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I. INTRODUCTION

A core idea of current European robotics research3 is
that complex motor skills arise from combining adaptable
movement primitives. This is challenging not only for rea-
sons of the intrinsic complexity of the underlying control
and architectural problems, but also due to the technological
and conceptual fragmentation of the robotics domain. Our
answer to this challenge is to establish a model-driven and
domain-specific approach around domain-specific language
(DSL) technologies.

A key to handling the complexity of robotics systems is the
separation of concerns regarding the functional architecture,
and its software architecture. We present in this contribution
a model-based approach separating and representing these
concerns explicitly with dedicated domain-specific languages
and model transformations [5]. We discuss how this con-
tributes to an improved hypothesis test cycle and easier
design space exploration with code generation targeting
robotics software architectures, in this example integrated
with a quadruped robot platform, shown in Figure 1.

II. DOMAIN-SPECIFIC HYPOTHESIS TEST CYCLE

We aim to establish a model-driven development pro-
cess [7], [10] organizing efforts of the partners working on
rather theoretical aspects, hardware and software concepts
in a way which allows eased communication, early technical
integration, quantitative as well as qualitative validation and
later also for automation of engineering tasks to ease experi-
mentation and scientific analysis. A central goal of our work
is to support the development of motion control architectures
to ease design space exploration for experimental robotics.
This requires to support the entire experimental toolchain
ranging from purely functional modeling to software archi-
tectural and technical aspects such as software deployment.

The current state of our DSL development divided the
overall meta-model into a set of domain-specific languages,
following a language modularization, extension and com-
position approach [8] (LME&C), to separate the DSLs by
concerns.
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Fig. 1: Screenshot of the Oncilla simulator

The two main DSLs separate the domain along the for-
mulation of the functional architecture, and the component-
based software architecture:

The AMARSi DSL [5] is designed to allow compact
structural description of motor control architectures. It ex-
presses motor control systems as combinations of so-called
movement primitives, that model flexible and adaptive move-
ments in terms of dynamical systems. The functional build-
ing blocks of the language to generate movement primi-
tives are the Adaptive Module, wrapping Dynamical
Systems and optionally machine learning methods to adapt
the Adaptive Module to new situations and environ-
ments. It also provides abstractions of recurring architectural
patterns around Adaptive Modules, which we identified
during the domain analysis representing different types of
control strategies and internal connectivity. The AMARSi
DSL mainly considers functional concepts, while hiding
software architectural aspects.

The Component DSL instead covers software architec-
tural aspects, organizing the system in Components with
States, Ports, and their wiring (similar to BCM [2]).

Both DSLs are designed and to be used with JetBrains
MPS [1], a language workbench for building DSLs and
accompanying IDEs supporting model development with
projectional editing. Model to model transformations be-
tween the AMARSi DSL and the Component DSL maps
functional system models to software concepts. This allows
for instance the automatic generation of two different views
on a movement architecture: the functional (see Fig. 3) and
the component-based view (see Fig. 4).



Fig. 2: Adaptive Module with its inputs and outputs for goal, feedback and control output. It contains a Dynamical
System that is specified by an mathematical expression referencing inputs and outputs.

Besides modeling functional as well as software structures
and generating system visualizations for improved compre-
hensibility, the toolchain also supports the generation of
software artifacts directly applicable in robotics experiments.
Targets of the Component DSL code generators (for C++)
are the Compliant Control Architecture (CCA) and the Robot
Control Interface (RCI) providing component-based software
abstractions for experimental robot platforms [4]. Results of
the code generation step are executable motion controllers,
which are integrated with the sensors and actuators of
advanced robots such as the quadruped robot described in
the following section.

III. THE ONCILLA ROBOT AS VALIDATION PLATFORM

The introduced DSL-based development approach has
been co-developed and integrated with the Oncilla robot
(an extended version of [6]). In order to quickly test a
design specified in DSL models, a robot simulator has been
created with a precise description of the robot kinematics and
dynamics, including the particular parallel compliance and
asymmetric actuation of the ASLP mechanism [6]. Figure 1
shows the model inside the Webots [3] simulation frontend.
On top of the Webots model, an CCA/RCI-based interface

Fig. 3: Functional view in AMARSi concepts.

with a taxonomic representation of the robot joints has
been designed. One of its main design goal was a common
abstraction between hardware and simulation, with binary
compatibility. This interface is locally accessible through
the AMARSi software architecture via a C++ interface,
using multiple inheritance to expose the node taxonomy.
It is also remotely available through RSB [9], an open-
source middleware with C++, Java, Python and Common
Lisp bindings for extended language and tool support.

As an example of how we foresee the DSL tool-chain to
speed-up the hypotheses test cycle, Figure 2 shows writing
a dynamical system as formula as a DSL expression in the
projectional AMARSi DSL editor to be tested on the Oncilla
platform. Proper scoping and integration in a type-system
allows writing the expression with referencing inputs and
outputs of the surrounding Adaptive Module. Further-
more, additional Adaptive Module implementations can be
easily integrated with this new dynamical system at the DSL
level and subsequently tested on the Oncilla robot.

IV. DISCUSSION

The presented approach facilitates a clean separation
between functional and software architectural aspects and
further concerns such as platform independence. It lifts al-
gorithmic and system parameters typically hidden in software
artifacts to a specification level. Experimentation is sped up
as long as developers stay within the modeled domain.

Fig. 4: Component-based system view in the concepts of the
Component DSL.



DSL-based approaches still heavily rely on complex tools
such as language workbenches, which makes interoperability
at the level of DSLs an open issue. Projectional editing is a
powerful concept, but usability for users from non-technical
domains still has to be improved. An important aspect for
the presented approach has been the integrability of existing
concept implementations in legacy code and their dynamic
representation at the language level which we found to be
well supported in MPS.

Future work will focus on improved representation of
dynamic model aspects and an improved expression language
to directly specify dynamical systems as well as improved
code generation.
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