. The definition of Petri nets is not 

standardized; every author has personal definitions which are partly not accurate enough, not 

common, or contradictory. Hence, to show the research community the power of Petri nets, 

they have to be precisely defined together with the corresponding processes which are 

essential for the simulation. This has been done within this work; based on the Petri net 

initially introduced by Carl Adam Petri in 1962 (Petri 1962), a formalism has been developed 

which is able to represent nearly all kinds of biological processes. It is called extended Hybrid 

Petri Nets and abbreviated with xHPN. 

2.2 PETRI NET TOOLS 

Several tools are available for modeling most differing applications by means of the Petri net 

formalism; an overview can be found in (Petri Net World 2012). Only a few of them are able 

to simulate hybrid Petri nets; all common tools according to present knowledge are listed in 

Table 2.1. Two of them were developed specially for modeling biological processes with the 

aid of hybrid Petri net formalism. The first is the commercial tool Cell Illustrator and the 

second is the freely available tool Snoopy. They are described in detail hereafter to clarify the 

demand for a new environment for modeling and analyzing biological systems. The reasons 

why other tools are unsuitable for this work are summarized in Table 2.1. 
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CELL ILLUSTRATOR 

The Cell Illustrator, Genomic Object Net called before, is a commercial, widely-used tool 

available as a Java Web Start application which enables the drawing, modeling, elucidating, 

and simulating of complex biological processes and systems based on hybrid functional Petri 

nets with extensions (Nagasaki et al. 2010). This is an extension of the hybrid functional Petri 

net concept by types with which various data types can be regarded to model more complex 

biological processes which involve various kinds of biological information and data. 

Additionally, discrete and continuous processes can be connected to perform hybrid 

simulations. 

The models can be created with the standard Petri net elements or specific icons for several 

biological entities and processes which allow an ontology representation of the considered 

biological system. It is also possible to model ODEs with continuous Petri net elements by 

setting all input connector weights to “nocheck”. 

The Cell Illustrator offers two simulation engines: a standard engine and a simulation engine 

code generator (SECG) (University of Tokyo 2010). Both engines return the same results but 

the SECG executes the simulation in a different way. At first, the Java source code is 

generated for the model to be simulated and afterwards it is executed as a usual Java program. 

Since version 4.0, it is possible to use additional modules that are provided on servers based 

on the SaaS (Software as a Service)-technology. One of them is the Pathway Parameter 

Search Module which executes multiple simulations at once with many initial conditions. 

The drawback of the Cell Illustrator is that the simulation is like a “black box”. There is no 

information about the following points: 

 how the Petri nets and the corresponding processes are defined which are necessary for 

modeling and simulation, e.g. how conflicts in Petri nets are resolved, 

 how the hybrid simulation is performed, and 

 which integrators are used; in addition, there is no possibility to adapt solver settings in 

order to achieve reliable simulation results. 

Furthermore, at the decision point to implement a new tool, the simulation of the Cell 

Illustrator does not work in a correct manner. Reactions could proceed backward if specific 

arc weight functions become negative during simulation. This problem has been investigated 
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and is solved in the current version 5.0. Additionally, several simulations of continuous test 

models show a barely comprehensible undesirable behavior. Moreover, the conversion from 

discrete processes to continuous processes and vice versa is interpreted in a different way than 

is required and defined in this work. If, for example, a continuous place is connected to a 

discrete transition, this discrete transition fires continuously by deducting the arc weight from 

the marking at the time of the delay. The discrete transition of the developed PNlib always 

fires in a discrete manner regardless of whether it is connected to a continuous or discrete 

place (see Figure 2.1). 
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Figure 2.1: Different results of a hybrid Petri net simulated with the Cell Illustrator (left) and 

the PNlib in Dymola (right). A discrete transition connected to a continuous place 
fires continuously if the Cell Illustrator is used while it fires discretely if the 
PNlib is used. 

The analysis methods of the Cell Illustrator are also limited to parameter scans over a desired 

range. According to present knowledge, there is no possibility to perform sensitivity analysis, 

parameter estimation, process optimization, and stochastic simulation. 

SNOOPY 

Snoopy is a freely available unifying Petri net framework to investigate biomolecular 

networks (Rohr et al. 2010). A Petri net can be modeled time-free (qualitative model) or its 

behavior can be associated with time (quantitative model) such as stochastic, continuous, and 

hybrid Petri nets; thereby, different models are convertible into each other. It is also possible 

to structure the models hierarchically in order to manage complex networks. 
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A set of stiff and non-stiff solvers are available to perform the deterministic simulation of a 

continuous Petri net. The stochastic simulation of a stochastic Petri net is executed by 

Gillespie’s exact algorithm (Gillespie 1977). The synchronization of deterministic and 

stochastic simulation of a hybrid Petri net is achieved with a specific algorithm detailed by 

(Herajy and Heiner 2010). 

Petri nets created with Snoopy can be analyzed qualitatively with the aid of the tool Charlie 

(BTU Cottbus 2011). The main features of Charlie are: analysis of structural properties, 

invariant based analysis, and reachability graph-based analysis. 

The drawback of Snoopy is that a continuous Petri net is interpreted as a graphical 

representation of a system of ordinary differential equations. Hence, the general Petri net 

property of non-negative tokes cannot be maintained during simulation (see Figure 2.2). 

Additionally, at the decision point to implement a new tool, hybrid Petri nets were not 

supported by Snoopy, which is now possible (Herajy and Heiner 2010). But not all conflict 

situations of hybrid Petri nets are trapped and, thus, negative markings can occur. 

Furthermore, places cannot be provided with capacities and no functions can be assigned to 

arcs in hybrid Petri nets. There are also a limited number of predefined kinetic functions 

which complicates the modeling process. Moreover, there is no possibility to perform 

sensitivity analysis, parameter estimation, or process optimization with Snoopy according to 

present knowledge. 

SNOOPY PETRI NET LIBRARY
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Figure 2.2: Different results of a continuous Petri net simulated by Snoopy (left) and the 

PNlib in Dymola (right). Snoopy interprets a continuous Petri net as a graphical 
representation of a system of ODEs while the PNlib preserves the Petri net 
properties by transforming the discrete concept to a continuous one (see 
Section 4.4). 
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Table 2.1: Overview of tools for modeling by hybrid Petri nets 

 Features
Overview Petri nets supported Components Environment Drawback 

Cell Illustrator 
commercial 
(Nagasaki et al. 2010) 
http://www.cellillustrator.com/ 

Timed Petri nets, 
Stochastic Petri nets, 
Continuous Petri nets, 
Hybrid Petri nets 
(Hybrid functional Petri 
nets with extensions) 

Graphical editor, 
Animation 

Java  Simulation like a “black box”. 
 Conversion of discrete to continuous 

markings and verse versa is interpreted in 
a different way. 

 Post-processing of simulation results is 
limited to parameter scans. 

HISIm 
free of charge 
(Amengual 2009) 
http://sourceforge.net/projects/hisi
m/ 

Timed Petri nets, 
Colored Petri nets, 
Hybrid Petri nets 
(Differential Petri nets) 

Graphical editor, 
Animation 

Java  Continuous places cannot be provided 
with capacities. 

 Discrete places cannot be provided with 
lower capacities. 

 The firability of discrete transitions is not 
influenced by the capacities of discrete 
places. 

 No conflicts are regarded and solved. 
 Discrete places must not be connected to 

continuous transitions even if they are 
input as well as output of the transition 
with arc of same weights. 

 Continuous places must not be connected 
to continuous transitions by inhibitory 
arcs. 

 Arc weights of continuous places can be 
negative. 

 Markings of continuous places can be 
negative. 

 The markings of continuous places 
cannot be decomposed. 

 When a discrete transition becomes 
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active, tokens of the input places are 
reserved for firing. 

 Continuous transitions can only be 
inactivated by connections to discrete 
places via test and inhibitory arcs. 

HYPENS 
free of charge 
(Sessego et al. 2008) 
http://www.diee.unica.it/automatic
a/hypens/ 

Timed Petri nets, 
Stochastic Petri nets, 
Continuous Petri nets, 
Hybrid Petri nets 
(First-order hybrid Petri 
nets) 

Textual editor MATLAB  No graphical user interface is supported. 
 No inhibitory and test arcs are supported. 
 No capacities are supported. 
 The firing speeds of continuous 

transitions have to be constant between 
events. 

SimHPN 
commercial 
(Júlvez and Mahulea 2012) 
http://webdiis.unizar.es/GISED/?q
=tool/simhpn 

Timed Petri nets, 
Stochastic Petri nets, 
Continuous Petri nets, 
Hybrid Petri nets 

Graphical editor, 
Structural 
analysis 

MATLAB 
R2008a or 
newer 

 The firing speed of continuous 
transitions cannot be arbitrary functions. 
They are restricted to infinite and product 
server semantics. 

 Only conflict resolutions for discrete 
transitions are regarded. This conflict 
type is solved probabilistically with all 
transitions of the same probability. 

 No inhibitory and test arcs are supported. 
 No capacities are supported. 
 No information about processes 

important for simulation (firing, 
conversion discrete to continuous v.v. 
etc.) is available. 

Snoopy 
free of charge 
(Rohr et al. 2010) 
http://www-dssz.informatik.tu-
cottbus.de/DSSZ/Software/Snoopy 

Timed Petri nets, 
Stochastic Petri nets, 
Continuous Petri nets, 
Hybrid Petri nets 

Graphical editor, 
Animation, 
Structural 
analysis (Charlie) 

Linus, 
Windows, 
Mac OS X 

 Continuous Petri net is interpreted as 
system of ordinary differential equations. 

 Not all conflicts situations are trapped. 
 Places cannot be provided with 

capacities. 
 No functions can be assigned to arcs in 
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hybrid Petri nets. 
 Limited number of predefined kinetics. 
 No possibility to use simulation results 

for post-processing. 
Visual Object Net++ 
free of charge 
(Drath 2002) 
http://www.r-drath.de/Home/ 
Visual_Object_Net++.html 

Timed Petri nets, 
Hybrid dynamic nets, 
Hybrid object nets 

Graphical editor, 
Animation, 
Structural 
analysis 

Windows  The updating is stopped. It was further 
developed by the Genomic Object Net-
Project from which the commercial tool 
Cell Illustrator arises. 

 Input and Output arcs of continuous 
transitions have always the weight one. 

 Firing speeds can become negative. 
 The markings of continuous places can 

be negative. 
 Discrete places must not be connected to 

continuous transitions even if they are 
input as well as output of the transition 
with arc of same weights. 

 Continuous places must not be connected 
to continuous transitions by inhibitory 
arcs. 
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As Table 2.1 clearly shows, no current tool functions without drawbacks and can interpret the 

hybrid Petri net formalism as needed for modeling biological systems in this work. Hence, 

these problems led to the development of a new Petri net simulation environment specified by 

the xHPN formalism and corresponding definitions for processes important for simulation. 

This new environment enables among others 

 a simulation like a white box, i.e. all processes are defined precisely, 

 that negative markings and arc weights cannot occur during simulation because quantities 

of biological compounds cannot become negative, 

 the solution all possible conflicts which could occur during simulation in order to get 

reliable results; for example, modeling biological processes requires often the solution of 

conflicts at random due to the fact that the phenomenon is also a random process in nature 

or it has not yet been exactly investigated, 

 the support of inhibitory and test arcs to model inhibition and activation mechanisms, 

 the possibility to use the arising simulation results for post-processing, 

 an object-oriented implementation which allow an easy way to maintain, extend, and 

modify the Petri net component models. 

2.3 PETRI NETS IN MODELICA 

There are already three Petri net libraries available on the Modelica homepage (Modelica 

Association 2011). The first was developed by Mosterman et al. and enables the modeling of 

a restricted class of discrete Petri nets, called normal Petri nets (Mosterman et al. 1998). The 

places of normal Petri nets can only contain zero or one token. Additionally, all arcs have the 

weight one and external signals initiate the firing of transitions. If a conflict occurs between 

two or more transitions, the transition with the highest priority fires. Hence, only deterministic 

behavior is represented by this kind of Petri net. 

The second Petri net library is an extension of the previous one and was developed by 

Fabricius (Fabricius 2001). The places are able to contain a non-negative integer number of 

tokens and can be provided with non-negative integer minimum and maximum capacities. 

Furthermore, the transitions are timed with fixed or stochastic delays. 
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The third library, called StateGraph, is based on Grafcharts which combines the function chart 

formalism of Grafcet with the hierarchical states of Statecharts (Johnsson and Årzén 1999). 

The StateGraph library is part of the Modelica standard library and was developed by Otter et 

al. (Otter et al. 2005). 

 
Figure 2.3: Relationships between the different formalisms 

The relationships between the mentioned concepts are displayed in Figure 2.3. To enable 

modeling of biological systems with Petri nets in Modelica, the existing libraries have to be 

extended by the following aspects: 

 Transfer of the discrete Petri net concept to a continuous one, 

 Support of arcs with (functional) weightings, 

 Support of test-, inhibitor, and read arcs, 

 Support of (different) conflict resolutions (random decisions), 

 Combination of discrete and continuous Petri net elements to hybrid Petri nets. 
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3 BASICS 

This chapter comprises all basic techniques and methods that are necessary to accomplish the 

developed modeling process as depicted in Figure 5.1. At first, the object-oriented modeling 

language Modelica is introduced which is used to build up mathematical models of biological 

processes based on the xHPN formalism specified in Chapter 4. The Modelica language 

satisfies all requirements (see Section 6) and allows the programming of places and transitions 

of xHPNs. The Modelica constructs and principals used to implement the components of 

xHPNs are subsequently explained. Afterwards, optimization methods are introduced which 

are needed to perform parameter estimation and process optimization. Parameter estimation is 

used to find the parameters of a model if the concrete experiments are too expensive, too 

inaccurate, or even unfeasible. However, process optimization is performed based on a 

verified model to gain an optimal control of the biological process in order to achieve, for 

example, maximum product from the cells. Finally, methods for sensitivity analysis are 

introduced that help reduce the complexity of the model and give some indication of the 

verification. 

3.1 THE MODELICA LANGUAGE 

This section introduces the Modelica language constructs used to implement places, 

transitions, and arcs of the xHPN concept developed for biological applications (xHPNbio, 

see Section 5.2). For the syntactic meta symbols the extended Backus-Naur form is used 

(Scowen 1993). The object-oriented concept of Modelica is based on classes. From an 

implemented class any numbers of objects can be generated which are said to be instances. A 

Modelica class usually consists of a variable declaration part and an equation section which 

contains the equations for the declared variables. Example 3.1 shows a typical class structure 

with an upper part for the declarations and a lower part for the corresponding equations. A 

class can also contain annotations. Annotations are additional information associated with 

the model to specify, for example, the graphical representation, documentation text, version 
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handling, code generation, simulation, or the graphical user interface. Annotations are 

implemented by the following syntax 

annotation(annotationElements); 

Example 3.1 

class className 
declaration1 
declaration2 
...  

equation  
equation1  
equation2  
...  

end className; 

3.1.1 VARIABLES 

Variables, also called components, can either be declared by a built-in data type of Modelica 

(Boolean, Integer, Real, String, enumeration(…)) or by an instance of another 

class. It has to be distinguished between discrete-time and continuous-time variables. 

Discrete-time variables can change their values only at event instants (see Section 3.1.6) 

while continuous-time variables can change their values at any time. 

Variables can be provided with the following prefixes that gives them specific properties: 

 constant: the constant prefix determines that the variable never changes its value. 

 parameter: the parameter prefix determines that the variable is constant during a 

simulation run but can be changed between two simulation runs to modify the model 

behavior. It is a static variable that is initialized once and never changed thereafter. 

 input: the input prefix determines that the equation for such a variable is not provided in 

the model but rather by connected components. 

 output: the output prefix determines that the value of such a variable is utilized by 

connected components. 

 discrete: the discrete prefix determines that such a variable is a discrete-time variable. 

 inner: the inner prefix declares a property that should be common to all components of 

a model and, hence, accessible from within those components. 

 outer: the outer prefix references an element instance with the same name but using the 

prefix inner. The lookup is performed through the instance hierarchy instead of through 

the class nesting hierarchy. (Inner and outer components are used to define common 
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properties for the animation of a Petri net (see Section 6.2) or to model a fermentation 

process by which the volume is changed during fermentation. Then, the current volume is 

needed within several model components to recalculate the concentrations of substances 

(see Section 6.2).) 

The default start values of variables are zero and false in the case of Booleans. Other start 

values have to be set by the start attribute within brackets after the name of the variable. 

Example 3.2 comprises some variable declarations with prefixes and specified start values. 

Example 3.2 

parameter Real realA=6.7; 
Integer intB(start=8); 
parameter String strC="Hello World"; 
Boolean boolD(start=true); 
discrete Integer intE; 
constant Real realF=9.81; 

Variables can have higher dimensions than one, so-called arrays. Arrays are a collection of 

variables all of the same type. They are declared with the dimension size within square 

brackets after the variable name. If the size of an array is unknown, the brackets contain 

colons. This is mainly used for input arguments of functions (see Section 3.1.4). 

Example 3.3 

Real v1[3]={1,2,3};    //3-dimensional vector 
Real m1[3,3]={{1,2,3},{3,4,5},{7,8,9}}; //3x3 matrix 
Real v2[:];     //vector v2 has unknown size 

Several built-in functions related to arrays are available. The following table summarizes 

some of them. 

Table 3.1: Built-in functions related to arrays 

zeros(n1,n2,...) Returns a ݊1 ൈ ݊2 ൈ … matrix with zero-elements. 
fill(s,n1,n2,...) Returns a ݊1 ൈ ݊2 ൈ …  matrix which is filled with the scalar s. 
size(A,i) Returns the size of the dimension i of the array A. 
sum(A) Returns the sum of all elements of the array A. 

3.1.2 EQUATIONS 

Equations are more powerful than assignment statements known from other programming 

languages like C++ or Java. The equation 

a+b=c; 
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can be used in three different ways according to assignment statements 

a:=c-b; 
b:=c-a; 
c:=a+b; 

i.e. the variable a can be computed from c and b, the variable b can be computed from c and 

a, or the variable c can be computed from a and b. To distinguish between equations and 

assignment statements, the latter are expressed by := in Modelica and only allowed in 

algorithm sections or functions (see Section 3.1.3 and 3.1.4) but not in equation sections. 

Equations can be classified into four different groups (Fritzson 2004, Modelica Association 

2010): 

 Normal equations which are part of equation sections. 

 Declaration equations which are part of variable declarations. 

 Modification equations which are used to modify attributes of variables. 

 Binding equations comprise declaration equations and modification equations. 

 Initial equations which are part of initial equation sections or used to modify the start 

attribute. 

NORMAL EQUATIONS 

Normal equations appear in the equation section of a model which begins with the keyword 

equation (see Example 3.1). They comprise the following types of equations 

 Simple-equality-equations with the syntax 

simpleExpression "=" expression 

Simple-equality-equations determine an equality relationship between two expressions 

which is well-known from mathematics. 

 For-equations with the syntax 

for forIndices loop 
{ equation ";" } 

end for ";" 

For-equations can express repetitive equation structures in a compact manner. 

 Connect-equations with the syntax 

connect "(" componentReference "," componentReference ")" ";" 

Connect-equations generate connections between two components to enable interaction 

(see Section 3.1.4). 

 If-equations with the syntax 
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if expression then 
{ equation ";" } 

{ elseif expression then 
{ equation ";" } 

} 
[ else 

{ equation ";" } 
] end if ";" 

If-equations are conditional equations which can contain discrete-time variables as well 

as continuous-time variables. If the variables of the if-equations are not specified with 

parameter or constant, the else part has to be included. Each part (if, elseif, 

else) must have the same number of equations. 

 When-equations with the syntax 

when expression then 
{ equation ";" } 

{ elsewhen expression then 
{ equation ";" } } 

end when ";" 

When-equations are conditional equations which can only contain discrete-time variables 

in contrast to if-equations. The equations within a when-equation are only active at event 

instants (see Section 3.1.6). 

DECLARATION EQUATIONS 

Declaration equations appear in the declaration part of a model, usually, in term of parameter 

and constant declarations, e.g. 

parameter Integer a=5; 
constant Real g=9.81; 

MODIFICATION EQUATIONS 

Modification equations also appear in the declaration part of a model. They are used to 

modify the default values of attributes of a variable, e.g. 

Real b(start=8.87); 

(see also Example 3.7). 



24  3 Basics 

 

INITIAL EQUATIONS 

Initial equations define the values of variables at the initial time, usually time=0, to compute 

their evaluation over time. This can either be done by setting the start-attribute (see 

Example 3.2) or by equations in the initial equation section (see Example 3.4). 

Example 3.4 

class className 
declaration1 
declaration2 
...  

equation  
equation1  
equation2  
...  

initial equation  
initialEquation1 
initialEquation2; 
...  

end className; 

3.1.3 ALGORITHMS 

Besides the mentioned equation and initial equation sections, a model can also have an 

algorithm section introduced by the keyword algorithm (see Example 3.5). It consists of a 

sequence of statements which are executed in the order of their appearance. 

Example 3.5 

class className 
declaration1 
declaration2 
...  

equation  
equation1  
equation2  
...  

algorithm 
statement1 
statement2; 
...  

end className; 

Additionally, the variable has to be on the left-side of an assignment and the assigned value is 

on the right-side. To distinguish between equations and statements, the assignment operator is 

chosen to be ":=", e.g. y:=8*x-5, whereby y is the variable and 8*x-5 is the assigned value. 
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The following types of statements can be used within algorithm sections 

 Simple-assignment-statements with the syntax 

componentReference ":=" expression 

Simple-assignment-statements have on the left-side a variable and on the right-side the 

assigned value; i.e. the expression is evaluated and stored in the variable 

componentReference. 

 For-statements with the syntax 

for forIndices loop 
{ statement ";" } 

end for ";" 

For-statements are a compact manner to express iterations. 

 While-statements with the syntax 

while expression loop 
{statement ";" } 

end while ";" 

While-statements are a compact manner to express iterations by which the range of the 

iteration variable cannot be expressed in a closed form. 

 Break-statements with the syntax 

break; 

Break-statements terminate the execution of for- and while-statements. 

 If-statement with the syntax 

if expression then 
{ statement ";" } 

{ elseif expression then 
{ statement ";" } 

} 
[ else 

{ statement ";" } 
] end if ";" 

If-statements express conditional assignments. 

 When-statement with the syntax 

when expression then 
{ statement ";" } 

{ elsewhen expression then 
{ statement ";" } } 

end when ";" 

When-statements are conditional assignments. The statements within a when-statement 

are only active when the expression becomes true, i.e. they are only executed at event 

instants (see Section 3.1.6). 
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3.1.4 SPECIALIZED CLASSES 

The key concept of the Modelica language is the previously introduced class. This general 

class concept founds the basis for specialized classes which have the same properties as a 

class, apart from restrictions, but also additional properties that make them usable under 

appropriate conditions. They offer a way to make the Modelica code easier to read and 

maintain. The specialized classes are: 

 record: a record is a specialized class to define data structures without behavior. 

Equations are not allowed within a record definition. 

 type: a type is a specialized class to define aliases or extensions of predefined types 

(Real, Integer, Boolean, String, enumeration(…)), records, or arrays. 

 model: a model is a specialized class that is identical to the basic class concept with no 

restrictions or additional properties.  

 block: a block is specialized class with the same properties of a model except the 

restriction that every variable must be either input or output, i.e. all variables have to be 

declared with the prefixes input or output. 

 function: a function is a specialized class to implement mathematical functions. The 

inputs of a function have to be prefixed by input and the results by output. 

 connector: a connector is a specialized class to define the variables that are 

interchanged within a connection between two components. No equations are allowed in a 

connector. 

 package: a package is a specialized class to organize and structure Modelica classes and 

specialized classes. It can contain the declarations of classes, specialized classes, and 

constants while parameters and variables cannot be declared in a package. 

The specialized classes model, block, function, connector, and package are used in 

the Petri net library and are discussed in more detail hereafter. 

MODEL 

The specialized class model has the same properties as a class and is used for modeling 

purposes. Three different equation types can occur in a model: discrete, differential, and 

algebraic equations. Example 3.6 contains these equation types. 
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Example 3.6 

model example 
  parameter Real a=0.8; 
  parameter Real b=1.78; 
  Real c(start=6.7); 
  Real d; 
  discrete Boolean e; 
equation  
  der(c)=-a*c/(b+c); //Differential equation 
  d=-3*c-7.2;   //Algebraic equation 
  when c<3.3 then  //Discrete equation 
    e=true; 
  end when; 
end example; 

The equation 

der(c)=-a*c/(b+c); 

is a differential equation and the corresponding variable c is a continuous-time variable. The 

operator der() accesses the derivative according to time. However, if an equation only 

involves algebraic formulas and no derivatives, it is an algebraic equation. In Example 3.6 the 

equation 

d=-3*c-7.2; 

is an algebraic equation while the equation 

when c<3.3 then 
   e=true; 
end when; 

is a discrete equation because the discrete-time variable e is only recalculated when the 

condition c<3.3 becomes true, i.e. only at event instants (see Section 3.1.6). Equation 

systems that contain algebraic as well as differential equations are called differential 

algebraic equation systems (DAEs) and if discrete equations also appear they are called 

hybrid differential algebraic equation systems (hybrid DAEs) (see Section 3.1.7). 

BLOCK 

A block has the same properties as a model with the restriction that all variables have to be 

either declared by the prefix input or output (see Example 3.7). If a block is used in 

another component, a binding equation has to be provided for each variable with the input-

prefix to guarantee a balanced model (see Section 3.1.5). In Example 3.7 an instance of the 

block blockExample is used in the model modelExample. The variable s of the block has 
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the output-prefix and, hence, the equation is provided in the block. However, the variable u 

has the input-prefix and the equation has to be defined by a binding equation when the block 

is used. It is defined in the model by the equation u=time within brackets after the name of 

the block instance. 

Example 3.7 

block blockExample 
  input Real u; 
  output Real s; 
equation 
  s=sin(u); 
end blockExample; 

model modelExample 
  Real v; 
  blockExample exSin(u=time, s=v); //binding equation for u 
end modelExample; 

FUNCTION 

The specialized class function is used to implement mathematical algorithms with a 

sequence of statements. No equation sections are allowed in functions only algorithm 

sections. A typical structure of a function is outlined in Example 3.8. 

Example 3.8 

function functionName 
input typeI1 in1;  
input typeI2 in2; ...  
output typeO1 out1;  
output typeO2 out2; ...  

protected  
<local variables>  
...  

algorithm  
...  
<statements>  
...  

end functionName; 

The first part of a function declares inputs and outputs using the keywords input and 

output. After the keyword protected, local variables can be declared neither input nor 

output of the function. The algorithmic procedure starts with the keyword algorithm; 

thereby, all types of statements, mentioned in Section 3.1.3, can be used. The function of 

Example 3.9 calculates the sum of vector elements. The input is a vector of unknown size 

which is identified with the operator "[:]" and the output is the scalar y. 
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Example 3.9 

function functionExample 
  input Real x[:]; 
  output Real y; 
algorithm 
  y:=0; 
  for i in 1:size(x,1) loop 
      y:=y+x[i]; 
  end for; 
end functionExample; 

A function can be called from within classes, models, blocks, or other functions by the prompt 

(out1, out2, ...) = functionName(inp1,inp2,...); 

The function of Example 3.9 can be called by 

z = functionExample({1,2,3,8}); 

It is also possible to integrate functions written in C or FORTRAN 77 in the Modelica 

environment. This can be done with the aid of the key word external followed by the 

respective language within quotation marks. The function random of Example 3.10 generates 

a uniformly distributed random number by an external C-function. It has no inputs and returns 

the random number x. The Include annotation specifies the C-file that contains the 

respective implementation. 

Example 3.10 

Modelica function: 

function random  
  output Integer x; 
  external "C" annotation(Include = "#include <random.c>", 

__Dymola_pure=false); 
end random; 

C-function: 

#include <stdlib.h> 
#ifndef RANDOM_C 
#define RANDOM_C 
int random() 
{ 
   static int called=0; 
   int i; 
   if (!called) {  
      srand((unsigned) time(NULL)); 
      called=1; 
   } 
   return rand(); 
} 
#endif 
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Modelica functions are according to the specification (Modelica Association 2010) pure 

which means that 

 Modelica functions are mathematical functions that always return the same result when 

they are called with the same input arguments. 

 Modelica functions are side-effect free with respect to the internal Modelica state. 

 Exception: An impure function is either an impure external function or a Modelica 

function which calls an impure external function. An impure function returns different 

values by calling with the same inputs. They can be called from within a when-equation or 

a when-statement. The function random of Example 3.10 is an example of an impure 

function which has no input arguments and always returns another value when it is 

required. The Dymola tool identifies an impure function by the vendor-specific annotation 

__Dymola_pure=false. 

CONNECTOR 

The specialized class connector is used to implement connectors. Connectors declare 

variables that are interchanged between components. A possible structure of a connector is 

outlined in Example 3.11. 

Example 3.11 

connector connectorName 
input typeI1 in1;  
input typeI2 in2;  
...  
output typeO1 out1;  
output typeO2 out2;  
...  

end connectorName; 

Two connectors can be connected by a connector equation (see Section 3.1.2), e.g. 

connect(connector1, connector2); 

The prefixes input and output define the location of the corresponding equation and 

guarantee in this manner balanced modeling (see Section 3.1.5). When a variable is provided 

with the input-prefix, the equation is part of the connected component while the equation of 

an output variable is located in the component where the connector is used. 
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PACKAGE 

The specialized class package is used to structure and organize Modelica classes. The 

package of Example 3.12 comprises the examples of this and the previous sections. 

Example 3.12 

package packageExample 

function random  
  output Integer x; 
  external "C" annotation(Include = "#include <random.c>", 

__Dymola_pure=false); 
end random; 

block blockExample 
  input Real u; 
  output Real s; 
equation 
  s=sin(u); 
end blockExample; 

model modelExample 
  Real v; 
  example2_6a exSin(u=time, s=v);//binding equation for u 
end modelExample; 

model example 
  parameter Real a=0.8; 
  parameter Real b=1.78; 
  Real c(start=6.7); 
  Real d; 
  discrete Boolean e; 
equation  
  der(c)=-a*c/(b+c); //Differential equation 
  d=-3*c-7.2;   //Algebraic equation 
  when c<3.3 then  //Discrete equation 
    e=true; 
  end when; 
end example; 

function functionExample 
  input Real x[:]; 
  output Real y; 
algorithm 
  y:=0; 
  for i in 1:size(x,1) loop 
      y:=y+x[i]; 
  end for; 
end functionExample; 

end packageExample; 
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3.1.5 BALANCED MODELS 

A Modelica model can only be simulated if the number of variables is equal to the number of 

equations. Since Modelica 3.0 there are additional restrictions so that every model must be 

locally balanced, i.e. the number of variables and equations must be identical on every 

hierarchical level (Olsson et al. 2008). If instances of locally balanced models are used by 

connecting them to a model, this model will automatically have the same number of variables 

and equations. It is said to be globally balanced. Every model or block that can be simulated 

is globally balanced. To guarantee globally balanced models, the following conditions have to 

be maintained: 

 The number of flow variables in a connector must be equal to the number of non-causal, 

non-flow variables (variables without the prefixes flow, input, output, parameter 

and constant). 

 The number of equations of a model must be identical to the number of variables, 

excluding input and flow variables. 

 When a model is used by making an instance of it, all missing equations must be either 

provided by connecting connectors or by a modification equation for every non-connector 

variable with an input prefix. 

A detailed description and definition of locally and globally balanced models can be found in 

(Olsson et al. 2008) and (Modelica Association 2010). 

3.1.6 DISCRETE EVENT AND HYBRID MODELING 

An event is a discrete change when something happens and occurs at a certain point in time. 

Additionally, events in Modelica have the following properties (Fritzson 2004) 

 An event has zero duration. 

 An event occurs when the corresponding event condition switches from false to true. 

 When an event occurs, variables that are associated with the event are changed 

corresponding to their equations, i.e. a set of equations associated with the event becomes 

active. 

This event behavior is engendered in Modelica by when-equations and when-statements (see 

Section 3.1.2 and 3.1.3). 
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when eventCondition then 
eventAction1; 
eventAction2; 
... 

end when; 

 
Figure 3.1: Discrete-time variable ࢞ and continuous-time variable ࢟ 

Variables that change their values at event instants and keep constant otherwise, are called 

discrete-time variables. They have to be declared with the discrete-prefix (see 

Section 3.1.1). However, continuous-time variables usually change their values continuously 

over time. Figure 3.1 shows the time evolution of a discrete-time variable ݔ and a continuous-

time variable ݕ. The discrete-time variable changes its value only at the four event instants 

while the continuous-time variable changes its value continuously entire time. 

 
Figure 3.2: The function pre(x) obtains the value of the discrete-time variable x 

immediately before the event occurs 

Events can be classified according to how they are generated into time events and state 

events. Time events are directly associated with Modelica built-in variable time which 

contains the current simulation time. An event condition of a time event can be, for example, 

time >= eventTime 

which triggers a time event when time=eventTime due to the switch of the event condition 

from false to true at this point in time. Because their occurrence time can be predicted in 

advanced, time events can be handled more efficiently by the simulator. 

time
event 1 event 2 event 3 event 4

x, y

x

y
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However, state events cannot be predicted in advanced because they are associated with 

changes in state variables (see Section 3.1.7). An example for event condition of a state event 

is 

sin(x) > 0.7 

which triggers an event each time when sin(x) becomes greater than 0.7, i.e. at the points in 

time when the condition switches from false to true. 

 
Figure 3.3: The function edge(x) detects an event when the variable x switches from 

false to true (left) and the function change(x) detects an event when the 
variable x switches from false to true or from true to false (right) 

Furthermore, Modelica offers a way to generate, prevent, and detect events by several built-in 

functions. In addition, it is possible to access the value of a variable immediately before the 

event occurs. The following table summarizes some of these functions. 

Table 3.2: Built-in functions related to events 

initial() 

Generates a time event at the beginning of a simulation, 
i.e. when the variable time is equal to the defined start 
time (usually time=0), it returns true and false 
otherwise. 

terminal() 
Generates a time event at the end of a successful 
simulation, i.e. when the variable time is equal to the 
defined stop time, it returns true and false otherwise. 

sample(start, interval) Generates time events at the times 
ݐݎܽݐݏ  ݅ ∗ ݈ܽݒݎ݁ݐ݊݅ ሺ݅ ൌ 0,1,… ሻ. 

noEvent(expr) Prevents the generation of time and state events. 

pre(x) Obtains the value of the discrete-time variable x 
immediately before the event occurs (see Figure 3.2). 

edge(x) 

Detects the change of a Boolean variable. It returns 
true when x changes from false to true; i.e. it is 
equal to the condition x and not pre(x) (see 
Figure 3.3, left). 
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change(x) 

Detects the change of a Boolean variable. But in 
contrast to the edge()-function, it return true if x 
switches from false to true or from true to 
false, i.e. it is equal to the condition x<>pre(x) (see 
Figure 3.3, right). 

reinit(x,expr) 
Reinitializes a state variable x with expr at an event 
instant. It can only applied within a when clause. (see 
also Section 3.1.7 and Example 3.13)) 

Example 3.13 

The model of a bouncing ball below is an example of a hybrid system. Thereby, the 

movement of the ball is determined by the variable h which represents the height of the ball 

above the ground and the variable v for its velocity. Between two bounces, the ball moves 

continuously expressed by the differential equations for h and v while a discontinuous 

change occurs at every bounce on the ground modeled by a discrete when equation (see 

Figure 3.4). Then the velocity is reversed and slightly decreased which is achieved by the 

reinit operator. Moreover, an additional logic disables the bounces when the height is 

lower than the simulation tolerances. Then the ball does not fly anymore which is expressed 

by the variable flying. 

 
Figure 3.4: A bouncing ball (Example 3.13) 

model bouncingBall 
  parameter Real e=0.7; 
  parameter Real g=9.81; 
  Real h(start=1); 
  Real v; 
  Boolean flying(start=true); 
  Boolean impact; 
  Real v_new; 
equation 
  der(h) = v; 
  der(v) = if flying then -g else 0; 
  impact = h < 0; 
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  when {impact,h < 0 and v < 0} then 
    v_new = if edge(impact) then -e*pre(v) else 0; 
    flying = v_new > 0; 
    reinit(v, v_new); 
  end when; 
end bouncingBall; 

3.1.7 MATHEMATICAL REPRESENTATION OF MODELICA MODELS 

Before a Modelica model can be simulated, the hierarchical model has to be translated to a 

flat system of differential and algebraic equations (DAEs). The term flat means that the 

object-oriented structure is abolished so that no hierarchy remains but rather a set of 

equations. 

The implicit form of the DAE system is given by 

݂ሺݔሺݐሻ, ሶݔ ሺݐሻ, ,ሻݐሺݑ ,ሻݐሺݕ ,ݐ ሻ ൌ 0 Eq. 3-1

The vector ݔሺݐሻ comprises all variables for which the time-derivative ݔሶሺݐሻ also occur in the 

model, called state variables, ݑሺݐሻ comprises all input variables, ݕሺݐሻ comprises all algebraic 

output variables, ݐ is the time,  comprises all parameters, and ݂ is a set of differential and 

algebraic equations. 

Modelica supports not only continuous simulation but also discrete and hybrid modeling. 

Hence, a system of DAEs is not sufficient to represent a Modelica model. It has to be 

expanded to hybrid DAEs including discrete, differential, and algebraic equations. This can 

be obtained by adding the vector ݍሺݐሻ of discrete-time variables. The continuous-time 

behavior of a Modelica model is then described by adding ݍሺݐሻ to Eq. 3-1 

݂ሺݔሺݐሻ, ሶݔ ሺݐሻ, ,ሻݐሺݑ ,ሻݐሺݕ ,ሻݐሺݍ ,ݐ ሻ ൌ 0, Eq. 3-2

whereby the discrete variables are constant during the continuous phase. A fixed causality is 

achieved by converting the equations in Eq. 3-2 to assignments valid for the continuous phase 

ሻݐሺݖ ൌ ቌ
ሻݐሶሺݔ
ሻݐሺݕ
ሻݐሺݍ

ቍ ≔ ൮
௫݂ሶ ൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯

௬݂൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯

݂൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯ ൌ ݐݏ݊ܿ

൲, Eq. 3-3

whereby ݁ݎ൫ݍሺݐሻ൯ accesses the predecessor values of the discrete-time variables which are 

in the continuous phase equivalent to the values of ݍሺݐሻ (see Section 3.1.6). 
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The discrete-time behavior is mainly described by events. An event occurs at ݐwhen at least 

one of the condition expressions ܿሺݐሻ, e.g. from if or when constructs, switches from 

false to true. These condition expressions are a subset of the Boolean discrete-time 

variables ݍሺݐሻ ൫ܿሺݐሻ ⊆  .ሻ൯. An event is fired by execution of its associated behaviorݐሺݍ

Therefore, the whole system has to be determined by the function in Eq. 3-3 at ݐ to ensure 

the synchronicity of the equations 

ሻݐሺݖ ൌ ቌ
ሻݐሶሺݔ
ሻݐሺݕ
ሻݐሺݍ

ቍ ≔ ൮
௫݂ሶ ൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯

௬݂൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯

݂൫ݔሺݐሻ, ,ሻݐሺݑ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ ൯

൲. Eq. 3-4

It is not sufficient to solely determine the discrete-time variables with the function ݂ (Braun 

2010, Braun et al. 2010). Additionally, discontinuous changes of continuous-time variables 

can occur caused by the reinit-operator in Modelica (see Section 3.1.6). These 

discontinuous changes are only triggered by events at ݐ and the states of the continuous 

variables are redetermined with the aid of the following assignment 

ሻݐሺݔ ≔ ௫݂൫݁ݎ൫ݔሺݐሻ൯, ሶݔ ሺݐሻ, ,ሻݐሺݑ ,ሻݐሺݕ ,ሻݐሺݍ ,ሻ൯ݐሺݍ൫݁ݎ ,ݐ 	.൯ Eq. 3-5

Thereby, all variables in ݔሺݐሻ that are not affected by the reinit-operator remains unaltered 

by the function ௫݂. Afterwards, a recalculation of the system in Eq. 3-4 is necessary if 

ሻ൯ݐሺݔ൫݁ݎ ് ሻ൯ݐሺݍ൫݁ݎ ሻ orݐሺݔ ്  .ሻ. This procedure is called event iterationݐሺݍ

The hybrid DAE system consists of a combination of Eq. 3-3, Eq. 3-4, and Eq. 3-5 which has 

the ability to represent a Modelica model comprising of discrete, differential, and algebraic 

equations. 

The whole process from a Modelica model to executable simulation code is outlined in 

Figure 3.5. After flatting to hybrid DAEs, each of the resulting equations has to be assigned to 

a variable and sorted topologically according to their dependencies. Therefore, the equations 

are transformed to a Block Lower Triangular (BLT) form by Tarjans algorithm (Tarjan 1972). 

This form reveals the structure of the problem and decomposes it to a set of sub-problems 

which can be solved in sequence. If there is a non-scalar block on the diagonal of the BLT-

matrix, this indicates the appearance of an algebraic loop, also called strong component. 

The equations involved in an algebraic loop have to be solved simultaneously. In the case of 

discrete-time variables this is not possible and the algebraic loop has to be cut by hand which 

is done by using the pre operator for one or more involved discrete-time variables (see 

Example 3.14). 
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Figure 3.5: Necessary steps from a Modelica model to executable simulation code 

(Fritzson 2004) 

Example 3.14 

model algebraicLoop 
  Boolean bool1(start=true); 
  Boolean bool2(start=false); 
equation  
  when bool1 then 
    bool2=true; 
  end when; 
  when bool2 then 
    bool1=false; 
  end when; 
end algebraicLoop; 

This model generates an algebraic loop because the variable bool1 is needed to calculate 

bool2 and vice versa. This loop can be cut, for example, by putting a pre around the when-

condition bool1. 

model algebraicLoopCut 
  Boolean bool1(start=true); 
  Boolean bool2(start=false); 
equation  
  when pre(bool1) then 
    bool2=true; 
  end when; 
  when bool2 then 
    bool1=false; 
  end when; 
end algebraicLoopCut; 
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After sorting the equations, optimization methods, like algebraic simplification algorithms 

and symbolic index reduction methods, are applied to eliminate equations and solve the 

equation system efficiently by numerical methods. Afterwards, the C-code is generated and 

compiled to executable simulation code. 

 
Figure 3.6: Solution process of hybrid DAEs (cp. Braun et al. 2010) 

The simulation of a hybrid model is based on the solution of the hybrid DAEs which is 

performed in the following way (Modelica Association 2010): 

1. The consistent set of initial values has to be found according to the given constraints. 

2. The continuous DAEs in Eq. 3-3 are solved by a numerical integration method. The 

discrete-time variables ݍ are kept constant. 

3. All condition expressions ܿ are observed. If one variable switches its value, the 

integration is stopped, the exact event time ݐ is determined, the values of the variables 

before the event are calculated, and an event is triggered (time events are scheduled in 

advanced and can be treated in another way (see Section 3.1.6)). 

4. The hybrid DAEs in Eq. 3-4 and Eq. 3-5 are solved at the event instant. This system is 

resolved as long as ݁ݎሺݍሻ ൌ ሻݔሺ݁ݎ and	ݍ ൌ  .(event iteration) ݔ
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5. Afterwards the integration is restarted with a consistent set of restart values (go back to 

step 2). 

The solution algorithm of hybrid DAEs is also depicted in Figure 3.6. Modelica tools usually 

offer a wide range of methods to solve the continuous DAEs; the most common and 

frequently-used is DASSL (Differential Algebraic System Solver) which was first introduced 

by Petzold in 1982 (Petzold 1982). 

3.2 OPTIMIZATION METHODS 

Once a model is constructed, the task is to estimate the model parameters, hereafter called 

structure parameters. Thereby, the parameters have to be chosen so that the model 

reproduces the given experimental data in the best possible way. This procedure is called 

parameter estimation (PE) or inverse problem; thereby, the latter indicates that the 

structure parameters are identified from measurements (Ueckerdt 1978). 

Another aspect is the optimization of processes, which underlie the verified model, in such a 

way that, for example, a product of the regarded organism is maximized according to the 

process parameters. This procedure is called process optimization (PO). 

Both steps, PE and PO, of the modeling process engender an optimization problem: 

PE: Minimize an objective function ܳሺऀሻ which represents the goodness of a structure 

parameter set ऀ, 

PO: Maximize/Minimize an objective function ܳሺऊሻ which represents the goodness of a 

process parameter set ऊ. 

These objective functions in combination with an xHPN model are not only non-linear but 

also usually discontinuous and not-differentiable because of the discrete changes of hybrid 

Petri nets. Due to the non-differentiability, the usage of methods which determine decent 

directions from derivatives of the objective function is not possible. However, derivative-free 

methods do not require derivatives to minimize the objective function and, hence, such 

methods are applicable and used within this study. 

It has to be distinguished between local and global methods. Local methods try to find the 

minimum starting from a given point. Thereby, only local information about the objective 

function from the neighborhood of the current approximation is used to update the 
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approximation; hence, the global structure of an objective function is unknown to a local 

method. Additionally, it is usually expected that such methods converge to the local minimum 

which is nearest to the starting point. 

However, the objective of global methods is to find the global minimum of the optimization 

problem usually in the presence of multiple local minima by seeking the whole search space. 

Global methods can be further divided into deterministic and stochastic methods. 

Deterministic methods always achieve the same result starting from the same setting while 

stochastic methods involve random mechanisms. 

Local and global methods can also be combined to hybrid methods which should avoid the 

high computational costs of global methods due to their slow convergence near the minimum. 

Additionally, the entrapment in a local minimum should be prevented which is often the 

drawback of local methods. 

Hereafter some selected local and global derivative-free optimization methods are introduced 

which are used within this study. Moreover, these methods are combined to hybrid 

optimization approaches to enhance the optimization process. All methods can be applied for 

PE as well as for PO so that a general optimization problem is expressed by 

݉݅݊ܳሺईሻ 				ई ∈ ࣲ ⊆ Թ, ܳ:ࣲ → Թ 

subject to 

ई  ई  ई௨ 

 ,݈݁݀݉

whereby 

ई ൌ ൜
ऀ ݈݀݁݅ܽ	ݏ݅	ܧܲ	݂݅ ࣲ ൌ ࣪ ⊆ Թ

ऊ ݈݀݁݅ܽ	ݏ݅	ܱܲ	݂݅ ࣲ ൌ ࣴ ⊆ Թ.
 

Eq. 3-6 

Thereby, it is assumed that the objective function is minimized; in the case of PO, a 

maximization is also possible, then the problem is converted to a minimum problem by 

changing the signs. Furthermore, the objective function is subject to the constructed model 

and to upper and lower bounds for each parameter, known from, for example, experiments, 

literature or laws. Regarding the optimization process, it has to be distinguished between local 

and global minima. Therefore, the following definition is introduced. 

Definition 3.1 ((strict) local/global minimum) 

Suppose ܳ:ࣲ → Թ with ࣲ ⊆ Թ is an objective function. A parameter set ई∗ ∈ ࣲ is a 

 global minimum of ܳ, if ܳሺई∗ሻ  ܳሺईሻ					∀	ई ∈ ࣲ. 
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 strict global minimum of ܳ, if ܳሺݔ∗ሻ ൏ ܳሺݔሻ					∀	ई ∈ ࣲ with ई ് ई∗. 

 local minimum of ܳ if there is a neighborhood ࣨ of ई∗ such that 

ܳሺई∗ሻ  ܳሺईሻ					∀ई ∈ ሺࣲ ∩ࣨሻ. 

 strict local minimum of ܳ if there is a neighborhood ࣨ of ई∗ such that 

ܳሺई∗ሻ ൏ ܳሺईሻ					∀ई ∈ ሺࣲ ∩ࣨሻ with ई ് ई∗. 

To recognize a local minimum, the following necessary and sufficient conditions are proven. 

These conditions use information about the gradient 

ሺईሻܳߘ ൌ ൬
߲ܳሺईሻ

߲ईଵ

߲ܳሺईሻ

߲ईଶ
⋯

߲ܳሺईሻ

߲ई
൰ Eq. 3-7

and the Hessian of the objective function 

ଶܳሺईሻߘ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

߲ଶܳሺईሻ

߲ईଵ
ଶ

߲ଶܳሺईሻ
߲ईଵ߲ईଶ

⋯
߲ଶܳሺईሻ
߲ईଵ߲ई

߲ଶܳሺईሻ
߲ईଶ߲ईଵ

߲ଶܳሺईሻ

߲ईଶ
ଶ ⋯

߲ଶܳሺईሻ
߲ईଶ߲ई

⋮ ⋮ ⋱ ⋮
߲ଶܳሺईሻ
߲ई߲ईଵ

߲ଶܳሺईሻ
߲ई߲ईଶ

⋯
߲ଶܳሺईሻ
߲ईଶ ی

ۋ
ۋ
ۋ
ۋ
ۊ

.	 Eq. 3-8

Theorem 3.1 (first-order necessary conditions (Nocedal and Wright 1999)) 

If ई∗ is a local minimizer and ܳ is continuously differentiable in an open neighborhood of ई∗, 

then ܳሺई∗ሻ ൌ 0. 

Theorem 3.2 (second-order necessary conditions (Nocedal and Wright 1999)) 

If ई∗ is a local minimizer of ܳ and ଶܳሺईሻ is continuous in an open neighborhood of ई∗, then 

ሺई∗ሻܳ ൌ 0 and ଶܳሺईሻ is positive semi-definite. 

Theorem 3.3 (second-order sufficient conditions (Nocedal and Wright 1999)) 

Suppose that ଶܳሺईሻ is continuous in an open neighborhood of ई∗ and that ܳሺई∗ሻ ൌ 0 and 

 .ܳ ଶܳሺईሻ is positive definite. Then ई∗ is a strict local minimizer of

Example 3.15 

Figure 3.7 shows the six-hump camel back function (Dixon and Szegö 1978) 

݂ሺݔሻ ൌ ቆ4 െ 2.1  ଵݔ
ଶ 

ଵݔ
ସ

3
ቇ  ଵݔ

ଶ  ଵݔ  ଶݔ  ሺെ4  4  ଶݔ
ଶሻ  ଶݔ

ଶ 
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which is an example of a so-called multimodal function, i.e. a function with several minima. 

Within the bounded region 

െ3  ଵݔ  3, െ2  ଶݔ  2 

there are six minima, two of them are global 

ଵݔ
∗ ൌ ሺെ0.0898, 0.7126ሻ, ଶݔ

∗ ൌ ሺ0.0898,െ0.7126ሻ. 

 
Figure 3.7: Six-hump camel back function with six minima in the bounded region; two of 

them are global minima; left: surface plot, right: contour plot 

3.2.1 LOCAL OPTIMIZATION METHODS 

In this section two local methods are introduced to find the minimum of the optimization 

problem in Eq. 3-6 starting from a given parameter set ई. Both algorithms cope without 

derivatives and, thus, belong to the general class of direct search methods which can be 

further divided to pattern search methods and simplex methods. At first, a pattern search 

method, the Hooke-Jeeves method, is introduced and afterwards a simplex method, the 

Nelder-Mead simplex method, is presented. 

HOOKE-JEEVES METHOD 

The direct search method of Hooke and Jeeves was introduced in 1961 (Hooke and Jeeves 

1961). It consists of two procedures: exploratory moving and pattern search. In the first, the 

parameter vector is changed locally by a positive and negative variation of one parameter at a 

time to obtain information in which direction the objective function decreases. This 

information is used in the second procedure to find the best direction for the minimization 

process. If the exploratory move was successful, i.e. the function value decreases, further 



44  3 Basics 

 

progress may be possible in this direction; otherwise, the step size of the exploratory move 

has to be reduced. 

The algorithm is outlined in Algorithm A1 (Appendix A1) which is taken from (Bell and Pike 

1966). A detailed description of the Hooke-Jeeves method can be found in (Hooke and Jeeves 

1961) and (Kolda et al. 2003). Furthermore, Torczon show global convergence of the Hooke-

Jeeves method under specific assumptions (Torczon 1997). 

NELDER-MEAD SIMPLEX METHOD 

The Nelder-Mead simplex method was introduced in 1965 (Nelder and Mead 1965). It 

maintains at each step a non-degenerate simplex. This is a ݊-dimensional figure with ݊  1 

vertices forming the convex hull. Each iteration starts with a simplex specified by its ݊  1 

vertices and the associated values of the objective function. One or more test points are 

computed and a new simplex is generated according to the function values of these test points. 

The function values of the vertices of the new simplex satisfy then some form of descent 

condition compared to the previous simplex. 

The algorithm is outlined in Algorithm A2 (Appendix A1) which is taken from (Lagarias et 

al. 1999). A detailed description of the Nelder-Mead simplex method can be found in 

(Lagarias et al. 1999). The Nelder-Mead simplex algorithm is one of the most popular 

optimization methods and is used in many numerical software packages like Matlab. 

However, no general convergence results are proven till now; only those for strictly convex 

functions in dimensions 1 and 2 are presented in (Lagarias et al. 1999) with various 

limitations for the 2-dimensional case. Furthermore, several negative examples are known for 

which the algorithm converge to a non-stationary point (McKinnon 1999). 

3.2.2 GLOBAL OPTIMIZATION METHODS 

In this section two global optimization methods are introduced which try to find the global 

minimum of the optimization problem in Eq. 3-6 by seeking the whole search space. The first 

- DIRECT method - is a deterministic approach and the second - evolution strategy - is 

performed in a stochastic manner. Thereby, the basic evolution strategy (ES), introduced by 

Schwefel (Schwefel 1995), is considered as well as a modified variant of it - covariance 
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matrix adaption evolution strategy (CMAES) - which was introduced by Hansen and 

Ostermeier (Hansen and Ostermeier 2001). 

DIRECT METHOD 

The DIRECT (DIviding RECTangles) method was introduced by Jones et al. in 1993 (Jones 

et al. 1993). It is a deterministic method for seeking the global minimum of an objective 

function. The algorithm is a modification of the standard Lipschitz approach (e.g. Shubert 

1972) which eliminates the specification of the Lipschitz constant, improves the convergence 

speed, and reduces the computational complexity. The main idea is to carry out simultaneous 

searches using all possible Lipschitz constants from zero to infinite to determine if a region of 

the search space should be broken into sub-regions during the current iteration. The Lipschitz 

constant can then be viewed as a weight between global and local search because the DIRECT 

method operates on both levels to enhance the convergence speed. When the global part finds 

the basin of convergence of the minimum, the local part exploits it, hence, the DIRECT 

method is also a hybrid approach. 

The first step is to transform the search space to a ݊-dimensional unit hypercube by the lower 

and upper bounds of the parameters given in Eq. 3-6, thus, the algorithm works in a 

normalized space, and the original space is only used when the objective function is called. 

Then the objective function value of the midpoint ܿଵ of this hypercube is evaluated. This 

hypercube is divided into smaller hyper-rectangles by evaluating the objective function at the 

points 

ܿଵ േ ݅			,݁ߜ ൌ 1,… , ݊ Eq. 3-9

where ߜ is one-third of the side length of the hyper cube and ݁ is the ݅th unit vector. Thereby, 

the points with best function values should be located in the largest rectangles. This leads to 

the following rule: Let 

ݓ ൌ ݉݅݊൫ܳሺܿଵ  ,ሻ݁ߜ ܳሺܿଵ െ ሻ൯݁ߜ ݅ ൌ 1,… , ݊ Eq. 3-10

be the best function value sampled along dimension ݅. Divide the dimension with the smallest 

 into thirds so that cଵݓ േ   are the centers of the new hyper rectangles. This pattern is݁ߜ

continued until all dimensions are split. Thereby, the next dimension is chosen by determining 

the next smallest ݓ. 

Afterwards the iteration loop begins with the identification of potentially optimal rectangles 

which are divided and sampled at their midpoints. 
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Definition 3.2 (potentially optimal (Jones et al. 1993)) 

Suppose that a unit hypercube is divided into ݉ hyperrectangles. Let ܿ denote the center 

point of the ݅th hyperrectangle, let ݀ denote the distance from the center to the vertices, and 

let ܳ denote the current best objective function value. Let ߝ  0 be a positive constant. A 

hyperrectangle ݆ is said to be potentially optimal if there exists some ܭ  0 such that 

ܳ൫ ܿ൯ െ ܭ ݀  ܳሺܿሻ െ ,݅	∀					,݀ܭ and 

ܳ൫ ܿ൯ െ ܭ ݀  ܳ െ  .|ܳ|ߝ

Thereby, the parameter ߝ is used to gurantee that the new best solution exceeds the current 

best solution by a specific amount. Experiments have shown that the value of ߝ has a minor 

effect on the results. A good setting should be 10ିସ (Jones et al. 1993).  

The potentially optimal rectangles are again divided into smaller rectangles and the 

corresponding function values are evaluated as just described. The process continues until at 

least one of the predefined abort criteria is fulfilled. An efficient implementation to identify 

potential optimal rectangles according to Definition 3.2 can be found in (Finkel 2003). 

The algorithm is outlined in Algorithm A3 (Appendix A1) which is taken from (Jones et al. 

1993). For a detailed description of the algorithm including its convergence and performance 

properties, refer to (Jones et al. 1993). Furthermore, the DIRECT method guarantees 

convergance to the globally optimal objective function value if the objective function is 

continuous – or at least continuous in a neighborhood of a global optimum. Due to the fact 

that if the number of iterations goes to infinity, the set of points sampled by the DIRECT 

method form a dense subset of a unit hypercube (Jones et al. 1993). 

EVOLUTION STRATEGY 

The evolution strategy (ES) is a biologically inspired method founded by Rechenberg and 

Schwefel in the early 1970s (Rechenberg 1971, Schwefel 1975). It belongs to the class of 

evolutionary algorithms whose general structure is depicted in Figure 3.8. 

ES bases on a collective learning process within a population of individuals. Each of these 

individuals represents a possible parameter set ई of the optimization problem in Eq. 3-6. The 

initialization of the population is arbitrary and it is increasingly improved by the 

(probabilistic) processes selection, mutation, and recombination. The selection process 

prefers individuals with a higher fitness value to reproduce more often than those of lower 
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fitness. The fitness value of an individual is identical to the value of the objective function 

ܳሺईሻ with the corresponding parameter set (individual) ई. Based on this information, ES 

makes use of Darwin’s principle: “Survival of the fittest”. The recombination process 

combines two or more parental individuals to produce new individuals and the mutation 

process changes the individuals at random to innovate the population. 

 
Figure 3.8: The general structure of evolutionary algorithms (Beyer 2001) 

The following notions are used in this section 

 ܳ:ࣲ → Թ is the objective function (Eq. 3-6), 

 	ܫ is the space of individuals, 

 Φ: ܫ → Թ is the fitness function, 

 ܽ ∈  ,is an individual ܫ

 ई ∈ ࣲ ⊆ Թ is the vector of parameters, 

 ߤ  1 is the size of the parent population, 

 ߣ  1 is the size of offspring population, i.e. the number of individuals that are created by 

recombination and mutation at each generation, 

 ܣሺ݃ሻ ൌ ൛ܽଵሺ݃ሻ, ܽଶሺ݃ሻ, … , ܽఓሺ݃ሻൟ is the population at generation ݃ with the individuals 

ܽሺ݃ሻ ∈  ,ܫ

 ݎೝ
: ఓܫ →  ,ఒ is the recombination operator which generates the offspring of a populationܫ

 ݉
: ఒܫ →  ,ఒ is the mutation operator which modifies the offspring of a populationܫ
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 ݏೞ
:ܹ →  ఓ is the selection operator which selects the parent population of the nextܫ

generation, where ܹ ൌ ܹ ఒ orܫ ൌ  ఓାఒ, andܫ

 ߡ: ఓܫ → ሼ݁ݑݎݐ,  .ሽ is the termination criterion݁ݏ݈݂ܽ

Subsequently the algorithmic description of ES is outlined by means of these notations (Bäck 

and Schwefel 1993). 

Set ݃ ൌ 0 

Initialize ܣሺ0ሻ ൌ ൛ܽଵሺ0ሻ, ܽଶሺ0ሻ, … , ܽఓሺ0ሻൟ ∈  ఓܫ

Evaluate ܣሺ0ሻ: ቄΦ൫ܽଵሺ0ሻ൯,Φ൫ܽଶሺ0ሻ൯, … ,Φ ቀܽఓሺ0ሻቁቅ 

while not ߡ൫ܣሺ݃ሻ൯ do 

 Recombine: ܣᇱሺ݃ሻ ൌ ೝݎ
൫ܣሺ݃ሻ൯ 

 Mutate: ܣᇱᇱሺ݃ሻ ൌ ݉
൫ܣᇱሺ݃ሻ൯ 

 Evaluate ܣᇱᇱሺ݃ሻ: ቄΦ൫ܽଵሺ݃ሻ൯, Φ൫ܽଶሺ݃ሻ൯, … ,Φ ቀܽఓሺ݃ሻቁቅ 

 Select: ܣሺ݃  1ሻ ൌ ೞݏ
ሺܣᇱᇱሺ݃ሻ ∪ܹሻ, where ܹ ∈ ሼ∅,  ሺ݃ሻሽܣ

 Set ݃ ൌ ݃  1 

end while 

Hereafter the fitness evaluation, the representation of individuals, and the three main 

processes - recombination, mutation, and selection - are discussed in more detail. 

Fitness Evaluation and Individual Representation 

The fitness value of an individual is identical to the objective function value of the 

corresponding parameter set, i.e. Φሺܽሻ ൌ ܳሺईሻ, where ई is the parameter set 

corresponding to individual ܽ. An individual ܽ is comprised of a set of objective 

parameters ई and, additionally, a set of endogenous strategy parameters ݏ 

ܽ ൌ ሺई, ሻݏ ∈ ܫ
Eq. 3-11

The endogenous strategy parameters are used to control the statistics of the mutation process. 

Recombination 

The recombination process produces one new individual from two randomly selected parent 

individuals or the global form which allows taking components for one new individual from 

potentially all individuals of the parent population. Recombination is performed for objective 

parameters as well as for the endogenous strategy parameters, and different mechanisms may 

be used for objective and strategy parameters. The mechanisms are only presented for the 
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objective parameters (Bäck and Schwefel 1993), whereby the operator ݎᇱ: ఓܫ →  is used for ܫ

producing one new individual ݎᇱ൫ܲሺݐሻ൯ ൌ ܽᇱ ൌ ሺईᇱ, ᇱሻݏ ∈  ܫ

ई
ᇱ ൌ

ە
ۖ
۔

ۖ
ۓ

ईௌ,
ईௌ,	ݎ ई்,

ईௌ,  ߯ ⋅ ൫ई், െ ईௌ,൯
ईௌ,	ݎ	ई்,

ईௌ,  ߯ ⋅ ൫ई், െ ईௌ,൯

												

݊ ݊݅ݐܾܽ݊݅݉ܿ݁ݎ
݁ݐ݁ݎܿݏ݅݀

݁ݐܽ݅݀݁݉ݎ݁ݐ݊݅	݀݁ݖ݈݅ܽݎ݁݊݁݃
,݈ܾ݈ܽ݃ ݁ݐ݁ݎܿݏ݅݀

,݈ܾ݈ܽ݃ ݁ݐܽ݅݀݁݉ݎ݁ݐ݊݅	݀݁ݖ݈݅ܽݎ݁݊݁݃

	

∀	݅ ൌ 1, 2, … , ݊

Eq. 3-12

The indices ܵ and ܶ denote two parent individuals randomly selected from the population 

߯ ሺ݃ሻ andܣ ∈ ሾ0,1ሿ. For global recombination, new parents ܵ and ܶ are selected for each 

component ई as well as values for the variable ߯. Fixing ߯ ൌ 1/2 and ߯ ൌ 1 2⁄ , ∀	݅ ൌ

1, 2, … , ݊, respectively, reduces the (global) generalized intermediate recombination to 

intermediate recombination. 

Empirical studies showed best results for discrete recombination on objective parameters and 

intermediate recombination on strategy parameters and, additionally, the necessity of 

recombination on strategy parameters for a well-performing ES (Bäck and Schwefel 1993). 

Mutation 

The mutation process modifies the offspring generated by one of the recombination 

mechanisms. Thereby, several methods can be applied which all use a specific number of 

endogenous strategy parameters. The simplest mutation operation functions with only one 

strategy parameter ߪ for the mutation strength. The objective parameters are then modified by 

ईᇱ ൌ ई  ݖ Eq. 3-13

ݖ ൌ ߪ ⋅ ࣨ, ࣨ ൌ ൫ ଵࣨሺ0,1ሻ, ଶࣨሺ0,1ሻ, … , ࣨሺ0,1ሻ൯ Eq. 3-14

where ࣨሺ0,1ሻ is a normally distributed random number. Hence, the mutation operator favors 

small changes which depend on the choice of the mutation strength ߪ. The samples are 

isotropically distributed around the parental parameter set. This method has the advantage 

that only one endogenous strategy parameter is needed for mutation control and is sufficient 

for objective functions which have spherical surfaces. However, if the surface of an objective 

function is ellipsoidal, it is beneficial to have mutation vectors whose surfaces of constant 

density are also ellipsoidal (Beyer and Schwefel 2002). The simplest form of ellipsoidal 

mutation is the axes-parallel ellipsoid mutation which requires ݊ endogenous strategy 

parameters. These are ݊ standard deviations ݏ ൌ ሺߪଵ, ,ଶߪ … ,  ሻ each associated with oneߪ
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component of the objective parameter vector to represent an own mutation strength for each 

parameter 

ݖ ൌ ൫ߪଵ ଵࣨሺ0,1ሻ, ଶߪ ଶࣨሺ0,1ሻ, … , ߪ ࣨሺ0,1ሻ൯. Eq. 3-15

The mutation process can be further modified by rotating the mutation ellipsoid arbitrarily in 

the search space, called rotated ellipsoid mutation 

ݖ ൌ ܯ ⋅ ൫ߪଵ ଵࣨሺ0,1ሻ, ଶߪ ଶࣨሺ0,1ሻ, … , ߪ ࣨሺ0,1ሻ൯
௧
ൌ ,ሺܱࣨܦܯ ሻܫ

ൌ ࣨሺܱ,ܦܯଶܯ௧ሻ ൌ ,ሺ0ࣨܦ ሻܥ
Eq. 3-16

where ܯ is a rotation matrix which represents the correlations between the components of ݖ, 

 is the covariance ܥ  on its diagonal, andߪ is a diagonal matrix with the standard deviations ܦ

matrix. The usage of this mutation mechanism requires ݊ሺ݊  1ሻ/2 strategy parameters. 

All introduced mutation mechanisms require an appropriate adaptation of the endogenous 

strategy parameters. This can be achieved by the so-called self-adaptation (Schwefel 1987). 

Therefore, the strategy parameters may undergo the recombination process and always the 

mutation process. The mutated strategy parameters are then used to control the mutation 

process of the objective parameters as previously mentioned. 

One single strategy parameter is then mutated isotropically by 

ᇱߪ ൌ ߪ ⋅ ൫߬ݔ݁ ⋅ ࣨሺ0,1ሻ൯, Eq. 3-17

where ߬ is the so-called learning parameter which determines the rate and precision of self-

adaption. Theoretical and experimental results (Beyer 1995, Schwefel 1975) suggest to 

choose  

߬ ∝
1

√݊
Eq. 3-18

(the first guess might be ߬ ൌ 1/√݊; in highly multimodal fitness landscapes smaller learning 

rates should be tried, e.g. ߬ ൌ 1/√2݊ (Beyer and Schwefel 2002)). 

This technique can be extended for axes-parallel ellipsoid mutation with one strategy 

parameter for each objective parameter (Schwefel 1977) 

′ߪ ൌ ߪ ⋅ ൫߬ᇱݔ݁ ⋅ ࣨሺ0,1ሻ  ߬ ⋅ ࣨሺ0,1ሻ൯ , ݅ ൌ 1, 2, … , ݊ Eq. 3-19

Thereby, a general mutation is combined with a mutation for each component. The following 

values are recommended for the learning parameters ߬′ and ߬ (Schwefel 1977) 
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߬ᇱ ∝
1

√2݊
		 ߬ ∝

1

ඥ2√݊
Eq. 3-20

Usually, the proportional constant is chosen to be 1 (Schwefel 1995). 

If the rotated ellipsoidal mutation is applied, ݊ሺ݊ െ 1ሻ/2 additional elements of the matrix ܯ 

have to be modified by 

݉
ᇱ ൌ ݉  ߚ ⋅ ܰሺ0,1ሻ, ݆ ൌ 1, 2, … , ݊ሺ݊ െ 1ሻ/2, Eq. 3-21

whereby ߚ ൎ 0.0873 (Schwefel 1977). The mutation of the standard deviation is performed 

in the same manner as mentioned in Eq. 3-19. 

The recombination of the endogenous strategy parameters can be performed by the 

mechanisms in Eq. 3-12. Thereby, the intermediate recombination is highly recommended 

(Beyer and Schwefel 2002). 

Selection 

The selection process is a complete deterministic process with two possible strategies (Bäck 

and Schwefel 1993) 

 ሺߤ,  offspring ߣ best individuals out of the set of ߤ ሻ-selection (comma-selection): theߣ

individuals are selected. 

 ሺߤ   best individuals out of the union of parents and ߤ ሻ-selection (plus-selection): theߣ

offspring are selected. 

The disadvantage of the plus-selection is the inability to react on changing environmental 

conditions. Additionally, it hinders the self-adaption mechanism efficiently working because 

mismatched strategy parameters may survive for many generations. The capability of the 

comma-selection to forget good solutions allows, in principle, the leaving of local minima and 

is, therefore, advantageous for multimodal objective functions (Bäck 1996). The ሺߤ, -ሻߣ

selection method is recommended today and experiments indicate that the optimal ratio of the 

number of parents and offspring is ߤ ⁄ߣ ൌ 1/7 (Schwefel 1987). 

Based on the introduced recombination, mutation, and selection mechanisms as well as the 

self-adaption process of the endogenous strategy parameters, the mentioned algorithm can be 

more specified. This conceptual algorithm can be found in Algorithm A4 (Appendix A1). 

Thereby, the algorithm could be terminated when the distance between the best parameter sets 

found in subsequent iterations fall below a determined boundary 
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ሻ൯ݐሺܣ൫ߡ ൌ ൜
݁ݑݎݐ ‖ईሺ݃ሻ െ ईሺ݃ െ 1ሻ‖  ߝ
݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ

Eq. 3-22

but this criterion guarantees no sufficient convergence because small steps occur not only if 

the current parameter set is near the minimum but also if the search is moving through a 

narrow valley (Schwefel 1995). It is better to compare the objective function values. Then the 

algorithm ends when the difference between the worst objective function value of the parent 

population and the best objective function value so far Q becomes arbitrarily small (Bäck 

1996) 

In this manner the objective function values of the parents in a generation must fall closely 

together before the convergence is accepted. 

Another aspect is global convergence and the convergence order, i.e. the time complexity of 

ES. To prove global convergence, it has to be shown that the probability of reaching a specific 

neighborhood of the global optimum ܳ∗ ൌ ܳሺई∗ሻ by a sequence of search points is one if the 

number of generations goes to infinity 

A sketched proof of Eq. 3-24 for ሺ1  1ሻ-ES with constant mutation strength can be found in 

(Rechenberg 1971) which should be easily accomplished for ሺߤ   ሻ-ES according to (Beyerߣ

2001). However, ሺߤ,  ሻ-ES are generally not convergent. They require an appropriate controlߣ

of the mutation strength to converge at least locally. The global convergence property of an 

ES is good to know but no one can wait indefinitely so the relevance is rather low. More 

important is the convergence order. Rechenberg calculates the convergence order exemplary 

for two basic functions by applying the ሺ1  1ሻ-ES (Rechenberg 1971). General 

considerations about global convergence and convergence order are rather difficult and, 

according to current knowledge, not yet published. 

Hereafter, an extension of this basic ES procedure is introduced. The covariance matrix 

adaptation evolution strategy (CMAES) modifies the update of the covariance matrix ܥ in 

case of the rotated ellipsoidal mutation in Eq. 3-16. 

ሺ݃ሻ൯ܣ൫ߡ ൌ ቊ
݁ݑݎݐ ݔܽ݉ ቄܳ൫ईଵሺ݃ሻ൯, ܳ൫ईଶሺ݃ሻ൯, … , ܳ ቀईఓሺ݃ሻቁቅ െ ܳ  ߝ

݁ݏ݈݂ܽ 			݁ݏ݅ݓݎ݄݁ݐ 									
	 Eq. 3-23 

ߝ∀  0:		 ݈݅݉
→ஶ

൫ܳ൫ईሺ݃ሻ൯ݎܲ െ ܳ∗  ൯ߝ ൌ 1. Eq. 3-24 
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COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY 

CMAES was introduced by Hansen and Ostermeier (Hansen and Ostermeier 2001) to update 

the covariance matrix of the multivariate normal distribution for the mutation process in 

Eq. 3-16. The covariance matrix describes the pairwise dependencies between the objective 

parameters, hence, the adaptation process is similar to learning about the second order 

information of the underlying objective function. The update method is, additionally, 

improved by cumulation, i.e. evolution paths are utilized instead of single search steps. 

CMAES starts with the mutation process to generate offspring by sampling a multivariate 

normal distribution 

ईሺ݃  1ሻ ൌ ݉ሺ݃ሻ  ሺ݃ሻݖ

ሺ݃ሻݖ ൌ ሺ݃ሻߪ ⋅ ࣨ൫0, ,ሺ݃ሻ൯ܥ ݇ ൌ 1, 2, … , ,ߣ
Eq. 3-25

whereby ߪሺ݃ሻ is the “overall” standard deviation (step size) at generation ݃. 

Afterwards, the ߤ best individuals of the ߣ offspring individuals are selected for the 

recombination process, i.e. ई:ఒሺ݃  1ሻ is the ݇th best parameter set such as 

ܳ൫ईଵ:ఒሺ݃  1ሻ൯  ܳ൫ईଶ:ఒሺ݃  1ሻ൯  ⋯  ܳ൫ई:ఒሺ݃  1ሻ൯  ⋯  ܳ൫ईఒ:ఒሺ݃  1ሻ൯. 

The recombination is performed by the so-called weighted intermediate recombination, i.e. 

the weighted average of the ߤ best individuals 

݉ሺ݃  1ሻ ൌ ݓई:ఒሺ݃  1ሻ

ఓ

ୀଵ

ݓ

ఓ

ୀଵ

ൌ ଵݓ			,1  ଶݓ  ⋯  ఓݓ  0.

Eq. 3-26

The measure 

ߤ ൌ ቆ
ଵ‖ݓ‖
ଶ‖ݓ‖

ቇ
ଶ

ൌ
∑ |ݓ|
ఓ
ୀଵ

∑ ሺݓሻଶ
ఓ
ୀଵ

ൌ
1

∑ ሺݓሻଶ
ఓ
ୀଵ

Eq. 3-27

is called variance effective selection mass with 1  ߤ  ߤ ,Usually .ߤ ൎ  indicates 4/ߣ

a reasonable setting of ݓ, and typical values are ݓ ∝ ሺߤ െ ݇  1ሻ and ߤ ൎ  Hansen) 2/ߣ

2006). 

The next step is to adapt the covariance matrix by applying two methods, rank-one-update and 

rank-ߤ-update, which are combined to use the advantages of both. In this manner the 

information of the current population is exploited efficiently by the rank-ߤ-update and the 

rank-one-update considers the correlations between the generations 



54  3 Basics 

 

ሺ݃ܥ  1ሻ ൌ

൫1 െ ܿଵ െ ܿఓ൯ܥሺ݃ሻ  ܿଵݍሺ݃  1ሻݍሺ݃  1ሻ௧  ܿఓݓݕ:ఒሺ݃  1ሻݕ:ఒሺ݃  1ሻ௧	

ఓ

ୀଵ

	

ሺ݃ݍ  1ሻ ൌ ሺ1 െ ܿሻݍሺ݃ሻ  ටܿሺ2 െ ܿሻߤ ⋅ ቆ
݉ሺ݃  1ሻ െ ݉ሺ݃ሻ

ሺ݃ሻߪ
ቇ	

Eq. 3-28

where ݕ:ఒሺ݃  1ሻ ൌ ईೖ:ഊሺାଵሻିሺሻ

ఙሺሻ
 , ܿఓ  1 and ܿଵ  1 are the learning parameters, and ݍ is 

the evolution path, also called cumulation, which is expressed by a sum of consecutive 

steps. 

The last step is the control of the overall step size ߪ. This is also done by constructing an 

evolutionary path 

ఙሺ݃ݍ  1ሻ ൌ ሺ1 െ ܿఙሻݍఙሺ݃ሻ  ටܿఙሺ2 െ ܿఙሻߤ ⋅ ሺ݃ሻܥ
ିଵଶ ⋅ ቆ

݉ሺ݃  1ሻ െ ݉ሺ݃ሻ

ሺ݃ሻߪ
ቇ,	 Eq. 3-29

where ܿఙ is the learning parameter. The length of the evolution path provides information for 

the update of the step size. If the evolution path is short, single steps cancel out each other and 

the step size should be decreased. However, if the evolutionary path is long, single steps point 

to similar directions and the step size should be increased. To decide whether the evolutionary 

path is long or short, it is compared with its expected length under random selection 

,ሺ‖ܰሺ0ܧ  ሻ‖ሻܫ

ሺ݃ߪ  1ሻ ൌ ሺ݃ሻߪ ݔ݁ ൭
ܿఙ
݀ఙ

ቆ
ఙሺ݃ݍ‖  1ሻ‖
,ሺ‖ܰሺ0ܧ ሻ‖ሻܫ

െ 1ቇ൱

,ሺ‖ܰሺ0ܧ ሻ‖ሻܫ ൎ √݊ ൬1 െ
1
4݊


1

21݊ଶ
൰,

Eq. 3-30

where ݀ఙis the damping parameter. 

The mentioned mechanisms lead to the algorithm outlined in Algorithm A5 (Appendix A1) 

which is taken from (Hansen 2006). The default values for the exogenous strategy parameters 

of the algorithm are also given in Table A1 (Appendix A1). Hansen does not recommend 

changing the default values of the exogenous strategy parameters because they are 

particularly chosen to be a robust setting (Hansen 2006). The only exception is the population 

size ߣ which can be increased due to its significant influence on the global search 

performance (Hansen and Kern 2004). Increasing the population size usually causes an 

improvement of the global search capability and the robustness of CMAES but, additionally, 

the convergence speed is reduced. 
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Thereby, it is assumed that the algorithm converge to a minimum when the difference 

between the worst objective function value of the parent population and the best objective 

function value so far Q	 fall below a determined accuracy 

ࣵଵ ൌ ቊ
݁ݑݎݐ ݔܽ݉ ቄܳ൫ईଵሺ݃ሻ൯, ܳ൫ईଶሺ݃ሻ൯, … , ܳ ቀईఓሺ݃ሻቁቅ െ ܳ  	ߝ

݁ݏ݈݂ܽ 											݁ݏ݅ݓݎ݄݁ݐ 				
	 Eq. 3-31

However, according to present knowledge no global convergence results are proven till now; 

but experimental studies have shown that a large class of function converges fast to the global 

optimum. Some functions converge with the probability of one, independent of the initial 

settings. But others have a probability less than one which normally depends on the initial 

values for ݉ and ߪ. Additionally, no general results of the convergence order have been 

published thus far. Furthermore, the step-size control in Eq. 3-30 prevents the algorithm from 

converging prematurely but it does not avoid allowing the search to end up in a local 

minimum. Large populations help avoid local minima but with slower convergence rate. For a 

detailed description of CMAES and performance considerations, refer to (Hansen 2006), 

(Hansen and Ostermeier 2001), and (Hansen and Kern 2004). 

3.2.3 HYBRID OPTIMIZATION METHODS 

The main drawback of ES approaches is the high computation cost due to the slow 

convergence rates. They work generally well to explore the parameter space but they are slow 

in accurately finding the minimum of the objective function. However, local methods are 

much faster in finding a minimum once in the right neighborhood but they can be entrapped 

in a local minimum. Hence, the optimization process can be enhanced by combining a global 

and a local method to a so-called hybrid method. The purpose of hybrid methods is to speed 

up the convergence rate while retaining the ability to avoid being easily entrapped at a local 

minimum. Thereby, the ES method localizes a promising region within the parameter space 

and the local optimizer reaches the best solution in this region accurately and quickly. Yen et 

al. divided hybrid methods into four groups (Yen et al. 1998): 

1. Pipeline hybrids: ES and a local method are applied sequentially. They can be further 

classified to (see Figure 3.9): 

a. Preprocessor: ES is applied at first and afterwards the local method. 

b. Primary: The local method is applied at first and afterwards ES. 



56  3 Basics 

 

c. Staged pipeline: ES and the local method are interleaved with each other. 

1. Asynchronous hybrids: ES and the local method proceed and cooperate asynchronously 

using a shared population. 

2. Hierarchical hybrids: ES and the local method operate on different level on the 

optimization problem. 

3. Additional operators: An additional reproduction operator is introduced that perform the 

local search. There are two architectures to integrate this new operator: 

a. Partition-based hybrid architecture: the current population is divided into several 

disjoint subgroups. Each subgroup can reproduce their offspring by the conventional 

mechanisms mentioned previously or by the new operator. Thereby, the new operator 

is selected with a specific probability. 

b. Elite-based hybrid architecture: the new operator is applied to the top-ranking 

individuals to generate a portion of offspring. 

This study focuses on pipeline hybrids especially those with ES and CMAES, respectively, as 

preprocessor. Thereby, the general hybrid algorithm is performed in two phases: 

diversification and intensification (Chelouah and Siarry 2003). In the diversification phase 

the mechanism of ES are applied repeatedly: recombination, mutation, and selection. It stops 

when one of the following abort criteria is fulfilled: 

S1 A given number of generations ሺ݃௫ሻ is reached. 

S2 A given accuracy which corresponds to the objective function values is reached, i.e. the 

difference between the worst objective function value of the current population and the 

best objective function value so far ܳ is smaller than a given accuracy ߝ 

max ቄQ൫ईଵሺ݃ሻ൯, Q൫ईଶሺ݃ሻ൯, … , Q ቀईఓሺ݃ሻቁቅ െ Q   ߝ

S3 A given accuracy which corresponds to the localization of the objective parameters in the 

current population is reached, i.e. the average distance between the best parameter set up 

till now ई and the remaining parameter sets of the population is smaller than a given 

neighborhood radius ߩ 

1
ߤ
‖ई െ ई‖

ఓ

ୀଵ

  .ߩ

Then it is assumed that the individuals are all in the same area, called promising area. If the 

diversification phase stops with individuals all in the promising area, the parameter set of the 

best individual is the initial value ई of the local method. In this study the Nelder-Mead 

simplex method and the Hooke-Jeeves method serve as local optimizer (see Section 3.2.1). 

The hybrid approach is outlined in Algorithm A6 (Appendix A1). 
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Figure 3.9: The classes of pipeline hybrids; left: preprocessor, middle: primary, and right: 

staged pipelining (Yen et al. 1998) 

3.3 SENSITIVITY ANALYSIS METHODS 

The sensitivity analysis evaluates the contribution of each model parameter to the variation of 

the model output, i.e. it reveals the effects of changes in the model parameters. Saltelli et al. 

give the following definition (Saltelli et al. 2004): The study of how uncertainty in the output 

of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in 

the model input. 

Within this study, the inputs are a subset of the model parameters ई, either the structure 

parameters ई ൌ ऀ or the process parameters ई ൌ ऊ (see Section 3.2), and the vector उሺݐ, ईሻ 

comprises the considered model outputs. The model output and, thus, the sensitivity 

information have also been summarized by the objective function value ܳሺईሻ in Eq. 3-6. 

The sensitivities of model parameters which correspond to the model output can either be 

evaluated by local or global methods. Local methods carry out the local impact of model 

parameters on the model output at some fixed point in the parameter space. 

However, global methods offer possibilities to obtain parameter sensitivities which are valid 

for the entire considered parameter range. Additionally, no assumptions according to 

continuity and differentiability of the model output have to be made. Global methods are 

usually performed by the following steps (see Figure 3.10): 
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1. Specify the model outputs of interest and possibly an objective function to summarize the 

sensitivities. 

2. Assign a probability density function to each model parameter of interest which covers its 

uncertainty range in Eq. 3-6. This range is determined by experimental measurements, 

theoretical assumptions, e.g. physical laws, scientific literature, or expert judgment. 

3. Generate a sample according to the defined probability density functions in step 2. 

4. Simulate the model for all parameter sets of the sample generated in step 3 (and calculate 

the corresponding value of the objective function in Eq. 3-6.). 

5. Explore the impact of each model parameter on the objective function by an appropriate 

method. 

 
Figure 3.10: General scheme of a global SA (Saltelli et al. 1999) 

Several global SA methods are available. An overview of most methods can be found in 

(Saltelli et al. 2000). Generally, they can be classified into two groups: 

 Sample-based methods: based on a generated sample of the model parameter. The 

sensitivities are determined by specific coefficients. Possible coefficients are the 

standardized regression coefficient, (partial) correlation coefficient, or their rank-

transformed variants (Saltelli et al. 2000). 

 Variance-based methods: aim at decomposing the variance of the model output as the 

sum of contributions of each model parameter and parameter combinations. Sometimes, 

they are also called ANOVA (ANalysis Of VAriance) methods. The FAST method 

(Fourier Amplitude Sensitivity Test) (Cukier et al. 1973) and Sobol’s method (Sobol 

1993) are possible techniques. 
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According to Saltelli et al., an ideal global SA method has to fulfill four properties (Saltelli et 

al. 2004, Saltelli et al. 2000): 

1. The inclusion of influence of scale and shape: The sensitivity estimates of individual 

model parameters should incorporate the effect of the range and shape of the assigned 

probability density functions, i.e. it matters if the underlying probability density function 

of a model parameter corresponds to a uniform or to a normal distribution and how the 

corresponding distribution parameters are. 

2. Multidimensional averaging: The sensitivity estimates of individual model parameters 

are evaluated by varying all other model parameters as well. In contrast, local methods 

are based on the OAT (one-at-a-time) approach, i.e. only one parameter is varying at a 

time while the others are kept constant at their actual values. 

3. Model independence: The method should work regardless of the characteristics of the 

underlying objective function and the model, respectively. These characteristics are 

a. Linearity: The model output ࣳ depends linearly on the input parameters ई 

ࣳ ൌ ܿ ܿई



ୀଵ

. 

b. Additivity: The model output ࣳ is additive if 

ࣳ ൌ ݂ሺईଵ, ईଶ, … , ईሻ ൌ ݂ሺईሻ


ୀଵ

. 

c. Monotony: The model output ࣳ depends monotonically on the input parameter ई 

ࣳ  ࣳାଵ				݂݅	ई
  ई

ାଵ	ݎ		ࣳ  ࣳାଵ			݂݅	ई
  ई

ାଵ. 

4. Parameter groups: The method should treat grouped model parameters as if they were 

single model parameters. This is important for interpreting of the results. 

The sample-based methods fulfill only property 1 and 2 but they are not model independent; 

they are only applicable when model input and output behave monotonically and, in addition, 

the parameters cannot be summarized into groups. However, variance-based methods satisfy 

all four properties and are, thus, ideal global SA techniques. 

Within this study the relationships between the objective function in Eq. 3-6 and the (structure 

or process) parameters of an xHPN model should be analyzed. These relationships are usually 

non-monoton and, hence, only variance-based methods are considered hereafter. 
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Variance-based methods decompose the variance of the objective function to the model 

parameters. Therefore, the objective function is rewritten as a HDMR (High Dimensional 

Model Representation) (Sobol 1993) 

ܳሺईሻ ൌ ݍ ݍሺईሻ


ୀଵ

ݍ൫ई, ई൯
வ



ୀଵ

 ⋯ ,ଵଶ…ሺईଵݍ ईଶ, … , ईሻ	

ሺईሻݍ ൌ ሺܳ|ईሻܧ െ ,ݍ ݍ ൌ 	ሺܳሻܧ

,൫ईݍ ई൯ ൌ ,൫ܳหईܧ ई൯ െ ݍ െ ݍ െ .ݍ

Eq. 3-32

This is a decomposition of the objective function into terms of increasing dimensionality, 

whereby ܧሺܳ|ईሻ ൌ ሺܳ|ईܧ ൌ ई
∗ሻ is the conditional expectation value, i.e. the expectation 

value of ܳሺईሻ if the parameter ई is fixed at ई
∗. 

If the model parameters are independent of each other, it is possible to decompose the 

variance of ܳሺईሻ also into terms of increasing dimensionality 

ሺܳሻݎܸܽ ൌ ܸ



ୀଵ

 ܸ

வ



ୀଵ

 ⋯ ଵܸଶ…

ܸ ൌ ሺईሻ൯ݍ൫ݎܸܽ ൌ ሺܳ|ईሻܧሺݎܸܽ െ ሻݍ ൌ 	ሺܳ|ईሻ൯ܧ൫ݎܸܽ

ܸ ൌ ݎܸܽ ቀݍ൫ई, ई൯ቁ ൌ ,൫ܳหईܧ൫ݎܸܽ ई൯ െ ݍ െ ݍ െ ൯ݍ

ൌ ݎܸܽ ቀܧ൫ܳหई, ई൯ቁ െ ܸ െ ܸ,

Eq. 3-33

where ܸ , ܸ , … , ଵܸଶ… are called partial variances and ܸ ൌ  ሺܳ|ईሻ൯ is variance takenܧ൫ݎܸܽ

over all possible values of ई
∗. It expresses the expected amount of variance that would be 

removed from the total variance ܸܽݎሺܳሻ if the true value of the model parameter ई would be 

known, called main effect (Saltelli et al. 2008), hence, a large value of ܸ implies that ई is an 

important parameter. 

Dividing both sides of Eq. 3-33 by the variance of the objective function leads to 

1 ൌ ܵ



ୀଵ

 ܵ

வ



ୀଵ

 ⋯ ଵܵଶ…

ܵ ൌ
ሺܳ|ईሻ൯ܧ൫ݎܸܽ

ሺܳሻݎܸܽ

Eq. 3-34
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ܵ ൌ
ݎܸܽ ቀܧ൫ܳหई, ई൯ቁ െ ܸ െ ܸ

ሺܳሻݎܸܽ
,

where ܵ , ܵ , … , ଵܵଶ… are called first-order sensitivity indices, second-order sensitivity 

indices, …,and ࢎ࢚-order sensitivity indices, respectively. The first order sensitivity index 

represents the main effect contribution of each model parameter to the variance of the 

objective function; thus, it is a measure of the relative importance of an individual parameter 

ई and can be used to rank the parameters (Saltelli et al. 2008, Sobol 1993). 

The total effect of a parameter ई comprises its first-order effect and, additionally, all higher-

order effects due to interactions. This is associated with the fact that the variance is composed 

of 

ሺܳሻݎܸܽ ൌ ሺܳ|ई~ሻ൯ݎ൫ܸܽܧ  ሺܳ|ई~ሻ൯ܧ൫ݎܸܽ Eq. 3-35

according to the law of total variance and ई~ is comprised of all parameters expect ई, hence, 

ሺܳ|ई~ሻ൯ݎ൫ܸܽܧ ൌ ሺܳሻݎܸܽ	 െ  ሺܳ|ई~ሻ൯ is the expected amount of variance that wouldܧ൫ݎܸܽ

remain unexplained if only ई were left to vary within its uncertainty range and all other 

parameters are known. The total sensitivity index is then given by 

்ܵ ൌ
ሺܳ|ई~ሻ൯ݎ൫ܸܽܧ

ሺܳሻݎܸܽ
ൌ
ሺܳሻݎܸܽ െ ሺܳ|ई~ሻ൯ܧ൫ݎܸܽ

ሺܳሻݎܸܽ
ൌ 1 െ

ሺܳ|ई~ሻ൯ܧ൫ݎܸܽ
ሺܳሻݎܸܽ

.	 Eq. 3-36

First-order sensitivity coefficients can be estimated by using methods such as FAST (Fourier 

Sensitivity Amplitude Test) (Cukier et al. 1973) or the method of Sobol (Sobol 1993). To 

carry out the total sensitivity indices Sobol’s method can also be used or an extended version 

of the FAST method called eFAST (extended FAST) introduced by Saltelli et al. (Saltelli et 

al. 1999). This study concerns the FAST and eFAST method. 

Hereafter the local approach for calculating sensitivities of the model parameters with respect 

to the model outputs उሺई,  ሻ and objective function value ܳሺईሻ is introduced first. Afterwardsݐ

the FAST and eFAST method are described in detail. 

3.3.1 LOCAL APPROACH 

A local SA is usually performed by computing partial derivatives of the model outputs with 

respect to the model parameters and, thus, it is only applicable when the model outputs are 
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differentiable in a neighborhood of the actual value ई∗. The partial derivatives of the model 

output उሺݐ, ई∗ሻ,			݆ ൌ 1,… , ݊௬ with respect to the model parameters ई
∗ 

߲उሺई∗, ሻݐ

߲ई
݅ ൌ 1, … , ݊, ݆ ൌ 1,… , ݊௬

Eq. 3-37

are called first-order sensitivity coefficients and form the Jacobian, also called sensitivity 

matrix, in this context 

ܵሺई∗, ሻݐ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

߲उଵሺई∗, ሻݐ

߲ईଵ
⋯

߲उଵሺई∗, ሻݐ

߲ई
߲उଶሺई∗, ሻݐ

߲ईଵ
⋯

߲उଶሺई∗, ሻݐ

߲ई
⋮ ⋱ ⋮

߲उሺई
∗, ሻݐ

߲ईଵ
⋯

߲उሺई
∗, ሻݐ

߲ई ی

ۋ
ۋ
ۋ
ۋ
ۊ

.	 Eq. 3-38

If the analytical solution of the model output उሺई∗,  ሻ is known, the sensitivity matrix ܵ canݐ

be obtained by differentiation. This is usually not the case and, therefore, numerical methods 

have to be applied. The simplest method to calculate local sensitivities numerically is the 

finite-difference approximation. Thereby, one parameter is changed slightly at a time while 

the others are held fixed and the model is rerun 

߲उሺई∗, ሻݐ

߲ई
ൎ
उሺई∗  ݄݁, ሻݐ െ उሺई∗, ሻݐ

݄

	݅ ൌ 1,… , ݊, ݆ ൌ 1,… , ݊௬,

Eq. 3-39

where ݁ is the ݄݅ݐ unit vector. This approximation is called forward difference. It is also 

possible to approximate the partial derivatives by backward or central differences, 

respectively: 

߲उሺई∗, ሻݐ

ݔ߲
ൎ
उሺई∗, ሻݐ െ उሺई∗ െ ݄݁, ሻݐ

݄

	݅ ൌ 1,… , ݊, ݆ ൌ 1,… , ݊௬

Eq. 3-40

߲उሺई∗, ሻݐ

ݔ߲
ൎ
उሺई∗  ݄݁, ሻݐ െ उሺई∗ െ ݄݁, ሻݐ

2݄

	݅ ൌ 1,… , ݊, ݆ ൌ 1,… , ݊௬

Eq. 3-41

The calculation of the sensitivity matrix requires ݊  1 simulations of the model if forward or 

backward differences are applied and 2݊ simulations in the case of central differences. The 
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advantage of this method is that no extra code beyond the original ODE-solver is needed for 

the calculation of sensitivities; but on the other hand, it is difficult to find the right level of the 

parameter change ݄ because the accuracies of the sensitivities depend on it. If the change is 

too small, the difference between original and perturbed solution is too small and the round-

off error is too high and if it is too large, the linear approximation fails. To consider different 

magnitudes of the parameters, it is advisable to choose the parameter change as a percentage 

from the actual value 

݄ ൌ ݎ ⋅ ई
∗ Eq. 3-42

where 0 ൏ ݎ ൏ 1. 

To compare the local sensitivities, the entries of the sensitivity matrix have to be normalized. 

One possible way to do this, is to evaluate the partial derivatives of the logarithm of the model 

outputs and multiply them with the actual values 

ሚܵሺई∗, ሻݐ ൌ ቊई∗ ⋅
߲ ݈݊൫หउሺई∗, ሻหݐ  1൯

߲ई
ቋ

݅ ൌ 1,… , ݊, ݆ ൌ 1,… , ݊௬

Eq. 3-43

Thereby, the model output is shifted by one to avoid negative values of the logarithm if the 

model output is less than one. 

However, a practical difficulty of the sensitivity matrix is often its size. If a model may 

consist of 25 variables and 20 parameters, the matrix has 500 elements and if, in addition, 100 

time points are studied, then 5000 sensitivities have to be compared. Thus, it is necessary to 

summarize the sensitivity information. This can be achieved by using an objective function 

(Eq. 3-6) which converts the multivariate output of a model to a single value. The partial 

derivatives of the objective function, with respect to the model parameters, are then given by 

ሺई∗ሻܳߘ ൌ ቊ
߲ܳሺई∗ሻ

߲ई∗
ቋ

݅ ൌ 1,… , ݊

Eq. 3-44

which is also known as the gradient of ܳሺई∗ሻ. 

First-order local sensitivity coefficients of the objective function only give information about 

the change of single parameters; but it is also important to analyze the effect of changing 

several parameters, simultaneously. The principal component analysis is based on local 

sensitivities and can be used to estimate the effect of simultaneous parameter changes (Vajda 

et al. 1985, Bard 1974). 
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Assuming that ܳሺईሻ is twice continuous differentiable in an open neighborhood ࣨ of ई∗, 

then ܳሺईሻ can be expanded to its Taylor series at the actual point ई∗ 

ܳሺईሻ ൎ ܳሺई∗ሻ  ሺई∗ሻ∆ईܳߘ 
1
2
∆ई௧ߘଶܳሺई∗ሻ∆ई Eq. 3-45

where ∆ई ൌ 	ई െ ई∗, ܳሺई∗ሻ is the gradient of ܳሺईሻ at ई∗, and ଶܳሺई∗ሻ is the Hessian of 

ܳሺईሻ at ई∗. If ई∗ is a minimum of ܳሺईሻ, then is ܳሺई∗ሻ ൌ 0 (see Theorem 3.1) and the 

objective function can be approximated by 

෨ܳሺईሻ ൌ ܳሺई∗ሻ 
1
2
∆ई௧ߘଶܳሺई∗ሻ∆ई. Eq. 3-46

Hereafter it is simplified assuming that ܳሺई∗ሻ ൌ 0 if ई∗ is a minimizer of ܳ. The expression 

in Eq. 3-46 is then a quadratic approximation of the real shape of the objective function so 

that at any fixed ߝ  0 the inequality 

0  ෨ܳሺईሻ ൌ
1
2
∆ई௧ߘଶܳሺई∗ሻ∆ई  ߝ Eq. 3-47

defines an ellipsoid in the parameter space with the principal axes defined by the Hessian (see 

Figure 3.11). The orientation of the ellipsoid with respect to the parameter axes is defined by 

the eigenvectors of the Hessian ܪ ൌ  ଶܳሺई∗ሻ while the relative lengths of the axes areߘ

revealed by the eigenvalues of this matrix. The function ෨ܳሺईሻ is most sensitive to a change in 

ई along the principal axis corresponding to the largest eigenvalue and is least sensitive to a 

change in ई along the principal axis corresponding to the smallest eigenvalue. If all principal 

axes of the ellipsoid are parallel to the axes of the parameter space, there is no synergistic 

effect among the parameters. 

 

Figure 3.11: An approximated region defined by ࡽ෩ሺ࢞ሻ   ࢿ
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This interpretation can be concretized by using the term principal component. A principal 

component is a new parameter obtained via linear combination of the original parameters 

߰ ൌ ܷ௧ई, Eq. 3-48

where ܷ is the matrix of normalized eigenvectors obtained by diagonalization (eigenvalue-

eigenvector decomposition) of the Hessian ܪ: 

ܪ ൌ ௧ܷ߉ܷ Eq. 3-49

with the diagonal matrix Λ formed by the eigenvalues of ܪ. The objective function ܳሺईሻ can 

be rewritten in dependency of the new parameters ߰: 

෨ܳሺईሻ ൌ ∆ई௧ܪ∆ई ൌ ∆ई௧ܷܷ߉௧∆ई ൌ ∆߰௧߉∆߰ ൌߣ∆߰
ଶ



ୀଵ

ൌ ෨ܳሺ߰ሻ.	 Eq. 3-50

This equation provides another explanation of why the eigenvectors of the matrix ܪ reveal the 

related parameters and why the corresponding eigenvalues show the relative weights of these 

parameter groups. It clearly displays the inverse relationship between the lengths of the axes 

and the square roots of the eigenvalues. The largest eigenvalue indicates the parameter group 

with the largest sensitivity to a change in ߰ corresponding to ෨ܳሺ߰ሻ and the smallest 

eigenvalue indicates the parameter group with the smallest sensitivity to a change in ߰ 

corresponding to ෨ܳሺ߰ሻ. 

Example 3.16 (Bard 1974) 

Consider, the two-dimensional case with 

ܪ ൌ ቀ 0.505 െ0.495
െ0.495 0.505

ቁ 

and ߝ ൌ 1. Thereby, Eq. 3-47 reduces to 

෨ܳሺईሻ ൌ 0.505∆ईଵ
ଶ െ 0.99∆ईଵ∆ईଶ  0.505∆ईଶ

ଶ  1. Eq. 3-51

The normalized eigenvectors of the matrix ܪ are ݒଵ ൌ ሺ0.7071 െ0.7071ሻ௧ and ݒଶ ൌ

ሺ0.7071 0.7071ሻ௧ with the corresponding eigenvalues ߣଵ ൌ 1 and ߣଶ ൌ 0.01. From this 

follows 

∆߰ ൌ ܷ௧∆ई ൌ ቀ0.7071 െ0.7071
0.7071 0.7071

ቁ ∙ ൬
∆ईଵ
∆ईଶ

൰ ൌ ൬
0.7071ሺ∆ईଵ െ ∆ईଶሻ
0.7071ሺ∆ईଵ  ∆ईଶሻ

൰ 

෨ܳሺ߰ሻ ൌߣ∆߰
ଶ

ଶ

ୀଵ

ൌ ∆߰ଵ
ଶ  0.01∆߰ଶ

ଶ 

Hence, the principal axes have the lengths ඥߝ ⁄ଵߣ ൌ 1 and ඥߝ ⁄ଶߣ ൌ 10. It is clear from 

Figure 3.12 that if the parameters are changed simultaneously, large changes can be made 

before the boundary of ෨ܳሺईሻ ൌ 1 is exceeded. In fact, ∆ईଵ ൌ ∆ईଶ ൌ 7.701 satisfies Eq. 3-51. 
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On the other hand, if the changes in ∆ईଵ and ∆ईଶ are taken in opposite directions, the 

boundary is lower ∆ईଵ ൌ െ∆ईଶ ൌ 0.701. Thus, the principal component Δ߰ଶ is very sensitive 

to changes and Δ߰ଵ is less sensitive. 

 

Figure 3.12: The approximated region for the matrix ࡴ with ࡽ෩ሺ़ሻ ൌ  

3.3.2 GLOBAL APPROACH: FOURIER AMPLITUDE SENSITIVITY TEST 

The FAST method was developed by Cukier et al. in the 1970s (Cukier et al. 1973) and 

provides a way to estimate the first-order sensitivity indices in Eq. 3-34. It follows the general 

scheme of a global method depicted in Figure 3.10. At first, each considered model parameter 

ई is provided with a probability density function ऀሺईሻ. If the model parameters are not 

correlated, the probability density function ࣪ሺईሻ is given by 

࣪ሺईሻ ൌෑऀሺईሻ


ୀଵ

. Eq. 3-52

The investigated model output is the value of the objective function in Eq. 3-6. The expected 

objective function value is then defined as 

ሺܳሻܧ ൌ න…නܳሺईଵ, ईଶ, … , ईሻ ⋅ ࣪ሺईଵ, ईଶ, … , ईሻ ݀ईଵ …݀ई

ൌ න…නܳሺईሻ ⋅ ࣪ሺईሻ ݀ई.
Eq. 3-53

1

2

1

2

1 2

1 2
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The main idea of the FAST method is to convert this ݊-dimensional integral into an 

equivalent one-dimensional integral. Therefore, the parameters are transformed by a set of 

known transformation functions ܩ, so-called search curves 

ई ൌ ,ሻሻݏሺ߱݊݅ݏሺܩ ݅ ൌ 1, 2, … , ݊, Eq. 3-54

whereby ሼ߱ሽ is a set of frequencies and ݏ is a scalar variable, called search variable, which 

varies over the range െ∞ ൏ ݏ ൏ ∞. 

According to the ergodic theorem, Weyl shows that the expression for the expected objective 

function value in Eq. 3-53 is identical to the following one-dimensional integral (Weyl 1938) 

ሺܳሻܧ ൌ ݈݅݉
்→ஶ

1
2ܶ

න ܳ൫ईଵሺݏሻ, ईଶሺݏሻ, … , ईሺݏሻ൯ ݏ݀
்

ି்
. Eq. 3-55

One demand on the search curve is that it is space-filling, i.e. it passes arbitrarily close to any 

point in the ݊-dimensional parameter space. To ensure this, the frequencies ߱ have to be 

selected properly so that they are incommensurate, i.e. 

ߙ



ୀଵ

߱ ് 0, ߙ െ .ݏݎ݁݃݁ݐ݊݅ Eq. 3-56

However, the space-filling curve is only an ideal which cannot be realized numerically due to 

the fact that the frequencies cannot be truly incommensurate; therefore, at most one of the 

incommensurate frequencies can be rational and all others have to be irrational. The 

numerical value of these irrational numbers cannot be stored exactly in a computer and, 

hence, an approximation of the incommensurate frequencies by a rational number is required. 

To calculate these frequencies, Schaibly and Shuler propose an appropriate set of integer 

frequencies which implies that the parameters ई, ݅ ൌ 1, 2, … , ݊ are periodic in ݏ on the finite 

interval ሺെߨ,  ሻ (Schaibly and Shuler 1973). Hence, Eq. 3-55 can be modified toߨ

ሺܳሻܧ ൌ
1
ߨ2

න ܳ൫ईଵሺݏሻ, ईଶሺݏሻ, … , ईሺݏሻ൯݀ݏ
గ

ିగ
. Eq. 3-57

and the variance of the objective function is then given by 

ሺܳሻݎܸܽ ൌ ሺܳଶሻܧ െ ሺܳሻଶܧ

ൌ
1
ߨ2

න ܳଶ൫ईଵሺݏሻ, ईଶሺݏሻ, … , ईሺݏሻ൯	݀ݏ
గ

ିగ
െ 	.ሺܳሻଶܧ

Eq. 3-58

Hereafter ܳ൫ईଵሺݏሻ, ईଶሺݏሻ, … , ईሺݏሻ൯ is denoted by ܳሺݏሻ. 
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FREQUENCY SELECTION 

The integer frequencies are selected according to Schaibly and Shuler (Schaibly and Shuler 

1973) such that they are approximately incommensurate to order ܯ, i.e. 

ߙ



ୀଵ

߱ ് 0, ߙ െ ݏݎ݁݃݁ݐ݊݅

|ߙ|		ݎ݂


ୀଵ

 ܯ  1,

Eq. 3-59

whereby the order ܯ can be determined by the investigator. The larger the chosen value of ܯ, 

the better the coverage of the space. If ܯ → ∞, then the frequencies are completely 

incommensurate. 

The frequency set ሼ߱ሽ can be calculated by a trial and error procedure (Cukier et al. 1973) 

(Cukier, et al., 1973). Schaibly et al. present a set of frequencies which are free of 

interferences to the fourth order for systems with 5 to 19 considered parameters (Schaibly and 

Shuler 1973). The listed frequencies have the smallest ߱୫ୟ୶ that still satisfies the conditions 

from Eq. 3-59 and are so-called minimal sets. 

FOURIER EXPANSION 

The objective function is expanded to Fourier series 

ܳሺݏሻ ൌ  ܣ ሻݏሺ݇ݏܿ 

ஶ

ୀିஶ

ܤ .ሻݏሺ݇݊݅ݏ Eq. 3-60

The Fourier coefficients ܣ and ܤ are given by 

ܣ ൌ
1
ߨ2

න ܳሺݏሻ ∙ ሻݏሺ݇ݏܿ
గ

ିగ
ݏ݀

ܤ ൌ
1
ߨ2

න ܳሺݏሻ ∙ ሻݏሺ݇݊݅ݏ
గ

ିగ
,ݏ݀

Eq. 3-61

whereby ିܣ ൌ ିܤ  andܣ ൌ െܤ. 

From Parseval’s theorem, it can be obtained under certain conditions that 

ሺܳଶሻܧ ൌ
1
ߨ2

න ܳଶሺݏሻ ݏ݀
గ

ିగ
ൌ  ܣ

ଶ 

ஶ

ୀିஶ

ܤ
ଶ. Eq. 3-62

The squared mean value of ܳ can be simplified by using Eq. 3-60 
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ሺܳሻଶܧ ൌ ቆ
1
ߨ2

න ܳሺݏሻ݀ݏ
గ

ିగ
ቇ
ଶ

ൌ
1
ଶߨ4

൭න  ܣ ሻݏሺ݇ݏܿ 

ஶ

ୀିஶ

ܤ ሻݏሺ݇݊݅ݏ ݏ݀
గ

ିగ
൱

ଶ

ൌ ܣ
ଶ.

Eq. 3-63

Inserting Eq. 3-62 and Eq. 3-63 into Eq. 3-58 leads to an expression of the variance in terms 

of the Fourier coefficients 

ሺܳሻݎܸܽ ൌ ሺܳଶሻܧ െ ሺܳሻଶܧ ൌ  ܣ
ଶ 

ஶ

ୀିஶ

ܤ
ଶ െ ܣ

ଶ ൌ 2ܣ
ଶ 

ஶ

ୀଵ

ܤ
ଶ.	 Eq. 3-64

The part of the variance which corresponds to the uncertainty in the ݅th parameter, the partial 

variance from Eq. 3-33, can be determined by evaluating the effect of the frequency ߱ on the 

total variance. Therefore, the Fourier coefficients for the frequency ߱ and its higher 

harmonics are summed up 

ܸ ൌ 2ܣఠ
ଶ 

ஶ

ୀଵ

ఠܤ
ଶ . Eq. 3-65

The Fourier amplitudes decreases as ݍ increases so that ܸ can be approximated by 

ܸ ൎ 2ܣఠ
ଶ 

ெ

ୀଵ

ఠܤ
ଶ , Eq. 3-66

whereby ܯ is the maximum harmonic that is considered and equals the order chosen for the 

integer frequencies in Eq. 3-59. 

The first-order sensitivity indices of Eq. 3-34 are then given by the ratio 

ܵ ൌ
ܸ

ሺܳሻݎܸܽ
ൎ
∑ ఠܣ

ଶ ெ
ୀଵ ఠܤ

ଶ

∑ ܣ
ଶ ஶ

ୀଵ ܤ
ଶ . Eq. 3-67

The FAST method requires one model evaluation for each parameter combination which is 

the main component of the computational cost. Thus, it is desired to minimize the required 

number of model evaluations. This can be achieved by utilizing the symmetry properties of 

the search curve. If the frequency set ሼ߱ሽ	 only comprises odd integers, the search curves 

,ሻ൯ݏሺ߱	൫sinܩ ݅ ൌ 1, 2, … , ݊ in Eq. 3-54 become symmetric about േగ

ଶ
 so that the following 

symmetry properties hold: 

ܳሺߨ െ ሻݏ ൌ ܳሺݏሻ

ܳሺെߨ  ሻݏ ൌ ܳሺെݏሻ
Eq. 3-68
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ܳ ቀ
ߨ
2
 ቁݏ ൌ ܳ ቀ

ߨ
2
െ ቁݏ

ܳ ቀെ
ߨ
2
 ቁݏ ൌ ܳ ቀെ

ߨ
2
െ ቁݏ .

The range of the search variable s can then be restricted to െగ

ଶ
 ݏ  గ

ଶ
 and the Fourier 

coefficients in Eq. 3-61 are given by 

ܣ ൌ ቐ

0			 																							 ݂݅ ݇ ݀݀

1
ߨ
න ൫ܳሺݏሻ  ܳሺെݏሻ൯ ሻݏሺ݇ݏܿ ݏ݀

గ
ଶ


݊݁ݒ݁	݇	݂݅										

ܤ ൌ ቐ

݊݁ݒ݁	݇	݂݅																																																																								0

1
ߨ
න ൫ܳሺݏሻ െ ܳሺെݏሻ൯ ሻݏሺ݇݊݅ݏ ݏ݀

గ
ଶ


݂݅ ݇ ݀݀

	

Eq. 3-69

Applying these symmetry properties reduces the required model evaluations by one half. 

FAST SAMPLING 

The search curve given in equation Eq. 3-54 cannot be utilized in real problems because the 

number of points on the search curve is infinite. Hence, a finite subset of these points has to 

be selected. From the Nyquist criteria follows that the minimum number of points ܰ has to be 

taken corresponding to the maximum frequency ߱௫ of the frequency set ሼ߱ሽ (Cukier et al. 

1975) 

ܰ ൌ ௫߱ܯ2  1. Eq. 3-70

In this manner, harmonics up to an order of ܯ can be considered by the analysis. The larger 

the chosen value of the order ܯ, the greater the likelihood that the Fourier amplitude of each 

input frequency reflects solely the uncertainty of the corresponding parameter. On the other 

hand, the larger the chosen ܯ, the larger the maximum value ߱୫ୟ୶ of the frequency set which 

still satisfies Eq. 3-59 and the larger the number of sample points ܰ required for the 

evaluation of the Fourier amplitudes. The order ܯ is mostly chosen to be 4 or higher. A 

symmetric and uniformly spaced sample of the search variable ݏ in the interval ቂെ గ

ଶ
, గ
ଶ
ቃ, 

including ݏ ൌ 0, is achieved by (Cukier et al. 1978) 

ݏ ൌ
ߨ
2
൬
2݆ െ ܰ െ 1

ܰ
൰ , ݆ ൌ 1, 2, … , ܰ Eq. 3-71
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SEARCH CURVE 

The search curve in Eq. 3-54 should provide a uniformly distributed sample of the model 

parameter ई. Therefore, several transformation functions have been proposed (see Cukier et 

al. 1973, Koda et al. 1979, Saltelli et al. 1999). Within this work, the search curve suggested 

by Saltelli et al. is used (Saltelli et al. 1999) 

ई ൌ
1
2

1
ߨ
ሻሻݏሺ߱݊݅ݏሺ݊݅ݏܿݎܽ , ݅ ൌ 1,2, … , ݊ Eq. 3-72

This is a set of straight lines which oscillate between 0 and 1 and the empirical distribution 

can be regarded as more or less uniform. 

Saltelli et al. proposed, additionally, a modification of Eq. 3-72 to obtain more flexible 

sampling schemes. The disadvantage of all these transformations is that they always return the 

same points. This can be avoided by a random phase-shift ߮ chosen uniformly from the 

interval ሾ0,  ሾߨ2

ई ൌ
1
2

1
ߨ
ݏሺ߱݊݅ݏሺ݊݅ݏܿݎܽ  ߮ሻሻ , ݅ ൌ 1,2, … , ݊ Eq. 3-73

However, the random shift causes that the symmetry properties of ܳሺݏሻ in Eq. 3-68 no longer 

hold. Hence, the search curve has to be sampled over the interval ሺെߨ,  ሻ. By selectingߨ

various sets ሼ߮ሽ, different search curves can be realized. This procedure is called resampling 

and ܰ denotes the number of curves used per parameter. The minimum sample size from 

Eq. 3-70 has to be redefined by 

WORKING EQUATIONS 

For a numerical calculation of the Fourier coefficients, the integrals in Eq. 3-69 have to be 

approximated by sums to realize their computation. The computational procedure of the 

FAST method is performed by steps outlined in Figure 3.13 as suggested in (Koda et al. 

1979). 

 

ܰ ൌ ሺ2߱ܯ௫  1ሻ ܰ. Eq. 3-74
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Figure 3.13: Implementation of the FAST-method without random phase-shift 

3.3.3 EXTENDED FOURIER AMPLITUDE SENSITIVITY TEST 

The FAST method provides a way to estimate the first-order sensitivity indices in Eq. 3-34. 

But it is also desirable to get knowledge about the residual variance ܸܽݎሺܳሻ െ ∑ ܸ

ୀଵ  the 

part of the variance that is not caused by first-order effects, i.e. it includes all higher-order 

effects of the interactions between the parameters. The apportion of this residual variance to 

various parameter combinations demands the analysis of all linear combinations among the 

frequencies. The computational complexity of this procedure is the reason why the FAST 
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method has never be exploited for higher-order indices. Instead Saltelli et al. have proposed 

an extension of the FAST method to evaluate the total sensitivity indices in Eq. 3-36. This 

total sensitivities give indeed not a full characterization of the underlying system but they 

allow a full quantification of the impact of each parameter ई (Saltelli et al. 1999). 

The basic idea is to assign a frequency ߱ to a parameter ई and a set of almost identical 

frequencies ߱~, but different from ߱, to all other parameters ई~. The partial variance ~ܸ 

can then be estimated by means of Eq. 3-66 

~ܸ ൌ 2ܣఠ~
ଶ 

ெ

ୀଵ

ఠ~ܤ
ଶ . Eq. 3-75

This partial variance ~ܸ comprises all effects of any order that do not involve the parameter 

ई. The total sensitivity indices according to Eq. 3-36 are then given by 

்ܵ ൌ 1 െ ~ܸ

ሺܳሻݎܸܽ
ൌ 1 െ

2∑ ఠ~ܣ
ଶ ெ

ୀଵ ఠ~ܤ
ଶ

ሺܳሻݎܸܽ
. Eq. 3-76

This approach has the advantage that for each parameter ई only two frequencies ߱ and ߱~ 

have to be selected. The total number of model evaluations that is needed for a complete 

sensitivity analysis is given by 

ܰ ൌ ݊ሺ2߱ܯ௫  1ሻ ܰ, Eq. 3-77

where ߱୫ୟ୶ ൌ maxሺ߱, ߱~ሻ ൌ ߱. 

Usually, a high value is assigned to ߱ and a low value to ߱~; the best choice would be 

߱~ ൌ 1 but then the curve is very sparse space-filling. Saltelli et al. developed an algorithm 

to select these frequencies (Saltelli et al. 1999). At first, the maximum allowable frequency of 

the complementary set ሼ߱~ሽ is set to 

ሼ߱~ሽݔܽ݉ ൌ
߱

ܯ2
. Eq. 3-78

The frequencies of the complementary set are then chosen so that the whole range ሾ1, ߱~ሿ is 

covered according to the conflicting requirements: 

1. the step between two consecutive frequencies must be as large as possible, and 

2. the number of parameters assigned with the same frequency must be as low as possible. 

It can be shown that the lowest sample size that can be used is 65 with ߱ ൌ 8. Saltelli et al. 

recommended choosing the values for the frequency ߱ and the resampling size ܰ 

corresponding to Figure 3.14 by a given sample size ܰ (Saltelli et al. 1999). Within the 

suggested region, the ratio ߱/ ܰ varies between 16 and 64 and all possible choices are 
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equivalent for a given ܰ. To take values outside of this suggested region is not recommended 

because 

 if ߱ is low and ܰ is high, then the sample over each curve is too sparse, and 

 if ߱ is high and ܰ is low, then the sample is too dense over a small number of closed 

paths. 

 
Figure 3.14: Recommended region for choosing the values of the frequency ࣓ and the 

resampling size ࢘ࡺ by a given sample size ࡺ (Saltelli et al. 1999) 
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4 PETRI NETS 

The implementation and programming of the Petri net elements by means of the Modelica 

language demands a clear definition of the underlying formalism and the corresponding 

processes such as activation, enabling, and firing. Despite several works and publications with 

Petri net approaches, there is a serious problem according to the lacking unity of concepts, 

notations, and terminologies. Every author personal definitions which are partly not precise 

enough, not common, or contradictory. Hence, this section comprises all definitions of the 

necessary Petri nets concepts, abbreviations, and extensions as well as the definitions of the 

corresponding processes which are essential for the simulation. Beginning with the Petri net 

introduced firstly by Carl Adam Petri in 1962 (Petri 1962), the formalism is successively 

extended and simplified through to extended Hybrid Petri Nets for biological applications 

(xHPN) to model nearly all kinds of biological reactions. 

Thereby, it is always mentioned who proposed the respective Petri net concept and afterwards 

the corresponding definitions used in this work are given. These can differ from the original 

ones to meet the requirements of biologists and retain the basic Petri net logics at every 

expansion step (see Section 5.2). 

4.1 BASIC CONCEPTS 

The Petri net formalism for graphical modeling and visualization of concurrency, parallelism, 

synchronization, resource sharing, and non-determinism was first introduced by Carl Adam 

Petri in 1962 (Petri 1962). A Petri net is mathematically a directed and bipartite graph. The 

property bipartite implies the division into two unique sets of nodes, called transitions and 

places; thereby, places and transitions are connected by arcs. An arc is a directed edge that 

connects either places to transitions or transitions to places; however, connections between 

transitions or places among each other are not allowed according to the bipartite attribute. 

Places are graphically represented by circles and the transitions by boxes (see Figure 4.1). 
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Petri nets can be found in many different application fields like computer communications, 

business or production processes, operating systems, traffic light crossings, or systems 

biology. In this connection, a place models a state, for example, of an object or a condition 

while a transition models the change of several states, for example, activities or events. 

 
Figure 4.1: Graphical representation of a place (left) and a transition (right) 

This section serves as a basis for the implementation of the ordinary Petri net concept and its 

abbreviations and extensions which are necessary to model biological processes. 

Abbreviations simplify the Petri net representation but can always be transformed to an 

ordinary Petri net. On the other hand, extensions cannot be represented by ordinary Petri nets 

and allow the usage of the Petri net formalism in a wider range of applications. 

Definition 4.1 (net) 

A net is the tuple ሺܲ, ܶ, ,ܨ ܲ ሻ of a finite set of placesܩ ൌ ൛ଵ, ,ଶ	 … ,  ൟ, a finite set of

transitions ܶ ൌ ሼݐଵ, ,ଶݐ	 … , ܲ ௧ሽ, whereݐ ∩ ܶ ൌ ∅, a set ܨ ⊆ ሺܲ ൈ ܶሻ of arcs from places to 

transitions, and a set ܩ ⊆ ሺܶ ൈ ܲሻ of arcs from transitions to places. 

Definition 4.2 (Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂ሻ is a Petri net if ሺܲ, ܶ, ,ܨ :݂ ሻ is a net andܩ ሺܨ ∪ ሻܩ → Գ is an arc 

weight function which assigns each arc a non-negative integer, whereby ሺ →  ሻ denotes theݐ

arc from a place  ∈ ܲ to a transition ݐ ∈ ܶ and ݂ሺ →  ሻ is the corresponding weight andݐ

ሺݐ → ݐ with the weight ݂ሺ  toݐ ሻ denotes the arc from →  .ሻ

Every place in a Petri net can contain an integer number of tokens. These tokens are 

graphically represented by little black dots or numbers in the places (see Figure 4.2). A 

concrete determination of the token number of a place is called marking of the place and a 

concrete determination of the token numbers of all places in a Petri net is called marking of 

the Petri net. If a Petri net contains only marked places, then it is called initially marked Petri 

net or following just Petri net. 
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Definition 4.3 (marking) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂ሻ is a Petri net. A map ݉:ܲ → Գ is called marking of the Petri net 

and assigns each  ∈ ܲ a concrete token number ݉ሺሻ, called marking of the place . The 

map ݉: ܲ → Գ is the initial marking of the Petri net and the tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is 

called (initially marked) Petri net. 

 
Figure 4.2: Tokens can be graphically represented by dots (left) or by numbers (right) in the 

places 

Definition 4.4 (input, output) 

The set of inputs of a Petri net element ݔ ∈ ሺܲ ∪ ܶሻ are defined as ܻሺݔሻ ≔ ሼݕ ∈

ሺܲ ∪ ܶሻ|ሺݕ → ሻݔ ∈ ܨ ∪ ሻݔሽ and the set of outputs are ܻ௨௧ሺܩ ≔ ሼݕ ∈ ሺܲ ∪ ܶሻ|ሺݔ → ሻݕ ∈

ܨ ∪ ݐ ሽ. The set of all input places of a transitionܩ ∈ ܶ is noted with ܲ൫ݐ൯ ⊆ ܲ and the set 

of all output places is noted with ܲ௨௧൫ݐ൯ ⊆ ܲ. Similarly, the set ܶሺሻ ⊆ ܶ contains all 

input transitions of a place  ∈ ܲ and the set ܶ௨௧ሺሻ ⊆ ܶ contains all output transitions (see 

Figure 4.3). The number of inputs is noted by ݊ and the number of outputs by ݊௨௧. 

 
Figure 4.3: Input and output places, and input and output transitions 

A transition is said to be active with regard to a concrete marking if all input places have at 

least as many tokens as their arc weights. 
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Definition 4.5 (activation Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is a Petri net. A transition ݐ ∈ ܶ is active with regard to a 

concrete marking ݉ if and only if 

∀ ∈ ܲሺݐሻ ∶ 	݉ሺሻ  ݂ሺ →  .ሻݐ

The set of all active input transitions of a place  ∈ ܲ is denoted by ܶܣሺሻ and the set of 

all active output transitions is denoted by ܶܣ௨௧ሺሻ. 

Active transitions can be enabled by connected places; if a transition is enabled by all its input 

places, it is firable and can fire tokens. Possibly, a place has not enough tokens to enable all 

output transitions. This is the case when its token number is less than the sum of output arc 

weights and a general conflict arises that has to be resolved. 

Different possible approaches are available; two of them, priority and probabilistic choice 

are used within this work which accordingly have been defined and adapted based on the 

suggestions in (David and Alla 2005). 

Definition 4.6 (general conflict) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is a Petri net. A place  ∈ ܲ has a general conflict with regard 

to a concrete marking ݉ if 

݉ሺሻ ൏  ݂ሺ → ሻݐ
௧ೕ∈்ೠሺሻ

, 

whereby the set ܶܣ௨௧ሺሻ contains two or more active output transitions. 

Example 4.1 

The places ଵܲ and ଶܲ of the Petri net in Figure 4.4 have a general conflict. ଵܲ can either 

enable ଵܶ or ଶܶ and ଶܲ can either enable ܶ2 or ܶ3. Transition ܶ4 is not an option because it is 

not active due to missing tokens in ଷܲ. 

 
Figure 4.4: General conflicts of discrete places (Example 4.1) 

P1 P2 P3

T1 T2 T3 T4

11
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Definition 4.7 (Petri net with priorities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉, अሻ is a Petri net with priorities if ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is a Petri net 

and अ:ܨ → ሼ1,2, … ,maxሺ݊௨௧ሻሽ is a priority function which assigns every arc from a place 

 ∈ ܲ to a transition ݐ ∈ ܶ௨௧ሺሻ an enabling priority अሺ →  ሻ under the condition thatݐ

each priority from 1 to ݊௨௧ is only used once for each place 

अሺ → ሻݐ ് अሺ → ,ݐ∀	ሻݐ ݐ ∈ ܶ௨௧ሺሻ 

and that 1 is the best priority and ݊௨௧ is the worst priority. 

Definition 4.8 (Petri net with probabilities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉0,इሻ is a Petri net with probabilities if ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉0ሻ is a Petri 

net and इ:ܨ → ሾ0,1ሿ is a probability function which assigns every arc from a place  ∈ ܲ to a 

transition ݐ ∈ ܶ௨௧ሺሻ an enabling probability इሺ →  ሻ under the condition that the sumݐ

of probabilities is equal to one 

 इ൫ → ൯ݐ ൌ ∀			1 ∈ ܲ	
௧ೕ∈ ்ೠሺሻ

. 

The deterministic conflict resolution with priorities requires that all output transitions of a 

place are provided with a priority from 1 to ݊௨௧. The transition with the priority 1 is proven 

at first. If it is active and the arc weight does not exceed the marking of the place, it is enabled 

by the place. Then the second prioritized transition is checked; if it is active and the arc 

weight sum is not greater than the marking, it is also enabled. The next transition proven is the 

one provided with the third priority and so on. 

Definition 4.9 (enabling process Petri net with priorities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉, अሻ is a Petri net with priorities. A place  ∈ ܲ enables with 

regard to a concrete marking ݉ a subset, denoted by ܶܧ௨௧ሺሻ, of the transitions in 

  has no general conflict according to Definition 4.6, it enables all transitions ሻ. If௨௧ሺܣܶ

in ܶܣ௨௧ሺሻ, i.e. 

ሻ௨௧ሺܧܶ ≡  .ሻ௨௧ሺܣܶ

Otherwise,  enables as many transitions of the set ܶܣ௦௧ሺሻ as possible according to the 

priorities अሺ →  ሻ so that the conditionݐ

݉ሺሻ   ݂ሺ → ሻݐ
௧ೕ∈்ாೠሺሻ

 

is still fulfilled. 
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The conflict resolution by probabilities proceeds non-deterministically. A probability is 

assigned to every output transition of a place. The enabled transitions are selected by a 

random process with due regard to the probabilities; thereby, it always has to be ensured that 

the current arc weight sum does not exceed the token number of the place. 

Definition 4.10 (enabling process Petri net with probabilities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉,इሻ is a Petri net with probabilities. A place  ∈ ܲ enables with 

regard to a concrete marking ݉ a subset, denoted by ܶܧ௨௧ሺሻ, of the transitions in 

  has no general conflict according to Definition 4.6, it enables all transitions ሻ. If௨௧ሺܣܶ

in ܶܣ௨௧ሺሻ, i.e. 

ሻ௨௧ሺܧܶ ≡  .ሻ௨௧ሺܣܶ

Otherwise,  enables randomly as many transitions of the set ܶܣ௨௧ሺሻ as possible 

according to the probabilities इ൫ →  ൯ so that the conditionݐ

݉ሺሻ   ݂ሺ → ሻݐ
௧ೕ∈்ாೠሺሻ

 

is still fulfilled. 

Remark 4.1 

All output transitions of a place are provided with a probability and the sum is equal to one. If 

not all output transitions are active, the probabilities have to be scaled by the following 

expression 

इ൫ → ൯ݐ ൌ
इ൫ → ൯ݐ

∑ इሺ → ሻ௧ೖ∈்ೠሺሻݐ
. 

It is also possible to mix the two concepts; then one part of the places enables their output 

transitions deterministically according to the assigned priorities and the other part randomly 

according to the assigned probabilities. Petri nets with priorities and probabilities are called 

simplified resolved Petri nets hereafter. 

Definition 4.11 (resolved Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉ሻ is a Petri net with priorities and probabilities, simplified 

called resolved Petri net hereafter, if ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is a Petri net, Ղ: ܲ → ሼ݅ݎ,  ሽ isܾݎ

the resolution function that assigns every place either the resolution type priority or 

probability, and ऀ: ܨ → ൛ሼ1,2, … ,maxሺ݊௨௧ሻሽ: Ղሺሻ ൌ ,݅ݎ ሾ0,1ሿ: Ղሺሻ ൌ  ൟ is anܾݎ
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enabling function which assigns every arc from a place  ∈ ܲ to a transition ݐ ∈ ܶ௨௧ሺሻ 

either an enabling priority or a probability ऀሺ →  ሻ according to the resolution type of theݐ

place and under the condition that each priority from 1 to ݊௨௧ is only used once for each 

place  with Ղሺሻ ൌ  ݅ݎ

ऀሺ → ሻݐ ് ऀሺ → ,ݐ∀	ሻݐ ݐ ∈ ܶ௨௧ሺሻ 

and that 1 is the best priority and ݊௨௧ is the worst priority and that the sum of probabilities is 

equal to one for each place  with Ղሺሻ ൌ  ܾݎ

 ऀ൫ → ൯ݐ ൌ 1	
௧ೕ∈ ்ೠሺሻ

. 

An active transition is firable if it is enabled by all input places. It fires by removing as much 

tokens as the arc weights from all input places and by adding as many tokens as the arc 

weights to all output places. 

Definition 4.12 (firability Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ,ऀ,݉0ሻ is a resolved Petri net. An active transition ݐ ∈ ܶ is firable if 

and only if 

	∀ ∈ ܲ൫ݐ൯:		ݐ ∈  .ሻ௨௧ሺܧܶ

When one or more transitions of a Petri net fire, the markings of the involved places have to 

be recalculated; thereby, the output firing sum is subtracted from the token number and the 

input firing sum is added to it. 

Definition 4.13 (firing process Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ,ऀ,݉0ሻ is a resolved Petri net. A firable transition ݐ ∈ ܶ fires with 

regard to a concrete marking ݉ by removing as many tokens as the arc weights from all input 

places 

݉ᇱሺሻ ൌ ݉ሺሻ െ ݂ሺ → 	∀					ሻݐ ∈ ܲ൫ݐ൯ 

and by adding as many tokens as the arc weights to all output places 

݉ᇱሺሻ ൌ ݉ሺሻ  ݂ሺ → 	∀						ሻݐ ∈ ܲ௨௧൫ݐ൯. 

The new marking ݉ᇱሺሻ of the place  ∈ ܲ is recalculated by the following algebraic 

equation 

݉ᇱሺሻ ൌ ݉ሺሻ െ  ݂ሺ → ሻݐ
௧ೕ∈்ிೠሺሻ

  	݂ሺݐ → 	ሻ
௧ೕ∈்ிሺሻ

, 
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whereby ܶܨ௨௧ሺሻ ⊆ ܶ is the set of all firing output transitions and ܶܨሺሻ ⊆ ܶ is the set of 

all firing input transitions. The sums ∑ ݂ሺ → ሻ௧ೕ∈்ிೠሺሻݐ  and ∑ 	݂ሺݐ → ௧ೕ∈்ிሺሻ	ሻ  are 

called output firing sum and input firing sum, respectively. 

Example 4.2 

Figure 4.5 displays an example of a Petri net with seven places ሼܲ1, ܲ2, ܲ3, ܲ4, ܲ5, ܲ6, ܲ7ሽ 

and four transitions ሼܶ1, ܶ2, ܶ3, ܶ4ሽ. The numbers at the arcs are the weights and the black 

dots in the places are the tokens. Place ܲ1 has two tokens ሺ݉ሺܲ1ሻ ൌ 2ሻ, ܲ2 has five tokens 

ሺ݉ሺܲ2ሻ ൌ 5ሻ, ܲ4 has one token ሺ݉ሺܲ4ሻ ൌ 1ሻ, and ܲ7 has two tokens ሺ݉ሺܲ7ሻ ൌ 2ሻ. All 

others have no tokens ሺ݉ሺܲ3ሻ ൌ ݉ሺܲ5ሻ ൌ ݉ሺܲ6ሻ ൌ 0ሻ and, hence, the initial marking of 

this Petri net is ݉ ൌ ሺ2,5,0,1,0,0,2ሻ. 

 
Figure 4.5: Petri net (Example 4.2) 

Activation: 

- ܶ1: The input places are ܲ1 and ܲ2. ܲ1 must have at least two tokens (weight of the arc 

from ܲ1 to ܶ1 (݂ሺܲ1 → ܶ1ሻ ൌ 2)) which it actually has and ܲ2 must have at least one token 

ሺ݂ሺܲ2 → ܶ1ሻ ൌ 1ሻ and it has five; hence, transition ࢀ is active. 

- ܶ2: The only input place is ܲ2. ܲ2 must have at least one token (݂ሺܲ2 → ܶ2ሻ ൌ 1) which is 

fulfilled; hence, transition ࢀ is active. 

- ܶ3: The input places are ܲ4 and ܲ5. ܲ4 must have at least one token (݂ሺܲ4 → ܶ3ሻ ൌ 1) 

which it actually has but ܲ5 must have at least two tokens and it has none; hence, 

transition ࢀ is not active. 

- ܶ4: The input places are ܲ3 and ܲ6. Both places have no tokens; hence, transition ࢀ is 

not active. 

Enabling: 

- ܲ1 enables its only output transition ܶ1. 
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- ܲ2 has enough tokens to enable both output transitions ܶ1 and ܶ2 ሺ݉ሺܲ2ሻ ൌ 5 

݂ሺܲ2 → ܶ1ሻ  ݂ሺܲ2 → ܶ2ሻ ൌ 2ሻ. There is no general conflict. 

Firing: T1 and T2 are firable and fire by 

- Removing 2 ൫ൌ ݂ሺܲ1 → ܶ1ሻ൯ tokens from ܲ1 

- Removing 2 ൫ൌ ݂ሺܲ2 → ܶ1ሻ  ݂ሺܲ2 → ܶ2ሻ൯ tokens from ܲ2 

- Adding 3 ൫ൌ ݂ሺܶ1 → ܲ3ሻ൯ tokens to ܲ3  

- Adding 2 ൫ൌ ݂ሺܶ1 → ܲ4ሻ൯ tokens to ܲ4 

- Adding 2 ൫ൌ ݂ሺܶ2 → ܲ5ሻ൯ tokens to ܲ5. 

The new marking of the Petri net is ݉ᇱ ൌ ሺ0,3,3,3,2,0,2ሻ and it is displayed in Figure 4.6. Now 

the transitions ܶ2 and ܶ3 are active and can be enabled by all their input places. Hence, ܶ2 

and ܶ3 are firable and the firing of ܶ2 and ܶ3 leads to the new marking ݉ᇱᇱ ൌ ሺ0,2,3,2,2,1,2ሻ. 

 
Figure 4.6: Petri net of Figure 4.5 after firing ࢀ and ࢀ (Example 4.2) 

Example 4.3 

Both transitions of the Petri net example in Figure 4.7 are active because of 

݉ሺܲ1ሻ ൌ 2  ݂ሺܲ1 → ܶ1ሻ ൌ 1 

and 

݉ሺܲ1ሻ ൌ 2  ݂ሺܲ1 → ܶ2ሻ ൌ 2. 

But ܲ1 can only enable one of them due to its token number ሺ݉ሺܲ1ሻ ൌ 2 ≱ ݂ሺܲ1 → ܶ1ሻ 

݂ሺܲ1 → ܶ2ሻ ൌ 3ሻ. Hence, ܲ1 has a general conflict. If the enabling is performed by priorities 

and ܶ2 has priority 1 ሺऀሺܲ1 → ܶ2ሻ ൌ 1ሻ and ܶ1 has priority 2 ሺऀሺܲ1 → ܶ1ሻ ൌ 2ሻ, ܲ1 enables 

ܶ2. ܶ2 is firable and fires by removing two tokens from ܲ1 and adding one to ܲ3. If the 

enabling is performed at random, one of the transitions is enabled according to their assigned 

probabilities, e.g. ܶ1 has the probability ऀሺܲ1 → ܶ1ሻ ൌ 0.7 and ܶ2 has the probability 

ऀሺܲ1 → ܶ2ሻ ൌ 0.3. 
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Figure 4.7: Petri net with a general conflict (Example 4.3) 

Example 4.4 

All transitions of the Petri net in Figure 4.8 are active but ܲ1 and ܲ2 can only enable one of 

their output transitions due to their token numbers. Four cases can occur if probabilistic 

enabling is applied: 

- Case 1: ܲ1 enables ܶ1 and ܲ2 enables ܶ3 

ܶ1 and ܶ3 are firable and fire by removing one token from ܲ1 and ܲ2 and adding one to ܲ3 

and ܲ5. The new marking of the Petri net is ݉ᇱ ൌ ሺ0,0,1,0,1ሻ. 

- Case 2: ܲ1 enables ܶ1 and ܲ2 enables ܶ2 

Only ܶ1 is firable and fires by removing one token from ܲ1 and adding one to ܲ3. The new 

marking of the Petri net is ݉ᇱ ൌ ሺ0,1,1,0,0ሻ. 

- Case 3: ܲ1 enables ܶ2 and ܲ2 enables ܶ3 

Only ܶ3 is firable and fires by removing one token from ܲ2 and adding one to ܲ5. The new 

marking of the Petri net is ݉ᇱ ൌ ሺ1,0,0,0,1ሻ. 

- Case 4: ܲ1 enables ܶ2 and ܲ2 enables ܶ2 

ܶ2 is firable and fires by removing one token from ܲ1 and ܲ2 and adding one to ܲ4. The 

new marking of the Petri net is ݉ᇱ ൌ ሺ0,0,0,1,0ሻ. 

 
Figure 4.8: Petri net with general conflicts (Example 4.4) 
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4.2 ABBREVIATIONS AND EXTENSIONS OF THE 

BASIC CONCEPTS 

Abbreviations and extensions of the mentioned Petri net concepts are introduced and defined 

to use the formalism within a wider range of biological applications and to simplify the 

modeling process and the visualization. Thereby, abbreviations simplify the graphical 

representation of a Petri net, i.e. they can be also modeled with the basic concept but improve 

the visualization. Extensions, however, enhance the basic concept in order to extend the 

application field (cf. (David and Alla 2005)). 

4.2.1 CAPACITIVE PETRI NETS 

The basic Petri net concept is modified such that every place is provided with a lower and 

upper limit of tokens that it can contain. By this modification, the firing of transitions is only 

possible if these minimum and maximum capacities are not infringed upon. All capacitive 

Petri nets can be converted to basic Petri nets but the introduction of capacities simplifies the 

representation of the Petri net model and is, thus, an abbreviation of the basic concept (cf. 

(David and Alla 2005)). 

This abbreviation offers, for example, a simpler way for integrating biological knowledge 

about minimum and maximum quantities of biological compounds. 

Definition 4.14 (capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨,݉ሻ	 is called capacitive Petri net if ሺܲ, ܶ, ,ܨ ,ܩ ݂,݉ሻ is Petri 

net, the map ܿ: ܲ → Գ assigns a minimum capacity ܿሺሻ to every place  ∈ ܲ and the 

map ܿ௨: ܲ → Գ assigns a maximum capacity ܿ௨ሺሻ to every place  ∈ ܲ, whereby the 

initial marking ݉ must satisfy the condition 

ܿሺሻ  ݉ሺሻ  ܿ௨ሺሻ				∀	 ∈ ܲ. 

Capacitive Petri nets require a redefinition of the basic activation process (Definition 4.5) to 

take the capacities into account. A transition of a capacitive Petri net is active if the token 

numbers of all input places do not fall below their minimum capacities after removing the arc 
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weights. Additionally, the maximum capacities of all output places may not be exceeded by 

adding the arc weights. 

Definition 4.15 (activation capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ݈ܿ, ݐ 0ሻ is a capacitive Petri net. A transition݉,ݑܿ ∈ ܶ is active with 

regard to a concrete marking ݉ if and only if 

	∀ ∈ ܲ൫ݐ൯:		݉ሺሻ െ ݂ሺ → ሻݐ  ܿሺሻ 

and 

	∀ ∈ ܲ௨௧൫ݐ൯:		݉ሺሻ  	݂൫ݐ → ൯  ܿ௨ሺሻ. 

A place in a capacitive Petri net can have two different conflicts, called general input conflict 

and general output conflict. A general output conflict occurs when the place has not enough 

tokens to enable all output transitions due to its minimum capacity and a general input conflict 

can appear when the place cannot receive tokens from all active input transitions due to its 

maximum capacity. 

Definition 4.16 (general output conflict, general input conflict) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨,݉ሻ is a capacitive Petri net. A place  ∈ ܲ has a general 

output conflict with regard to a concrete marking ݉ if 

݉ሺሻ െ  ݂ሺ → ሻݐ
௧ೕ∈்ೠሺሻ

൏ ܿሺሻ, 

whereby the set ܶܣ௨௧ሺሻ contains two or more active output transitions. 

A place  ∈ ܲ has a general input conflict with regard to a concrete marking ݉ if 

݉ሺሻ   	݂ሺݐ → ሻ
௧ೕ∈்ሺሻ

 ܿ௨ሺሻ, 

whereby the set ܶܣሺሻ contains two or more active input transitions. 

These conflict situations are resolved in this work by priorities or probabilities as previously 

mentioned (Definition 4.7 and Definition 4.8). Therefore, the enabling processes of 

Definition 4.9 and Definition 4.10 have been redefined to include the capacities. 

Definition 4.17 (capacitive Petri net with priorities) 

The tuple ሺܲ, ܶ, ,ܨ G, ݂, ܿ, ܿ௨, अ,݉ሻ is a capacitive Petri net with priorities if 

ሺܲ, ܶ, ,ܨ G, ݂, ܿ, ܿ௨,݉ሻ is a capacitive Petri net, अ: ሺܨ ∪ ሻܩ → ሼ1,2, … ,maxሺ݊௨௧, ݊ሻሽ is a 
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priority function which assigns every arc from and to a place  ∈ ܲ an enabling priority 

अሺ → ݐሻ and अሺݐ →  ሻ, respectively, under the condition that each priority from 1 to ݊௨௧

is only used once for the output transtions of a place 

अ൫ → ൯ݐ ് अሺ → ,ሻݐ ,ݐ∀ ݐ ∈ ܶ௨௧ሺሻ, 

that each priority from 1 to ݊ is only used once for the input transtions of a place 

अ൫ݐ → ൯ ് अሺݐ → ,ሻ ,ݐ∀ ݐ ∈ ܶሺሻ 

and that 1 is the best priority and ݊௨௧ and ݊, respectively, is the worst priority. 

Definition 4.18 (capacitive Petri net with probabilities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ݈ܿ,  इ,݉0ሻ is a capacitive Petri net with probabilities if,ݑܿ

ሺܲ, ܶ, ,ܨ G, ݂, ܿ, ܿ௨,݉ሻ is a capacitive Petri net, इ: ሺܨ ∪ ሻܩ → ሾ0,1ሿ is a probability function 

which assigns every arc from and to a place  ∈ ܲ an enabling probability इሺ →  ሻ andݐ

इሺݐ →  ሻ, respectively, under the condition that the sum of probabilities for the output and

input transitions, respectively, is equal to one for every place  

 इ൫ → ൯ݐ ൌ 1	
௧ೕ∈ ்ೠሺሻ

,  इ൫ݐ → ൯ ൌ 1
௧ೕ∈்ሺሻ

. 

In a capacity Petri net with priorities, all output transitions of a place are provided with a 

priority from 1 to ݊௨௧. The transition with the priority 1 is proven at first. It has to be active 

and the arc weight may not infringe the minimum capacity. Then, the second prioritized 

transition is checked. It has to be active and the removing of the arc weight sum may not 

violate the minimum capacity. The transition with the third priority is proven next and so on. 

When all places have enabled their output transitions, they enable a subset of their active 

input transitions; but only those can be enabled which are already enabled by all input places. 

All input transitions of a place are provided with a priority from 1 to ݊. The transition with 

the priority 1 is proven at first. It has to be enabled by all input places and the arc weight may 

not infringe on the maximum capacity. Then, the second prioritized transition is checked. It 

has to be enabled by all input places and the addition of the arc weight sum may not violate 

the maximum capacity. Afterwards the transition with the third priority is proven and so on. 

Definition 4.19 (enabling process capacitive Petri net with priorities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨, अ,݉ሻ is a capacitive Petri net with priorities. A place  ∈ ܲ 

enables with regard to a concrete marking ݉ a subset, denoted by ܶܧ௨௧ሺሻ, of the 
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transitions in ܶܣ௨௧ሺሻ. If  has no general output conflict according to Definition 4.16, it 

enables all transitions in ܶܣ௨௧ሺሻ, i.e. 

ሻ௨௧ሺܧܶ ≡  .ሻ௨௧ሺܣܶ

Otherwise,  enables as many transitions of the set ܶܣ௨௧ሺሻ as possible according to the 

priorities अሺ →  ሻ so that the conditionݐ

݉ሺሻ െ  ݂ሺ → ሻݐ
௧ೕ∈்ாೠሺሻ

 ܿሺሻ 

is still fulfilled. 

After the enabling of output transitions, all places  ∈ ܲ enable with regard to a concrete 

marking ݉ a subset, denoted by ܶܧሺሻ, of their active input transitions restricted to those 

that are already enabled by all their input places 

ሻሺ݁ܣܶ ൌ ൛ݐ ∈ ሻሺܣܶ 	∧ 	 ݐ ∈ 	∀			ሻ௨௧ሺܧܶ ∈ ܲ൫ݐ൯ൟ. 

If  has no general input conflict according to Definition 4.16, it enables all transitions in 

 .ሻ, i.eሺ݁ܣܶ

ሻሺܧܶ ≡  .ሻሺ݁ܣܶ

Otherwise,  enables as many transitions of the set ܶ݁ܣሺሻ as possible according to the 

priorities अሺݐ →  ሻ so that the condition

݉ሺሻ   	݂ሺݐ → ሻ
௧ೕ∈்ாሺሻ

 ܿ௨ሺሻ 

is still fulfilled. 

The enabling process with probabilities is performed in a similar manner as that with 

priorities. The only difference is that the order by which the transitions are proven is 

determined at random. Thereby, the transition with the highest probability has the highest 

chance to be proven first. 

Definition 4.20 (enabling process capacitive Petri net with probabilities) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨,इ,݉ሻ is a capacitive Petri net with probabilities. A place 

 ∈ ܲ enables with regard to a concrete marking ݉ a subset, denoted by ܶܧ௨௧ሺሻ, of the 

transitions in ܶܣ௨௧ሺሻ. If  has no general output conflict according to Definition 4.16, it 

enables all transitions in ܶܣ௨௧ሺሻ, i.e. 

ሻ௨௧ሺܧܶ ≡  .ሻ௨௧ሺܣܶ

Otherwise,  randomly enables as many transitions of the set ܶܣ௨௧ሺሻ as possible 

according to the probabilities इሺ →  ሻ so that the conditionݐ
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݉ሺሻ െ  ݂൫ → ൯ݐ
௧ೕ∈்ாೠሺሻ

 ܿሺሻ 

is still fulfilled. 

After the enabling of output transitions, all places  ∈ ܲ enable with regard to a concrete 

marking ݉ a subset, denoted by ܶܧሺሻ, of their active input transitions restricted to those 

that are already enabled by all their input places 

ሻሺ݁ܣܶ ൌ ൛ݐ ∈ ሻሺܣܶ 	∧ 	 ݐ ∈ 	∀	ሻ௨௧ሺܧܶ ∈ ܲ൫ݐ൯ൟ. 

If  has no general input conflict according to Definition 4.16, it enables all transitions 

in	ܶ݁ܣሺሻ, i.e. 

ሻሺܧܶ ≡  .ሻሺ݁ܣܶ

Otherwise,  enables randomly as many transitions of the set ܶ݁ܣሺሻ as possible 

according to the probabilities इ൫ݐ →  ൯ so that the condition

݉ሺሻ   	݂ሺݐ → ሻ
௧ೕ∈்ாሺሻ

 ܿ௨ሺሻ 

is still fulfilled. 

Remark 4.2 

All output transitions of a place are provided with a probability and the sum is equal to one. If 

not all output transitions are active, the probabilities have to be scaled by the following 

expression 

इ൫ → ൯ݐ ൌ
इ൫ → ൯ݐ

∑ इሺ → ሻ௧ೖ∈்ೠݐ
. 

Similarly, if not all input transitions are enabled by all input places, the probabilities have to 

be scaled by the following expression 

इሺݐ → ሻ ൌ
इሺݐ → ሻ

∑ इሺݐ → ሻ௧ೖ∈்
. 

It also possible to mix both concepts, enabling by priorities and probabilities, in one Petri net 

as mentioned before (see Definition 4.11). Then, every place can be assigned with its own 

resolution type. 

Definition 4.21 (resolved capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ G, ݂, ܿ, ܿ௨, Ղ, ऀ,݉ሻ is a resolved capacitive Petri net if 

ሺܲ, ܶ, ,ܨ G, ݂, ܿ, ܿ௨,݉ሻ is a capacitive Petri net, Ղ: ܲ → ሼ݅ݎ,  ሽ is the resolutionܾݎ
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function that assigns every place either the resolution type priority or probability, and 

ऀ: ሺܨ ∪ ሻܩ → ൛ሼ1,2, … ,maxሺ݊, ݊௨௧ሻሽ: Ղሺሻ ൌ ,݅ݎ ሾ0,1ሿ: Ղሺሻ ൌ  ൟ is an enablingܾݎ

function which assigns every arc from or to a place  ∈ ܲ either an enabling priority or a 

probability according to the resolution type of the place and with the condition that each 

priority from 1 to ݊௨௧ for the output transitions and each priority from 1 to ݊ for the input 

transitions is only used once for each place  with Ղሺሻ ൌ  ݅ݎ

ऀ൫ → ൯ݐ ് ऀሺ → ,ሻݐ ,ݐ∀ ݐ ∈ ܶ௨௧ሺሻ 

ऀ൫ݐ → ൯ ് ऀሺݐ → ,ሻ ,ݐ∀ ݐ ∈ ܶሺሻ 

and that 1 is the best priority and ݊௨௧ and ݊, respectively, is the worst priority and that the 

sum of probabilities for the output and input transitions, respectively, is equal to one for each 

place  with Ղሺሻ ൌ  ܾݎ

 ऀ൫ → ൯ݐ ൌ 1	
௧ೕ∈ ்ೠሺሻ

,  ऀ൫ݐ → ൯ ൌ 1
௧ೕ∈்ሺሻ

. 

A transition in a resolved capacitive Petri net is firable if it is enabled by all input and output 

places. The firing process of an enabled transition can be adopted from the basic concepts 

(Definition 4.13). 

Definition 4.22 (firability capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨, Ղ, ऀ,݉ሻ is a resolved capacitive Petri net. An active transition 

ݐ ∈ ܶ is firable if and only if 

	∀ ∈ ܲ൫ݐ൯ ∶ ݐ ∈  ሻ௨௧ሺܧܶ

and 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ ݐ ∈  .ሻሺܧܶ

Example 4.5 

Figure 4.9 shows a capacitive Petri net with the initial marking ݉ ൌ ሺ2,3,0ሻ. All transitions are 

active 

- T1: ݉ሺܲ1ሻ െ ݂ሺܲ1 → ܶ1ሻ ൌ 2 െ 1  ܿሺܲ1ሻ ൌ 1 and ݉ሺܲ3ሻ  ݂ሺܶ1 → ܲ3ሻ ൌ 0  1 

ܿ௨ሺܲ3ሻ ൌ 1 

- T2: ݉ሺܲ2ሻ െ ݂ሺܲ2 → ܶ2ሻ ൌ 3 െ 1  ܿሺܲ2ሻ ൌ 2 and ݉ሺܲ3ሻ  ݂ሺܶ2 → ܲ3ሻ ൌ 0  1 

ܿ௨ሺܲ3ሻ ൌ 1 

- T3: ݉ሺܲ2ሻ െ ݂ሺܲ2 → ܶ3ሻ ൌ 3 െ 1  ܿሺܲ2ሻ ൌ 2 and ݉ሺܲ3ሻ  ݂ሺܶ3 → ܲ3ሻ ൌ 0  1 

ܿ௨ሺܲ3ሻ ൌ 1. 
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At first, the places enable as many output transitions as their minimum capacities allow. ܲ1 

has no general conflict and enables ܶ1 and ܲ2 has a general output conflict and can either 

enable ܶ2 or ܶ3. 

- Case 1: ܲ2 enables ܶ2  

ܲ3 has a general input conflict due to its maximum capacity and can either enable ܶ1 or 

ܶ2. ܶ3 is not an option because it is not enabled by its input place ܲ2. If ܲ3 enables ܶ1, ܶ1 

is firable and fires by removing one token from ܲ1 and adding one to ܲ3 and on the other 

hand, if it enables ܶ2, ܶ2 is firable and fires by removing one token from ܲ2 and adding 

one to ܲ3. 

- Case 2: ܲ2 enables ܶ3  

ܲ3 has a general input conflict due to its maximum capacity and can either enable ܶ1 or 

ܶ3. ܶ2 is not an option because it is not enabled by its input place ܲ2. If ܲ3 enables ܶ1, ܶ1 

is firable and fires by removing one token from ܲ1 and adding one to ܲ3 and on the other 

hand, if it enables ܶ3, ܶ3 is firable and fires by removing one token from ܲ2 and adding 

one to ܲ3. 

 
Figure 4.9: Capacitive Petri net with a general output conflict (Example 4.5) 

4.2.2 EXTENDED PETRI NETS 

The basic Petri net concept has been extended by specific arcs as proposed in (Matsuno et al. 

2003), (David and Alla 2001), and (David and Alla 2005). In this work three specific arcs are 

added - test arc, inhibitor arc, and read arc – to accomplish the modeling of, for example, 

inhibition and activation mechanisms of biological reactions. These arcs connect all places 

with transitions. 
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The test arc is represented by a dashed line, the inhibitor arc has a small circle at its end, and 

the read arc has black square at its end (see Figure 4.10 and Figure 4.11). 

If places are connected with test, inhibitor, or read arcs to transitions, their markings are not 

changed during the firing processes. In the case of test and inhibitor arcs the markings are 

only read to influence the activation process while read arcs do not influence the activation 

process nor the firing process. Hence, read arcs have no weights; they only indicate the usage 

of the token number in the connected transition, for example, for firing conditions or arc 

weight functions (see Section 4.3). 

The same place can be connected with the same transition by a test and normal arc as well as 

by an inhibitor and normal arc. These arcs are called double arcs. 

Definition 4.23 (extended Petri net, double arc) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, Ղ, ऀ,݉ሻ is an extended Petri net if ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉ሻ is 

a resolved Petri net, ࣮ ⊆ ሺܲ ൈ ܶሻ is a set of test arcs, ࣣ ⊆ ሺܲ ൈ ܶሻ is a set of inhibitor arcs, 

࣬ ⊆ ሺܲ ൈ ܶሻ is a set of read arcs, and the arc weight function ݂ is modified such that 

݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣሻ → Գ, whereby ݂ ቀ൫ → ൯࣮ቁ is the weight of the test arc ൫ݐ →  ൯࣮ݐ

and ݂ ቀ൫ → ൯ࣣቁ is the weight of the inhibitor arc ൫ݐ → ൯ࣣ. If ൫ݐ → ൯ݐ ∈ and ൫ ܨ →

൯࣮ݐ ∈ ࣮ or ൫ → ൯ݐ ∈ and ൫ ܨ → ൯ࣣݐ ∈ ࣣ then the arc is called double arc. 

A transition in an extended Petri net is active if 

 all input places connected by normal arcs have at least as many tokens as the arc weights, 

 all input places connected by test arcs have more tokens than the arc weights, and 

 all input places connected by inhibitor arcs have fewer tokens than the arc weights. 

Places connected by read arcs do not influence the activation of a transition. The places 

connected by test, inhibitor, and read arcs enable all active output transitions because tokens 

are not changed during the firing process. 

Definition 4.24 (activation extended Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,࣮,ܩ ࣣ,࣬, ݂, Ղ, ऀ,݉0ሻ is an extended Petri net. A transition ݐ ∈ ܶ is active 

with regard to a concrete marking ݉ if and only if 

	∀ ∈ ܲ൫ݐ൯:

ە
ۖ
۔

ۖ
ሻሺ݉ۓ  ݂൫ → 							൯ݐ ݂݅	൫ → ൯ݐ 		 ∈ ܨ

݉ሺሻ  ݂ ቀ൫ → ൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮

݉ሺሻ ൏ ݂ ቀ൫ → ൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ.
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The enabling process by priorities or probabilities, the firability definition, and the firing 

process are not affected by these extensions and have been adopted from the basic concepts 

(Definition 4.9, Definition 4.10, Definition 4.12, and Definition 4.13). 

Example 4.6 

The Petri nets at the top in Figure 4.10 contain test arcs and the Petri nets at the bottom 

inhibitor arcs. Transition ܶ1 is active with regard to a concrete marking ݉ because the token 

number of ܲ2 is above the weight of the test arc ሺ݉ሺܲ2ሻ ൌ 3  ݂ሺܲ2 → ܶ1ሻ ൌ 2ሻ. However, 

ܶ2 is not active because the marking of ܲ5 is less than the arc weight ሺ݉ሺܲ5ሻ ൌ 1 ≯

݂ሺܲ5 → ܶ2ሻ ൌ 2ሻ. ܶ3 is also not active because the token number of ܲ8 is greater than the 

weight of the inhibitor arc ሺ݉ሺܲ8ሻ ൌ 3 ≮ ݂ሺܲ8 → ܶ3ሻ ൌ 2ሻ. However, ܶ4 is active because the 

marking of ܲ11 is less than the arc weight ሺ݉ሺܲ11ሻ ൌ 1 ൏ ݂ሺܲ11 → ܶ4ሻ ൌ 2ሻ. 

 
Figure 4.10: Extended Petri nets with test arcs (top) and inhibitor arcs (bottom) 

(Example 4.6). ࢀ and ࢀ are active and ࢀ and ࢀ are not active. 

Example 4.7 

Figure 4.11 shows three different biological reactions modeled by extended Petri nets. The 

first reaction is inhibited by the inhibitor ܫ which is modeled by an inhibitor arc from place ܫ to 

transition ܴ. This reaction can only proceed when ܫ is less than a specific bound which is 

represented by the arc weight ݂ሺሺܫ → ܴሻࣣሻ. 

The second reaction activated by the activator ܣ which is modeled by a test arc from place ܣ 

to transition ܴ. This reaction can only proceed when ܣ is greater than a specific bound 

represented by the arc weight ݂ሺሺܣ → ܴሻ࣮ሻ. 

The third reaction is catalyzed by the enzyme ܧ. This enzyme is not consumed in the reaction 

but is needed because it influences the amount of substrate molecules which can be 

converted to product molecules. This is modeled by a read arc to indicate that the token 
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amount of place ܧ is needed for the arc weights of the transition ܴ (these are functional arc 

weights see also Section 4.3, Example 4.8, and Example 4.9). This arc is only for 

visualization and does not influence the firing process of the transition ܴ. 

 
Figure 4.11: Modeling of different biological reactions with extended Petri nets; top: the 

reaction is inhibited by the inhibitor ࡵ, it can only proceed when ࡵ is less than a 
specific bound, middle: the reaction is activated by the activator , it can only 
proceed, when  is greater than a specific bound, bottom: the reaction is 
catalyzed by the enzyme ࡱ, the information about the amount of ࡱ is needed to 
determine how many substrates molecules can be converted to product molecules 
(Example 4.7). 

4.2.3 EXTENDED CAPACITIVE PETRI NETS 

The modeling of biological reactions often requires a combination of the two mentioned 

modifications, i.e. capacitive Petri nets which are extended by test, inhibitor, and read arcs. 

Definition 4.25 (extended capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨, Ղ, ऀ,݉ሻ	 is called extended capacitive Petri net if 

 ሺܲ, ܶ, ,ܨ ,ܩ ݂, ܿ, ܿ௨, Ղ, ऀ,݉ሻ is a resolved capacitive Petri net, 

 ࣮ ⊆ ሺܲ ൈ ܶሻ is a set of test arcs, 

 ࣣ ⊆ ሺܲ ൈ ܶሻ is a set of inhibitor arcs, 

 ࣬ ⊆ ሺܲ ൈ ܶሻ is a set of read arcs, and 

 ݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣሻ → Գ is a modified arc weight function. 
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A transition in an extended capacitive Petri net is active if the token numbers of all input 

places do not fall below the minimum capacities when the arc weights are removed, and the 

maximum capacities of all output places may not be exceeded when the arc weights are 

added. Additionally, the input places connected by test arcs must have more tokens than the 

arc weights and the places connected by inhibitor arcs must have less tokens than the arc 

weights; read arc do not influence the activation of a transition. 

Definition 4.26 (activation extended capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨, Ղ, ऀ,݉ሻ		 is an extended capacitive Petri net. A 

transition ݐ ∈ ܶ is active with regard to a concrete marking ݉ if and only if 

	∀ ∈ ܲ൫ݐ൯ ∶

ە
ۖ
۔

ۖ
ሻሺ݉ۓ െ ݂ሺ → ሻݐ  ܿሺሻ ݂݅	൫ → ൯ݐ 		 ∈ ܨ

݉ሺሻ  ݂ ቀ൫ → 								൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮

݉ሺሻ ൏ ݂ ቀ൫ → 								൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,

 

and 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ 	݉ሺሻ  ݂ሺ → ሻݐ  ܿ௨ሺሻ. 

The enabling can be performed by priorities, probabilities, or by a mix of both. The respective 

definitions for capacitive Petri net can be adopted (Definition 4.19 and Definition 4.20) as 

well as the firability definition (Definition 4.22) and the basic firing process (Definition 4.13). 

4.2.4 SELF-MODIFIED PETRI NETS 

The arc weight function has been modified in order to model dynamic arc weights which 

depend on the marking of a place, i.e. not only positive integers can be written at the arcs but 

also the place markings. This Petri net extension is called a self-modified Petri net and was 

first introduced by Valk in (Valk 1978). Self-modified Petri nets enables, for example, the 

modeling of biochemical reactions on the molecular level as demonstrated in Example 4.8. 

The corresponding definition valid for this work is given below. 

Definition 4.27 (self-modified Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉ሻ is called self-modified Petri net if ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉ሻ is 

a resolved Petri net and the arc weight function ݂ is modified such that ݂: ሺܨ ∪ ሻ݉,ܩ → Գ0 is 
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an dynamic arc weight function that assigns every arc either a positive integer or a concrete 

marking ݉ሺሻ of the place . 

Example 4.8 

Figure 4.12 displays a biochemical reaction; a substrate is converted into a product with the 

aid of an enzyme. The enzyme is necessary for the reaction but not consumed. After the 

product formation the enzyme is set free and can convert another substrate molecule into a 

product. It is assumed that there are more substrate molecules then enzymes. 

 
Figure 4.12: Biochemical reaction (Example 4.8) 

Figure 4.13 shows the biochemical reaction modeled by a self-modified Petri net; substrate, 

product, and enzyme are modeled by the places ܵ, ܲ, and ܧ, respectively and the 

biochemical reaction is modeled by the transition ܴ. The marking of the enzyme place ܧ is 

written at all arcs. This causes the removing of ݉ሺܧሻ tokens from the places ܵ and ܧ and the 

addition of ݉ሺܧሻ tokens to place ܲ and ܧ at each firing of transition ܴ. The transition ܴ is 

active if ܧ has tokens and ܵ has at least as many tokens as ܧ. 

 
Figure 4.13: Self-modified Petri net (Example 4.8) 

The activation definition of a transition in a self-modified Petri net have been adopted from 

the basic concepts (Definition 4.5) just as well as the enabling process, the firability 

definition, and the firing process (Definition 4.9, Definition 4.10, Definition 4.12, and 

Definition 4.13). Self-modified Petri nets can also have capacities or be extended by test, 
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inhibitor, and read arcs or both. Then the respective definitions of the previous sections are 

valid without exception. 

4.2.5 FUNCTIONAL PETRI NETS 

The self-modified Petri nets have been further extended to functional Petri nets which were 

firstly introduced by Hofestädt and Thelen in (Hofestädt and Thelen 1998). The arc weights 

are functions which can depend on the markings of several places. This modification further 

expands the application of the Petri net formalism in the biological field. The Petri net model 

of the biochemical reaction in Figure 4.12 can be, for example, modified by integrating 

specific kinetic effects on the molecular level (see Example 4.9). The corresponding 

definitions valid for this work are given below. 

Definition 4.28 (functional Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉ሻ is called functional Petri net if ሺܲ, ܶ, ,ܨ G, ݂, Ղ, ऀ,݉ሻ is a 

resolved Petri net and the arc weight function ݂ is modified such that ݂: ሺܨ ∪ ሻ݉,ܩ → Գ0 is a 

dynamic arc weight function which assigns every arc a function that depends on a subset of 

concrete markings ݉. 

The activation definition has been adopted from the basic concepts (Definition 4.5) just as 

well as the enabling process, the firability definition, and firing process (Definition 4.9, 

Definition 4.10, Definition 4.12, and Definition 4.13). Functional Petri nets can also have 

capacities or be extended by test, inhibitor, and read arcs or both. Then the respective 

definitions of the previous sections are valid without exception. 

Example 4.9 

In comparison to Example 4.8, the biochemical reaction can be described by linear functions 

which depend on the available number of enzyme molecules. Figure 4.14 shows the 

functional Petri net of the biochemical reaction taken from (Hofestädt and Thelen 1998); 

thereby, the parameter ݊ଵ and ݊ଶ are arbitrary positive integers. At each firing ݊ଵ ⋅ ݉ሺܧሻ 

tokens are removed from place ܵ and ݉ሺܧሻ from ܧ; additionally, ݊ଶ ⋅ ݉ሺܧሻ tokens are added 

to place ܲ and ݉ሺܧሻ to ܧ. The transition is active if ܧ has tokens and ܵ has at least ݊ଵ ⋅ ݉ሺܧሻ 

tokens. 
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Figure 4.14: Functional Petri net (Example 4.9) 

4.3 NON-AUTONOMOUS PETRI NETS 

The Petri nets of the previous sections describe systems and processes in a qualitative manner. 

The firing instants of the transitions are either unknown or not indicated. This kind of Petri net 

is called autonomous Petri net. However, if a Petri net should be analyzed quantitatively, for 

example, by a simulation, it is necessary to associate events and/or time with its behavior; it is 

then called non-autonomous Petri net. Two different concepts are discussed. The first 

implies that enabled transitions fire when an associated condition is satisfied (conditional 

Petri net) and the second involve the firing of enabled transitions when an associated time 

period is passed (timed Petri net). Both concepts can also be mixed in one Petri net. 

4.3.1 CONDITIONAL PETRI NETS 

In a conditional Petri net, an event is associated with every transition. An enabled transition 

fires when the associated condition is fulfilled. 

By means of conditional Petri nets, it is, for example, possible to model signal transduction. 

Thereby, external stimuli are the conditions associated with the transitions. These transitions 

represent the processes by which the cell reacts to external stimuli. 

Definition 4.29 (conditional Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ,0ሻ is a conditional Petri net if ሺܲ݉,ݏ ܶ, ,ܨ ,ܩ ݂, Ղ,ऀ,݉0ሻ is a 

resolved Petri net and s: ሺT, ࣟሻ → ሼtrue, falseሽ is a condition function that assigns every 
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transition ݐ ∈ ܶ a condition ݏ ൌ ,ݐ൫ݏ ࣟ൯ depending on several environmental factors ࣟ e.g. 

time. 

Definition 4.30 (firing instant, actual firable conditional Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, s,݉ሻ is a conditional Petri net. A firing instant of a firable 

transition ݐ ∈ ܶ occurs when the associated condition ݏ becomes true. It is said that the 

transition is actual firable and it then fires immediately. 

The basic definitions for activation, firability, and firing process keep their validity 

(Definition 4.5, Definition 4.12, and Definition 4.13). Conditional Petri net can be 

capacitated, extended, capacitated and extended, self-modified, or functional. Then the 

respective definitions of Section 4.2 are valid. 

Example 4.10 

Figure 4.15 shows a conditional Petri net; transition ܶ1 is active and firable. It fires when the 

assigned condition 1ܥ becomes true which is represented on the right side of Figure 4.15. At 

that time, one token is removed from ܲ1 and one is added to ܲ2. Then ܶ2 is firable and fires 

when the condition 2ܥ becomes true by removing one token from ܲ2 and adding one to ܲ1. 

 
Figure 4.15: Conditional Petri net (Example 4.10) 

The enabling of conditional transitions requires the consideration of general conflicts but only 

those which happen at the same time have to be resolved, called actual conflicts. 

Definition 4.31 (actual conflict) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,  ሻ is a conditional Petri net. If a place݉,ݏ ∈ ܲ has a general 

conflict according to Definition 4.6 and the involved transitions are actual firable 

(Definition 4.30) at the same time, then the place has an actual conflict. 
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Actual conflicts can be resolved by providing the transitions with priorities or probabilities; 

thereby, the basic enabling processes can be adopted (Definition 4.9 and Definition 4.10) and 

the corresponding ones for the Petri net modifications of Section 4.2, respectively. 

Example 4.11 

Figure 4.16 represents a conditional Petri net. Place ܲ5 has a general conflict because it has 

not enough tokens to enable ܶ1 and ܶ2, simultaneously. It is also an actual conflict because 

both transitions are provided with the same condition 1ܥ. 

 
Figure 4.16: Conditional Petri net with an actual conflict (Example 4.11) 

4.3.2 TIMED PETRI NETS 

In timed Petri nets, a delay is associated with every transition. An enabled transition fires first 

when the associated delay is passed. 

These delays represent the duration of a biological reaction associated with the transition. If, 

for example, a biochemical reaction is modeled by a transition, then the delay represents the 

time that is necessary to convert a determined quantity (input arc weights) of substrates (input 

places) to a determined quantity (output arc weights) of products (output places) (see 

Example 4.13). 

Definition 4.32 (timed Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ݀,݉0ሻ is a timed Petri net if ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ,݉0ሻ is a resolved 

Petri net and ݀: ܶ → Թ0 is a delay function that assigns every transition ݐ ∈ ܶ a non-

negative real number, whereby ݀ ൌ ݀൫ݐ൯ is the delay of transition ݐ ∈ ܶ. 
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Definition 4.33 (firing instant, actual firable timed Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ,ऀ, ݀,݉0ሻ is a timed Petri net. A firing instant of a firable transition 

ݐ ∈ ܶ occurs when the associated time period ݀ is elapsed. It is said that the transition is 

actual firable and it then fires immediately. 

The basic definitions for activation, firability, and firing process keep their validity 

(Definition 4.5, Definition 4.12, and Definition 4.13). Timed Petri nets can be capacitated, 

extended, capacitated and extended, self-modified, or functional. Then the respective 

definitions of Section 4.2 are valid. 

Example 4.12 

Figure 4.17 shows on the left side a timed Petri net and on the right side the corresponding 

token evolution: 

- Time 0: ܶ1 and ܶ3 become firable. 

- Time 2: the delay of ܶ3 is elapsed and it fires by removing two tokens from ܲ4 and one 

from ܲ3 and by adding two to ܲ2; ܶ2 becomes firable. 

- Time 3: the delay of ܶ1 is elapsed and it fires by removing one token from ܲ1 and by 

adding one to ܲ2; ܶ1 becomes firable again. 

- Time 6: the delay of ܶ1 is elapsed and it fires by removing one token from ܲ1 and by 

adding one to ܲ2; Simultaneously, the delay of ܶ2 is elapsed and it fires by removing two 

tokens from ܲ2 and by adding one to ܲ1; ܶ1 and ܶ2 become firable again. 

 
Figure 4.17: Timed Petri net (left) and the token evolution (right) (Example 4.12) 
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Example 4.13 

Figure 4.18 shows a timed Petri net of the biochemical reaction in Figure 4.12. In ܴ݀ time 

units, ሺ݊1 ⋅ ሻ substrate molecules should be converted into ሺ݊2ݏ݈݁ݑ݈ܿ݁݉	݁݉ݕݖ݊݁ ⋅

 ሻ product molecules. This is achieved by assigning transition ܴ inݏ݈݁ݑ݈ܿ݁݉	݁݉ݕݖ݊݁

Figure 4.14 the delay ܴ݀. This causes that the transition ܴ waits ܴ݀ time units after it 

becomes firable before ݊1 ⋅ ݉ሺܧሻ tokens are removed from ܵ and ݊2 ⋅ ݉ሺܧሻ are added to ܲ. 

 
Figure 4.18: A timed Petri net of the biochemical reaction in Figure 4.12 (Example 4.13) 

Remark 4.3 

If a place in a timed Petri net has a general conflict, at first the involved transition is fired 

which becomes actual firable according to Definition 4.33. An actual conflict only occurs 

when two or more involved transitions become actual firable at the same time. Then the 

conflict can be solved by priorities or probabilities; thereby, the basic enabling processes can 

be adopted (Definition 4.9 and Definition 4.10) or the respective enabling processes for the 

Petri net modifications of Section 4.2. 

Example 4.14 

Figure 4.19 represents two timed Petri nets. Places ܲ5 and ܲ10 have a general conflict 

because they have not enough tokens to enable both connected transitions. The conflict of 

ܲ5 is not actual due to the fact that ܶ1 becomes firable before ܶ2. Thus ܶ1 fires and 

afterwards ܶ2 is not active anymore. However, the conflict of ܲ10 is actual because the same 

delay is assigned to both transitions. This actual conflict can be resolved by a deterministic or 

random process to decide which of the involved transitions, ܶ3 or ܶ4, gets permission to fire. 
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Figure 4.19: Timed Petri nets without actual conflict (left) and with actual conflict (right) 

(Example 4.14) 

4.3.3 STOCHASTIC PETRI NETS 

The timed Petri net concept can be modified to stochastic Petri nets which were introduced by 

Goss and Peccoud in (Goss and Peccoud 1998) for quantitative modeling of molecular 

reaction networks. The stochastic transitions are provided with random delays instead of fixed 

values and are graphically represented by a black box with a white triangle (see Figure 4.20). 

The delay is an exponentially distributed random variable ࣲ ൌ  ሻ with the probabilityߣሺݔܧ

density function 

ఒ݂ሺݔሻ ൌ ൜݁ߣ
ିఒ௫ ݔ  0
0 ݔ ൏ 0

	, 

the distribution function 

ሻݔఒሺܨ ൌ ൜1 െ ݁ିఒ௫ ݔ  0
0 ݔ ൏ 0

	, 

and expectation value 

ሺࣲሻܧ ൌ
1
ߣ
, 

whereby ߣ  0 is the characteristic parameter of the exponential distribution. Thereby, the 

exponential distribution is chosen because this distribution covers only real numbers and is 

memoryless. 

The characteristic parameter ߣ can depend functionally on the markings of several places 

(Heiner et al. 2008) and is recalculated at each point in time when the respective transition 

becomes active or when one or more markings of involved places change. The definitions 

developed within this work are given below. 
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Definition 4.34 (stochastic Petri net) 

The tuple ሺܲ, ܶ, ,ܨ G, ݂, Ղ, ऀ, ݄,݉ሻ is a stochastic Petri net if ሺܲ, ܶ, ,ܨ G, ݂, Ղ, ऀ,݉ሻ is a 

resolved Petri net and ݄: ሺܶ,݉ሻ → Թ0 is a hazard function which assigns every transition 

ݐ ∈ ܶ a function ݄ ൌ ݄൫ݐ,݉൯ that depends on a subset of concrete markings ݉. Each time 

when ݐ becomes active or involved markings ݉ are changed by firing other transitions, the 

characteristic parameter ߣ ൌ ݄ is recalculated to evaluate the next putative firing point in 

time ߬ ൌ ݁݉݅ݐ  Exp൫ߣ൯. 

Definition 4.35 (firing instant, actual firable stochastic Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ݄,݉ሻ is a stochastic Petri net. A firing instant of a firable 

transition ݐ ∈ ܶ occurs when the putative firing time ߬ is reached. It is said that the transition 

is actual firable and it then fires immediately. 

The basic definitions for activation, firability, and the firing process keep their validity 

(Definition 4.5, Definition 4.12, and Definition 4.13). Stochastic Petri nets can be capacitated, 

extended, capacitated and extended, self-modified, or functional. Then the respective 

definitions of the Section 4.2 are valid. 

Remark 4.4 

If a place in a stochastic Petri net has a general conflict, the first transition which becomes 

actual firable according to Definition 4.35 is fired. Hence, there are no actual conflicts in 

stochastic Petri nets. But if pseudo random numbers are used, actual conflicts are conceivable. 

Example 4.15 

Figure 4.20 shows on the left side a stochastic Petri net; transition ܶ1 has the fixed delay 

݀1 ൌ 1 and ܶ2 and ܶ3 are stochastic transitions with random putative firing times which are 

generated according to their hazard functions. 

- Time 0: ܶ1 becomes firable. 

- Time 1: the delay of ܶ1 is elapsed and it fires by adding one token to ܲ1; ܶ2 and ܶ3 

become firable and evaluate each a putative firing time according to the values of the 

hazard functions at this time 2ߣ ൌ ݄2 ൌ 0.8 and 3ߣ ൌ ݄3 ൌ 1.8. The transition with the 

smaller putative firing time becomes actual firable and fires. Afterwards, the transitions are 

not active anymore. They become active again when ܶ1 fires and ܲ1 gets one token. Then 

the next token competition between ܶ2 and ܶ3 occurs. 

Figure 4.20 shows on the right side one possible token evaluation of ܲ2 and ܲ3. 
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Figure 4.20: Stochastic Petri net (left) and one possible token evolution (right) (Example 4.15) 

Example 4.16 

Figure 4.21 shows a stochastic Petri net model of protein synthesis taken from (Goss and 

Peccoud 1998). The place ܩܫ represents the inactive gene, ܩܣ represents the active gene, 

and ܲ represents the protein. The stochastic transitions model the processes activation ሺܶ1ሻ, 

inactivation ሺܶ2ሻ, synthesis ሺܶ3ሻ, and degradation ሺܶ4ሻ. The arc ሺܩܣ → ܶ3ሻ࣮ is modeled by a 

test arc because the gene is needed for the synthesis but not consumed by it. These 

processes are modeled by stochastic transitions due to the fact that their durations are not 

exactly known. How long is the gene active? When does it become active again? Therefore, 

the parameters ߙ, ,ߚ  characterize the exponentially distributed random number ߜ and ,ߛ

generated for the next putative firing time. 

 
Figure 4.21: A Stochastic Petri net model of protein synthesis (IG = inactive gene, AG = 

active gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis, and 
T4 = degradation) (Example 4.16) 

4.3.4 CONDITIONAL TIMED PETRI NETS 

The concepts of conditional and timed Petri nets are combined in one Petri net, called 

conditional timed Petri net. The transitions can have delays and additional conditions that 

have to be true so that the transitions become active. If the delays of the transitions are all 
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zero, it is a conditional Petri net (see Definition 4.29) and if there are no additional conditions 

assigned to the transitions, it is a timed Petri net (see Definition 4.32). 

Definition 4.36 (conditional timed Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ݀,  ሻ is a conditional timed Petri net if݉,ݏ

ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ݀,݉ሻ is a timed Petri net and ݏ: ሺܶ, ࣟሻ → ሼ݁ݑݎݐ,  ሽ is a condition݁ݏ݈݂ܽ

function that assigns every transition ݐ ∈ ܶ a condition ݏ ൌ ,ݐ൫ݏ ࣟ൯ depending on several 

environmental factors ࣟ e.g. time. 

Definition 4.37 (activation conditional timed Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݐ ሻ is a conditional timed Petri net. A transition݉,ݏ ∈ ܶ is 

active with regard to a concrete marking ݉ if and only if the conditions of Definition 4.5 are 

fulfilled and, additionally, the condition ݏ. 

The basic definitions for the firability and the firing process keep their validity 

(Definition 4.12 and Definition 4.13) as well as the firing instant definition of timed Petri nets 

(Definition 4.33). Conditional timed Petri nets can be capacitated, extended, capacitated and 

extended, self-modified, or functional. Then the respective definitions of Section 4.2 are valid. 

Remark 4.5 

Transitions in a stochastic Petri net can also have additional conditions. 

4.4 CONTINUOUS PETRI NETS 

The continuous Petri net concept was introduced by David and Alla in 1987 (David and Alla 

1987). Contrary to the previously mentioned Petri net concepts, the token numbers and arc 

weights of continuous Petri nets are non-negative real numbers. In this juncture, tokens are no 

longer termed with tokens but rather with marks because the term token is commonly used 

for integer quantities. The firing process takes place as a continuous flow with a maximum 

speed assigned to every transition. Only continuous Petri nets are considered by which time is 

associated with the behavior; hereafter the term continuous Petri net is simplified used for 

timed continuous Petri nets. 
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The transformation from the discrete Petri net concept to is the continuous one is important 

for biological applications. Then it is, for example, possible to model the quantities of 

metabolites as real concentrations instead of integer molecules. The biochemical reaction 

proceeds then as a continuous flow at an assigned speed. 

The definitions for continuous Petri nets developed within this work are given below. 

Definition 4.38 (continuous Petri net) 

The tuple ൫ܲ, ܶ, ,ܨ ,ܩ ݂, ,0൯ is a continuous Petri net if ሺܲ݉,ݒ ܶ, ,ܨ :݂ ,ሻ is a netܩ ሺܨ ∪ ሻܩ →

Թஹ is an arc weight function which assigns every arc a non-negative real number, 

:ݒ ܶ → Թஹ is a maximum speed function which assigns every transition ݐ ∈ ܶ a maximum 

speed ݒ ൌ :൯, and the map ݉ݐ൫ݒ ܲ → Թஹ	 is the initial marking. 

Continuous places are represented by double circles and continuous transitions by white 

boxes. The transformation from a (discrete) timed Petri net to a continuous Petri net is 

displayed in Figure 4.22. Thereby, the discrete firing process with the delay ݀ଵ ൌ 2 is 

replaced by a continuous firing process with the maximum speed ݒଵ ൌ 1 ݀ଵ⁄ ൌ 1 2⁄ , i.e. the 

discrete steps of the discrete token evolution are approximated by a line with the slope 1 2⁄ . 

Remark 4.6 

Hereafter the maximum speed of a transition ݐ ∈ ܶ is denoted by ݒ, the instantaneous speed 

by ݒ, and the preliminary speed by ̅ݒ. 

Definition 4.39 (input and output speed) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,  ሻ is a continuous Petri net. The input speed of a place݉,ݒ ∈ ܲ is 

ܫ ൌ  ݂൫ݐ → ൯ ⋅ ݒ
௧ೕ∈்ிሺሻ

. 

If ܫ  0, place  is said to be fed. 

The output speed of a place  ∈ ܲ is 

ܱ ൌ  ݂൫ → ൯ݐ ⋅ ݒ
௧ೕ∈்ிೠሺሻ

. 

If ܱ  0, place  is said to be emptied. 

A continuous transition is active, enabled, and firable, simultaneously. Hereafter the term 

active will be used. It is active if all input places have either a marking greater than zero or are 
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fed by at least one input transition, i.e. the input speed is not zero. If all input places have a 

non-zero marking the transition is said to be strongly active; otherwise, it is weakly active. 

 
Figure 4.22: Connection between (discrete) timed Petri nets and continuous Petri nets 

Definition 4.40 (activation continuous Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ݐ 0ሻ is a continuous Petri net. A transition݉,ݒ ∈ ܶ is active if and 

only if 

	∀ ∈ ܲ൫ݐ൯ ∶ 	݉ሺሻ  0 ∨ ሺ݉ሺሻ ൌ 0 ∧ ܫ  0ሻ. 

It is strongly active if 

	∀ ∈ ܲ൫ݐ൯ ∶ 	݉ሺሻ  0 

is also satisfied and weakly active otherwise, wherby ܲܫ൫ݐ൯ ist the set of input places with 

݉ሺሻ ൌ 0 ∧ ܫ  0. 

A strongly active transition fires with the assigned maximum speed. However, the speed of a 

weakly active transition has to be decreased according to the input speeds of the input places 

with zero markings. 

Definition 4.41 (firing process continuous Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ݐ ሻ is a continuous Petri net. A strongly active transition݉,ݒ ∈ ܶ 

fires with the maximum speed ݒ ൌ ݐ . A weakly active transitionݒ ∈ ܶ, not involved in an 

actual conflict according to Definition 4.42, fires with the instantaneous speed 

ݒ ൌ minቌ min
∈ூ൫௧ೕ൯

ቌ
1

݂൫ → ൯ݐ
 ݂ሺݐ → ሻ ⋅ ݒ

௧ೖ∈்ிሺሻ

ቍ , ቍݒ

ൌ min ቆ min
∈ூ൫௧ೕ൯

ቆ
1

݂൫ → ൯ݐ
⋅ ቇܫ ,  .ቇݒ
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The firing process is described by a negative mark change of all input places expressed by 

the following differential equation 

݀݉ሺሻ

ݐ݀
ൌ െ݂൫ → ൯ݐ ⋅ 	∀								ݒ	 ∈ ܲ൫ݐ൯ 

and a positive mark change of all output places expressed by the following differential 

equation 

݀݉ሺሻ

ݐ݀
ൌ ݂൫ݐ → ൯ ⋅ 	∀								ݒ ∈ ܲ௨௧൫ݐ൯. 

The mark change of the place  ∈ ܲ can be calculated by the following differential equation 

݀݉ሺሻ

ݐ݀
ൌ ܤ ൌ ܫ െ ܱ, 

where ܤ is the balance of place , i.e. the difference between input and output speed. 

Example 4.17 

Figure 4.23 shows a continuous Petri net without actual conflicts. At time 0, transition ܶ1 

becomes strongly active and fires with the maximum speed ݒଵ ൌ ଵݒ ൌ 3. Immediately 

afterwards, ܶ2 becomes strongly active and fires with the maximum speed ݒଶ ൌ ଶݒ ൌ 2. 

 
Figure 4.23: Continuous Petri net without actual conflicts (left) and the corresponding mark 

evolution (right) (Example 4.17 

The corresponding mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ 2 െ 3 ൌ െ1 

݀݉ሺܲ2ሻ

ݐ݀
ൌ 3 െ 2 ൌ 1. 

At time 150, ܲ1 becomes empty ሺ݉ሺܲ1ሻ ൌ 0ሻ but it is fed ሺܫଵ ൌ 2  0ሻ, hence, ܶ1 is weakly 

active with the instantaneous speed ݒଵ ൌ 2 so that ܫଵ ൌ ଵܱ. The corresponding mark changes 

are then both zero 

P1
150

T1

T2

P2
0

1 1

11

v1=3

v2=2

time

m(P1)

150

150

time

m(P2)

150

150



110  4 Petri Nets 

 

݀݉ሺܲ1ሻ

ݐ݀
ൌ 2 െ 2 ൌ 0 

݀݉ሺܲ2ሻ

ݐ݀
ൌ 2 െ 2 ൌ 0. 

A place in a continuous Petri net has an actual conflict when the input speed is not sufficient 

for firing all output transitions with the instantaneous speed of Definition 4.41, called 

preliminary speed hereafter. 

Definition 4.42 (actual conflict, preliminary speed continuous Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂,  ሻ is a continuous Petri net. A place݉,ݒ ∈ ܲ has an actual conflict 

if 

݉ሺሻ ൌ 0 

and 

ܫ ൏  ݂൫ → ൯ݐ ⋅ ݒ̅
௧ೕ∈்ிೠሺሻ

, 

whereby 

ݒ̅ ൌ minቌ min
∈ூ൫௧ೕ൯

ቌ
1

݂൫ → ൯ݐ
 ݂ሺݐ → ሻ ⋅ ݒ

௧ೖ∈்ிሺሻ

ቍ , ቍݒ

ൌ min ቆ min
∈ூ൫௧ೕ൯

ቆ
1

݂൫ → ൯ݐ
⋅ ቇܫ ,  ቇݒ

is said to be the preliminary speed of a transition ݐ ∈ ܶ. 

This conflict can be resolved by priority (Hanzalek 2003, David and Alla 2005) or sharing 

(David and Alla 2005) under the conditions that the balance of the place is positive and the 

preliminary speeds of the involved transitions are not exceeded. 

Definition 4.43 (feasible solution continuous Petri net) 

A solution of an actual conflict of a place  ∈ ܲ which satisfies the following inequality 

constraints 

ܤ ൌ ܫ െ ܱ  0 

ݐ	∀ ∈ ሻ௨௧ሺܨܶ ∶ ݒ   ݒ̅

is said to be feasible; otherwise, it is infeasible. 
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The set of all feasible solutions is geometrically a convex polyhedron, thus, it usually 

comprises an infinite number of solutions. One feasible solution can be obtained by sharing 

the speed proportional to the maximum speeds of the involved transitions as suggested in 

(David and Alla 2001) which guarantees that the solution lies on a vertex of the polyhedron. 

This approach has been adapted to the continuous Petri net definitions mentioned before 

which leads to following definition for the firing process of continuous transitions. 

Definition 4.44 (sharing proportional to maximum speeds continuous Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ݐ ሻ is a continuous Petri net. An active transition݉,ݒ ∈ ܶ, not 

involved in an actual conflict, fires with the speed of Definition 4.41. If a place  ∈ ܲ has an 

actual conflict according to Definition 4.42, the speed of the output transitions has to be 

adapted such that the constraints of Definition 4.43 are satisfied. This is done by sharing 

proportional to the maximum speeds of the involved output transitions. The instantaneous 

speed of an active transition ݐ ∈ ܶ which has at least one input place with an actual conflict is 

then given by 

ݒ ൌ min
∈൫௧ೕ൯

ሺܦሻ ⋅  .ݒ

Thereby, the expression 

ܦ ൌ
ܫ

∑ 	݂ሺ → ሻݐ ⋅ ௧ೖ∈்ிೠሺሻݒ
 

is called decreasing factor of place . This factor causes that the first condition of a feasible 

solution is satisfied with ܤ ൌ 0. The maximum speed is scaled by the minimum decrasing 

factor of all input places so that the condition ܤ  0 is always satisfied. But the preliminary 

speed could be exceeded for some transitions. Then the speeds of all transitions 

ݐ ∈ ݒ ሻ for which௨௧ሺܨܶ    are set to the preliminary speedݒ̅

ݒ ൌ  .ݒ̅

The subset 	ܶܨതതതത௨௧ሺሻ contains all these transitions and the decreasing factors have to be 

modified by 

ܦ ൌ
ܫ െ ∑ ݂ሺ → ሻݐ ⋅ ்ிതതതതೠሺሻ	௧∈ݒ

∑ 	݂ሺ → ሻݐ ⋅ ௧ೖ∈்ிೠሺሻݒ െ ∑ ݂ሺ → ሻݐ ⋅ ்ிതതതതೠሺሻ	௧∈ݒ
. 

This factor guarantees that ܤ  0 but the premilary speed could be exceeded for some 

transitions. Then the mentioned procedure has to be performed again. 
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Example 4.18 

Figure 4.24 represents two continuous Petri nets which only differ in the maximum speeds ݒଶ 

and ݒଷ of transitions ܶ2 and ܶ3. The transitions ܶ5 and ܶ6 of the left Petri net are weakly 

active due to ݉ሺܲ1ሻ ൌ ݉ሺܲ2ሻ ൌ ݉ሺܲ3ሻ ൌ ݉ሺܲ4ሻ ൌ 0 but they are all fed, i.e. ܫଵ, ,ଶܫ ,ଷܫ ସܫ  0. 

Hence, the preliminary speeds are given by 

ହݒ̅ ൌ min ൬
1

݂ሺܲ1 → ܶ5ሻ
݂ሺܶ1 → ܲ1ሻݒଵ,

1
݂ሺܲ2 → ܶ5ሻ

݂ሺܶ2 → ܲ2ሻݒଶ,

1
݂ሺܲ3 → ܶ5ሻ

݂ሺܶ3 → ܲ3ሻݒଷ,  ହ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 3,

1
3
⋅ 1 ⋅ 10.5,

1
2
⋅ 1 ⋅ 11.7	, 3൰ ൌ 3 

ݒ̅ ൌ min ൬
1

݂ሺܲ2 → ܶ6ሻ
݂ሺܶ2 → ܲ2ሻݒଶ,

1
݂ሺܲ3 → ܶ6ሻ

݂ሺܶ3 → ܲ3ሻݒଷ,

1
݂ሺܲ4 → ܶ6ሻ

݂ሺܶ4 → ܲ4ሻݒସ, ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 10.5,

1
3
⋅ 1 ⋅ 11.7,

1
2
⋅ 1 ⋅ 1,2൰ ൌ

1
2
. 

 
Figure 4.24: Continuous Petri nets without actual conflict (left) and with actual conflict 

(right) (Example 4.18) 

Because neither ܲ2 nor ܲ3 has an actual conflict 

ଶܫ ൌ 10.5  ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ̅  ݂ሺܲ2 → ܶ6ሻ ⋅ ݒ̅ ൌ 9
1
2

 

ଷܫ ൌ 11.7  ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ̅  ݂ሺܲ3 → ܶ6ሻ ⋅ ݒ̅ ൌ 7
1
2
, 
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the instantaneous speeds of ܶ5 and ܶ6 are equal to the preliminary speeds 

ହݒ ൌ ହݒ̅ ൌ 3 

ݒ ൌ ݒ̅ ൌ
1
2
. 

The mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ1ሻ ⋅ ଵݒ െ ݂ሺܲ1 → ܶ5ሻ ⋅ ହݒ ൌ 0 

݀݉ሺܲ2ሻ

ݐ݀
ൌ ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ െ ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ െ ݂ሺܲ2 → ܶ6ሻ ⋅ ݒ ൌ 1 

݀݉ሺܲ3ሻ

ݐ݀
ൌ ݂ሺܶ3 → ܲ3ሻ ⋅ ଷݒ െ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ െ ݂ሺܲ3 → ܶ6ሻ ⋅ ݒ ൌ 4.2 

݀݉ሺܲ4ሻ

ݐ݀
ൌ ݂ሺܶ4 → ܲ4ሻ ⋅ ସݒ െ ݂ሺܲ4 → ܶ6ሻ ⋅ ݒ ൌ 0. 

However, the places ܲ2 and ܲ3 of the right Petri net have both an actual conflict 

ହݒ̅ ൌ min ൬
1
1
⋅ 1 ⋅ 3,

1
3
⋅ 1 ⋅ 7.5,

1
2
⋅ 1 ⋅ 6	, 3൰ ൌ 2.5 

ݒ̅ ൌ min ൬
1
1
⋅ 1 ⋅ 7.5,

1
3
⋅ 1 ⋅ 6,

1
2
⋅ 1 ⋅ 1,2൰ ൌ

1
2

 

ଶܫ ൌ 7.5 ൏ ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ̅  ݂ሺܲ2 → ܶ6ሻ ⋅ ݒ̅ ൌ 8 

ଷܫ ൌ 6 ൏ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ̅  ݂ሺܲ3 → ܶ6ሻ ⋅ ݒ̅ ൌ 6.5. 

Figure 4.25 shows the space of feasible solutions according to the constraints of 

Definition 4.43. 

 
Figure 4.25: Feasible solutions of the actual conflicts of the right Petri net in Figure 4.24 
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One of these feasible solutions is selected by sharing which is proportional to the maximum 

speeds of the involved transitions ܶ5 and ܶ6. At first, the decreasing factors of ܲ2 and ܲ3 are 

calculated 

ଶܦ ൌ
ଶܫ

݂ሺܲ2 → ܲ5ሻݒହ  ݂ሺܲ2 → ܶ6ሻݒ
ൌ

7.5
3 ⋅ 3  1 ⋅ 2

ൌ
15
22

 

ଷܦ ൌ
ଷܫ

݂ሺܲ3 → ܲ5ሻݒହ  ݂ሺܲ3 → ܶ6ሻݒ
ൌ

6
2 ⋅ 3  3 ⋅ 2

ൌ
1
2
. 

Then the maximum speeds of ܶ5 and ܶ6 are decreased by this factor 

ହݒ ൌ minሺܦଶ , ଷሻܦ 	 ⋅ ହݒ ൌ
1
2
⋅ 3 ൌ

3
2
  ହݒ̅

ݒ ൌ minሺܦଶ , ଷሻܦ 	 ⋅ ݒ ൌ
1
2
⋅ 2 ൌ 1 ≰  ݒ̅

But the calculated speed of ܶ6 exceeds the preliminary speed marked by a blue dot in 

Figure 4.25. A feasible solution is achieved if the instantaneous speed is set to the 

preliminary speed 

ݒ ൌ ݒ̅ ൌ
1
2
. 

Additionally, the decreasing factors for the speed of ܶ5 have to be recalculated 

ଶܦ ൌ
ଶܫ െ ݂ሺܲ2 → ܶ6ሻݒ
݂ሺܲ2 → ܶ5ሻݒହ

ൌ
7.5 െ 1 ⋅ 1/2

3 ⋅ 3
ൌ
7
9
		 

ଷܦ ൌ
ଷܫ െ ݂ሺܲ3 → ܶ6ሻݒ
݂ሺܲ3 → ܶ5ሻݒହ

ൌ
6 െ 3 ⋅ 1/2

2 ⋅ 3
ൌ
3
4

 

ହݒ ൌ minሺܦଶ , ଷሻܦ 	 ⋅ ହݒ ൌ 2
1
4
. 

This solution is a vertex of the solution space and marked by a black dot in Figure 4.25. The 

mark changes are 

݀݉ሺܲ1ሻ
ݐ݀

ൌ ݂ሺܶ1 → ܲ1ሻ ⋅ ଵݒ െ ݂ሺܲ1 → ܶ5ሻ ⋅ ହݒ ൌ
3
4

 

݀݉ሺܲ2ሻ

ݐ݀
ൌ ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ െ ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ െ ݂ሺܲ2 → ܶ6ሻ ⋅ ݒ ൌ

1
4

 

݀݉ሺܲ3ሻ

ݐ݀
ൌ ݂ሺܶ3 → ܲ3ሻ ⋅ ଷݒ െ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ െ ݂ሺܲ3 → ܶ6ሻ ⋅ ݒ ൌ 0 

݀݉ሺܲ4ሻ

ݐ݀
ൌ ݂ሺܶ4 → ܲ4ሻ ⋅ ସݒ െ ݂ሺܲ4 → ܶ6ሻ ⋅ ݒ ൌ 0. 



4.4 Continuous Petri Nets 115 

 

4.4.1 CONTINUOUS CAPACITIVE PETRI NETS 

Every place in a continuous capacitive Petri net is provided with a lower and upper limit of 

marks that it can contain, similar to capacitive Petri nets (see Definition 4.14). 

Definition 4.45 (continuous capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ G, ݂, ,ݒ ܿ, ܿ௨,݉ሻ is a continuous capacitive Petri net if 

ሺܲ, ܶ, ,ܨ ,ܩ ݂, :ሻ is a continuous Petri net, the map ܿ݉,ݒ ܲ → Թஹ assigns a minimum 

capacity ܿሺሻ to every place  ∈ ܲ, the map ܿ௨: ܲ → Թஹ assigns a maximum capacity 

ܿ௨ሺሻ to every place  ∈ ܲ, and the initial marking ݉ must satisfy the condition 

ܿሺሻ  ݉ሺሻ  ܿ௨ሺሻ		∀	 ∈ ܲ. 

The continuous capacitive Petri nets require a redefinition of the activation and firing process 

(Definition 4.40 and Definition 4.41). A transition in a continuous capacitive Petri net is 

active if all input places have either a marking greater than their minimum capacities or they 

are fed by at least one input transition, i.e. the input speed is not zero. Additionally, all output 

places have either a marking less than their maximum capacities or they are emptied by at 

least one output transition, i.e. the output speed is not zero. If all input places have a marking 

greater than their minimum capacities and all output places have a marking less than their 

maximum capacities, the transition is said to be strongly active. 

Definition 4.46 (activation continuous capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ ܿ, ܿ௨,݉ሻ is a continuous capacitive Petri net. A transition ݐ ∈ ܶ is 

active if and only if  

	∀ ∈ ܲ൫ݐ൯ ∶ ݉ሺሻ  ܿሺሻ ∨ ሺ݉ሺሻ ൌ ܿሺሻ ∧ ܫ  0ሻ 

and 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ ∨ ሺ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0ሻ. 

It is strongly input active if 

	∀ ∈ ܲ൫ݐ൯ ∶ ݉ሺሻ  ܿሺሻ 

is also satisfied and otherwise it is weakly input active. It is strongly output active if 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ 

is also satisfied and otherwise it is  weakly output active. If it is strongly input and output 

active, it is strongly active. If it is weakly input and output active, it is weakly active. 
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Thereby, ܲܫ൫ݐ൯ ist the set of input places with ݉ሺሻ ൌ ܿሺሻ ∧ ܫ  0 and ܲܫ௨௧൫ݐ൯ is the 

set of output places of ݐ with ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0. 

A strongly active transition fires with maximum speed. However, the speed of a weakly 

(input/output) active transition has to be decreased according to the input speeds of the input 

places with markings equal to the minimum capacities and/or according to the output speeds 

of the output places with markings equal to the maximum capacities. 

Definition 4.47 (firing process continuous capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ ܿ, ܿ௨,݉ሻ is a continuous capacitive Petri net. A strongly active 

transition ݐ ∈ ܶ fires with maximum speed ݒ ൌ  . A weakly (input/output) active transitionݒ

ݐ ∈ ܶ, not involved in an actual conflict according to Definition 4.48, fires with the 

instantaneous speed 

ݒ ൌ minቐ min
∈ூ൫௧ೕ൯

ቌ
1

݂൫ → ൯ݐ
 ݂ሺݐ → ሻ ⋅ ݒ

௧ೖ∈்ிሺሻ

ቍ ,

min
∈ூೠ൫௧ೕ൯

ቌ
1

݂൫ݐ → ൯
 ݂ሺ → ሻݐ ⋅ ݒ

௧ೖ∈்ிೠሺሻ

ቍ ,  ቑݒ

ൌ min ቊ ݉݅݊
∈ூ൫௧ೕ൯

ቆ
1

݂൫ → ൯ݐ
⋅ ቇܫ , min

∈ூೠ൫௧ೕ൯
ቆ

1

݂൫ݐ → ൯
⋅ ܱቇ , ቋݒ . 

The firing process of the transitions is described by a negative mark change of all input places 

expressed by the following differential equation 

݀݉ሺሻ
ݐ݀

ൌ െ݂൫ → ൯ݐ ⋅ 	∀								ݒ	 ∈ ܲ൫ݐ൯ 

and a positive mark change of all output places expressed by the differential equation 

݀݉ሺሻ

ݐ݀
ൌ ݂൫ݐ → ൯ ⋅ 	∀								ݒ ∈ ܲ௨௧൫ݐ൯. 

The mark change of the place  ∈ ܲ can be calculated by the following differential equation 

݀݉ሺሻ

ݐ݀
ൌ ܤ ൌ ܫ െ ܱ, 

where ܤ is the balance of place , i.e. the difference between input and output speed. 

Example 4.19 

Figure 4.26 shows a continuous capacitive Petri net without actual conflicts. Place ܲ2 has a 

maximum capacity of 100 marks. At time 0, transition ܶ1 becomes strongly active and fires 
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with the maximum speed ݒଵ ൌ ଵݒ ൌ 3. Immediately afterwards, ܶ2 becomes strongly active 

and fires with the maximum speed ݒଶ ൌ ଶݒ ൌ 2. At time 100, the maximum capacity of ܲ2 is 

reached ሺ݉ሺܲ2ሻ ൌ 100 ൌ ܿ௨ሺܲ2ሻሻ but it is emptied by transition ܶ2. Hence, ܶ1 is weakly 

output active with the instantaneous speed ݒଵ ൌ 2 so that ܫଶ ൌ ܱଶ. Then the corresponding 

mark changes are both zero. 

 
Figure 4.26: Continuous capacitive Petri net without actual conflicts (left) and the mark 

evolution (right) (Example 4.19) 

Example 4.20 

Figure 4.27 shows a continuous capacitive Petri net. Place ܲ1 has a minimum capacity of 2 

marks and ܲ2 has a maximum capacity of 10 marks. At time 0, ܶ2 is weakly active because 

the marking of the input place ܲ1 is at the minimum capacity and, additionally, the marking of 

its output place is at the maximum capacity but both places are fed and emptied, 

respectively. 

 
Figure 4.27: Continuous capacitive Petri net with a weakly active transition (Example 4.20) 

Hence, the speed of ܶ2 has to be slowed down in such a way that 

ଵܫ  ଵܱ	and	ܫଶ  ܱଶ. 

The instantaneous speed of ܶ2 is 

ଶݒ ൌ min ൬
1

݂ሺܲ1 → ܶ2ሻ
݂ሺܶ1 → ܲ1ሻݒଵ,

1
݂ሺܶ2 → ܲ2ሻ

݂ሺܲ2 → ܶ3ሻݒଷ,  ଶ൰ݒ

ൌ min 	ሺ2, 1,3ሻ ൌ 1 

and the mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ 2 െ 1 ൌ 1 

T1 P1
2 T2 P2

10 T31 1 1 1

cl(P1)=2 cu(P2)=10v1=2 v2=3 v3=1
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݀݉ሺܲ2ሻ

ݐ݀
ൌ 1 െ 1 ൌ 0. 

A place in a continuous capacitive Petri net can have an actual input and output conflict. It has 

an actual output conflict if the input speed is not sufficient for firing all active output 

transitions with the instantaneous speed of Definition 4.47. On the other hand, it has an actual 

input conflict if the output speed is not sufficient for receiving marks from all active input 

transitions with the instantaneous speed of Definition 4.47. Similar to the continuous Petri 

nets without capacities, these conflicts can be resolved by priority or sharing. Thereby, it has 

to be ensured that the solution leads to a positive balance in the case of an output conflict and 

to a negative balance in the case of an input conflict. Additionally, the preliminary speeds of 

the involved transitions may not be exceeded. 

Definition 4.48 (actual (output/input) conflict, preliminary speed) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ ܿ, ܿ௨,݉ሻ is a continuous capacitive Petri net. A place  ∈ ܲ has 

an actual output conflict if 

݉ሺሻ ൌ ܿሺሻ 

and 

ܫ ൏  ݂൫ → ൯ݐ ⋅ ݒ̅
௧ೕ∈்ிೠሺሻ

. 

A place  ∈ ܲ has an actual input conflict if 

݉ሺሻ ൌ ܿ௨ሺሻ 

and 

ܱ ൏  ݂൫ݐ → ൯ ⋅ ݒ̅
௧ೕ∈்ிሺሻ

, 

whereby 

ݒ̅ ൌ minቐ min
∈ூ൫௧ೕ൯

ቌ
1

݂൫ → ൯ݐ
 ݂ሺݐ → ሻ ⋅ ݒ

௧ೖ∈்ிሺሻ

ቍ ,

min
∈ூೠ൫௧ೕ൯

ቌ
1

݂൫ݐ → ൯
 ݂ሺ → ሻݐ ⋅ ݒ

௧ೖ∈்ிೠሺሻ

, ቍ	 , ቑݒ

ൌ min ቊ min
∈ூሺ௧ೖሻ

ቆ
1

݂൫ → ൯ݐ
⋅ ቇܫ , min

∈ூೠሺ௧ೖሻ
ቆ

1

݂൫ݐ → ൯
⋅ ܱቇ ,  ቋݒ

is said to be the preliminary speed of a transition ݐ ∈ ܶ. 
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Definition 4.49 (feasible solution continuous capacitive Petri net) 

A solution of an actual output conflict of a place  ∈ ܲ which satisfies the following 

conditions 

ܤ ൌ ܫ െ ܱ  0 

ݐ		∀ ∈ ሻ௨௧ሺܨܶ ∶ ݒ   ݒ̅

is said to be feasible; otherwise, it is infeasible. 

A solution of an actual input conflict of a place  ∈ ܲ which satisfies the following 

conditions 

ܤ ൌ ܫ െ ܱ  0 

ݐ		∀ ∈ ሻሺܨܶ ∶ ݒ   ݒ̅

is said to be feasible; otherwise, it is infeasible.  

The approach of Definition 4.44 has been adapted for continuous capacitive Petri nets to 

achieve a feasible solution of actual conflicts. 

Definition 4.50 (sharing proportional to maximum speeds continuous cap. Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ ܿ, ܿ௨,݉ሻ is a continuous capacitive Petri net. An active transition 

ݐ ∈ ܶ, not involved in an actual conflict, fires with the speed of Definition 4.47. If a place 

 ∈ ܲ has an actual conflict according to Definition 4.48, the speeds of input and output 

transitions have to be adapted so that the constraints of Definition 4.49 are satisfied. 

This is done by sharing proportional to the maximum speeds of the involved input and 

output transitions. The instantaneous speed of an active transition ݐ ∈ ܶ which has at least 

one input place with an actual output conflict and no output places with an actual input 

conflict is then given by 

ݒ ൌ min
∈൫௧ೕ൯

ሺܦሻ ⋅  .ݒ

Thereby, the expression 

ܦ ൌ
ܫ

∑ 	݂ሺ → ሻݐ ⋅ ௧ೖ∈்ிೠሺሻݒ
 

is called output decreasing factor of place . This factor causes that the first condition of a 

feasible solution is satisfied with ܤ ൌ 0. The maximum speed is scaled by the minimum 

decrasing factor of all input places so that the condition ܤ  0 is always satisfied. But the 

preliminary speed could be exceeded for some transitions. Then the speeds of all transitions 

ݐ ∈ ݒ ሻ for which௨௧ሺܨܶ    are set to the preliminary speedݒ̅

ݒ ൌ  .ݒ̅
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The subset 	ܶܨതതതത௨௧ሺሻ contains all these transitions and the decreasing factor has to be 

modified by 

ܦ ൌ
ܫ െ ∑ 	݂ሺ → ሻݐ ⋅ ்ிതതതതೠሺሻ	௧∈ݒ

∑ 	݂ሺ → ሻݐ ⋅ ௧ೖ∈்ிೠሺሻݒ െ ∑ 	݂ሺ → ሻݐ ⋅ ்ிതതതതೠሺሻ	௧∈ݒ
. 

This factor guarantees that ܤ  0 but the premilary speed could be exceeded for some 

transitions. Then the mentioned procedure has to be performed again. 

The instantaneous speed of an active transition ݐ ∈ ܶ which has at least one output place with 

an actual input conflict and no input place with an actual output conflict is then given by 

ݒ ൌ min
∈ೠ൫௧ೕ൯

ሺܳሻ ⋅  .ݒ

Thereby, the expression 

ܳ ൌ
ܱ

∑ 	݂ሺݐ → ሻ ⋅ ௧ೖ∈்ிሺሻݒ
 

is called input decreasing factor of place . This factor causes that the first condition of a 

feasible solution is satisfied with ܤ ൌ 0. The maximum speed is scaled by the minimum 

decrasing factor of all input places so that the condition ܤ  0 is always satisfied. But the 

preliminary speed could be exceeded for some transitions. Then the speeds of all ݐ ∈

ݒ ሻ for whichሺܨܶ    is set toݒ̅

ݒ ൌ  .ݒ̅

The subset 	ܶܨതതതതሺሻ contains all these transitions. Then the decreasing factor has to be 

modified by 

ܳ ൌ
ܱ െ ∑ 	݂ሺݐ → ሻ ⋅ ்ிതതതതሺሻ	௧∈ݒ

∑ 	݂ሺݐ → ሻ ⋅ ௧ೖ∈்ிሺሻݒ െ ∑ 	݂ሺݐ → ሻ ⋅ ்ிതതതതሺሻ	௧∈ݒ
. 

This factor guarantees that ܤ  0 but the premilary speed could be exceeded for some 

transitions. Then the mentioned procedure has to be performed again. 

The instantaneous speed of an active transition ݐ ∈ ܶ which has at least one input place with 

an actual output conflict and at least one output place with an actual input conflict is then 

given by 

ݒ ൌ min ቆ min
∈൫௧ೕ൯

ሺܦሻ , min
∈ೠ൫௧ೕ൯

ሺܳሻቇ	 ⋅  .ݒ

If this speed exceeds the preliminary speed, the mentioned procedure above has to be 

performed again. 
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Example 4.21 

Figure 4.28 represents two continuous capacitive Petri nets which only differ in the maximum 

speed ݒସ of transition ܶ4. Place ܲ2 of the left Petri net has no actual conflict. Transitions ܶ1 

and ܶ2 are weakly output active due to ݉ሺܲ1ሻ ൌ ܿ௨ሺܲ1ሻ, ݉ሺܲ2ሻ ൌ ܿ௨ሺܲ2ሻ, ݉ሺܲ3ሻ ൌ ܿ௨ሺܲ3ሻ 

but they are all emptied, i.e. ଵܱ, ܱଶ, ܱଷ  0. The instantaneous speeds are given by 

ଵݒ ൌ ଵݒ̅ ൌ min ൬
1

݂ሺܶ1 → ܲ1ሻ
݂ሺܲ1 → ܶ3ሻݒଷ,

1
݂ሺܶ1 → ܲ2ሻ

݂ሺܲ2 → ܶ4ሻݒସ, ଵ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 3,

1
3
⋅ 1 ⋅ 10.1, 3൰ ൌ 3 

ଶݒ ൌ ଶݒ̅ ൌ min ൬
1

݂ሺܶ2 → ܲ2ሻ
݂ሺܲ2 → ܶ4ሻݒସ,

1
݂ሺܶ2 → ܲ3ሻ

݂ሺܲ3 → ܶ5ሻݒହ, ଶ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 10.1,

1
2
⋅ 1 ⋅ 1,2൰ ൌ

1
2

 

and, hence, 

ܱଶ ൌ 10.1  ݂ሺܶ1 → ܲ2ሻ ⋅ ଵݒ  ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ ൌ 9
1
2
. 

 
Figure 4.28: Continuous capacitive Petri nets without actual input conflict (left) and with 

actual input conflict (right) (Example 4.21) 

The mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ1ሻ ⋅ ଵݒ െ ݂ሺܲ1 → ܶ3ሻ ⋅ ଷݒ ൌ 0 

݀݉ሺܲ2ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ2ሻ ⋅ ଵݒ  ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ െ ݂ሺܲ2 → ܶ4ሻ ⋅ ସݒ ൌ െ0.6 

݀݉ሺܲ3ሻ

ݐ݀
ൌ ݂ሺܶ2 → ܲ3ሻ ⋅ ଶݒ െ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ ൌ 0. 
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However, ܲ2 of the right Petri net has an actual input conflict due to 

ଵݒ̅ ൌ min ൬
1

݂ሺܶ1 → ܲ1ሻ
݂ሺܲ1 → ܶ3ሻݒଷ,

1
݂ሺܶ1 → ܲ2ሻ

݂ሺܲ2 → ܶ4ሻݒସ, ଵ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 3,

1
3
⋅ 1 ⋅ 7.5, 3൰ ൌ 2.5 

ଶݒ̅ ൌ min ൬
1

݂ሺܶ2 → ܲ2ሻ
݂ሺܲ2 → ܶ4ሻݒସ,

1
݂ሺܶ2 → ܲ3ሻ

݂ሺܲ3 → ܶ5ሻݒହ, ଶ൰ݒ

ൌ min ൬
1
1
⋅ 1 ⋅ 7.5,

1
2
⋅ 1 ⋅ 1,2൰ ൌ

1
2

 

ܱଶ ൌ 7.5 ≱ 3 ⋅ ଵݒ̅  1 ⋅ ଶݒ̅ ൌ 8. 

The resolution of this conflict is performed by sharing proportional to the maximum speeds of 

the involved transitions ܶ1 and ܶ2. At first, the input decreasing factor of ܲ2 is calculated 

ܳଶ ൌ
ܱଶ

݂ሺܶ1 → ܲ2ሻ ⋅ ଵݒ  ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ
ൌ 	

7.5
3 ⋅ 3  1 ⋅ 2

ൌ
15
22
. 

Then the speeds of ܶ1 and ܶ2 are decreased by this factor 

ଵݒ ൌ ܳଶ ⋅ ଵݒ ൌ
15
22

⋅ 3 ൌ 2
1
22

  ଵݒ̅

ଶݒ ൌ ܳଶ ⋅ ଶݒ ൌ
15
22

⋅ 2 ൌ 1
4
11

≰  .ଶݒ̅

But the calculated speed of ܶ2 exceeds the preliminary speed so that a feasible solution is 

achieved by setting the instantaneous speed to the preliminary speed 

ଶݒ ൌ ଶݒ̅ ൌ
1
2

 

and the factor for decreasing the speed of ܶ1 has to be recalculated by 

ܳଶ ൌ
7.5 െ 1 ⋅ ଶݒ

3 ⋅ ଵݒ
ൌ
7
9
		 

ଵݒ ൌ ܳଶ ⋅ ଵݒ ൌ 2
1
3
. 

The mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ1ሻ ⋅ ଵݒ െ ݂ሺܲ1 → ܶ3ሻ ⋅ ଷݒ ൌ െ

2
3

 

݀݉ሺܲ2ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ2ሻ ⋅ ଵݒ  ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ െ ݂ሺܲ2 → ܶ4ሻ ⋅ ସݒ ൌ 0 

݀݉ሺܲ3ሻ
ݐ݀

ൌ ݂ሺܶ2 → ܲ3ሻ ⋅ ଶݒ െ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ ൌ 0. 

Example 4.22 

Figure 4.29 shows a continuous capacitive Petri net. Transitions ܶ4 and ܶ5 are weakly active 

because the input places have markings equal to the minimum capacities and the output 
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places have markings equal to the maximum capacities; but the input places are fed and the 

output places are emptied. 

 
Figure 4.29: Continuous capacitive Petri net with actual input and output conflict 

(Example 4.22) 

The preliminary speeds 

ସݒ̅ ൌ min ൬min ൬
1

݂ሺܲ1 → ܶ4ሻ
݂ሺܶ1 → ܲ1ሻݒଵ,

1
݂ሺܲ2 → ܶ4ሻ

݂ሺܶ2

→ ܲ2ሻݒଶ൰ ,min ൬
1

݂ሺܶ4 → ܲ4ሻ
݂ሺܲ4 → ܶ6ሻݒ,

1
݂ሺܶ4 → ܲ5ሻ

݂ሺܲ5

→ ܶ7ሻݒ൰	 , ସ൰ݒ ൌ minሺminሺ3,2.5ሻ ,minሺ3,2ሻ , 3ሻ ൌ 2 

ହݒ̅ ൌ min ൬min ൬
1

݂ሺܲ2 → ܶ5ሻ
݂ሺܶ2 → ܲ2ሻݒଶ,

1
݂ሺܲ3 → ܶ5ሻ

݂ሺܶ3

→ ܲ3ሻݒଷ൰ ,min ൬
1

݂ሺܶ5 → ܲ5ሻ
݂ሺܲ5 → ܶ7ሻݒ,

1
݂ሺܶ5 → ܲ6ሻ

݂ሺܲ6

→ ܶ8ሻ଼ݒ൰ , ହ൰ݒ ൌ minሺminሺ7.5,2ሻ ,minሺ6,2ሻ , 2ሻ ൌ 2 

reveal that ܲ2 has an actual output conflict 

ଷܫ ൌ 7.5 ൏ ݂ሺܲ2 → ܶ4ሻ ⋅ ସݒ̅  ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ̅ ൌ 8 

and that ܲ5 has an actual input conflict 

ܱହ ൌ 6 ൏ ݂ሺܶ4 → ܲ5ሻ ⋅ ସݒ̅  ݂ሺܶ5 → ܲ5ሻ ⋅ ହݒ̅ ൌ 8. 

The resolution of these conflicts is performed by sharing according to Definition 4.50. The 

decreasing factors 

ଶܦ ൌ
ଶܫ

݂ሺܲ2 → ܶ4ሻ ⋅ ସݒ  ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ
ൌ
15
22
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ܳହ ൌ
ܱହ

݂ሺܶ4 → ܲ5ሻ ⋅ ସݒ  ݂ሺܶ5 → ܲ5ሻ ⋅ ହݒ
ൌ

6
11
	 

lead to the instantaneous speeds 

ସݒ ൌ minሺܦଶ, ܳହሻ ⋅ ସݒ ൌ 1
7
11

  ସݒ̅

ହݒ ൌ minሺܦଶ, ܳହሻ ⋅ ହݒ ൌ 1
1
11

  ହݒ̅

which is a feasible solution. The corresponding mark changes are 

݀݉ሺܲ1ሻ

ݐ݀
ൌ ݂ሺܶ1 → ܲ1ሻ ⋅ ଵݒ െ ݂ሺܲ1 → ܶ4ሻ ⋅ ସݒ ൌ 1

4
11

 

݀݉ሺܲ2ሻ

ݐ݀
ൌ ݂ሺܶ2 → ܲ2ሻ ⋅ ଶݒ െ ݂ሺܲ2 → ܶ4ሻ ⋅ ସݒ െ ݂ሺܲ2 → ܶ5ሻ ⋅ ହݒ ൌ 1

1
2

 

݀݉ሺܲ3ሻ

ݐ݀
ൌ ݂ሺܶ3 → ܲ3ሻ ⋅ ଷݒ െ ݂ሺܲ3 → ܶ5ሻ ⋅ ହݒ ൌ

10
11

 

݀݉ሺܲ4ሻ
ݐ݀

ൌ ݂ሺܶ4 → ܲ4ሻ ⋅ ସݒ െ ݂ሺܲ4 → ܶ6ሻ ⋅ ݒ ൌ െ1
4
11

 

݀݉ሺܲ5ሻ
ݐ݀

ൌ ݂ሺܶ4 → ܲ5ሻ ⋅ ସݒ  ݂ሺܶ5 → ܲ5ሻ ⋅ ହݒ െ ݂ሺܲ5 → ܶ7ሻ ⋅ ݒ ൌ 0 

݀݉ሺܲ6ሻ
ݐ݀

ൌ ݂ሺܶ5 → ܲ6ሻ ⋅ ହݒ െ ݂ሺܲ6 → ܶ8ሻ ⋅ ଼ݒ ൌ െ1
9
11
. 

4.4.2 CONTINUOUS EXTENDED PETRI NETS 

The extended Petri net concept of Definition 4.23 with test, inhibitor, and read arcs has been 

transferred to the continuous Petri net formalism. 

Definition 4.51 (continuous extended Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂,  ሻ is a continuous extended Petri net if݉,ݒ

ሺܲ, ܶ, ,ܨ ,ܩ ݂, ࣮ ,ሻ is a continuous Petri net݉,ݒ ⊆ ሺܲ ൈ ܶሻ is a set of test arcs, ࣣ ⊆ ሺܲ ൈ ܶሻ is 

a set of inhibitor arcs, ࣬ ⊆ ሺܲ ൈ ܶሻ is a set of read arcs, and the arc weight function ݂ is 

modified such that ݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣሻ → Թஹ, whereby ݂ ቀ൫ →  ൯࣮ቁ is the weight of theݐ

test arc ൫ → ݂ ൯࣮ andݐ ቀ൫ → ൯ࣣቁ is the weight of the inhibitor arc ൫ݐ →  ൯ࣣ. Ifݐ

൫ → ൯ݐ ∈ and ൫ ܨ → ൯࣮ݐ ∈ ࣮ or ൫ → ൯ݐ ∈ and ൫ ܨ → ൯ࣣݐ ∈ ࣣ then the arc is called 

double arc. 
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The activation of transitions in a continuous extended Petri net requires that markings of 

places connected by test arcs are greater than the arc weights and markings of places 

connected by inhibitor arcs are less than the arc weights. The markings of these places are not 

changed by firing so that the firing process and the resolution of actual conflicts have been 

adopted from Definition 4.41 and Definition 4.44, respectively. It has to be stated that the 

same place can be connected with the same transition by a test and normal arc as well as by an 

inhibitor and normal arc. These arcs are called double arcs. Then a transition is also weakly 

active if place and transition are connected by a test and normal arc, the marking is equal to 

the weight of the test arc, and the place is fed. 

Definition 4.52 (activation continuous extended Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ݐ ሻ is a continuous extended Petri net. A transition݉,ݒ ∈ ܶ 

is active if and only if 

	∀ ∈ ܲ൫ݐ൯: 

ە
ۖ
ۖ
۔

ۖ
ۖ
݉ۓ

ሺሻ  0 ∨ ሺ݉ሺሻ ൌ 0 ∧ ܫ  0ሻ										 ݂݅	൫ → ൯ݐ ∈ 																																	ܨ

݉ሺሻ  ݂ ቀ൫ → 																														൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∉ ܨ

݉ሺሻ  ݂ ቀ൫ → 																															൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ

∨ ቀ݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ∧ ܫ  0ቁ

݉ሺሻ ൏ ݂ ቀ൫ → 																															൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,																															

	 

It is strongly active if 

	∀ ∈ ܲ൫ݐ൯ ∶ 

݉ሺሻ  0																												 ݂݅	൫ → ൯ݐ ∈ 																															ܨ

∧ 	݉ሺሻ  ݂ ቀ൫ → ൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ
 

is also satisfied and weakly active otherwise, whereby, ܲܫ൫ݐ൯ ist the set of input places 

with 

݉ሺሻ ൌ 0,																																																					݂݅	൫ → ൯ݐ ∈  	ܨ

∨ 	݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ܫ	∧  0,						݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈  .	ܨ

Example 4.23 

Figure 4.30 shows two continuous extended Petri nets. The left Petri net contains a test arc 

which causes that transition ܶ2 fires first when the marking of ܲ2 is greater than 3.3. The right 

Petri net has an inhibitor arc so that transition ܶ4 fires first when the marking of ܲ4 is less 

than 3.3. 
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Figure 4.30: Continuous extended Petri nets with a test arc (left) and with an inhibitor arc 

(right) and the corresponding mark evolutions (Example 4.23) 

4.4.3 CONTINUOUS EXTENDED CAPACITIVE PETRI NETS 

The continuous capacitive Petri nets has been also extended by test, inhibitor, and read arcs. 

Therefore, the activation process has been modified to include that input places connected by 

test and inhibitor arcs must have appropriate markings. However, the firing process and the 

resolution of actual conflicts have been adopted from Definition 4.47 and Definition 4.50.  

Definition 4.53 (continuous extended capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨,   is called continuous extended capacitive Petri	ሻ݉,ݒ

net if 

 ሺܲ, ܶ, ,ܨ ,ܩ ݂,  ,ሻ is a continuous Petri net݉,ݒ

 ࣮ ⊆ ሺܲ ൈ ܶሻ is a set of test arcs, 

 ࣣ ⊆ ሺܲ ൈ ܶሻ is a set of inhibitor arcs, 

 ࣬ ⊆ ሺܲ ൈ ܶሻ is a set read arcs, 

 ݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣሻ → Թஹ is a modified arc weight function, 

 ܿ: ܲ → Թஹ are the minimum capacities of the places, 

 ܿ௨: ܲ → Թஹ are the maximum capacities of the places, 

whereby the initial marking ݉ must satisfy the condition 

ܿሺሻ  ݉ሺሻ  ܿ௨ሺሻ			∀	 ∈ ܲ. 
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Definition 4.54 (activation continuous extended capacitive Petri net) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨,  ሻ is a continuous extended capacitive Petri net. A݉,ݒ

transition ݐ ∈ ܶ is active if and only if 

	∀ ∈ ܲ൫ݐ൯: 

	

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
݉ۓ

ሺሻ  ܿሺሻ																																													 ݂݅	൫ → ൯ݐ ∈ ܨ
∨ ሺ݉ሺሻ ൌ ܿሺሻ ∧ ܫ  0ሻ

݉ሺሻ  ݂ ቀ൫ → 																												൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∉ ܨ

݉ሺሻ  ݂ ቀ൫ → 																												൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ

∨ ቀ݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ∧ ܫ  0ቁ

݉ሺሻ ൏ ݂ ቀ൫ → 																													൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,

 

and 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ ∨ ሺ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0ሻ. 

It is strongly input active if 

	∀ ∈ ܲ൫ݐ൯ ∶ 

݉ሺሻ  ܿሺሻ																										 ݂݅	൫ → ൯ݐ ∈ 																															ܨ

∧ 	݉ሺሻ  ݂ ቀ൫ → ൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ
 

is also satisfied and weakly input active otherwise. It is strongly output active if 

	∀ ∈ ܲ௨௧൫ݐ൯ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ 

is also satisfied and weakly output active otherwise. If it is strongly input and output active, 

it is strongly active. If it is weakly input and output active, it is weakly active. Thereby, 

 ൯ ist the set of input places withݐ൫ܫܲ

݉ሺሻ ൌ ܿሺሻ,																																													݂݅	൫ → ൯ݐ ∈  	ܨ

∨ 	݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ܫ	∧  0,						݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈  .	ܨ

and ܲܫ௨௧൫ݐ൯ is the set of output places of ݐ with ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0. 

4.4.4 CONTINUOUS FUNCTIONAL PETRI NETS 

The considered continuous Petri net concepts so far comprise constant maximum speeds. This 

has been modified by maximum speed functions that depend on time and/or on markings to 

enhance the modeling power as suggested in (Dubois et al. 1994) and (David and Alla 2001). 

Continuous functional Petri nets are useful for modeling the environment or the control of a 
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system and regarding biological systems, it enables the modeling of nearly all kinetics effects 

(see Example 4.24). 

Definition 4.55 (continuous functional Petri net) 

The tuple ൫ܲ, ܶ, ,ܨ ,ܩ ݂, ,0൯ is a continuous functional Petri net if ൫ܲ݉,ݒ ܶ, ,ܨ ,ܩ ݂,  0൯ is a݉,ݒ

continuous Petri net and the maximum speed function is modified such that 

:ݒ ሺܶ,݉, ሻ݁݉݅ݐ → Թஹ is a dynamic maximum speed function which assigns every transition 

ݐ ∈ ܶ a function ݒ ൌ ,݉,ݐሺݒ  ݉ ሻ which depends on a subset of concrete markings݁݉݅ݐ

and/or on time. 

The definition is similar to Definition 4.38 the only difference being that the maximum speed 

function depends on time and/or markings. Hence, the previously mentioned definitions for 

the activation and firing process kept their validity and have been adopted (Definition 4.40, 

Definition 4.41, and Definition 4.44). A continuous functional Petri net can also have 

capacities or it can be extended by the specific arcs or both. Then the respective definitions of 

the previous sections are valid. 

Example 4.24 

Figure 4.31 shows the biochemical reaction of Figure 4.12 modeled by a continuous 

functional Petri net. The substrate (ܵ), product (ܲ), and enzyme (ܧ) are modeled by 

continuous places and the reaction ሺܴሻ between them by a continuous transition. 

 
Figure 4.31: Continuous functional Petri net of the biochemical reaction in Figure 4.12 

(Example 4.24) 

The marks represent continuous concentrations instead of molecules in the discrete model. 

The speed ݒ of the conversion from substrate to product is described by the Michaelis-

Menten-Kinetics 
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ݒ ൌ
௫ݒ ⋅ ܵ
ܭ  ܵ

, 

where ܵ is the substrate concentration, ݒ௫ is the maximum reaction rate, and ܭ is the 

Michaelis constant. Hence, this function is the maximum speed of transition ܴ and depends 

on the marking of place ܵ. 

4.4.5 CONDITIONAL CONTINUOUS PETRI NETS 

The transitions of the continuous Petri net concepts, introduced in the previous sections, are 

provided with additional conditions that have to be satisfied so that the transition can become 

active. The respective activation process has been modified while the firing process and the 

resolution of actual conflicts remain the same (Definition 4.41 and Definition 4.44). 

Definition 4.56 (conditional continuous Petri) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ  ሻ is a conditional continuous Petri net, if݉,ݏ

ሺܲ, ܶ, ,ܨ ,ܩ ݂, :ݏ ሻ is a continuous Petri net and݉,ݒ ሺT, ࣟሻ → ሼtrue, falseሽ is an condition 

function that assigns every transition ݐ ∈ ܶ a condition ݏ ൌ ,ݐ൫ݏ ࣟ൯ depending on several 

environmental factors ࣟ e.g. time. 

Definition 4.57 (activation conditional continuous Petri) 

The tuple ሺܲ, ܶ, ,ܨ ,ܩ ݂, ,ݒ ݐ ሻ is a conditional continuous Petri net. A transition݉,ݏ ∈ ܶ is 

active if and only if the conditions of Definition 4.40 are fulfilled and, additionally, the 

condition ݏ. 

4.5 HYBRID PETRI NETS 

For modeling biological systems it is often necessary to combine discrete and continuous 

processes. Examples are regulation mechanisms and metabolic reactions of substances which 

switch from production to consumption or vice versa when specific environmental conditions 

appear. This is equivalent to suddenly having another Petri net. In order to model this 

behavior, hybrid Petri nets are introduced which contain discrete places and transitions as well 
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as continuous places and transitions as suggested in (Le Bail et al. 1991), (David and Alla 

2001), and (David and Alla 2005). 

The markings of discrete places are non-negative integers denoted by tokens and the markings 

of continuous places are non-negative real numbers called marks. Delays are associated with 

discrete transitions and maximum speeds with continuous transitions. 

Only hybrid Petri nets are considered by which time is associated with the behavior; hereafter 

the term hybrid Petri net is simplified used for timed hybrid Petri net. The definitions for 

hybrid Petri nets developed within this work are given below. 

Definition 4.58 (hybrid Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄,  ሻ is a hybrid Petri net if݉,ݒ

 ܲܦ ൌ ൛݀ଵ, ,ଶ݀	 … ,  ,ௗൟ is a finite set of discrete places݀

 ܲܥ ൌ ൛ܿଵ, ,ଶܿ	 … ,  ,ൟ is a finite set of continuous placesܿ

 ܶܦ ൌ ሼ݀ݐଵ, ,ଶ݀ݐ	 … ,  ,௧ௗሽ is a finite set of discrete transitions݀ݐ

 ܶܵ ൌ ሼݏݐଵ, ,ଶݏݐ	 … ,  ,௧௦ሽ is a finite set of stochastic transitionsݏݐ

 ܶܥ ൌ ሼܿݐଵ, ,ଶܿݐ	 … ,  ,௧ሽ is a finite set of continuous transitionsܿݐ

 ܲܦ, ,ܦܶ ܶܵ,  ,are pairwise disjoint ܥܶ and 	,ܥܲ

 ܨ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

arcs from places to transitions, 

 ܩ ⊆ ሺܶܦ ൈ ܦܲ ∪ ܦܶ ൈ ܥܲ ∪ ܶܵ ൈ ܦܲ ∪ ܶܵ ൈ ܥܲ ∪ ܥܶ ൈ ܥܲ ∪ ܥܶ ൈ  ሻ is a set ofܦܲ

arcs from transitions to places, 

 ݂: ሺܨ ∪ ሻܩ → ሼԳ:	 ∈ ,	ܦܲ Թஹ:  ∈  ሽ is a arc weight function which assigns everyܥܲ

arc connected to a discrete place a non-negative integer and all others a non-negative real 

number, 

 if  ∈ ݐ and ܦܲ ∈ then ൫ ܥܶ → ൯ݐ ∈ ݐif and only if ൫ ܨ → ൯ ∈ and ݂൫ ܩ → ൯ݐ ൌ

݂൫ݐ →  ,൯

 Ղ: ሺܲܦ ∪ ሻܥܲ → ሼ݅ݎ,  ሽ is an enabling function that assigns every place either theܾݎ

resolution type priority or probability, 

 ऀ: ሺܨ ∪ ሻܩ → ቄሼ1,2, … ,maxሺ݊௨௧, ݊ሻሽ: Ղሺሻ ൌ ݅ݎ ∧ ݐ ∈ ,ܦܶ ሾ0,1ሿ: Ղሺሻ ൌ ܾݎ ∧

ݐ ∈  ቅ is an enabling function which assigns every arc connected to a discreteܦܶ

transition either a priority or a probability according to the resolution type, 
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 if Ղሺሻ ൌ then ऀሺ ݅ݎ → ሻݐ ് ऀሺ → ,ݐ∀	ሻݐ ݐ ∈ ݐሻ and ऀሺ௨௧ሺܦܶ → ሻ ്

ऀሺݐ → ,ݐ∀		ሻ ݐ ∈ ሻሻ, if Ղሺሺܦܶ ൌ ∑ then ܾݎ ऀሺ → ሻ௧ೖ∈்ೠሺሻݐ ൌ 1 and 

∑ ऀሺݐ → ሻ௧ೖ∈்ሺሻ ൌ 1, 

 ݀: ܦܶ → Թஹ is a delay function which assigns every discrete transition a non-negative, 

real-valued delay, 

 ݄: ሺܶܵ,݉ሻ → Թஹ is a hazard function which assigns every stochastic transition a non-

negative, real-valued random delay depending on a concrete marking ݉, 

 ݒ: ܥܶ → Թஹ is a maximum speed function which assigns every continuous transition a 

non-negative, real-valued maximum speed, 

 ݉: ሼܲܦ → Գ, ܥܲ → Թஹሽ is the initial marking. 

The basic concepts modeled by hybrid Petri nets are influence and conversion. Figure 4.32 

shows at the top two examples of influence. In the left Petri net, the behavior of the 

continuous part is influenced by the discrete part such that ܲ3 must have at least one token to 

activate ܶ1. According to Definition 4.58, discrete input places of continuous transitions must 

also be their output places and vice versa with arcs of the same weights. Hence, the markings 

of discrete places are not changed by firing a continuous transition. They can only influence 

the time when the transition can become active. 

 
Figure 4.32: Basic concepts of hybrid Petri nets; top: influence of a discrete part on a 

continuous part (left) and of a continuous part on a discrete part (right); bottom: 
conversion of a discrete marking to a continuous marking (left) and of a 
continuous marking to a discrete marking (right) 

In the right Petri net, the behavior of the discrete part is influenced by the continuous part. 

Place ܲ6 must have at least 5.4 marks so that ܶ2 can become active. Because the weight of 

the arc from ܲ6 to ܶ2 equals the weight of the arc from ܶ2 back to ܲ6, the marking of ܲ6 
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remains the same when ܶ2 fires. It only influences the time when the transition can become 

active. 

At the bottom of Figure 4.32 are two examples of conversion. In the left Petri net, a discrete 

marking is converted to a continuous marking by a discrete transition. The firing process is 

performed by removing one token from ܲ7 and adding 1.8 marks to ܲ8. 

In the right Petri net, a continuous marking is converted to a discrete marking. When ܶ4 fires, 

0.8 marks are removed from ܲ9 and one token is added to ܲ10. Conversions from discrete 

markings to continuous markings and vice versa can only be performed by discrete 

transitions. 

Example 4.25 

A biological example for influence is the protein synthesis which is transformed from a 

stochastic Petri net (cp. Example 4.16) to a hybrid Petri net depicted in Figure 4.33. The 

active gene ሺܩܣሻ influences the protein synthesis. Only if the place ܩܣ has one token, the 

protein can be producted by the continuous transition ܶ3. But ܩܣ is not consumed in this 

reaction so that it is input and output of ܶ3, simultaneously. This can be also modeled by a 

test arc from ܩܣ to ܶ3. The activation and inactivation of the gene proceed discretely while 

the protein is produced and degraded continuously. 

 
Figure 4.33: Hybrid Petri net model of protein synthesis (IG = inactive gene, AG = active 

gene, P = protein, T1 = activation, T2 = inactivation, T3 = synthesis, and T4 = 
degradation) (Example 4.25) 

Remark 2.7 

Hereafter the set of all input places of a transition ݐ is denoted by ܲ൫ݐ൯ and the set of all 

discrete and continuous input places are denoted by ܲܦ൫ݐ൯ and ܲܥ൫ݐ൯, respectively. The 

notations for the set of (discrete/continuous) output places are similar ܲ௨௧൫ݐ൯, ܲܦ௨௧൫ݐ൯, 

and ܲܥ௨௧൫ݐ൯, respectively. The set of all input transitions of a place  is denoted by ܶሺሻ 

and the set of all discrete/stochastic and continuous input transitions are denoted by ܶܦሺሻ 

and ܶܥሺሻ, respectively. The notations for the set of (discrete/ stochastic and continuous) 

output transitions are similar ܶ௨௧ሺሻ, ܶܦ௨௧ሺሻ, and ܶܥ௨௧ሺሻ, respectively. 
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Definition 4.59 (activation hybrid Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄,  ሻ is a hybrid Petri net. A݉,ݒ

discrete/stochastic transition ݐ ∈ ሺܶܦ ∪ ܶܵሻ is active if and only if 

	∀ ∈ ܲ൫ݐ൯ ∶ 	݉ሺሻ  ݂൫ →  .൯ݐ

A continuous transition ݐ ∈  is active if and only if ܥܶ

	∀ ∈ ൯ݐ൫ܥܲ ∶ 	݉ሺሻ  0 ∨ ሺ݉ሺሻ ൌ 0 ∧ ܫ  0ሻ 

and 

	∀ ∈ ൯ݐ൫ܦܲ ∶ 	݉ሺሻ  ݂൫ →  .൯ݐ

Four different kinds of actual conflicts can occur in a hybrid Petri net which have to be 

resolved (David and Alla 2005). 

Definition 4.60 (actual conflicts and resolutions hybrid Petri nets) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄,  :ሻ is a hybrid Petri net݉,ݒ

 Type-1-conflict: actual conflict according to Definition 4.6 and Definition 4.31 of a place 

 ∈ ሺܲܦ ∪ ݐ ሻ and two or more discrete/stochastic transitionsܥܲ ∈ ሺܶܦ ∪ ܶܵሻ. It can 

only occur when all transitions ݐ become firable exactly at the same time (Remark 4.3, 

Remark 4.4). This conflict can be resolved either by priorities or by probabilities 

(Definition 4.9 and Definition 4.10). 

 Type-2-conflict: actual conflict according to Definition 4.42 of a place  ∈  and two ܥܲ

or more continuous transitions ݐ ∈  .It can be resolved by sharing (Definition 4.44) .ܥܶ

 Type-3-conflict: actual conflict of a place  ∈ ሺܲܦ ∪  ሻ, one or moreܥܲ

discrete/stochastic transitions ݐ ∈ ሺܶܦ ∪ ܶܵሻ, and one or more continuous transitions 

ݐ ∈  If there is a conflict between discrete/stochastic and continuous transitions, the .ܥܶ

discrete/stochastic transitions take priority over the continuous transitions (cp. David and 

Alla 2005). 

 Type-4-conflict: actual conflict of a discrete place  ∈  and two or more continuous ܦܲ

transitions ݐ ∈  .It is solved by priorities (Definition 4.9) .ܥܶ

The type-1-conflict is represented in Example 4.1, Example 4.3, Example 4.4, Example 4.11, 

and Example 4.14. The type-2-conflict is part of Example 4.18. 
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Example 4.26 

Figure 4.34 shows two examples of type-3-conflicts. At time 0, transition ܶ1 of the left Petri 

net becomes active and fires continuously. At time 2, the delay of ܶ2 is passed and it 

becomes firable. At this point in time, ܲ3 has an actual conflict because it cannot fire a token 

in ܶ1 and ܶ2, simultaneously. Hence, the rule of Definition 4.60 is applied so that ܶ2 takes 

priority over ܶ1 and fires. At time 0, transitions ܶ3 and ܶ4 of the right Petri net fire 

continuously. At time 1, ݉ሺܲ4ሻ ൌ 1 and the delay of ܶ5 is passed; hence, ܲ4 has an actual 

conflict. The conflict only occurs when the marking equals the arc weight. If ݉ሺܲ4ሻ ൏

݂ሺܲ4 → ܶ5ሻ or ݉ሺܲ4ሻ  ݂ሺܲ4 → ܶ5ሻ, there is no conflict. It is solved by the rule of 

Definition 4.60 so that ܶ5 takes priority over ܶ4 and fires. This rule is intuitively logical 

because the firing of a continuous transition is a continuous flow and the firing of a discrete 

transition is an extreme change of the Petri net marking (David and Alla 2005). 

 
Figure 4.34: Hybrid Petri nets with a type-3-conflict of a discrete place (left) and of a 

continuous place (right) (Example 4.26) 

Example 4.27 

Figure 4.35 shows a hybrid Petri net; place ܲ3 has a type-4-conflict. At time 0, ܲ3 can either 

activate ܶ1 or ܶ2 but not both simultaneously. 

 
Figure 4.35: Hybrid Petri net with a type-4-conflict (Example 4.27) 
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This conflict can be solved by prioritization of the transitions. If ܶ1 takes priority over ܶ2, ܶ1 

becomes active and fires and if ܶ2 takes priority over ܶ1, ܶ2 becomes active and fires. 

Therefore, all continuous output transitions of a discrete place have to be provided with 

priorities. 

Discrete and continuous transitions fire in the same manner as determined in Definition 4.13 

and Definition 4.41, respectively. The recalculation of a discrete marking is performed as 

described in the basic concepts. However, the recalculation of a continuous marking has to be 

modified due to discrete mark changes caused by firing discrete transitions. Thereby, a 

differential equation describes the flow of the continuous firing and an algebraic equation is 

used for the firing of the discrete transitions. 

Definition 4.61 (firing process hybrid Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄,  ሻ is a hybrid Petri net. The firing݉,ݒ

process of an active continuous transition ݐ ∈  is described by a negative mark change of ܥܶ

all continuous input places which is expressed by the differential equation 

݀݉ሺሻ
ݐ݀

ൌ െ݂൫ → ൯ݐ ⋅ 	∀									ݒ ∈  ൯ݐ൫ܥܲ

and a positive mark change of all continuous output places which is expressed by the 

differential equation 

݀݉ሺሻ
ݐ݀

ൌ ݂൫ݐ → ൯ ⋅ 	∀									ݒ ∈  .൯ݐ௨௧൫ܥܲ

An active discrete transition ݐ ∈  waits ݀ time units before it fires and a stochastic ܦܶ

transition ݐ ∈ ܶܵ	 fires when the putative firing time ߬ is reached (see Definition 4.34). Both 

fire by removing the arc weight from all input places 

݉ᇱሺሻ ൌ ݉ሺሻ െ ݂൫ → 	∀		൯ݐ ∈ ܲ൫ݐ൯ 

and by adding the arc weight to all output places 

݉ᇱሺሻ ൌ ݉ሺሻ  ݂൫ݐ → 	∀		൯ ∈ ܲ௨௧൫ݐ൯. 

The marking of a discrete place  ∈  can be recalculated by the following algebraic ܦܲ

equation 

݉ᇱሺሻ ൌ ݉ሺሻ   ݂൫ݐ → 	൯
௧ೕ∈்ிሺሻ

െ  ݂൫ → ൯ݐ
௧ೕ∈்ிೠሺሻ

, 

whereby ܶܨܦሺሻ ⊆ ሺܶܦ ∪ ܶܵሻ is the set of all discrete/stochastic firing input transitions 

and ܶܨܦ௨௧ሺሻ ⊆ ሺܶܦ ∪ ܶܵሻ is the set of all discrete/stochastic firing output transitions. 
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The continuous mark change of a continuous place  ∈  is performed with the aid of the ܥܲ

following differential 

݀݉ሺሻ

ݐ݀
ൌ  ݂൫ݐ → ൯

௧ೕ∈்ிሺሻ

⋅ ݒ 	െ  ݂൫ → ൯ݐ
௧ೕ∈்ிೠሺሻ

⋅  	ݒ

and, in addition, by the following algebraic equation for the discrete mark change caused by 

firing connected discrete transitions 

݉ௗ௦ሺሻ ൌ  ݂൫ݐ → 	൯
௧ೕ∈்ிሺሻ

െ  ݂൫ → ൯ݐ
௧ೕ∈்ிೠሺሻ

 

whereby ܶܨܥሺሻ ⊆  is the set of all continuous firing input transitions and ܥܶ

ሻ௨௧ሺܨܥܶ ⊆  is the set of all continuous firing output transitions. At these discrete firing ܥܶ

times the continuous marking is reinitialized by 

݉ᇱሺሻ ൌ ݉ሺሻ  ݉ௗ௦ሺሻ. 

The hybrid Petri net concept of Definition 4.58 can be further modified by the variations, 

abbreviations, and extensions mentioned in Sections 4.1 to 4.4. 

4.5.1 VARIATION OF TRANSITIONS 

Discrete, stochastic, and continuous transitions are provided with additional conditions that 

have to be satisfied so that the transitions can become active. Therefore, the activation 

definition has to be modified while the firing process remains the same (Definition 4.61). 

Definition 4.62 (conditional hybrid Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄, ,ݒ s,݉ሻ is a conditional hybrid Petri net. 

If ሺܲܦ, ,ܥܲ ,ܦܶ ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, :ݏ ሻ is a hybrid Petri net and݉,ݒ ሺܶܦ ∪ ܶܵ ∪ ,ܥܶ ࣟሻ →

ሼtrue, falseሽ is an condition function that assigns every transition ݐ ∈ ሺܶܦ ∪ ܶܵ ∪  ሻ aܥܶ

condition ݏ ൌ ,ݐ൫ݏ ࣟ൯ depending on several environmental factors ࣟ, e.g. time. 

Definition 4.63 (activation conditional hybrid Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄, ,ݒ s,݉ሻ is a conditional hybrid Petri net. A 

transition ݐ ∈ ሺܶܦ ∪ ܶܵ ∪  ,ሻ is active if the conditions of Definition 4.59 are fulfilled andܥܶ

additionally, the condition ݏ. 
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4.5.2 ARC WEIGHT AND MAXIMUM SPEED FUNCTIONS DEPENDING 

ON MARKING/TIME 

The constant arc weights and maximum speeds of the basic hybrid Petri net concept are 

replaced by functions which can depend on a subset of markings and/or on time. This 

modification is called hybrid functional Petri net and enables the modeling of nearly all 

kinetic effects of biological reactions. 

Definition 4.64 (hybrid functional Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄,  ሻ is a hybrid functional Petri net if݉,ݒ

the arc weights and maximum speeds of Definition 4.58 are modified in the following manner 

 ݂: ሺܨ ∪ ,݉,ܩ ሻ݁݉݅ݐ → ሼԳ:	 ∈ ,	ܦܲ Թஹ:  ∈  ሽ is an arc weight function whichܥܲ

assigns every arc a weight that depends on a subset of markings ݉ and/or on time. It is a 

non-negative integer if the connected place is discrete and a non-negative real-valued 

number otherwise. 

 ݒ: ሺܶܥ,݉, ሻ݁݉݅ݐ → 	Թஹ is a maximum speed function which assigns every continuous 

transition a non-negative, real-valued maximum speed which depends on a subset of 

concrete markings ݉ and/or on time. 

The activation (Definition 4.59) and firing process (Definition 4.61) remains the same. 

4.5.3 CAPACITIES AND EXTENSIONS 

Places in a hybrid Petri net can be provided with minimum and maximum capacities. 

Additionally, hybrid Petri nets can be extended by test, inhibitor, and read arcs to enable the 

modeling of activation, inhibition, and catalysis of biological reactions. 

Definition 4.65 (extended hybrid (functional) Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, Ղ, ऀ, ܿ, ܿ௨, ݀, ݄, ,ݒ s,݉ሻ is an extended 

hybrid (functional) Petri net if 

 ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ݂, Ղ, ऀ, ݀, ݄, ,ݒ s,݉ሻ is a conditional hybrid (functional) Petri 

net, 
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 ࣮ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of test 

arcs, 

 ࣣ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

inhibitor arcs, 

 ࣬ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

read arcs, 

 ݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣ,݉, ሻ݁݉݅ݐ → ሼԳ:	 ∈ ,	ܦܲ Թஹ:  ∈  ,ሽ is an arc weight functionܥܲ

 ܿ:		ሼܲܦ → Գ, ܥܲ → Թஹሽ are the minimum capacities of the places, 

 ܿ௨:	ሼܲܦ → Գ, ܥܲ → Թஹሽ are the maximum capacities of the places, 

whereby the initial marking ݉ must satisfy the condition 

ܿሺሻ  ݉ሺሻ  ܿ௨ሺሻ		∀	 ∈ ሺܲܦ ∪  .ሻܥܲ

The activation definition (Definition 4.59) has been modified to integrate capacities, test, and 

inhibitor arcs while the firing process of Definition 4.61 remains valid without exceptions. 

Definition 4.66 (activation extended hybrid (functional) Petri net) 

The tuple ሺܲܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨, Ղ, ऀ, ݀, ݄, ,ݒ  ሻ is an extended݉,ݏ

hybrid (functional) Petri net. A discrete/stochastic transition ݐ ∈ ሺܶܦ ∪ ܶܵሻ is active if and 

only if 

	∀ ∈ ܲ൫ݐ൯ ∶

ە
ۖ
۔

ۖ
ሻሺ݉ۓ െ ݂൫ → ൯ݐ  ܿሺሻ ݂݅	൫ → ൯ݐ ∈ ܨ

݉ሺሻ  ݂ ቀ൫ → 								൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮

݉ሺሻ ൏ ݂ ቀ൫ → 									൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,

 

and 

	∀ ∈ ܲ௨௧ሺݐሻ ∶ 	݉ሺሻ  ݂൫ݐ → ൯  ܿ௨ሺሻ 

and the condition ݏ must be fulfilled. 

A continuous transition ݐ ∈  is active if and only if ܥܶ

	∀ ∈  :൯ݐ൫ܥܲ

	

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
݉ۓ

ሺሻ  ܿሺሻ																																																					 ݂݅	൫ → ൯ݐ ∈ ܨ
∨ ሺ݉ሺሻ ൌ ܿሺሻ ∧ ܫ  0ሻ

݉ሺሻ  ݂ ቀ൫ → 																																				൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∉ ܨ

݉ሺሻ  ݂ ቀ൫ → 																																				൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ

∨ ቀ݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ∧ ܫ  0ቁ

݉ሺሻ ൏ ݂ ቀ൫ → 																																					൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,
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and 

	∀ ∈ ൯ݐ௨௧൫ܥܲ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ ∨ ሺ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0ሻ. 

and 

	∀ ∈ ൯ݐ൫ܦܲ ∶

ە
ۖ
۔

ۖ
ሻሺ݉ۓ െ ݂൫ → ൯ݐ  ܿሺሻ ݂݅	൫ → ൯ݐ ∈ ܨ

݉ሺሻ  ݂ ቀ൫ → 								൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮

݉ሺሻ ൏ ݂ ቀ൫ → 									൯ࣣቁݐ ݂݅	൫ → ൯ࣣݐ ∈ ࣣ,

 

and 

	∀ ∈ ൯ݐ௨௧൫ܦܲ ∶ 	݉ሺሻ  ݂൫ → ൯ݐ  ܿ௨ሺሻ 

and the condition ݏ must be fulfilled. It is strongly input active if 

	∀ ∈ ൯ݐ൫ܥܲ ∶ 

݉ሺሻ  ܿሺሻ																											 ݂݅	൫ → ൯ݐ ∈ 																															ܨ

∧ 	݉ሺሻ  ݂ ቀ൫ → ൯࣮ቁݐ ݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈ ܨ
 

is also satisfied and otherwise it is weakly input active. It is strongly output active if 

	∀ ∈ ൯ݐ௨௧൫ܥܲ ∶ 	݉ሺሻ ൏ ܿ௨ሺሻ 

is also satisfied and otherwise it is weakly output active. If it is strongly input and output 

active, it is strongly active. If it is weakly input and output active, it is weakly active. 

Thereby, ܲܫ൫ݐ൯ ist the set of continuous input places with 

݉ሺሻ ൌ ܿሺሻ,																																															݂݅	൫ → ൯ݐ ∈  		ܨ

∨ 	݉ሺሻ ൌ ݂ ቀ൫ → ൯࣮ቁݐ ܫ	∧  0,						݂݅	൫ → ൯࣮ݐ ∈ ࣮ ∧ ൫ → ൯ݐ ∈  .	ܨ

and ܲܫ௨௧൫ݐ൯ is the set of continuous output places of ݐ with ݉ሺሻ ൌ ܿ௨ሺሻ ∧ ܱ  0. 

Furthermore, the conflict types of Definition 4.60 have been modified and expanded in order 

to cover and resolve all possible situations which can occur in extended hybrid Petri nets. 

Definition 4.67 (actual conflicts and resolutions extended hybrid (functional) Petri net) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨, Ղ, ऀ, ݀, ݄, ,ݒ s,݉ሻ is an extended hybrid 

(functional) Petri net: 

 Type-1-(input/output)-conflict: actual (input/output) conflict according to 

Definition 4.16 and Definition 4.31 of a place  ∈ ሺܲܦ ∪  ሻ and two or moreܥܲ

discrete/stochastic transitions ݐ ∈ ሺܶܦ ∪ ܶܵሻ. It can only occur when all transitions ݐ 

become firable exactly at the same time (Remark 4.3, Remark 4.4). This conflict can be 

resolved either by priorities or probabilities (Definition 4.19 and Definition 4.20). 
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 Type-2-(input/output)-conflict: actual (input/output) conflict according to 

Definition 4.48 of a place  ∈ ݐ and two or more continuous transitions ܥܲ ∈  It can .ܥܶ

be resolved by sharing (Definition 4.50). 

 Type-3-(input/output)-conflict: actual conflict of a place  ∈ ሺܲܦ ∪  ሻ, one or moreܥܲ

discrete/stochastic transitions ݐ ∈ ሺܶܦ ∪ ܶܵሻ, and one or more continuous transitions 

ݐ ∈  If there is a conflict between discrete/stochastic and continuous transitions, the .ܥܶ

discrete/stochastic transitions take priority over the continuous transitions (David and 

Alla 2005). 

 Type-4 -conflict: actual conflict of a place  ∈  and two or more continuous ܦܲ

transitions ݐ ∈  .It is solved by priorities (Definition 4.9) .ܥܶ

The conflicts of type 1 to 3 can either involve input or output transitions of a place. The type-

4-conflict concerns discrete places connected to continuous transitions. Discrete places are 

always input and output places, simultaneously (Definition 4.58); hence, no differentiation is 

necessary. Example 4.5 represents a type-1-(input/output)-conflict and Example 4.21 and 

Example 4.22 represent type-2-(input/output)-conflicts. 

Example 4.28 

Figure 4.36 shows three examples of type-3-conflicts in extended hybrid Petri nets. At time 0, 

transition ܶ1 of the left Petri net becomes active and fires continuously. At time 2, the delay of 

ܶ2 is passed and it becomes firable. At this time, ܲ3 has an actual output conflict due to its 

minimum capacity of two tokens and it actually has three tokens. If ܶ1 and ܶ2 fired 

simultaneously, they would violate the minimum capacity of ܲ3. Hence, the rule of 

Definition 4.67 has to be applied: ܶ2 takes priority over ܶ1 and fires. Here a discrete place 

has a type-3-output-conflict. Discrete places can only have type-3-output-conflicts; type-3-

input-conflicts cannot occur. However, continuous places can have type-3-output-conflict as 

well as type-3-input-conflict. 

The right Petri net of Figure 4.36 shows at the top a type-3-output-conflict and at the bottom a 

type-3-input-conflict. At time 0, transitions ܶ3 and ܶ4 of the top Petri net fire continuously. At 

time 1, ݉ሺܲ4ሻ ൌ 3 and the delay of ܶ5 is passed; ܲ4 has an actual conflict. The conflict only 

occurs when ݉ሺܲ4ሻ െ ݂ሺܲ4 → ܶ5ሻ ൌ ܿሺܲ4ሻ. If ݉ሺܲ4ሻ െ ݂ሺܲ4 → ܶ5ሻ ൏ ܿሺܲ4ሻ or ݉ሺܲ4ሻ െ

݂ሺܲ4 → ܶ5ሻ  ܿሺܲ4ሻ, there is no conflict. It is solved by the rule of Definition 4.67: ܶ5 takes 

priority over ܶ4 and fires. The continuous place ܲ5 in the bottom Petri net has a type-3-input-

conflict at time 1. At that time, ܲ5 has five marks and its maximum capacity is six, i.e. 

݉ሺܲ5ሻ  ݂ሺܶ7 → ܲ5ሻ ൌ ܿ௨ሺܲ5ሻ. Here the discrete transition ܶ7 takes priority over the 

continuous transition ܶ6. 
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Figure 4.36: Extended hybrid Petri nets with a type-3-conflict of a discrete place (left) and of 

a continuous place (right), whereby the top Petri net has a type-3-output-conflict 
and the bottom Petri net has a type-3-input-conflict (Example 4.28) 

Example 4.29 

Figure 4.37 shows an extended hybrid Petri net with a type-4-conflict of place ܲ3. 

 
Figure 4.37: Extended hybrid Petri net with a type-4-conflict (Example 4.29) 

At time 0, ܲ3 can either activate ܶ1 or ܶ2 but not both simultaneously due to its minimum 

capacity of two tokens. This conflict can be solved by prioritization of the transitions. If ܶ1 

takes priority over ܶ2, then ܶ1 becomes active and fires and if ܶ2 takes priority over ܶ1, then 

ܶ2 becomes active and fires. 
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4.5.4 EXTENDED HYBRID PETRI NETS 

All mentioned variations and extensions presented in this Petri net section are combined in 

one formalism in order to enable modeling of nearly all kinds of biological processes (see 

Section 5.2). This formalism is called xHPN (extended Hybrid Petri Net) and the precise 

definition is given below. The name has been chosen in such a general manner to emphasize 

that this formalism is useable for biological processes and also for nearly all other processes 

e.g. production, business, or communication (see Chapter 8). The concrete transformation 

process of xHPN elements to biological ones is defined in Section 5.2. 

Definition 4.68 (xHPN) 

The tuple ሺܲܦ, ,ܥܲ ,ܦܶ ܶܵ, ,ܥܶ ,ܨ ,ܩ ࣮, ࣣ, ࣬, ݂, ܿ, ܿ௨Ղ, ऀ, , ݀, ݄, ,ݒ  ሻ is a xHPN if݉,ݏ

 ܲܦ ൌ ൛݀ଵ, ,ଶ݀	 … ,  ,ௗൟ is a finite set of discrete places݀

 ܲܥ ൌ ൛ܿଵ, ,ଶܿ	 … ,  ,ൟ is a finite set of continuous placesܿ

 ܶܦ ൌ ሼ݀ݐଵ, ,ଶ݀ݐ	 … ,  ,௧ௗሽ is a finite set of discrete transitions݀ݐ

 ܶܵ ൌ ሼݏݐଵ, ,ଶݏݐ	 … ,  ,௧௦ሽ is a finite set of stochastic transitionsݏݐ

 ܶܥ ൌ ሼܿݐଵ, ,ଶܿݐ	 … ,  ,௧ሽ is a finite set of continuous transitionsܿݐ

 ܲܦ, ,ܥܲ ,ܦܶ ܶܵ,	 and ܶܥ are pairwise disjoint, 

 ܨ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

arcs from places to transitions, 

 ܩ ⊆ ሺܶܦ ൈ ܦܲ ∪ ܦܶ ൈ ܥܲ ∪ ܶܵ ൈ ܦܲ ∪ ܶܵ ൈ ܥܲ ∪ ܥܶ ൈ ܥܲ ∪ ܥܶ ൈ  ሻ is set of arcsܦܲ

from transitions to places, 

 ࣮ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

test arcs, 

 ࣣ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

inhibitor arcs, 

 ࣬ ⊆ ሺܲܦ ൈ ܦܶ ∪ ܦܲ ൈ ܶܵ ∪ ܦܲ ൈ ܥܶ ∪ ܥܲ ൈ ܥܶ ∪ ܥܲ ൈ ܦܶ ∪ ܥܲ ൈ ܶܵሻ is a set of 

read arcs, 

 ݂: ሺܨ ∪ ܩ ∪ ࣮ ∪ ࣣ,݉, ሻ݁݉݅ݐ → ሼԳ:  ∈ :Թஹ,ܦܲ  ∈  ሽ is an arc weight functionܥܲ

which assigns every arc connected to a discrete place a non-negative integer and 

otherwise a non-negative real-valued number depending on a subset of markings ݉ 

and/or on ݁݉݅ݐ, 
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 if  ∈ ݐ and ܦܲ ∈ then ൫ ܥܶ → ൯ݐ ∈ ݐif and only if ൫ ܨ → ൯ ∈ and ݂൫ ܩ → ൯ݐ ൌ

݂൫ݐ →  ,൯

 ܿ: ሼܲܦ → Գ, ܥܲ → Թஹሽ are the minimum capacities of the places, 

 ܿ௨: ሼܲܦ → Գ, ܥܲ → Թஹሽ are the maximum capacities of the places, 

 Ղ: ሺܲܦ ∪ ሻܥܲ → ሼ݅ݎ,  ሽ is an enabling function that assigns every place either theܾݎ

resolution type priority or probability, 

 ऀ: ሺܨ ∪ ሻܩ → ቄሼ1,2, … ,ሺ݊௨௧ݔܽ݉, ݊ሻሽ: Ղሺሻ ൌ ݅ݎ ∧ ݐ ∈ ,ܦܶ ሾ0,1ሿ: Ղሺሻ ൌ ܾݎ ∧

ݐ ∈  ቅ is an enabling function which assigns every arc connected to a discreteܦܶ

transition either a priority or a probability according to the resolution type, 

 if Ղሺሻ ൌ then ऀሺ ݅ݎ → ሻݐ ് ऀሺ → ,ݐ∀	ሻݐ ݐ ∈ ݐሻ and ऀሺ௨௧ሺܦܶ → ሻ ്

ऀሺݐ → ,ݐ∀		ሻ ݐ ∈ ሻሻ, if Ղሺሺܦܶ ൌ ∑ then ܾݎ ऀሺ → ሻ௧ೖ∈்ೠሺሻݐ ൌ 1 and 

∑ ऀሺݐ → ሻ௧ೖ∈்ሺሻ ൌ 1, 

 ݀: ܦܶ → Թஹ is a delay function which assigns every discrete transition a non-negative, 

real-valued delay, 

 ݄: ሺܶܵ,݉ሻ → Թஹ is a hazard function which assigns every stochastic transition a non-

negative, real-valued random delay depending on a concrete marking ݉, 

 ݒ: ሺܶܥ,݉, ሻ݁݉݅ݐ → Թஹ is a maximum speed function which assigns every continuous 

transition a non-negative, real-valued maximum speed which depends on a subset of 

concrete markings ݉ and/or on ݁݉݅ݐ, 

 ݏ: ሺܶܦ ∪ ܶܵ ∪ ,ܥܶ ࣟሻ → ሼtrue, falseሽ is an condition function which assigns every 

transition a condition depending on several environmental factors ࣟ e.g. ݁݉݅ݐ, and 

 ݉: ሼܲܦ → Գ, ܥܲ → Թஹሽ is the initial marking which must satisfy the condition 

ܿሺሻ  ݉ሺሻ  ܿ௨ሺሻ		∀	 ∈ ሺܲܦ ∪  .ሻܥܲ

This xHPN formalism has been transformed to the modeling language Modelica (see 

Section 3.1) to enable graphical modeling, hybrid simulation, and animation. The concrete 

transformation process is described in Chapter 6. For the simulation, the following Petri net 

processes have been used: 

 Activation: Definition 4.66 

 Firing: Definition 4.61 

 Conflict resolution: Definition 4.67, 

whereby stochastic transitions are handled as discrete transitions. 
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5 MODELING PROCESS OF BIOLOGICAL SYSTEMS 

This chapter describes the general, universally useable modeling process for biological 

systems developed in this work which enables the processing of experimental data to usable 

new insights about the regarded system. This modeling process requires several mathematical 

methods to achieve a “good working” parameterized model which is able to predict the 

behavior of the underlying system and forms the basis for optimizing biological processes. 

Therefore, an environment has been developed which comprises mathematical methods and 

tools for covering all steps of the established modeling process as depicted in Figure 5.1. The 

basic concepts of these mathematical methods have been already introduced in Chapter 3 as 

well as the xHPN modeling concept in Chapter 4 and, hereafter, it is detailed how these 

methods are particularly adapted to make them useable for biological processes. 

The developed modeling process can be divided into the following four phases which are 

usually rerun several times to establish a reliable model: 

1. Preparation 

2. Modeling 

3. Verification 

4. Optimization. 

The first phase of the modeling process, called preparation phase, is initiated by an observed 

biological phenomenon which should be investigated. Based on experimental data and prior 

knowledge about specific structures, functions, and interactions of the investigated system, 

the phenomenon has to be formulated as hypotheses whose verification is the aim of the 

modeling process. Furthermore, the available experimental data is preprocessed to remove 

noise, detect measurement errors, and approximate gaps between two measurements. With the 

aid of this preprocessed data and non-linear regression methods, relationships of the 

underlying system are uncovered and analyzed. This procedure is called preprocessing and 

relationship analysis (PRA) and is part of Section 5.1. 

The modeling phase is initiated by using this knowledge for creating a mathematical model 

(MM) by means of the Modelica language (see Section 3.1). This can either be done textually  
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Figure 5.1: The modeling process: From a biological phenomenon to a verified model which 

can predict system behavior and forms the basis for process optimization to 
establish an open-loop control 
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by a system of hybrid DAEs or graphically with the aid of the xHPN formalism developed in 

this work to model nearly all kinds of biological reactions. The xHPN formalism is introduced 

in Section 5.2 based on the terminology and the definitions of Section 4. 

 

 

Figure 5.2: The modeling circle (based on (Reiß 2002)) 

To get further insight into the model and, especially, its parameters, it can be analyzed by 

means of parameter estimation (PE) and sensitivity analysis (SA) methods. Thereby, PE 

aims at adapting the parameters as well as possible to the experimental data with the aid of the 

optimization methods introduced in Section 3.2; PE is part of Section 5.3. The SA methods 

introduced in Section 3.3 can be used to reduce the model complexity by revealing 

unimportant parameters which have little or no influence on the model output and can thus be 

eliminated from the model. This procedure, also called model reduction (MR), can simplify 

PE due to the fact that the search space of the optimization procedures is reduced. SA for 

biological processes is described in Section 5.4. 

The result of the modeling phase is a parameterized model which can be simulated 

deterministically or stochastically depending on the kind of the Petri net model. Thereby, a 

deterministic hybrid simulation (DHS) can be applied for all kinds of Petri nets while a 

stochastic hybrid simulation (SHS) can only be applied if the Petri net comprises at least 

one stochastic transition. DHS and SHS are described in Section 5.5. 
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The next phase of the modeling process is the verification phase. A parameterized model can 

be verified by SA methods which give some indication of the robustness of the found model 

parameters (see Section 5.4). Additionally, experiments have to be planned based on the 

results of the parameterized model. This new experimental data gained from wet-lab (in-vitro 

and in-vivo experiments) is compared with the model predictions (MP) of the system 

behavior generated by simulations (in-silico experiments) to verify the model or to detect a 

mismatch and return to one of the previous steps (see Figure 5.2). The result of this phase is a 

verified model. MP is part of Section 5.6. 

A verified model can be used in the next phase, called optimization phase, to optimize one or 

more underlying processes of the investigated organism. This procedure is called process 

optimization (PO). A PO can be, for example, performed to achieve an open-loop control of 

a fermentation process which maximizes the product yield of the organism. PO is described in 

Section 5.7. 

5.1 PREPROCESSING AND RELATIONSHIP ANALYSIS 

A relationship analysis (RA) aims at detecting relationships of the regarded system from 

experimental data in order to express the discovered relationships in terms of mathematical 

functions. This is done by nonlinear regression methods. In this way, further knowledge about 

the structure of the model and the corresponding reaction rates can be obtained. 

Therefore, the experimental data has to be preprocessed at first due to the fact that the 

measurements usually contain noise and are only taken at a few points in time. To delete noise 

and approximate missing data, the experimental data are smoothed. Smoothing means that 

the measurements are approximated by a function that tries to cover all important patterns in 

the data while no account is taken on noise or other fine-scale structures. Several smoothing 

methods have been proposed (see e.g. Simonoff 1996). This study concerns the cubic 

smoothing spline method (Reinsch 1967). 

A cubic spline is a function that interpolates the given data set piecewise by cubic 

polynomials. However, a cubic smoothing spline does not have to go through each given 

data point; thus, it approximates the data by a function which consists piecewise of cubic 

polynomials. The cubic smoothing spline ݂ minimizes the sum of weighted squared residuals 
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between the measurement उොሺݐሻ and function value ݂	ሺݐሻ at time ݐ penalized by the 

roughness measure  ݂ᇱᇱሺݐሻଶ	݀ݐ which decreases as ݂ get smoother 

݂ ൌ ݊݅݉݃ݎܽ ቌݓ൫उොሺݐሻ െ ݂ ሺݐሻ൯
ଶ



ୀଵ

 ߣ ݂ᇱᇱሺݐሻଶ .ቍݐ݀ Eq. 5-1

The smoothing parameter ߣ  0 represents the trade-off between accuracy to the measured 

data and roughness of the function ݂. If ߣ ൌ 0, there is no smoothing and the spline goes 

through each of the data points उොሺݐሻ, hence, it is an interpolating cubic spline. If ߣ → ∞, the 

roughness penalty becomes priority and ݂ converges to the linear least squares regression line. 

The goodness of a fit can be examined by different statistical coefficients and confidence 

intervals. 

5.2 MATHEMATICAL MODELING: XHPN FOR 

BIOLOGICAL APPLICATIONS 

The creation of a model for a biological system generally leads to the following advantages 

(Dunn 2003) 

1. Modeling improves understanding. The comparison of model predictions and 

biological behavior leads to an increased understanding of the considered processes. The 

results of simulations give some indication of the occurrence of observed phenomena that 

are inexplicable till now. Additionally, the model formulation itself improves the 

understanding because complex cause-effect sequences and interactions have to be 

translated into a mathematical formalism. 

2. Modeling supports experimental design. Experiments have to be designed such that the 

model can be tested sufficiently. The model itself usually indicates which experimental 

data are needed to identify the model parameters. Sensitivity analysis can reveal that 

some parameters have negligible effects on the model and, thus, these effects can be 

neglected from the model and the experiments while other parameters have a deep impact 

on the model and, hence, the experiments have to focus on these processes. 

3. Models used for predictions. Once a model is established and verified, it can be used to 

predict the behavior of the regarded system under different environmental conditions. 
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4. Models used for process optimization. A verified model can be used for optimizing 

processes which relate to profits or costs to enable, for example, an open-loop control of 

these processes. 

Numerous model formalisms have been proposed for modeling and simulation of biological 

systems (see e.g. (Wiechert 2002)). Generally, there needs to be a distinction between 

qualitative and quantitative approaches. Qualitative models represent only the fundamental 

compounds, their interaction mechanisms, and the relationships amongst them while 

quantitative models describe, in addition, the time-related changes of the components. 

Hence, a qualitative model is the basis for every quantitative model and the mentioned 

improved data basis enables us to extend qualitative models to quantitative ones today. 

Beyond this, quantitative model formalisms can be further divided into discrete, continuous, 

and hybrid approaches as well as into deterministic and stochastic techniques. 

 
Figure 5.3: Different types of cell representation (Chmiel and Briechle 2008, Dunn 2003) 

Furthermore, models of biological systems can be classified according to their complexity 

(Chmiel and Briechle 2008, Dunn 2003). Figure 5.3 gives an overview of the different 

perspectives to represent a population. On the one hand, models are classified according to the 

amount of components that are needed to represent the cellular system. If a model consists of 

several differentiable components, it is called structured; otherwise, if the system is 

represented by one component, it is called unstructured. Unstructured models disregard 

intercellular processes and describe the system only based on changes in its environment. On 
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the other, models can be divided into segregated models which regard the system as a 

heterogeneous collection of differentiable individuals and non-segregated models which 

approximate the system by an average individual. Segregated models consider the 

heterogeneity of the population concerning cell age, size, growth rate, and physiological state 

to allow a more precise description of the system. 

The decision which modeling approach to use is difficult and strongly influenced by the 

availability of data. If all kinetic data is known, models consisting of ordinary differential 

equations are mostly the first choice while in the absence of this kinetic data only qualitative 

approaches are usable. An additional difficulty arises in the demand of simultaneously having 

a model which is easy to understand and an abstraction of the real system as well as a detailed 

and nearly complete description of it. Besides, the modeling process of biological systems is 

further complicated by incomplete knowledge, noisy and inaccurate data, and different ways 

of representing data and knowledge. 

 
Figure 5.4: Petri net extensions: From a basic Petri net to an extended hybrid Petri net for 

biological applications 

Petri nets with their various extensions are a universal graphical modeling concept for 

representing biological systems in nearly all degrees of abstraction. They support both the 

qualitative and the quantitative modeling approach. Once a qualitative Petri net model has 

been established, the quantitative data can be added successively. The Petri nets in Section 4.1 

and 4.2 are examples for qualitative models due to the fact that no time is associated with the 

transitions. The arcs can be provided with the stoichiometric of the respective reaction and the 

tokens represent a discrete quantity of species. The qualitative analysis of such models 

considers all possible behaviors of the system at any time. Timed, stochastic, continuous, and 

hybrid Petri nets are examples of quantitative models (see Section 4.3, 4.4, and 4.5). The time 

is associated with the Petri net behavior by assigning each transition a delay, a hazard, and a 

maximum speed, respectively. Furthermore, the biological processes can be modeled 
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discretely as well as continuously and, in addition, discrete and continuous processes can also 

be combined within one Petri net model to so-called hybrid Petri nets (see e.g. (David and 

Alla 2001)). The Petri net formalism with all its extensions is so powerful that all other 

formalisms are included and, hence, only one formalism is needed regardless of the approach 

(qualitative vs. quantitative, discrete vs. continuous, deterministic vs. stochastic) which is 

appropriate for the respective system. The Petri net formalism is easy to understand for all 

researchers from different disciplines (biology, mathematics, informatics, and system 

sciences) which work together in the modeling process and is an ideal way for intuitive 

representing and communicating experimental data and knowledge of biological systems. 

Besides, Petri nets allow hierarchical structuring of models and offer the possibility of 

different detailed views for every observer of the model. For these reasons, the developed 

xHPN formalism is superior to systems of ordinary differential equations which are mostly 

the first choice for modeling biological systems. 

The Petri net formalism developed and used in this work has been gained from many 

discussions with biologists and biotechnologist to satisfy all their requirements and to 

represent with it nearly all kinds of biological reactions and phenomena. The result is called 

extended Hybrid Petri Net - abbreviated as xHPN and depicted Figure 5.4 - and the precise 

definition is given in Definition 4.68 (Section 4.5). The abbreviation has been chosen in such 

a general manner to emphasize that this formalism is not only useable for biological processes 

but also for nearly all other processes e.g. production, business, or communication (see 

Chapter 8). This xHPN formalism is extended by providing each Petri net element with a 

biological meaning. This extension is called xHPNbio (extended Hybrid Petri Nets for 

biological applications) and the formal definition is given below. 

Definition 5.1 (xHPNbio) 

An xHPNbio is an xHPN (see Definition 4.68) with a concrete transformation of xHPN 

elements to biological ones. This transformation is summarized in the following table by 

mentioning also some examples of the biological meaning. 

xHPN element Biological meaning 

Places 

Biological compounds 
metabolites, enzymes, substances, substrates, products, signals, genes, 
proteins, cells, complexes, activators, inhibitors, repressors, DNA, 
RNA 
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Transitions 

Biological processes 
biochemical reactions, metabolic reactions, interactions, regulatory 
reactions, signal transduction reactions, chemical reactions, binding, 
phosphorylation 

Tokens/Marks 
Quantities of biological compounds 
molecules, concentrations, cells 

Normal arcs Connections of biological compounds and processes 

Test arcs 
Activation of biological processes 
transcription process, activation in gene regulation, enzyme activity, 
activation mechanisms 

Inhibitor arcs 
Inhibition of biological processes 
repression of gene regulation, inhibition mechanisms 

Read arcs 
Needs for biological processes 
catalysis 

Arc weights 
Biological coefficients 
stoichiometric coefficients, yield coefficients 

Min/max. capacities 
Reasonable biological capacities 
biological knowledge 

Delays Duration of biological processes 

Hazard functions 
Random duration of biological processes 
stochastic kinetics 

Maximum speeds 
Rate of biological processes 
kinetics effects/laws 

xHPNbio 

Biological systems 
metabolic networks, signal transduction networks, regulatory 
networks, chemical networks, cell cycle, cell communication, 
diseases, population dynamics, flux networks, cultivation processes 

 

The following table gives some examples of biological reactions and their modeling with the 

xHPNbio formalism. 

Table 5.1: Examples for modeling biological reactions with the xHPNbio formalism 

Type of 
reaction 

Example Petri net 

Production →  ࡿ

discrete        or        continuous 

 

Degradation ࡿ → 

discrete        or        continuous 
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Chemical 
reaction ܣ →  ܤ2

 

Chemical 
reaction 
modeled by 
mass action 
kinetics 

ܣ3
௩
→  ܤ2

ݒ ൌ ݇ ⋅   ଷܣ

Biochemical 
reaction 
modeled by 
Michaelis-
Menten 
kinetics 

ܵ  ܧ
௩
→ܲ   ܧ

ݒ ൌ
௫ݒ ⋅ ܵ
ௌܭ  ܵ

 

loop-connection        or        read arc 

 

Inhibition 
reaction 

 

 

Activation 
reaction 

 
 

Positive 
gene 
regulation 

Negative 
gene 
regulation 

 

S P

ݒ ൌ
ݔܽ݉ݒ ⋅ ܵ
ܭܵ  ܵ

E

 

S

ݒ ൌ
ݔܽ݉ݒ ⋅ ܵ
ܭܵ  ܵ

 

S P

 

E

S1

S2

P

I

S1

S2

P

A
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5.3 PARAMETER ESTIMATION 

Once a model is constructed using the Modelica language, for example, with the xHPN 

formalism and the PNlib (see Section 6), the task is to estimate the model parameters. 

Thereby, the parameters have to be chosen so that the model reproduces the given 

experimental data in the best possible way. This procedure is called parameter estimation or 

inverse problem; thereby, the latter indicates that the model parameters are identified from 

measurements. 

Parameter estimation engenders an optimization problem: Minimize an objective function 

which represents the goodness of a parameter set. This objective function can be formulated 

mathematically by a non-linear programming problem (NLP) constrained by the hybrid DAEs 

of the Modelica model (see Section 3.1.7) and upper and lower bounds for every parameter: 

݉݅݊ܳሺऀሻ 				ऀ ∈ ࣪ ⊆ Թ, ܳ:࣪ → Թ Eq. 5-2

subject to 

Hybrid	DAE	of	the	Modelica	Model
consisting	of	a	combination	of	Eq. 3‐3,	Eq. 3‐4,	and	Eq. 3‐5

Eq. 5-3

ऀ  ऀ  ऀ௨ Eq. 5-4

whereby 

 ܳ൫उሺऀ,  ሻ൯, denoted by ܳሺऀሻ, is the objective function to minimize which depends on aݐ

subset of regarded model outputs उሺऀ,  .ऀ ሻ depending on the parameter valuesݐ

 ऀ ൌ ሺऀଵ, ऀଶ, … , ऀሻ are the model parameters to optimize; these are a subset of all 

parameters  of the Modelica model ሺऀ ⊆  ,ሻ

 उሺऀ, ሻݐ ൌ ሺउଵሺऀ, ,ሻݐ उଶሺऀ, ,ሻݐ … , उሺऀ,  ሻሻ are the regarded model outputs which relateݐ

to the measurements 	उොሺݐሻ ൌ ൬उොଵሺݐሻ, उොଶሺݐሻ, … , उොሺݐሻ൰; these are a subset of state and 

algebraic output variables of the Modelica model ሺउሺऀ, tሻ ⊆ ൫ݔሺݐሻ ∪  ,ሻ൯ݐሺݕ

 ऀ ൌ ൫ऀଵ
 , ऀଶ

 , … , ऀ ൯ are the lower bounds of the parameters to optimize, 

 ऀ௨ ൌ ሺऀଵ
௨, ऀଶ

௨, … , ऀ௨ሻ are the upper bounds of the parameters to optimize. 

The objective function ܳ measures the goodness of a parameter set. Therefore, this function 

has to consider the distances between model output and corresponding data points (red lines 

in Figure 5.5). 
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Figure 5.5: Distance between measurements and model output 

The residual matrices ࣬ሺऀሻ, ݇ ൌ 1,2, … , ݊ௗ are formed by the difference between the 

output matrices	ࣳሺऀሻ and data matrices ࣳ; thereby, the columns corresponds to the ݊௬ 

considered outputs and the rows to the ݊௧ points in time and ݊ௗ is the number of considered 

data sets 

࣬ሺऀሻ ൌ ࣳሺऀሻ െ ࣳ, ݇ ൌ 1,… , ݊ௗ. Eq. 5-5

The entries, called residuals, are given by 

തं,
 ൌ उ,

 ሺሻ െ उො,
 ,							݇ ൌ 1,… , ݊ௗ, ݅ ൌ 1,… , ݊௧, ݆ ൌ 1,… , ݊௬ Eq. 5-6

where उො,
 ൌ उො

ሺݐሻ is the measured value of the ݆th output at time ݐ of the ݇th data set and 

उ,
 ሺሻ ൌ 	उ

ሺऀ,  .ऀ ሻ is the corresponding model output achieved by the parameter setݐ

The residuals can be positive and negative but they should be all positive so that they do not 

cancel each other out. This can be achieved either by squaring or by calculating the absolute 

values 

ं,
 ൌ ൫ തं,

 ൯
ଶ
, 						݇ ൌ 1,… , ݊ௗ, ݅ ൌ 1,… , ݊௧, ݆ ൌ 1,… , ݊௬ Eq. 5-7

ं,
 ൌ ห തं,

 ห, 				݇ ൌ 1,… , ݊ௗ, ݅ ൌ 1,… , ݊௧, ݆ ൌ 1,… , ݊௬ Eq. 5-8

Afterwards, a one-dimensional result of the objective function can be obtained by either 

summing up all residuals or by choosing the largest residual 

ܳሺऀሻ ൌ  ं,




ୀଵ



ୀଵ



ୀଵ

Eq. 5-9

ܳሺऀሻ ൌ ൛	ݔܽ݉ ं,
 , ݇ ൌ 1…݊ௗ, ݅ ൌ 1…݊௧, ݆ ൌ 1…݊௬ൟ Eq. 5-10

Additionally, each residual ं,
  can be weighted by a factor इ,

  to consider, for example, 

different units or magnitudes. One possible weighting is to divide the residuals by the 
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measured values, i.e. इ,
 ൌ ൫1 उො,

⁄ ൯
ଶ
. Summarizing, all the possible combinations lead to 

the following four objective functions 

ܳ௦௦ሺऀሻ ൌ इ,
 ൫उ,

 ሺሻ െ उො,
 ൯

ଶ



ୀଵ



ୀଵ



ୀଵ

Eq. 5-11

ܳ௦ሺऀሻ ൌ इ,
 หउ,

 ሺሻ െ उො,
 ห



ୀଵ



ୀଵ



ୀଵ

Eq. 5-12

ܳ௦ሺऀሻ ൌ 	ݔܽ݉ ቄइ,
 ൫उ,

 ሺሻ െ उො,
 ൯

ଶ
, ݇ ൌ 1…݊ௗ, ݅ ൌ 1…݊௧, ݆ ൌ 1…݊௬ቅ	 Eq. 5-13

ܳሺऀሻ ൌ ൛इ,	ݔܽ݉
 หउ,

 ሺሻ െ उො,
 ห, ݇ ൌ 1…݊ௗ, ݅ ൌ 1…݊௧, ݆ ൌ 1…݊௬ൟ,	 Eq. 5-14

whereby the indices represent the types of the objective functions; the first index can either be 

 for squared or ܽ for ݏ for sum or ݉ for maximum and the second index can either be ݏ

absolute. 

 
Figure 5.6: The simulation-optimization method for parameter estimation 

To find the minimum of the optimization problem in Eq. 5-2 to Eq. 5-4 corresponding to PE, 

the methods introduced in Section 3.2 have been used. Thereby, the PE process is usually 

performed using the following steps: 

1. Set the model parameters. 

2. Simulate the model. 

3. Calculate the value of the objective function. 

4. Check the abort criteria. If one is fulfilled, stop; otherwise, adjust the model parameters 

according to the used optimization method of Section 3.2, and go back to step 1. 
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This procedure requires a combination of optimization routines and simulations, a so-called 

simulation-optimization method, which is displayed in Figure 5.6. 

5.4 SENSITIVITY ANALYSIS 

A SA can be performed for a number of reasons (see Chan et al. 1997 and Saltelli et al. 2000). 

This study concentrates on using it for the following aims (see Figure 5.1): 

 Model identification: determine the model parameters which contribute most to the 

variability of the model output. These parameters need additional research to get further 

knowledge about them to reduce the uncertainty in the model output. 

 Model optimization: determine optimal regions within the parameter space to use them in 

a subsequent PE process (see Section 5.3). 

 Model reduction: determine the model parameters which are insignificant to eliminate 

them from the model. In this manner the subsequent PE can be improved: Fixing less 

sensitive parameters during the optimization process of the minimization problem in 

Eq. 5-2 can speed up the convergence rate of the applied method, significantly. 

 Model verification: determine the robustness of the model parameters after PE to give 

some indication of the validity of the model toward the reality. 

Thereby, local methods are applicable for model verification if it is assumed that the objective 

function is continuous differentiable in a neighborhood of the found parameter set. On the 

other hand, the global methods of Section 3.3 are ideal to carry out the impact of each 

parameter for model identification, optimization, and reduction. 

5.5 DETERMINISTIC AND STOCHASTIC HYBRID 

SIMULATION 

The simulation of a deterministic model, i.e. no probabilistic behavior is involved, always 

returns the same results by executing the model with the same input parameters. However, a 
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stochastic model contains random mechanisms and, hence, the simulation results can change 

in any run performed with the same input parameters. 

Hereafter, the considered stochastic models are stochastic Petri nets (SPNs) already 

introduced in Section 4.3. The implementation of the stochastic transition by means of the 

Modelica language is part of Section 6.1.3. The concept is also applicable to an xHPNbio if it 

contains at least one stochastic transition. 

Each transition of a SPN represents a reaction of a biological process and the places are the 

biological compounds which interact with each other. The tokens quantify the amount of each 

compound, for example, the number of molecules and the arc weights represent the number of 

units which are consumed and produced, respectively, in a reaction, for example, the 

stoichiometric coefficients of a biochemical reaction (see Definition 5.1). 

The time when a reaction occurs is a random quantity defined by the hazard function (see 

Definition 4.34) 

߬ ൌ ݁݉݅ݐ  ൫ݔܧ ݄൯, Eq. 5-15

whereby ߬ is the putative firing time of transition ݐ which models the reaction, and ݔܧ൫ ݄൯ 

is an exponentially distributed random variable specified by the hazard function ݄. This 

hazard function can be defined more precisely if a SPN represents a biochemical network. 

Two possible hazard functions can be applied which depend on reading the tokens as 

molecules or as levels of concentrations (Heiner et al. 2008). 

The first, called stochastic mass action hazard function, is directly derived from the mass 

action kinetics of continuous reactions (Wilkinson 2006). The mass action kinetics has to be 

modified such that the substances can be represented discretely by molecules instead of 

continuous concentrations. This general modification process is shown exemplarily by the 

following types of biochemical reactions. 

A biochemical reaction of first-order has the form 

ܣ			:ܴ

→  ,ܤ

whereby the constant ܿ represents the hazard that a molecule of ܣ will undergo the reaction 

and there are ܽ molecules of substance ܣ. This leads to the hazard function 

݄ோ ൌ ܿ ⋅ ܽ. Eq. 5-16

A second-order biochemical reaction can have the form 
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ܣ			:ܴ  ܤ

→  ,ܥ

whereby the constant ܿ represents the hazard that a molecule of ܣ and a molecule of ܤ react 

with each other and there are ܽ molecules of ܣ and ܾ molecules of ܤ. Hence, ܽ ⋅ ܾ different 

pairs are possible so that the hazard function is given by 

݄ோ ൌ ܿ ⋅ ܽ ⋅ ܾ. Eq. 5-17

It is also possible that a second-order biochemical reaction has the following form 

ܣ2			:ܴ

→  ,ܤ

whereby the constant ܿ represents the hazard that two molecules of substance ܣ react. But 

only ܽሺܽ െ 1ሻ/2 pairs are possible so that the hazard function is given by 

݄ோ ൌ ܿ ⋅ ܽ ⋅ ൬
ܽ െ 1
2

൰. Eq. 5-18

This theory can also be applied to higher-order reactions and results in the following general 

form of the stochastic mass action hazard function regarding that the reaction is modeled by a 

SPN 

݄ ൌ ܿ ⋅ ෑ ቆ
݉ሺሻ

݂൫ → ൯ݐ
ቇ

∈൫௧ೕ൯

, Eq. 5-19

whereby ܿ is the transition-specific stochastic rate constant, ݉ሺሻ is the token number of the 

input place  of transition ݐ, and ݂൫ → ൯ is the weight of the arc ൫ݐ →  .൯ݐ

The second one, called stochastic level hazard functions, regards the tokens as levels of 

concentrations as introduced in (Calder et al. 2006). The concentration of each substance is 

then transformed to an abstract level. Therefore, it is assumed that the maximum molar 

concentration is ܯ and the number of the highest level is ܰ so that the amount of levels is 

ܰ  1. Then the abstract levels 0, 1, … ,ܰ represent the concentration intervals 

0, ൬0, 1 ⋅
ܯ
ܰ
൨ , ൬1 ⋅

ܯ
ܰ
, 2 ⋅

ܯ
ܰ
൨ ,… , ቆሺܰ െ 1ሻ ⋅

ܯ
ܰ
,ܰ ⋅

ܯ
ܰ
. 

The maximum molar concentration ܯ is always the same for all places in a SPN while the 

amount of levels ܰ  1 can be different for each place. Hence, both parameters ܯ and ܰ can 

be determined globally in the settings component (see Section 6.2) so that they common to all 

place components and the parameter ܰ can also be defined locally in the place components 

(see Section 6.1.2). For the following explanations, it is assumed that the parameter ܰ is 

defined globally, i.e. it is the same for all places in the SPN. 
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The derivation of the stochastic level hazard function is shown exemplarily by the following 

reaction 

ܣ2			:ܴ  ܤ3

→  ,ܥ

where ݇ is the deterministic rate constant. The increase of substance ܥ can be expressed by 

mass action kinetics 

݀ሾܥሿ

ݐ݀
ൌ ݇ሾܣሿଶሾܤሿଷ, 

where ሾܣሿ, ሾܤሿ, and ሾܥሿ denote the concentrations of substances ܤ ,ܣ, and ܥ. The new 

concentration ሾܥሿ෪  can be derived from the current concentration ሾܥሿ by Euler’s method 

ሾܥሿ෪ ൌ ሾܥሿ  ݐ∆ ⋅ ሺ݇ሾܣሿଶሾܤሿଷሻ 

ݐ∆	⇔ ൌ
ܥ∆

݇ሾܣሿଶሾܤሿଷ
, with	∆ܥ ൌ ሾܥሿ෪ െ ሾܥሿ. 

But the abstract concentrations can only increase by one level, i.e. by a concentration of 

ܯ ܰ⁄ , when the reaction occurs, hence, 

ݐ∆ ൌ
ܥ∆

݇ሾܣሿଶሾܤሿଷ
ൌ

ܯ
ܰ݇ሾܣሿଶሾܤሿଷ

, 

whereby ∆ݐ is the time that is needed to increase the concentration of substance ܥ by one 

concentration level ܯ/ܰ. This time is taken as expected value for the occurrence of the 

reaction and, thus, the hazard function is given by 

݄ோ ൌ
1
ݐ∆

ൌ
ܰ
ܯ
݇ሾܣሿଶሾܤሿଷ ൌ

ܰ
ܯ
݇ ൬
ܯ
ܰ
⋅ ௗ൰ܣ

ଶ

൬
ܯ
ܰ
⋅ ௗ൰ܤ

ଷ

, 

whereby ܣௗ and ܤௗ are the discrete levels which correspond to the concentrations ሾܣሿ and ሾܤሿ 

and, hence, 

ሾܣሿ ൌ
ܯ
ܰ
⋅ ሿܤሾ	and	ௗܣ ൌ

ܯ
ܰ
⋅  .ௗܤ

The general stochastic level hazard function is then given by 

݄ ൌ ݇ ⋅
ܰ
ܯ

ෑ ቆ
ܯ
ܰ
⋅ ݉ሺሻቇ

൫→௧ೕ൯

∈ሺ௧ሻ

, Eq. 5-20

where ݇ is the transition-specific deterministic rate constant. The conversion from the 

deterministic rate constant ݇ to the stochastic rate constant ܿ can be found in (Wilkinson 

2006). 

Several methods have been proposed to perform the stochastic simulation of a SPN model 

either with stochastic mass action hazard functions or stochastic level hazard functions. The 

first, called Gillespie’s direct method, calculates explicitly which reaction occurs next and 
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when it occurs (Gillespie 1977). Thereby, reaction ܴ occurs with a probability ݄ ∑ ݄⁄  and 

the time to the next reaction is the random quantity ݔܧ൫∑ ݄ ൯. The algorithm is summarized 

in Algorithm A7 (Appendix A1). This algorithm is direct in the sense that it chooses the 

reaction ܴ and the time when it is occurs ߬ directly by generating two random numbers at 

each iteration. 

Gillespie also developed an alternative called first reaction method, which gets along with 

one random number per iteration. Thereby, a putative time ߬ is generated for each reaction. 

This is the time when the reaction would occur if no other reaction occured before. Thus, the 

reaction with the smallest putative time will occur. The method is formalized by Algorithm 

A8 (Appendix A1). 

Gibson and Bruck modified the first reaction method to make it much more effective (Gibson 

and Bruck 2000). It is called next reaction method. They reduced the number of required 

random numbers by reusing the ߬. A new putative time is only generated for the reaction that 

has just occurred. If the hazard function is not changed by this reaction, the ߬ remains 

unaltered. However, if the hazard function is affected by this reaction, the ߬ is rescaled 

appropriately. The knowledge about which hazard function is affected by which reaction is 

attained from a dependency graph. The method can be performed by the following steps. 

Algorithm 1 

1. Set the initial numbers of molecules, set ݐ ൌ 0, calculate the hazard function ݄, and 

generate a putative time ߬~ݔܧ൫ ݄൯ for all ݆. 

2. Let ܴ the reaction whose putative time ߬ is the smallest. 

3. Update the number of molecules affected by reaction ܴ. 

4. Update ݄ and generate a new putative time ߬ ൌ ݐ   .ሺ݄ሻݔܧ

5. For each reaction ݆ ് ݇ whose hazard function is affected by reaction ܴ: 

a. Set ݄
ௗ ൌ ݄, 

b. Update ݄, 

c. Set ߬ ൌ ݐ 
ೕ


ೕ
൫ ߬ െ  .൯ݐ

6. If ݐ ൌ ܶ௫ stop; otherwise, set ݐ ൌ ߬ and go to step 2. 

The next reaction method is used within this study because the dependency graph is already 

created by the Modelica-tool to perform the hybrid simulation (see Section 3.1.7). In this 
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manner, the hazard functions are only recalculated when they are changed by firing other 

transitions. The implementation by the Modelica-language is explained in Section 6.1.3. 

5.6 MODEL PREDICTION 

Once a model is established and the structure parameters are estimated, it can be used to 

predict the behavior of the system by varying input factors such as substrates, temperature, 

and stirrer speed. By comparing these predictions with new experimental data, the model can 

be verified and successively improved (see Figure 5.1). In addition, predictions can expand 

the knowledge about the studied organism by saving a lot of experiments with different input 

factors. Usually, saving experiments is equivalent to saving costs which this is an important 

factor for industry. 

5.7 PROCESS OPTIMIZATION 

Moreover, if the model is verified by further experiments and mathematical methods (SA), the 

modeled processes of the underlying organism can be optimized. Therefore, an objective 

function has to be defined which depends on several process parameters, e.g. substrates, 

feeding strategies, temperature, and stirrer speed. Usually, PO aims at maximizing the amount 

of one or more model outputs at a specific point in time ݐ subject to the Modelica model and 

lower and upper bounds for each process parameter. This can be formalized by the following 

optimization problem 

ݔܽ݉ ܳ൫ऊ, ൯ݐ 				ऊ ∈ ࣴ ⊆ Թ, ܳ: ࣴ → Թ 
Eq. 5-21

subject to 

Hybrid	DAE	of	the	Modelica	Model
consisting	of	a	combination	of	Eq. 3‐3,	Eq. 3‐4,	and	Eq. 3‐5

Eq. 5-22

ऊ  ऊ  ऊ௨, Eq. 5-23

whereby 
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 ܳ൫उ൫ऊ, ,൯ݐ ,൯, denoted by ܳ൫ऊݐ  ൯, is the objective function to maximize whichݐ

depends on a subset of regarded model outputs उ൫ऊ,  ൯ depending on the parameterݐ

values ऊ, 

 ऊ ൌ ሺऊଵ, ऊଶ, … , ऊሻ are a subset of the model parameters ሺऊ ⊆  ሻ, called process

parameters, which are varied to maximize the model output, 

 उ൫ऊ, ൯ݐ ൌ ൬उଵ൫ऊ, ,൯ݐ उଶ൫ऊ, ,൯ݐ … , उ൫ऊ,  ൯൰ are model outputs to optimize which areݐ

a subset of state and algebraic output variables ቀउሺऊ, tሻ ⊆ ൫ݔሺݐሻ ∪  ,ሻ൯ቁݐሺݕ

 ݐ is the point in time when the model output is regarded. This time can also be included 

in the objective function as additional process parameter varied during optimization 

because the time needed to produce the amount of output correlates usually with its cost, 

 ऊ ൌ ሺऊଵ
 , ऊଶ

 , … , ऊ ሻ are the lower bounds of the process parameters, and  

 ऊ௨ ൌ ሺऊଵ
௨, ऊଶ

௨, … , ऊ௨ሻ are the upper bounds of the process parameters. 

The following objective functions are usable to maximize one model output by varying 

several process parameters 

Thereby, the first one regards only the model output at a fixed point in time ݂ݐ
௫ while the 

second one includes also the point in time when the maximum model output is reached due to 

the fact that time is mostly correlated with costs of the regarded process; hence, it tries to find 

the best compromise of model output and corresponding costs. The arising optimization 

problem is solved with the methods introduced in Section 3.2. 

A PO can be used, for example, to achieve an open-loop control of biological processes, i.e. 

the process parameters are calculated based on the model representing the state of the 

biological system; no feedback is used to determine if the output has yielded the intended 

purpose of the adapted process parameters. An open-loop control is an important aspect for 

industrial fermentation processes: achieving a maximum product yield at minimum costs. 

,उቀऊݔܽ݉ ݂ݐ
௫ቁ ऊ ∈ ࣴ ⊆ Թ݊ Eq. 5-24

ቆݔܽ݉
उ൫ऊ, ൯݂ݐ
݂ݐ

ቇ ऊ ∈ ࣴ ⊆ Թ݊ Eq. 5-25
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6 THE PETRI NET LIBRARY 

This chapter concentrates on the implementation of extended hybrid Petri nets (xHPN) 

introduced in Section 4 (see also Section 5.2) in order to model, simulate, and animate these 

special kinds of Petri nets. 

To achieve this aim, an appropriate programming language is needed that is capable of 

modeling places, transitions, and arcs as objects and meets the following requirements: 

 freely available, 

 object-oriented, 

 equation-based, i.e. support of modeling by discrete, differential, and algebraic equations, 

 support of graphical modeling, 

 support of hierarchical modeling, 

 support of simulation, 

 support of animation. 

A language that satisfies all these conditions is the non-proprietary, object-oriented, equation-

based language Modelica (Modelica Association 2011). It is developed and promoted by the 

Modelica Association since 1996 for modeling, simulation, and programming primarily of 

physical and technical systems and processes (Modelica Association 2010). Additionally, the 

Modelica standard library is available from the Modelica Association to model mechanical 

(1D/3D), electrical (analog, digital, machines), thermal, fluid, control systems, and 

hierarchical state machines. Furthermore, several libraries have been developed in the last 

decade for specific applications. An overview can be found on the Modelica homepage 

(Modelica Association 2011). The development of the language and libraries is ongoing and 

driven by several European projects (EUROSYSLIB, MODELISAR, OPENPROD, and 

MODRIO). Since the year 2000, Modelica is used successfully in the industry which is 

documented in the proceedings of many Modelica conferences and journals. 

The Modelica models are described on the textual level by discrete, differential, and algebraic 

equations and by schematics on the graphical level. A schematic consists of connected 

components which are defined by other components or on the lowest level by equations in 

the Modelica syntax. The components have connectors which describe the interaction 

between them. By drawing a line from one component to another, a connection is established 
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to enable interactions. In this manner a model is constructed. Several components can be 

structured in libraries, called packages, which provide hierarchical modeling. Moreover, the 

wrapping technique enables the representation of sub-models consisting of several 

connected components by a specific adapted icon in order to simplify the modeling process. 

Then, the sub-models can be used several times in the same or in different models and, in 

addition, it offers an easy-to-use-model at the top level with an intuitive and familiar adapted 

view. 

For graphical modeling, simulation, and animation an appropriated environment is needed. 

The following lists some examples of free and commercial Modelica environments and a full 

list can be found on the Modelica homepage (Modelica Association 2011). 

Commercial Modelica environments 

 Dymola from Dassault Systemes (www.3ds.com/products/catia/portfolio/dymola) 

 MapleSimTM from Maplesoft (www.maplesoft.com/products/maplesim/index.aspx) 

 MathModelica System Designer from Wolfram MathCore 

(www.mathcore.com/products/mathmodelica) 

Free Modelica environments 

 OpenModelica developed and supported by Linköping University and the Open Source 

Modelica Consortium (www.openModelica.org) 

 JModelica.org maintained and developed by Modelon AB in collaboration with academia 

(www.jmodelica.org) 

Within this study, the commercial tool Dymola – Dynamic Modeling Laboratory – version 7.4 

is used. 

An introduction to the basic Modelica language constructs and principles which also includes 

the balanced modeling concept, the hybrid modeling technique, and the description of the 

process from a Modelica model to executable simulation code has already been given in 

Section 3.1. The next sections outline the implementation of the Petri net component models 

by the Modelica language which also comprises an introduction to the Dymola tool and a 

description of the connection between Dymola and Matlab/Simulink for post-processing of 

simulation results. 
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6.1 IMPLEMENTATION OF THE PETRI NET ELEMENTS 

The advanced Petri Net library, called PNlib, developed in this work enables the modeling of 

xHPNs. Based on the Petri nets concepts of Section 4 and 5.2, places, transitions, and arcs are 

modeled as objects by discrete, differential, and algebraic equations in Modelica. Therefore, it 

has to be distinguished between discrete (PD) and continuous places (PC), discrete (TD), 

stochastic (TS), and continuous transitions (TC), and normal, test (TA), inhibitor (IA), and read 

arcs (RA). Each of them, except the normal arc, is modeled by its own Modelica model and for 

all of them the specialized class model is used (see Section 3.1.4). These Petri net component 

models are organized and structured in a Modelica package, also called library. The 

structure of the PNlib is shown in Figure 6.1. The main package PNlib is divided into the 

following sub-packages 

 Interfaces: contains the connectors of the Petri net component models. 

 Blocks: contains blocks with specific procedures that are used in the Petri net component 

models. 

 Functions: contains functions with specific algorithmic procedures which are used in 

the Petri net component models. 

 Constants: contains constants which are used in the Petri net component models. 

 Models: contains several examples and offers the possibility to structure further Petri net 

models. 

 
Figure 6.1: Structure of the PNlib 
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Additionally, the package contains the component settings which enables the setting of 

global parameters for the display and animation of a Petri net model (see Section 6.2). 

Places, transitions, and arcs are represented by the icons depicted in Figure 6.2. Thereby, the 

discrete place is represented by a circle and the continuous place by a double circle. The 

transitions are boxes which are black for discrete transitions, black with a white triangle for 

stochastic transitions, and white for continuous transitions. The test arc is represented by a 

dashed arc, the inhibitor arc by an arc with a white circle at its end, and the read arc by an arc 

with a black square at its end. 

 
Figure 6.2: Icons of the PNlib: discrete place (circle), continuous place (double circle), 

discrete transition (black box), stochastic transition (black box with white 
triangle), continuous transition (white box), test arc (dashed arc), inhibitor arc 
(arc with circle ending), and read arc (arc with square ending) 

Hereafter it is described what is calculated in which Petri net component and at which time. 

Thereby, the discrete procedure - the involved transition is discrete or stochastic - is outlined 

in Figure 6.3 and the continuous procedure - the involved transition is continuous – is 

displayed in Figure 6.4. 
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Figure 6.3: Discrete procedure: what is calculated in which component and at which time if the involved transition is discrete or stochastic. Dashed 

lines indicate processes that use the predecessor value of the respective variable 
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The discrete procedure comprises the following steps (the component model in which the step 

is performed is stated in brackets after the name of the step): 

D1 Activation (transition): It is checked by means of Definition 4.66 if a discrete 

transition can become active. When the transition becomes active, the putative firing 

time ሺ݁݉݅ݐ   .ሻ is savedݕ݈ܽ݁݀

D2 Output Enabling (place): A place enables its output transitions based on which of 

them are active and if the delays are already passed. Thereby, an occurring type-1-

output-conflict (Definition 4.67) is either solved deterministically (Definition 4.19) or 

probabilistically (Definition 4.20). 

D3 Input Enabling (place): A place enables its input transitions based on which 

transitions are already enabled by all input places. Thereby, an occurring type-1-input-

conflict (Definition 4.67) is either solved deterministically (Definition 4.19) or 

probabilistically (Definition 4.20). 

D4 Firability (transition): If a transition is enabled by all output places, which also 

implies the enabling by all input places, it is firable and fires immediately. 

D5 Token/marks recalculation (place): A place recalculates the tokens and marks, 

respectively, according to Definition 4.61 when one or more connected transitions fire. 

This discrete procedure causes an algebraic loop which involves discrete-time variables, 

hence, it has to be cut by hand to obtain a model that can be translated and simulated (see 

Section 3.1.7). This is done by putting the pre-operator around the discrete-time variable t 

which contains the current token number of a place. In this way, the steps activation, input, 

and output enabling are based on the predecessor value of t, represented in Figure 6.3 by 

dashed lines, and the outlined ordering of the processes (D1 - D5) is achieved. 
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Figure 6.4: Continuous procedure: what is calculated in which component and at which time if the involved transition is continuous. Dashed lines 

indicate processes that use the predecessor value of the respective variable. 
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The continuous procedure is performed by the following steps; thereby, it has to be pointed 

out that tokens of discrete places are never changed by firing continuous transitions. Discrete 

places can only influence the time when continuous transitions can become active either by 

connections via test or inhibitor arcs or by loop-connections, i.e. the place is input and output 

of the transition, simultaneously, with arcs of the same weight (see Section 4.5). 

C1 Speed calculation (place): The current input and output speed of a continuous place is 

calculated by means of Definition 4.39. 

C2 Marks calculation (place): The marking of a continuous place is calculated by means 

of Definition 4.61. 

C3 Activation (transition): It is checked with the aid of Definition 4.66 if a continuous 

transition can become active. 

C4 Enabling (place): A discrete place enables its continuous output transitions. If a type-

4-conflict (Definition 4.67) occurs, it is resolved deterministically by priorities. 

C5 Firability (transition): A continuous transition is firable if it is active and enabled by 

all discrete input places. 

C6 Preliminary speed calculation (transition): The preliminary speed is calculated based 

on the input speeds of the input places and the output speeds of the output places 

(Definition 4.48). 

C7 Decreasing factor calculation (place): The decreasing factor is calculated to resolve 

type-2-conflicts (Definition 4.67) by sharing the speeds proportional to the maximum 

speeds of the involved transitions (Definition 4.50). 

C8 Instantaneous speed calculation (transition): Based on the decreasing factors of the 

input and output places, the instantaneous speed of a continuous transition can be 

calculated by means of Definition 4.50. 

To realize the steps C1 – C8 in the given order, an algebraic loop which involves discrete-

time variables has to be cut by hand. This is done by using the pre-operator for the variable 

fire so that the speed calculation (C1) bases on the predecessor value of it. Figure 6.4 

indicates this with dashed lines. Additionally, an algebraic loop concerning continuous-time 
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variables may arise by calculating the preliminary and instantaneous speed as well as the 

decreasing factor. This algebraic loop is solved by the Modelica-tool (see Section 3.1.7). 

6.1.1 CONNECTORS 

The processes of Figure 6.3 and Figure 6.4 can only be realized if the Petri net components 

are able to interchange variables. Modelica makes this interaction possible by means of the 

specialized class connector (see Section 3.1.4). A connector comprises variables which are 

calculated in one component but also needed in the connected components for further 

calculations. The red and white triangles at the Petri net icons in Figure 6.5 represent the 

connectors of the Petri net component models. The PNlib contains four different connectors: 

PlaceOut, PlaceIn, TransitionOut, and TransitionIn. The connectors PlaceOut 

and PlaceIn are part of the place model and connect them to output and input transitions, 

respectively. Similarly, TransitionOut and TransitionIn are connectors of the 

transition model and connect them to output and input places, respectively. Figure 6.5 shows 

which connector belongs to which Petri net component model. 

 
Figure 6.5: Connectors of the PNlib which enable the Petri net components to interact with 

each other 

The connector variables are summarized in Appendix A2. All connector variables are 

provided either with the prefix input or output to guarantee balanced models (see 

Section 3.1.5). If the equation of a connector variable is available in the model where the 

connector is used, it is prefixed with output while it is provided with input if the 

corresponding equation is in a connected component. 

Figure 6.6 shows two examples of connector variables. The token number t is calculated in 

the place model but also needed in the connected input and output transitions to determine if 

they can become active. Hence, it is an output of the place connectors PlaceOut and 
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PlaceIn and an input of the transition connectors TransitionOut and TransitionIn. 

On the other hand, the variable fire is determined in the transitions but also needed in the 

connected places for the recalculation of the token number. Hence, it is an output of the 

transition connectors and an input of the place connectors. 

 
Figure 6.6: The connector variable t for the token number is output of places and input of 

transitions (left) and the connector variable fire for the firability is output of 
transitions and input of places (right) 

The connectors of the Petri net component models are vectors to enable the connection to an 

arbitrary number of input and output components. Therefore, the dimension parameters nIn 

and nOut are declared in the place and transition models with the connectorSizing 

annotation. 

 

If a parameter with the connectorSizing annotation is used as the dimension size of a 

vector of connectors, it is automatically updated in the following way (Modelica Association 

2010): 

 If a new connection is added, the dimension parameter is incremented by one and the 

connection is performed for the new highest index. 

 If a connection is deleted, the dimension parameter is decremented by one and all 

connections with an index above the deleted connection are also decremented by one. 

t

t

t

fire

fir
e

fir
e

fire

t

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true)) 
parameter Integer nOut=0 annotation(Dialog(connectorSizing=true)) 
Interfaces.PlaceIn inTransition[nIn](<modification equations>) 
Interfaces.PlaceOut outTransition[nOut](<modification equations>) 
Interfaces.TransitionIn inPlaces[nIn](<modification equations>) 
Interfaces.TransitionOut outPlaces[nOut](<modification equations>) 
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The Petri net components are either connected graphically by drawing a line from a transition 

to a place or from a place to a transition or textually by a connect equation (see Section 3.1.2) 

with the following syntax 

connect "(" componentName1 "." connectorName1 "[" index "]" "," 
componentName2 "." connectorName2 "[" index "]" ")" ";" 

If a connection is established graphically, the corresponding connect equation is generated on 

the textual level automatically. 

Example 6.1 

Figure 6.7 shows a Petri net modeled by the PNlib. 

 
Figure 6.7: Indices of connectors are updated automatically by using the connectorSizing 

annotation for the dimension parameter (Example 6.1) 

The corresponding connect equations are the following 

connect(P1.outTransition[1], T1.inPlaces[1]); 
connect(P2.outTransition[1], T1.inPlaces[2]); 
connect(T1.outPlaces[1], P3.inTransition[1]); 
connect(T1.outPlaces[2], P4.inTransition[1]); 
connect(P3.outTransition[1], T2.inPlaces[1]); 
connect(P3.outTransition[2], T3.inPlaces[1]); 
connect(P4.outTransition[1], T3.inPlaces[2]); 
connect(T3.outPlaces[1], P5.inTransition[1]); 

If a new connection from ܲ4 to ܶ2 is drawn, the equation 

connect(P4.outTransition[2], T2.inPlaces[2]); 

is generated automatically with the new highest indices of the output connector of ܲ4 and the 

input connector of ܶ2. In addition, the dimensions of both connectors are incremented by 

one. 

On the other hand, if the connection from ܲ3 to ܶ3 is deleted in the graphical editor, the 

corresponding equation 

connect(P3.outTransition[2], T3.inPlaces[1]) 
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is deleted automatically on the textual level. Additionally, the connector dimensions of ܲ3 and 

ܶ3 are decremented by one and the index of the input connector of ܶ3 in the connect 

equation of ܲ4 and ܶ3 is decremented by one 

connect(P4.outTransition[1], T3.inPlaces[1]); 

6.1.2 PLACES 

The place models contain several parameters which can be defined by the user. This can 

either be done by the property dialog on the graphical level or by modification equations (see 

Section 3.1.2) on the textual level. The property dialog appears by double clicking on the 

component icon and the contained parameters are detailed in Table 6.1. 

Table 6.1: Parameters of discrete (d) and continuous (c) places 

Name Type 
Default 

value 
Allowed 
values 

Description 

startTokens/ 
startMarks scalar 0

non negative 
integers (d)/ 
real values (c)

Marking at the 
beginning of the 
simulation 
Definition 4.65 
minTokens ≤ 
startTokens ≤ 
maxTokens 

minTokens/ 
minMarks scalar 0

non negative 
integers (d)/ 
real values (c)

Minimum capacity 
Definition 4.65 

maxTokens/ 
maxMarks scalar infinite

non negative 
integers (d)/ 
real values (c)

Maximum capacity 
Definition 4.65 

enablingType choice/ scalar Priority priority/ 
probability 

Type of enabling if 
type-1-conflicts occur; 
the priorities are 
defined by the 
connection indices and 
the probabilities by the 
variables 
enablingProbIn/Out 
Definition 4.19, 
Definition 4.20, 
Definition 4.67 

enablingProbIn vector fill(1/nIn,nIn)
sum must be 
equal to one 

Enabling probabilities 
of input transitions 
Definition 4.18 

enablingProbOut vector fill(1/nOut,nOut)
sum must be 
equal to one 

Enabling probabilities 
of output transitions 
Definition 4.18 
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If the type-1-conflict is resolved by priorities, the corresponding priorities of the transitions 

are given by the indices of the connections, i.e. the transition connected to the place with the 

index 1 has also the priority 1, the transition connected to the place with the index 2 has also 

the priority 2 etc. Otherwise, if the probabilistic enabling type is chosen, the corresponding 

probabilities for the transitions have to be entered as a vector (numbers separated by commas 

within braces). Thereby, the first vector element corresponds to the connection with the index 

1, the second to the connection with the index 2 etc. The usage of these parameter vectors is 

also described in Example 6.2. The input of enabling probabilities as vectors in the place 

model, and not at the corresponding arcs, is necessary due to the fact that properties cannot be 

assigned to connections according to the Modelica Specification 3.2 (Modelica Association 

2010). 

The parameters can also be set by modification equations within brackets after the component 

name, an example is given below. 

 

If the parameters are set graphically, the modification equations on the textual level are 

generated automatically and vice versa. Furthermore, for parameters which do not appear in 

the modification equations the default values are applied. 

Example 6.2 

Place ܲ1 is connected to the transitions ܶ1, ܶ2, and ܶ3 and the connection to ܶ1 is indexed 

by 1, the connection to ܶ2 is indexed by 2, and the connection to ܶ3 is indexed by 3. Thus, 

the corresponding connect-equations are 

connect(P1.outTransition[1], T1.inPlaces[1]); 
connect(P1.outTransition[2], T2.inPlaces[1]); 

N scalar settings1.N positive 
integers (d) 

Amount of levels for 
stochastic simulation 
Section 5.5 

restart 
condition 
expressions 

false
Boolean 
condition 
expressions 

Condition for resetting 
the marking to 
reStartTokens/Marks; 
this could may be a 
global condition 

reStartTokens/ 
reStartMarks scalar 0

non negative 
integers (d)/ 
real values (c)

When the reStart 
condition is fulfilled, 
the marking is set to 
reStartTokens/Marks 

Discrete.PD PD(startTokens=15, minTokens=8, maxTokens=117, 
enablingType=2,enablingProbIn={0.5,0.25,0.25}, 
enablingProbOut={0.7,0.3}); 

Continuous.PC PC(startMarks=17.8,minMarks=0.9,maxMarks=57.9); 
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connect(P1.outTransition[3], T3.inPlaces[1]); 

The enabling probabilities 0.3 for ܶ1, 0.25 for ܶ2, and 0.45 for ܶ3 have to be entered by the 

parameter vector 

enablingProbOut={0.3,0.25,0.45}. 

 
Figure 6.8: The input of parameter vectors (Example 6.2) 

The discrete place model has to perform the processes output enabling (D2), input enabling 

(D3), enabling of continuous transitions (C4), and recalculation of tokens and marks, 

respectively (D5). The continuous place model also performs the processes D2, D3, and D5 

and, in addition, the input and output speeds (C1), marks (C2), and decreasing factors (C7) are 

calculated by it. These processes are detailed hereafter. 

OUTPUT AND INPUT ENABLING PROCESSES (D2, D3, C4) 

If a discrete or continuous place has a type-1-conflict (Definition 4.67) which involves two or 

more discrete transitions, it has to be resolved either by priorities or probabilities. Thereby, 

the priorities are reflected by the indices of the connections while the probabilities have to be 

entered as parameter vectors. Additionally, type-3-conflicts which involve at least one 

discrete and one continuous transition have to be resolved by the rule that discrete transitions 

take priority over continuous ones. Furthermore, type-4-conflicts which involve discrete 

places and at least two continuous transitions have to be resolved by priorities which are also 

reflected by the corresponding connection indices. 

All these conflicts are resolved in the place models by an algorithmic procedure part of the 

blocks enablingOutDis, enablingInDis, enablingOutCon, and enablingInCon 

which are contained in the sub-package Blocks. The blocks for discrete and continuous 

P1

T1

T2

T3

[1]; 0.3

[2]; 0.25

[3]; 0.45
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places are almost the same except the data types of some input arguments and the block 

enablingOutDis solves also type-4-conflicts. The differentiation is necessary due to the 

fact that data types of block inputs cannot be variable according to the Modelica Specification 

3.2 (Modelica Association 2010). 

The enabling process of the places is performed when at least one delay of a connected active 

transition is passed, i.e. the input connector variable active switches from false to true. 

This is realized by a when equation (see Section 3.1.2). The algorithmic procedure inside a 

when equation is only executed at an event instant, thus, exactly at the time when the delay of 

at least one connected transition is passed. The algorithmic procedure in the block 

enablingOutDis has to be executed additionally when connected continuous transitions 

become active or are no longer active, i.e. the connector variable active of at least one 

continuous output transition switches from false to true or vice versa which is determined 

with the build-in function change (see Section 3.1.6). 

The information which transition is enabled by which places is reported via the connector 

variable enable to the connected transitions to determine if the transitions are firable. 

TOKEN/MARKS RECALCULATION PROCESS AND CALCULATION OF 

INPUT AND OUTPUT SPEEDS (D5, C1, C2) 

Besides the enabling process, the current marking is calculated in the place model. Thereby, it 

has to be distinguished between the discrete and continuous model. The token numbers of 

discrete places only change by firing discrete transitions, i.e. only at the corresponding event 

instants, while the marking of continuous places can change continuously over time as well as 

discretely. 

The discrete marking is recalculated when one or more discrete input or output transitions 

fire. At that time, the Boolean variable tokeninout switches from false to true and the 

discrete marking is recalculated by means of Definition 4.13: the arc weight sum of all firing 

input transitions is added to the predecessor value of the current token number (pre(t)) and 

the arc weight sum of all firing output transitions is deducted. 
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Additionally, the tokens are reset to the user-defined value reStartTokens when the user-

defined condition reStart becomes true. This is very useful for resetting the values of 

several places, simultaneously when a global condition becomes true. 

The marking of a continuous place can change continuously as well as discretely 

(Definition 4.61). This has been implemented by the following construct:  

 

The continuous mark change is performed by a differential equation while the discrete mark 

change is performed by the reinit-operator within a discrete equation (see Section 3.1.6). 

This operator causes a re-initialization of the continuous marking every time when at least one 

connected discrete transition fires. Additionally, the marking is re-initialized by user-defined 

value reStartMarks when the user-defined condition reStart becomes true. 

DECREASING FACTOR CALCULATION (C7) 

The continuous place model comprises an additional process, called decreasing factor 

calculation (C7). The decreasing factors are used to resolve type-2-conflicts (Definition 4.67) 

by which the input or output speed is not sufficient for firing all transitions at the respective 

speed. The input and output decreasing factors are calculated in the block 

decreasingFactor by an algorithmic procedure according to Definition 4.50. A block has 

to be used due to the fact that no events are generated within functions according to the 

Modelica Specification 3.2 (Modelica Association 2010). The decreasing factors are reported 

to the connected transitions via the connector variable decreasingFactor to calculate the 

instantaneous speed. In this context, an algebraic loop concerning continuous-time variables 

may arise which is solved by the Modelica-tool (see Section 3.1.7). 

when tokenInOut or pre(reStart) then 
   t = if tokenInOut then pre(t)+firingSumIn-firingSumOut 

else reStartTokens; 
end when; 

der(t) = conMarkChange; 
when disMarksInOut then 
   reinit(t, t + disMarkChange); 
end when; 
when reStart then 
   reinit(t,reStartMarks); 
end when; 
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6.1.3 TRANSITIONS 

The transition models contain several parameters and variables which can be defined by the 

user. This can either be done by the property dialog on the graphical level or by modification 

equations (see Section 3.1.2) on the textual level. The property dialog appears by double 

clicking on the component icon and the contained parameters and modification possibilities 

are summarized in Table 6.2. Thereby, it has to be distinguished between the following input 

types: scalar, vector, scalar function, vector function, and condition expression. The input of 

the different types is demonstrated by Example 6.3 and Example 6.4. The input of arc weights 

as vectors in the transition model and not at the respective arcs is necessary due to the fact 

that connections cannot be provided with properties according to the Modelica Specification 

3.2 (Modelica Association 2010). 

Table 6.2: Parameters and modification possibilities of discrete (d), stochastic (s), and 
continuous (c) transitions 

Name Type 
Part 

of 
Default 
value 

Allowed 
values 

Description 

delay scalar d 1
non-negative 
real values 

Delay of timed transitions 
Definition 4.32 

h 
scalar or 
scalar 
function 

s 1
non-negative 
real values 

Hazard function to 
determine the characteristic 
value of exponential 
distribution 
Definition 4.34 

maximumSpeed 
scalar or 
scalar 
function 

c 1
non-negative 
real values 

Maximum speed 
Definition 4.38 

arcWeightIn 
vector or 
vector 
function 

d, s, c fill(1,nIn)

non-negative 
integers  
(d, s)/real 
values (c) 

Weights of input arcs 
Definition 4.65 

arcWeightOut 
vector or 
vector 
function 

d, s, c fill(1,nOut)

non-negative 
integers  
(d, s)/real 
values (c) 

Weights of output arcs 
Definition 4.65 

firingCon 
condition 
expressions 

d, s, c true
Boolean 
condition 
expressions 

Firing condition 
Definition 4.62 

Example 6.3 

Figure 6.9 shows a discrete Petri net. The indices of the connections are written at the arcs 

within square brackets, e.g. the connection ሺܲ1 → ܶ1ሻ has the input index ሾ1ሿ and ሺܶ1 → ܲ5ሻ 

has the output index ሾ3ሿ. The input of the arc weights displayed after the indices to property 

dialog or as modification equation is performed by the vector functions 

arcWeightIn = {2*P1.t,4} 
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and 

arcWeightOut = {2,1,5*P1.t}, 

whereby the expression P1.t accesses the current token number of ܲ1. Thus, the weights of 

the arcs ሺܲ1 → ܶ1ሻ and ሺܶ1 → ܲ5ሻ are functions which depend on the token number of ܲ1. 

Transitions can also be provided with additional conditions which have to be satisfied to 

permit the activation. The condition 

firingCon = time>9.7 

means that the transition cannot be activated as long as time is less than 9.7. 

 
Figure 6.9: The input of arc weights (Example 6.3) 

Example 6.4 

Figure 6.10 shows two continuous Petri nets. Transition ܶ1 has a maximum speed function 

which depends on the makings of ܲ1 and ܲ2. The input of this function to the property dialog 

or as a modification equation is performed by the expression 

maximumSpeed = 0.75*P1.t*P2.t, 

whereby P1.t and P2.t accesses the marks of ܲ1 and ܲ2, respectively. Transition ܶ2 has 

a maximum speed function that depends on time and can be entered by the expression 

maximumSpeed = if time<=6.5 then 2.6 else 1.7. 

 
Figure 6.10: The input of maximum speeds which depend on markings (top) and time 

(bottom) (Example 6.4) 
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The discrete transition model has to perform the processes activation (D1) and firability (D4) 

and the continuous transition model has also to perform the processes activation (C3) and 

firability (C5), and, additionally, the preliminary (C6) and instantaneous (C8) speed is 

calculated. These processes are detailed hereafter. 

ACTIVATION PROCESS (D1, C3) 

The activation process of a discrete transition (D1) and a continuous transition (C3) is 

performed by an algorithmic procedure in the block activationDis and activationCon, 

respectively, based on Definition 4.66. Thereby, an event has to be triggered at every point in 

time when the transition becomes active to initiate the enabling process of the places. This 

requires the usage of blocks instead of functions due to the fact that no events are generated in 

functions according to the Modelica Specification 3.2 (Modelica Association 2010). The 

continuous activation process differentiates between strongly and weakly input and output 

active according to Definition 4.46. 

When a discrete transition is activated, the next putative firing time is saved as firingTime. 

The variable delayPassed indicates if the delay is already elapsed. When the delay is 

passed, the variable active is set to false to generate a new event if the transition can 

become active again. Thereby, the instance of the block activationDis is denoted by 

activation. 

 

In the case of a stochastic transition, a when-statement contains an equation to determine the 

next putative firing time. The delay is then an exponentially distributed random number which 

is generated according to the value of the hazard function h at this time instant. Thereby, the 

exponentially distributed random number is generated by the function randomexp which 

calls an external C-function as described in Section 3.1.4 and Example 3.10. At every event 

instant a new random number has to be generated; but Modelica functions are only called 

active = activation.active and not pre(delayPassed); 
when active then 
   firingTime = time + delay; 
end when; 
delayPassed = active and time>=firingTime; 
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when the values of the input arguments have changed. They are said to be pure. This pure 

property of a function can be suppressed by the vendor-specific annotation 

__Dymola_pure=false 

as it is shown in Example 3.10. 

Moreover, a new putative firing time is only generated when a transition has just fired tokens 

and becomes active again afterwards. The hazard function can depend on the markings of 

several places to perform a stochastic simulation (see Section 5.5). If the hazard function has 

changed due to firing other transitions, the putative firing time is only adapted to the new 

value of the hazard function but no new random number is generated according to the next 

reaction method of Algorithm 1 in Section 5.5. 

 

The reusing of the putative times is achieved by a when-statement (see Section 3.1.3). The 

equations of the elsewhen-part are active when the hazard function assigned to an active 

transition has just changed its value. The putative firing time putFireTime is then rescaled 

according to step 5c of Algorithm 1 and the current value of the hazard function is saved as 

hold for the next rescaling.The equations within the when-part are active when the transition 

becomes active. It contains an equation for generating a new putative firing time. The 

Boolean variable active is set to false when the transition has just fired tokens. When the 

transition can become active again, it switches back to true. In this manner an event is 

generated at each firing point in time so that a new putative firing time is always generated. 

FIRABILITY (D4, C5) 

When the delay of a discrete transition is passed, the connected input places check which 

transition can be enabled and report back via the connector variable enable. If a transition is 

enabled by all input places, the variable enabledByInPlaces is true. Based on this, the 

when active then 
   putFireTime := time+Functions.Random.randomexp(h); 
   hold := h; 
elsewhen (active and h<>hold then 
   putFireTime := if h>0 then time+hold/h*(putFireTime-time)  
                  else Constants.inf; 
   hold := h; 
end when; 
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output places of the transition perform their enabling. If a transition is enabled by all output 

places, the variable fire becomes true and the transition fires tokens (Definition 4.22). 

A continuous transition fires when it is active and, additionally, enabled by all connected 

discrete places. 

PRELIMINARY AND INSTANTANEOUS SPEED CALCULATION (C6, C8) 

The preliminary speed is calculated by the block preliminarySpeed according to 

Definition 4.48. The preliminary speed depends on the activation status of the transition 

(strongly or weakly input/output active). If a transition is not involved in a type-2-conflict, the 

instantaneous speed is calculated by means of Definition 4.47; otherwise, the conflict is 

resolved in the place model and the speed is decreased by the reported decreasing factors 

(Definition 4.50). The instantaneous speed is reported to the connected places by the 

connector variable instSpeed to perform the mark change. 

 

In this context, an algebraic loop concerning continuous-time variables may arise which is 

solved by the Modelica-tool (see Section 3.1.7). 

6.1.4 ARCS 

xHPNs comprise four different kinds of arcs: normal, test, inhibitor, and read arcs. The 

Modelica language do not support the assignment of properties to arcs that are generated by 

connect equations (Modelica Association 2010). Due to this fact, the test, inhibitor, and read 

arcs are realized by component models which are interposed between places and transitions 

(see Figure 6.11); the normal arc is simply generated by the connect equation. 

The parameters of test and inhibitor arcs are summarized in Table 6.3. To avoid connecting 

the same place to the same transition by a test and normal arc or by an inhibitor and normal 

arc, the option normalArc can be selected. Then the arc is a double arc. 

instantaneousSpeed=min(min(min(decreasingFactorIn), 
min(decreasingFactorOut))*maximumSpeed,prelimSpeed); 
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Figure 6.11: Modeling of normal (top left), test (bottom left), inhibitor (top right), and read 

arcs (bottom right) with the PNlib 

Besides the parameters, the models of test, inhibitor, and read arcs solely consist of the two 

connectors TransitionIn and PlaceOut and specific modification equations of the output 

variables within brackets after the connectors. 

Table 6.3: Parameters of test and inhibitor arcs 

Name Type 
Default 
value 

Allowed 
values 

Description 

testValue scalar 1

non-negative 
integers if 
connected to 
discrete places, 
non-negative 
real values 
otherwise 

The marking of the place 
must be greater to enable 
firing of transitions (test 
arc); 
the marking of the place 
must be smaller to enable 
firing (inhibitor arc). 

normalArc choice/scalar  no no or yes 

If yes is chosen, then the 
arc is also a normal arc to 
change the marking by 
firing (called double arc). 

Thereby, the connector variable arcType of the PlaceOut-connector is set to 2 in case of a 

test arc, to 3 in the case of an inhibitor arc, and to 4 in the case of a read arc; otherwise, the 

variable is equal to 1 and indicates a normal arc. The variable arcType is needed for the 

activation process of discrete and continuous transitions (D1, C3, Definition 4.66, Figure 6.3, 

and Figure 6.4). Additionally, the variables arcWeight, maxSpeed, prelimSpeed, and 

instSpeed of the TransitionIn-connector are set to zero to guarantee that the marking is 

not changed by firing transitions connected by test, inhibitor, or read arcs which are not 

double arcs. If the arcs are double arcs, the mentioned variables are adopted as they stand. The 

other connector variables are just conveyed from one connector to another. This process is 

also illustrated in Figure 6.12. In the case of double arcs, the weights for test and inhibitor 

arcs are determined by the variable testValue of the arc model and the weight for the 

normal arc are entered by the arcWeightIn variable of the transition model. This variable 

can be set in the property dialog of the transition or by a modification equation (see 

T2P3 P4

T3P5 P6

T4P7 P8

T1P1 P2
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Section 6.1.3 and Example 6.5). The component model of read arcs has no parameters or 

modification possibilities. 

 
Figure 6.12: The component model of a test arc 

Example 6.5 

Figure 6.13 shows a Petri net in which the connection ሺܲ2 → ܶ1ሻ is a double arc (test and 

normal arc) and ሺܲ5 → ܶ2ሻ is also a double arc (inhibitor and normal arc). This is modeled by 

interposing the component models TA and IA between place and transition. The numbers 

within square brackets at the arcs are the indices of the connections followed by the weights 

for the normal arcs. The test values for test and inhibitor arcs are written below the TA and IA 

model, respectively. Then, the arcWeightIn variable of ܶ1 is the vector {3, 5, 8} and 

for ܶ2 it is {2.8, 1.2}. Additionally, testValue=7 for TA and testValue=1.75 for IA. 

This means that ܶ1 can only be activated when ܲ2 has more than 7 tokens and ܶ2 can only 

be activated when ܲ5 has less than 1.75 marks. In addition, 5 tokens are removed from ܲ2 

every time ܶ1 fires and 1.2 marks are removed from ܲ5 continuously in the time of firing ܶ2 

due to the fact that both arcs are double arcs. 

 
Figure 6.13: A Petri net with test and inhibitor arcs (Example 6.5) 

T1P1

arcType = 2

arcWeight = 0
maxSpeed = 0
prelimSpeed = 0
instSpeed = 0

activationenabling/
marking calculation

normalArc=no
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6.2 MODELING, SIMULATION, AND ANIMATION 

WITH DYMOLA 

To use the PNlib for graphical modeling, simulation, and animation of xHPNs an appropriate 

environment is needed. In this study, the tool Dymola version 7.4 is used. This section gives 

an introduction in the usage of the PNlib in combination with the Dymola tool. 

The main window of Dymola has two different operating modes: Modeling and Simulation. 

The buttons Modeling and Simulation in the lower right corner allow switching from one 

mode to the other (see Figure 6.14). 

 

Figure 6.14: The main window of Dymola with two modes: Modeling (top) and Simulation 
(bottom) 
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The main window in the Modeling mode is used to establish models and model components. 

It consists of a modeling area, a package browser (upper left), and a component browser 

(lower left). The package browser comprises open packages and displays them in a 

hierarchical structure. The model components can be drag from it to the diagram layer in 

order to construct a model. The component browser summarizes all components in a tree 

structure that are used in the model. With the button , the model can be viewed on the 

textual level and with the button , it is displayed in the diagram layer (see Figure 6.15). 

 
Figure 6.15: A Modelica model displayed in the diagram layer (top) and in the Modelica text 

layer (bottom) 
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Before an established model is simulated, it should be checked. This check is performed by 

clicking the button  and comprises several symbolic and syntactic tests to trap a lot of 

errors. If the check was successful, a message dialog appears to indicate that the requirements 

for a subsequent simulation are met. 

A successfully checked model can be translated and simulated by switching to the Simulation 

mode. A model is translated to C-code (see also Section 3.1.7) by clicking the button  and 

the button  performs the simulation and also the translation if it was not performed in 

advance. Dymola offers a wide range of setup possibilities to manipulate the simulation. The 

setup dialog appears by clicking the button . There, the start and stop time can be set and, 

additionally, an integration method out of 16 possibilities can be chosen, e.g. Dassl, Euler, 

Runge-Kutta. 

When the simulation has been performed successfully, the results can be displayed as plots. 

The variable browser on the left hand side shows all variables of the model to plot in a 

hierarchical structure (see Figure 6.14). Thereby, the variable t of the place model accesses 

the marking evolution over time. 

Another possibility to represent the simulation results of an xHPN model is an animation. 

Thereby, several settings can be made in the property dialog of the settings-box. These 

settings are global and, thus, affect all components of the Petri net model. Using the prefixes 

inner and outer (see Section 3.1.1), means that the settings are common to all Petri net 

components of a model. The settings-box provides the following display and animation 

options: 

 showPlaceName: displays the names of places, 

 showTransitionName: displays the names of transitions, 

 showDelay: displays the delays of discrete transitions, 

 showCapacity: displays the minimum and maximum capacities of places, 

 showWeightTIarc: displays the arc weights of test and inhibitor arcs, 

 animateMarking: animates the current marking in the places; the change of 

tokens/marks is displayed in the places during animation, 

 animatePlace: animates the color of places. Places change their degree of redness 

according to the amount of tokens/marks; thereby, the redness degree is scaled by the 

parameter scale from 0 to 100, 
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 antimateTransition: animates the color of transitions. Transitions change their color 

to yellow when they fire; thereby, discrete transitions blink yellow for specified time units 

(timeFire) while continuous transitions are yellow the entire time while firing, 

 animatePutFireTime: animates the putative firing time of stochastic transitions; the 

putative firing time is displayed under the transition during animation, 

 animateHazardFunc: animates the hazard function of stochastic transitions; the hazard 

function is displayed under the transition during animation, 

 animateSpeed: animates the instantaneous speed of continuous transitions; the 

instantaneous speed is displayed under the transition during animation, 

 animateWeightTIarc: animates the weights of test and inhibitor arcs; the weights are 

displayed under the arc during animation, 

 animateTIarc: animates the color of test and inhibitor arcs; the arc is green when the 

weight is satisfied and red otherwise, 

The animation toolbar  allows control of the 

animation. An animation offers a way to analyze the marking evolutions of large and complex 

xHPNs. Figure 6.16 shows four selected points in time of the animation of an xHPN example. 
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Figure 6.16: Animation of an xHPN model 
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All display and animation options are realized with the DynamicSelect annotation. The first 

argument specifies the value of the editing state and the second argument the value of the 

non-editing state (Modelica Association 2010). 

 

6.3 CONNECTION BETWEEN DYMOLA AND 

MATLAB/SIMULINK 

To simulate the established Modelica model several times with different parameter settings 

and use the arising simulation results for parameter estimation, sensitivity analysis, 

deterministic and stochastic hybrid simulation, or process optimization (see Chapter 4), the 

Modelica models in Dymola are connected to Matlab/Simulink. This is realized with the aid 

of a Dymola interface in Simulink and a set of Matlab m-files utilities (Dassault Systèmes AB 

2011). After some specific paths are set in Matlab (see Dassault Systèmes AB 2011 for a 

detailed description), the Dymola interface can be found in the Simulink library browser and 

dragged to Simulink models. The connection process is performed using the following steps: 

1. Construct an arbitrary Modelica model, for example, an xHPN with the PNlib. All 

variables whose values should be available in Matlab have to be declared with the prefix 

output on the highest level. If the marking of a place is needed for subsequent analyses, 

this is achieved by creating a connector of the output connector at the top of the place 

icon. In the case of discrete places it is an orange IntegerOutput connector and in the 

case of continuous places it is a blue RealOutput connector as displayed in Figure 6.17; 

both connectors are part of the Modelica standard library. In the example of Figure 6.18 

the markings of places ܲ1, ܲ3, ܲ5, and ܲ6 are available in Matlab. Similarly, all 

variables which are declared as input on the highest level in Modelica can be determined 

in Matlab/Simulink. 

2. Create a new Simulink model file and drag a DymolaBlock into it. 

3. Open the GUI by clicking on the DymolaBlock. Enter the name of the model and its path 

or click the button Select from Dymola if the model has just been opened in Dymola. 

annotation(Icon(...Text(...textString=DynamicSelect("%name", 
if showPlaceName==1 then "%name" else " ")),...)); 
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Figure 6.17: IntegerOutput (left) and RealOutput (right) connectors to access the marking 

of the places in Matlab/Simulink 

4. Compile the model by clicking the button Compile model. 

5. After successful compilation, all parameters and start values of the corresponding 

Modelica model are displayed in the GUI in a hierarchical structure. 

6. The parameters and start values can either be changed in the GUI or by specific functions 

called within an algorithmic procedure of an m-file. The following table contains the 

functions needed for loading and changing parameters and start values (Dassault 

Systèmes AB 2011). 

Table 6.4: Functions for loading and changing parameters in Matlab procedures (Dassault 
Systèmes AB 2011) 

Name Explanation 

loadsin Loads values from dsin.txt (or <modelname>.txt file). 

setParameterByName 
Sets parameters and start values using the name of the 
corresponding Modelica variable. 

setParametersFDsin 
Modifies the parameters and start values of a 
DymolaBlock. 

setfromdsin 

Sets parameters and initial conditions from values in 
dsin.txt (the same as Reset Parameters in the 
DymolaBlock GUI). Calls loaddsin followed by 
setParametersFDsin. 

7. For each variable declared as output in Modelica, a corresponding output port is added to 

the DymolaBlock. The names of these ports are those of the Modelica variables. The 

values of the output variables over time can be summarized in a matrix by connecting all 

ports to a bus creator (black bar in Figure 6.18) which is in turn connected to an Outport 

block. Similarly, for all input variables of the Modelica model, a corresponding input port 

is added to the DymolaBlock. These input ports can be, for example, connected to 

external signal sources. 

8. Simulate the Simulink model either with the Simulink GUI or by the prompt 

[t,x,y] = sim(model,timespan,options,ut) 

within Matlab procedures (see Matlab help for a detailed description). 
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9. The arising simulation results can be used for further calculations (parameter estimation, 

sensitivity analysis, stochastic simulation, and process optimization). 

 
Figure 6.18: By the Simulink interface DymolaBlock, a connection between Dymola and 

Matlab/Simulink can be established 

The general procedure of a Matlab algorithm which performs several simulations with 

different parameter settings and uses the arising results for further calculation is outlined in 

Figure 6.19.  

 
Figure 6.19: General procedure of a Matlab algorithm which performs several simulations 

with different parameter settings and uses the results for further calculations 
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6.4 PETRI NET LIBRARY FOR PROCESS MODELING 

OF BIOLOGICAL SYSTEMS 

Based on the PNlib, a library specifically adapted for modeling biological systems has been 

developed, called PNproBio (Petri Nets for process modeling of Biological systems). This 

library comprises so-called wrappers to simplify the modeling process. These wrappers are 

sub-models consisting of connected component models of the PNlib which represent specific 

biological processes and reactions. With this procedure, a wrapped xHPN model can be 

reused several times in the same or in different models which offers on the one hand an easy-

to-use model at the top level with an intuitive and familiar adapted biological view and on the 

other the flexibility and generality of the xHPN concept at a lower level. 

The PNproBio library is further divided into the following sub-libraries: 

 Kinetics: comprises continuous transitions with mass action kinetics, Michaelis-Menten 

kinetics, or enzyme inhibition kinetics as maximum speed functions, 

 Stochastic: comprises stochastic transitions with stochastic mass action kinetics or 

stochastic level kinetics as hazard function in order to perform stochastic simulations (see 

Section 5.5), 

 CellGrowth: comprises sub-models for modeling growth with and without inhibition 

mechanisms, 

 CellDeath: comprises sub-models for modeling death of organisms, 

 SubstrateUptake: comprises sub-models for modeling the uptake of a substrate of an 

organism from the environment, 

 ProductFormation: comprises sub-models for modeling the product formation of an 

organism, 

 Process: comprises sub-models for modeling activation or inhibition mechanisms of 

processes or reactions, 

 Fermenter: comprises sub-models for modeling fermentation processes, 

 OddAndEnds: Several sub-models that are needed within different kinds of models. 

An example of a wrapping process is depicted in Figure 6.20. The wrapper ܴ1 represents the 

Monod kinetics which models the growth of cells limited by a substrate. It consists of one 

continuous transition with the Monod kinetics 
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ߤ ⋅ ܺ௩ ൌ
௫ܵߤ
ܵ  ௦ܭ

⋅ ܺ௩ Eq. 6-1

as maximum speed function, whereby ߤ௫	 is the maximum specific growth rate, ܭ௦ is the 

substrate concentration at half maximum rate, ܵ is the concentration of the limited substrate, 

and ܺ௩ is the concentration of living cells. The limited substrate glutamine is modeled by the 

place ݈݊ܩ. This place is connected to the upper input port of the Monod kinetics wrapper and 

the place ܺݒ which represents the living cell concentration is connected to the upper output 

port. Other non-limited substrates which are needed for growth are connected to the lower 

input port and similar by-products which arise during growth are connected to the lower 

output port. In this example, these are glucose and lactate which are represented by the places 

 respectively. The arc weights are coefficients which represent the yield of cells ,ܿܽܮ and ݈ܿܩ

and by-products from the substrates. The wrapping of the Monod kinetics means that only the 

two parameters ߤ௫ and ܭ௦ have to be entered instead of the entire maximum speed function 

each time. 

 
Figure 6.20: Wrapping process of the Monod kinetics 

Figure 6.21 shows the wrapper for activating a process. The reaction ܴ1 proceeds first when 

the marking of ܫ becomes less than the activation value of 10. Behind the wrapper is a Petri 

net model that connects ܫ to a discrete transition via an inhibitor arc. When the marking of ܫ 

falls below 10, one token is added to the discrete Place ܲ1. ܲ1 is connected to the continuous 

transition via a test arc with the test value one. This causes that ܶ2 becomes firable at the time 
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when ܲ1 gets the token and remains firable regardless of whether the activation value is 

exceeded or not. 

Furthermore, a fermentation process can be modeled with the aid of the wrappers summarized 

in the Fermenter sub-library. Figure 6.22 (a) shows an example of a fermentation model. It is 

comprised of a red fermenter wrapper to determine the operation mode, and specific 

continuous places - displayed with a red margin - to consider the volume change during 

fermentation if repeated batch, fed batch, or continuous feeding is applied as the feeding 

strategy. 

 
Figure 6.21: Wrapper for process activation; the reaction ࡾ proceeds first when the 

marking of ࡵ becomes less than 10 

The fermenter wrapper offers the possibility to model the following operation modes, 

whereby the parameter Vstart is the start volume of the fermenter (see Figure 6.23): 

 Batch: No additional substrate is added during the fermentation process, 

 Repeated Batch fixed interval: A volume (Vin) with specific substrate concentrations 

(Sin) is added to the fermenter at fixed time steps (deltaT) starting at a determined point 

in time (feedStartTime) and stopping when the fermenter reaches the maximum 

capacity (Vmax), 

 Repeated Batch fixed feeding number: A volume (Vin) with specific substrate 

concentrations (Sin) is added to the fermenter at n fixed points in time (feedingTimes); 

thereby, the feeding concentrations can be different at each feeding time, 
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 Fed Batch: A volume is added to the fermenter continuously with the substrate 

concentration Sin and the flow rate Fin starting from a determined point in time 

(feedStartTime) until the fermenter reaches the maximum capacity (Vmax); hence, the 

volume ሺܸሻ changes by the differential equation 
ௗ

ௗ௧
ൌ  ,ܨ

 Continuous: A volume is added to the fermenter continuously with the substrate 

concentration Sin and the flow rate Fin and it is also taken away continuously with the 

flow rate Fout starting from a determined point in time (feedStartTime); hence, the 

volume changes by the differential equation 
ௗ

ௗ௧
ൌ ܨ െ  ௨௧. Usually, equal input andܨ

output flows are chosen ሺܨ ൌ  ௨௧ሻ so thatܨ
ௗ

ௗ௧
ൌ 0. 

The sub-model of the fermenter is displayed in Figure 6.22 (b). If a (discrete) repeated batch 

mode is chosen, the discrete transition ܶ1 fires by adding Vin marks to the volume place V 

and 

Sin*Vin/(V.t+Vin) 

to the connected substrate places at specified points in time while the continuous transition 

fires with the maximum speed Fin in the case of fed batch or continuous mode. Thereby, the 

weight of the arc to the volume place is one and the arc weights of the substrate places are 

determined by 

Sin/V.t. 

 
Figure 6.22: Modeling a fermentation process with the wrappers of the Fermenter sub-

library: (a) an example of a fermentation model, (b) the fermenter wrapper, and 
(c) the fermenter place wrapper 
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Furthermore, a modified continuous place is needed to model fermentation processes due to 

the fact that the concentrations of the regarded substances change by changing the volume. 

This wrapper is depicted in Figure 6.22 (c). In the case of repeated batch, the discrete 

transition ܶ1 removes 

P1.t*Vin/(V.t+Vin) 

marks from the place at each feeding time and in the case of fed batch and continuous 

feeding, the continuous transition ܶ2 fires at the maximum speed 

Fin/V.t*P1.t 

to adapt the concentration to the current fermenter volume. The prefixes inner and outer 

are used to make the marking of the volume place (V.t), the volume addition (Vin), the flow 

rate (Fin), and the applied operation mode (mode) available in the modified place model and 

in this manner perform the respective adaptations. Figure 6.22 shows the simulation results of 

a repeated batch experiment. Thereby, 1	݈ volume with a glucose concentration of 15	݃/݈ is 

added to the fermenter every 0.80 days starting at day 4.8 and stopping when the maximum 

volume of 5	݈ is reached. 

 
Figure 6.23: Possible operation modes of a fermenter: (a) batch, (b) repeated batch, (c) fed-

batch, and (d) continuous mode 

Moreover, to simplify the stochastic modeling process of biochemical reactions, two wrappers 

have been implemented which can be found in the sub-library Stochastic of the PNproBio 

library. Both wrappers consist of a stochastic transition with a specific hazard function so that 

only the rate constants have to be entered instead of the whole function each time. The 

putative firing time of the wrapper StochasticMassAction is generated by using the 

stochastic mass action hazard function in Eq. 5-19 while the wrapper StochasticLevel uses 

the stochastic level hazard function in Eq. 5-20. The values for the maximum concentration ܯ 

and the amount of levels ܰ  1 can be determined globally in the Settings-component and the 

parameter ܰ can also be defined locally in the place components. 
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6.5 TOOL FOR THE ANALYSIS OF MODELICA MODELS 

In addition to the Modelica libraries PNlib and PNproBio, a Matlab-tool, called AMMod 

(Analysis of Modelica Models), has been implemented to realize the following steps of the 

modeling process: 

 Preprocessing and Relationship Analysis (PRA, Section 5.1), 

 Parameter Estimation (PE, Section 5.3), 

 Sensitivity Analysis (SA, Section 5.4), 

 Deterministic and Stochastic Hybrid Simulation (DHS, SHS, Section 5.5), 

 Model Predictions (MP, Section 5.6), and 

 Process Optimization (PO, Section 5.7). 

Figure 6.24 again shows the developed modeling process of Section 5 but now with a 

concrete assignment of the modeling steps to the tools. Orange-marked steps are performed 

with the AMMod-tool in Matlab/Simulink and green-marked steps are accomplished by the 

Modelica-tool Dymola and the Modelica libraries PNlib and PNproBio. The deterministic 

hybrid simulation is marked by both colors to indicate that it can be performed with both 

tools. 

At first, the Modelica model has to be constructed in Dymola either graphically with the aid 

of PNlib and PNproBio or textually with a system of discrete, differential, and algebraic 

equations. Afterwards, the model has to be connected to Matlab/Simulink with the Dymola 

interface as described in Section 6.3 to perform one of the analysis methods above. The 

analysis methods can be chosen from the main menu of the AMMod-tool: 

 PRA: Preprocessing and Relationship Analysis, 

 PESA: Parameter Estimation and Sensitiviy Analysis of structure parameters, 

 DHS: Deterministic Hybrid Simulation, 

 SHS: Stochastic Hybrid Simulation, and 

 POSA: Process Optimization and Sensitivity Analysis of process parameters. 

If PRA is selected, the GUI of the curve fitting toolbox of Matlab appears and experimental 

data can be preprocessed by smoothing splines and relationships between biological 

compounds can be analyzed as described in Section 5.1 (see Appendix A3-1 for more details). 
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Figure 6.24: The modeling process of Figure 5.1 with the assignment of the modeling steps to 

the developed tools. Orange-marked steps are performed with AMMod in 
Matlab/Simulink and green-marked steps are performed with the Modelica-tool 
Dymola and PNlib/PNproBio 



6.5 Tool for the Analysis of Modelica Models 201 

 

The PESA option offers the possibility to perform the estimation and sensitivity analysis of 

structure parameters to adapt the model as good as possible to the experimental data. 

Therefore, the experimental data has to be prepared in an Excel map and several settings have 

to be made on the PESA GUI as described in Appendix A3-2. The results of PE and SA are 

saved in a .mat-file. 

The DHS option offers the possibility to perform a deterministic hybrid simulation of the 

Modelica model in Matlab/Simulink while the SHS option executes a stochastic hybrid 

simulation as described in Section 5.5. For both methods the path of the Simulink model, the 

name of the Dymola block, and the path of the input file have to be entered into the GUI. 

Additionally, the start time, the stop time, and the step size can be chosen. Afterwards, the 

model parameters can be loaded into the GUI to adapt them for the simulation. The SHS 

requires also a determination of the number of simulation runs and the number of means that 

have to be calculated from the simulation data. The model outputs to plot can then be 

selected, and plotted by clicking plot. The simulation results are saved in a .mat-file. 

The last option on the AMMod main menu is to perform a process optimization and 

sensitivity analysis of process parameters (POSA) as described in Section 5.7. Therefore, the 

same optimization and sensitivity analysis methods can be applied as mentioned for the PESA 

option (see Appendix A3-2). The aim of PO can either be to minimize or to maximize one 

output of the model. This model output is determined by entering the number of its output 

port at the Dymola block. The port ܲ1_ݐ in Figure 6.18, for example, has the number 1 and 

the port ܲ6_ݐ the number 3. Furthermore, time can be integrated to the objective function due 

to the fact that it usually correlates with the cost of the process. Thus, the objective functions 

in Eq. 5-24 and Eq. 5-25 are possible. After the model inputs have been set, the model 

parameters can be loaded into the GUI and the process parameters can be selected. 

The application of the AMMod tool is described exemplarily in Chapter 7 by modeling the 

xanthan production of Xanthomonas campestris bacteria. 
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6.6 COMPARISON TO OTHER PETRI NET TOOLS 

The following table summarizes the advantages of the PNlib towards the existing tools 

mentioned in Chapter 2 and clarifies the demand of developing a new Petri net simulation 

environment for biological applications. 

Table 6.5: Comparison of the other Petri nets tools mention in Chapter 2 and the new Petri 
net simulation environment (PNlib, PNproBio, AMMod) 

Drawbacks of other Petri net tools 
presented in Chapter 2 

New environment: PNlib, PNproBio, 
AMMod 

The underlying formalism is partly 
 not defined precisely, 
 not common, or 
 not completely. 

The xHPN and the xHPNbio formalism (see 
Definition 4.68, Definition 5.1) have been 
developed which can represent nearly all 
kinds of biological processes and serve as 
specification for the implementation of the 
PNlib. 

The definitions of processes essential for 
simulation are partly 
 not common, 
 not precise enough, 
 not complete enough to cover all 

possible conflict situations that could 
occur during simulation. 

All processes have been defined precisely in 
Chapter 4 and all possible conflict situations 
which could occur during simulation of an 
xHPN are trapped. Hence, the simulation 
yields reliable results. 

The possibilities for post-processing 
simulation results are limited. 

The connection to Matlab/Simulink, 
described in Section 6.3 , enables using the 
whole power of Matlab for post-processing 
simulation results. Several mathematical 
methods have been already implemented and 
summarized in the tool AMMod. 

Partly, there is no graphical user interface 
and no animation possibilities. 

The Modelica tool Dymola provides a user-
friendly graphical user interface for modeling 
with the libraries PNlib and PNproBio (see 
Section 6.2). The models can either be 
established graphically or textually. If the 
model is constructed graphically, the textual 
description is generated automatically. 
Additionally, the models can be animated 
which can be controlled using several 
settings (see Section 6.2). Furthermore, the 
PNlib can be easily integrated into any other 
network modeling tool; the biological 
network modeling tool VANESA already 
uses the PNlib for simulation biological 
networks (see Section 8). 
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Partly, no hierarchically modeling is 
supported and the number of predefined 
biological components is limited. 

The library PNproBio is based on the PNlib 
and provides several wrappers which 
represent specific biological processes and 
reactions. These sub-models can be reused 
several times in the same or in different 
models which offers on the one hand an 
easy-to-use model at the top level with an 
intuitive and familiar adapted biological view 
and on the other the flexibility and generality 
of the xHPN concept at a lower level (see 
Section 6.4). 

Partly, no object-oriented modeling concept 
is used. 

The object-oriented modeling concept by 
means of discrete, differential, and algebraic 
equations allows an easy way to maintain, 
extend, and modify the components of the 
PNlib (see Section 6.1). 

Partly, the solvers and the corresponding 
settings are not changeable or not common. 

The hybrid simulation is performed by using 
the Dymola-tool which comprises several 
possibilities to adapt the solver settings in 
order to achieve reliable simulation results 
(see Section 6.2). 
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7 APPLICATION 

The modeling process described in Section 5 and depicted in Figure 6.24 as well as the 

application of the tools developed in this work, PNlib, PNproBio, and AMMod, is 

demonstrated exemplarily by the xanthan production of Xanthomonas campestris bacteria. 

Hereby, this chapter focuses on describing the general procedure of modeling and not on the 

selected example. Hence, no new insights about the bacteria and the xanthan production are 

presented due to using pseudo experimental data; but rather the usage of the developed 

environment is shown as well as the power and permit is proven. 

The next sections are structured according to the steps of the modeling process in Figure 6.24. 

At first, the considered biological phenomena - the xanthan production of Xanthomonas 

campestris bacteria – is presented which founds the first step of the modeling process. 

Afterwards in step 2, known experiments and results concerning influence factors on growth 

and xanthan production are introduced. Additionally, known model approaches for growth 

and xanthan production are presented. To show that the methods work and no other side 

effects cause success or failure, pseudo experimental data generated by simulation have been 

used instead of real data from a wet lab. Based on the facts from literature, model hypotheses 

are formulated which should be represented by the models (step 3). Step 4, the procedure of 

preprocessing experimental data and relationship analysis, is performed by pseudo 

experimental data as previously mentioned in order to construct a simple unstructured model 

(step 5). Parameter estimation and sensitivity analysis – step 6 - are shown by a previously 

created unstructured model. The process optimization procedure – step 9 - is described by an 

already parameterized and verified metabolically structured model. Furthermore, all 

optimization methods introduced in Section 3.2 are applied for parameter estimation and 

process optimization to compare the performance and goodness of the achieved solutions. 

Finally, a chemically structured model has been established to perform deterministic and 

stochastic hybrid simulations which is step 7 of the developed modeling process. 
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7.1 STEP 1: BIOLOGICAL PHENOMENA 

The Xanthomonas campestris species are gram-negative, aerobe proteobacteria which are rod 

shaped with a size of 0.2 െ 0.6 ൈ 0.8 െ  The genome contains typically 5 million base .݉ߤ	2.9

pairs (Vorhölter et al. 2008). Xanthomonas campestris bacteria are plant-pathogen. They harm 

more than 400 different kinds of plants and a further classification can be made into different 

pathovars based on the type of host plant which they attack (Sieber et al. 2006). Xanthomonas 

campestris pv. campestris, for example, infects crucifer plants like cabbage and cauliflower 

and causes the black rot disease. 

Besides the plant-pathogenicity, Xanthomonas campestris cells produce the 

exopolysaccharide xanthan. Xanthan is widely used in industry for a number of reasons 

which include its pseudo plastic properties, i.e. xanthan solutions are very viscos but the 

viscosity decreases with increasing shear rate. It is used as a thickening agent, emulsifier, and 

stabilizer. In the 1980s xanthan was allowed as a food additive and assigned with the E 

number E-415. It is now an ingredient in many food products such as salad dressings, syrups, 

toppings, relishes, sauces, baked goods, and frozen foods. Besides, xanthan is used for 

pharmaceuticals such as creams and suspensions as well as for cosmetic products such as 

dentures, cleaners, shampoos, and lotions. Additionally, an important application of xanthan 

is in the petroleum industry; there, it is used in drilling fluids and in enhanced oil recovery 

processes (Garcia-Ochoa et al. 2000). 

 
Figure 7.1: Factors that influence Xanthomonas campestris cell growth and xanthan 

production during the fermentation process 
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Several factors influence the growth of Xanthomonas campestris bacteria and their xanthan 

production during the fermentation process. Some of them are depicted in Figure 7.1. Within 

this study, a model has been established which can predict and optimize growth and xanthan 

production subject to the input factors: carbon source, nitrogen source, operation mode of the 

bioreactor, and temperature. The model is based on known phenomena from literature which 

are detailed hereafter. The predictions and suggested optimized input factors have to be 

validated by wet-lab experiments in future projects (see Chapter 8). 

7.2 STEP 2: EXPERIMENTAL DATA AND PRIOR 

KNOWLEDGE 

The beginning of every modeling process is founded by extensive investigation into the 

studied organism and the corresponding processes. The question is asked: Which factors 

influences growth and xanthan production of Xanthomonas campestris bacteria? And in 

addition: Are there already any models available? The results of this literature study are 

presented hereafter. 

To show that the methods work and no other side effects cause success or failure, pseudo 

experimental data generated by simulation have been used instead of real data from a wet lab. 

7.2.1 INFLUENCE FACTORS ON GROWTH AND XANTHAN 

PRODUCTION 

The model should include the influence of the factors: carbon and nitrogen source (C/N ratio), 

viscosity, operation mode of the fermenter, and temperature. The proposed results of 

experiments in this juncture are summarized in this section. 

CARBON SOURCE 

Several authors have studied the influence of different carbon sources and different initial 

concentrations on growth and xanthan production. Souw and Demain suggested that glucose 
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and sucrose are best for xanthan production with an initial concentration of 40	݃/݈ (Souw and 

Demain 1979). 

Leela and Sharma tested various types of sugars and obtained a maximum xanthan yield with 

glucose, sucrose, maltose, and starch (Leela and Sharma 2000). All these sugars were good 

enough for xanthan production but using glucose a slightly higher amount of xanthan was 

produced. 

Funahashi et al. showed inhibition of growth and cessation of xanthan production in initial 

glucose concentrations greater than 50	݃/݈ (Funahashi et al. 1987). This inhibition 

phenomenon was also verified by experiments done by (Amanullah et al. 1998). Additionally, 

Lo et al. pointed out that the specific growth rate and the cell yield from glucose are decreased 

as glucose concentration is increased (Lo et al. 1997). On the hand, higher glucose 

concentrations yielded a higher final xanthan concentration and, in addition, the xanthan yield 

from glucose and the specific xanthan production rate were also increased. Moraine and 

Rogovin detected no effect on the cell growth rate by varying the initial glucose concentration 

in the range of 5	݃/݈ to 50	݃/݈ (Moraine and Rogovin 1973). 

NITROGEN SOURCE 

Furthermore, the influence of the nitrogen source on growth and xanthan production was 

investigated by several authors. Souw and Demain showed that high nitrogen concentrations 

inhibit xanthan production and stimulate growth and that the xanthan production is better with 

nitrogen limitation (Souw and Demain 1979). These results are verified by the experiments of 

Lo et al. which indicate that higher nitrogen concentrations give higher cell yields and specific 

growth rates but lower xanthan yields and specific xanthan production rates (Lo et al. 1997). 

They also found that the specific xanthan production rate depends on the initial glucose 

concentration. 

C/N RATIO 

Moreover, the effects of the carbon to nitrogen ratio (C/N ratio) are often studied. Lo et al. 

showed that the xanthan yield and the specific production rate increased with increasing C/N 

ratio while the cell yield and the specific growth rate decreased (Lo et al. 1997). Tait et al. 

also achieved a greater xanthan production in media which contained higher C/N ratios (Tait 
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et al. 1986). Roseiro et al. reached a maximal xanthan production in nitrogen limitation at a 

C/N ratio of 23 (Roseiro et al. 1992). 

VISCOSITY 

Moraine and Rogovin showed that growth stops when the viscosity reached 2	ܲܽ	ݏ (Moraine 

and Rogovin 1973). They assumed that possibly a stagnant slime layer builds up around the 

cells as viscosity increases which causes resistance to the transport of nitrogen into cells to 

decrease and restrict the growth. Higher concentrations of nitrogen permits growth at higher 

viscosities due to the increased driving force for transporting nitrogen into the cells. 

Additionally, they observed a decline of the specific product formation rate at high viscosities 

which can also be most likely explained by a slime layer around the cells. The layer could 

also restrict the rate of diffusion of nutrients into the cell; perhaps, it also controls a xanthan 

synthesis feedback mechanism. Increased shear may enhance its removal and improve the 

production rate. 

OPERATION MODE 

To avoid inhibition effects and enhance xanthan concentrations repeated batch, fed-batch, and 

continuous operation modes were proposed. Lo et al. studied batch and fed-batch cultures 

with best results for a two-stage batch fermentation with a low C/N ratio in the first stage and 

a high C/N ratio in the second stage. Thereby, the second stage begins at the end of the 

exponential growth phase (Lo et al. 1997). In such a manner, a fast cell growth is achieved 

during the exponential phase due to the low C/N ratio with a moderate nitrogen concentration 

and the high C/N ratio in the second stage causes an enhanced xanthan production. They also 

performed fed-batch fermentations in which additional glucose was added in five equal parts 

during the stationary phase so that the C/N ratio was kept low throughout the fermentation. 

Due to the low C/N ratio the xanthan production was poor even through cells grew well in the 

growth phase. 

Funahashi et al. suggested controlling the glucose concentration at 30 െ 40݃ ݇݃⁄ broth by 

intermittent additions of glucose to prevent inhibition of cell growth and cessation of xanthan 

production (Funahashi et al. 1987). 
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Vuyst et al. replaced the conventional fermentation process - a growth phase is followed by a 

xanthan production phase - by a two-step process (Vuyst et al. 1987). The two-step process 

comprises an initial biomass production step followed by a xanthan formation step which 

requires a high C/N ratio and higher aeration and agitation levels. The optimal time for 

changing from one step to the other is critical and occurred at 25 െ 30	݄ after inoculation. At 

this time, the content of one biomass production fermenter could be apportioned up to 10 

xanthan production fermenter. 

Amanullah et al. compared the biological performance of three fed-batch cultures, two-step 

glucose addition, multiple-step glucose addition, and continuous glucose addition, with two 

batch cultures with different initial glucose concentrations (Amanullah et al. 1998). They 

showed that the performance cannot be improved by increasing the initial glucose 

concentration above 50	݃/݈ nor by an intial glucose concentration of 40	݃/݈ followed by a 

single glucose addition of 10	݃/݈ while nitrogen is still present. However, when the nitrogen 

is exhausted, the two-step glucose addition and the continuous feeding strategy can enhance 

the performance compared to batch fermentations. 

TEMPERATURE 

Shu and Yang studied the influence of temperature on cell growth and xanthan formation. 

They found that higher temperatures lead to xanthan biosynthesis while lower temperatures 

favor cell growth (Shu and Yang 1991). Due to the fact that the optimum temperatures for cell 

growth and xanthan production are not the same, they suggest a two-stage fermentation with a 

temperature shift from 27°C to 32°C. Both xanthan yield and production rate were improved 

by this type of fermentation. 

7.2.2 MODELING OF GROWTH AND XANTHAN PRODUCTION 

Several kinetic models have been proposed to model Xanthomonas campestris growth and 

xanthan production. These models can be divided into structured and unstructured models as 

mentioned in Section 5.2. 
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UNSTRUCTURED MODELS 

At first, unstructured models should be considered which describe the bacteria as a black box 

and are used most frequently according to their simplicity and technical robustness. These 

models represent at least the evolution of biomass, carbon, and xanthan over time and often 

the development of the nitrogen source is included, too. 

Moraine and Rogovin proposed an unstructured model for the xanthan production which takes 

the dependencies of growth and production on nutrients into account (Moraine and Rogovin 

1966). In addition, Moraine and Rogovin proposed using the logistic equation to describe 

growth when the limited nutrient is not known 

݀ܺ
ݐ݀

ൌ ௫ܺߤ ൬1 െ
ܺ

ܺ௫
൰, Eq. 7-1 

whereby ܺ is the biomass concentration, ߤ௫ is the maximum growth rate, and ܺ௫ is the 

maximum biomass concentration. 

Subsequently, Weiss and Ollis proposed a model which only depends on biomass 

concentration and its evolution over time (Weiss and Ollis 1980). Thereby, the growth is 

described by the logistic in Eq. 7-1 and the product formation is expressed by the Luedeking-

Piret equation. The Luedeking-Piret equation models the production formation dependent on 

the current biomass concentration ሺܺሻ and growth ቀௗ
ௗ௧
ቁ in a linear fashion 

݀ܲ
ݐ݀

ൌ ߙ
݀ܺ
ݐ݀

 ߚ ܺ, Eq. 7-2 

where ܲ is the xanthan concentration and ߙ and ߚ are empirical constants which vary with 

fermentation conditions (pH, temperature, etc.). Hence, the term ߙ ௗ

ௗ௧
 represents the growth 

associated part of the product formation and ߚ	ܺ the non-growth associated part. The 

convenience of this model is that ߚ can be estimated from stationary phase data ቀௗ
ௗ௧
ൌ 0ቁ and 

the parameter ߙ can be fit throughout the early exponential phase. Weiss and Ollis assumed 

that xanthan production is both growth and non-growth associated ሺߙ ് 0, ߚ ് 0ሻ. 

Pinches and Pallent also modeled the growth with the logistic equation in Eq. 7-1 and showed 

independence of the parameter ߤ௫ on the initial nitrogen concentration (Pinches and Pallent 

1986). Product formation and substrate consumption are expressed by the Luedeking-Piret 

equation. Additionally, they added an equation for oxygen consumption which depends also 

on biomass and growth. 
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Quinlan pointed out that the use of the Luedeking-Piret equation for modeling xanthan 

production has the serious weakness that it neither explicitly nor implicitly depends on the 

substrate concentration (Quinlan 1986). This can be avoided by expressing the quasi-

stoichiometric relationship between xanthan production and glucose consumption by the 

following differential equation 

݀ܲ
ݐ݀

ൌ ݇ ⋅ ܵ ⋅ ܺ,
Eq. 7-3

where ܵ is the glucose concentration and the rate constant ݇ varies with physicochemical 

variables such as temperature, pH, dissolved oxygen, and stirring speed. In addition, they 

found a quasi-stoichiometric relationship between produced biomass and consumed nitrogen. 

Shu and Yang integrated the effect of temperature on xanthan production and growth into 

their model (Shu and Yang 1991). They modeled the growth with the logistic equation in 

Eq. 7-1 and found that the parameter ߤ௫ is highly dependent on temperature. They 

expressed this temperature effect by the root-square model 

௫ሺܶሻߤ ൌ ൛ܥଵሺܶ െ ܶሻൣ1 െ ଶሺܶܥ൫ݔ݁ െ ܶ௫ሻ൯൧ൟ
ଶ
. Eq. 7-4 

Xanthan production and glucose consumption are represented by the Luedeking-Piret model. 

The growth associated parameters were also modeled by the root-square model. The non-

growth associated parameters were found to follow temperature dependency according to the 

Arrhenius law 

ሺܶሻߚ ൌ ܽ ݔ݁ ൬െ
ܧ

ܴ ⋅ ܶ
൰ Eq. 7-5 

Garía-Ochoa et al. mentioned that an unstructured kinetic model for describing xanthan 

production has to take into account biomass evolution as a function of the nitrogen source as 

it is a limiting nutrient (Garía-Ochoa et al. 1995). They showed in experiments that growth 

stops when nitrogen is exhausted and, therefore, they proposed the following modified 

logistic equation 

݀ܺ
ݐ݀

ൌ ௫ߤ ቆ
ܺ

ܻே
 ܰቇܺ ൬1 െ

ܺ
ܺ  ܻேܰ൰,

Eq. 7-6 

where ܰ is the initial nitrogen concentration, ܺis the initial biomass concentration, and ܻே 

is the yield of biomass from nitrogen. Additionally, they added the following differential 

equation to describe the evolution of dissolved oxygen ሺܱଶሻ 
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, Eq. 7-7 

where ܱଶ
∗ is the saturated value of the dissolved oxygen and ݉ை is the dissolved oxygen 

consumption coefficient. The equation includes a term for oxygen mass transfer and another 

for oxygen consumption for maintenance and growth. 

All these models do not include the observed inhibition effect of high substrate concentrations 

and viscosity on xanthan production and growth previously mentioned. To integrate these 

effects, Mulchandani et al. introduced the following modified form of the logistic equation in 

Eq. 7-1 (Mulchandani et al. 1988) 
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ቇ. Eq. 7-8 

The constant ߠ  0 could be defined as an index of inhibitory effect, i.e. for very large values 

of ߠ the growth will follow an exponential pattern and a value close to zero describes 

complete inhibition. This modified logistic equation provides a means to describe growth 

inhibition caused by heat and mass transfer problems due to increased viscosity. In order to 

also consider the availability of substrate, the authors proposed a combination of the Monod 

equation and the modified logistic equation in Eq. 7-8 
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where ܰ is the nitrogen concentration and ܭே is substrate concentration at half maximum 

speed. Furthermore, Luong and Mulchandani proposed a generalized form of the Monod 

kinetics to consider the inhibition effect of glucose on growth (Luong and Mulchandani 1988) 
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where ܵ௫	 is the maximum glucose concentration above which growth is completely 

inhibited. Furthermore, several kinetics for substrate inhibition of other organisms have been 

proposed. 
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STRUCTURED MODELS 

All mentioned unstructured kinetic models do not recognize the complex set of metabolic 

reactions which occur within the cell. Hence, they are not able to predict the dynamic 

behavior of cells when operational and external conditions are changed. Additionally, 

unstructured models can predict intracellular concentrations only if it is assumed that there is 

a constant fraction of the respective metabolite in the cell. Thus, their usage for understanding 

the cellular dynamics and the involved regulation mechanism is limited (Blanch and Clark 

1997). 

Structured kinetic models are needed to reveal the influence of process variables on kinetics 

and to offer a possibility to predict the behavior of the cell under different external conditions. 

Structured models can be divided according to (Garcia-Ochoa et al. 1998) into: 

1. Compartmental models: Biomass is modeled by dividing it into a set of compartments 

such as DNA, RNA, proteins, hydrocarbons, etc. 

2. Metabolically structured models: Growth is modeled unstructured but the carbon 

source metabolism in the cell is considered to describe the xanthan formation. 

3. Chemically structured models: Nitrogen and carbon source metabolisms in the cell are 

taken into account to describe growth and xanthan production. 

COMPARTMENTAL MODEL 

Garcia-Ochoa et al. proposed a compartmental structured model which describes the growth 

of Xanthomonas campestris bacteria by involving the influence of the initial nitrogen 

concentration (Garcia-Ochoa et al. 2004a). At first, they simplified the biomass pathway by 

lumping it into three different groups of macromolecules: DNA, RNA, and proteins. It is 

assumed that nitrogen is the limited substrate and other compounds that are necessary for 

growth, such carbon source and phosphate, are unlimited in availability. The ammonium 

metabolism is divided into non-forming bases amino acids synthesis and forming bases amino 

acids synthesis (see Figure 7.2). Based on the stoichiometric equations for this metabolic 

pathway, they proposed a model of differential equations. Thereby, the pseudo steady state is 

applied on forming bases amino acids and RNA୍ and the reactions ݎଵ, ,ଷݎ  ହareݎ ସ, andݎ

expressed by the second order power law and ݎଶ by the first order power law. 
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Figure 7.2: The simplified metabolic pathway for the components of biomass proposed by 
(Garcia-Ochoa et al. 2004a) 

METABOLICALLY STRUCTURED MODEL 

Pons et al. introduced a metabolically structured model which comprised an unstructured part 

in order to represent growth and a structured part to describe xanthan production, glucose 

consumption, and oxygen consumption according to a reaction network as a simplified 

scheme of the intracellular carbon metabolism (Pons et al. 1989). 

Thereby, the growth is modeled by the logistic equation in Eq. 7-1. The structured part is 

based on the metabolic network in Figure 7.3 which represents the xanthan synthesis and the 

total catabolism of glucose, i.e. Entner-Doudoroff pathway and tricarboxylic acid cycle. The 

stoichiometric equations are derived from this metabolic network and their analysis leads to 

several assumptions. 

Based on the model of Pons et al. and their corresponding assumptions, Garcia-Ochoa et al. 

developed a metabolically structured model with an unstructured part for growth described by 

Eq. 7-6 (Garcia-Ochoa et al. 1998). The stoichiometric relationships for total glucose 

catabolism, maintenance energy, and oxidative phosphorylation have been taken from (Pons 

et al. 1989) but the stoichiometry of xanthan production from glucose has been rearranged. 

Additionally, the authors pointed out some simplifications due to their observations. 

Furthermore, they studied the influence of temperature on the model parameters. Thereby, 

they expressed some parameters by the root-square model already mentioned in Eq. 7-4 and 

others were fitted to linear expressions. 
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Figure 7.3: Coupling between xanthan biosynthetic pathway and glucose metabolism of 

Xanthomonas campestris bacteria 

CHEMICALLY STRUCTURED MODEL 

Garcia-Ochoa et al. also combined the compartmental model with the metabolically structured 

model to a chemically structured model (Garcia-Ochoa et al. 2004b, Garcia-Ochoa et al. 

1996). This model considers the nitrogen metabolism for growth and the carbon metabolism 

for xanthan production. Figure 7.4 shows the assumed simplified reaction scheme. The 

coupling of the xanthan biosynthesis pathway and the glucose metabolism is displayed in 

Figure 7.3. The stoichiometric equations for the nine reactions are the same as the ones for the 

compartmental model and metabolically structured model as well as the kinetic equations and 

the model assumptions. 

The authors studied, in addition, the influence of initial nitrogen concentration and 

temperature on the model parameters. They found no relationships between the initial 
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nitrogen concentration and the model parameters and different relationships between the 

temperature and the model parameters: some parameters have a maximum, some parameters 

have a linear relationship, and the remaining do not change with temperature. The parameters 

with a maximum are described by the root-square model. 

ܪ,ܪܦܣܰ  0.5ܱ2
7ݎ
→ ܦܣܰ   2ܱܪ

2ܪܦܣܨ  0.5ܱ2 	
7ݎ
→ ܦܣܨ	   2ܱܪ

ܲܦܣ  ܲ݅
8ݎ
→ ܲܶܣ   2ܱܪ

ܲܶܣ  2ܱܪ
9ݎ
→ ܲܦܣ  ܲ݅ 

NH4
 

 
Figure 7.4: Simplified metabolic pathways for xanthan and biomass assumed by (Garcia-

Ochoa et al. 2004b) 

MODELING OF OXYGEN MASS TRANSFER COEFFICIENT AND 

VISCOSITY 

The introduced metabolically and chemically structured models as well as the unstructured 

model from (Garcia-Ochoa et al. 1995) involve the evolution of oxygen dependent on the 

oxygen mass transfer coefficient ݇ܽ. Garcia-Ochoa and Gomez. studied the influence of 

stirrer speed ሺܴሻ, superficial gas velocity ሺ ௦ܸሻ, and liquid effective viscosity ൫ߤ൯ on the 

oxygen transfer rate and found a correlation between these variables and the oxygen mass 

transfer coefficient (Garcia-Ochoa and Gomez 1998) 

where the constant ܥ depends on the geometry of the vessel and stirrer employed. Several 

approaches to model the viscosity ߤ have been proposed (see García-Ochoa et al. 2000, 

݇ܽ ൌ ܥ ⋅ ௦ܸ
ఈ ⋅ ܴఉ ⋅ ߤ

ఒ , Eq. 7-11 
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Marcotte et al. 2001, Speers and Tung 1986, Xuewu et al. 1996). Marcotte and others, for 

example, suggested expressing the viscosity dependent on xanthan concentration ܲ by the 

following three model equations (Marcotte et al. 2001) 

and the temperature dependency was described by the Arrhenius model 

where ܽ is the frequency factor, ܧ is the activation energy, and ܴ is the gas constant. 

7.3 STEP 3: MODEL HYPOTHESES 

The following table summarizes the hypotheses which should be represented partly by the 

established models. 

Table 7.1: Model hypotheses 

H1 Bacteria growth is limited by nitrogen. 

H2 High glucose concentrations inhibit growth. Growth is totally inhibited 
if the glucose concentration exceeds 50 g/l. 

H3 Xanthan production is partly growth associated. 

H4 High nitrogen concentrations inhibit xanthan production. The xanthan 
production is totally inhibited if the nitrogen concentration exceeds 
0.3 g/l. 

H5 Glucose and oxygen are used for maintenance processes. 

H6 The viscosity correlates with the xanthan concentration. 

H7 High viscosities inhibit growth. The growth is totally inhibited if the 
viscosity exceeds 2 Pa s. 

H8 Growth depends on temperature. 

H9 Xanthan production depends on temperature. 

ߤ ൌ ܽܲ Eq. 7-12 

ߤ ൌ ܽ ሺܾܲሻݔ݁ Eq. 7-13 

ߤ ൌ 1  ܽܲ  ܾܲଶ Eq. 7-14 

ߤ ൌ ܽ ݔ݁ ൬
ܧ

ܴ ⋅ ܶ
൰ Eq. 7-15 
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H10 Xanthan production is limited by oxygen. 

H11 Glucose is used for growth and xanthan production. 

H12 Nitrogen is used for growth. 

7.4 STEP 4 AND 5: PREPROCESSING AND 

RELATIONSHIP ANALYSIS 

Preprocessing of experimental data and the subsequent relationship analysis are the first steps 

of the modeling process after hypotheses have been formulated and the corresponding 

experiments have been completed (see Figure 6.24). The procedure is performed in this 

section for pseudo experimental data of a fermentation process of Xanthomonas campestris 

bacteria. Pseudo experimental data are data gained from simulations and not from the wet lab. 

In this manner, it can be shown that the methods work and no side effects influence success or 

failure. Thereby, the concentrations of glucose ሺܵሻ, nitrogen ሺܰሻ, xanthan ሺܲሻ, and biomass 

ሺܺሻ have been measured at several points in time. At first, the experimental data are 

preprocessed in Matlab by smoothing splines to get the development of the concentrations at 

each point in time and the corresponding derivatives with respect to time. Based on these 

results, the relationships can be studied with the purpose of establishing a simple unstructured 

model of the xanthan production. 

The RA is performed by the following four steps. 

Step 1: Relationship between growth rate ࣆ and substrates 

It is assumed that the increase of biomass can be described by the following differential 

equation 

Since all derivatives are approximated by smoothing splines in the preprocessing phase, the 

growth rate can be calculated by rearranging Eq. 7-16 

݀ܺ
ݐ݀

ൌ ߤ ⋅ ܺ. Eq. 7-16 

ߤ ൌ
1
ܺ
⋅
݀ܺ
ݐ݀

ൌ
݀ ݈݊ሺܺሻ

ݐ݀
. Eq. 7-17
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Thereby, it has to be preferred to take the derivative of the logarithmic biomass concentration 

evaluated by smoothing splines based on logarithmic measurements. In this manner, 

numerical difficulties due to small values of ܺ can be avoided. 

  

 
Figure 7.5: upper left: growth rate ሺࣆሻ versus nitrogen concentration ሺࡺሻ, upper right: the 

relationship between growth and nitrogen consumption, bottom: the relationship 
between growth and product formation over the whole fermentation time 

Furthermore, it assumed that nitrogen is the limited substrate because glucose is still available 

when the bacteria stop growing and nitrogen is exhausted at this time (H1, Table 7.1). The 

growth rate is plotted against the nitrogen concentration to identify a functional relationship 

(see Figure 7.5 upper left). The plot shows a nearly linear relationship which can be described 

either by 

or by Monod kinetics with a much higher Monod constant than the initial nitrogen 

concentration 

The smoothed data are fitted to both functions. Both functions reach good fittings with 

slightly better results for Monod kinetics so that the Monod kinetics is taken to describe the 

growth dependent on the nitrogen concentration. 

ߤ ൌ ݇ ⋅ ܰ Eq. 7-18 

ߤ ൌ
௫ߤ ⋅ ܰ
ேܭ  ܰ

. Eq. 7-19
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Step 2: Relationship between growth rate ࣆ and nitrogen consumption rate ࡺ 

It is assumed that there is a relationship between the growth rate and the consumption rate of 

nitrogen (H12, Table 7.1). To detect this relationship, the derivative of ܺ is plotted against the 

derivative of ܰ in the time of growth. This plot shows a linear correlation between the rates 

(see Figure 7.5 upper right). Hence, the nitrogen consumption rate and growth rate differ from 

each other only in a constant denoted by ܻே which is the yield of biomass from nitrogen. The 

value of this coefficient is estimated to 6.0745 g biomass/g nitrogen. 

Step 3: Production rate of xanthan 

It is assumed that the production of xanthan can be described with the Luedeking-Piret 

equation (H3, Table 7.1) 

with a growth associated term ߙ ௗ

ௗ௧
 and a non-growth associated term ߚ	ܺ. If the product 

formation is totally growth associated, then ߚ ൌ 0 and if it is totally independent from 

bacterial growth, then ߙ ൌ 0. The data shows that the production also continues when growth 

stops so that production is not totally growth associated, i.e. ߚ ് 0. On the other hand, if the 

production is totally non-growth associated, there will be a linear correlation between the 

change of xanthan and biomass over the whole fermentation time; but Figure 7.5 (bottom) 

shows clearly that no linear correlation exists, i.e. ߙ ് 0. 

At first, the coefficient ߚ is estimated from the xanthan data of the stationary phase when 

growth stops ሺ݀ܺ ⁄ݐ݀ ൌ 0ሻ because then Eq. 7-20 simplifies to 

When the assumption is true, xanthan has to increase linearly in the stationary phase, i.e. 

݀ܲ ⁄ݐ݀ ൌ  To consider this fact, the measurements are interpolated additionally with .ݐݏ݊ܿ

linear functions to avoid misadaption due to the curvature of the cubic smoothing splines. 

Then Eq. 7-21 leads to the constant value ߚ ൌ 0.2471. 

Afterwards, the value of the parameter ߙ can be obtained from data of the exponential growth 

phase by 

݀ܲ
ݐ݀

ൌ ߙ
݀ܺ
ݐ݀

 ߚ ܺ Eq. 7-20

݀ܲ
ݐ݀

ൌ 	ܺ	ߚ ⟺ ߚ ൌ
1

ܺ௫
⋅
݀ܲ
ݐ݀
. Eq. 7-21

ߙ ൌ

݀ܲ
ݐ݀ െ ܺߚ

݀ܺ
ݐ݀

ൌ 0.8023. Eq. 7-22
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Step 4: Glucose consumption rate 

It is assumed that glucose is used for growth and xanthan production and described by the 

following differential equation (H11, Table 7.1) 

To estimate the coefficients ܻௌ, yield of biomass from glucose, and ܻௌ, yield of xanthan 

from glucose, the differential equation is rearranged to 

Hence, the new parameters ܣ and ܤ can be determined in the same manner as described in 

step 3 for xanthan production due to the fact that Eq. 7-23 has been transformed to the 

Luedeking-Piret equation. Afterwards, the found values for ܣ and ܤ can be transformed back 

to the yield coefficients 

Based these results, a simple unstructured model for the xanthan production of Xanthomonas 

campestris bacteria can be established by means of the PNlib and the PNproBio in Dymola 

(see Figure 7.6). Thereby, glucose, nitrogen, xanthan, and biomass are modeled by continuous 

places, the growth is represented by the Monod wrapper of the PNproBio library (see 

Section 6.4), and the xanthan production is modeled by the Luedeking-Piret wrapper. The 

fermentation is performed in a batch-mode due to the fact that no additional feedings have 

been recognized in the experimental data. 

 
Figure 7.6: Simple unstructured model of the xanthan production of Xanthomonas campestris 

bacteria 

݀ܵ
ݐ݀

ൌ െ
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ܻௌ

݀ܺ
ݐ݀
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݀ܲ
ݐ݀

ൌ െ
1

ܻௌ
ܺߤ െ

1

ܻௌ
൬ߙ

݀ܺ
ݐ݀

 .൰ܺߚ Eq. 7-23

݀ܵ
ݐ݀

ൌ െ൬
1

ܻௌ


1

ܻௌ
൰ߙ

݀ܺ
ݐ݀

െ
1

ܻௌ
ܺߚ ൌ െܣ

݀ܺ
ݐ݀

െ .ܺܤ Eq. 7-24

ܻௌ ൌ
ߚ
ܤ
ൌ 0.7734

ܻௌ ൌ
ܻௌ

ܣ ܻௌ െ ߙ
ൌ 0.1692.

Eq. 7-25
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The parameters are set to the found values and the model is simulated. The results show a 

good agreement between the pseudo experimental data and simulation results. The error sum 

could be possibly reduced by parameter estimation using the Nelder-Mead simplex method 

with the found values as the starting point. A local method is applied due to the assumption 

that the found values are in the neighborhood of the global minimum. The error sum could be 

further reduced and nearly the same parameter values are found that are used for generating 

the pseudo experimental data. The relative errors between original and optimized parameters 

are negligible. 

7.5 STEP 6 UND 8: PARAMETER ESTIMATION AND 

SENSITIVITY ANALYSIS 

An unstructured model of the xanthan production of Xanthomonas campestris bacteria has 

been constructed by means of the PNlib and PNproBio. The model is depicted in Figure 7.7. It 

describes the evolution of glucose ሺܵሻ, nitrogen ሺܰሻ, oxygen ሺܱ2ሻ, xanthan ሺܲሻ, and biomass 

ሺܺሻ over time with the initial nitrogen concentration, the initial glucose concentration, the 

fermentation operation mode, the gas flow rate, the stirrer speed, and the temperature as input 

factors. The model has been established based on facts from literature summarized in 

Section 7.2. Several equations have been found in different papers in this literature study 

which can be now combined within a xHPNbio model. 

The growth is modeled by Monod kinetics with nitrogen as a limited substrate (H1, Table 7.1) 

combined with the term ሺ1 െ ܵ ܵ௫⁄ ሻ to express the inhibition phenomenon at high glucose 

concentrations (H2, Table 7.1); thereby, ܵ௫ ൌ 50. Besides nitrogen, glucose and oxygen 

are also consumed during growth. The growth is modeled by the wrapper ܴݔ (green box in 

Figure 7.7). 

The xanthan production is described by the Luedeking-Piret equation in Eq. 7-2 combined 

with the term ሺ1 െ ܰ ܰ௫⁄ ሻ to represent the observed inhibition effect on xanthan 

production at high nitrogen concentrations (H4, Table 7.1); thereby, ܰ௫ ൌ 0.3. This is 

modeled by the wrapper ܴ (grey box in Figure 7.7). Furthermore, glucose and oxygen are 

used for maintenance processes, (H5, Table 7.1) which are described by the wrappers ܴ݉ݏ 

and ܴ݉ (olive-green boxes in Figure 7.7). 
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The oxygen mass transfer is modeled by the continuous transition ܱܶ with the maximum 

speed function ݇ܽ ⋅ ሺܱଶ
∗ െ ܱଶሻ as previously mentioned in Eq. 7-7. Thereby, the oxygen 

mass transfer coefficient ݇ܽ is expressed by the equation Eq. 7-11 with ܥ ൌ 3.08 ⋅ 10ିଷ, 

ߙ ൌ ߚ ,0.43 ൌ 1.75, and ߣ ൌ െ0.39 as suggested in (García-Ochoa et al. 1995), and ܱଶ
∗ ൌ

0.0002. It is assumed that the viscosity correlates with xanthan concentration modeled by 

Eq. 7-12 with ܽ ൌ 0.08 and ܾ ൌ 0.3 (H6, Table 7.1). The fermentation is performed as a 

batch mode, i.e. glucose and nitrogen are added to the fermenter only at the beginning of the 

experiment. 

 
Figure 7.7: Unstructured model of xanthan production of Xanthomonas campestris bacteria 

The input factors which influence the parameters, such as stirrer speed, temperature, and gas 

flow, can be determined by selecting one of the input components (Constant, Step, Ramp, 

Steps, or conditional Steps) and connecting them with the Input wrapper. In this manner the 

stirrer speed, the temperature, and the gas flow rate can be accessed by Input.R, Input.T, 

and Input.Vs, respectively. The stirrer speed, for example, is necessary to calculate the 

oxygen mass transfer coefficient ݇ܽ and influences the oxygen mass transfer in the 

fermenter. 

To check the performance of PE and SA methods, five pseudo experimental data sets are 

generated by the unstructured model with different initial glucose ሺܵሻ and nitrogen 

concentrations ሺܰሻ (see Table 7.2) while stirrer speed, temperature, and gas flow rate are 

always the same. The stirrer speed begins with 3.3 rps and is increased in two steps to 9.2 rps, 

the temperature is a constant 28°C, and the gas flow rate is a constant 0.001 m/s. The initial 
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values of biomass, xanthan, and oxygen are 0.1 g/l, 0.1 g/l, and 0.00002 mol/l, respectively. 

The data sets are listed in Table A6 - Table A10 (Appendix A4-1). 

Table 7.2: Initial nitrogen and glucose concentrations for generating five pseudo 
experimental data sets 

Run ࡺ ࡿ 

1 0.13 g/l 35 g/l
2 0.25 g/l 30 g/l
3 0.28 g/l 45 g/l
4 0.28 g/l 20 g/l
5 0.12 g/l 30 g/l

Table 7.3 summarizes the model parameters to be estimated based on the five data sets. The 

objective function ܳ௦௦ in Eq. 5-11 is used for the optimization problem with the weightings 

to normalize the contribution of each residual. The weightings are also listed in the appendix 

(see Table A11, Appendix A4-1). 

Table 7.3: Model parameters of the unstructured model in Figure 7.7 

Name Description 
Minimum 

Value 
Maximum 

Value 
YXN Yield of biomass from nitrogen 3 12 
YXS Yield of biomass from glucose 0.01 1 
YPS Yield of xanthan from glucose 0.3 1 
YXO Yield of biomass from oxygen 1 300 
mumax Maximum specific growth rate 0.01 5 
Kn Monod constant for growth 0.1 10 

alpha 
Growth associated constant of 
Luedeking-Piret equation for 
xanthan production 

0.1 10 

beta 
Non-growth associated constant 
of Luedeking-Piret equation for 
xanthan production 

0.1 10 

ms Maintenance coefficient of 
glucose 

0.01 1 

mo Maintenance coefficient of 
oxygen 

0.00001 0.1 

इ,
 ൌ ቆ

1

൛उො,ݔܽ݉
 , ݅ ൌ 1,… , ݊௧ൟ

ቇ
ଶ

, ݇ ൌ 1,… , ݊ௗ, ݅ ൌ 1,… , ݊௧, ݆ ൌ 1,… , ݊௬	 Eq. 7-26
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LOCAL SENSITIVITIES 

At first, the sensitivities of the parameters are calculated locally at the original parameters by 

evaluating the normalized sensitivity matrix in Eq. 3-43. This analysis yields a 275 ൈ 10 

matrix with 2750 elements that have to be compared. To facilitate this, the absolute matrix 

elements are plotted in Figure 7.8 by representing the high sensitivities as black and low 

sensitivities as white. The plot indicates that the glucose concentration ሺܵሻ is highly sensitive 

to changes in the parameters ܻே, ܻௌ, ܻௌ, ߤ௫, ܭே, ߚ, and ݉௦ at almost all points in time 

and in almost all data sets. The oxygen and nitrogen concentrations are less sensitive to 

changes in all parameters. Additionally, the parameters ܻை, ߙ, and ݉ை have less influence on 

all observed concentrations and the parameter ݉ௌ have a high influence only on the glucose 

concentration and less on the others. 

 
Figure 7.8: Plot of the absolute values of the normalized sensitivity matrix. Black fields 

correspond to high sensitivities and white fields to low sensitivities. 

PRINCIPAL COMPONENT ANALYSIS 

Based on the normalized sensitivity matrix, a principal component analysis has been 

performed which yields the following eigenvalues ߣ for the principal components ߰ 

Principal 
Component ߰ଵ ߰ଶ ߰ଷ ߰ସ ߰ହ ߰ ߰ ଼߰ ߰ଽ ߰ଵ 

3.75E-04 1.26E-03 9.29E-02 1.87E-01 ߣ 1.36E+00 2.37E+00 1.16E+01 1.95E+01 5.83E+01 1.02E+03

The eigenvectors reveal the contribution of each original parameter to the principal 

components (see Figure 7.9). This analysis reveals that the objective function value is 

negligibly sensitive to changes in parameter ܻை, ߙ, and ݉ை because these parameters belong 

only to the principal components with small ߣ values. On the other hand, the objective 
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function is extremely sensitive to changes in parameter ܻே, ܻௌ, ߤ௫, ܭே, and ߚ because 

these parameters contribute large parts to principal components with high ߣ values. 

 
Figure 7.9: Contribution of the original model parameters to the principal components 

GLOBAL SENSITIVITIES 

However, these local sensitivities are only valid in a small neighborhood of the actual 

parameter values. To reveal the effect of changes over the whole parameter range, global 

sensitivity analysis methods have to be applied. Therefore, first-order sensitivity coefficients 

and total-order sensitivity coefficients are calculated by the means of the eFAST method (see 

Section 3.3.3) with 593 samples and 2 resamples for each parameter ሺܰ ൌ 593, ܰ ൌ 2ሻ. 

 
Figure 7.10: eFAST sensitivity coefficients of the parameters of the unstructured model in 

Figure 7.7. Right: first and total-order sensitivity coefficients, left: contribution 
of each parameter to the variance of the objective function value according to 
total-order sensitivity coefficients (others=ሼࡺࢄࢅ, ,ࡻࢄࢅ  .(ሽࢻ

The eFAST method generates small but non-zero sensitivity coefficients for parameters to 

which the model is completely independent (Marino et al. 2008). To reveal this effect a 
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dummy parameter is added to the model which does not appear in the model equations nor 

does it affect the model in any way so that the sensitivity coefficient has to be zero. The 

dummy parameter of the unstructured model has a first-order sensitivity of 0.00006 and a 

total-order sensitivity 0.0055 derived from aliasing and interference effects. It is assumed that 

all parameters with a total-order sensitivity less than that of the dummy parameter are not 

significantly different from zero. However, no parameter has a total-order sensitivity less than 

that of the dummy parameter so it is assumed that all sensitivities are significantly different 

from zero. The results of the SA are depicted in Figure 7.10 and reveal that the parameters ܻௌ 

and ߚ have a much higher sensitivity than the other parameters. These two parameters 

contribute about 85% of the variance of the objective function value. The parameters ܻே, 

ܻை, and ߙ are negligibly sensitive to the objective function because they each contribute less 

than 1% to the variance of the objective function value. 

PARAMETER ESTIMATION 

The PE is performed by all optimization algorithms introduced in Section 3.2 to compare the 

performance and the achieved solutions. Thereby, the following four hybrid methods are 

applied: 

 Hybrid1: ES and Nelder-Mead simplex method (NMS), 

 Hybrid2: ES and Hooke-Jeeves method (HJ), 

 Hybrid3: CMAES and NMS, and 

 Hybrid4: CMAES and HJ. 

The method specific parameters are listed in Table A12 (Appendix A4-2). To improve the 

optimization procedure, all parameters are scaled to the interval ሾ0,1ሿ by the defined 

minimum and maximum values in Table 7.3. For the simulation, the parameters are re-scaled 

by the equation 

Furthermore, the objective function ܳ௦௦ in Eq. 5-11 is used with the weightings in Eq. 7-26 to 

normalize the contribution of each residual. 

At first, all parameters are optimized regardless of their sensitivities. The results of the 

applied methods are summarized in Figure 7.11 (left) and reveal the best results for the 

ऀ௦ ൌ ऀ  ሺऀ௨ െ ऀሻ ⋅ ऀ௧. Eq. 7-27
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methods Hybrid2 and Hybrid4. Both methods reach estimators with objective function values 

less than 10ି while the other methods only achieve objective function values higher than 

10ିଷ. 

 
Figure 7.11: left: PE results of the unstructured model in Figure 7.7; right: Relative error 

(%) of the estimated parameters 

The estimator delivered by ES and CMAES could always be improved by local methods. 

Thereby, HJ seems to work much better than NMS. But the estimators found in the first phase 

of the hybrid algorithms underlie random mechanisms so that the assumption was checked by 

running HJ with the start values generated in the first phase of Hybrid1 and Hybrid3 and 

running NMS with the start values generated in the first phase of Hybrid2 and Hybrid4. The 

results verify the assumption and show that HJ always achieves good estimators with 

objective function values less than 10ି while NMS improve the estimators produced in the 

first phase slightly. MNS always stopped at a non-optimum solution which is not even a 

stationary point of the objective function. But HJ requires more than double computing time 

to find the estimators as NMS. Hence, the HJ method should be used preferably even if it 

needs many more function evaluations. Additionally, it is advisable to take CMAES for the 

first phase because this method achieves similar results to ES but in less than the half 

computing time. An advantage of both - ES and CMAES - is that they can be easily 

parallelized so that the problem can be handled by parallel sessions. In this way, models with 

more parameters as shown within this study can be parameterized. Further studies aim at the 

parallelization of the hybrid optimization methods (see Chapter 8). Furthermore, the DIRECT 

method completely fails in achieving acceptable parameter estimators in an appropriate time, 

which was also observed by Moles et al. who performed a PE for a pathway model with 36 

parameters (Moles et al. 2003). 

The relative errors of the parameter estimates are displayed in Figure 7.11 (right) and show 

highest variations (more than 100%) for the parameters ߤ௫ and ܭே. Only the methods 
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Hybrid2 and Hybrid4 reach estimators with a relative error less than 0.1%. Further studies 

indicated that the minimum of this optimization problem lies in a narrow valley so that it 

could be assumed that some of the applied algorithms are stuck due to the flat shape of the 

objective function in that region. 

FIXED PARAMETER ESTIMATION 

In agreement with the results of the global sensitivity analysis, the parameters ܻே, ܻை, and ߙ 

seem to have less influence on the objective function value and should be fixed to reduce the 

dimension of the search space and improve the optimization procedure. The fixed PE has been 

performed with same settings as the previous PE which are listed in Table A12 (Appendix 

A4-2). The results show that all hybrid algorithms converge to the right solution and the 

objective function values are much better compared to those before fixing less sensitive 

parameters. Additionally, fewer function evaluations and, thus, less computing time was 

needed to achieve these solutions. However, the results of ES and CMAES could not be 

improved by fixing less sensitive parameters. They still converge to the wrong solution, 

perhaps due to the location of the minimum in a narrow valley. Furthermore, the DIRECT 

method achieves a much better solution as before but the solution still has the worst objective 

function value and the computing time that is needed to reach this solution is also the highest 

of the applied methods. 

7.6 STEP 9: PROCESS OPTIMIZATION 

Besides the unstructured model, a metabolically structured model has been constructed by 

means of the PNlib and PNproBio to optimize the xanthan yield of the fermentation process 

(see Figure 7.12). Thereby, the growth of the Xanthomonas campestris bacteria is modeled 

unstructured by the continuous transition ௫ܶ with ߤ௫ ⋅ ܰ ⋅ ܺ as maximum speed function 

combined with two additional terms to express the mentioned inhibition effects of high 

glucose concentrations ሺ1 െ ܵ ܵ௫	⁄ ሻ and high viscosities ൫1 െ ߤ ⁄,௫ߤ ൯ 
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(H1, H2, H7, Table 7.1). Nitrogen, glucose, and oxygen are consumed to produce biomass 

and, hence, the places ܰ, ܵ, and ܱ2 are the inputs of the transition ௫ܶ with the reciprocal of 

the yield coefficients as arc weights ሺ1 ܻே⁄ , 1 ܻௌ⁄ , 1 ܻை⁄ ሻ. The xanthan production is 

modeled structured by the transitions ܶ1, ܶ2, ܶ3,	 and ܶ4. The reaction rate of the xanthan 

production is expanded by the term ሺ1 െ ܰ ܰ௫⁄ ሻ to describe the inhibition effect of high 

nitrogen concentrations on xanthan production (H4, H10,. Table 7.1). 

 
Figure 7.12: Metabolically structured model of xanthan production of Xanthomonas 

campestris bacteria 

Some of the model parameters are modeled temperature dependent by the equations 

mentioned in Section 7.2. Additionally, the parameter ߤ௫ in Eq. 7-28 depends on the 

temperature which is modeled by the root-square model as proposed in (Garcia-Ochoa et al. 

2000) (H8, H10, Table 7.1). The transition ைܶ represents the oxygen mass transfer using the 

oxygen mass transfer coefficient ݇ܽ of equation Eq. 7-11 with ܥ ൌ 3.08 ⋅ 10ିଷ, ߙ ൌ 0.43, 

ߚ ൌ 1.75, and ߣ ൌ െ0.39 as suggested in (García-Ochoa et al. 1995) and ܱଶ
∗ ൌ 0.0002. 

Thereby, it is assumed that viscosity correlates with xanthan concentration modeled by 

Eq. 7-12 with ܽ ൌ 0.08 and ܾ ൌ 0.3 (H7, Table 7.1). The red fermenter wrapper models the 

operation mode of the fermentation, i.e. when and with which concentration glucose and 

ܺݎ ൌ ݔܽ݉ߤ ⋅ ܰ ⋅ ܺ ⋅ ቆ1 െ
ܵ

ݔܽ݉ܵ
ቇ ⋅ ൭1 െ

݂݂݁ߤ
ݔܽ݉,݂݂݁ߤ

൱ Eq. 7-28
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nitrogen are added to the fermenter. The input factors which influence the parameters (stirrer 

speed, temperature, and gas flow) can be determined by selecting one of the input components 

(Constant, Step, Ramp, Steps, and conditional Steps) and connecting them with the Input 

wrapper. In this manner, the stirrer speed, temperature, and gas flow can be accessed by 

Input.R, Input.T, and Input.Vs, respectively. All components of the metabolically 

structured model are explained in detail in Table A15 and the parameters are listed in Table 

A16 (Appendix A4-3). Thereby, the values are taken from (Garcia-Ochoa et al. 1998) and 

(García-Ochoa et al. 1995). 

THE OPTIMIZATION PROBLEM 

Based on this parameterized model, the xanthan yield should be maximized by varying the 

process parameters summarized in the following table between their minimum and maximum 

values. 

Table 7.4: Process parameters to optimize of the metabolically structured model in 
Figure 7.12 

Process 
Parameter 

Description 
Minimum 

Value 
Maximum 

Value 

ܰ0 Initial nitrogen concentration 0.01 0.3
ܵ0 Initial glucose concentration 10 50

ܰܽ݀݀ Nitrogen addition 0.01 1
ܵܽ݀݀ Glucose addition 5 70
Feeding point in time 0 100 ݐ݂

Initial temperature 25 34 0݉݁ݐ
Time of temperature increase 0 100 ݐݐ

Increase of temperature 0 10 ݐ݄݃݅݁ܪ݉݁ݐ

Hence, the optimization problem formalized in Eq. 5-21 - Eq. 5-23 is solved by regarding two 

different optimization problems. The first optimization problem, denoted by OP1, only 

considers the yield of xanthan ܲሺऊሻ ൌ ܲ൫ऊ, ݐ
௫൯ at the end of the fermentation (ݐ

௫ ൌ

100	݄) and has the objective function 

while the objective function of the second optimization problem, denoted by OP2, considers 

also the time ݐ when the maximum xanthan concentration ܲ൫ऊ,  ൯ is reached due to the factݐ

that fermentation time correlates with costs 

ܳ1 ൌ െ݂ܲሺऊ, 100ሻ → ݉݅݊

ऊ ൌ ሺܰ, ܵ, ܰௗௗ, ܵௗௗ, ,ݐ݂ ,݉݁ݐ ,ݐݐ ሻݐ݄݃݅݁ܪ݉݁ݐ
Eq. 7-29
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These two optimization problems are solved by the optimization algorithms introduced in 

Section 3.2 with the settings of Table A13 (Appendix A4-2). 

RESULTS OF OP1 AND OP2 

The results for OP1 are displayed in Figure 7.13 and show that the achieved xanthan yields 

range between 225 and 230 g after 100 h fermentation time. Thereby, the best solution was 

found by ES but the required time is high compared to the hybrid methods. 

 
Figure 7.13: OP1: Results of PO for the metabolically structured model in Figure 7.12 with 

the settings of Table A13 (Appendix A4-2) and ࢌ࢚ ൌ 	ࢎ 

The DIRECT method reached the worst solution in the highest computing time. All hybrid 

methods achieve good solutions in a moderate time. Both local optimization methods work 

well in the second phase of the hybrid algorithms in contrast to the unfixed PE of Section 7.5. 

The second optimization problem OP2 additionally includes the point in time when the 

maximum xanthan yield is reached. The fermentation is stopped at this time. The results are 

displayed in Figure 7.14. Similar to OP1, OP2 reaches relatively equal values for the initial 

and feeding concentrations but here also the feeding point in time and the initial temperature 

is equal for all applied methods. Only the amount of the temperature increase and the time for 

the increase differ from each other. Additionally, the lower bound for the nitrogen addition 

and the upper bound for the glucose addition are reached. Furthermore, the maximum xanthan 

yield is plotted against the required fermentation time (see Figure 7.14 right). This plot 

ܳ2 ൌ െ
݂ܲ൫ऊ, ൯݂ݐ

݂ݐ
→ ݉݅݊

ऊ ൌ ሺܰ, ܵ, ܰௗௗ, ܵௗௗ, ,ݐ݂ ,݉݁ݐ ,ݐݐ .ሻݐ݄݃݅݁ܪ݉݁ݐ

Eq. 7-30
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indicates that no found solution dominates another solution, i.e. if the maximum xanthan yield 

is smaller compared to another solution, also the required fermentation time to achieve it is 

smaller and if the maximum xanthan yield is higher compared to another solution, the 

required time to achieve it is also higher. 

 
Figure 7.14: OP2: Results of PO for the metabolically structured model in Figure 7.12 with 

the settings of Table A13 (Appendix A4-2); left: average xanthan yields per hour; 
right: xanthan yield vs. fermentation time 

MODIFICATIONS OF THE BOUNDS FOR GLUCOSE AND NITROGEN 

ADDITION 

To detect if even higher (average) xanthan yields can be reached, the lower bound of the 

nitrogen addition is set to 0 g/l, denoted by Bound B and the original bounds of Table 7.4 are 

denoted by Bound A. The corresponding optimization problems are denoted hereafter by 

OP1A, OP1B, OP2A, and OP2B. Afterwards, OP1 and OP2 are solved by setting the upper 

bound of the glucose addition to 1000 g/l and the lower bound of the nitrogen addition to 

0 g/l, denoted by Bound C. The corresponding optimization problems are denoted following 

by OP1C and OP2C. The results are displayed in Figure 7.15 and show a negligible effect of 

setting the nitrogen addition to zero and a relative high effect of the increase of the glucose 

addition. The xanthan yield can be enhanced about 50 % and the average xanthan yield per 

hour is approximately 30 % improved. 

The increase of the upper bound for the glucose addition causes a totally different growth 

curve (see Figure 7.16). In the case of OP1A and OP1B the biomass increases slightly over 

the whole fermentation and the same is true for xanthan production. The glucose is added at a 

point in time when it is still available and it is not exhausted at the end of the fermentation. 

However, biomass and xanthan production of OP2A and OP2B stop at the time when the 

glucose is exhausted. In the case of OP1C and OP2C, the bacteria only grow in the first 22-28 
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hours. In this phase nearly no xanthan is produced due to suppression by the high initial 

nitrogen concentration. After the addition of glucose, the xanthan production is enhanced and 

growth is suppressed by the high glucose concentration in the fermenter. Hence, the process 

optimization achieves the same two-phase fermentation approach as suggested in (Vuyst et al. 

1987) and (Lo et al. 1997) mentioned in Section 7.2. In the first phase the bacterial growth is 

improved by using a low C/N ratio and in the second phase the xanthan production is 

enhanced by the high glucose concentration. 

 
Figure 7.15: Left: xanthan yield after 100 h fermentation (OP1), right: average xanthan yield 

per hour (OP2) for the original bounds in Table 7.4 (Bound A), the lower bound 
of the nitrogen addition set to 0 g/l (Bound B), and the lower bound of the 
nitrogen addition set to 0 g/l and the upper bound of the glucose addition set to 
1000 g/l (Bound C). 

Additionally, the suggested point in time for changing over from growth to xanthan 

production can be verified by this PO. De Vuyst found that the changeover time is critical and 

suggested a time period of 25-30 hours after inoculation. OP1C yields a changeover time of 

21-28 hours which depends on the applied optimization method and OP2C reaches 

changeover times of about 21 hours. Furthermore, Amanullah et al. found that the xanthan 

production can only be enhanced by glucose addition if the nitrogen is exhausted when the 

glucose is fed (Amanullah et al. 1998). This is also verified by this PO. Nitrogen is exhausted 

in all cases when glucose is added and nearly no nitrogen is added. 

Moreover, all methods achieve times for the temperature shift which are nearly exactly the 

same as the feeding time. This supports the approach of Shu and Yang mentioned in 

Section 7.2.1 (Shu and Yang 1991). They suggested a two-step fermentation with a 

temperature increase from 27°C to 32°C at the end of the exponential growth phase due to the 

fact that growth favors a lower temperature as the xanthan production. The methods reached 

starting temperatures in the range of 28.0°C to 30.3°C which are increased by 3.3°C to 5.8°C 

after 21 to 28 hours. The Hybrid1 method, for example, yields an initial temperature of 

28.8°C which is shifted to 33.9°C at a time period of 21.4 hours. This time is also the end of 
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the exponential growth due to the high glucose feeding at this time. This feeding totally 

suppresses growth and initiates the stationary growth phase and also the xanthan production 

phase. 

 
Figure 7.16: Simulation results of the optimized process parameters found by the hybrid 1 

method for OP1 and OP2 with the bounds A, B, and C 

MODIFICATION OF THE FEEDING NUMBER 

The metabolically structured model in Figure 7.12 has been further modified to reach even 

higher (average) xanthan yields. Therefore, it is now possible that five times an amount of 

nitrogen and glucose is added to the fermenter. The modified model has 20 process 

parameters that have to be optimized to achieve maximum (average) xanthan yields. The 

process parameters are summarized in Table 7.5 together with their minimum and maximum 

values. 

Table 7.5: Process parameters of the modified metabolically structured model in Figure 7.12 

Factor Description 
Minimum 

Value 
Maximum 

Value 

ܰ0 Initial nitrogen concentration 0.01 0.3
ܵ0 Initial glucose concentration 10 50

ܵܽ݀݀ሺ݅ሻ1 
Nitrogen concentration of feeding at time 
݅ݐ ൌ െ1݅ݐ  ሺ݅ሻ 0 1ݐ݂݀

ܵܽ݀݀ሺ݅ሻ2 
Glucose concentration of feeding at time 
݅ݐ ൌ െ1݅ݐ  ሺ݅ሻ 0 70ݐ݂݀

 ሺ݅ሻݐ݂݀
Time from fermentation start to first 
feeding at ݅ݐ ൌ െ1݅ݐ  ݐሺ݅ሻ  ሺݐ݂݀ ൌ 0ሻ 

0.1 100
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Initial temperature 25 34 0݉݁ݐ
Time of temperature increase 0 100 ݐݐ

Increase of temperature 0 10 ݐ݄݃݅݁ܪ݉݁ݐ

Thereby, the time between two subsequent feedings is optimized and not the feeding times to 

guarantee that ݐଵ  ଶݐ  ଷݐ  ସݐ  ݐ ହ. The maximum fermentation time is set toݐ ൌ 100	݄ 

so that if from a ݐ on the feeding times are greater than 100 hours, these feedings are not 

considered. In this manner, it is realized that the optimization procedure can also find the best 

number of feedings. The same objective functions as for the original model defined in 

Eq. 7-29 and Eq. 7-30 are applied with 

ऊ ൌ ሺܰ, ܵ, ܵܽ݀݀ଵଵ, ܵܽ݀݀ଵଶ, ܵܽ݀݀ଶଵ, ܵܽ݀݀ଶଶ, ܵܽ݀݀ଷଵ,

ܵܽ݀݀ଷଶ, ܵܽ݀݀ସଵ, ܵܽ݀݀ସଶ, ܵܽ݀݀ହଵ, ܵܽ݀݀ହଶ, ,ଵݐ݂݀

,ଶݐ݂݀ ,ଷݐ݂݀ ,ସݐ݂݀ ,ହݐ݂݀ ,݉݁ݐ ,ݐݐ  ሻݐ݄݃݅݁ܪ݉݁ݐ

and the optimization problem corresponding to Eq. 7-29 is denoted by MOP1 and the 

optimization problem corresponding to Eq. 7-30 is denoted by MOP2. The same parameter 

settings for the optimization methods are used as listed in Table A13 (Appendix A4-2). 

However, some has been adapted to take into consideration that the modified optimization 

problem has more than twice as many process parameters (see Table A14). 

RESULTS OF MOP1 AND MOP2 

The best solutions for MOP1 and MOP2 are achieved by ES, Hybrid1, and Hybrid2; thereby, 

both hybrid algorithms have ES as a global optimizer. The solution found by DIRECT is 

better than those of CMAES, Hybrid3, and Hybrid4 but the (average) xanthan yield less 

compared to the best solution and, in addition, the required computing time is much more 

higher. In comparison to the best results of OP1C and OP2C, the PO yielded a 35 % higher 

xanthan yield and a 60 % higher average xanthan yield per hour. 

A more precise view of the found solutions reveals that CMAES, Hybrid3, and Hybrid4 reach 

solutions by which not all five feedings are used. The feedings of MOP1 which are carried out 

after the maximum fermentation time of 100 hours have no effect on the fermentation. 

Similarly, the feedings of MOP2 which are carried out after the achieved fermentation time 

have no effect on the fermentation process. 
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It is also shown that the best working method, ES, achieves feeding times that are close 

together. Additionally, the nitrogen additions are close to zero and all glucose additions reach 

the upper limit of 70 g/l as in the original model. This leads to the suggestion that it is better 

to feed a higher glucose concentration once and not add nitrogen. 

The best solution of MOP1 reaches similar curve shapes as the OP1A and OP1B and the best 

solution of MOP2 causes the two-step fermentation with a growth and a xanthan production 

phase similar to OP1C and OP2C. The worst solution of MOP2 found by CMAES achieves a 

solution by which the glucose concentration is exhausted at about 70 h and new glucose is not 

fed till time 91 and all other feeding times are higher than the maximum fermentation time. 

This solution is not acceptable because the xanthan production stops for that time period due 

to glucose exhaustion. Similarly, the Hybrid3 solution of MOP1 is not feasible because of the 

low glucose feeding and the corresponding low xanthan production rate. 

MODIFICATION OF THE BOUND FOR THE GLUCOSE ADDITION 

Because the best solutions of MOP1 and MOP2 achieve glucose additions which reach the 

upper bound, this upper bound is increased from 70 g/l to 1000 g/l, denoted by Bound C and 

the optimization problems are denoted by MOP1C and MOP2C, to yield possibly even more 

xanthan. The results show that best solutions are achieved by ES, Hybrid1, and Hybrid2 for 

MOP1 higher xanthan yields than that of the other methods and by ES and Hybrid2 for 

MOP2C higher average xanthan yields per hour. Compared to the results before, the xanthan 

yield is increased by 32 % and the average xanthan yield per hour by 12 %. The simulation 

results of the solution found by ES again show the two-step fermentation due to the fact that 

the feeding times are so close together that the sum of the glucose additions could be added at 

the same point in time. The nitrogen additions are close to zero and can be neglected. 

Additionally, MOP1C and MOP2C terminate with nearly the same results so that the 

maximum xanthan yield is always observed after the maximum fermentation time. The 

glucose addition of MOP2C is chosen such that the glucose is totally exhausted after 100 

hours and, hence, the xanthan production stops at this point in time. CMAES again achieves 

the worst solution for both problems due to too small and too late additions of glucose, 

respectively. 
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MODIFICATION OF THE BOUNDS FOR THE FEEDING TIMES AND THE 

INITIAL NITROGEN CONCENTRATION 

To show that only one feeding is necessary, the lower bounds of the time between two 

feedings are set to zero. Additionally, the upper bound of the initial nitrogen concentration is 

increased to 10 g/l because the best solutions have always reached it. These expanded bounds 

are denoted by Bound D and the corresponding optimization problems by MOP1D and 

MOP2D. Due to the fact that ES always reached good process parameters in comparison to 

the other methods, the following PO studies are only performed using this method. 

The results verify the assumption. The time between two feedings reached by both problems, 

MOP1D and MOP2D, is less than 22 seconds. The first feeding is supposed to take place at 

time 15.97 and 15.93 for MOP1D and MOP2D, respectively. Thereby, the nitrogen feeding 

concentration is always close to zero so that it can be assumed that no additional nitrogen has 

to be added to the fermenter. 

The simulation results show clearly the division of the fermentation process in two phases 

(see Figure 7.17). The first phase is the growth phase with a high nitrogen concentration of 

0.47 and 0.59 g/l and a low glucose concentration of 18.32 and 22.46 g/l for MOP1D and 

MOP2D, respectively. Higher nitrogen concentrations than 0.3 g/l totally suppress the 

xanthan production according to the model assumptions. This is reflected by nearly no 

xanthan production in the first fermentation phase also due to the low glucose concentration. 

The biomass increases in this phase up to an amount of 11.84 and 14.68 g, respectively. 

 
Figure 7.17: Simulation results of the modified metabolically structured model with process 

parameters found by optimization MOP1D (left) and MOP2D (right) with ES 

The second phase is initiated by the first glucose addition. The others follow only seconds 

after so that all feedings can be combined to one which is added to the fermenter at time 15.97 

and 15.93, respectively. At this time, the growth is totally suppressed by the high glucose 
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concentration but no inhibition of xanthan by nitrogen can be observed because the 

concentration of nitrogen is nearly zero. This phase is the xanthan production phase with 

nearly no growth but high xanthan production up to an amount of 606 and 607 g, respectively. 

The maximum xanthan yield in the case of MOP2D was also achieved at the maximum 

fermentation time of 100 hours; so there is no difference between optimizing MOP1D or 

MOP2D. In addition, the time of the temperature shift is nearly exact the same as that for the 

feeding. The temperature is then increased from 29.4°C and 29.1°C to 33.8°C and 33.9°C for 

MOP1D and MOP2D, respectively. 

OXYGEN REGULATION 

The slight slope of the xanthan curve at the beginning of the second phase is caused by the 

low oxygen content in the fermenter at this time (see Figure 7.18). At time 22.5 the oxygen 

content is increased due to an increase of the stirrer speed. This causes an increase in the slope 

of the xanthan curve. Hence, the stirrer speed has to be increased earlier to avoid an oxygen 

shortage in the fermenter. 

 
Figure 7.18: Simulation results of oxygen compared to stirrer speed (Bound D) 

If the speed is increased at the beginning of the second phase, the xanthan yield can be further 

improved. It would be even better if the oxygen content was maintained at a constant level by 

a closed loop control of the stirrer speed, i.e. if the oxygen concentration in the fermenter falls 

below a determined value, the stirrer speed is increased until the oxygen remains above this 

limit. 
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Therefore, a new model component has been constructed with the aid of a discrete when-

equation (see Section 3.1.2). If the oxygen concentration falls below 0.00015 mol/l, the stirrer 

speed is increased until the oxygen concentration remains above this limit up to the maximum 

speed of 20.3 rps. 

The model is simulated with this new oxygen regulation by stirrer speed and the parameters 

found by MOP1D. It reaches a xanthan yield of 629.66 g in 52 hours. At this time the glucose 

is exhausted and the xanthan production stops. This shows that oxygen has a deep impact on 

xanthan production and should be controlled by a closed loop. 

It can be assumed that this regulation with the proper process parameters can achieve even 

higher xanthan yields so that this regulated model is again optimized by ES. The results are 

displayed in Figure 7.19 and once more show the division in the two phases. Thereby, the 

simulation results achieved without oxygen regulation are plotted by dashed lines to highlight 

the high influence of oxygen regulation. A maximum xanthan yield of 2257.86 g is reached 

which is 3.5 times higher than the yield without regulation. The regulation has mainly 

influenced growth while the effect on xanthan production is minor. If the oxygen is not 

regulated, it is very low in the growth phase and causes a reduced biomass accumulation. The 

regulation insures that the oxygen concentration is maintained about 0.00015 g/l until the 

maximum stirrer speed is reached. In this manner the growth is improved, i.e. in less time 

more biomass is produced. The oxygen in the xanthan production phase differs slightly from 

that without regulation. However, more bacteria produce more xanthan which explains the 

high xanthan yield. 

 
Figure 7.19: Simulation results with oxygen regulation by stirrer speed. Dashed lines indicate 

the results of MOP1D (see Figure 7.17) 
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7.7 STEP 7: DETERMINISTIC AND STOCHASTIC 

HYBRID SIMULATION 

In addition to the unstructured and the metabolically structured model, a chemically structured 

model has been constructed on the one hand with the aid of a stochastic Petri net (Figure 7.20) 

and on the other with the aid of a continuous Petri net (the stochastic transitions are replaced 

by continuous ones). Both models consist of a structured part for xanthan production from 

glucose which is modeled in the same manner as in the metabolically structured model in 

Figure 7.12 as well as a structured part for growth. In the case of the continuous model, the 

tokens directly reflect the concentrations of the biological compounds and in the case of the 

stochastic model, the tokens correspond to specific levels of concentrations, which has been 

already mentioned in Section 5.5. 

 
Figure 7.20: Chemically structured model of xanthan production and growth of 

Xanthomonas campestris bacteria 

These concentration levels are achieved by defining a global maximum concentration ܯ and a 

local highest level ܰ different for each place so that ܰ  1 is the amount of levels. Then, the 

tokens ࣮ can be converted to level concentrations ࣦ by 
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The stochastic Petri net is constructed in Dymola by means of the PNlib and afterwards, the 

stochastic hybrid simulation (SHS) and further calculations are performed in Matlab/Simulink 

by the AMMod-tool. A place wrapper (green margin) can be found in the Stochastic sub-

library of the PNproBio library to get the level concentrations instead of the token numbers as 

outputs in Matlab/Simulink. The deterministic hybrid simulation (DHS) of the continuous 

Petri net model can be performed directly in Dymola or with the AMMod-tool. 

As demonstrated exemplarily in Section 5.5, there is a relationship between the rate of a 

reaction which corresponds to the maximum speed function of the continuous transition and 

the hazard function of the stochastic transition so that both can be easily transformed into each 

other. The SHS is performed by simulating the stochastic model 50 times and calculating the 

mean from the results for each compound at each point in time. The results are displayed in 

Figure 7.21 and show a good agreement between SHS of the stochastic Petri net model and 

DHS of the continuous Petri net model. Hence, the stochastic model can be approximated by 

the continuous model but the continuous model can only represent the averaged behavior. 

 
Figure 7.21: Comparison of SHS of the stochastic model and DHS of the corresponding 

continuous model (see Figure 7.20) 

 

ࣦ݅ ൌ ࣮݅ ⋅
ܯ
ܰ݅
. Eq. 7-31
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8 DISCUSSION AND OUTLOOK 

An environment has been developed which comprises mathematical methods, concepts, and 

tools to enable the processing of experimental data to usable new insights about biological 

systems. Therefore, a general, universally usable modeling process for biological systems 

has been developed as well as a mathematical concept – xHPN (extended Hybrid Petri Nets) 

– which is properly adapted to the demands of biological processes. The definition of this new 

modeling formalism was necessary due to serious problems according to lacking unity, 

accuracy, and completeness of the current Petri net formalisms in literature. 

The new xHPN concept has been transferred to the object-oriented modeling language 

Modelica. The developed Modelica library, called PNlib (Petri Net library), in combination 

with an appropriate Modelica-tool enables graphical hierarchical modeling, hybrid simulation, 

and animation of xHPNs. Thereby, an additional Modelica library, called PNproBio (Petri 

Nets for process modeling of Biological systems), provides wrapped xHPNs which offers on 

the one hand an easy-to-use-model at the top level with an intuitive and familiar adapted 

biological view and on the other the flexibility and generality of the xHPN concept. In 

addition to the Modelica libraries, the AMMod (Analysis of Modelica Models) tool provides 

several mathematical methods for data preprocessing, relationship analysis, parameter 

estimation, sensitivity analysis, deterministic and stochastic hybrid simulation, and process 

optimization. The development of this new environment was necessary because no current 

tool gets along without drawbacks and interprets the hybrid Petri net formalism as needed for 

modeling biological systems in this work. 

The application of the developed mathematical methods and concepts as well as the tools 

PNlib, PNproBio, and AMMod has been shown exemplarily by the xanthan production of 

Xanthomonas campestris bacteria. Additionally, it has given information about which method 

works best for which modeling step. Thereby, the focus was on showing the usage, the power, 

and the permit of the new environment rather than on yielding new insights about the studied 

organism. All investigations are based on pseudo experimental data and only one selected 

case, the xanthan production of Xanthomonas campestris bacteria, has been considered. The 

aim of further research is, hence, to verify the results by experimental data gained from wet 

lab fermentations of Xanthomonas campestris bacteria. Besides, the tools could be applied for 
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other biological processes; the modeling process of the protein production of animal cells has 

just begun and will be enhanced in the future. 

 
Figure 8.1: Further development possibilities beyond this work 

During the work, it became increasingly clear that the mathematical modeling concept xHPN, 

especially developed to adress the demands of biological processes, is so powerful but also so 

universal and generic that it is an ideal all-round-tool for modeling and simulation of nearly 

all kinds of processes such as business processes, production processes, logistic processes, 

work flows, traffic flows, data flows, multi-processor systems, communication protocols, and 

functional principals. Hence, the abbreviation xHPN is chosen generally to emphasize that it 

is not restricted to biological applications. This developed formalism and the PNlib could be 

used for modeling and simulation of these mentioned processes and, in addition, the 

mathematical concept as well as the library could be extended by fuzzy logic (e.g. (Chen et al. 

1990)) and the color concept (e.g. (Jensen 1987)) to further enhance the range of application 

fields. In the future, it is planned to establish a model-based process consulting for small and 
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medium enterprises at the University of Applied Sciences Bielefeld based on the methods 

developed in this work. 

In addition, a further aim is to provide all the tools as open source. This demands a further 

development of the open source Modelica-tool OpenModelica to get the PNlib to work with 

it because some Modelica features are not supported so far. The University of Applied 

Sciences Bielefeld is already closely involved in the further development of the 

OpenModelica-Tool (Braun 2010, Braun et al. 2010, Braun et al. 2011, Ochel et al. 2011, 

Krems et al. 2010). 

Additionally, the mathematical methods required for the modeling process have to be 

transferred from the commercial language Matlab to an open source alternative like C++ or 

Python. Then, a new connection between OpenModelica and the open source tool for the 

analysis methods has to be established and a user-friendly GUI for the tools could be 

developed. 

Moreover, the graphical modeling of Petri nets has to be improved because the input of arc 

weights is inconvenient due to the fact that arcs cannot have properties in Modelica. For this 

purpose the PNlib could be connected to VANESA, an open source tool for visualization and 

analysis of networks in systems biology applications developed at the faculty of technology at 

the Bielefeld University (Janowski 2008). The graphical modeling of Petri nets is performed 

in VANESA with an easy-to-use interface and, thereafter, the constructed Petri net is 

translated to the Modelica language and compiled and simulated with a Modelica-tool. The 

simulation results are then sent back to VANESA for display and animation of the token 

development. Beyond that, VANESA offers the possibility to load networks from several 

databases and convert them to nets. These nets can then be transformed to Petri nets. 

Furthermore, VANESA contains various qualitative methods from graph theory which are 

also usable on Petri nets and, in addition, some Petri net specific analysis methods have been 

already integrated (Brinkrolf 2011). The connection of PNlib and VANESA has already 

commenced (Proß et al. 2012a, Proß et al. 2012b). 

Moreover, the functionality of AMMod could also be further expanded by methods for 

parameter estimation, sensitivity analysis, and process optimization. In addition, methods for 

new analysis technics like the design of experiments, model based experimental design, 

model reduction, and uncertainty analysis could be developed and implemented. Especially 

the process optimization procedure offers a good basis for further development. Till now, it 
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achieves an open-loop control strategy, i.e. the strategy is given based on the model and no 

feedback from the real system is included. This feedback could be also considered by 

realizing a closed-loop control, particularly the so-called model predictive control (MPC), 

to further improve the biological process. Therefore, the model is used to calculate the process 

states of the real system in the future depending on current measurements. Based on these 

predictions and an expert system in the background, the process parameters can be adapted 

appropriately. With additional methods from artificial intelligence, a self-learning system 

could be established. The vision is that this MPC of fermentation processes proceeds fully 

automatically as it is depicted in Figure 8.2. Thereby, the process data is measured by specific 

sensors and the process parameters are properly adapted by actuators depending on the control 

data gained from mathematical methods and the process model. 

 
Figure 8.2: The vision: A fully automated model predictive control of fermentation processes 
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Furthermore, the computing time of mostly all mathematical methods used in the modeling 

process has to be reduced to make them applicable on large models. A possibility to do this is 

parallelization. Thereby, the algorithm is divided into separate parts which can be executed 

in parallel by a simultaneous computer or a computer cluster. Especially ES and CMAES can 

be easily parallelized by simultaneous evaluation of the individuals of one generation. In the 

same manner, the simulations required for local and global sensitivity analysis could be 

performed in parallel. 

In conclusion, this work presents a new powerful and universally applicable modeling 

environment that can be used for nearly all kinds of biological processes. In addition, the 

developed methods and tools are also applicable for many kinds of processes from other 

application fields, e.g. business processes, production processes, and logistic processes. The 

xHPN formalism and the corresponding processes have been defined precisely and are so 

powerful that most formalisms are included regardless of the modeling approach (qualitative 

vs. quantitative, continuous vs. discrete, deterministic vs. stochastic). Furthermore, the 

wrapping technique offers on the one hand the possibility to provide biologists an intuitive 

and familiar adapted biological view of the model and on the other the flexibility and 

generality of the xHPN formalism for the hybrid simulation. Moreover, the developed 

mathematical methods provide a means to estimate the model parameters from the given 

experimental data when direct experimental determination is not possible. In addition, these 

methods enable the optimization of underlying processes in order to achieve an open-loop 

control. 
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APPENDIX 

A1 ALGORITHMS 

Algorithm A1 (Hooke-Jeeves method) 

Input: start value ई, objective function ܳሺईሻ, step size control parameter ߩ ∈ ሺ0,1ሻ, minimum 

step size ߝ  0	, abort criteria ࣛ 

Start: Set ߜ ൌ ߩ ⋅ ई, ݔ ൌ ई, ܳई ൌ ܳሺईሻ and ∆ൌ  ߩ

Iteration: 

1. Exploratory move: Evaluate ሺݖ, ܳ௭ሻ ൌ ,ሺई݁ݒܯݕݎݐܽݎ݈ݔ݁ ܳई,  ሻߜ

2. Pattern search: If ܳ௭ ൏ ܳई, set ߠ ൌ ई, ई ൌ ݖ ,ݖ ൌ 2 ⋅ ݖ െ ईܳ ,ߠ ൌ ܳ௭,  

calculate ܳ௭ ൌ ܳሺݖሻ and evaluate ሺऊ, ܳऊሻ ൌ ,ݖሺ݁ݒܯݕݎݐܽݎ݈ݔ݁ ܳ௭,  ሻߜ

If ܳऊ  ܳई, go to step 1; otherwise, for ݈ ൌ 1,2, … , ݊ if ܾܽݏሺऊ െ ईሻ  0.5 ⋅  ሻ, goߜሺݏܾܽ

to step 2. 

3. Reduce step size ሺܳ௭  ܳईሻ: If ∆ set ∆ൌ ,ߝ ∆ ⋅ ߜ ,ߩ ൌ ߜ ⋅  ;and go to step 1 ߩ

otherwise, stop. 

Stop: If at least one of the abort criteria ࣵ ∈ ࣛ is fulfilled or the iteration stops. 

Procedure exploratoryMove: 

Input: ई, ܳई,  ߜ

Output:ݕ, ܳ௬ 

set ݕ ൌ ई and ܳ௬ ൌ ܳई 

for ݅ ൌ 1, 2, … , ݊ do 

Set ݉ ൌ ई  ݁, where ݁ is the ݅th unit vector, and evaluate ܳߜ ൌ ܳሺ݉ሻ. 

If ܳ ൏ ܳई, set ݕ ൌ ݉ and ܳ௬ ൌ ܳ. 

Otherwise, set ݉ ൌ ई െ ݁, where ݁ is the ݅th unit vector and evaluate ܳߜ ൌ ܳሺ݉ሻ. 

If ܳ ൏ ܳई, set ݕ ൌ ݉ and ܳ௬ ൌ ܳ. 

end 
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Algorithm A2 (Nelder-Mead simplex method) 

Input: start value ई, objective function Qሺईሻ, reflection parameter ρ ൌ 1, expansion 

parameter χ ൌ 2, contraction parameter γ ൌ 1/2, shrinkage parameter σ ൌ 1/2, abort 

criteria ࣛ 

Start: Generate an initial simplex around ई by adding 5% of each component ई
, ݈ ൌ

1,2, … , ݊ to ई. These ݊ vectors and ई are then the ݊  1 vertices of the initial 

simplex. (It uses 0.00025 as component ݈ if ई
 ൌ 0. ሻ 

Iteration: 

1. Order: Order the ݊  1 vertices from the lowest objective function value ܳଵ ൌ ܳሺईଵሻ to 

the highest one ܳାଵ ൌ ܳሺईାଵሻ such that 

ܳଵ  ܳଶ  ⋯  ܳାଵ 

2. Reflect: Compute the reflection point ݎ 

ݎ ൌ ሺ1  ሻ݉ߩ െ ईାଵߩ ൌ 2݉ െ ईାଵ, 

  where  

݉ ൌ
1
݊
ई



ୀଵ

 

  and evaluate ܳ ൌ ܳሺݎሻ. 

  If ܳଵ  ܳ ൏ ܳ, accept ݎ and terminate the iteration. 

3. Expand: If ܳ ൏ ܳଵ, calculate expansion point ݏ 

ݏ ൌ ݉  ሺ݉߯ߩ െ ईାଵሻ ൌ ݉  2ሺ݉ െ ईାଵሻ 

and evaluate ܳሺݏሻ ൌ ܳ௦. 

a. If ܳ௦ ൏ ܳ, accept ݏ and terminate the iteration. 

b. Otherwise, accept ݎ and terminate the iteration. 

4. Contract: If ܳ  ܳ, perform a contraction between ݉ and the better of ईାଵ and ݎ. 

a. Outside: If ܳ ൏ ܳାଵ, calculate 

ܿ ൌ ݉  ݎሺߛ െ ݉ሻ ൌ ݉ 
ݎ െ݉
2

 

and evaluate ܳ ൌ ܳሺܿሻ. If ܳ ൏ ܳ, accept ܿ and terminate the iteration; 

otherwise, go to step 5 (perform a shrink). 

b. Inside: If ܳ  ܳାଵ, calculate 

ܿܿ ൌ ݉  ାଵݔሺߛ െ ݉ሻ ൌ ݉ 
ईାଵ െ ݉

2
 

and evaluate ܳ ൌ ܳሺܿܿሻ. If ܳ ൏ ܳାଵ, accept ܿܿ and terminate the iteration; 

otherwise, go to step 5 (perform a shrink). 

5. Perform a shrink step: Calculate the ݊ points 

ݒ ൌ ईଵ  ሺईߪ െ ईଵሻ ൌ ईଵ 
ई െ ईଵ

2
,							݈ ൌ 2, 3, … , ݊  1 
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and evaluate ܳሺݒሻ, ݈ ൌ 2, 3, … , ݊  1. The simplex at the next iteration is 

ईଵ, ,ଶݒ … ,  .ାଵݒ

Stop: If at least one of the abort criteria ࣵ ∈ ࣛ is fulfilled. 

Algorithm A3 (DIRECT method) 

Input: objective function ܳሺईሻ, abort criteria ࣛ, global/local search weight parameter ߝ  0 

Start: Normalize the search space to be the unit hypercube and evaluate the function value 

ܳሺܿଵሻ at its midpoint ܿଵ. Set ܳ ൌ ܳሺܿଵሻ. 

Iteration: 

1. Identify the set ܵ of potentially optimal rectangles. 

2. Select any rectangle ݆ ∈ ܵ. 

3. Perform the procedure for dividing rectangles. Update ܳ. 

4. Set ܵ ൌ ܵ ∖ ሼ݆ሽ. If ܵ ് ∅ go to step 3. 

5. Go to step 1. 

Stop: If at least one of the abort criteria ࣵ ∈ ࣛ is fulfilled. 

Procedure for dividing rectangles: 

1. Identify the set ܫ of dimensions with the maximum side length. Let ߜ be equal to one-

third of this maximum side length. 

2. Evaluate the objective function at the points ܿ േ ݅∀	݁ߜ ∈  where ܿ is the midpoint of ,ܫ

the rectangle and ݁ is the ݅th unit vector. 

3. Divide the rectangles into thirds along the dimensions in ܫ, starting with the lowest 

value of ݓ ൌ min൫ܳሺܿ  ,ሻ݁ߜ ܳሺܿ െ  ሻ൯ and continuing to the dimension with the݁ߜ

highst ݓ. 

Algorithm A4 (Evolution strategy) 

Set ݃ ൌ 0 

Initialize ܣሺ0ሻ ൌ ൛ܽଵሺ0ሻ, ܽଶሺ0ሻ, … , ܽఓሺ0ሻൟ ∈  ఓܫ

where ܽ ൌ ሺई,  ሻݏ

with ݏ ൌ ൫ߪ, ݉ , ∀݅ ൌ 1, 2, … , ݊, ∀݆ ൌ 1, 2, … , ݊ሺ݊ െ 1ሻ 2⁄ ൯ or ݏ ൌ ሺߪ, ∀݅ ൌ 1, 2, … , ݊ሻ 

Evaluate ܣሺ0ሻ: ቄΦ൫ܽଵሺ0ሻ൯,Φ൫ܽଶሺ0ሻ൯, … ,Φ ቀܽఓሺ0ሻቁቅ 

where Φ൫ܽሺ0ሻ൯ ൌ ܳ൫ईሺ0ሻ൯ 

while not ߡ൫ܣሺ݃ሻ൯ do 

 Recombine strategy parameters: ݏ
ᇱ ሺ݃ሻ ൌ ,ሺ݃ሻ൯ܣ௦ᇱ൫ݎ ݇ ൌ 1, 2, … ,  ߣ

 Recombine objective parameters: ई
ᇱ ሺ݃ሻ ൌ ,ሺ݃ሻ൯ܣᇱ൫ݎ ݇ ൌ 1, 2, … ,  ߣ

 Mutate strategy parameters: ݏ
ᇱᇱሺ݃ሻ ൌ ݉௦

ᇱ ൫ݏ
ᇱ ሺ݃ሻ൯, ݇ ൌ 1, 2, … ,  ߣ
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 Mutate objective parameters: ई
ᇱᇱሺ݃ሻ ൌ ݉

ᇱ ൫ई
ᇱ ሺ݃ሻ, ݏ

ᇱᇱሺ݃ሻ൯, ݇ ൌ 1, 2, … ,  ߣ

 Evaluate ܲᇱᇱሺ݃ሻ ൌ ሺܽ
ᇱᇱሺ݃ሻ, ݇ ൌ 1, 2, … , ሻ, where ܽߣ

ᇱᇱሺ݃ሻ ൌ ൫ई
ᇱᇱሺ݃ሻ, ݏ

ᇱᇱሺ݃ሻ൯: 

 ൛Φ൫ܽଵ
ᇱᇱሺ݃ሻ൯,Φ൫ܽଶ

ᇱᇱሺ݃ሻ൯, … ,Φ൫ܽఒ
ᇱᇱሺ݃ሻ൯ൟ, where Φ൫ܽ

ᇱᇱሺ݃ሻ൯ ൌ ܳ൫ई
ᇱᇱሺ݃ሻ൯ 

Select: ܣሺ݃  1ሻ ൌ if ሺߤ, ሺ݃ሻܣሺఓାఒሻ൫ݏ ᇱᇱሺ݃ሻ൯ elseܣሺఓ,ఒሻ൫ݏ ሻ-selection thenߣ ∪  ᇱᇱሺ݃ሻ൯ܣ

Set ݃ ൌ ݃  1 

end while 

Algorithm A5 (Covariance matrix adaption evolution strategy) 

Input: objective function ܳሺईሻ, abort criteria ࣛ, start distribution mean ݉ ∈ ܺ ⊆ Թ, and start 

step size ߪ ∈ Թା 

Start: Set parameters ݓ ,ߤ ,ߣ	ሺ݇ ൌ 1, 2, … ,  ܿଵ, and ܿఓ to their default values according	 ܿఙ,	 ሻ,ߤ

to Table A1. 

 Set ݉ ൌ ݉, ߪ ൌ ఙݍ ,ߪ ൌ ݍ ,0 ൌ ܥ ,0 ൌ ݃ and ,ܫ ൌ 0. 

Iteration: 

1. Mutation to generate new offspring: 

Perform an eigendecomposition of the covariance matrix ܥ ൌ  where the ,ܤଶܦܤ

columns of ܤ are an orthonormal basis of eigenvectors and the diagonal elements of 

the diagonal matrix ܦ are the square roots of the corresponding eigenvalues. 

Evaluate ई ൌ ݉  ݖ , whereݖ ൌ ,ሺ0ࣨܦܤߪ  .ሻܫ

2. Selection of the ߤ best individuals such as ܳሺईଵ:ఒሻ  ܳሺईଶ:ఒሻ  ⋯  ܳ൫ईఓ:ఒ൯. 

3. Recombination of the ߤ best individuals 

Set ݉ௗ ൌ ݉ and ݉ ൌ ∑ ई:ఒݓ
ఓ
ୀଵ . 

4. Step size control: 

Calculate evolution path ݍఙ ൌ ሺ1 െ ܿఙሻݍఙ  ඥܿఙሺ2 െ ܿఙሻߤ ⋅ ܥ
ି
భ
మ ⋅ ቀ

ି

ఙ
ቁ. 

Set ߪௗ ൌ ߪ and ߪ ൌ ௗߪ exp ቆ

ௗ
ቀ

‖‖

ாሺ‖ேሺ,ூሻ‖ሻ
െ 1ቁቇ,  

where ܧሺ‖ܰሺ0, ሻ‖ሻܫ ൌ √݊ ቀ1 െ
ଵ

ସ


ଵ

ଶଵమ
ቁ. 

5. Covariance matrix adaptation: 

Calculate evolution path ݍ ൌ ሺ1 െ ܿሻݍ  ݄ఙඥܿሺ2 െ ܿሻߤ ⋅ ቀ
ି

ఙ
ቁ. 

Set 

ܥ ൌ ൫1 െ ܿଵ െ ܿఓ൯ܥ  ܿଵሺݍݍ௧  ሻܥሺ݄ఙሻߜ  ܿఓ ݓ ൬
ई:ఒ െ ݉ௗ

ௗߪ
൰ ൬
ई:ఒ െ ݉ௗ

ௗߪ
൰
௧
,

ఓ

ୀଵ

 

where 

݄ఙ ൌ ቐ
1 if

‖ఙݍ‖

ඥ1 െ ሺ1 െ ܿఙሻଶሺାଵሻ
൏ ሺ1.4 

2
݊  1

,ሺ‖ܰሺ0ܧ ሻ‖ሻܫ

0 																	otherwise																																																														
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ሺ݄ఙሻߜ ൌ ሺ1 െ ݄ఙሻܿሺ2 െ ܿሻ 

Stop: If at least one of the abort criteria ࣵ ∈ ࣛ is fulfilled. 

The default values for the exogenous strategy parameters of the algorithm are given in the 

following table. 

Table A1: Default exogenous strategy parameters (Hansen 2009) 

Parameter Value 

	ߣ 4  3ہ ݈݊ሺ݊ሻۂ

	ߤ ۂ2/ߣہ

	ݓ

݈݊ሺ2/ߣ  0.5ሻ െ ݈݊ሺ݇ሻ

∑ ሺ݈݊ሺ2/ߣ  0.5ሻ െ ݈݊ሺ݆ሻሻఓ
ୀଵ

݇ ൌ 1, 2, … , ߤ

ܿఙ	
ߤ  2

݊  ߤ  5

݀ఙ	 1  ݔ2݉ܽ ቌ0,ඨ
ߤ െ 1
݊  1

െ 1ቍ  ܿఙ	

ܿ	
4  ݊/ߤ

݊  4  ݊/ߤ2

ܿଵ	
2

ሺ݊  1.3ሻଶ  ߤ

ܿఓ	 ݉݅݊൮1 െ ܿଵ,
ߤ2 െ 4  2

ߤ
ሺ݊  2ሻଶ  ߤ

൲

Algorithm A6 (Hybrid algorithm) 

Input: objective function ܳሺईሻ, abort criteria ࣛ, method specific parameters 

Start: Set ݃ ൌ 0 and initialize ܣሺ0ሻ ൌ ൛ܽଵሺ0ሻ, ܽଶሺ0ሻ, … , ܽఓሺ0ሻൟ ∈ ఓ where ܽܫ ൌ ሺई,  ሻݏ

  with ݏ ൌ ൫ߪ, ݉ , ∀݅ ൌ 1, 2, … , ݊, ∀݆ ൌ 1, 2, … , ݊ሺ݊ െ 1ሻ 2⁄ ൯  

  or ݏ ൌ ሺߪ, ∀݅ ൌ 1, 2, … , ݊, ሻ. 

  Evaluate ܣሺ0ሻ: ቄΦ൫ܽଵሺ0ሻ൯,Φ൫ܽଶሺ0ሻ൯, … ,Φ ቀܽఓሺ0ሻቁቅ where Φ൫ܽሺ0ሻ൯ ൌ ܳ൫ईሺ0ሻ൯ 

  and ईሺ0ሻ with ܳ൫ईሺ0ሻ൯  ܳ൫ईሺ0ሻ൯	∀݇ ൌ 1, 2, … ,  .ߤ

Diversification: 
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while not ܵ1 or ܵ2 or ܵ3 do 

 Recombine strategy parameters: ݏ
ᇱ ሺ݃ሻ ൌ ,ሺ݃ሻ൯ܣ௦ᇱ൫ݎ ݇ ൌ 1, 2, … ,  ߣ

 Recombine objective parameters: ݔ
ᇱ ሺ݃ሻ ൌ ,ሺ݃ሻ൯ܣᇱ൫ݎ ݇ ൌ 1, 2, … ,  ߣ

 Mutate strategy parameters: ݏ
ᇱᇱሺ݃ሻ ൌ ݉௦

ᇱ ൫ݏ
ᇱ ሺ݃ሻ൯, ݇ ൌ 1, 2, … ,  ߣ

 Mutate objective parameters: ई
ᇱᇱሺ݃ሻ ൌ ݉

ᇱ ൫ई
ᇱ ሺ݃ሻ, ݏ

ᇱᇱሺ݃ሻ൯, ݇ ൌ 1, 2, … ,  ߣ

 Evaluate ܣᇱᇱሺݐሻ ൌ ሺܽ
ᇱᇱሺ݃ሻ, ݇ ൌ 1, 2, … , ሻ, where ܽߣ

ᇱᇱ ൌ ൫ई
ᇱᇱሺ݃ሻ, ݏ

ᇱᇱሺ݃ሻ൯: 

 ൛Φ൫ܽଵ
ᇱᇱሺ݃ሻ൯,Φ൫ܽଶ

ᇱᇱሺ݃ሻ൯, … ,Φ൫ܽఒ
ᇱᇱሺ݃ሻ൯ൟ, where Φ൫ܽ

ᇱᇱሺ݃ሻ൯ ൌ ܳ൫ई
ᇱᇱሺ݃ሻ൯ 

  Select: ܣሺ݃  1ሻ ൌ if ሺߤ, ሺ݃ሻܣሺఓାఒሻ൫ݏ ᇱᇱሺ݃ሻ൯ elseܣሺఓ,ఒሻ൫ݏ ሻ-selection thenߣ ∪  ᇱᇱሺ݃ሻ൯ܣ

  Evaluate ईሺ݃  1ሻ with ܳ൫ईሺ݃  1ሻ൯  ܳ൫ईሺ݃  1ሻ൯	∀݇ ൌ 1, 2, … ,  .ߤ

  Set ݃ ൌ ݃  1 

end while 

Intensification: 

 Perform A1 Algorithms 

Algorithm A1 or Algorithm A2 with the start value ई ൌ ईሺ݃  1ሻ. 

In the same manner CMAES of Algorithm A5 can be used in the diversification phase. 

Algorithm A7 (Gillespie’s direct method) 

1. Set the initial numbers of molecules and set ݐ ൌ 0. 

2. Calculate the hazard function ݄ for all ݆. 

3. Choose the reaction ܴ randomly with the probabilities ݄ ∑ ݄⁄  

4. Generate the time ߬~ݔܧ൫∑ ݄ ൯ when reaction ܴ occurs. 

5. Update the number of molecules affected by reaction ܴ. 

6. If ݐ ൌ ܶ௫, stop; otherwise, set ݐ ൌ ݐ  ߬ and go to step 2. 

Algorithm A8 (First reaction method) 

1. Set the initial numbers of molecules and set ݐ ൌ 0. 

2. Calculate the hazard function ݄ for all ݆. 

3. Generate a putative time ߬~ݔܧ൫ ݄൯ for all ݆. 

4. Let ܴ the reaction whose putative time ߬ is the smallest. 

5. Update the number of molecules affected by reaction ܴ. 

6. If ݐ ൌ ܶ௫, stop; otherwise, set ݐ ൌ ݐ  ߬ and go to step 2. 
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A2 CONNECTOR VARIABLES OF THE PNLIB 

Table A2: Variables of the PNlib connectors. Orange variables are only part of discrete communications while blue variables are only part of 
continuous communications 

 

PlaceOut TransitionIn TransitionOut PlaceIn 
INPUT INPUT INPUT INPUT 

Bool active Real t Real t Bool active 
Are the output transitions active? Markings of input places Markings of output places Are the input transitions active? 
Bool fire Integer tint Integer tint Bool fire 
Do the output transitions fire? Integer markings of input places Integer markings of output places Do the input transitions fire?
Real arcWeight Real minTokens Real maxTokens Real arcWeight 
Weights of output arcs Minimum capacites of input places Maximum capacities of output places Weights of input arcs
Integer arcWeightint Integer minTokensint Integer maxTokensint Integer arcWeightInt 
Integer weights of output arcs Integer minimum capacites of input 

places 
Integer maximum capacites of input 
places 

Integer weights of input arcs

Bool disTransition Bool enable Bool enable Bool disTransition 
Types of output transitions 
(discrete/stochastic or continuous) 

Is the transition enabled by input places? Is the transition enabled by output 
places? 

Types of input transitions 
(discrete/stochastic or continuous) 

Real instSpeed Bool tokenInOut Bool disPlace Bool enabledByInPlaces 
Instantaneous speeds of continuous 
output transitions 

Do the input places have a discrete token 
change? 

Types of output places (discrete or 
continuous) 

Are the input transitions enabled by all 
their input places?

Real prelimSpeed Integer arcType Bool emptied Real instSpeed 
Preliminary speeds of continuous output 
transitions 

Types of input arcs (normal, test, 
inhibition, or read) 

Are the continuous output places 
emptied? 

Instantaneous speeds of continuous input 
transitions 

Real maxSpeed Bool disPlace Real decreasingFactor Real prelimSpeed 
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Maximum speeds of continuous output 
transitions 

Types of input places (discrete or 
continuous) 

Factors of continuous output places for 
decreasing the speed 

Preliminary speeds of continuous input 
transitions

 Real testValue Real speedSum Real maxSpeed 
Test values of test or inhibitor arcs Output speeds of continuous output places Maximum speeds of continuous input 

transitions
Integer testValueint   
Integer test values of test or inhibitor arcs 
Integer normalArc 
Double arc: test and normal arc or 
inhibitor and normal arc 
Bool fed 
Are the continuous input places fed? 
Real decreasingFactor 
Factors of continuous input places for 
decreasing the speed 
Real speedSum 
Input speeds of continuous input places 

OUTPUT OUTPUT OUTPUT OUTPUT
Real t Bool active Bool active Real t 
Marking of the place Is the transition active? Is the transition active? Marking of the place
Integer tint Bool fire Bool fire Integer tint 
Integer marking of the place Does the transition fire? Does the transition fire? Integer marking of the place
Real minTokens Real arcWeight Real arcWeight Real maxTokens 
Minimum capacity of the place Weights of input arcs Weights of output arcs Maximum capacity of the place
Integer minTokensint Integer arcWeightint Integer arcWeightint Integer maxTokensint 
Integer minimum capacity of the place Integer weights of input arcs Integer weights of output arcs Integer maximum capacity of the place 
Bool enable Bool disTransition Bool disTransition Bool enable 
Which of the output transitions are 
enabled by the place? 

Type of the transition (discrete/stochastic 
or continuous) 

Type of the transition (discrete/stochastic 
or continuous) 

Which of the input transitions are enabled 
by the place?

Bool tokenInOut Real instSpeed Bool enabledByInPlaces Bool disPlace 
Does the place have a discrete token 
change? 

Instantaneous speed of a continuous 
transition 

Is the transition enabled by all input 
places? 

Type of the place (discrete or continuous) 

Integer arcType Real prelimSpeed Real instSpeed Bool emptied 
Types of output arcs (normal, test, 
inhibition, or read) 

Preliminary speed of a continuous  
transition 

Instantaneous speed of a continuous 
transition 

Is the continuous place emptied by output 
transitions? 

Bool disPlace Real maxSpeed Real prelimSpeed Real decreasingFactor 
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Type of the place (discrete or 
continuous) 

Maximum speed of a continuous 
transition 

Preliminary speed of a continuous 
transition 

Factor for decreasing the speed of 
continuous input transitions

Real testValue  Real maxSpeed Real speedSum 
Test values of test or inhibitor arcs Maximum speed of a continuous 

transition
Output speed of a continuous place 

Integer testValueint   
Integer test values of test or inhibitor 
arcs 
Integer normalArc 
Double arc: test and normal arc or 
inhibitor and normal arc 
Bool fed 
Is the continuous place fed by input 
transitions? 
Real decreasingFactor 
Factor for decreasing the speed of 
continuous output transitions 
Real speedSum 
Input speed of a continuous place 
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A3 SUPPLEMENTS TO THE AMMOD-TOOL 

A3-1 PRA 

Curve Fitting ToolboxTM of Matlab (MathWorks 2011) has the ability to smooth the 

experimental data as described in Section 5.1. This can be done by the prompt 

[cfun,gof,output] = fit(t,ymsd,'smoothingspline') 

called from within a Matlab procedure, whereby the vector ݐ comprises the time points and 

 the corresponding measurements. The approximated data and the corresponding ݀ݏ݉ݕ

derivative can then be obtained by the prompts 

y = feval(cfun,t); 

dydt = differentiate(cfun,t); 

Another possibility is to perform the fitting through a GUI opened by the prompt cftool. 

After preprocessing the data with smoothing splines, functional relationships between the 

considered biological compounds and their reaction rates can be analyzed. Thereby, the 

smoothed reaction rates are derived from the first derivations of the smoothing splines. The 

RA can also be performed with Curve Fitting ToolboxTM in Matlab by comparing two data 

vectors obtained from smoothing with each other. Thereby, the entries of these vectors have 

to refer to the same points in time. One vector is chosen to be the X Data and the other is 

assigned to the Y Data. Afterwards, the relationship between these two data vectors is 

analyzed by creating a fit. Several equation types are available to find a function which 

describes the relationship; custom equations can be defined, too. 

A3-2 PESA 

To use the PESA-option on the main menu of the AMMod-tool, the experimental data have to 

be prepared in an Excel map. One sheet of this Excel map has to contain the initial conditions 

of the experiments; the structure is shown in Table A3. The example comprises data of five 

fermentation experiments with changing initial nitrogen ሺܰ0ሻ and glucose ሺܵ0ሻ 

concentrations. The first column sheet determines the Excel sheet with the experimental data 
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which correspond to the initial conditions ܰ0 and ܵ0 and the second column weight defines 

the sheet with the weights of each data point. If the word “no” is entered in the weight 

column, all data points are weighted equally. The columns after these two columns comprise 

the initial conditions. 

Table A3: Excel sheet with the initial conditions of experiments 

sheet weight N0 S0 

data1 W1 0.13 35
data2 W2 0.25 30
data3 W3 0.28 45
data4 W4 0.28 20
data5 W5 0.12 30

The sheets with the experimental data have to be structured as shown in Table A4. The first 

column comprises the points in time when the studied substances have been measured. The 

following columns contain the measured values of these substances: glucose ሺܵሻ, oxygen 

ሺܱ2ሻ, xanthan ሺܲሻ, nitrogen ሺܰሻ, and biomass ሺܺሻ. 

Table A4: Excel sheet with an experimental data set 

time S O2 P N X 

0.00 35.00 2.00E-04 0.10 0.13 0.10 
5.50 34.45 1.87E-04 0.28 0.12 0.13 
15.00 33.06 1.77E-04 0.75 0.11 0.22 
30.00 29.10 1.91E-04 2.11 0.07 0.44 
40.00 25.02 1.88E-04 3.61 0.04 0.64 
50.00 20.33 1.86E-04 5.53 0.02 0.79 
60.00 15.65 1.85E-04 7.67 0.00 0.86 
70.00 11.10 1.84E-04 9.88 0.00 0.88 
80.00 6.61 1.84E-04 12.10 0.00 0.89 
90.00 2.13 1.84E-04 14.32 0.00 0.89 
100.00 0.00 1.83E-04 15.38 0.00 0.89 

The weights are entered in a separate sheet in the form of a matrix shown in Table A5. In this 

example, the weights are the reciprocal of the quadratic maximum amount of each substance. 

Table A5: Excel sheet with a weight matrix which comprises a weight for each data point 

8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
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8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 
8.16E-04 2.50E+07 4.23E-03 59.17 1.26 

It should be noted that all mentioned sheets have to be provided within one Excel map. 

Settings that have to be made on the PESA GUI: 

 Simulink Model: Select the Simulink model which corresponds to the Modelica model 

whose parameters should be estimated or for which a sensitivity analysis should be 

performed. 

 Dymola Block: Name of the Dymola block in the Simulink model. 

 Input File: Select the text file that contains the inputs of the Modelica model. 

 Data File: Select the Excel file with the experimental data structured as mentioned above. 

 Initial Sheet: Select the name of the Excel sheet with the initial conditions. 

 Method: Select an optimization algorithm of those introduced in Section 3.2: 

 Hooke-Jeeves 

 Nelder-Mead 

 DIRECT 

 ES 

 CMAES 

 Hybrid 

or a sensitivity analysis method from those introduced in Section 3.3: 

 Local 

 FAST 

 eFAST 

 Method Parameters: When a PE or SA method is chosen, the respective method-specific 

parameters appear and can be set. 

 Abort Criteria: When a PE or SA method is chosen, the respective method-specific abort 

criteria appear and can be set. 

 Objective Function: One of the objective functions in Eq. 5-11 to Eq. 5-14 can be 

chosen. 

 Model Parameters: If the settings above have been made, the parameters of the model 

can be loaded to the GUI by clicking load parameters. Afterwards, the parameters which 

should be optimized can be selected. Additionally, a minimum and a maximum value can 
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be determined for each parameter. Local PE and SA methods require a start value which 

can be also entered into the GUI. All these values can also be loaded from an Excel file by 

clicking load start, load min, and load max, respectively. Then an Excel file has to be 

chosen from a dialog, the selected Excel file appears, and the respective values can be 

marked. Thereby, the first column has to contain the parameter names and the second the 

respective values. Afterwards, the selection is confirmed by clicking OK and the values 

appear in the GUI. 

 scale: If the scale option is chosen, the parameters are scaled for the optimization to the 

interval ሾ0,1ሿ by the defined minimum and maximum values. For the simulation, the 

parameters are then re-scaled by the equation 

 START: Starts the PE or SA method. 

 STOP: Stops the PE or SA method when the current iteration is finished. 

A4 SUPPLEMENTS TO THE APPLICATION 

A4-1 PSEUDO EXPERIMENTAL DATA 

Table A6: Data set 1 of the unstructured model in Figure 7.7 

time S O2 P N X 

0.00 35.00000 0.00020 0.10000 0.13000 0.10000 
5.50 34.44110 0.00019 0.29307 0.12458 0.13294 
15.00 33.01345 0.00018 0.78760 0.11079 0.21665 
30.00 28.91399 0.00019 2.24482 0.07318 0.44510 
40.00 24.62684 0.00019 3.89286 0.04041 0.64410 
50.00 19.57404 0.00019 6.08707 0.01514 0.79756 
60.00 14.40804 0.00018 8.60533 0.00388 0.86592 
70.00 9.31151 0.00018 11.23984 0.00074 0.88501 
80.00 4.25147 0.00018 13.90244 0.00011 0.88882 
90.00 0.00000 0.00018 16.14781 0.00002 0.88938 
100.00 0.00000 0.00018 16.14781 0.00002 0.88938 

௦ ൌ   ሺ௨ െ ሻ ⋅ .௧ Eq. A1 
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Table A7: Data set 2 of the unstructured model in Figure 7.7 

time S O2 P N X 

0.00 30.00000 0.00020 0.10000 0.25000 0.10000 
5.50 28.99639 0.00017 0.34012 0.23461 0.19347 
10.00 27.51758 0.00015 0.69549 0.21201 0.33071 
12.00 26.56968 0.00014 0.92532 0.19763 0.41803 
15.00 24.70132 0.00011 1.38626 0.16971 0.58761 
18.00 22.21479 0.00008 2.02528 0.13390 0.80507 
20.00 20.22229 0.00006 2.56898 0.10688 0.96916 
25.00 14.61558 0.00016 4.35065 0.04420 1.34984 
30.00 9.25877 0.00017 6.56417 0.01142 1.54887 
40.00 0.00000 0.00017 11.24895 0.00034 1.61618 
50.00 0.00000 0.00017 11.24895 0.00034 1.61618 

Table A8: Data set 3 of the unstructured model in Figure 7.7 

time S O2 P N X 

0.00 45.00000 0.00020 0.10000 0.28000 0.10000 
5.50 44.53396 0.00019 0.28194 0.27660 0.12065 
15.00 43.43544 0.00018 0.69702 0.26785 0.17378 
30.00 40.19073 0.00019 1.83474 0.23731 0.35927 
40.00 35.50434 0.00018 3.33845 0.18575 0.67236 
50.00 26.27887 0.00017 6.26821 0.08257 1.29897 
60.00 14.64387 0.00017 11.02104 0.00849 1.74890 
70.00 4.20827 0.00017 16.38084 0.00022 1.79912 
80.00 0.00000 0.00017 18.60166 0.00004 1.80022 
90.00 0.00000 0.00017 18.60166 0.00004 1.80022 
100.00 0.00000 0.00017 18.60166 0.00004 1.80022 

Table A9: Data set 4 of the unstructured model in Figure 7.7 

time S O2 P N X 

0.00 20.00000 0.00020 0.10000 0.28000 0.10000 
5.50 18.29181 0.00015 0.40994 0.24855 0.29097 
10.00 14.94226 0.00008 1.04803 0.18850 0.65569 
12.00 12.60940 0.00004 1.52990 0.14865 0.89766 
15.00 8.35287 0.00000 2.54730 0.08328 1.29469 
18.00 4.10522 0.00000 3.87824 0.03478 1.58922 
20.00 1.56199 0.00000 4.87668 0.01643 1.70063 
25.00 0.00000 0.00016 5.57023 0.00943 1.74317 
30.00 0.00000 0.00017 5.57023 0.00943 1.74317 
40.00 0.00000 0.00017 5.57023 0.00943 1.74317 
50.00 0.00000 0.00017 5.57023 0.00943 1.74317 
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Table A10: Data set 5 of the unstructured model in Figure 7.7 

time S O2 P N X 

0.00 30.00000 0.00020 0.10000 0.12000 0.10000 
5.50 29.37397 0.00019 0.30067 0.11310 0.14193 
15.00 27.66680 0.00017 0.85827 0.09482 0.25293 
30.00 22.70978 0.00019 2.61081 0.04881 0.53232 
40.00 18.11011 0.00019 4.49995 0.02007 0.70690 
50.00 13.28085 0.00019 6.77984 0.00560 0.79472 
60.00 8.51452 0.00019 9.21539 0.00117 0.82168 
70.00 3.79404 0.00019 11.69204 0.00019 0.82759 
80.00 0.00000 0.00018 13.69445 0.00004 0.82852 
90.00 0.00000 0.00018 13.69445 0.00004 0.82852 
100.00 0.00000 0.00018 13.69445 0.00004 0.82852 

Table A11: Weightings of data points for PE of the unstructured model in Figure 7.7 

Data Set S O2 P N X 

1 0.00082 25000000 0.00384 59.17160 1.26423 
2 0.00111 25000000 0.00790 16.00000 0.38284 
3 0.00049 25000000 0.00289 12.75510 0.30857 
4 0.00250 25000000 0.03223 12.75510 0.32909 
5 0.00111 25000000 0.00533 69.44444 1.45677 

A4-2 METHOD-SPECIFIC PARAMETERS 

Table A12: Settings of the PE methods for the unstructured model in Figure 7.7 

Method Parameters 

ES 
ߣ ൌ ߤ ,35 ൌ ாௌߝ ,5 ൌ 10ି, ݃௫ ൌ
1000

CMAES ߝொௌ ൌ 10ି଼, ݃௫ ൌ 1500  

Hybrid1 
(ES+Nelder-Mead simplex method) 

ߣ ൌ ߤ ,35 ൌ 5, ݃௫, ൌ 1000, 
݃௫, ൌ ாௌߝ ,3000 ൌ 10ି଼, 
ுߩ ൌ 0.01  

Hybrid2 
(ES+Hooke-Jeeves method) 

ߣ ൌ ߤ ,35 ൌ 5, ݃௫, ൌ 1000, 
݃௫, ൌ ாௌߝ ,1000 ൌ 10ି଼, 
ுߩ ൌ ுߩ ,0.01 ൌ ுߝ ,0.7 ൌ 10ି  

Hybrid3 
(CMAES+Nelder-Mead simplex method) 

݃௫, ൌ 1500, ݃௫, ൌ 3000, 
ொௌߝ ൌ ுߩ ,10ି଼ ൌ 0.001  

Hybrid4 
(CMAES+Hooke-Jeeves method) 

݃௫, ൌ 1500, ݃௫, ൌ 1000, 
ொௌߝ ൌ ுߩ ,10ି଼ ൌ ுߩ ,0.001 ൌ 0.7, 
ுߝ ൌ 10ି  
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DIRECT ߝ ൌ 0.0001, ݃௫ ൌ 250  

Table A13: Settings of the PO methods for the metabolically structured model in Figure 7.12 

Method Parameters 

ES 
ߣ ൌ ߤ ,28 ൌ ாௌߝ ,4 ൌ 10ିହ, ݃௫ ൌ
500

CMAES ߝொௌ ൌ 10ିହ, ݃௫ ൌ 500  

Hybrid1 
(ES+Nelder-Mead simplex method) 

ߣ ൌ ߤ ,28 ൌ 4, ݃௫, ൌ 500, 
݃௫, ൌ ாௌߝ ,2000 ൌ 10ିହ, 
ுߩ ൌ 0.01

Hybrid2 
(ES+Hooke-Jeeves method) 

ߣ ൌ ߤ ,28 ൌ 4, ݃௫, ൌ 500, 
݃௫, ൌ ாௌߝ ,500 ൌ 10ିହ, ߩு ൌ
ுߩ ,0.01 ൌ ுߝ ,0.7 ൌ 10ି  

Hybrid3 
(CMAES+Nelder-Mead simplex method) 

݃௫, ൌ 500, ݃௫, ൌ 2000, 
ொௌߝ ൌ 10ିହ, ߩு ൌ 0.001  

Hybrid4 
(CMAES+Hooke-Jeeves method) 

݃௫, ൌ 500, ݃௫, ൌ 500, 
ொௌߝ ൌ 10ିହ, ߩு ൌ ுߩ ,0.001 ൌ 0.7, 
ுߝ ൌ 10ି  

DIRECT ߝ ൌ 10ିସ, ݃௫ ൌ 250  

Table A14: Adapted settings of the PO methods for the modified metabolically structured 
model in Figure 7.12 

Method Parameters 

ES ߣ ൌ ߤ ,35 ൌ 5 , ݃௫ ൌ 1000  

CMAES ݃௫ ൌ 2000

Hybrid1 
(ES+Nelder-Mead simplex method) 

ߣ ൌ ߤ ,35 ൌ 5, ݃௫, ൌ 100, 
݃௫, ൌ 3000  

Hybrid2 
(ES+Hooke-Jeeves method) 

ߣ ൌ ߤ ,35 ൌ 5, ݃௫, ൌ 1000  

Hybrid3 
(CMAES+Nelder-Mead simplex method) 

݃௫, ൌ 2000, ݃௫, ൌ 3000, 
ுߩ ൌ 0.0001  

Hybrid4 
(CMAES+Hooke-Jeeves method) 

݃௫, ൌ ுߩ , ,1000 ൌ 0.0001 

DIRECT - 
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A4-3 COMPONENTS AND PARAMETERS OF THE MODELS 

Table A15:Components of the metabolically structured model in Figure 7.12 

Name Type Description Properties 

ܰ 
Continuous 
place 

Nitrogen 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ ܰ0  
(Initial nitrogen concentration) 

ܺ 
Continuous 
place 

Biomass 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ 0.1  
(Initial biomass concentration) 

ܵ 
Continuous 
place 

Glucose 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ ܵ0  
(Initial glucose concentration) 

 ܲܶܣ
Continuous 
place 

ATP 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ 1  
(Initial ATP concentration) 

ܲ 
Continuous 
place 

Xanthan 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ 0.1  
(Initial xanthan concentration) 

 2ܱܥ
Continuous 
place 

CO2 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ 0  
(Initial CO2 concentration) 

 ݂ܥ
Continuous 
place 

Cofactor 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ 1  
(Initial cofactor concentration) 

ܱ2 
Continuous 
place 

O2 
concentration 

ݏ݇ݎܽܯݐݎܽݐݏ ൌ ܱ2∗  
(Initial oxygen concentration) 

ܶܺ 
Continuous 
transition 

Biomass 
production 
from nitrogen, 
glucose, and 
oxygen 
according to 
Eq. 7-28 

inputs: ܰ, ܵ, ܱ2 
outputs: ܺ 
maximum speed: 

௫ݎ ൌ ݔܽ݉ߤ ⋅ ܺ ⋅ ܰ ⋅ ൬1 െ
ܵ

ܵ௫	
൰ ⋅ ቆ1 െ

ߤ
,௫ߤ

ቇ 

input arc weights: 

൬
1

ܻே
,
1

ܻௌ
,
1

ܻை
൰ 

output arc weights: 
ሺ1ሻ 

ܶ1 
Continuous 
transition 

Xanthan 
production 
from glucose 

inputs: ܵ, 2ܱ ,ܲܶܣ 
outputs: ܲ, 2ܱܥ ,݂ܥ 
maximum speed: 

ଵݎ ൌ ൬
1  4 ்ܻ

3.58  4 ்ܻ
൰ ସݎ ൬1 െ

ܰ

	ݔܽ݉ܰ

൰ 

input arc weights: 
ሺ5.49 ⋅ 180, 10.89, 0.3ሻ 
output arc weights: 
ሺ923.2, 3.58, 0.6ሻ 

ܶ2 
Continuous 
transition 

Glucose 
catabolism 

inputs: ܵ 
outputs: 2ܱܥ ,݂ܥ ,ܲܶܣ 
maximum speed: 

ଶݎ ൌ
1
12

൭1 െ 3.58 ൬
1  4 ்ܻ

3.58  4 ்ܻ
൰൱  ସݎ

input arc weights: 
ሺ180ሻ 
output arc weights: 
ሺ3, 12, 6ሻ
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ܶ3 
Continuous 
transition 

Maintenance 
energy 

inputs: ܲܶܣ 
outputs: - 
maximum speed: 
ଷݎ ൌ ሺ ்ܻ െ 10.89ሻݎଵ 
input arc weights: 
ሺ1ሻ 
output arc weights: 
- 

ܶ4 
Continuous 
transition 

Oxidative 
phosphory-
lation 

Inputs: 2ܱ ,݂ܥ 
Outputs: ܲܶܣ 
maximum speed: 
ସݎ ൌ ݇ସ ⋅ ܱଶ ⋅ ܺ 
input arc weights: 
ሺ1, 1ሻ 
output arc weights: 
൫ ்ܻ൯ 

்ܻ ൌ ݇ସ
ᇱ ⋅ ܱଶ 

ܱܶ 
Continuous 
transition 

Oxygen mass 
transfer 
 

Inputs: - 
Outputs: ܱ2 
maximum speed: 
ை்ோݎ ൌ ݇ܽ ⋅ ሺܱଶ

∗ െ ܱଶሻ 
input arc weights: 
- 
output arc weights: 
ሺ1ሻ 
݇ܽ ൌ 3.08 ⋅ 10ିଷ ⋅ ௦ܸ

.ସଷ ⋅ ܴଵ.ହ ⋅ ߤ
ି.ଷଽ 

 ݎ݁ݐ݊݁݉ݎ݁ܨ
Fermenter 
wrapper 

Mode of 
fermentation 
Section 6.2 

Inputs: - 
Outputs: ܰ, ܵ 
Parameters: 
	݁݀݉ ൌ 	repeated	batch	fixed	feeding	number
	ݐݎܽݐݏܸ ൌ 	4 (start volume) 
	݀݀ܽܥ ൌ 	 ሼܰܽ݀݀, ܵܽ݀݀ሽ (substrate concentration 
in volume addition) 
݊	 ൌ 	1 (number of feedings) 
ݏ݂݁݉݅ܶ݃݊݅݀݁݁ ൌ ሼ݂ݐሽ (feeding point in time) 
ܸܽ݀݀ ൌ 1 (volume addition) 

 ݏݐݑ݊ܫ
Inputs 
wrapper 

Wrapper for 
the input 
factors stirrer 
speed (R), 
temperature 
(T), and gas 
flow (Vs) 

 

ܴ 
Steps 
wrapper 

Speed of the 
stirrer 

Parameters: 
ݐ݁ݏ݂݂ ൌ 3.3 (initial stirrer speed) 
ݏ݁ݐܵ݊ ൌ 2 (number of steps) 
ݏݐ݊݅ܲ݁݉݅ݐ ൌ ሼ22.5, 25ሽ (times when the stirrer 
speed is increased) 
ݏݐ݄݄݃݅݁ ൌ ሼ4.2, 1.7ሽ (increase of stirrer speed) 
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ܶ 
Step 
wrapper 

Temperature 
of the 
fermenter 

Parameters: 
ݐ݁ݏ݂݂ ൌ  (initial temperature) 0݉݁ݐ
݁݉݅ܶݐݎܽݐݏ ൌ  time when the temperature is) ݐݐ
increased) 
ݐ݄݄݃݅݁ ൌ (increase of temperature) ݐ݄݃݅݁ܪ݉݁ݐ

 ݏܸ
Constant 
wrapper 

Gas flow Parameters: 
݇ ൌ 0.001 (constant gas flow rate) 

Table A16:Parameters of the metabolically structured model in Figure 7.12 

Parameter Description Value 

ܻே 
Yield of biomass from 
nitrogen 

6.073

ܻௌ 
Yield of biomass from 
glucose 

ܻௌሺܶሻ ൌ ܽௌ  ܾௌܶ 
ܽௌ ൌ 0.34, ܾௌ ൌ െ0.0061 

ܻை 

Yield of biomass from 
oxygen 

ܻைሺܶሻ ൌ ቄܥଵ,ை൫ܶ െ ܶ,ை൯

⋅ ቂ1 െ exp ቀܥଶ,ை൫ܶ െ ܶ௫,ை൯ቁቃቅ
ଶ
 

ଵ,ைܥ ൌ0.571, ܥଶ,ை ൌ-0.205, ܶ,ை ൌ
24.35, ܶ௫,ை ൌ 37.16 

்ܻ 
Consumption of ATP for 
Xanthan 

34

݇ସ 

Rate constant of maximum 
speed for transition ସܶ 

݇ସሺܶሻ ൌ ቄܥଵ,ସ൫ܶ െ ܶ,ସ൯

⋅ ቂ1 െ exp ቀܥଶ,ସ൫ܶ െ ܶ௫,ସ൯ቁቃቅ
ଶ
 

ଵ,ସܥ ൌ0.94, ܥଶସ ൌ1.399, ܶ,ସ ൌ19.45, 

ܶ௫,ସ ൌ34.25 

݇ସ
ᇱ  

Constant for yield of ATP 
from cofactors ൫ ்ܻ൯ 

݇ସ
ᇱ ሺܶሻ ൌ ܽସ  ܾସܶ 

ܽସ ൌ െ2913, ܾସ ൌ 2048 

 ௫ߤ

Rate constant for growth 
ሺ ܶሻ 

௫ሺܶሻߤ ൌ ቄ1ܥ,ܺሺܶ െ ܶ݉݅݊,ܺሻ

⋅ ቂ1 െ exp ቀ2ܥ,ܺሺܶ െ ሻቁቃቅܺ,ݔܽ݉ܶ
2

 

ଵ,ܥ ൌ ଶ,ܥ ,0.0491 ൌ െ0.245, ܶ, ൌ
25, ܶ௫, ൌ 37.09 

ܱଶ
∗ 

Saturated oxygen 
concentration 

0.0002

ܽ 
Constant for viscosity 
(Eq. 7-12) 

0.08

ܾ 
Constant for viscosity 
(Eq. 7-12) 

0.3

ܵ௫ Glucose inhibition 
constant of growth 

50

ܰ௫ Nitrogen inhibition 
constant of xanthan 
production 

0.3

 ,௫ Viscosity inhibitionߤ
constant of growth 

2
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