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A B S T R A C T

Computational models of visual saliency have been used to detect
salient regions and simulate human eye-gaze on images and videos.
A majority of the existing approaches are highly parametric in na-
ture. They are specialized to predict either eye-gaze or detect salient
regions, but not both simultaneously. Like other computer vision ap-
proaches, the saliency models too impose pre-specified grids to pro-
cess the image. In this context we explore ways of exploiting ran-
dom/stochastic algorithmic approaches for saliency computation to
address issues like pre-specified grids, computational efficiency, pa-
rameter set etc. We propose three different approaches for saliency
computation on images and provide elaborate benchmarking results
with respect to other saliency systems. Consequently, we have been
successful in improving the state-of-the-art in terms of eye-gaze pre-
diction and salient region detection performance of the saliency sys-
tems. In addition, we have extended one of our proposed saliency
approaches to predict eye-gaze while viewing a tutoring or goal-
directed action scenario. Along with the proposed algorithms, we
also have created a video dataset for evaluating saliency systems in
the context of goal-directed action. We hope that the proposed ap-
proaches for saliency computation, exprimental protocols, resulting
video dataset and the ensuing discussions will help the community
in developing more sophisticated systems of visual saliency.
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1
I N T R O D U C T I O N

In a clear night sky, the bright Venus stands out from the star clusters
and captures our sight. A known or a familiar book attracts our inter-
est for a moment, while scanning a stack in the library. A goal-keeper
focuses on the striker during a penalty kick, and not at the spectators.
This cognitive ability to discern the relevant stimuli from the rest is
called attention.

1.1 visual attention

From a philosophical point of view, there was much debate about
attention beginning from the pre-historic times. Ancient Greeks pos-
tulated that the shift in attention from one object to another was due
to a ray of light emanating from the eyes [128]. The Hindu and Con-
fucian scholars wrote detailed texts which describe the link between
attention and meditation. However, the first scientific attempt to de-
fine attention is attributed to the French mathematician Descartes [23]
in 1649, where he describes attention as a process of thought suppres-
sion due to arousal.

Several descriptive definitions of attention have been proposed sub-
sequently, but they were either incomplete or vague. In order to ad-
dress this, the German psychologist Herbart [40] in 1824, proposed
the first mathematical model of attention. This model attempted to
capture emotion, arousal and other psychological attributes as differ-
ential variables. However, it was far ahead of its times, and the lack of
supporting instrumentation coupled with sparse knowledge of neuro-
biology failed to advance it any further. The modern day definition of
visual attention was put forward by James [49] in 1890, which states
– “ Everyone knows what attention is. It is the taking possession by
the mind, in clear and vivid form, of one out of what seem several
simultaneously possible objects or trains of thought. Focalization, con-
centration, of consciousness are of its essence. It implies withdrawal
from some things in order to deal effectively with others, and is a
condition which has a real opposite in the confused, dazed, scatter-
brained state which in French is called distraction, and Zerstreutheit in
German”. This definition has remained as the bed rock of attention
research, as all the theories proposed later conforms to it.

The most visible external manifestation of visual attention are the
eye movements. Fovea, which is the center of the retina, has a higher
resolution on the point of visual space where the human is attending
to. However, Helmholtz [112] proved that humans could still attend to
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1.1 visual attention 2

various spatial locations on a scene without eye-gaze re-orientation.
This was called as the covert attention, while the former is referred
to as overt attention. Contemporary psychologists and neuroscientists
view attention as the cognitive function which attenuates irrelevant
features through a two stage selection process leading to a spotlight.
The first stage is called as the bottom-up attention, which is purely
driven by the input stimulus. It is also alternatively referred to as
exogenous, feature driven or context free attention. The second stage is
called as the top-down attention, which is goal driven. This is further
referred to as endogenous, goal driven or cued attention. The distinction
between these stages of attention is clearly demonstrated in the ex-
periments conducted by Yarbus [123], an example of which is given
in Fig. 1.

Figure 1: Study conducted by Yarbus [123]. (1) shows the eye-gaze in a free
examination condition. (2) to (7) show that the eye-gaze patterns
are specific for an objective that drives the image viewing. The
result in (1) is a consequence of a bottom-up attention process,
while the rest are due to top-down attention. Observe that the eye-
gaze shifts vary with respect to the context.

The spotlight metaphor attributed to attention, describes the pro-
cess where our consciousness is shifted from the current location to
the next on the visual scene, despite the scene remaining static. The
shifting of attentional spotlights from one location to another is seen
as a result of the interaction between the top-down and bottom-up
attentional processes [17]. The attention spotlight is seen as an effect,
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while the reasons for the cause remained under investigation. Sev-
eral associated issues like, location bias, size of the spotlight window,
whether everything within the spotlight is processed equally, time re-
quired to shift from one location to another etc. continues to provoke
new ideas to this date. In order to address some of these questions,
particularly the bottom-up attentional process, the Feature integra-
tion theory [101] (FIT) was proposed. The theory assumed that visual
scene is initially decomposed along a number of separable channels,
such as color, orientation, spatial frequency, brightness and the direc-
tion of movement. Bottom-up attention is finally viewed as a product
of the ensuing competition between these feature channels. The FIT
[101] assumes that the feature competition is a black box process, and
does not provide a mathematical framework to realize the theory.

1.2 saliency maps

In the early 1970s, David Marr laid down the tri-level engineering per-
spective of biological vision [76]. This did not mention visual atten-
tion per se, but explained how a visual function would work. It elab-
orated a visual function in terms of computational, representational
and physical perspectives. The computational aspect explains the ob-
jective of a visual function and its necessity. The representational as-
pect explains the algorithmic procedure which implements the func-
tion. Finally, the physical aspect explains the neuronal architecture
which realizes the underlying algorithm. In this context, Koch and
Ulmann [58] explained FIT [101] conforming to Marr’s tri-level archi-
tecture [76]. They further proposed the existence of a saliency map,
which encodes the degree of conspicuity at each spatial location in
the scene. The first computational implementation of a saliency map
which conformed to limited aspects of FIT was proposed by Sandon
[91]. The saliency map proposed by Koch and Ulmann [58] was pro-
grammed a decade later by Itti et al. [48], when the image processing
and computer vision programming routines started to mature. Since
then the concept of saliency map has been central to the computer
vision approach for modeling visual attention.

The ability of saliency maps to automatically predict interesting re-
gions on images has been exploited in various computer vision and
robotics applications. They are used to guide the robot’s attention
to visually interesting regions on a scene, thereby rendering a more
human like behavior to its eye-gaze. It has also been used for applica-
tions like image thumbnailing, cropping, retargeting, collage creation,
automatic target detection etc. The details of such applications are
provided later in Section 2.10.

A wide variety of saliency maps have been proposed which operate
on different computer vision paradigms. Most of them resemble the
original center-surround architecture of Itti et al. [48], except that they
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differ in the features used and the weighting given to each of them. In-
spired by this prediction, several saliency maps were proposed which
relies on the center-surround paradigm. It has been shown that the
recent center-surround contrast based saliency maps, outperform a
vast majority of existing saliency maps from other categories in terms
of correlating with human eye-gaze [2, 3, 4, 106]. Despite this, the
research on saliency maps is still relevant.

Most of the existing saliency models are constrained by the need
of training data, large set of tunable parameters, ad-hoc fusion of fea-
tures to generate the final saliency map, and not being scale invariant.
The human visual system analyzes the input stimuli randomly, while
the existing saliency systems process the image pixels sequentially. In
addition, the saliency systems process all pixels equally where as in
reality, the biological system may not equally process all parts of the
visual stimuli. Overt attention is reflected in eye-gaze, while human
vision also attends to salient regions without eye-gaze re-orientation.
The current saliency systems are either efficient in predicting human
eye-gaze on an image, or in detecting salient regions but not both.

Saliency systems that are tailored to handle static images vastly out-
number the ones which are capable of handling video streams. Com-
puting saliency on video streams is relevant in the context of surveil-
lance and human-robot interaction. A robust video based saliency
system helps in guiding the robotic attention to relevant regions in
an interaction scenario. One of the simple but inefficient solution is
to decompose the video into image frames, and compute saliency on
these images independently. The other sophisticated solutions pro-
pose to include motion history as an additional feature. The following
strategies prove simplistic as most of the real life videos depict goal
directed tasks which are driven by specific semantics (see Fig. 2). To
the best of our knowledge, there does not exist a video saliency sys-
tem which incorporates the task based semantics or contextual infor-
mation to boost the performance of bottom-up saliency approaches
on videos pertaining to actions and interaction.

1.3 thesis contributions

The goal of this thesis is to build more reliable and complete bottom-
up and top-down attention models. In the present time, saliency mod-
els are specialized to handle eye-gaze prediction on an image, salient
region detection or video based saliency. All these three functionali-
ties are relevant especially in the context of human-robot interaction
and the saliency systems deployed on the robots are nothing but an
aggregation of distinct components which caters to one of these tasks.
The human visual system realizes a visual function through approx-
imations in order to optimize computational performance. This is-
sue is overlooked in most of the existing saliency approaches. In this
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Figure 2: Goal directed events. Observe that the six video snap shots consists
of a target or goal-directed task. These images do not consist of
cues which hint towards any motion, and despite this we recognize
the inherent motion pattern and deploy our attention accordingly.
We also anticipate the trajectory in which the arrow, the horse or
the balls move with great accuracy by conjuring mental images of
the scene as if these were playing movies. Our attention system
thus focuses only on the locations of the anticipated trajectory and
suppresses those regions of the image which are not relevant to
the action. [Images taken from Wikipedia]

context, we propose bottom-up saliency models which are stochastic
in nature and could solve the problems of eye-gaze prediction and
salient region detection concurrently. The eye-gaze correlation task
involves predicting those regions in an image where the observer
would fixate (along with the degree of fixation). On the other hand
salient region detection task involves the automatic identification of
those image regions which the observer thinks is most interesting.
The saliency models are further extended to guide attention in an in-
teraction scenario by fusing top-down information. The contributions
of the thesis are:

We propose three different models of bottom-up saliency. The
proposed models works on the paradigm of random center-
surround contrast and have a single parameter which requires
tuning. They also outperform most of the currently available
saliency systems in terms of predicting human eye-gaze and
detecting salient regions.

We provide a baseline to compare different saliency systems. It
is necessary to quantitatively evaluate the performance of the
saliency systems on multiple datasets and also for different
tasks. The diversity in datasets and tasks enables us to draw
a definitive conclusion about the robustness and reliability of
the saliency systems.

We propose a saliency model which incorporates task based se-
mantics to analyze goal directed actions. The proposed model
incorporates a random center-surround contrast based saliency
map which is coupled with task specific spatial priors. The in-
corporation of spatial priors reduce the search space and thereby
redundant background is not processed at all. The proposed
model outperforms other existing video based saliency systems
in detecting saliency in a goal directed action video.
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We provide a video dataset for saliency computation on goal di-
rected actions. We make the entire video clips and the associ-
ated annotations retrieved from our experiments available on-
line for the public.



2
R E V I E W O F S A L I E N C Y M O D E L S

Saliency is a perceptual quality which enables an object to stand-
out of its immediate contexts. Models of visual attention generate
a saliency map, which encodes the probability of a pixel location be-
ing salient. A computational model of visual attention is relevant in
the context of processing an overload of multimedia and image data
with limited computational resources.

A saliency map has applications with regard to automatically se-
lecting visually salient regions and simulating human eye-gaze on a
visual scene. The general architecture of a computational model of
visual saliency was first presented in [48] as shown in Fig. 3.

Figure 3: The architecture of the attention model proposed in [48]. The
model decomposes the input image into several low level image
features, and finally obtains the saliency map by the means of
center-surround competition.

The aforementioned architecture has been the basis of the many
existing models of visual saliency. In general the architecture of a
saliency model has three distinct aspects namely, feature extraction,
feature competition and feature fusion to obtain the saliency map.
These models are essentially bottom-up in nature, as they predict saliency
only in a free-viewing scenario which does not involve search or

7



2.1 categories of saliency models 8

recognition objectives. Hence, they are also alternatively referred to
as bottom-up saliency models.

2.1 categories of saliency models

The theoretical framework for computation of saliency maps was
first proposed by Koch et. al. [58] and later realized by Itti et. al.
[48]. Subsequently it has led to the development of several other
saliency approaches based on different mathematical and computa-
tional paradigms. The existing approaches can be classified into eight
distinct categories based on the computational scheme they employ.

• Hierarchical approaches: They perform a multi-scale image pro-
cessing and aggregate the inputs across different scales to com-
pute the final saliency map.

• Spectral approaches: They operate by decomposing the input
image into Fourier or Gabor spectrum channels and obtain the
saliency maps by selecting the prominent spectral co-efficients.

• Power law based approaches: These approaches compute saliency
maps by removing redundant patterns based on their frequency
of occurrence. Rarely occurring patterns are considered salient
while frequently occurring patterns are labeled redundant.

• Image contrast approaches: The mean pixel intensity value of
the entire image or of a specified sub-window is utilized to
compute the contrast of each pixel in the image. The contrast
is analogously treated as the pixel saliency.

• Entropy-based approaches: The mutual information between
patterns is employed to optimize the entropy value, where a
larger entropy value indicates that a given pattern is salient.

• Center-surround approaches: These approaches compute the
saliency of a pixel by contrasting the image features within a
window centered on it.

• Hybrid approaches: Models of this paradigm employ a classi-
fier in combination with one or more approaches to compute
saliency.

• Top-down approaches: Such models couple components like
face, object and line detection to re-weight the saliency map.

We briefly explore the existing saliency approaches based on the
aforementioned categories in the sections to follow. Interested readers
are pointed to [11, 30] for a more detailed and exhaustive review on
saliency approaches.
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2.2 hierarchical approaches

The most popular approach in this category is the one proposed by
Itti et al. [48]. This approach computes 41 different feature maps for
a given input image based on color, texture, gradient and orientation
information. Nine spatial scales are created using dyadic Gaussian
pyramids. The resulting multi-scale image features are combined into
a master saliency map. A normalization operator is employed, which
globally promotes maps in which a small number of strong peaks
of activity is present. Furthermore those maps which contain numer-
ous comparable peak responses are globally suppressed. A dynam-
ical neural network is employed which generates the eye-gaze loca-
tions in the order of decreasing saliency. The approach advocates a
parallel implementation of feature extraction and attention-focusing
system. In addition it down-scales the input image to an ultra low
resolution ( 1

256

th
of the original), in order to achieve a fair computa-

tional run time. As mentioned earlier, this approach has served as a
classical benchmark system and has been the basis of all the existing
saliency systems.

The global selection and weighting of the multiscale information
plays a crucial role in Itti et al. [48]. In order to partially address
the issue of scale dependency, a saliency model based on generalized
principal component analysis was proposed in Hu et al. [44]. The
image is represented in a two dimensional space using polar transfor-
mation of its features so that each region in the image lies in a one
dimensional linear subspace. The robustness of subspace estimation
is improved by using a weighted least square approximation. The
weights are calculated from the distribution of k nearest neighbors
in the subspace to reduce the sensitivity of outliers. A region atten-
tion measure is further defined which calculates the saliency of each
region by considering both feature contrast and geometric properties.

A saliency map is highly sensitive to the global properties of an im-
age. As a result of this, they do not take into account the specific key-
points in an image which remain stable over different spatial scales.
In order to factor both sensitivity and stability, a local image extrema
based saliency map was proposed in Maruta et al. [77]. Salient regions
in an image are extracted from multiresolutional two dimensional
distribution of local extrema. Saliency is defined as the stability of a
local extrema on the scale–space. The input image is convoluted with
a Gaussian function to obtain the scale–space representation. The lo-
cal extrema of an image is further extracted at each resolution level
in the three channels i.e, luminance, red–green and blue–yellow. On
these three channels, the saliency is computed on the stability of lo-
cal extrema at multiple resolutions. Finally, the local extrema maps of
three channels are summed-up to obtain the master saliency map. Lo-
cal extremas are more biased towards high contrast and small sized
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local patches than large image regions. Consequently, the approaches
which rely on keypoints are less sensitive in detecting salient regions.

The saliency map proposed by Itti et al. [48] was tailored for static
images. Several variants of this map were proposed, which could han-
dle spatio-temporal data. Mean value theorem was employed in Shi
and Yang [96] to compute motion saliency which was further inte-
grated into the original architecture of Itti et al. [48]. A biologically
plausible dynamic saliency model based on Gabor filters was pro-
posed in Marat et al. [75]. The model extracts two signals from each
frame that correspond to the two main outputs of the retina. Each
signal is further decomposed into elementary features by a bank of
cortical like filters. These filters are used to extract both static and dy-
namic information, according to their frequency selectivity, providing
two saliency maps: a static and a dynamic one. Both saliency maps
are combined to obtain a master spatio-temporal saliency map per
video frame, and is found to have a good processing speed. Despite
the biologically plausible nature of this approach, the design of cortex
like filter bank involves tuning several parameters and appropriate se-
lection of scale–space.

A computational model of dynamic visual attention on the sphere
which combines the static saliency map of Itti et al. [48] and motion
features is proposed by Bogdanova et al. [13]. This approach is em-
ployed to detect salient locations in omni-directional image sequences
while working directly in spherical coordinates. The motion pyramid
is built by applying block matching and varying the block size. The
spherical motion saliency map is obtained by fusing together the
spherical motion magnitude and phase conspicuities. Furthermore,
the motion map is fused with the static spherical saliency map in
order to obtain the master saliency map. Detection of the spots of at-
tention based on the dynamic saliency map on the sphere is applied
on a sequence of real spherical images. Such models have a potential
of being useful in surveillance and crowd anomaly behavior detection
scenarios.

Saliency maps which rely on simple edge and gradient information
are also proposed in the literature. Such maps are based on the intu-
ition that the presence of an edge leads to a higher probability of a
salient object in that region. A saliency map based on gradient and
isophote framework was proposed by Valentini et al. [103]. Isophotes
are lines connecting points of equal intensity and the shape of each
isophote is invariant to changes in the contrast and brightness of an
image. This property of isophotes is exploited to prune false salient
detections. The gradient slope information is further employed to de-
tect salient regions in images. In addition to gradient, color boosting
and pixel curvature information are used to generate a scale specific
saliency map. An appropriate scale is selected by exhaustively search-
ing for the scale value that obtains the best overall results for a salient
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object detection task on a training dataset. Integral images are used
to improve the computational performance of feature extraction. The
color boosting aspect of this approach is further improved by Vazquez
et al. [104]. This approach is highly sensitive to color space that is
used to represent the original image.

Most of the hierarchical methods operate at the pixel level. Oper-
ating at the patch level instead of pixels is generally regarded to be
more efficient in the context of object detection in images. In this re-
gard a patch based saliency was proposed by Goferman et al. [33].
The method imposes a regular grid and extract patches at each scale.
Each pixel is represented by the set of multi-scale image patches cen-
tered on it. A pixel is considered salient when its enclosing patch is
highly dissimilar to all other image patches. Multiple scale process-
ing is incorporated to further decrease the saliency of background
patches, as they are more likely to repeat at multiple scales. A pixel
is considered attended if its saliency value exceeds a certain thresh-
old. Furthermore, each pixel outside the attended areas is weighted
according to its Euclidean distance to the closest attended pixel.

In general, the performance of hierarchical methods are constrained
by the fusion of multiple maps and the requirement to process mul-
tiple features. The fusion method employed to compute the master
saliency map from the various feature maps plays a vital role in its
accuracy. Arriving at a generalized rule of fusion for various maps is
complicated and requires intensive cross-validation to fine tune the
fusion parameters. In general, hierarchical methods tend to ignore
visually significant patterns which are locally occurring as they are
primarily driven by global statistics of an image [48].

2.3 spectral approaches

The approaches in this category process the spectral parameters of an
image signal (like phase and amplitude) to build a saliency map. A
saliency map based on the log spectrum was proposed by Hou and
Zhang [41]. It is based on the hypothesis that the spectral residual
contains the novel or rare parts of an image. The spectral residual of
an image is obtained by subtracting the log of Fourier spectrum from
the general shape of log spectra. This serves like the compressed rep-
resentation of a scene. Using an inverse Fourier transform, the com-
pressed representation is further transformed into the spatial domain
resulting in the saliency map. The saliency map thus contains the non-
trivial part of the scene. This method has been very popular because
its programming simplicity.

Inspired by the idea of spectral residual for image saliency detec-
tion, a temporal spectral residual on video slices was proposed by
Cui et al. [22]. This can automatically separate foreground object
motion from the background using threshold selection and voting
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schemes. Different from conventional background modeling methods
with complex mathematical models, this method is based on Fourier
spectrum analysis. Saliency map is obtained by transforming the spec-
tral residual back to spatial domain, where the high value pixels cor-
respond to the salient regions.

A Gabor feature based saliency map was proposed by Gao et al.
[31]. It is driven by the idea that in the absence of high-level goals,
the most salient locations of the visual field are those that enable the
discrimination between center and surround with smallest expected
probability of error. The input image is decomposed into an intensity
map and four broadly-tuned color channels. The four color channels
are, in turn, combined into two color opponent channels. The op-
ponent color maps and the intensity map are convolved with three
Mexican hat wavelet filters, to generate nine feature channels plus a
Gabor decomposition of the intensity map. The property of Gabor
decomposition i.e. the bow-tie shaped conditional distributions, is ex-
ploited to estimate the posterior probability of a location being salient.
Despite the efficiency of this approach, the generation of multiple fea-
ture channels causes a computational overload.

A saliency map based on phase spectrum of quaternion Fourier
transform (PQFT) was proposed by Guo et al. [37]. A hierarchical
selectivity framework based on the PQFT model was introduced to
construct the tree structure representation of an image. The model
resembles the one presented by Hou and Zhang [41], except that it
operates only on phase spectrum and ignores the amplitude spec-
trum.

A framework based on the color and orientation distribution in
images to compute saliency was proposed by Gopalakrishnan et al.
[35]. The color saliency framework detects salient regions based on
the spatial distribution of the component colors. A Gaussian mixture
model is fit in the hue–saturation space to identify outliers. The orien-
tation saliency framework detects salient regions in images based on
the global and local responses of different orientations in the image.
The master saliency map is selected as either color saliency map or
orientation saliency map based on a pre-specified threshold.

A saliency map based on two dimensional log Gabor wavelets was
proposed by Wang et al. [113]. The low-level image irregularities are
initially isolated using log Gabor wavelets. These irregularities are
subsequently integrated by considering a center bias matrix to con-
struct a bottom-up saliency map.

Spectral approaches ignore local image information entirely. In or-
der to address this issue, several models have been proposed which
include local image information. A saliency detection model by com-
bining global information from frequency domain and local informa-
tion from spatial domain was proposed by Li et al. [66]. Redundant
patterns in the image are eliminated by performing spectrum smooth-
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ing, while the informative regions are enhanced using a center-surround
mechanism in the spatial domain. The outputs from these two chan-
nels are further combined to produce the final saliency map.

As it can be seen from the illustrations by Guo and Zhang [38],
Fourier-based methods are affected by the number of co-efficients
selected for image reconstruction and the scale at which the input
image is processed. Like the subspace analysis,the method results in
loss of information during image reconstruction and is compromised
by illumination, noise and other image artifacts.

2.4 power law based approaches

Power law models imply that rarely occuring features are salient. A
saliency model based on Zipf’s law and other aspects of linguistic
analysis was proposed by Caron et al. [18]. Zipf’s law is used to
model the frequency of feature recurrence in an image as power law
distributions. These models characterize the structural complexity of
image textures. The input image is first partitioned into sub-images
and Zipf’s law is applied to these sub-images. They are subsequently
classified according to the characteristics of the power law models.
Saliency is thus inversely proportional to the occurrence of a texture
pattern.

A saliency model based on Weibull’s distribution was presented
by Yanulevskaya et al. [122]. The contrast of an image is modeled us-
ing a two-parameter Weibull’s distribution. This distribution captures
the structure of the local contrast and edge frequency in a mean-
ingful way. Using a set of images with associated eye movements,
the joint distribution of the Weibull parameters at fixated and non-
fixated regions are computed. Subsequently, a classifier based on the
log-likelihood ratio between these two joint distributions is built to
generate the final saliency map.

Despite their theoretic appeal, the power law based saliency models
have a large parameter set and the heuristic to fix and optimize them
constitutes a major drawback.

2.5 image contrast based approaches

Image contrast based approaches measure the variation in intensity
or gray value in a specified region of an image to infer saliency. Lo-
cal image contrast was first used by Ma and Zhang [72] to compute
the image saliency. The image is partitioned into patches of equal
size, and the saliency is measured as the inter-patch color contrast.
A fuzzy region growing method is further incorporated to obtain a
binary saliency map which highlights salient regions. The size of the
imposed partition grid determines the accuracy of the saliency map.
On similar lines, a saliency model based on local texture contrast was
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proposed by Hu et al. [43]. The image is divided into local patches at
several scales, and a Gabor wavelet transform is applied on each of
the patches. Each patch is further represented by the mean and the
standard deviation of the wavelet coefficients. Saliency is computed
as the average mean difference and the average standard deviation
difference over a neighborhood of patches. The multi-scale process-
ing involved in this method thus addresses the problem of fixing a
standard grid size to an extent.

A saliency map based on multi-scale local image contrast was pro-
posed by Achanta et al. [2]. Saliency is determined as the local con-
trast of an image region with respect to its neighborhood at various
scales. This is computed as the distance between the average feature
vector of the pixels of an image sub-region to that of its neighborhood.
This results in a combined feature map at a given scale by using fea-
ture vectors for each pixel. This approach was found to have good
performance in detecting salient regions of an image.

An edge distance driven saliency map was proposed by Rosin [88].
Saliency of a pixel is modeled as the inverse of the multi-scale dis-
tance to its nearest edge. The model assumes that high intensity edges
attracts eye fixation. A gradient based edge detector is employed to
produce an edge transform of the input image. The resultant gradient
image is thresholded at various gray-scale levels to produce a set of
binary edge images. Subsequently, a distance transform is applied on
all of the binary edge images to cascade the edge information. The re-
sultant distance transformed images are further cumulated to obtain
the master saliency map.

A method for salient region detection that generates full resolution
saliency maps with well-defined boundaries of salient objects was
proposed by Achanta et al. [3]. The object boundaries are preserved
by retaining substantially more frequency content from the original
image, as the method is based on global image contrast. It exploits
features like color and luminance, and is computationally efficient.
Experiments have revealed that the method fails to work where color
and contrast are not the dominant features of an image. However, this
drawback is offset by the advantage that it outperforms most of the
existing methods to detect salient regions despite its simplicity.

A saliency map which is computed as a combination of two differ-
ent local contrast measures was proposed by Huang et al. [45]. The
method computes the saliency map by combining the results of two
transforms namely the discrete moment transform (DMT) and the
discrete symmetry transform (DST). The DMT is computed by eval-
uating local central moments around each pixel, while the DST com-
putes the local annular symmetry. The DMT allows determination of
large areas of interest, and the DST is able to locate finer details in-
side regions identified by DMT. The resulting coarse and fine-grained
saliency maps are fused to obtain the final saliency map.
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These methods are successfully applied for proto-object detection
and out-performs many state-of-the-art methods without having many
of their drawbacks. Poor global contrast of an image affects the perfor-
mance of these methodologies, and local-statistics based approaches
for saliency computation have been proposed in the literature to ad-
dress this problem.

2.6 entropy-based approaches

A saliency map based on sparse representation of images was pre-
sented by Sun et al. [98]. A group of basis functions are learned using
independent component analysis from short term statistics instead of
large scale natural statistics. The original input data is represented by
a linear combination of the learnt basis functions which minimizes
the loss of information. Each basis function thus provides a unique
feature channel. These feature channels are considered as a surrogate
representative of neuronal cluster in the brain. The average activity of
the feature, and the feature activation rate is computed to assess the
energy consumption while viewing a visual pattern. Larger energy
consumption thus indicates larger signal saliency.

In Sun et al. [99] the saliency is modeled as a sequential eye-fixation
probability. Bottom-up saliency at a given location is defined as the
conditional probability of being chosen as the next eye-fixation po-
sition given the previous fixations. Each location is characterized by
discrete and integer cosine transform features of a patch centered on
it. Saliency at a given location, is further computed as the weighted
sum of the distance between its features and the mean value of the
features extracted from all other locations. The conditional probabil-
ity is further maximized using an entropy based representation of the
prior probabilities.

A saliency map based on rank sparsity decomposition was pro-
posed by Yan et al. [121]. It employs sparse bases to represent image
patches and estimates saliency through sparsity matrix decomposi-
tion. In order to achieve a computationally tractable framework, the
saliency computation is further modeled as a convex optimization
procedure. Learning the sparse bases though a large image corpus is
one of the drawbacks of this approach.

A saliency model based on context-mediated probability distribu-
tions was proposed by Xu et al. [119]. The model assumes that the
visual saliency is based on efficient encoding of the probability dis-
tributions of visual variables in specific contexts of a natural scene.
This model is based on the results from neuroscience of the early vi-
sual system. The computational units in the early visual system do
not act as feature detectors but rather as estimators of the probabil-
ity distributions of a full range of visual variables in natural scenes.
This subsequently leads to a measure of visual saliency of the input
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stimulus. The same philosophy is engineered to obtain this model. In-
dependent component analysis (ICA) is further used to measure the
visual saliency obtained on the basis of these distributions estimated
from a set of natural scenes.

The popular approach of Bruce and Tsotsos [15] is based on local
contrasts and maximizes the mutual information between features by
employing ICA bases. A set of ICA bases is pre-computed using a
patch size of 7 × 7 pixels. Subsequently it is used to compute the con-
ditional and joint distribution of features for information maximiza-
tion. Experiments conducted on the York University eye-gaze dataset
[16] has proven its efficiency. But this method is constrained by its
emphasis on edges while ignoring salient regions [106]. It also adds a
spurious border effect to the resultant image, and requires re-scaling
of the original image to a lower scale in order to make the computa-
tional process more tractable. Another ICA based approach was pro-
posed by Zhang et al. [129] where image self-information is utilized to
estimate the probability of a target at each pixel position. It is further
fused with top-down features derived from ICA bases to build the fi-
nal saliency map. The method proposed by Wang et al. [114], employs
sparse bases to extract sub-band features from an image. The mutual
information between the sub-band features is calculated by realizing
a random-walk on them. An extension of this paradigm can been seen
in the recent approach proposed by Lin et al. [67], where the entropy
of a center versus a surround region is computed as the saliency value
of a pixel. Other entropy-based approaches (like [42, 114]) employ in-
cremental coding length to compute the final saliency map. These
methods which rely on information theoretic approaches are in gen-
eral constrained by the requirement of training bases, the patch size
parameters and the size of the training bases.

2.7 center-surround approaches

A saliency map based on the Kullback-Leibler Divergence (KLD) of
center surround features was proposed by Klein and Frintrop [56].
Distributions of the visual feature occurrences for a center and a sur-
round region are estimated. The KLD between these distributions sta-
tistically represents the feature divergence between the center and sur-
round. An efficient scale-space computation of center-surround pairs
of arbitrary sizes is further incorporated. This enables the method to
be more robust as compared to the methods based on fixed grid sizes.

A saliency map based on the ratio of center-surround dissimilarity
was proposed by Huang et al. [46]. The saliency of a pixel is defined
as the ratio of total dissimilar pixels in its center and surround re-
gions. The master saliency map is obtained by combining these ratios
of dissimilarities over multiple scales.
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A center-surround model based on human visual cognition was
proposed by LeMeur and Chevet [60]. The model uses luminance and
color features to compute the saliency map. Contrast sensitivity func-
tions are used to compute the gradients, and multi-scale sub-band
filters are employed to process the input image at different scales.
The resulting saliency maps are fused using an exponential mapping
to obtain the master saliency map. This model is an extension of their
previous work [59], which introduced the usage of contrast sensitivity
functions and perceptual decomposition for saliency computation.

A proto-object based saliency map was presented by Orabona et
al. [84]. The input image is converted to log-polar form to handle
in-plane rotation of the objects. The image is further decomposed
into opponent color channels and subjected to center-surround filters
to highlight proto-objects. A watershed transform is subsequently
applied to enforce perceptual grouping of proto-objects. A center-
surround modification of Achanta et al. [3] was originally introduced
in Achanta and Süsstrunk [4]. Symmetric center-surround masks are
imposed and the method proposed by Achanta et al. [3] is applied on
each masks instead of the entire image. The saliency is cumulated to
compute the final saliency map. The accuracy of the method depends
on the probability that the masks enclose a salient region completely.

A color contrast based center-surround mechanism was introduced
by Murray et al. [80]. The input image is initially processed using
Gabor-filters at various scales. The size of the center-surround filters
and normalizing weights for each scale is learned apriori using a
prior fixation data. An inverse wavelet transform is further applied to
compute the master saliency map. A gradient based center-surround
contrast saliency map was proposed by Seo and Milanfar [93, 94]. Ini-
tially, the gradients are computed using the Sobel operator. A regular
grid is imposed on the gradient image, and the saliency is computed
as a function of the inter-patch contrast. This is obtained by a custom
local steering kernel. The same method is also extended to handle
spatio-temporal saliency by considering a video stream as a three di-
mensional image. This method has been tested on static and video
data and applied for tasks like boundary detection, target detection,
motion prediction etc. It is shown to be robust for noise and dras-
tic illumination changes, but is computationally expensive as a set of
compound features needs to be computed for each pixel in the image.
In order to achieve a tractable run-time, the input image is down-
scaled. Selecting an appropriate window size for center and surround
patches plays an important role in obtaining a higher quality saliency
map.
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2.8 hybrid approaches

A camera motion based saliency map was proposed by Abdollahian
et al. [1]. Camera motion is used as a feature for identifying regions
of interest as it is an indicator of both camera person’s and viewer’s
focus of attention in the scene. Feature maps such as color contrast,
object motion, face detection are fused with estimated camera motion
parameters to obtain the final saliency map.

An object or target specific saliency map was proposed by Wei et
al. [117]. Multiple feature based saliency maps are computed for all
positive and negative examples of an object during the training phase.
A weight vector is subsequently computed as the ratio of the mean
target class saliency and the mean negative class saliency for each fea-
ture. During the test phase, all feature maps of a scene are combined
and is further modulated by the weight vector. Local region-based en-
tropy is used to identify the salient regions, and thus the final saliency
map is obtained.

A radically different approach which tries to detect salient regions
by estimating the probability of detecting an object in a given sliding
window was proposed by Alexe et al. [5]. They employ the concept of
super pixel straddling, coupled with edge density histograms, color
contrasts and the saliency map of Itti et al. [48]. A linear classifier
is trained on an image dataset to build a bag-of-features to arrive at
a prior for an object in an image. The method is theoretically very
attractive, but is subjected to high variations in the performance as
too many features, maps and parameters are involved which require
fine tuning.

An object extraction based saliency map was proposed by Yu et al.
[125]. The framework comprises of two different importance maps.
The first one extracts the borders and second extracts salient regions.
The two maps are later fused and modulated by object priors to ob-
tain the master saliency map. The object priors enable a pixel-level
classification, while most of the object detection techniques work on
the basis of a sliding window. This reduces the computational burden
of the method significantly.

An associative memory based saliency map was proposed by Wilder
et al. [118]. The model assumes that the saliency map is used in a
search scenario and hence specialized modules for a particular task
is designed. Each module includes a task-specific associative memory
that maps from the visual representation (color, gradients and orien-
tation) to an activation map which indicates the presence of an object.
A task specific training network is employed that binds the features
and classes by associative learning. In order to reduce the size of the
feature set, a dimensionality reduction is further applied. The model
accounts for key results in visual search on synthetic images and real-
world images.
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A stochastic model which estimates the probability of an image
patch being salient was proposed by Avraham and Lindenbaum [8].
In contrast to other methods the model does not emphasize prefer-
ence for local contrast. The algorithm iterates from a random pre-
attentive segmentation and then uses a graphical model approxima-
tion to efficiently reveal those image segments that are more likely to
be salient.

A graph-based visual saliency approach was proposed by Harel et
al. [39]. It implements a Markovian representation of feature maps
and utilizes a pyschovisual contrast measure to compute the dis-
similarities between features. On similar lines, saliency detection is
modeled as a Markov random walk performed on pixels represented
as nodes in Gopalakrishnan et al. [34, 36]. The global properties of
the image are extracted from the random walk on a complete graph,
while the local properties are extracted from a k-regular graph. The
saliency of nodes are inversely proportional to the frequency of they
being visited. The equilibrium reaching times of the ergodic Markov
chain is used to further identify the most salient node. A seeded
salient region identification mechanism is later incorporated to iden-
tify the salient parts of the image.

A support vector machine (SVM) based saliency model was first
proposed by Kienzle et al. [53]. The model consists of a non-linear
mapping from an image patch to a real value, trained to yield positive
outputs on fixated, and negative outputs on randomly selected image
patches. Instead of using a predefined set of feature maps, the classify-
ing function (an SVM) is learned directly from human eye movement
data. To represent fixations and background locations accordingly, a
square image patch is positioned at each of these locations and the
pixel values are extracted. Fixation patches are identified as positive
examples, while background patches are labeled as negative and later
a SVM is learned. Learning an ideal patch size forms one of the con-
straints of this approach.

A task specific saliency model which combines both low level im-
age features and classifier input was proposed by Li et al. [64]. The
model is based on multi-scale wavelet decomposition and unbiased
feature competition. A learning algorithm is further used to learn
the task-related scene specific saliency functions. Both the local vi-
sual attributes and global scene characteristics are considered simul-
taneously in the learning framework. Unlike other approaches which
employ a generic fusion, the said approach also learns a scene spe-
cific fusion rule. A k–nearest neighbor classifier is used to select an
appropriate fusion strategy for each new scene to re-configure the
prediction weights.

A conditional random field based saliency model was proposed by
Liu et al. [68]. A set of features like multi-scale contrast, center sur-
round histogram and color spatial distribution are used to describe
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an image patch. A conditional random field is subsequently learned
to effectively combine these features to generate a saliency map. This
work has resulted in a large dataset which is widely used in evalua-
tion of saliency maps.

Inspired by [68], conditional random fields were further utilized for
salient object detection in videos in Liu et al. [69]. The salient object
sequence detection is modeled as an energy minimization problem
within a conditional random field framework. Static, spatio-temporal
saliency and a global topic model were defined and integrated to
identify a salient object sequence. A dynamic programming proce-
dure is further designed to compute a global optimization, which
results in a rectangle to represent each salient object.

Object specific saliency maps based on random trees was proposed
by Moosmann et al. [78]. Random sub-windows are sampled on the
training images, and randomized decision trees are built from these
sub-windows as a classifier. On the test images sub-windows are
again sampled randomly and each window is classified by the de-
cision trees. The importance of each leaf node in the decision tree is
learnt by an SVM, while histogram of oriented gradients are used as
the image features at sub-windows.

In the context of video archival and retrieval, a user search behavior
specific saliency model was proposed by Li et al. [65]. The saliency
model is represented as a ranking system which sorts the image seg-
ments in a scene with respect to their relevance to the searching inten-
tion. A multi-task rank learning approach is proposed where visual
saliency is estimated as a pair-wise rank learning problem. Videos are
decomposed into scene clusters and multiple visual saliency models
are learned for each scene cluster. The models refines itself further by
automatically learning and integrating those image features that best
distinguish targets from distractors in that cluster. A center-surround
filter is later used to generate features for each visual subset in a
scene. Various pre-attentive visual features are integrated with linear
weights for saliency estimation.

A saliency model based on kernel density estimation (KDE) for
segmentation has been proposed by Liu et al. [70]. The input image
is partitioned into a set of regions using the mean shift algorithm.
The pixels in each segmented region are then used as the samples to
construct a KDE based non-parametric model. The color likelihood
of a pixel with respect to each KDE model is defined using a custom
dissimilarity measure. The color saliency and spatial saliency of each
KDE model are then evaluated based on its color distinctiveness and
spatial distribution. Based on color saliencies and spatial saliencies
of all KDE models, the pixel-wise color map and spatial map are
generated and fused to produce the master saliency map.

A Gaussian mixture model based saliency map was proposed by
Ren et al. [86]. An adaptive mean shift algorithm is used to extract
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superpixels from the input image. The superpixels are clustered us-
ing a Gaussian mixture model which captures color similarity. The
saliency value for each cluster is computed using compactness metric
together with modified page rank propagation. As compared to other
superpixel based approaches, this method is robust with respect to
over-segmentation.

Cascade of linear SVMs are employed by Khuwuthyakorn et al. [52]
for salient object detection. It exploits a divide-and-conquer strategy
by partitioning the feature space into sub-regions of linearly separa-
ble data-points. This yields a structured learning approach where a
linear SVM is learnt for each region, along with the mixture weights
and the combination parameters. Thus, the method learns the com-
bination of salient features such that a mixture of classifiers can be
used to recover objects of interest in the image.

Most of the machine learning based techniques hitherto model the
salient region. However, a method proposed by Zhang et al. [130] in-
corporates background model in addition to object model to make
this formulation more robust. A scalable subtractive clustering algo-
rithm is used to cluster image pixels in different feature channels.
The clusters are modulated by prior eye-movement behaviors and a
maximum saliency difference technique which assigns each cluster
as either background or foreground. A Gaussian mixture model is
learned for both background and foreground models separately. Dur-
ing the validation phase, a Bayesian framework is employed to clas-
sify each pixel into salient object or background using the learned
mixture models. The above detection procedures are repeated until
the detection results achieve a steady state.

2.9 top-down approaches

In addition to conspicuity, top-down approaches add line, object or
face detection results to re-weight the saliency map. An object specific
saliency map based on symbolic interval valued representation was
presented by Sang et al. [92]. Color, orientation, intensity and texture
features are extracted from object templates. The mean and standard
deviation of every corresponding feature from the set of object tem-
plates is stored as an object class representative. A sliding window
is moved across the image where the features are extracted and con-
trasted with the object class representative to compute the similarity.
The similarities are cumulated to produce the final saliency map.

A saliency map which combines both task and object priors in
an human-robot interaction scenario is presented in [125, 126]. The
model has three stages. At the first stage, there is a pre-attentive seg-
mentation which selects the region of interest where the task relevant
object is present. The detected salient region is further pruned to iso-
late the learned set of objects. At the final step, the detected objects
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are recognized and classified. In contrast to other saliency systems,
this approach includes searching and recognition paradigms, which
is in line with the recursive binding paradigm advocated by Tsotsos
[102].

Bayesian learning is incorporated into phase Fourier spectrum based
saliency maps by Pie et al.[85]. This is further used for object detec-
tion. The learning is based on low level image features, and hence
is suitable as a pre-processing step to boost existing object detection
techniques.

Learning where to attend in an interaction scenario is one of the
important aspects which most of the existing saliency maps do not
handle. In this direction, a robotic system capable of learning the
gaze following behavior in a real-world environment is presented
by Kim et al. [55]. The system learns to detect salient objects and
to distinguish a caregiver’s head poses in a semi-autonomous man-
ner. Multiple scenes containing different combinations of objects and
head poses to the robot head are fed as training sequences. The sys-
tem learns to associate the detected head pose with the correct spa-
tial location of an object using a biologically plausible reinforcement
learning mechanism.

On similar lines, a developmental robotics based multi-modal at-
tention learning system was presented Aryananda [7]. An integrated
framework is presented, which combines an object-based perceptual
system, an adaptive multimodal attention system and spatio-temporal
perceptual learning. This allows a robot to interact while collecting
relevant data in an unsupervised way. The multi-modal attention sys-
tem for the robot is coupled with a spatio-temporal perceptual learn-
ing mechanism. This incrementally adapts the saliency parameters for
different types and locations of stimuli based on the agent’s past sen-
sory experiences. A genetic algorithm addon is presented in Verma
and McOwan [105] which modifies the bottom-up attention map to
detect changes in the scene in an optimal way.

The discriminant saliency mechanism for videos is further improved
by computing tracking priors for salient region movement by Ma-
hadevan and Vasconcelos [73]. A learning stage, combines a focus
of attention mechanism and bottom-up saliency to identify a maxi-
mally discriminant set of features for target detection. The detection
stage uses a feature based attention mechanism and a target-tuned
top down discriminant saliency to detect the target. The tracker iter-
ates between learning discriminant features from the target location
in a video frame and detecting the location of the target in the next
frame. Well known properties of natural image statistics are exploited
to implement the tracker and achieve computational efficiency.

Most of salient objects are man made and have straight line struc-
tures. In order to exploit this feature, a Gabor wavelet based model
which generates orientation specific saliency maps was proposed by
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Fang et al. [27]. The dominant line orientations are computed, and
the low-level bottom-up saliency maps are re-weighted using this ori-
entation information. This method has been applied for the detection
of moving vehicles in a scene.

Most of the object based top-down attention models assume that
the target object also happens to be visually salient. However, a tar-
get object being salient in all scenarios need not be the case in real-
ity. In order to address this problem, a saliency map was proposed
by Moren et al. [79] which fuses Feature Gate framework with the
saliency map of Itti et al. [48]. The Feature Gate assumption enhances
the target object image features thus boosting its visual saliency. It
further modulates the winner-takes-all (WTA) mechanism to detect
the target object despite not being visually salient.

Top-down attention models which are used for a specific task like
object detection or recognition have never been throughly investi-
gated for their biological plausibility. In order to address this issue,
the work presented by Han and Vasconcelos [90] introduces a top-
down modulation to the famous HMAX model [57] for object recogni-
tion. The model precisely establishes the connection between saliency
and object recognition, which was hitherto hypothesized in selective
tuning model of attention [102]. The model also relies only on those
statistics, which can be realized by a biological circuit. The frame-
work is tested on standard object detection datasets and is found to
be effective.

Saliency computation is viewed as an optimization problem in Borji
et al. [14]. The saliency map proposed by Itti et al. [48] is further re-
fined, by replacing the feature competition process by a convex op-
timization function. The goal of the optimization is to maximize the
saliency with minimum processing cost. This is further integrated
and tested for an object detection task.

Face and skin have been important cues to guide visual attention
in natural scenes. This was first integrated as top-down cues in the
saliency system proposed in Lee et al. [61]. Low level image fea-
ture maps are extracted in a series of segmentation processes. In
the bottom-up module, all the features are combined into a bottom-
up map where a target candidate has a vector form of input. The
top-down input is determined by the geometrical relationship and
Gaussian distance between the location of a target and the location
of a cue. The face and skin color cues are also integrated into the
top-down component. The bottom-up and top-down maps are fused
with a neural network that has a dynamic and modulatory property
which guides attention shifts sequentially. Similarly the graph-based
visual saliency model [39] is also further extended to incorporate face
maps in [19]. This modification has shown considerable performance
improvement of the original model with respect to saliency computa-
tion in natural images.



2.9 top-down approaches 24

A machine learning approach to address the relationship between
object recognition and saliency is presented by Chang et al. [20]. A
graphical model which views objectness and saliency as a factor graph
formulation is presented. The framework conceptually integrates these
two concepts via constructing a graphical model to account for their
relationships. This concurrently improves their estimation by itera-
tively optimizing a novel energy function. This further helps in real-
izing the saliency model.

An adaptive saliency map which re-weights top-down and bottom-
up features with regard to the context was presented by Xu et al. [120].
The top-down attention selection in the task space and the bottom-
up attention selection in the image space is evaluated and combined
using information theory. An information based scene context classi-
fication considering scene dynamics is formulated to bias attention
selection. The method is computationally inexpensive to implement
as the fusion rule between the maps depends on Bayesian statistics.

An extension to the work of Kienzle et al. [53] is presented in Lee et
al. [62]. The method learns a regression model from fixated and non-
fixated image patches from a training video sequence. The fixation
strength is added as an ordinal label while computing the regression
model. During a test sequence, patches are extracted and classified
which obtains a class specific saliency map. This model is trained
and tested on ten different categories of video sequences, and has a
higher performance as compared to the performance of pure bottom-
up based approaches on the test video sequence.

An object form detection based saliency map is proposed by Ban
et al. [10]. The form detection is enabled by a Harris corner detec-
tor. The model generates top-down bias signals of form and color
features for a specific object. The desired object is localized by an in-
cremental learning mechanism together with object feature represen-
tation scheme. A fuzzy topology adaptive resonance theory network
is used for object color and form biased attention. It incrementally
learns and memorizes color and form features of arbitrary objects,
and also generates top-down bias signal for selectively attending to a
target object.

Shape cues has been incorporated for the first time to compute ob-
ject specific saliency maps by Khan et al. [95]. The model is employed
for recognizing object categories when using multiple cues by sepa-
rating the color and shape. The color is used to guide attention by
means of a top-down category-specific attention map. The color at-
tention map is further deployed to modulate the shape features to
boost those regions that are likely to contain an object instance.
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2.10 applications

Artificial visual systems which are deployed in real-time are data in-
tensive. They are expected to process a huge quantum of image and
multimedia data with high speed without compromising on effective-
ness. Such systems thus benefit by models of visual attention, as they
automatically provide a prior knowledge about the relative impor-
tance of each pixel. This property can be utilized to help robots focus
on an interesting location of a scene. It can also improve segmenta-
tion algorithms by automatically labeling the background. The image
search can also be optimized by re-weighting its associated keywords
based on saliency. We now explain a few such representative applica-
tions which have made a significant impact.

2.10.1 Developmental Robotics

Developmental robotics is a field which attempts to integrate human
traits like life long learning through social interaction into humanoid
robots. In order to sustain a coherent dialogue with an interaction
partner, a robot needs to be equipped with a suitable attention mech-
anism. In this regard, the work presented by Nagai [81] is highly
relevant. The saliency model proposed by Itti et al. [48] was modified
to handle dynamic scenes in [81]. This system could predict human
eye-gaze in an interaction scenario with greater accuracy. It further
showed that a bottom-up saliency map could moderately predict se-
mantically relevant regions in a dynamic scene without additional
top-down inputs. The said architecture is presented in Fig. 4

This application of the saliency system has the potential to achieve
intelligent robotic systems which can sustain a dialogue with a hu-
man interaction partner.

2.10.2 Digital Photography

Converting a color image into a gray scale without compromising on
the aesthetics is one of the important aspects of digital photography.
One such application can be seen in the work presented by Ancuti
et al. [6]. The color conversion framework employs the saliency map
of Itti et al. [48] to compute weighting factors for each location. Such
applications have the potential to be employed for colorizing black-
and-white motion pictures by combining it with a suitable machine
learning algorithm. An associated illustration is given in Fig. 5.

2.10.3 Image Segmentation

Automatic detection and segmentation of salient regions in an im-
age is an important computer vision task. An efficient image seg-
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Figure 4: The architecture of the social attention model proposed in [81]. The
model resembles the architecture of Itti et al. [48], but integrates
retinal and stochastic filtering to predict eye-gaze fixations.

mentation has implications for digital photography, image resizing,
thumbnailing and other computer vision tasks. Image segmentation
has application to robotics, where it helps the robot to focus on spe-
cific a region of a scene. In terms of driver assistance systems for cars,
segmentation helps in identifying obstacles, lanes, traffic lights etc.
An application of saliency models for scene segmentation is given in
Fig. 6

2.11 summary

In this chapter, we briefly reviewed many of the existing models for
visual saliency. Majority of these models emphasize on a large feature
set and computationally complex strategies. The attention modules
developed so far are specialized in nature. They are either used to
predict eye-gaze in a free viewing condition or are designed to han-
dle searching and recognition task, but not both concurrently. The ab-
sence of a unified saliency system which can handle both of these as-
pects leads to additional software engineering effort to make a robot
work in real time.

Since the saliency systems are computationally complex, they down-
size the input image into a lower scale. This process may sometime
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Figure 5: A saliency driven color conversion mechanism presented in [6].
The left shows the original stimulus, and the middle one shows the
gray scale color conversion due to interpolation. The right image
shows the re-adjusted color conversion by considering the saliency
of each pixel. Observe that the saliency driven color conversion is
visually more appealing than the normal grayscale based conver-
sion.

Figure 6: A saliency driven 3D segmentation mechanism presented in [54].
The results shown in this work corroborates our assumption that
integrating visual saliency mechanism improves the image seg-
mentation algorithms.

eliminate smaller objects and finer details that are visible at the origi-
nal scale. It can also be observed in the literature that centre-surround
contrast plays a pivotal role in directing attention in a free viewing
condition. Not surprisingly, many of the successful models of visual
saliency are driven by centre-surround contrast algorithms. One of
the advantages of this mechanism is that it is computationally less
expensive and hence the input image need not be down-scaled to a
lower resolution.

Another important factor that influences the saliency system is the
number of tunable parameters present in it. Cross validation is nec-
essary to fine tune the parameters. This introduces a dataset bias
wherein the generic nature of the saliency system is compromised. A
few high performing saliency systems (like [39, 16, 15]) require train-
ing bases. This introduces a classifier bias where the saliency system
works more appropriately on the images which resemble the ones in
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the training corpus. Any improvements on one or more of these is-
sues will positively improve the performance of saliency systems. As
we have already mentioned that the saliency models have a plethora
of computer vision applications. The enhancements would thus cas-
cade into the other applications, thereby enhancing the performance
and user experience.



3
B O T T O M - U P AT T E N T I O N M O D E L S

In the literature review we explained several important bottom-up
saliency models with their strengths and short-comings. Based on
these discussions one could sum-up the important properties of an
ideal bottom-up saliency system as:

1. Generate full resolution saliency map

2. Minimal set of tunable parameters

3. Simple to program

4. Absence of a training corpus

5. Minimal set of feature maps

6. Highlight the objects uniformly and not just the boundaries

7. Perform well on both eye-gaze correlation and salient region
detection tasks

8. Computationally efficient

Most of the saliency models process the pixels in a sequential and
grid-like fashion. But in reality, the human vision processes purpose-
ful spatial positions on a visual scene and does not follow a serial or
sequential method. The existing models use a plethora of simple and
compound image features to compute saliency maps. But the saliency
systems which employ center-surround contrast features are the ones
which are more biologically plausible. Based on these observations
we thus propose three different approaches to compute bottom-up
saliency maps.

The proposed saliency maps are described from Section. 3.1 to Sec-
tion. 3.3. The associated experiments and results are explained in
Section. 3.4. The chapters ends with a brief conclusing note in Sec-
tion. 3.5.

3.1 random pixels based saliency (pr1)

Nosofsky [83] proposed that each stimulus is influenced by every
other stimulus present in the attention space. A stimulus is thus at-
tenuated or boosted as a result of this interaction. The ensuing inter-
actions contributes to the final cumulated salience. A majority of the
stimulus interaction models have two components, the first one be-
ing the similarity function and second one being the biasing function.

29
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Based on this paradigm we propose an interaction formulation as in
Eq. 1.

Let I be an image of dimension r× c . Let (xi,yi) and (xj,yj) be
two distinct co-ordinate positions in I. The corresponding intensity
values are given by Ixi,yi

and Ixj,yj
respectively. The attention value

(V(I, xi,yi, xj,yj)) resulting out of the interaction between I(xi,yi)
and I(xj,yj) is given by their gradient normalized by the Euclidean
distance between them. This can be formulated mathematically as in
Eq. 1.

V(I, xi,yi, xj,yj) =

∣∣Ixi,yi
− Ixj,yj

∣∣√
(xi − xj)2 + (yi − yj)2 + 1

(1)

Our input is an image and we do not consider patches or image seg-
ments as stimuli but rather consider each pixel. This helps in solving
the issue of patch or grid size for feature extraction as in the case of
other saliency models like [94, 16, 129, 53, 56]. This is also in line with
the center-surround contrast paradigm, except that we do not restrict
to a pre-specified radius to the choose pixels from. Thus we propose
to randomly generate a set of np random co-ordinates which act as
stimulus keypoints. We study the interaction between the stimulus
(pixel intensity value) that is present in each of these keypoints and
a stimulus that is present in another set of np random co-ordinates
in the image. The algorithm Random_Pixel_Saliency describes the
proposed formulation.

However, a saliency model is expected to operate on color images
and not just gray scale versions. We therefore recommend to convert
the input color image into L∗a∗b∗ color space, and further operate
on the decomposed L∗, a∗, and b∗ channels separately. We recom-
mend to use L∗a∗b∗1 color space as it preserves the perceptual differ-
ence between the colors in the Euclidean space. The obtained channel
specific saliency maps are fused by employing Euclidean norm to
generate the master saliency map. We are motivated to use this fu-
sion rule as it is non-parametric and also does not violate the metric
properties. Usage of Euclidean norm as a fusion rule has also been
recommended by Achanta et al. [3, 4]. A Gaussian filter is used as
a pre-processor to remove spurious spikes and noise present in the
input image. Furthermore, a median filter is used as a post-processor
to propagate the saliency values across the neighboring pixels. We
specifically chose median filter for this purpose, as it has the property
of blurring the image without suppressing the edges and the bound-
aries. This property helps the final saliency map to highlight both
regions and boundaries simultaneously. The complete framework of
the proposed scheme which works on a color image is thus given in
the algorithm PR1.

1 The original CIE document - http://www.electropedia.org/iev/iev.nsf/display?
openform&ievref=845-03-56

http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=845-03-56
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=845-03-56
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Algorithm I.(a) : Random_Pixel_Saliency

Input : (1) I (Grayscale Image) of size r× c
: (2) np - Number of random pixels

Output : ST - Component specific saliency map of size r× c
Method

Step 1 : Set all elements of ST to 0

Step 2 : Update ST

for i= 1 to np

xi = Random number in[1, r]

yi = Random number in[1, c]

for j= 1 to np

xj = Random number in[1, r]

yj = Random number in[1, c]

STxj,yj
= STxj,yj

+ V(I, xi,yi, xj,yj)

end-j

end-i

Algorithm I : PR1

Input : (1) IRGB (RGB Image) of size r× c× 3
: (2) np - Number of random pixels

Output : S - Saliency map of size r× c
Method

Step 1 : Apply Gaussian filter on IRGB

Step 2 : Convert input IRGB to L∗a∗b∗ space

Step 3 : Generate saliencies for each component

SL = Random_Pixel_Saliency(L∗,np)

Sa = Random_Pixel_Saliency(a∗,np)

Sb = Random_Pixel_Saliency(b∗,np)

Step 4 : Compute S by pixel-wise Euclidean norm

S = Fusion(SL, Sa, Sb)

Step 5 : Apply median filter on S

Step 6 : Normalize S in [0, 255]
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Algorithm I.(b) : Fusion

Input : (1) Matrices A, B and C of size r× c
Output : (1) Fused matrix F of size r× c
Method

Step 1 : Set all elements of F to 0

for i= 1 to r

for j= 1 to c

Fi,j =
√
A2

i,j +B
2
i,j +C

2
i,j

end-j

end-i

3.2 random rectangular sub-window based saliency (pr2)

The algorithm PR1 models saliency as the cumulated contrast be-
tween random pair of pixels. It assumes that the input image is noise
filtered and smooth, otherwise the spikes are detected as salient. In
addition, the method is not scale invariant as it uses the Euclidean
distance to normalize the gradients between two random pixels. Eu-
clidean distance is an absolute measure, and is not a relative en-
tity like aspect ratio which remains constant despite a uniform scale
change of an image. In order to address these two issues, we re-
formulate saliency computation as sampling random sub-windows
from an image and cumulating the local saliencies to obtain the mas-
ter saliency map. The random scale and location of a sub-window
overcomes the need for a pre-determined grid size as in the case of
[94, 129].

We sample nr random sub-windows over I. The upper left and the
lower right co-ordinates of the ith random sub-window is denoted
by (x1i,y1i) and (x2i,y2i) respectively. The saliency value at a partic-
ular co-ordinate position is defined as the sum of the absolute differ-
ences of the pixel intensity value to the mean intensity values of the
random sub-windows in which it is contained. The algorithm Ran-
dom_Rectangular_Sub_Window_Saliency describes the proposed for-
mulation.
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Algorithm II.(a) : Random_Rectangular_Sub_Window_Saliency

Input : (1) I (Grayscale Image) of size r× c
: (2) nr - Number of random sub-windows

: (3) Co-ordinate vectors x1, y1, x2, y2 each of size nr

Output : ST - Component specific saliency map of size r× c
Method

Step 1 : Set all elements of ST to 0

Step 2 : Update ST

for i= 1 to nr

Areai = (x2i − x1i + 1) · (y2i − y1i + 1)
Sumi = 0

for j= x1i to x2i
for k= y1i to y2i
Sumi = Sumi + Ij,k

end-k

end-j

µi =
Sumi

Areai

for j= x1i to x2i
for k= y1i to y2i
STj,k = STj,k +

∣∣Ij,k − µi
∣∣

end-k

end-j

end-i

The issue of noise affects PR1 because the region of support is a
pixel and not a patch centered on it. By sampling patches instead of
pixels we solve the issue of spikes being highlighted as salient. We
do not fix a scale or position for the sampled patches or regions of
interest. This is because, that we would like to maximally enclose a
salient object or a region in an image. Further, salient regions or ob-
jects can occur at arbitrary positions, shapes and scales in an image.
To compute the local saliency of a patch we recommend to compute
pixel divergence, where all the pixels in the patch are replaced by
their absolute differences between the mean pixel intensity value of
the patch. The saliency value indicated at a pixel position in the mas-
ter saliency map is nothing but the cumulated sum of the computed
local saliency values. The aforementioned idea holds good for a two
dimensional gray scale image. As recommended in PR1 we convert
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Figure 7: An illustration of the PR2 approach. The input image is subjected
to Gaussian filter in the first stage. Subsequently it is converted
into the L∗a∗b∗ space and the individual L∗, a∗ and b∗ chan-
nels are obtained. For the sake of simplicity we have considered
three random regions of interest (ROI) on the respective L∗, a∗

and b∗ channels. Local saliencies are computed over each of these
ROIs and the channel specific saliency maps (SL, Sa and Sb) are
updated. The final saliency map is then computed by fusing the
channel specific saliency maps by a pixel-wise Euclidean norm.

an input color image into L∗a∗b∗ space and decompose them into L∗,
a∗, and b∗ and apply Random_Sub_Window_Saliency algorithm on
each of these channels separately. We obtain the master saliency map
by fusing the channel specific saliency map by means of Euclidean
norm. The complete framework of the proposed scheme which works
on a color image is thus given in the algorithm PR2. A graphical il-
lustration of the PR2 approach is given in Fig. 7.
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Algorithm II : PR2

Input : (1) IRGB (RGB Image) of size r× c× 3
: (2) nr - Number of random sub-windows

Output : S - Saliency map of size r× c
Method

Step 1 : Apply Gaussian filter on IRGB

Step 2 : Convert input IRGB to L∗a∗b∗ space

Step 3 : Generate random window co-ordinates

[x1, y1, x2, y2] = Generate_Random_Sub_Windows(nr, 1, 1, r, c)

Step 4 : Generate saliencies for each component

SL = Random_Rectangular_Sub_Window_Saliency(L∗,nr, x1,y1,x2,y2)

Sa = Random_Rectangular_Sub_Window_Saliency(a∗,nr, x1,y1,x2,y2)

Sb = Random_Rectangular_Sub_Window_Saliency(b∗,nr, x1,y1,x2,y2)

Step 5 : Compute S by pixel-wise Euclidean norm

S = Fusion(SL, Sa, Sb)

Step 6 : Apply median filter on S

Step 7 : Normalize S in [0,255]

Algorithm II.(b) : Generate_Random_Sub_Windows

Input : (1) nr - Number of random sub-windows

: (2) lx - Lower x co-ordinate

: (3) ly - Lower y co-ordinate

: (2) ux - Upper x co-ordinate

: (3) uy - Upper y co-ordinate

Output : x1, y1, x2, y2 each of length nr

Method

Step 1 : Generate random sub-window co-ordinates

Set all elements of x1, y1, x2, y2 to 0

for i= 1 to nr

x1i = Random number in [lx,ux − 1]

y1i = Random number in [ly,uy − 1]

x2i = Random number in [x1i + 1,ux]

y2i = Random number in [y1i + 1,uy]

end-i
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3.3 random fixation based saliency (pr3)

In the algorithm PR2, we proposed to compute saliency over random
rectangular patches. We implicitly assumed that the centroid of each
patch was a region where the eye-gaze of a human fixates, and the
saliency is a result of the divergence between mean patch intensity to
a given pixel intensity. This helps us in overcoming the problem of fix-
ing the grid size apriori, as this is taken care by the random sampling
of sub-windows. The saliency of given pixel in PR2 remains invariant
to the spatial arrangement of other pixels in the patch. However, the
perceptive mechanism in our visual system is sensitive to the spatial
arrangement.

In order address these issues, we propose to sample square shaped
random sub-windows instead of rectangles as in PR2. Computing cir-
cular patches is computationally expensive, and hence we decided to
sample square shaped patches instead. Secondly, we use patch cen-
troid intensity instead of mean pixel intensity value as a contrasting
factor. The mean pixel intensity value remains invariant to the spatial
arrangement of the pixels, while the patch centroid is generally sen-
sitive to the spatial arrangement. We sample nf random square sub-
windows are over I. The upper left and the lower right co-ordinates of
the ith random square sub-window centered on the random fixation
co-ordinate (fxi, fyi) is denoted by (x1i,y1i) and (x2i,y2i) respec-
tively. The saliency value at a particular co-ordinate position is de-
fined as the sum of the absolute differences of the pixel intensity value
to the patch centroid intensities of the random square sub-windows
in which it is contained. The algorithm Random_Square_Window_Saliency
describes the proposed formulation. A graphical illustration of PR3
is given in Fig. 8.
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Algorithm III.(a) : Random_Square_Window_Saliency

Input : (1) I (Grayscale Image) of size r× c
: (2) nf - Number of random fixations

: (3) x1, y1, x2, y2, fx, fy each of size nf

Output : ST - Component specific saliency map of size r× c
Method

Step 1 : Set all elements of ST to 0

Step 2 : Update ST

for i= 1 to nf

for j= x1i to x2i
for k= y1i to y2i
STj,k = STj,k +

∣∣Ij,k − Ifxi,fyi

∣∣
end-k

end-j

end-i

We retain the same framework as proposed in PR1 and PR2 with
regard to processing color images. Thus the complete framework is
given in the algorithm PR3.

Algorithm III : PR3

Input : (1) IRGB (RGB Image) of size r× c× 3
: (2) nf - Number of random fixations

Output : S - Saliency map of size r× c
Method

Step 1 : Apply Gaussian filter on IRGB

Step 2 : Convert input IRGB to L∗a∗b∗ space

Step 3 : Generate random square window co-ordinates

[x1, y1, x2, y2, fx, fy] = Generate_Square_Windows(nf, r, c)

Step 4 : Generate saliencies for each component

SL = Random_Square_Window_Saliency(L∗,nf, x1, y1, x2, y2, fx, fy)

Sa = Random_Square_Window_Saliency(a∗,nf, x1, y1, x2, y2, fx, fy)

Sb = Random_Square_Window_Saliency(b∗,nf, x1, y1, x2, y2, fx, fy)

Step 5 : Compute S by pixel-wise Euclidean norm

S = Fusion(SL, Sa, Sb)

Step 6 : Apply median filter on S

Step 7 : Normalize S in [0, 255]
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Algorithm III.(b) : Generate_Square_Windows

Input : (1) nf - Number of random fixations

: (2) r - Number of rows

: (3) c - Number of columns

Output : x1, y1, x2, y2, fx, fy each of size nf

Method

Step 1 : Set all elements of x1, y1, x2, y2, fx, fy to 0

Step 2 : Generate random fixation window co-ordinates

i = 1

while i 6 nf

s = (Random number in [0, 100]) · 0.01
∆i = ds · (r+ c) · 0.5e
if(r−∆i > ∆i) and (c−∆i > ∆i)

fxi = Random number in [∆i, r−∆i]

fyi = Random number in [∆i, c−∆i]

x1i = fxi −∆i

y1i = fyi −∆i

x2i = fxi +∆i

y2i = fyi +∆i

i = i+ 1

end-if

end-while

3.4 experimental results

Experiments were conducted to validate the performance of the pro-
posed saliency maps for two distinct tasks of salient region detection
and eye-gaze prediction in free viewing conditions. Salient region de-
tection and eye-gaze prediction are the two most significant applica-
tions of saliency maps. Salient region detection is relevant in the con-
text of computer vision tasks like object detection, object localization
and object tracking in videos [3, 4]. Automatic prediction of eye-gaze
is important in the context of image aesthetics, image quality assess-
ment, human-robot interaction and other tasks which involve detect-
ing image regions that are semantically interesting [51]. The contem-
porary saliency maps are either employed to detect salient regions as
in the case of [3, 88], or are used to predict eye-gaze patterns as in
[129, 94]. Only few of the existing saliency approaches like [39, 48]
have consistent performance on both of these tasks. Although these
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Figure 8: An illustration of the PR3 approach. Please not that the control
flow is similar to that of PR2 approach as shown in Fig. 7. It can
observed that the sampled patches are square shaped, while the
patches in PR2 are not restricted to be square shaped.

two tasks appear similar, there are subtle differences between them.
Salient regions of an image are those which are visually interesting.
But human eye-gaze which focuses mainly on salient regions are also
distracted by semantically relevant regions [89]. The performance on
the eye-gaze prediction task were validated on two different datasets
from York University [16] and MIT [51]. The experiments to corrobo-
rate the performance on salient region detection task were conducted
on the popular MSRA dataset [68].

Additional experiments were conducted on video snapshots from
Bielefeld Motionese corpus [111]. The Motionese corpus consists of
video recordings of parent–child tutoring of manipulative actions.
More information about this dataset is presented in Section. 3.4.6.
Unlike salient region detection and eye-gaze fixation datasets, the
Motionese video snapshots are driven by top-down influence. We are
also interested in knowing if the current saliency systems can predict
eye-gaze in an interaction or tutoring scenario. This helps selecting
and improving those saliency systems that are more appropriate for
this task, thus making the human–robot interaction more coherent.

The following parameter settings were used as a standard for all
the experiments carried out using PR1, PR2, PR3 approaches. A ro-
tational symmetric Gaussian low pass filter (size 3× 3 with σ = 0.5;
the default Matlab configuration) was used as a pre-processor on the
images for noise removal as recommended in [3]. A median filter
of size 11× 11 was employed to smooth the resultant saliency map.
We chose this size of the median filter as it resulted in a stable per-
formance. The parameter np was set to 0.1 · r · c, as the number of
pixels or is correlated to input image size. The parameters nr and nf
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were set to 500 and 1000 respectively as they delivered stable perfor-
mance. The employed Gaussian filter and median filter are based on
the usual straight forward methods. All experiments were conducted
using Matlab v7.10.0 (R2010a), on an Intel Core 2 Duo processor with
Ubuntu 10.04.1 LTS (Lucid Lynx) as operating system. The inbuilt
srgb2lab Matlab routine was used to convert the input image from
RGB colorspace to L∗a∗b∗ colorspace. This results in L∗,a∗ and b∗ im-
ages whose pixel intensity values are normalized in the range of [0,
255]. We selected eight state-of-the-art methods of computing saliency
maps to contrast with the proposed methods and shall be referred to
as follows - AC09 [3]2, BR05 [16]3, HA07 [39]4 , IT98 [48]5 , SE09 [94]6

, RO09 [88]7 , ZH08 [129]8 and AC10 [4]9.
The saliency model which has the best reported performance is

HA07. The models AC09 and AC10 are successful global contrast
based approaches. IT98 is the standard benchmark for all the existing
saliency approaches. BR05 is an information maximization based ap-
proach, while ZH08 is an energy minimization based approach. RO09

and SE09 are both driven edges and gradients. In addition the said
methods are highly cited.

3.4.1 Qualitative analysis

We proceed to illustrate three examples where the saliency maps pro-
duced by the proposed saliency models are visually compared with
those that are produced by other eight state-of-the-art methods in
consideration. The visual illustrations are given from Fig. 9 to Fig. 11.
We considered images where there is single object, multiple objects in
a natural scene and an image which is cluttered with line like objects.
The qualitative analysis provides insight to the strengths and short-
comings of the existing state-of-the-art methods in consideration. It
also corroborates that the proposed saliency models are effective in
producing a saliency map which highlight both boundaries and re-
gions simultaneously.

2 http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/SourceCode/Saliency_

CVPR2009.m

3 http://www-sop.inria.fr/members/Neil.Bruce/AIM.zip

4 http://www.klab.caltech.edu/~harel/share/gbvs.zip

5 http://www.klab.caltech.edu/~harel/share/simpsal.zip

6 http://users.soe.ucsc.edu/~rokaf/download.php

7 http://users.cs.cf.ac.uk/Paul.Rosin/resources/salience/salience.zip

8 http://cseweb.ucsd.edu/~l6zhang/code/imagesaliency.zip

9 http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/code/Saliency_

MSSS_ICIP2010.m

http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/SourceCode/Saliency_CVPR2009.m
http://ivrg.epfl.ch/supplementary_material/RK_CVPR09/SourceCode/Saliency_CVPR2009.m
http://www-sop.inria.fr/members/Neil.Bruce/AIM.zip
http://www.klab.caltech.edu/~harel/share/gbvs.zip
http://www.klab.caltech.edu/~harel/share/simpsal.zip
http://users.soe.ucsc.edu/~rokaf/download.php
http://users.cs.cf.ac.uk/Paul.Rosin/resources/salience/salience.zip
http://cseweb.ucsd.edu/~l6zhang/code/imagesaliency.zip
http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/code/Saliency_MSSS_ICIP2010.m
http://ivrg.epfl.ch/supplementary_material/RK_ICIP2010/code/Saliency_MSSS_ICIP2010.m
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(a) Stimulus (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 9: Saliency maps obtained due to all the methods under considera-
tion on Image 1_48_48173 from the MSRA dataset. Please note that
the saliency maps shown in Fig. 9d to Fig. 9i emphasize on edges
rather than regions. The saliency maps shown in Fig. 9b and Fig. 9c
emphasize regions, but fail to highlight them uniformly. Only the
proposed PR1, PR2 and PR3 based approaches produce a saliency
map which can highlight both regions and boundaries uniformly.
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(a) Stimulus (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 10: Saliency maps obtained due to all the methods under consider-
ation on Image 0_21_21001 from the MSRA dataset. Unlike the
stimulus in Fig. 9, the current image is from a natural scene. In
addition it has multiple objects and a rich background. It can be
observed from Fig. 10h that the saliency map generated by SE09

highlights only the boundaries. This can be explained by the fact
that the said approach is based on gradient self-information of the
image. Similarly the saliency map produced by RO09 as shown in
Fig. 10i highlights the background instead of objects. The RO09

approach is based on distance transform, which is derived from
edge detection at various thresholds. Since the background is
cluttered with straight-line like edges, the method weights the
background more than the foreground objects. The entropy based
BR05, highlights the entire image as it finds all the regions visu-
ally interesting (shown in Fig. 10f). BR05 computes ICA bases
from training images, and hence all the visually interesting pat-
terns detected from the training base is highlighted. The saliency
maps from AC09 and AC10 (Fig. 10b and Fig. 10c), are affected
by global contrast of the image and hence fail to highlight the
objects completely. As it can be seen from Fig. 10d, the HA07

method highlights all the objects effectively. However HA07 is
parametric and computationally expensive as compared to rest of
the methods in consideration. The saliency maps from PR1, PR2

and PR3 succeed in highlighting the regions despite a cluttered
background.
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(a) Stimulus (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 11: Saliency maps obtained due to all the methods under consider-
ation on Image 1_38_38399 from the MSRA dataset. It can be
observed that ZH08, RO09 and BR05 fail to highlight any of
the visible blobs effectively (as seen from Fig. 11g, Fig. 11i and
Fig. 11f). The presence of too many edges forces the distance
transform based RO09 to highlight the background than the ob-
ject blobs. ZH08 and BR05 have similar computational framework
and hence fail to highlight the blobs, as edges are detected more
saliently by the ICA bases. The HA07 and to a lesser extent IT98

(from Fig. 11d, Fig. 11e) highlight the blobs rather than the back-
ground. However HA07 is computationally expensive, and IT98

computes 41 feature maps to compute the master saliency map.
The proposed models of PR1, PR2 and PR3 highlight the blobs
effectively as compared to the other methods.
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Figure 12: Rectangular and exact segmentation masks. To the left is the sam-
ple image from the MSRA dataset [68], the image in the center
shows the original rectangular annotation and at right is the
accurate-to-contour annotation. Observe the reduction in back-
ground information between rectangular and exact annotations.

3.4.2 Experiments on salient region detection task

Experiments were conducted on the MSRA dataset [68] in order to
evaluate the performance on salient region detection task. The MSRA
dataset [68] consists of 5000 images annotated by nine users. The
annotators were asked to enclose what they thought was the most
salient part of the image with a rectangle. Fig. 12 shows an example
of this labeling. Naturally occurring objects do not necessarily have a
regular contour which can be enclosed accurately inside a rectangle.
As it can be seen from Fig. 12, unnecessary background is enclosed
by this kind of annotation. It has been recently shown in [3, 4, 116]
that a more precise-to-contour ground truth leads to a more accurate
evaluation. Motivated by this a precise-to-contour ground truth was
released in [3], for a subset of 1000 images from the MSRA dataset
[68]. Thus we consider this subset of 1000 images which have accurate
ground truth annotations for our experiments.

In general, the MSRA dataset [68] is significantly different from the
eye-gaze datasets in terms of test protocol, content and image size.
Fundamentally, the eye movements were not recorded and annotators
were required to enclose the most visually interesting region of the
image. Such an annotation task involves high-level cognitive mecha-
nisms and is not stimulus driven. Thus there is a weak association
between the exact segmentation masks and the saliency of the image.
Despite involving a high-level visual task, the MSRA dataset [68] is
still relevant to test whether there is an association between the pre-
dicted saliency map and the ground truth masks of this dataset. Pre-
vious studies [25, 60] have shown that the positions of the principal
maxima in a saliency map are significantly correlated to the positions
of areas that people would choose to put a label indicating a region
of interest.

In order to quantitatively evaluate the performance for the task of
detecting salient regions, we followed the method recommended in
[3, 88, 4], where the saliency map is binarized and compared with
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the ground truth mask. The saliency map is thresholded within [0,
255] to obtain a binary segmentation mask and is further compared
with the ground truth. The thresholds are varied from 0 to 255 and
recall-precision metrics are computed at each binarizing threshold.
The recall (R) (also called true positive rate or hit-rate) and precision
(P) metrics at a given threshold t, where 0 6 t 6 255 is computed as:

Rt =
tpt

tpt + fnt

(2)

Pt =
tpt

tpt + fpt
(3)

where tpt is the number of true positives, fpt is the number of false
positives and fnt is the number of false negatives at a given threshold
t.

In order to evaluate different algorithms both recall and precision
at all the thresholds have to be considered simultaneously. This could
however be achieved by a measure called eleven-point average precision,
which takes into account both recall and precision. The eleven-point
average precision (AP) [74] is computed as follows:

AP =
1

11
·
i=i+0.1;i61∑

i=0

maxPTH(R,i) (4)

where TH(R, θ) is a function which returns all the thresholds be-
tween [0, 255] where R > θ. AP being equal to 1 describes that the
obtained segmentation mask over all the thresholds matches perfectly
with the ground-truth mask, while AP being equal to 0 hints that
the obtained segmentation masks does not match with ground-truth
mask. However, it is unlikely that AP is either 0 or 1, but it assumes a
value between them; and AP tending to 1 implies a better segmenta-
tion performance. The AP has been used as a benchmarking metric in
TREC Video retrieval and PASCAL Visual object detection contests.

The histograms of the AP due to the eight state-of-the-art saliency
models in consideration on the MSRA dataset [68] is given in Fig. 13.
It can be observed from Fig. 13c and Fig. 13d that HA07 and IT98 have
the best performance as compared to the other existing methods in
consideration, where in HA07 two hundred and forty images have an
AP > 0.8. It can be seen in Fig. 13f that ZH08 is least effective in terms
of accurately detecting the salient regions, as the histogram of APs
resembles a uniform distribution. It also implies that the performance
of ZH08 on task of detecting salient regions is random, and hence less
reliable. Furthermore, the AP histograms of SE09 and RO09 (Fig. 13g
and Fig. 13h) resemble a Gaussian distribution, where the majority
of APs are 0.5. Despite their simplicity, the AC09 and AC10 (Fig. 13a
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and Fig. 13b) have a better skew in the AP histogram as compared to
the other sophisticated methods in consideration.

The AP histograms of the proposed PR1, PR2 and PR3 approaches
are given in the Fig. 14 for better visualization. It can be observed
from Fig. 14a that the PR1 approach attains the highest performance
as compared to other methods in Fig. 13. It should be further noted
that more than two hundred and fifty images have an AP > 0.9, and
the corresponding AP histogram is skewed-left. The AP histogram
of PR2 (Fig. 14b) resembles that of HA07 (Fig. 13c), while PR2 per-
formance being slightly better than that of HA07 as it can be ob-
served from the bin 0.7 in both of their corresponding histograms.
PR3 (Fig. 14c) attains a good performance in terms of AP, but it fails
to outperform most of the other methods in consideration. It achieves
an equivalent performance to SE09, BR05 and ZH08 despite lacking
equivalent sophistication.

In order to consolidate the evaluation, we compute the mean APs
from each of the methods. The resulting mean APs are plotted as a
histogram and displayed in Fig. 15. As it can be seen in Fig. 15, PR1

and PR2 outperform all the eight existing state-of-the-art methods in
consideration. In particular, PR1 achieves an AP of 0.8 while the best
AP among the existing methods is from HA07 at 0.725. PR3 achieves
a mean AP of 0.6, thereby outperforming ZH08, SE09 and RO09. PR2

attains an equivalent mean AP to that of HA07. This analysis rein-
forces the results from Fig. 13 and Fig. 14.

The histogram visualization of the average precisions sheds insight
into the degree of effectiveness of each method in consideration. How-
ever, it might not be easy to visually compare two methods using the
AP histograms as there is an overload of information. Histograms are
sensitive to number, width and placement of bins and if the bin width
changes within a histogram, the results can be misleading. We there-
fore use a cumulative distribution function (CDF) plot of the average
precisions for better visualization. The CDF displays all the data, and
thus portrays the distributions as precisely and completely as they
can be known, given the available observations. In addition it does
not require arbitrary choices of smoothing or binning parameters. The
CDF plots also determine if one algorithm stochastically dominates
another. The CDF plots of the APs of all the considered saliency mod-
els along with the proposed PR1, PR2, and PR3 approaches on the
MSRA dataset [68] is given in Fig. 16. It should be noted that more
the CDF plot is towards the left, the better the performance in terms
of AP (as AP ranges between 0 to 1, and 1 indicates the best perfor-
mance). It can be observed from Fig. 16 that PR1 and PR2 achieves
state-of-the-art performance and PR3 outperforms ZH08, SE09 and
RO09 in terms of AP.

We further wanted to analyze if the proposed saliency models per-
form consistently on different scales of salient regions. The examina-



3.4 experimental results 47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

Average Precision

N
u

m
b

er
 o

f 
Im

ag
es

(a) AC09
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(b) AC10
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(c) HA07
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(d) IT98
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(e) BR05
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(f) ZH08
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(g) SE09
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(h) RO09

Figure 13: Average Precision of existing methods visualized in terms of his-
tograms. The performance in terms of AP can be considered ef-
fective when there is a skew in the histogram and a majority of
the samples lie in higher valued bins.
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(a) PR1
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(b) PR2
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(c) PR3

Figure 14: Average Precision of the proposed methods visualized in terms
of histograms. It can observed that PR1 attains the highest perfor-
mance in terms of AP as compared to all the other methods in
consideration.
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Figure 15: Mean of the Average Precisions obtained from all the methods
under consideration. It can be observed that PR1 and PR2 achieve
state-of-the-art performance, while PR3 outperforms the RO09,
ZH08 and SE09 approaches.
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tion of the considered MSRA dataset [68] images has revealed that
the annotated salient regions occupied 20% to 30% of the image size
in 685 of the 1000 stimulus images present. In about 160 images, the
size of the salient regions is less than 10% of the image size, while
in the remaining 155 images the size of the salient region is reported
to be more than 30% of the image size. These subsets of 160 and 155

images constitute the tail of size distribution, and we further tested
the performance of the proposed approaches on these subsets. The
CDF plots of the APs on the subsets where the salient region sizes
are lesser than 10% and greater 30% of the image size are reported
in Fig. 17 and Fig. 18 respectively. From these plots we observe that
the performance of PR1 does not diminish despite the size of salient
region being extremely small or large. Furthermore, the performance
of PR2 and PR3 improves on the subset where the size of the salient
region is less than 10% of the image size (Fig. 17).

From the aforementioned average precision based analysis we can
conclude that for any given binarizing threshold, the performance of
PR1 and PR2 is guaranteed to outperform all the existing state-of-the-
art methods on the MSRA dataset [68]. In this case, we assume the
selection of the binarizing threshold is common and is done manually.
However, a common binarizing threshold may not produce the opti-
mal performance on salient region detection, as an optimal binariz-
ing threshold is always specific to an image. Therefore it is necessary
to adopt a method where a map specific binarizing threshold is com-
puted automatically. Several image binarization techniques have been
proposed so far, and we select the twelve most popular (in terms of ci-
tations) binarization techniques to compute the map specific binariza-
tion thresholds. The considered binarization techniques are the Con-
cavity (TH1), Entropy (TH2), Intermeans (TH3), Iterative Intermeans
(TH4), Intermodes (TH5), Maximum Likelihood (TH6), Mean (TH7),
Median (TH8), Minimum Error (TH9), Minimum Error Likelihood
(TH10), Minimum (TH11), and Moments (TH12) based thresholding.
Interested readers are requested to consult reference [32] where all of
the above mentioned binarization techniques are explained in detail.

In order to qualitatively compare the performance of map specific
thresholding, we provide the resulting overlaid segmentation masks
resulting from TH12 thresholding technique on three images (the
same stimuli images from Fig. 9 to Fig. 11) from the MSRA dataset
[68]. The overlaid segmentation masks can be viewed from Fig. 19 to
Fig. 21. It can be observed from these three examples, that the pro-
posed saliency models PR1, PR2 and PR3 generate a more accurate
segmentation mask as compared to the other saliency models consid-
ered.

In order to quantitatively evaluate the segmentation performance,
we employ the F-measure metric. Like the average precision, the F-
measure also attempts to address the issue of convenience that is
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Figure 16: CDF plot visualization of the Average Precisions obtained from
all the methods under consideration on MSRA dataset [68]. It can
be observed that CDF plot of PR1 is left most and hence has the
best performance interms of AP. It can also be seen at 0.5 of the
Y-axis (which indicates the median), the AP of PR1 is 0.88. This
implies that 50% of the saliency maps generated by PR1 have an
AP > 0.88. Similarly it can seen from the CDF plots of PR2 that
50% of the saliency maps generated by this method have an AP
> 0.76. The CDF plots of HA07 and PR2 are similar, however PR2

dominates HA07 throughout. Hence we can infer that PR2 has
a tendency to perform better than HA07. PR3 outperforms SE09,
R009 and ZH08 saliency models despite lacking equivalent so-
phistication. The performance of ZH08 and BR05 is constrained
by downscaling of the input image and the requirement of train-
ing bases. SE09 does not require training bases, but it requires a
fixed grid size to process the image. Whenever the salient region
or objects are not enclosed in the grid, the saliency detection fails.
AC09 and AC10 attain a similar performance and outperform
SE09, ZH08 and RO09 methods, thereby confirming the efficacy
of the center-surround hypothesis in saliency computation.
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Figure 17: CDF plot visualization of the Average Precisions on those images
whose ground-truth mask occupied less than 10% of the image
size. It can be observed that PR1 achieves state-of-the-art perfor-
mance, while PR2 which achieved an equivalent performance to
HA07 on the entire dataset (as seen from Fig. 16) outperforms
it. The performance of the PR3 is also high as it outperforms
IT98 and attains a similar performance to HA07. While the per-
formance of other methods deplete when the size of the salient
regions decrease, the proposed (PR1, PR2 and PR3) approaches
improve their performances. This capability helps the proposed
approaches for being more complaint in applications like localiz-
ing small objects on a very large background.
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Figure 18: CDF plot visualization of the Average Precisions on those images
whose ground-truth mask occupied more than 30% of the image
size. It can be seen that CDF plot of PR1 dominates the rest and
hence achieves the highest performance. PR2 which achieved a
performance equivalent to HA07 on the entire dataset (as seen
from Fig. 16), has a diminished performance on this image sub-
set. Similarly PR3 is achieves a better performance than SE09.
With these results, we observe that patch based methods ( like
SE09, PR2, PR3, BR05, ZH08, RO09) have a lower performance as
compared to pixel based methods ( like PR1, IT98, HA07, AC09,
AC10).
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brought on by a single metric than a pair of metrics. It combines pre-
cision and recall into a single metric. The formula for the F-measure
(Ft) at a given binarizing threshold t is given as follows:

Ft =
2 · Rt · Pt
Rt + Pt

(5)

High recall with low precision is easy to achieve as it means we
highlight most of the regions that are not salient. Similarly, attaining
high precision with low recall implies that most of the regions that
are highlighted are salient, but a majority of the salient regions are
missed. A salient region detection process can achieve either high re-
call or high precision, but rarely both simultaneously. An effort to
improve the performance of either precision or recall causes the per-
formance of the other to drop.

Ideally, we require a salient region detection performance which
weighs high on both recall and precision. The F-measure thus at-
tains a high value only when both recall and precision are equally
weighted and not skewed towards either of them. A high F-measure
is thus synonymous to a more accurate segmentation. In addition, the
F-measure is also employed in information retrieval problems which
has to deal with the case where negative class examples outnumber
the positive examples significantly. Recent research has shown that
F-measure has higher correlation with human judgments than the
recently proposed alternatives [50].

The corresponding recall, precision and F-measures over all the
thresholding schemes on the eight state-of-the-art saliency models are
given in Fig. 22. It can be observed from Fig. 22 that AC09 (Fig. 22a)
and AC10 (Fig. 22b) attain a higher precision than recall on most
of the different thresholding schemes. This implies that despite their
limited ability to highlight the image regions, most of which what
they highlight is salient and accurate. This result is in line with the
segmentation illustrations shown in Fig. 19b and Fig. 19c. We have
seen from the previous illustrations that the BR05 approach high-
lights most of the image for a given binarizing threshold. This leads
to a high recall and a low precision performance in the salient region
detection task. The same can be observed in Fig. 22e where the recall
is significantly higher than the precision. Similarly it is also the case
with RO09 (Fig. 22h). The F-measure performance of SE09 (Fig. 22g)
and ZH08 (Fig. 22f) never exceed 0.5 on either of the twelve different
thresholding schemes. This implies that these methods neither attain
a high recall or high precision values and hence not suitable for the
salient region detection task. The HA07 (Fig. 22c) and IT98 (Fig. 22d)
have a more consistent performance as compared to the other meth-
ods in consideration. Furthermore, the histograms reveal that HA07

(Fig. 22c) and IT98 (Fig. 22d) have a higher F-measure performance on
the T12 thresholding scheme as both recall and precision are equally
weighted.
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We now similarly illustrate the recall, precision and F-measure per-
formances of the proposed PR1, PR2 and PR3 saliency approaches
in Fig. 23. As it can be seen from the F-measure performance of PR1

(Fig. 23a), the said approach outperforms all the other methods in
consideration. It should be noted that it achieves high performance
on both recall and precision values on majority of the thresholding
schemes. This indicates that the segmentation performance is both
complete and accurate. This quality of completeness and accuracy
was visualized in the segmentation illustrations (Fig. 19j, Fig. 20j,
Fig. 21j). The F-measure performance of PR2 (Fig. 23b) is compara-
ble with that of HA07 (Fig. 22c) despite PR2 being a patch based
approach. In addition, HA07 is computationally the most expensive
scheme, while the complexity of PR2 is indicated by nr co-efficient
which controls the number of image samplings. The segmentation
performance of the PR3 (Fig. 23c) approach is similar to that of AC10

(Fig. 22b). In addition, it weighs high on recall than precision over
all the thresholding schemes with an exception of T6 thresholding
scheme. This indicates that the saliency map produced by PR3 has
a low contrast. We further averaged the performance of recall, preci-
sion and F-measure due to T1 to T12 on all the saliency models. The
averaged performances are thus presented in Fig. 24. This further cor-
roborates that PR1 and PR2 approaches attains state-of-the-art perfor-
mance in terms of F-measure metric.

3.4.3 Experiments on eye-gaze prediction task

An additional way to evaluate the performance of the saliency mod-
els is by corroborating their effectiveness in predicting the human
eye-gaze on an image in free-viewing condition. In a free-viewing
condition, a user is asked to view an image without any specific
objective like searching or recognition of objects. The eye-gaze fix-
ation positions on the stimulus image and their durations are fur-
ther recorded using an eye-tracker. The recorded fixations are subse-
quently pooled to generate a fixation density map –which is a gray-
scale image– where the pixel intensity values are proportional to the
fixation duration on that location. The fixation density map is treated
as ground-truth and the obtained saliency map on the stimulus image
is compared and contrasted with it.

For the purpose of evaluation we have considered eye-gaze fixation
datasets from the York University [16] and MIT [51]. The York Univer-
sity [16] dataset consists of 120 images, with eye-fixation recordings
from 20 test participants. This dataset is the standard evaluation plat-
form with regard to the eye-fixation correlation experiments. It con-
sists of both indoor and outdoor scenes, and size of the test images
are relative small and uniform. Another recent, but large and chal-
lenging eye-fixation dataset is available from the MIT [51]. The MIT
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(a) Ground-Truth (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 19: Overlaid segmentation masks obtained (due to TH12 binariz-
ing scheme) for all the methods under consideration on Image
1_48_48173 from the MSRA dataset [68]. Observe that the pro-
posed PR1, PR2 and PR3 approaches produce a segmentation
mask, which is most similar to the ground-truth. ZH08, SE09

and IT98 end up highlighting the boundaries and edges and ig-
nore salient regions. BR05 highlights the salient region, however
it encloses redundant backgrounds. AC09 and AC10 fail to suffi-
ciently highlight the salient regions, as the contrast of the stimu-
lus image is insufficient for effective saliency detection by these
two methods. HA07 highlights only the salient regions, but does
not detect the entire expected regions of interest.
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(a) Ground-Truth (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 20: Overlaid segmentation masks obtained (due to TH12 binariz-
ing scheme) for all the methods under consideration on Image
0_21_21001 from the MSRA dataset [68]. The proposed PR1, PR2

and PR3 approaches highlight the salient regions more effectively
as compared to the other state-of-the-art methods, though not
completely accurate. It should be noted that ZH08, RO09 and
SE09 highlights the background instead of the salient region, and
is affected by strong edges and boundaries. AC09 and AC10 have
a similar performance and highlight high contrast regions in-
stead of salient regions. BR05 highlights the entire image, and
hence may not be suitable for salient region detection in clut-
tered backgrounds. IT98 displays a strong tendency to highlight
the boundaries as it can be seen that the borders of the image is
highlighted. Similar to the proposed saliency approaches, HA07

smoothly highlights part of the salient region.
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(a) Ground-Truth (b) AC09 (c) AC10

(d) HA07 (e) IT98 (f) BR05

(g) ZH08 (h) SE09 (i) RO09

(j) PR1 (k) PR2 (l) PR3

Figure 21: Overlaid segmentation masks obtained (due to TH12 binariz-
ing scheme) for all the methods under consideration on Image
1_38_38399 from the MSRA dataset [68]. The proposed PR1, PR2

and PR3 methods produce a segmentation mask more appropri-
ately than rest of the methods in consideration. The current image
has a lot of boundaries, and it is hard to visually distinguish the
foreground from the background. Despite this challenge, the pro-
posed approaches perform well. It can be observed that ZH08 and
RO09 highlight the line like segments than the intended salient
region. Subsequently AC09 and AC10 fail to highlight the salient
regions because of the lack in image color contrast. BR05 high-
lights the entire image as it did in the previous two examples
(Fig. 19f and Fig. 20f).
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(a) AC09
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(b) AC10
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(c) HA07
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(d) IT98
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(e) BR05
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(f) ZH08

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Thresholding Schemes

 

 
Recall
Precision
F−Measure

(g) SE09
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(h) RO09

Figure 22: Recall, Precision and F-Measure from twelve different threshold-
ing schemes over existing methods
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(a) PR1
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(b) PR2
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(c) PR3

Figure 23: Recall, Precision and F-Measure from twelve different threshold-
ing schemes over the proposed methods
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Figure 24: Average of the Recall, Precision and F-Measure obtained due to
the twelve thresholding schemes over all the saliency methods
under consideration. Please observe that PR1 and PR2 attain the
highest F-measure performance, while PR3 outperforms ZH08,
SE09, RO09 and AC10 saliency models. It should be noted that
BR05 has a higher F-measure performance than PR3. But despite
this, PR3 could be considered more reliable than BR05 as it has
a higher precision than BR05. A very high recall and a low preci-
sion combination as in the case of BR05 could be found effective
in detecting the salient regions only under those circumstances
where the salient regions significantly occupy the majority of the
image. This can be seen in the illustration (Fig. 19f) where the
salient region occupies the majority of the image area. The same
is also corroborated in the plot (Fig. 18) where the BR05 achieves
a higher performance on those images of the MSRA dataset [68]
where the salient regions occupied more than 30% of the image.
It can be seen that ZH08 and SE09 have low performance in terms
of F-measure and are thus unsuitable for salient region detection
task. While the performances of IT98 and HA07 are moderately
good as compared to the other six state-of-the-art methods, they
are hindered by their computational complexity. AC09 also at-
tains a low F-measure performance but could be considered a
better alternative to BR05, ZH08, SE09 and RO09 because of its
low computational complexity.
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[51] dataset consists of 1003 images with fixation recordings from 15

test participants. The images consists of diverse scenes from parties,
crowds, wildlife with varying camera angles. In addition the size of
the images are large and not uniform throughout the dataset.

In order to empirically evaluate the performance on eye-gaze cor-
relation task, we have employed the receiver operating characteris-
tic (ROC) - area under the curve (AUC) as a benchmarking met-
ric. Several popular and recent works like [39, 53, 60] employ the
ROC-AUC metric to evaluate eye-gaze fixation correlation. An ROC
graph is a general technique for visualizing, ranking and selecting
classifiers based on their performance [50]. The ROC graphs are two-
dimensional graphs in which the true positive rate (TPR) is plotted
on the Y axis and the false positive rate (FPR) rate is plotted on the X
axis. The TPRt (also called hit rate and recall) and FPRt (also called
false alarm rate) metrics at a given binarizing threshold t is computed
as in [67]:

TPRt =
tpt

tpt + fnt

(6)

FPRt =
fpt

fpt + tnt
(7)

where tnt is the number of true negatives.
An ROC graph depicts relative trade-offs between benefits (TPR)

and costs (FPR). Since the AUC is a portion of the area of a unit
square, its value will always be between 0 and 1.0. An ideal classifier
would give an AUC of 1.0 while random guessing produces an AUC
of less than 0.5. The saliency map and the corresponding ground
truth fixation density map are binarized at each discrete threshold
in [0, 255]. This results in a predicted binary mask (from the saliency
map) and a ground truth binary mask (from the fixation density map)
for each binarizing threshold. The TPRt and FPRt for each threshold
are subsequently computed. The ROC curve is generated by plotting
the obtained FPRs versus TPRs and the AUC is calculated. In our
case, the AUC indicates how well the saliency map predicts actual
human eye fixations. In general, the AUC represents the performance
of the classifier averaged over all possible cost ratios. It has been ar-
gued that AUC is one of the good methods to obtain a score of a
classifier performance and to compare it with other classifiers as it
works well in case of imbalanced data [50]. This property of AUC
is suitable in this context as the number of fixation locations in an
eye-gaze fixation map is always lesser than the number of unfixated
locations. AUC also measures the probability of a classifier associat-
ing a higher rank to a randomly chosen positive example than to a
randomly chosen negative example. Some of the statisticians also ar-
gue that ROC-AUC is equivalent to Wilcoxon’s Rank Sum test. This
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Figure 25: CDF Performance Plot for ROC-AUC on York University Dataset
[16]. Note that PR3 attains the highest performance.

measurement also has the desired characteristic of transformation in-
variance, in that the ROC-AUC does not change when applying any
monotonically increasing function (such as logarithm) to the saliency
measure [129].

It can be observed from Fig. 25 that the performance of PR3 stochas-
tically dominates rest of the approaches on York University dataset.
PR1 and PR2 approaches outperform AC09, AC10, ZH08 and SE09

saliency models. PR3 attains state-of-the-art performance over rest of
the computationally expensive approaches.

We can observe from the Fig. 26 that the PR3 approach attains
an equivalent performance to HA07 approach. The MIT eye-fixation
dataset [51] consist of 1003 images and is nine times bigger than the
York University dataset [16]. Despite the high amount of variations
in the number of images, and also the variations in the scenes, the
performance of PR3 does not diminish. It can also be seen that PR1

outperforms AC09, AC10 and SE09, while PR2 outperforms RO09 in
addition to these methods. The good performance of HA07 and BR05

can be attributed to the usage of precomputed training bases. How-
ever, the proposed approaches (PR1, PR2 and PR3) do not employ
any training bases.

In addition to ROC-AUC, we also employed correlation co-efficient
(CC) and mutual information (MI) metrics to evaluate the perfor-
mances on eye-gaze prediction. We employ the CC metric to test for
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Figure 26: CDF Performance Plot for ROC-AUC on MIT Dataset [51]. Ob-
serve that PR3 and HA07 attain state-of-the-art performance.

the presence of outliers in the generated saliency maps. A higher CC
implies less number of outliers and vice-versa. The presence of out-
liers generate false fixation locations while artificially simulating an
eye scan path on an image. The CC between the saliency map S and
fixation density map F (where the dimensions of F, S is r × c) are
computed as given in Eq. 8.

CC(F, S) =
cov(F, S)
σF · σS

(8)

cov(F, S) = (rc)

i=r,j=c∑
i=1,j=1

(Si,jFi,j) − (

i=r,j=c∑
i=1,j=1

Si,j)(

i=r,j=c∑
i=1,j=1

Fi,j) (9)

Eq. 9 refers to the co-variance while σF and σS refer to the variances
of F, S receptively. The CC CDF performance plots on York University
[16] and MIT [51] datasets are given in Fig. 27 and Fig. 28 respectively.
We employ the MI metric to evaluate the similarity between the pro-
duced saliency maps and the eye-fixation maps. Unlike CC, the MI is
not sensitive to outliers. A lower MI value denotes a higher amount
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Figure 27: CC performance on York University [16] dataset. PR2 and PR3

attain a higher performance in terms of CC as compared to all
methods with an exception of HA07.

of uncertainty to the predicted saliency values in the saliency map.
The MI between F, S is computed as given in Eq. 10.

MI(F, S) =
i=255∑
i=0

j=255∑
j=0

pF,S
i,j log

pF,S
i,j

pF
ip

S
j

(10)

In Eq. 10 pF
i and pS

j represent the probability of the gray levels i
and j in F and S respectively, while pF,S

i,j denotes the joint probability
of gray levels i and j in F and S. The MI CDF performance plots on
York University [16] and MIT [51] datasets are given in Fig. 29 and
Fig. 30 respectively.

We also provide the averaged performances in terms of ROC-AUC,
CC and MI on York University [16] and MIT [51] eye-gaze datasets
in the Table. 1. The ROC-AUC metric evaluates the saliency models
in terms of their classification performance. A higher performance
in terms of ROC-AUC implies a higher classification accuracy of a
saliency model. This is important because a saliency model predicts
the fixation probability of a pixel position in an image. However, only
a few pixel locations in an image are attended while the rest are ig-
nored. This leads to a high imbalance between positive (fixated) and
negative (non-fixated) examples. The ROC-AUC metric evaluates and
ranks classifiers appropriately despite the imbalance in the classifica-
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Figure 28: CC performance on MIT [51] dataset. The PR3 approach attains
state-of-the-art performance equivalent to HA07.
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Figure 29: MI performance on York University [16] dataset. It should be ob-
served that PR3 attains a higher performance on all methods ex-
cept HA07.
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Figure 30: MI performance on MIT [51] dataset. It can be seen that PR3 at-
tains a similar performance to that of HA07.

Table 1: Comparative analysis in terms of ROC-AUC, CC and MI.

ROC-AUC CC MI

Method York MIT York MIT York MIT

AC09 0.53±0.11 0.52±0.13 0.07±0.15 0.04±0.15 0.23±0.08 0.15±0.07

AC10 0.65±0.08 0.64±0.09 0.18±0.12 0.14±0.13 0.19±0.08 0.13±0.07

HA07 0.86±0.08 0.83±0.12 0.48±0.14 0.36±0.16 0.62±0.13 0.42±0.11

IT98 0.80±0.12 0.76±0.15 0.39± 0.18 0.28±0.19 0.52±0.13 0.35±0.11

BR05 0.83±0.11 0.79±0.14 0.31±0.10 0.24±0.10 0.39±0.10 0.27±0.10

ZH08 0.72±0.13 n/a 0.26±0.17 n/a 0.34±0.09 n/a

SE09 0.74±0.10 0.71±0.15 0.36±0.19 0.23±0.18 0.41±0.11 0.27±0.10

RO09 0.75±0.11 0.75±0.17 0.25±0.16 0.25±0.15 0.38±0.11 0.29±0.11

PR1 0.79±0.10 0.76±0.12 0.34±0.13 0.25±0.14 0.40±0.12 0.28±0.09

PR2 0.81±0.07 0.78±0.08 0.43±0.12 0.32±0.12 0.48±0.10 0.33±0.09

PR3 0.88±0.08 0.82±0.09 0.44±0.14 0.36±0.13 0.54±0.12 0.39±0.10
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tion data as it considers TPRs and FPRs and not the absolute number
of true positives and false positives.

It can be observed from Table. 1 that PR3 attains state-of-the-art per-
formance on the York University dataset, while it outperforms all the
existing methods with an exception of HA07 on MIT dataset. This
can also be seen in the Fig. 25 and Fig. 26. The performance of
AC09 implies that its performance is random. IT98 and BR05 achieve
a good performance on both the eye-fixation datasets, but they are
constrained by a large standard deviation in their performances. The
performance of a method can be considered more precise, if the stan-
dard deviation of the associated performance metric is low. In that
respect, the performance of PR2 is precise as it has the lowest stan-
dard deviation, and at the same time its averaged performance is next
only to HA07. It can be observed that in terms of CC, the PR3 attains
state-of-the-art performance on MIT dataset, while on York Univer-
sity dataset it is next only to HA07. A higher performance in terms of
CC implies a lower number of outliers in the predicted saliency map.
This property is useful while artificially simulating eye-gaze shifts on
an image. This can also be seen in the Fig. 27 and Fig. 28. Please note
(from Fig. 27 and Fig. 28) that the order of performance of BR05, SE09

and RO09 change with respect to York University and MIT eye-gaze
fixation datasets. While the performance ordering of the proposed
saliency approaches are consistent for both the data sets.

The standard deviation of the PR2 performance is amongst the low-
est as it was the case with the ROC-AUC metric. We can observe that
HA07 attains the highest performance in terms of MI. The perfor-
mance of HA07 sharply depletes on the MIT dataset. However, the
performance of PR2 and PR3 do not experience a sharp depletion as
compared to HA07. Even on the MI metric, the standard deviation in
the performance of PR2 is minimal. It can be observed from Fig. 29

that the performance of PR2 is similar to that of IT98, while the perfor-
mance of PR1 is similar to that of RO09. Unlike correlation coefficient,
mutual information is not sensitive to outliers and is used as an image
similarity metric. From Fig. 30 we observe that the performance gap
between HA07 and PR3 is reduced as compared to its performance
on the York University dataset (Fig. 29). Similarly the performance
ordering of PR2 and PR3 approaches do not change despite a differ-
ent dataset. The results imply that PR3 and HA07 generate saliency
maps which is visually more similar to fixation density maps.

3.4.4 Performance due to change in parameters

The performances of the proposed methods due to change in np, nr

and nf on the MSRA dataset [68] are presented in Fig. 31. It can be
observed from Fig. 31a that PR1 outperforms BR05, SE09, RO09 and
ZH08 when np is set to as low as 200. This is an interesting result
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Table 2: The computational run time(in seconds) of various saliency meth-
ods under consideration. Run times were computed using Matlab
v7.10.0 (R2010a), on an Intel Core 2 Duo processor with Ubuntu
10.04.1 LTS (Lucid Lynx) as operating system

Saliency Map Original Code Runtime(in Secs) w.r.t Image Size

205× 103 308× 195 410× 259
AC09 Matlab 0.0652 0.0898 0.1539

AC10 Matlab 0.0976 0.1172 0.2050

BR05 Matlab 2.1448 5.0761 10.3915

HA07 Matlab & C++ 0.6256 0.4788 0.5577

IT98 Matlab & C++ 0.4388 0.3820 0.3661

RO09 Binary 0.1266 0.2806 0.5308

SE09 Matlab 3.0590 3.1187 3.1133

ZH08 Matlab 1.6466 4.0714 7.6242

PR1 Matlab 0.2701 0.5939 1.2038

PR2 Matlab 0.3430 0.5422 1.0766

PR3 Matlab 0.3600 0.3700 0.8000

because it involves only forty thousand pixel operations. The MSRA
dataset consist of images of size 400 × 300 pixels, and the saliency
map obtained from PR1 when np = 200 is a result of operating on
less than 30% of the pixels in the image. The performance of PR1

increases drastically when np = 300 and saturates quickly to the stan-
dard performance when np = 400.

We can observe that PR2 (Fig. 31b) nearly attains its top perfor-
mance when nr = 50. Methods like ZH08 and SE09 sample the image
into more than hundred regular patches. Contrastingly PR2 achieves
a high performance (even outperforming HA07 , please refer Fig. 16)
when nr = 50. The performance of PR2 quickly attains its peak per-
formance for larger values of nr.

We can observe that when nf = 50, PR3 (Fig. 31c) outperforms
RO09, SE09 and ZH08. Unlike PR2, PR3 doesn’t even involve comput-
ing the mean of the patch and hence its computationally inexpensive.
Thus PR3 could be used in those circumstances where computational
efficiency is more important than accuracy of the results. PR3 satu-
rates when nf > 250.

3.4.5 Computational Run-Time

We evaluated the runtime of the proposed saliency approach with ref-
erence to the other methods in consideration. The runtime of the var-
ious methods were benchmarked on three different scales of a color
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Figure 31: CDF plots of the Average Precision performance variations with
respect to different parameters.
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image as shown in Table 2. The original plugins of AC09, AC10 and
BR05 saliency approaches are pure Matlab codes. While the codes
pertaining to IT98, HA07 and SE09 are quasi Matlab codes which
call C++ functions for run time optimization. The original plugin for
RO09 is a binary executable while its original coding language is un-
known. The proposed PR1, PR2 and PR3 are programmed in Mat-
lab. An absolute comparison on the basis of runtime might penalize
the methods which are coded in Matlab script as they are relatively
slower than their C++ counterparts. Nevertheless, it gives a relative
overview of runtime performance of the all methods under consider-
ation. It can be observed from Table 2, that the run time of HA07,
IT98 and SE09 saliency approaches do not change significantly irre-
spective of the size of the input image. This is on account that the
input image is rescaled to pre-specified dimension as mentioned in
their source codes. The rest of the methods process the input image
in its original scale and hence the run time changes with the input
image dimension.

3.4.6 Saliency Models for Eye-Gaze Prediction in an Interactive Scenario

We further investigate the accuracy of the proposed saliency systems
in predicting eye-gaze in an interaction scenario. Unlike salient region
detection or eye-gaze prediction tasks in a free-viewing condition, the
said scenario has top-down influences. The eye-gaze in an interaction
scenario is focused not just on visually salient regions but on task
relevant semantic regions. In this regard, we are interested to know
the degree of effectiveness of the considered saliency systems on this
scenario. Many researchers support saliency systems as a bottom-up
inspired way to simulate infant-like gazing behavior [81]. The has
implications for a cognitive humanoid robot as is often modeled in
accordance with human behavior.

The experiments presented in this sub-section is based on video-
recordings from the Bielefeld Motionese corpus. The corpus has sixty
four pairs of parents who were asked to present a set of ten manip-
ulative tasks their infants. During a task, the parent and child were
facing each other while sitting across a table. This was videotaped
with two cameras. Several coders have objectively annotated the ob-
jects gazed by the infants at any given time-stamp during the course
of interaction. An example snapshot and the associated annotation
example is given in Fig. 32.

For the current analysis we restrict on parent-infant-interaction dur-
ing the stacking of cups task. The focus is on the youngest partici-
pants comprising 12 families of 8 to 11 months old children, as the
main feedback and controlling capabilities of these infants is based
on the gazing behavior. The said task consists of sequentially picking
up a green, yellow, and a red cup and to subsequently place them
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Figure 32: The annotation of Bielefeld Motionese Corpus [111]. The snap-
shot shows the video stills from both parent as well as the child’s
view. Please note that this snapshot is from the stacking cup sce-
nario. The colored arrows indicate the color of the cup on which
the child’s attention is focused during that particular time-stamp
of demonstration.

into a blue cup. We were motivated to choose this task, as it involves
objects which have strong color saliency and hence could marginally
compensate for the lack of top-down information comprehension by
the saliency systems. Research carried out by Vollmer et al. [111] has
suggested that the bottom-up influence is highest during beginning
and ending action of an action sequence. Thus we chose twenty four
images which represent the beginning and ending point of the stack-
ing cups task from the considered twelve video recordings.

The test images were subsequently passed to various considered
saliency system to produce the corresponding saliency maps. We later
employed a WTA network as described in Itti et al.[48] to identify the
most salient location in the saliency map. A 15 × 15 region centered
on the maximally salient point was chosen as the focus of attention.
The resulting salient regions due to the considered saliency systems
are given in Fig. 33. Any overlap of this identified salient region, and
child’s object of attention was recorded as a success. The resulting
child eye-gaze prediction accuracy is presented in Fig. 34. It be ob-
served that the eye-gaze prediction performance of the bottom-up
saliency systems is low in an interaction scenario. Eye-gaze shifts in
a tutoring situation are a result of top-down influences like dialogue,
pointing, gestures and other task related semantics; while saliency
systems are driven by salient points, regions, corners and rare visual
artifacts which completely ignore task based semantics.

3.5 discussion and conclusion

We proposed three different saliency systems which are based on ran-
domized algorithms. Furthermore, we have conducted extensive eval-
uation on both salient region detection and eye-gaze prediction task.
To the best of our knowledge, this is the largest evaluation which
involved both of these tasks concurrently. We also show that the pro-
posed models outperform HA07, which is the state-of-the art saliency
system.
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(a) Stimulus (b) AC09 (c) AC10 (d) BR05

(e) HA07 (f) IT98 (g) ZH08 (h) SE09

(i) RO09 (j) PR1 (k) PR2 (l) PR3

Figure 33: A snapshot from one of the test videos from the Bielefeld Mo-
tionese Corpus. The stimulus image is given in Fig. 33a. The
child’s attention is focused on the red cup according to the anno-
tation. The square white patch is the focus of attention resulting
from various saliency models by a WTA network is shown from
Fig. 33b to Fig. 33l. It can be observed that only ZH08 and SE09

focus on the red cup while the rest of the saliency systems focus
elsewhere.
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Figure 34: Accuracy in child eye-gaze prediction during interaction. It can
be observed that SE09 attains the highest performance at 0.44,
while the rest of the methods have an accuracy of less than 0.2

We have seen from the literature review that researchers advocate
to employ a large set of different features to compute a saliency map.
One plausible explanation to this tendency is that the human visual
system employs more than one feature while processing the visual
stimulus. This might lead to an improvement in performance, how-
ever reduces the computational efficiency. We have shown from our
results that center-surround contrast alone is sufficient to achieve the
state-of-the-art performance.

By sampling the image into random pixels and patches, we have
solved the issue of a pre-specified grid size. In addition, fixing the
number of pixels or patches to be sampled does not require rigorous
cross-validation. Most of the saliency systems are either efficient in
detecting salient regions or in predicting eye-gaze fixations. The pro-
posed PR2 model is perhaps one of the saliency systems apart from
HA07 which has consistent performance on both of these tasks.

The proposed saliency models work on color contrast and does not
recognize saliency in terms of corner or dominant points, orientations
or shapes. This issue could be addressed by factoring in other features
like orientation, gradient, texture, etc. into the proposed framework.
The additional experiments involving image snapshots from tutoring
videos has shown that most of the existing saliency systems in their
current format are ineffective in predicting eye-gaze which are driven
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by top-down influences. This result is intuitive as the existing saliency
systems are driven by low-level bottom-up image features, while the
eye-gaze in an interaction scenario is driven by high-level top-down
semantics. This motivates us to incorporate task relevant information
to the proposed saliency models and evaluate if they could predict the
eye-gaze in an interaction or demonstration scenario. A more detailed
discussion about the future works and enhancement are postponed
to the concluding chapter of the thesis. The proposed saliency models
were published in [106, 107, 109]. Subsequent to the proposed works,
we have witnessed the usage of random sampling based approaches
for saliency computation as it can be seen from works like [63, 47].

For practising engineers we recommed to use PR3 for eye-gaze pre-
diction and PR1 for salient region detection applications. In cases
where both these tasks are required to be executed concurrently, PR2

could be employed. To obtain a good segmentation mask, we recom-
mend to used TH12 threshold scheme as it provides the best map
specific segmentation threshold over all the approaches.



4
S A L I E N C Y M O D E L I N T H E C O N T E X T O F
G O A L - D I R E C T E D A C T I O N

We have emphasized from the previous chapters that computational
modeling of visual attention has profound implications on develop-
ing intelligent interactive robots. Models of visual attention are being
actively used in robotic eye-gaze control for automatic detection of
salient regions and objects in a visual scene. Saliency based visual
attention models can also help social robots to nearly mimic human
eye-gaze while freely viewing static images. Despite this, the existing
models of visual attention have not been successful so far in guid-
ing a robot’s attention during an interaction or tutoring scenario. We
have inferred this from our experiments on Bielefeld Motionese cor-
pus presented in Section. 3.4.6. The two fundamental reasons behind
this shortcoming are:

1. The image based saliency models cannot be directly used to
analyze video streams

2. Saliency models are driven mainly by image features, while the
human attention is also driven by history, context, anticipation,
task based semantics and other high level priors

Developing an attention system which could reason the intentions
of humans and infer their next actions, is thus challenging.

Humans have an innate ability to deploy and shift attention to ap-
propriate locations in a spatio-temporal scene while being tutored a
goal-directed action. The experiments conducted by Falck-Ytter et al.
[26] have revealed that 12 months old infants could judge the des-
tination of an object being manipulated by the caregiver during a
goal-directed action, and hence were able to shift their eye-gaze to
the destination even before the object arrived there. Due to increased
cognitive development by repeated exposure to goal-directed actions,
humans develop the ability to predict where the objects occur next
while viewing a goal-directed action. This helps in deploying the at-
tention to the particular region even before the object arrives there,
and prepare further for a motor reaction if necessary. In this context,
we propose a modification to the PR2 saliency system which can be
used to control the robotic eye-gaze while viewing a goal-directed
action. The performance of the proposed system is validated on five
different goal-directed action videos and benchmarked along with
the performance of original PR2 and SE09. The PR2 based saliency
computation relies on fusion of the local saliencies of random im-
age patches, while SE09 saliency model relies on image self infor-
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mation. The SE09 in particular is tuned to handle spatio-temporal
data as compared to rest of the saliency models we considered previ-
ously. The goal-directed action is defined within the limited context
of transporting a particular object from a source to a destination in an
object-specific trajectory. The relevant research on this topic is further
described in the next section.

4.1 related work

The associated work on this research area is sparse and is available
from disparate fields. We describe the relevant works from the com-
puter vision, reinforcement learning and interaction studies discipline.

4.1.1 Computer Vision

The principal thrust of attention modeling has been focused on de-
veloping saliency maps that predict human eye-gaze on static images
and scenes. Some of the prominent examples were explained in Chap-
ter. 2. These are essentially bottom-up models that are driven by low
level image features. Furthermore, they can only predict the human
eye-gaze shifts for a free-viewing task, i.e viewing images without an
objective.

For a visual task like searching or recognizing an object in a scene,
the attention is driven by expectancy. Such an attention is called the
top-down attention, where there is a prior knowledge of particular
features or objects to look for in the scene. Elazary and Itti [25] pro-
posed an object recognition and localization mechanism based on
Bayesian learning of object specific feature maps. Moosmann et al.
[78] also introduced an object specific saliency map, which is based on
the conspicuity of histogram of oriented gradients descriptors. Frin-
trop et al. [29] introduced the VOCUS framework to search for a tar-
get object in complex indoor scenes. These works rely on efficient
learning of object specific features and enforce a brute force search
on the input image to localize the object.

Humans do not perform a point-to-point template matching in
order to search for an object in a scene. They rather optimize the
searching behavior by using feature and location specific cues. An
eye-tracking study carried out by Torralba et al. [100] has revealed
that the eye saccadic behavior of a participant was different while
searching different objects. Object specific location priors were fur-
ther used to re-weight the bottom-up saliency maps to obtain a better
prediction of the eye-gaze by Torralba et al. [100] and Chikkerur et
al. [21]. Navalpakkam et al. [82] proposed an ontology based search
for objects or regions in a scene which relies on higher level semantic
information. Contextual information was also used to detect the pres-
ence of objects by Torralba et al. [100]. A neural network equivalent of
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such models which encodes object and location priors was proposed
by Wang et al. [115].

The majority of the existing image based saliency maps cannot be
directly extended to handle video streams. However, saliency systems
which are capable of handling video streams are highly consequential
for robotic vision, as they help in sustaining a coherent human-robot
interaction. Modeling visual attention on videos is mostly achieved by
decomposing the video into individual image frames, and applying
the bottom-up saliency models independently on each frame. To a
certain extent they have shown to be effective, despite not utilizing
the temporal and contextual information that is available in a video
data.

A few methods like [94, 31, 37, 38], were specifically designed to
predict visual attention on videos. They principally employ motion
history to compute visual saliency and have been successfully applied
for anomaly detection in videos. However, these spatio-temporal at-
tention models are not useful in handling real time video streams, as
they require the successor image frame to compute the saliency of the
current image frame.

In general, tutoring related video streams consist not only of events
which freely manipulate objects, but also goal-directed actions which
are based on certain semantics. Developing a saliency system which
has the capability to predict visual attention specific to a goal-directed
action is essential for the development of intelligent robotic systems.
Recent works by Yuen et al. [127] and Rodriguez et al. [87] attempt
to predict the future trajectory of a moving object in an image. A set
of videos from a scene are decomposed into individual frames and
are clustered to form a knowledge base. The motion history from the
reference frames most similar to the query image is retrieved as the
expected motion trajectory. Though these works are tested on real life
videos, they are not based on the semantics underlying the task. As
a result they process all the pixels in the image, while only a few of
them which constitute an object of interest are relevant.

4.1.2 Reinforcement Learning

Reinforcement learning techniques have also been used to model an-
ticipatory eye movements during a human-machine interaction sce-
nario. Reinforcement based attention control models employ history
and spatial memory and hence are more robust than saliency based
attention control. The first reinforcement learning based anticipatory
system was proposed by Balkenius and Johansson [9]. A simulation
to predict the future trajectory of a particle moving in a sinusoidal
trajectory has shown its efficacy. Fix et al. [28] have presented a con-
tinuous attractor network model that is able to anticipate the visual
scene as it is supposed to be after an action execution. The predic-
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Figure 35: Task driven attention. The illustration involves the demonstration
of a plant water jug usage. Experienced observers can predict fu-
ture positions (marked in red) of the water jug and reorient their
attention correspondingly. Redundant background is suppressed
and only the water jug (enclosed by yellow box) is focused.

tive information is further used in the context of a serial search of a
target. Though the aforementioned models are appealing, they have
been tried and tested only on synthetic images and not on real life
videos.

4.1.3 Interaction Studies

Yi and Ballard [124] proposed a Bayesian network for recognizing and
anticipating the steps in a sandwich making task. The study has re-
vealed that the eye-gaze shifts are temporally correlated with the task.
The model is highly abstract, conceptually complex, and assumes that
the object recognition and localization problems are solved by default.

4.2 motivation and contributions

The selective tuning theory of visual attention proposed by Tsotsos
[102] views visual attention as a cognitive component which concur-
rently solves the search and recognition of an object in a scene op-
timally. Attention is viewed not just as a reactive object tracker, but
also as an anticipatory system that can make predictions about where
the object of interest could appear next in a given task scenario (see
Fig. 35).

Some of the prominent bottle-necks for saliency detection in the
context of goal-directed actions are:

1. Video saliency models require the successor frame to predict
the saliency of the current frame

2. Image saliency models do not integrate history or memory com-
ponents

3. Saliency models which can search and recognize objects cannot
handle rotational and scale changes

4. Image saliency models cannot be scaled to handle video se-
quences
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5. Video saliency models fail to handle goal-directed actions, as
they operate without knowing the location, temporal duration,
and the spatial scale of the manipulated task relevant object

6. Absence of a video dataset pertaining to goal-directed actions

In order to address these challenges we propose a task based visual
attention model. It computes visual saliency only on a task relevant
spatio-temporal window rather than entire scene. The task relevant
spatio-temporal windows are obtained from a training phase. We
convert the input color image stream into a gray scale and further
operate on it. This reduces the computational load on the saliency
model. This also further facilitates a fair comparison with other exist-
ing models of video saliency, as they all operate on gray scale images.
The proposed model has both top-down and bottom-up components.
The saliency maps from the top-down and bottom-up components
are computed only on the task relevant spatio-temporal window and
later fused to produce a master saliency map. The top-down compo-
nent is based on Stentiford’s similarity measure [97]. This similarity
measure solves the search and recognition of an object concurrently
by image template matching. The bottom-up component is based on
the Random_Sub_Window_Saliency algorithm. This is technically
applying the PR2 algorithm on a gray scale image. We chose this
bottom-up saliency model as it can be applied on an image sub-
window without modifications, while most of the existing bottom-up
saliency models can be applied only on the entire image and not on
a pre-specified region of interest. In order to test the proposed model
we have created a dataset of videos demonstrating goal-directed ac-
tions. An illustration of the proposed framework is given in Fig. 36.

4.3 proposed model

The proposed model computes saliency maps S1, · · · , St for a goal-
directed action sequence I1, · · · , It. We define a goal-directed action
as transporting an object – where O is the image template of the
object – from a source to a destination point in a given trajectory
with a velocity specific to each time stamp. Only the spatio-temporal
window where the target object is expected, is considered for further
processing while the rest of the background is ignored.

The task specific spatial window corresponding to each time stamp
of the action is computed from the training set. The training set con-
sists of several video sequences where a specific goal-directed action
is being demonstrated. Each training video sequence for a particular
goal-directed action consists t frames. The co-ordinates of the region
of interest (ROI) that encloses the target object was manually recorded
for all frames of the training videos. Subsequently, the best enclosing
rectangle (BER) which encompasses all the target enclosing ROIs for



4.3 proposed model 81

a given Ith
i frame instance across all the training videos specific to a

given task is stored as the task relevant spatio-temporal window. The
ROI on the Ith

i frame of a given video sequence is bounded by the co-
ordinates (u1i, v1i) and (u2i, v2i) while the BER which encompasses
all the temporally corresponding ROIs is bounded by the co-ordinates
(a1i,b1i) and (a2i,b2i).

During the testing phase, only the sub-image within the BER cor-
responding to the respective time stamp is processed further. The
object specific top-down attention map T based on Stentiford’s simi-
larity measure [97] and the stimulus driven bottom-up attention map
B based on the Random_Sub_Window_Saliency algorithm are com-
puted within the BER of frame Ii. Finally, the task based saliency
map Si is computed by pixel-wise multiplication of T and B. The al-
gorithm Task_Based_Saliency (TBS), describes the proposed model.

Algorithm IV : Task_Based_Saliency

Input : (1) O of size g× h
: (2) I1,· · · ,It each of size r × c

: (3) a1, b1, a2, and b2, each of length t

: (4) x1, y1, x2, and y2, each of length nr

Output : S1,· · · ,St each of size r × c

Method

Step 1 : Set all elements of S1,· · · , St to 0

Step 2 : Compute frame-wise saliency:

for i = 1 to t

[x1, y1, x2, y2] =

Generate_Random_Sub_Windows(nr,a1i,b1i,a2i,b2i)

B = Random_Sub_Window_Saliency(Ii,nr, x1i,y1i, x2i,y2i)

T = Top_Down_Attention(O,Ii,a1i,b1i,a2i,b2i)

Si = Re_Weight(B, T)

end-i

The object of interest is localized in a given target image using Sten-
tiford’s similarity measure [97]. The similarity measure relies upon
matching f random pairs of pixels (fork) taken from reference ob-
ject image O and target image Ii. The match is considered a success
when the difference between the corresponding pairs of pixels is less
than a given threshold (Λ). The process of generating and match-
ing forks is repeated a large number (Γ ) of times and the final top-
down saliency map is obtained. The said approach is robust to linear
and non-linear transformations as illustrated in [97]. The algorithm
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Figure 36: Illustration. We describe the training (with three video samples)
and testing phase of the proposed saliency model pertaining to
an action demonstration. The train and test videos involve trans-
porting a red jug from a source to destination point in a par-
ticular trajectory. The first three rows contains the snapshots at
a particular time-stamp from the training videos. Observe that
the object of interest (red jug) is enclosed in a blue region of
interest (ROI) in the training videos. A best enclosing rectangle
(BER), which encompasses the all the ROIs at a particular time-
stamp for the all training videos is further computed. It should
be noted that while computing the saliency on the test video
frames, we process only the region enclosed in the BERs cor-
responding to a particular time-stamp, as rest of the image is
treated as background. Please notice the BERs enclosed within
red rectangles on the test video frames in the fourth row of the
illustration. The bottom-up saliency is obtained by applying Ran-
dom_Sub_Window_Saliency algorithm only on that part of the
test frame which is enclosed by the BERs. The resulting bottom-
up saliency maps are shown in the fifth row. Stentiford’s [97]
algorithm is further employed to localize the object of interest
within the BERs. The Stentiford’s [97] model requires a template
of the target object as a prior. The object template and the result-
ing top-down saliency maps are given in sixth row of the illustra-
tion. Notice that the localization is successful despite the change
in pose and orientation of the target object over different time-
stamps. The corresponding master saliency maps shown in the fi-
nal row is obtained by point-wise multiplication of the computed
bottom-up and top-down saliency maps.
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Top_Down_Attention, describes the Stentiford’s model [97] to com-
pute the top-down saliency map.

Algorithm IV.(a) : Top_Down_Attention

Input : (1) O of size g× h
: (2) I of size r× c
: (3) (p1,q1) upper left co-ordinates of the BER

: (4) (p2,q2) lower co-ordinates of the BER

Output : T of size r× c
Method

Step 1 : Set all elements of T to 0.

Step 2 : Generate forks:

for i = 1 to f

αi = Random number in [−∆,+∆]

βi = Random number in [−∆,+∆]

end-i

Step 3 : Concurrent search, detection and recognition of object:

while Γ > 0

l = Random number in [−∆,+∆]

m = Random number in [−∆,+∆]

for k = p1 +∆ to p2 −∆

for j = q1 +∆ to q2 −∆

θ = 1

for i = 1 to f

ϕ = O(l+αi,m+βi)

φ = I(k+αi, j+βi)

if(|ϕ−φ| > Λ)

θ = 0

end-if

end-i

T(k, j) = T(k, j) + θ

end-j

end-k

Γ = Γ − 1

end-while

The algorithm Re_Weight, describes the pixel-wise multiplication
of top-down and bottom-up saliency maps which results in the mas-
ter saliency map.
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Figure 37: Goal directed action database (available on request). Examples of
sequences corresponding to different types of actions are given.
The first image consists of the template of the target object (O).
Please observe the differences in the movement trajectories of the
objects in different action sequences. Also note the differences in
size, color and aspect ratio of the object templates pertaining to
each action sequence.

Algorithm IV.(b) : Re_Weight

Input : (1) B of size r× c
: (2) T of size r× c

Output : S of size r× c
Method

Step 1 : Set all elements of S to 0.

Step 2 : Point-wise multiplication:

for i = 1 to r

for j = 1 to c

S(i, j) = B(i, j) · T(i, j)
end-j

end-i

4.4 experiments

For the evaluation, we created a video database containing five types
of goal-directed actions. These are demonstrations of ball movement,
pig walking, rabbit jump, jug usage and car movement. Each of these
actions were demonstrated twelve times by the same demonstrator
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in an identical indoor scenario (see Fig. 37). The dataset was cre-
ated within a controlled environment, and particular care was taken
to avoid drastic variations in speed while demonstrating an object
motion. Currently the database contains 60 video sequences. All se-
quences were recorded in front of homogeneous backgrounds with a
static camera. The frame rate of the video capture was set to 25fps.
The sequences were downsampled to the spatial resolution of 640×
480 pixels and have an average length of four seconds. The length of
each training video sequence for a particular goal-directed action is
set to t frames. This was achieved by manually removing the redun-
dant frames at the beginning and ending of the videos. Further, the
co-ordinates of the ROI that encloses the target object was manually
recorded for all frames of the video sequences. All sequences from
a given action were divided into a training set (4 videos), a valida-
tion set (2 videos) and a test set (6 videos). The BERs were computed
on the training set while the validation set was used to optimize the
parameters (∆,Λ, Γ , f,g,h,n) for each class of action. The presented
performance results were obtained on the test set.

We considered the PR2 and SE09 along with the proposed task
based saliency model (TBS) for comparative evaluation. An illustra-
tion of the resulting saliency maps for an example action sequence
is given in Fig. 38. The ability of the considered saliency models to
predict the visually interesting areas on the goal-directed videos is
evaluated by the CONF metric proposed by LeMeur and Chevet [60].
The metric CONF standing for confidence on a resultant saliency map
Si is given by:

CONF =

∑ui2
p=ui1

∑vi2
q=vi1

Si(p,q)∑r
p=1

∑c
q=1 Si(p,q)

(11)

This is essentially the ratio of the cumulated salience within the
annotated ROI and the entire saliency map. CONF tends to 1 when
all the predicted salience is inside the ROI. The worst case (0) would
suggest that the predicted salience is not in agreement with the BER
(the predicted salience would be outside the BER) or there could be
a genuine failure in highlighting the target object. It can be observed
from Fig. 39 that TBS outperforms the SE09 and the PR2 saliency
models by a large margin in terms of CONF. It can be seen that the
median performance of TBS on the pig (Fig. 39b) and car (Fig. 39e) se-
quences is almost 0.9, while the SE09 and PR2 have low performance
values. This shows the effectiveness of the TBS model. All plots (ex-
cept Fig. 39d), show that the SE09 always performs better than the
PR2. This converges with our intuition that spatio-temporal saliency
based methods perform better than image based saliency methods.
To explain the low performance of SE09 on jug (Fig. 39d) sequences,
the readers are requested to look at Fig. 38 where the SE09 fails
to highlight the jug. The SE09 saliency model is driven by gradients
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Figure 38: Overlaid saliency maps. Observe that the PR2 highlights contrast
rich background, while SE09 highlights only those regions which
have motion saliency. Only the TBS effectively highlights the tar-
get region as compared to SE09 and PR2.

and hence the contrast free texture of the jug is ignored. The perfor-
mance of TBS on the rabbit (Fig. 39c) sequence has high variation.
This implies that the number of training sequences (4 videos) used to
compute the BERs are inadequate as the motion trajectory has high
variations. Despite this, TBS fares better than the SE09 and PR2.

4.5 discussion and conclusion

We proposed a task based saliency model that can effectively high-
light a target object in a goal-directed action. The proposed saliency
model is not just reactive, but employs spatial location priors to lo-
calize the object of interest. Please note that the BERs are computed
only from the training part of the dataset. The experiments are car-
ried out on the test part of the dataset, using the spatial priors i.e
the BERs obtained from the training phase. The actual position of the
target object (in the test image) is never used during the test phase,
as it would trivialize the entire process. The BERs are also alterna-
tively referred to as symbolic interval representation, and has been
successfully utilized for many pattern recognition applications like
shape recognition, online signature recognition, clustering etc. [24].

The existing saliency models scan the entire image since they do
not have any prior where the object will be moved. We would like
to point out that the SE09 saliency model with which we made a
comparison requires 15 successor frames in addition to the current
frame on which saliency is being computed. On the other hand, the
TBS approach does not compute priors from successor or predeces-
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Figure 39: Performance evaluation in terms of CONF. The results are dis-
played using a Box-and-Whisker plot. In general, it can be ob-
served that the overall performance of TBS is always better than
PR2 and SE09 based saliency approaches for all the test videos.
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sor frames. Real-life action demonstrations might also involve pauses,
where there is no motion for a specified interval of time. In such
no-motion intervals, the existing video saliency models produces a
blank saliency map. However, our method does not produce a blank
saliency map even during pauses, because the spatio-temporal priors
are independent of motion information.

The usage of BERs not only enhances computational efficiency of
the proposed architecture, but also reduces the probability of false
alarms while detecting the target object. To justify this argument, we
provide a visual illustration in Fig. 40 where the TBS algorithm is
applied to the entire image and not restricted to the region enclosed
within the BER.

Our architecture does not emphasize any specific low level image
feature, but computes saliency by employing random pixel contrasts
which is concordant with human cognitive neurobiology [97]. To the
best of our knowledge, this is the first visual saliency model designed
to compute saliency for viewing a goal-directed action. Our model
can also be integrated with the top-down attention framework of Yi
and Ballard [124] for predicting eye-gaze while performing complex
tasks. It can also be scaled up to handle a complex action by decom-
posing it into a combination of atomic actions and handling each
atomic action independently.

In the current configuration, the proposed model needs to know the
object (whether it is a red jug, yellow car or a pink rabbit etc.) that
is being manipulated apriori. However, this issue can be addressed
by applying Stentiford’s [97] algorithm on a given image frame to lo-
calize all the objects under consideration, and choose object that pro-
duces the highest response on the top-down saliency map. The appro-
priate BER which maximally encloses the response of the Stentiford’s
[97] algorithm can be further used to identify the current time-stamp.

At present, our model works only within a specific camera view.
This issue could be resolved by using depth information along with
the two-dimensional images to compute the camera calibration ma-
trix. The proposed model can also handle actions with linear changes
in speed if the training and test videos are pre-processed using tem-
poral segmentation algorithms such as [12]. In the current work, the
training videos are manually aligned. However, temporal alignment
of video sequences can be automated by the use of dynamic time
warping as shown in [71].

It should be noted that proposed model requires only one training
example of the target object. The experimental results have shown
that the proposed saliency architecture successfully localizes the tar-
get object, despite wide changes in pose and orientation. Our model
works reliably even if the target object gets occluded during the course
of demonstration. This is because it does not estimate motion in real-
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Figure 40: TBS algorithm applied on the entire image and not just on BERs.
The resulting overlaid saliency maps are displayed. Observe the
first image of Ball transportation example. The background is
shown salient while the target object is ignored. Please notice
the samples from Pig and Car (second and final row) transporta-
tion demonstrations. The target object is extremely small, and
are faintly highlighted. Background and hand are highlighted in-
stead, as they might resemble the target object templates. It can
be further observed in the videos pertaining to Rabbit and Jug
(third and fourth rows) that the target object is sometimes missed
completely. This illustration corroborates the our assumption that
BERs reduce false alarms.
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time but instead relies only on the BERs obtained from the training
data. The proposed TBS model was published in [110, 108].



5
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we investigated and proposed the use of randomized
algorithms for saliency computation. The proposed saliency models
were shown to be effective on eye-gaze prediction task (pure bottom-
up task) and also on salient region detection (which has top-down
influences). We further improved the state-of-the-art on both of these
tasks without any increase in computational complexity or the in-
crease in the size of the feature set.

Several saliency models have been proposed which uses computa-
tional paradigms other than the center-surround approach. However,
the proposed approaches are driven by the center-surround paradigm
and thus reinforces the original proposition that the computational
process of the human visual attention system is driven by surround-
suppression.

Many successful pattern classification techniques like mixture of
Gaussian, mean shift algorithms for blob detection, random forest for
classification, adaboost, etc., are all examples of successful random-
ized algorithms. The success of these algorithms are mainly driven
by their ability to obtain quick approximations rather than exact solu-
tions. Parallelly, the selective tuning theory of attention hypothesized
that the brain implements approximations through optimization to
solve the vision problem. The limitations in the computational power
available in the neurons act as the constraints for this optimization
problem. Attention is thus seen as a controller which schedules and
sequences the usage of various available resources in the brain to
suppress the irrelevant stimuli that is present in the visual space. The
optimization hypothesis is justified through the presence of optical
illusions and other veridicalities which inturn is a result of bad con-
vergence. Thereby, we can see parallels in the random algorithms like
mixture of Gaussians and random forests which are driven by ap-
proximations to solve a pattern classification problem and the selec-
tive tuning theory which explains the necessity for approximations in
solving the vision problem. The proposed methods sample random
pairs of pixels or patches and obtains a convergence by repeating this
process a large number of times. This helps us in solving problems
like pre-specifying an initial condition, fixing a grid space, without
knowing the location, scale or presence of an object. Furthermore, the
vision problem is computationally complex and sometimes is even
ill-conditioned and ill-posed. These are the very problems which the
proposed saliency computation approaches address by random sam-
pling of the visual space. Another important factor which affects the
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computational efficacy is the size of the parameter set. A majority of
the methods have a large set of tunable parameters and sometimes
may even include meta parameters. However, the proposed bottom-
up saliency models have only one tunable parameter and the experi-
ments have revealed that it does not require rigorous cross-validation
to fine tune them.

Human attention system is driven not just by bottom-up features
but also by context, memory, anticipation, task relevant semantics,
etc. The bottom-up saliency approaches model the response of the
visual system on an exposure to a stimuli. The bottom-up attention
is expected to hand over the controls to other cognitive mechanisms
while interacting with the stimuli on a long term. This is corrobo-
rated by our experiments on the Bielefeld Motionese Corpus [111] (in
Section. 3.4.6) where most of the saliency systems fail to predict the
annotated eye-gaze locations. As a result, we tried to model task de-
pendent semantics by employing spatio-temporal priors. We thereby
address the issue of learning where and when to attend in the limited
context of simple goal directed actions. In order to keep the discourse
in near proximity to cognitive sciences, we employed Stentiford’s [97]
concurrent search and localization algorithm [97]. The algorithm also
has inherent random process and is robust to linear transformation.
The final objective of attention is to guide the search and recognition
mechanisms. This phenomenon is explained in the partial and full
recurrence binding aspects in the selective tuning theory. The Sten-
tiford’s algorithm [97] thus models these aspects thereby rendering
it more attractive than other existing object detection and recognition
techniques.

We conducted experiments on MSRA [68], York University [16] and
MIT eye-fixation [51] datasets. But during the present times we lack
a dataset which has both eye-gaze fixation recordings and salient re-
gion detection annotations. The existence of such a unified dataset
would enable us to understand the relationship between bottom-up
eye-gaze fixations and the sub-sequent eye-gaze re-orientation to a
specific image region. We also have to take into account all of the
existing datasets are taken by photographers. These images are cap-
tured using regular and ideal camera orientations and center bias.
But the developed saliency systems are envisaged to work on robotic
platforms both in civilian and industrial areas where there can be ir-
regular camera movement, ego-motion, change of illuminations etc.
A robust saliency system can thus be developed by testing it on hard
datasets like the one envisaged above. In the current work, we focus
primarily on contrast and pixel based features. With the Kinect rev-
olution, depth information along with the pixel intensity values are
available for a low cost. The future test datasets should perhaps in-
clude the depth information so that researchers can analyze the many
latent factors which have not been examined so far.
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The limitations in the variety of the datasets that are available
places a restriction on the evaluation of the saliency models. The re-
action of the visual system to a stimuli is captured in the EEG record-
ings. No such systematic analysis of correlating the EEG data, the
fixation density values and the predicted saliency values are in ex-
istence. Such a study will the bridge the gap between the computer
vision and the cognitive vision disciplines. In addition, a majority of
the experiments involve adults as gazing subjects. But in order to
understand the developmental process involved, we need to factor
in the results when the subjects are children. Note that we analyze
this subtly during the experiments on Bielefeld Motionese Corpus (in
Section. 3.4.6). The eye-gaze data obtained was from children, and in
parallel the saliency systems were not able to predict them properly.
It is thus necessary to ascertain the band width of the age for whom
which the current saliency systems are able to predict the eye-gaze
appropriately.

The proposed saliency systems can also be enhanced in several
aspects. In the current format, they do not recognize orientation or
shape based saliencies. This can be alleviated by considering orien-
tation, gradient, shapelet maps etc. Currently, the random locations
and scales are sampled from a uniform distribution. Other distribu-
tions like Weibull’s distribution and power law based models have
also been found in detecting and modeling saliency. Further investi-
gation is necessary to replace uniform distribution based sampling
to a more appropriate distribution. We have deliberately not incorpo-
rated machine learning techniques for sampling a location or fixing
the size and shape of the patch. Saliency approaches which incorpo-
rate machine learning models are computationally complex but are
highly effective within certain limitations. In our future work, we will
attempt to understand the machine learning models which are more
appropriate to enhance the proposed saliency systems.

In this thesis, we utilized information retrieval metrics like F-measure,
ROC-AUC, average precision along with information theoretic mea-
sure like mutual information and a statistical measure like correlation
coefficient. All of these measures are from diverse disciplines and can
capture specific attributes like performance, accuracy, reliability, etc.
of a classifier. As we have seen through the course of this research, a
high performance on a single metric alone is not sufficient in deciding
the best saliency model. We deem it necessary to evaluate the saliency
systems on a variety of metrics and identify the best saliency model
by consensus. In the proposed saliency systems, we fix the number
of image patches to be sampled manually. This can be automated by
incorporating a stochastic gradient ascent or descent algorithm which
automatically senses the convergence of a saliency map.

The proposed patch based saliency models also have similarities to
the spotlight theory of attention [101]. Like in the spotlight theory of



conclusion and future work 94

attention, the proposed saliency models focus on a particular patch
of an image and subsequently move on to another patch. The spot-
light theory of attention also hypothesizes that attention focuses on a
specific region in the visual space and subsequently moves to another.
Active research is still being pursued to understand the size of the at-
tention spotlight, if the region between two spotlights are processed,
the sequence in which the spotlights are chosen etc. Our model can be
seen as a special case based on the spotlight theory where the location
and the size of the spotlight is random. The area between two spot-
lights is not processed immediately when the attention shifts from
one location to another. This unprocessed area is not immediately at-
tended, but saliency values are attributed to these locations due to
the processing of overlapping spotlights which are image patches in
our case. This might be another direction of research which requires
investigation.

Our saliency models sample random patches and pixels sequen-
tially. But the evidence from neurobiology states that the visual sys-
tem employs a ensemble of serial and parallel information processing
systems. We are thus required to test parallel algorithms and visual-
ize the impact on the performance of the proposed saliency systems.
The visual system is also driven by experience. This aspect can be
incorporated into the saliency systems through Bayesian statistics, as
this gives a good prior for choosing patch sizes and locations.

It is our opinion that an artificial attention system should have all
the capabilities without having the drawbacks of the human visual
attention. In the case of human beings, evolution decides the break
even point between computational efficiency and accuracy in solving
the vision problem. Any natural improvement will require significant
amount of time as it requires the genetic information to mutate. On
the contrary, the artificial attention systems can benefit from the ad-
vances in mathematics. The selective tuning theory of attention is one
of the few systems which incorporates lattice algebra to explain the
various sub-functions involved in attention. Saliency is one small as-
pect in the framework of the selective tuning theory. We are curious
to understand if the proposed saliency models fit into the lattice al-
gebra framework of selective tuning. Insofar, we have seen several
saliency models which are specialized for a particular task. The gen-
eral solution for the visual attention problem is thus presented as
an aggregation of several specialized solutions. We have attempted
to reduce the degree of specialization wherein the proposed saliency
models have consistent performance on both eye-gaze fixation and
salient region detection task. However, it is still a long way from the
ideal visual attention module.

Improvements on saliency models can cascade to several computer
vision applications. In the era of small touch screens, where users
prefer to watch movies and large images, saliency models come into
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play. As we know, saliency models can automatically detect salient re-
gions and thereby crop the redundant background in the videos for a
better viewer experience. Large images can automatically be zoomed
location wise by computing the saliency map and finding out the top
salient blobs. Saliency models will also enhance image thumbnailing,
resizing, collage creation and other photo editing functions.

We hope that these discussions inspires new research in some of
the discussed directions. Practicing engineers in the industry could
perhaps gain hints about the examined saliency systems for their
strengths and shortcomings and use them in the appropriate context.
With greater integration of computer sciences and cognitive sciences
in the context of saliency research, a more inter-disciplinary dialogue
is set to evolve. We further hope that our proposed saliency mod-
els are further advanced and help in finding an answer to the larger
attention problem over the next few years.



B I B L I O G R A P H Y

[1] G. Abdollahian, C. M. Taskiran, Z. Pizlo, and E. J. Delp. Cam-
era motion-based analysis of user generated video. IEEE Trans-
actions on Multimedia, 12(1):28–41, January 2010.

[2] Radhakrishna Achanta, Francisco Estrada, Patricia Wils, and
Sabine Süsstrunk. Salient region detection and segmentation.
In International Conference on Computer Vision Systems, pages 66–
75, 2008.

[3] Radhakrishna Achanta, S. Hemami, F. Estrada, and
S. Susstrunk. Frequency-tuned salient region detection.
In IEEE conference on Computer Vision and Pattern Recognition,
pages 1597–1604, 2009.

[4] Radhakrishna Achanta and Sabine Süsstrunk. Saliency detec-
tion using maximum symmetric surround. In International Con-
ference on Image Processing, pages 2653–2656, 2010.

[5] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What
is an object? In IEEE conference on Computer Vision and Pattern
Recognition, pages 73–80, 2010.

[6] Coduta O. Ancuti, Cosmin Ancuti, and Philippe Bekaert. An
effective grayscale conversion with applications to image en-
hancement. In ACM SIGGRAPH ASIA, 2009.

[7] L. Aryananda. Attending to learn and learning to attend for a
social robot. In IEEE-RAS International Conference on Humanoid
Robots, pages 618–623, 2006.

[8] T. Avraham and M. Lindenbaum. Esaliency (extended
saliency): Meaningful attention using stochastic image model-
ing. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(4):693–708, 2010.

[9] Christian Balkenius and Birger Johansson. Anticipatory models
in gaze control: a developmental model. Cognitive Processing,
8(3):167–174, 2007.

[10] Sang-Woo Ban, Bumhwi Kim, and Minho Lee. Top-down visual
selective attention model combined with bottom-up saliency
map for incremental object perception. In International Joint Con-
ference on Neural Networks, pages 1–8, 2010.

96



Bibliography 97

[11] M. Begum and F. Karray. Visual attention for robotic cognition:
A survey. IEEE Transactions on Autonomous Mental Development,
3:92–105, 2011.

[12] A. Bobick and J. Davis. Real-time recognition of activity using
temporal templates. In IEEE Workshop on Applications of Com-
puter Vision, pages 39–42, 1996.

[13] Iva Bogdanova, Alexandre Bur, Heinz Hügli, and Pierre A.
Farine. Dynamic visual attention on the sphere. Computer Vision
and Image Understanding, 114(1):100–110, 2010.

[14] Ali Borji, Majid N. Ahmadabadi, and Babak N. Araabi. Learn-
ing sequential visual attention control through dynamic state
space discretization. In International conference on Robotics and
Automation, pages 2294–2299, 2009.

[15] N. D. B. Bruce and J. K. Tsotsos. Saliency based on information
maximization. Advances in Neural Information Processing Systems,
pages 155–162, 2005.

[16] Neil D. B. Bruce. Features that draw visual attention: an in-
formation theoretic perspective. Neurocomputing, 65-66:125–133,
2005.

[17] Timothy J. Buschman and Earl K. Miller. Shifting the spotlight
of attention: evidence for discrete computations in cognition.
Frontiers in Human Neuroscience, 4, 2010.

[18] Y. Caron, P. Makris, and N. Vincent. Use of power law models
in detecting region of interest. Pattern Recognition, 40(9):2521–
2529, 2007.

[19] Moran Cerf, Jonathan Harel, Wolfgang Einhäuser, and Christof
Koch. Predicting human gaze using low-level saliency com-
bined with face detection. In Advances in Neural Information
Processing Systems, 2007.

[20] Kai-Yueh Chang, Tyng-Luh Liu, Hwann-Tzong Chen, and
Shang-Hong Lai. Fusing generic objectness and visual saliency
for salient object detection. In International Conference on Com-
puter Vision, pages 914–921, 2011.

[21] Sharat Chikkerur, Thomas Serre, Cheston Tan, and Tomaso Pog-
gio. What and where: a bayesian inference theory of attention.
Vision Research, 50(22):2233–2247, 2010.

[22] Xinyi Cui, Qingshan Liu, Shaoting Zhang, Fei Yang, and Dim-
itris N. Metaxas. Temporal spectral residual for fast salient mo-
tion detection. Neurocomputing, 86:24–32, 2012.



Bibliography 98

[23] R. Descartes. Les Passions de l’âme. Le Gras, 1649.

[24] Diday Edwin and Esposito Floriana. An introduction to sym-
bolic data analysis and the sodas software. Intelligent Data Anal-
ysis, 7(6):583–601, 2003.

[25] L. Elazary and L. Itti. Interesting objects are visually salient.
Journal of Vision, 8:1–15, 2008.

[26] Terje Falck-Ytter, Gustaf Gredebäck, and Claes von Hofsten. In-
fants predict other people’s action goals. Nature Neuroscience,
9(7):878–879, 2006.

[27] Yuming Fang, Weisi Lin, Chiew Tong Lau, and Bu-Sung Lee.
A visual attention model combining top-down and bottom-up
mechanisms for salient object detection. In International Confer-
ence on Acoustics, Speech and Signal Processing, pages 1293–1296,
2011.

[28] Jérémy Fix, Nicolas P. Rougier, and Frédéric Alexandre. A Top-
down attentional system scanning multiple targets with sac-
cades. In From Computational Cognitive Neuroscience to Computer
Vision : CCNCV 2007, Bielefeld, Germany, 2007.

[29] Simone Frintrop. VOCUS: A Visual Attention System for Object
Detection and Goal-Directed Search, volume 3899 of Lecture Notes
in Computer Science. Springer, 2006.

[30] Simone Frintrop, Ro Erich, and Henrik I Christensen. Computa-
tional visual attention systems and their cognitive foundations:
A survey. ACM Transactions on Applied Perception, 7:6:1–6:39,
2010.

[31] Dashan Gao, Vijay Mahadevan, and Nuno Vasconcelos. The dis-
criminant center-surround hypothesis for bottom-up saliency.
In Advances in Neural Information Processing Systems, 2007.

[32] C. A. Glasbey. An analysis of histogram-based thresholding
algorithms. Graphical Models and Image Processing, 55:532–537,
1993.

[33] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal. Context-
aware saliency detection. In IEEE conference on Computer Vision
and Pattern Recognition, pages 2376–2383, 2010.

[34] V. Gopalakrishnan, Yiqun Hu, and D. Rajan. Random walks
on graphs to model saliency in images. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1698–1705, 2009.

[35] V. Gopalakrishnan, Yiqun Hu, and D. Rajan. Salient region de-
tection by modeling distributions of color and orientation. IEEE
Transactions on Multimedia, 11(5):892–905, 2009.



Bibliography 99

[36] V. Gopalakrishnan, Yiqun Hu, and D. Rajan. Random walks on
graphs for salient object detection in images. IEEE Transactions
on Image Processing, 19(12):3232–3242, 2010.

[37] Chenlei Guo, Qi Ma, and Liming Zhang. Spatio-temporal
saliency detection using phase spectrum of quaternion fourier
transform. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, 2008.

[38] Chenlei Guo and Liming Zhang. A novel multiresolution spa-
tiotemporal saliency detection model and its applications in im-
age and video compression. IEEE Transactions on Image Process-
ing, 19(1):185–198, 2010.

[39] Jonathan Harel, Christof Koch, and Pietro Perona. Graph-based
visual saliency. In Advances in Neural Information Processing Sys-
tems, pages 545–552, 2007.

[40] J. F. Herbart. Psychologie als wissenschaft neu gegründet auf
erfahrung. Metaphsyik und Mathematik, 1824.

[41] Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral
residual approach. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8.

[42] Xiaodi Hou and Liqing Zhang. Dynamic visual attention:
searching for coding length increments. In Advances in Neural
Information Processing Systems, pages 681–688, 2008.

[43] Yiqun Hu, Deepu Rajan, and Liang-Tien Chia. Adaptive local
context suppression of multiple cues for salient visual attention
detection. In International Conference on Multimedia and Expo,
pages 346–349, 2005.

[44] Yiqun Hu, Deepu Rajan, and Liang-Tien Chia. Robust subspace
analysis for detecting visual attention regions in images. In
ACM international conference on Multimedia, pages 716–724, 2005.

[45] Chaobing Huang, Quan Liu, and Shengsheng Yu. Regions of
interest extraction from color image based on visual saliency.
The Journal of Supercomputing, pages 1–14, 2010.

[46] Rui Huang, Nong Sang, Leyuan Liu, and Qiling Tang. Saliency
based on multi-scale ratio of dissimilarity. In International Con-
ference on Pattern Recognition, pages 13–16, 2010.

[47] Zhiyong Huang, Fazhi He, Xiantao Cai, Zhengqin Zou, Jing
Liu, Mingming Liang, and Xiao Chen. Efficient random
saliency map detection. SCIENCE CHINA Information Sciences,
54(6):1207–1217, 2011.



Bibliography 100

[48] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(11):1254–1259, 1998.

[49] W. James. Principles of Psychology. Holt, 1890.

[50] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algo-
rithms: A Classification Perspective. Cambridge University Press,
New York, NY, USA, 2011.

[51] Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Tor-
ralba. Learning to predict where humans look. In IEEE Interna-
tional Conference on Computer Vision, pages 2106–2113, 2009.

[52] Pattaraporn Khuwuthyakorn, Antonio Robles-Kelly, and Jun
Zhou. Object of interest detection by saliency learning. In Euro-
pean conference on Computer vision, pages 636–649, 2010.

[53] Wolf Kienzle, Felix A. Wichmann, Bernhard Schölkopf, and
Matthias O. Franz. A nonparametric approach to bottom-up
visual saliency. In Advances in Neural Information Processing Sys-
tems, pages 689–696, 2006.

[54] Gunhee Kim, Daniel Huber, and Martial Hebert. Segmentation
of salient regions in outdoor scenes using imagery and 3-d data.
In IEEE Workshop on Applications of Computer Vision, pages 1–8,
2008.

[55] Hyundo Kim, H. Jasso, G. Deak, and J. Triesch. A robotic model
of the development of gaze following. In International Conference
on Development and Learning, pages 238–243, 2008.

[56] D.A. Klein and S. Frintrop. Center-surround divergence of fea-
ture statistics for salient object detection. In IEEE International
Conference on Computer Vision, pages 2214–2219, 2011.

[57] Ulf Knoblich, Maximilian Riesenhuber, David J. Freedman,
Earl K. Miller, and Tomaso Poggio. Visual categorization: How
the monkey brain does it. In Biologically Motivated Computer
Vision, pages 273–281, 2002.

[58] C. Koch and S. Ullman. Shifts in selective visual attention:
towards the underlying neural circuitry. Human neurobiology,
4:219–227, 1985.

[59] O. Le Meur, P. Le Callet, D. Barba, and D. Thoreau. A coher-
ent computational approach to model bottom-up visual atten-
tion. IEEE transactions on pattern analysis and machine intelligence,
28(5):802–817, 2006.



Bibliography 101

[60] Olivier Le Meur and Jean-Claude Chevet. Relevance of a
feed-forward model of visual attention for goal-oriented and
free-viewing tasks. IEEE Transactions on Image Processing,
19(11):2801–2813, 2010.

[61] KangWoo Lee, H. Buxton, and Jianfeng Feng. Cue-guided
search: a computational model of selective attention. IEEE
Transactions on Neural Networks, 16(4):910–924, 2005.

[62] Wen-Fu Lee, Tai-Hsiang Huang, Su-Ling Yeh, and Homer H.
Chen. Learning-based prediction of visual attention for video
signals. IEEE Transactions on Image Processing, 20(11):3028–3038,
2011.

[63] Ren Lei, Shi Chaojian, and Ran Xin. Small salient target detec-
tion using overlapped sub window. In International Congress on
Image and Signal Processing, pages 1448–1451, 2011.

[64] Jia Li, Yonghong Tian, Tiejun Huang, and Wen Gao. Probabilis-
tic multi-task learning for visual saliency estimation in video.
International Journal of Computer Vision, 2010.

[65] Jia Li, Yonghong Tian, Tiejun Huang, and Wen Gao. Multi-task
rank learning for visual saliency estimation. IEEE Transactions
on Circuits and Systems for Video Technology, 21(5):623–636, 2011.

[66] Jian Li, Martin Levine, Xiangjing An, and Hangen He. Saliency
detection based on frequency and spatial domain analyses. In
British Machine Vision Conference, pages 86.1–86.11, 2011.

[67] Yuewei Lin, Bin Fang, and Yuanyan Tang. A computational
model for saliency maps by using local entropy. In AAAI Con-
ference on Artificial Intelligence, 2010.

[68] Tie Liu, Jian Sun, Nan-Ning Zheng, Xiaoou Tang, and Heung-
Yeung Shum. Learning to detect a salient object. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[69] Tie Liu, Nanning Zheng, Wei Ding, and Zejian Yuan. Video
attention: Learning to detect a salient object sequence. In Inter-
national Conference on Pattern Recognition, pages 1–4, 2008.

[70] Zhi Liu, Yinzhu Xue, Liquan Shen, and Zhaoyang Zhang. Non-
parametric saliency detection using kernel density estimation.
In International Conference on Image Processing, pages 253–256,
2010.

[71] C. Lu and M. Mandal. A robust technique for motion-based
video sequences temporal alignment. IEEE Transactions on Mul-
timedia, 15(1):70–82, 2013.



Bibliography 102

[72] Yu-Fei Ma and Hong-Jiang Zhang. Contrast-based image at-
tention analysis by using fuzzy growing. In ACM international
conference on Multimedia, pages 374–381, 2003.

[73] V. Mahadevan and N. Vasconcelos. Automatic initialization and
tracking using attentional mechanisms. In IEEE Computer Vision
and Pattern Recognition Workshops, pages 15–20, 2011.

[74] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schtze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, 2008.

[75] Sophie Marat, Tien Ho Phuoc, Lionel Granjon, Nathalie
Guyader, Denis Pellerin, and Anne Guérin-Dugué. Modelling
spatio-temporal saliency to predict gaze direction for short
videos. International Journal of Computer Vision, 82(3):231–243,
2009.

[76] David Marr. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. Henry Holt &
Company, 1982.

[77] H. Maruta, M. Ishii, and M. Sato. Salient region extraction
based on local extrema of natural images. In International Con-
ference on Image Processing, pages 1113–1116, 2010.

[78] Frank Moosmann, Diane Larlus, and Frédéric Jurie. Learning
saliency maps for object categorization. In ECCV International
Workshop on The Representation and Use of Prior Knowledge in Vi-
sion, 2006.

[79] Jan Morén, Ales Ude, Ansgar Koene, and Gordon Cheng. Bi-
ologically based top-down attention modulation for humanoid
interactions. International Journal of Humanoid Robotics, pages
3–24, 2008.

[80] N. Murray, M. Vanrell, X. Otazu, and C.A. Parraga. Saliency
estimation using a non-parametric low-level vision model. In
IEEE Conference on Computer Vision and Pattern Recognition,
pages 433–440, 2011.

[81] Y. Nagai. From bottom-up visual attention to robot action
learning. In International Conference on Development and Learn-
ing, pages 1–6, 2009.

[82] Vidhya Navalpakkam and Laurent Itti. Modeling the influence
of task on attention. Vision Research, 45(2):205–231, 2005.

[83] R. M. Nosofsky. Stimulus bias, asymmetric similarity, and clas-
sification. Cognitive Psychology, 23(1):94–140, 1991.



Bibliography 103

[84] Francesco Orabona, Giorgio Metta, and Giulio Sandini. A proto-
object based visual attention model. pages 198–215. 2008.

[85] Chaoke Pei, Li Gao, Donghui Wang, and Ying Hong. A pft vi-
sual attention detection model using bayesian framework. In
International Conference on Image and Graphics, pages 816–820,
2011.

[86] Zhixiang Ren, Yiqun Hu, Liang-Tien Chia, and Deepu Rajan.
Improved saliency detection based on superpixel clustering and
saliency propagation. In Proceedings of the international conference
on Multimedia, pages 1099–1102, 2010.

[87] Mikel Rodriguez, Josef Sivic, Ivan Laptev, and Jean-Yves Au-
dibert. Data-driven crowd analysis in videos. In International
Conference on Computer Vision, pages 1235–1242, 2011.

[88] Paul L. Rosin. A simple method for detecting salient regions.
Pattern Recognition, 42(11):2363–2371, 2009.

[89] Albert L. Rothenstein and J. K. Tsotsos. Attention links sensing
to recognition. Image and Vision Computing, 26:114–126, 2008.

[90] Han S and Vasconcelos N. Biologically plausible saliency mech-
anisms improve feedforward object recognition. Vision Research,
50(22):2295–22307, 2010.

[91] Peter A Sandon. Simulating visual attention. Journal of Cognitive
Neuroscience, 2(3):213–231, 1990.

[92] Nong Sang, Longsheng Wei, and Yuehuan Wang. A
biologically-inspired top-down learning model based on vi-
sual attention. In International Conference on Pattern Recognition,
pages 3736–3739, 2010.

[93] Hae Jong Seo and P. Milanfar. Nonparametric bottom-up
saliency detection by self-resemblance. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 45–52,
2009.

[94] Hae Jong J. Seo and Peyman Milanfar. Static and space-time
visual saliency detection by self-resemblance. Journal of vision,
9(12), 2009.

[95] F. Shahbaz Khan, J. van de Weijer, and M. Vanrell. Top-down
color attention for object recognition. In International Conference
on Computer Vision, pages 979–986, 2009.

[96] Hang Shi and Yu Yang. A computational model of visual atten-
tion based on saliency maps. Applied Mathematics and Computa-
tion, 188(2):1671–1677, 2007.



Bibliography 104

[97] Fred Stentiford. Attention-based similarity. Pattern Recognition,
40(3):771–783, 2007.

[98] Xiaoshuai Sun, Hongxun Yao, Rongrong Ji, Pengfei Xu, Xian-
ming Liu, and Shaohui Liu. Saliency detection based on short-
term sparse representation. pages 1101–1104, 2010.

[99] Xiaoshuai Sun, Hongxun Yao, Rongrong Ji, Pengfei Xu, Xian-
ming Liu, and Shaohui Liu. Visual saliency as sequential eye
fixation probability. In International Conference on Image Process-
ing, pages 1093–1096, 2010.

[100] A. Torralba, A. Oliva, M. Castelhano, and J.M. Henderson. Con-
textual guidance of attention in natural scenes: The role of
global features on object search. Psychological Review, 113:766–
786, 2006.

[101] Anne M. Treisman and Garry Gelade. A feature-integration
theory of attention. Cognitive Psychology, 12(1):97–136, 1980.

[102] J. K Tsotsos. A computational perspective of visual attention.
2011.

[103] Roberto Valenti, Nicu Sebe, and Theo Gevers. Image saliency
by isocentric curvedness and color. In International Conference
on Computer Vision, pages 2185–2192, 2009.

[104] Eduard Vazquez, Theo Gevers, Marcel Lucassen, Joost van de
Weijer, and Ramon Baldrich. Saliency of color image deriva-
tives: a comparison between computational models and human
perception. Journal of the Optical Society of America, 27(3):613–621,
2010.

[105] Milan Verma and Peter W McOwan. A semi-automated
approach to balancing of bottom-up salience for predicting
change detection performance. Journal of Vision, 10(6):3, 2010.

[106] Tadmeri Narayan Vikram, M. Tscherepanow, and B. Wrede. A
random center surround bottom up visual attention model use-
ful for salient region detection. In IEEE Workshop on Applications
of Computer Vision, pages 166–173, 2011.

[107] Tadmeri Narayan Vikram, Marko Tscherepanow, and Britta
Wrede. A visual saliency map based on random sub-window
means. In Iberian Conference on Pattern Recognition and Image
Analysis, pages 33–40, 2011.

[108] Tadmeri Narayan Vikram, Marko Tscherepanow, and Britta
Wrede. Integrating habituation into saliency maps. In IEEE In-
ternational Conference on Development and Learning and Epigenetic
Robotics, pages 1–6, 2012.



Bibliography 105

[109] Tadmeri Narayan Vikram, Marko Tscherepanow, and Britta
Wrede. A saliency map based on sampling an image into
random rectangular regions of interest. Pattern Recognition,
45(9):3114–3124, 2012.

[110] Tadmeri Narayan Vikram, Marko Tscherepanow, and Britta
Wrede. A saliency model for goal directed actions. In IEEE
International Conference on Development and Learning and Epige-
netic Robotics, pages 1–6, 2012.

[111] Anna-Lisa Vollmer, Karola Pitsch, Katrin Solveig Lohan, Jannik
Fritsch, Katharina Rohlfing, and Britta Wrede. Developing feed-
back: How children of different age contribute to a tutoring in-
teraction with adults. In International Conference on Development
and Learning, pages 76–81, 2010.

[112] H. von Helmholtz. Sustained and transient components of focal
visual attention. Vision Research, pages 1631–1647, 1896.

[113] Min Wang, Jia Li, Tiejun Huang, Yonghong Tian, Lingyu Duan,
and Guochen Jia. Saliency detection based on 2d log-gabor
wavelets and center bias. In International Conference on Multime-
dia, pages 979–982, 2010.

[114] Wei Wang, Yizhou Wang, Qingming Huang, and Wen Gao.
Measuring visual saliency by site entropy rate. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 2368–2375,
2010.

[115] Yuekai Wang, Xiaofeng Wu, and Juyang Weng. Synapse main-
tenance in the where-what networks. In International Joint Con-
ference on Neural Networks, pages 2822–2829, 2011.

[116] Zheshen Wang and Baoxin Li. A two-stage approach to saliency
detection in images. In International Conference on Acoustics,
Speech and Signal Processing, pages 965–968, 2008.

[117] Longsheng Wei, Nong Sang, and Yuehuan Wang. A biolog-
ically inspired object-based visual attention model. Artificial
Intelligence Review, 34:109–119, 2010.

[118] Matthew H. Wilder, Michael C. Mozer, and Christopher D.
Wickens. An integrative, experience-based theory of attentional
control. Journal of Vision, 11(2), 2011.

[119] Jinhua Xu, Zhiyong Yang, and Joe Z. Tsien. Emergence of visual
saliency from natural scenes via context-mediated probability
distributions coding. PloS one, 5(12):e15796+, 2010.

[120] Tingting Xu, K. Kuhnlenz, and M. Buss. Information-based
gaze control adaptation to scene context for mobile robots. In
International Conference on Pattern Recognition, pages 1–4, 2008.



Bibliography 106

[121] Junchi Yan, Jian Liu, Yin Li, Zhibin Niu, and Yuncai Liu. Visual
saliency detection via rank-sparsity decomposition. In Interna-
tional Conference on Image Processing, pages 1089–1092, 2010.

[122] Victoria Yanulevskaya, Jan Bernard B. Marsman, Frans Cornelis-
sen, and Jan-Mark M. Geusebroek. An image statistics-based
model for fixation prediction. Cognitive computation, 3(1):94–104,
2011.

[123] A. L. Yarbus. Eye Movements and Vision. Plenum. New York.,
1967.

[124] Weilie Yi and Dana H. Ballard. Recognizing behavior in hand-
eye coordination patterns. International Journal of Humanoid
Robotics, 6(3):337–359, 2009.

[125] Haonan Yu, Jia Li, Yonghong Tian, and Tiejun Huang. Auto-
matic interesting object extraction from images using comple-
mentary saliency maps. In International Conference on Multime-
dia, pages 891–894, 2010.

[126] Yuanlong Yu, G.K.I. Mann, and R.G. Gosine. A goal-directed vi-
sual perception system using object-based top-down attention.
IEEE Transactions on Autonomous Mental Development, 4(1):87–
103, 2012.

[127] Jenny Yuen and Antonio Torralba. A data-driven approach
for event prediction. In European Conference on Computer Vision,
pages 707–720, 2010.

[128] A. Zajonc. Catching the light: The entwined history of light and
mind. Bantam, 1993.

[129] Lingyun Zhang, Matthew H. Tong, Tim K. Marks, Honghao
Shan, and Garrison W. Cottrell. Sun: A bayesian framework for
saliency using natural statistics. Journal of Vision, 8(7), 2008.

[130] Wei Zhang, Q.M.J. Wu, Guanghui Wang, and Haibing Yin. An
adaptive computational model for salient object detection. IEEE
Transactions on Multimedia, 12(4):300–316, 2010.


	Dedication
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Visual Attention
	1.2 Saliency Maps
	1.3 Thesis Contributions

	2 Review of Saliency Models
	2.1 Categories of Saliency Models
	2.2 Hierarchical approaches
	2.3 Spectral approaches
	2.4 Power law based approaches
	2.5 Image contrast based approaches
	2.6 Entropy-based approaches
	2.7 Center-surround approaches
	2.8 Hybrid approaches
	2.9 Top-Down approaches
	2.10 Applications
	2.10.1 Developmental Robotics
	2.10.2 Digital Photography
	2.10.3 Image Segmentation

	2.11 Summary

	3 Bottom-Up Attention Models
	3.1 Random Pixels based Saliency (PR1)
	3.2 Random Rectangular Sub-Window based Saliency (PR2)
	3.3 Random Fixation based Saliency (PR3)
	3.4 Experimental Results
	3.4.1 Qualitative analysis
	3.4.2 Experiments on salient region detection task
	3.4.3 Experiments on eye-gaze prediction task
	3.4.4 Performance due to change in parameters
	3.4.5 Computational Run-Time
	3.4.6 Saliency Models for Eye-Gaze Prediction in an Interactive Scenario

	3.5 Discussion and Conclusion

	4 Saliency model in the context of Goal-Directed Action
	4.1 Related Work
	4.1.1 Computer Vision
	4.1.2 Reinforcement Learning
	4.1.3 Interaction Studies

	4.2 Motivation and Contributions
	4.3 Proposed Model
	4.4 Experiments
	4.5 Discussion and Conclusion

	5 Conclusion and Future Work

