
Iterative Model Driven Integration Checks of
Component Based Robotic Systems

Florian Lier1, Ingo Lütkebohle2, and Sven Wachsmuth1

1 Center of Excellence Cognitive Interaction Technology (CITEC), Universitätsstraße
21-23, 33615 Bielefeld, Germany

2 CoR-Lab Research Institute for Cognition and Robotics, Universitätsstraße 25,
33615 Bielefeld, Germany

1 Abstract

A robot’s software ecosystem often comprises a set of heterogeneous software
components, acquiring, exchanging, fusioning, and deriving data to trigger a de-
sired behaviour, state, or action of the robot. Due to the nature of component
based development [1] [2], and component interaction respectively, an essential,
and often crucial part of robotic system development is frequent integration test-
ing. While unit tests already provide an established way of checking modelled
constraints on single components, tests including complete component based
(sub-)systems have not been widely studied in robotics so far. We have identi-
fied the following problem statements with respect to component based system
testing so far.

1. Not all components are necessarily implemented in the same programming
language, for the same operating system, or make use of exotic language
bindings. Hence, the setup or bootstrapping of a sufficient test environment
with an applicable configuration is often complex.

2. Previous work on component based integration testing has mainly focused
on: data flow testing [3], mutation testing [4], graph-based testing [5], or
has been conducted in a homogeneous programming environment [6]. Thus,
previous work on integration testing has mainly focused on the very “insides”
of testing a system.

3. Most of these tests are conducted manually, information about the proce-
dure, e.g., timing, sequence (orchestration), relations, and configuration are
transparent to the developer.

4. No semantic model or knowledge is explicitly given to reproduce tests.

Therefore, we propose an automated testing methodology, similar to what
Bai et al. [7] have presented in the web service domain, which allows for auto-
mated, frequent and composable integration checks. In order to invoke automated
and frequent testing, we propose the utilization of a Continuous Integration
Server [8], capable of invoking well defined integration tests. Additionally, we
introduce a state machine based approach to orchestrate: a) environment setup,
b) system bootstrapping, c) system tests, and d) result assessment. Last but not

least, semantic knowledge about automated system tests will be compiled into
an “integration test ontology”. The following user-story describes the scope and
purpose of our approach, which is still work in progress:

”A group of researchers develops a robotic system in a locally distributed
project. The group has chosen an agile process model, allowing quick changes and
adaptive planning. Diverse system components are implemented independently.
Besides local instances, the testing and distribution is carried out automatically
by an Continuous Integration (CI) server, accessible to all subjects of the team.
For each commit, all components are individually checked via static code analy-
sis, model checking, and unit tests. After all individual tests have been success-
fully performed, an integration test is automatically launched starting several
subsystems, based on the artifacts previously produced by individual tests, within
a predefined a environment, configuration, and constraints. The derived results
of individual, and also integration tests (multiple configurations), are available
to all members of the team immediately.”

Our contribution to the integration test scenario described above will be
based on a purposefully limited integration test ontology, which can be trans-
lated into an executable State Chart XML (SCXML) notation [9] [10], based
on Harel statecharts, via Domain Specific Language (DSL). Pertaining to the
integration tests mentioned above, developers are able to formalize integration
tests using a DSL — based on a given test ontology — and provide it alongside
with their regular code. During checkout, the DSL is translated into SCXML and
executed by the CI server, invoking the system test. A trivial integration test,
for instance, is the successful start of the system given a specified configuration,
environment, and constraints on in- and output for the required components. In
the first iteration, our work focuses on the following three fundamental problem
statements: 1) The orchestration of bootstrapping/starting a system is usual
dependent on the environment (Listing 1.1) and on a sequence of several compo-
nent statuses, e.g., ”component is successfully started if: a certain output/mes-
sage is given, the process is alive, or a lock-file is present” (Listing 1.2). While
these statuses, and especially their sequence, are implicitly detected by devel-
opers when starting the system manually, automated startup checks are rarely
implemented natively. Due to the nature of a state machine, we implemented
an initial environment setup state, exporting several environment variables used
by components. Furthermore, we designed a startup state which invokes compo-
nents and monitors their status, based on one (or more) of the three conditions
mentioned above — continuously if required. After the startup state has been
successful, the state machine switches into a testing, or logging state, followed
by a result assessment state. 2) Parallelism: usually, when log or test results
are to be assessed, it is convenient, and sometimes even required, to avoid huge
offsets in relation to timestamps. Therefore, we also designed parallel states to
allow simultaneous invocation of components or logging tools, for instance (List-
ing 1.3). 3) Formalism: to describe the fundamental requirements, specify test
concepts, semantics, and relationships of these states and tests, we are currently
investigating the basic requirements, e.g., for ”system starts without failure”.

Based on the findings, we will eventually compile a formal representation, in
form of an ontology, to make the test domain knowledge explicit. Moreover, we
find the notation in a XML-based (SCXML) manner comes with an unneces-
sary overhead, and is most likely prone to user-induced (syntax or logic) errors.
Therefore, we will design a DSL that, on the one hand, allows for ease of use —
concerning the design of an integration test, and on the other hand allows for
validation against the given test ontology.

Listing 1.1. Environment Setup block

<data id=”environment” xmlns=” ht tp : // c i . c l f . c i t−ec . de/fsm−t e s t i n g ”>
<va r i ab l e var=”DISPLAY” val=” : 0 . 0 ”/>
<va r i ab l e var=”PREFIX” va l=”/ vo l / c l f / trunk/”/>
<va r i ab l e var=”PATH” val=”$PREFIX:vol/ c l f / bin /”/>
<va r i ab l e var=”CMAKE INSTALL PREFIX” va l=”/ vo l / c l f /”/>
<va r i ab l e var=”PKG CONFIG PATH” val=”/ vo l / c l f / l i b / pkgconf ig /”/>
<va r i ab l e var=”MORSEROOT” val=”/ vo l / c l f / bin /”/>

</data>

Listing 1.2. Component startup block

<component va l=”xsc2 ”>
<command va l=” x s c 2 s e r v e r $ p r e f i x / e tc / xsc2 / c on f i g 2 . c f g ”/>
<path va l=”$ p r e f i x /bin /”/>
<execut ionHost va l=” l o c a l h o s t ”/>
<checkExecution va l=”True”>

<checkType va l=” stdout ” c r i t e r i a=”AUTOTX TABLE” timeout=”10” />
<checkType va l=” l o c k f i l e ” c r i t e r i a=” xs2 s e rv e r . l o ck ” timeout=”2”/>
<checkType va l=”pid ” c r i t e r i a=”” timeout=”2”/>

</ checkExecution>
</component>

Listing 1.3. Parallel state block

<s t a t e id=”MOCAP Test”>
<p a r a l l e l id=”para”>

<s t a t e id=”MOCAP playback”>
<onentry>

<l og l a b e l=” ent e r i ng ” expr=”MOCAP Test” />
<f smt:executeProgram expr=” exec ” value=”mocap” />

</ onentry>
<onex i t>

<l og l a b e l=” ex i t i n g ” expr=”MOCAP Test” />
</ onex i t>

</ s t a t e>
<s t a t e id=”ANGLES Test”>

<onentry>
<l og l a b e l=” ent e r i ng ” expr=”ANGLES Test” />
<f smt:executeProgram expr=” exec ” value=” ang l e s ” />

</ onentry>
<onex i t>

<l og l a b e l=” ex i t i n g ” expr=”ANGLES Test” />
</ onex i t>

</ s t a t e>
<t r a n s i t i o n ta r g e t=” r e su l t a s s e s smen t ” />

</ p a r a l l e l>
</ s t a t e>

2 Acknowledgments

This work has been partially supported by the German Aerospace Center (DLR)
with funds from the Federal Ministry of Economics and Technology (BMBF)
due to resolution 50RA1023 of the German Bundestag. We would also like to
thank Norman Köster for his enduring and excellent work on the current state
of implementation as a student assistant.

References

1. D. Brugali and P. Scandurra. Component-based robotic engineering (part i) [tu-
torial]. Robotics Automation Magazine, IEEE, 16(4):84 –96, december 2009.

2. D. Brugali and A. Shakhimardanov. Component-based robotic engineering (part
ii). Robotics Automation Magazine, IEEE, 17(1):100 –112, march 2010.

3. M.J. Harrold and M.L. Soffa. Selecting and using data for integration testing.
Software, IEEE, 8(2):58 –65, march 1991.

4. Yue Jia and M. Harman. An analysis and survey of the development of mutation
testing. Software Engineering, IEEE Transactions on, 37(5):649 –678, sept.-oct.
2011.

5. Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing component-based soft-
ware. In Engineering of Complex Computer Systems, 2001. Proceedings. Seventh
IEEE International Conference on, pages 222 –232, 2001.

6. Ravinder Kumar and Mr Karambir Singh. A literature survey on component
testing in component based software engineering. 2012.

7. Xiaoying Bai, Shufang Lee, Wei-Tek Tsai, and Yinong Chen. Ontology-based test
modeling and partition testing of web services. In Web Services, 2008. ICWS ’08.
IEEE International Conference on, pages 465 –472, sept. 2008.

8. Martin Fowler and Matthew Foemmel. Continuous integration. Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 2006.

9. Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C Burnett, Jerry
Carter, Scott McGlashan, Torbjörn Lager, Mark Helbing, Rafah Hosn, et al. State
chart xml (scxml): State machine notation for control abstraction. W3C Working
Draft, 2007.

10. R.S. Moura and L.A. Guedes. Simulation of industrial applications using the exe-
cution environment scxml. In Industrial Informatics, 2007 5th IEEE International
Conference on, volume 1, pages 255 –260, june 2007.

