
A Cross-Platform Data Acquisition and Transformation Approach for
Whole-Systems Experimentation – Status and Challenges

Jan Moringen, Arne Nordmann, and Sebastian Wrede∗

I. INTRODUCTION

The emerging availability of data acquisition, processing
and analysis tools as well as multi-modal data sets originating
from long-term robotics experiments facilitate collaborative
and comparative research on Human-Robot Interaction (HRI)
at the systems level. A key requirement for sharing and using
experimental data within the HRI domain (but also beyond)
is openness. Infrastructure for recording and processing
experimental data requires standardized protocols and for-
malization of the syntax and semantics of the underlying
data formats.

While these aspects can be specified explicitly for a single
system, experiment or associated framework, the develop-
ment of a more general approach for this problem would be
beneficial. Such an approach would not only allow to record
data from different sources, e.g., the various robot hard- and
software platforms but also external sensors for recording
ground truth such as eye or motion tracking devices typically
used in HRI research. Furthermore, the integration and data
processing with various analysis tools (such as Matlab, R,
or annotation tools such as ELAN [6]) would become much
easier in this case. In the following, we will briefly describe
the current state of a data recording, transformation and
processing approach that explicitly targets openness and
highlight particular challenges related to this goal.

II. A TOOLCHAIN FOR CROSS-PLATFORM DATA
ACQUISITION, TRANSFORMATION AND PROCESSING

To facilitate robotics research with repeatable trials and
interchangeable data sets, we have implemented generic
recording and data processing tools, called RSBag1. These
tools allow to record system data in the form of event
notifications on parts or all communication endpoints of a
system, inspect, transform and replay these with different
strategies. This includes replay with original and modified
speed, interactive stepping and replay as fast as possible.
Replaying this data enables the application of the data set
in the integrated system while ensuring the availability of
annotations without depending on a concrete annotation
tool. Processing data in their original format has several
benefits; for example, it allows to evaluate unchanged system
components based on the recorded data with their usual
inputs like audio and video streams while also having the
annotations available in the respective systems at runtime.

∗J. Moringen, A. Nordmann, and Sebastian Wrede are with the Research
Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Biele-
feld, Germany. jmoringe at cor-lab.uni-bielefeld.de

1The name was intentionally chosen with regard to the ROS bag tool.

Annotation

Reference
Recording

External
Recording

Reference Data

External
Data

Synchronization

Integration

View
Generation

Views Annotation

Annotations

Recording Post-Processing Export

Synchronized
External Data

Fig. 1. Schematic overview of whole-system approach for data recording.
Rounded boxes indicate performed activities, squares represent generated
data. Different workflow phases while creating the data set are indicated
through the background colors.

The time handling of all recorded event notifications in
the RSBag toolchain is possible, because timing aspects are
encoded in a generic structure which is stored alongside with
the raw data of all events, independent of the concrete pay-
load. This structure is implemented according to the Time-
Indexed Data Entries (TIDE) log file format specification
under discussion as RETF RD1. It is itself inspired by
the original Bag format, which was developed for logging
ROS messages. The TIDE format has been designed for fast
streaming of data to disc, fast playback and random access
in time of the logged data.

To acquire data from different frameworks, the cross-
platform RSB middleware [5] library is used. RSB allows to
interface natively with other frameworks such as YARP [2] or
ROS [3] to access communicated system data. Its architecture
supports this by providing dedicated extension points for
interfacing with foreign frameworks and handle different
binary encoding rules. In order to configure and select the
endpoints, RSB employs URL schemata as exemplified in
Table I. We consider encoded payloads as reference data
that is natively stored by RSBag in the TIDE log files.
Moreover, we propose that additional recording devices are
either captured directly with this middleware-based recording
system or that their data is later integrated into the TIDE
log files as shown in Figure 1 facilitating a whole-systems
approach [1] for analysis and evaluation. This integration is
also the proposed method for secondary data like annota-
tions, which are derived from the reference data.

In recent work, we proposed an approach using
model-based techniques for improving software component
reusability [4]. We specifically addressed data type com-
patibility through the development of a generic meta-model
capable of representing data types from different frameworks
and their relations. Based on this model a code generator
emits serialization code, which makes it possible to seam-
lessly reuse the existing data types of different frameworks.



TABLE I
EXEMPLARY RSB URLS USED TO CONFIGURE THE RSBAG TOOLCHAIN FOR RECORDING SYSTEM DATA IN TYPICAL ROBOTICS FRAMEWORKS.

spread://foo:9999/bar Spread daemon listening on port 9999 on host ”foo”, record all data under scope /bar.

yarp://icub Sim/cam/left Resolve port ”/icub Sim/cam/left” via YARP nameserver and connect to it using the YARP TCP
protocol. Use defaults for nameserver hostname and port.

yarp://foo:3333/icub Sim/cam/left Like previous example, but connect to YARP nameserver at port 3333 on host ”foo”.

yarp+tcp://bar:1000 Bypass YARP nameserver and directly connect to the YARP port at port number 1000 on host
”bar”.

ros+tcp://foo/bar Use ROS master to find publishers of topic ”/foo/bar” and connect to all using ROS TCP protocol.
Use default hostname and port for ROS master.

<empty string> Use all available RSB transports with respective defaults, scope /. For YARP (if enabled), connects
to all ports. For ROS (if enabled) connects to all nodes.

This feature is an essential part of the cross-platform
data recording and processing toolchain as it allows to
handle the specific payloads contained in the logged event
notifications using a generic approach. For instance, the
generated converters allow to transform payloads recorded
in a specific data type A of framework A’ to be mapped and
replayed as a semantically equivalent data type B utilized in
a framework or analysis tool B’. For example, it is easily
possible to transform different joint angle representations or
image formats to facilitate further analysis.

III. CHALLENGES

The cross-platform data logging approach introduced
above poses a number of requirements at the level of the mid-
dlewares or device drivers to be integrated. Current robotics
frameworks usually lack dedicated mechanisms for type
reflection at runtime, which we consider a major problem
for providing a cross-platform toolchain for data recording
and processing. In particular, features that allow

• unambiguous identification of the used data types,
• lookup of type definitions and further information,
• specification of type definition language and encoding

are usually missing in current robotics frameworks or are
implemented in a framework-dependent way.

For instance, probably due to YARP’s dynamically typed
data structures, this framework does not feature a data
definition language which allows type specification and refer-
encing. The RSB middleware communicates a type name but
no type definition while ROS transmits type definitions with
dependency closure, hash values, and a type name but also
lacks explicit version information. For a sustainable handling
of experimental data and to allow efficient implementation
of communication protocols, a uniform way of referencing
robot data type definitions would nevertheless be useful.

Furthermore, logging tools which need to process the data
should be able to retrieve type names, information about
the used definition language and encoding mechanisms,
type definitions including dependency closure, versions and
further aspects such as documentation at recording time to
store this information as metadata alongside the recorded
raw data. While examples like URN or URI schemata exist

to unambiguously reference type information for the sake of
cross-platform use of recorded data, we are not aware of any
toolchain or specification that implements this functionality.
A framework independent way of referencing and looking up
type definitions could also be beneficial to gather information
about the use of data types in a dedicated registry and
improve interoperability of robotics software components;
for example to provide mappings between different data
types or by adding information about these types such as
documentation, unit information, etc.

Within the presented approach, a uniform way of handling
type definitions would allow us to make full use of the
code generation approach by being able to process data from
various sources with data type definitions which where not
available at release time of the cross-platform data recording
and processing framework.

IV. CONCLUSIONS
Given the potential of a generic type referencing and han-

dling scheme and its importance for long-term applicability
of recorded experimental data, we are strongly interested
in a discussion on how to setup the development of a
framework-independent mechanism and registry for robotics
data type definitions. We believe that this would be beneficial
for the community and could be realized with only little
administrative effort, e.g., through a service provided by the
Robot Engineering Task Force.

REFERENCES

[1] Manja Lohse, Marc Hanheide, Katharina Rohlfing, and Gerhard
Sagerer. Systemic Interaction Analysis (SInA) in HRI. In Proc. Int.
Conf. Human-Robot Interaction, 2009.

[2] Giorgio Metta and Paul Fitzpatrick. YARP: yet another robot platform.
Journal on Advanced Robotics, 3(1):43–48, 2006.

[3] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an
open-source Robot Operating System. In International Conference on
Robotics and Automation, number Figure 1, 2009.

[4] J. Wienke, A. Nordmann, and S. Wrede. A Meta-Model and Toolchain
for Improved Interoperability of Robotic Frameworks. In Simulation,
Modeling, and Programming for Autonomous Robots, 2012.

[5] Johannes Wienke and Sebastian Wrede. A Middleware for Collabora-
tive Research in Experimental Robotics. In IEEE/SICE International
Symposium on System Integration (SII2011), Kyoto, Japan, 2011. IEEE.

[6] P. Wittenburg et al. Elan: a professional framework for multimodality
research. In Proc. of LREC 2006, Fifth Int. Conf. on Language
Resources and Evaluation, 2006.


