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1 INTRODUCTION 

 
Bioanalytical tools1 are key technology for the fast growing fields of modern biotechnology 

such as systems biology2–6, personalized medicine7–9, or pharmaceutical research and 

development10,11. Today, researchers from all over the world rely on increasingly effective 

but also more and more complicated, sensitive and expensive analytic laboratory 

equipment, limiting its application in resource deprived areas or in the field12. 

 

Lab on a chip systems, however, are laboratory functions integrated onto a microchip and 

based on microfluidic technology which has been a very active field of research in the last 

decade. Because of their high degree of integration these systems offer several advantages 

over conventional laboratory equipment such as low sample and reagent consumption, 

portability, separation and detection with high resolution and sensitivity, low costs, or short 

analysis times13–20.  

 

Most analytical questions are based upon the need to determine the exact chemical or 

biological composition of a sample. Typically this problem is reduced to a separation task 

(e.g. via gels, electric and magnetic fields, or molecular interactions with another phase) 

and an ensuing detection of the separated compounds. The same principle usually holds in 

the world of microfluidics. Besides simple downscaling conventional approaches, the spatial 

structuring of micro- or nanochannels opens up a rich advanced toolbox for (bio-)analysis 

down to the single molecule scale such as dielectrophoresis21, entropophoresis22, entropic 

trapping23, ratchets24, or absolute negative mobility25, just to name a few. Especially the last 

two effects are made possible by gainfully exploiting the omnipresent thermal motion in 

such small scale systems and are thus not available in macroscopic laboratory equipment or 

are being regarded as disturbance. 

 

In the context of this thesis, spatially structured microfluidic channels in a state far from 

thermal equilibrium have been developed to address three fundamental problems in 

modern (bio-)analysis: 

1. The usually fixed separation criterion (e.g. a gel density is not changeable on the fly) 

2. The usually unknown polarizability properties of samples for dielectrophoretic 

manipulation 

3. The requirement of a specifically designed chiral selector for chiral separation.  

 

1
  In

tro
d

u
ctio

n
 



2  
 

Project 1: Microfluidic ratchets with dynamically changeable selectivity 

Typical biotechnological separation techniques like filters, chromatography, or gel 

electrophoresis have a fixed implemented separation criterion, e.g. defined by pore size, 

affinity of the steady phase, or gel density. To overcome this limit, the aim of the first 

project is the development and functional characterization of a microfluidic ratchet device 

with a dynamically changeable separation criterion. Depending on the applied voltage 

scheme, an arbitrarily selectable sub-group of the available species in the analyte solution is 

forced to migrate into opposite direction than the remaining species. Changing the voltage 

scheme will immediately switch the separation criterion. The device is based on a 

sophisticated interplay between electrophoresis and dielectrophoresis and operates with 

any charged and polarizable material in solution such as e.g. micro- and nanoparticles, cells, 

or biomolecules. The results of this project are explained in section 4.1 starting on page 43. 

Project 2: Automated analysis of single molecule polarizabilities 

Many microfluidic systems (such as the device from project 1) rely on dielectrophoresis to 

immobilize, manipulate, or sort a somehow polarizable sample. However, the actual 

polarizability value usually remains unknown and appropriate electric fields to trigger 

dielectrophoresis are found via trial and error. The second project uses dielectrophoretic 

traps in a tilted potential implemented in a microfluidic channel to automatically quantify 

single molecule (here DNA) polarizabilities via fluorescence video microscopy. The approach 

is tested by reproducing a well-known scaling law between the buffer solution’s ionic 

strength and the polarizability for two different DNA types. In a second experiment the 

influence of the required fluorescence staining on the polarizability is investigated. Besides 

the pure quantification of polarizability in basic research, this system could be used to 

automatically tune dielectrophoretic traps in a final product to broaden its range of 

possible analyte classes. The results of this project are discussed in section 4.2 starting on 

page 62. 

Project 3: Chiral separation without chiral selector 

When chiral molecules are about to be separated after synthesis, a chromatography setup 

is used which typically requires chiral selection or derivatization agents. Usually these 

chemicals have to be redeveloped for every new analyte. The third project’s aim is the 

implementation of a generic and continuously operating principle to separate chiral 

molecules in microfluidic channels without the need for any chiral selection or 
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derivatization agent. Two conceptually different microfluidic approaches with excellent 

sorting performance were developed and experimentally evaluated. Following Curie’s 

principle26, both approaches rely on microfluidic structures that somehow break the 

symmetry in the channel in every relevant dimension. Injected model enantiomers are 

demonstrated to split up according to their chirality and to accumulate near opposite 

channel walls. The results of this project are explained in section 4.3 starting on page 79. 

Besides this first introductory chapter, the present thesis is arranged in four main chapters. 

Chapter 2 (page 5) recapitulates the required basic physical, chemical, and biological 

fundamentals for operating the developed microfluidic systems. The third chapter (page 31) 

discusses specifically the developed experimental methods and fabrication protocols for 

the investigated microdevices and summarizes the required materials and chemicals. 

Additionally a short description of the numerical methods, which were employed to 

theoretically predict the chiral separation angles is provided. The obtained experimental 

and theoretical results of the three main projects are considered in chapter 4 (pager 43) 

together with a compact literature review for every part. Conclusive statements and 

outlooks to future projects are presented in chapter 5 (page 115). Finally, a comprehensive 

appendix (page 137) provides detailed overview over developed software and external 

control machinery as well as a list of publications, conference participations, proceedings, 

and the author’s curriculum vitae. 
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2 FUNDAMENTALS 

In the last decades, human kind witnessed one of the most rapid and enduring 

technological developments in history: integrated microelectronics27, enabled by the 

invention of the transistor by Bardeen, Brattain and Shockley28. A technology that does not 

only enable more powerful and less energy consuming computations on smaller machines 

but also revolutionized the way we live, communicate, and the way we do science. Starting 

from giant slow computation colossi like the first universal touring complete electric 

computer ENIAC in the 1940s to modern nanoprocessors with structure dimensions of 22 

nanometers, the miniaturization of electronic parts has been the key to massive 

performance and efficiency boosts in this field. 

At the end of the 1970s the already advanced silicon fabrication technology was adapted to 

fabricate miniaturized mechanical systems29, the so called MEMS (micro electro mechanical 

systems) such as pressure sensors30, inkjet nozzles31, or gyroscopes32,33. Because of their 

tiny size and the choice of materials, these microsystems could be integrated into existing 

microelectronic chips and are nowadays employed in many commercially available 

electronic parts. 

The early stage of microfluidics was preluded by the first developments of micromechanical 

pumps, flow sensors, and actuators. This research area was essentially boosted by the work 

of Andreas Manz and colleagues34,35 with the idea of applying microfluidics as basis for so 

called micro total analysis systems to integrate a whole chemical or life science laboratory 

onto a microchip with integrated sample preparation, handling, and analysis in small micro- 

or nanometer sized channels. The benefits are analogous to a microprocessor: low sample 

and reagent consumption, separation and detection with high sensitivity and resolution, 

low costs, portability, and very short analysis times13–20. 

As the term microfluidics suggests, the central challenge in this discipline is the successful 

handling of smallest amounts of liquid on nano to picoliter scales. The miniaturization of 

channel structures leads to completely new possibilities of transport and manipulation of 

liquids but concurrently requires new theoretical and experimental concepts as well35–39. 

For example, one can easily imagine, that physical and chemical surface effects play an 

increasingly important role in such miniaturized channel systems, because 
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→       [2-1] 

Furthermore, extremely laminar flows and very small heat capacities are typical features of 

the physics governing such environments. Properties on the molecular scale, like Brownian 

motion or electrodynamic interactions between particles become more and more 

important and can therefore not be neglected anymore as well. 

This chapter outlines the underlying physical, chemical, and biological aspects required for 

understanding the presented experiments and their results. For actuating liquids and 

samples in the microchannels, an interplay between directed hydrodynamic (section 2.1) or 

electrodynamic (section 2.2) transport and stochastic motions induced by diffusion (section 

2.3) is employed. The consequences are inter alia non-intuitive migration phenomena 

described in section 2.4. This includes ratchet systems, absolute negative mobility in 

classical single particle systems, and escape rate theories. A closer consideration of the 

employed biological and chemical sample classes closes this chapter (section 2.5). 

 

2.1 HYDRODYNAMIC EFFECTS IN MICROFLUIDIC SYSTEMS 

In contrast to the established discrete particle mechanics, the physics of fluids (and gases) is 

based on the continuum hypothesis40. The considered fluids with density   are regarded as 

continuous objects, where an infinitesimal volume element    is large enough, so that a 

reasonable number of water molecules are included but small compared to the overall 

Volume  . As a consequence, microscopic effects on the single water molecule level are not 

accounted for, justified by the micrometer sized channel geometries developed in this 

work.  

The Euler equation 

The Euler equation is a model for describing the behavior of ideal (non-viscous) fluids. The 

first order partial differential equation system can be derived by considering a fixed volume 

element    within a streaming fluid. The force acting on its boundaries can be calculated 

by the divergence theorem and one obtains 

 ⃗   ∮    ⃗   ∫     
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where   denotes the applied hydrodynamic pressure. This is now used to devise Newton’s 

second law 

 
  ⃗

  
      ⃗    

where  ⃗    is the sum of all external force densities. By properly decomposing 
  ⃗⃗

  
 via 

  ⃗

  
    ⃗  (

  ⃗

  
 ⃗⃗⃗)  ⃗     ⃗  ( ⃗  ⃗⃗⃗) ⃗ 

one obtains Euler’s equation40  

 (   ⃗  ( ⃗  ⃗⃗⃗) ⃗)       ⃗    [2-2] 

which is essentially the adaption of Newton’s second law to hydrodynamics. However, 

especially in microfluidics, the previous assumption of non-viscous fluids is impossible36,38.  

Therefore, it will now be further modified. 

The Navier Stokes Equation 

d’Alembert’s paradox shows impressively, that assuming non-viscous and hence non-

energy dissipating fluids is impossible in most system. It states for example that an obstacle 

in a non-viscous fluid stream is not subjected to any force. Furthermore, the Euler equation 

would only generate trivial results if no slip boundary conditions (see paragraph 2.1.1) are 

applied and energy dissipation as well as thermodynamic irreversibility would not be 

mathematically ascertainable.  

Especially when microfluidic channels are considered, surface effects and the fluid’s 

viscosity are very dominating factors. Hence, the Euler equation has to be further modified 

which will result into the Navier Stokes equation. It includes further additive terms to 

describe viscous behavior (for a derivation, see e.g.40). 

 (   ⃗  ( ⃗  ) ⃗)         ⃗  (  
 

 
)  ( ⃗⃗⃗  ⃗)   ⃗    [2-3] 

The values   and   represent the dynamic viscosity and the so called second viscosity. The 

newly added terms    ⃗ and (  
 

 
) ( ⃗⃗⃗  ⃗) characterize forces having their origin in the 

fluid’s inner friction and its compression respectively. Hence, if the fluid is considered as 
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being incompressible (which is valid for nearly all subsonic liquids) the equation can be 

drastically simplified and one obtains 

 (   ⃗  ( ⃗  ) ⃗)         ⃗   ⃗     [2-4] 

which is solvable, when considering   ⃗    as well.  

 

2.1.1 BOUNDARY CONDITIONS 

For solving the Navier Stokes equation in a certain region  , boundary conditions for the 

current problem have to be defined. On the macroscopic scale, the most favorite choice is 

the so called no-slip boundary condition38,40–42 (Figure 1.a). It essentially states, that the 

velocity of the fluid element next to a wall is the same as the wall piece, the element is in 

contact with because of friction effects, hence 

 ⃗( ⃗)   ⃗               ⃗       

This term additionally implies that the surface is impermeable, and that the velocity 

component normal to the surfaces thus vanishes. 

While this approach is mostly undoubted on the macroscopic scale, a closer consideration 

of microscopic boundary conditions seems important as the exact behavior of fluids at the 

interface can be of significant influence. The first considerations concerning the possibility 

of partial slip were made by Navier himself in 1823, when he introduced the Navier slip 

length    (Figure 1.b). This value represents the distance behind a wall at position    , 

where the no-slip condition would be reconstituted38,43  

  ( )         ( )  

In this case, fluid elements near the wall are decelerated but not completely stopped. For 

     the perfect slip regime is approached (Figure 1.c) with no wall interaction and hence 

no energy dissipation being observable. 

Experimental results show, that choosing the correct boundary condition is delicate when 

considering micro- or even nanofluidic systems. Pit et al. analyzed the slip behavior of 

hexadecane on different surfaces via an “internal reflection–fluorescence recovery after 

photo bleaching” approach. They found no apparent slip on perfluorodecanetrichlorosilane  
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Figure 1: When a fluid is in contact with a non-permeable surface usually a) no-slip boundary conditions, b) 

partial slip conditions, or c) perfect slip conditions apply. The Value    is called slip length.  

monolayers,                 on damaged perfluorodecanetrichlorosilane 

monolayers and                  on bare sapphire44. Joseph and Tabling measured 

the apparent slip length at a water-glass interface in a 100µm wide and 10µm high micro 

channel via particle velocimetry45. They obtained a slip length of 50 nm ± 50 nm. The results 

do not violate the no-slip hypothesis but give a hint that there could be an observable 

microscopic slip below 100 nm in such systems. 

In fact, the actual value of    seems to be very sensitive on material properties, chemical 

surface properties, pressures, surface charges, dissolved gasses, fluid density gradients, 

surface roughness, and so on43,46,47. Especially the hydrophobicity of a surface has a big 

influence on slip properties in pneumatically43 as well as in electroosmotically46 driven 

flows. In general, hydrophobic surfaces show a higher slip length than hydrophilic surfaces. 

With the help of the oxygen plasma chamber used for the experiments in this thesis, this 

property can be very well controlled48,49. Hence, using no-slip conditions can be justified for 

the framework of this thesis, which significantly lowers the simulation complexity. 

 

2.1.2 CONSEQUENCES OF THE NAVIER-STOKES-EQUATION 

The Reynolds Number 

Considering hydrodynamic problems dimensionless is often advantageous, e.g. to rapidly 

change scales or velocities in experiments and simulations without repeating them40. This 

approach provides at set of characteristic numbers, which are equal when 
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hydrodynamically equivalent setups are considered. Hence, e.g. engineers can model the 

behaviour of large systems in smaller windtunnels and rescale their experiment afterwards 

to the correct order of magnitude of size, velocity, or viscosity.  

Using    as a typical lengthscale and    as a typical velocity in the system with 

 ⃗

  
  ⃗              

 ⃗

  
  ⃗  

and    as typical timescale and    as typical pressure in the system with 

  
  

  
       

                
   

  
       

  

the Navier Stokes equation for an incompressible fluid [2-4] can be transformed into 

 (
  

  
  

  ⃗  
  

 

  

( ⃗   ) ⃗ )   
  

  
     

   

  
    ⃗  

⇔
     

 
(  

  ⃗  ( ⃗   ) ⃗ )           ⃗  

The values marked with an asterisk are dimensionless. The resulting prefactor 

     

 
    

is one of the most important dimensionless characteristic numbers and is termed Reynolds 

number. It represents the ratio between inertial forces and viscous forces. For a typical 

microfluidic channel with          filled with water50 (                   , 

                 ) with a mean flow velocity of | ⃗|             the corresponding 

Reynolds number is in the order of 

             

It demonstrates that in this regime, viscous forces are clearly dominating inertial forces. In 

fact, inertial forces play no roll at all in such systems. The behaviour of particles inserted in 

such a system will only be controlled by the currently applied forces and not by any 

previously acting effects. This assumption implies, that the particle densities are small 

compared to the fluid densitiy, which is typically the case. It furthermore means, that flows 

in this device will be highly laminary with no liability to turbulent behaviour51. These 
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findings imply many interesting effects in microfluidic systems, but often require 

complicated setups to acomplish supposedly easy tasks like mixing of fluids36,38,51–53. 

Stokes Friction 

According to Stokes’ law, an arbitrarily shaped object exposed to a streaming fluid will 

experience a friction force40  

 ⃗     ⃗ 

where   is a proportionality constant, depending on the fluid’s composition and the 

object’s geometry. For spheres with radius    , like the microbeads used here,   can be 

calculated analytically 

           

Calculating   for arbitrarily shaped objects is more complex. In this general case, the 

equation 

        

is employed, where    is mathematically equivalent to a particle’s electrostatic capacitance 

in units where a sphere’s radius equals its capacity. In general this value is easier 

computable as a hydrodynamic friction tensor54. 

Pneumatically actuated flows and Hagen-Poiseuille flows 

If two fluid reservoirs with different filling levels (  ) are connected via a microchannel, a 

pressure difference  

          

can be measured along the channel, where   is the normal earth acceleration (see Figure 

2.a). The resulting pressure difference    can also be generated with a pneumatic pumping 

system (Figure 2.b). Even when there is no external pressure applied, the system itself can 

generate a pressure difference, e.g. when the reservoirs have different diameters or when 

there are differently sized water droplets on top of the reservoirs. In this case, the 

curvature of the fluid surface within the reservoir leads to an internal pressure 
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Figure 2: A fluid flow can be generated inside the depicted micro channels by a) a difference    in filling 

levels of the reservoirs or b) by introducing the pressure difference pneumatically with a pump. 

where   represents the fluid’s surface tension and    the droplet’s radius55. Typically,    

has more influence on a microfluidic system than    , e.g.             for a droplet with 

       . It would require a 14.9 mm high water column to compensate   . 

As a result of the pressure gradients applied to a microfluidic channel, a hydrodynamic flow 

is induced, trying to compensate its reason. The flow profile in the channel  ⃗( ⃗), is usually 

gained by solving the Navier-Stokes equation numerically, although it is analytically 

solveable in very rare cases (e.g. the flow thourgh a cylindrical tube). Here, rectangular 

channel geometries are considered. In this case, the explicit analytical solution is 

impossible, but an approximation with a Fourier-series is provied38. 

The considered straight and completely rigid microchannel with length  , width   and 

height   has a rectangular cross section (see Figure 3). Here only the non-transient solution 

is of interest, so the Navier-Stokes equation is simplified as follows38: 

 (  
    

 )  (   )   
  

  
 

[2-5] 

in the domain  
 

 
    

 

 
  and      . The equation shall be solved by applying 

no-slip boundary conditions as justified in paragraph 2.1.1 of the form   (   )    for 

   
 

 
  or     or    . Equation [2-5] is now converted into a Fourier series38. 
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Figure 3: Sketch of the considered rectangular microfluidic channel geometry. Although this problem is highly 

symmetrical, the solution of the Navier-Stokes equation has to be approximated by a Fourier series. 

The right hand side reads 

 
  

  
  

 

 

  

  
 ∑

 

 
   (

   

 
)

 

       

 [2-6] 

where     and odd. Here, only terms proportional to     (
   

 
) were considered, to 

maintain the requested boundary conditions. The left hand side of equation [2-5] is 

reformulated as follows: 

  (   )  ∑   ( )    (
   

 
)

 

   

 [2-7] 

The Fourier coefficients   ( ) are a function of   and constant in  . This series is now 

inserted into equation [2-5]: 

(  
    

 )  (   )  ∑ [  
  ( )  

    

  
  ( )]    (

   

 
)

 

   

 [2-8] 

By equalizing equations [2-6] and [2-8] one obtains the following constraints: 

  
  ( )  

    

  
  ( )   

 

 

  

  

 

 
              

                         ( )                                       

To find the coefficients   ( ), the second order differential equation in the first constraint 

needs to be solved. A general approach to accomplish this is 

  ( )     
     ( )    

   ( ) 
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where a particular solution can be found with the probe function    
     ( )        : 

  
     ( )  

     

      
               

On the other hand, the general solution for the homogenous part    
  ( )  

    

    ( )    

is the following linear combination 

  
         (

  

 
 )        (

  

 
 ) 

The desired no-slip boundary condition   ( 
 

 
 )    needs to be fulfilled. Hence, the 

solution is 

  ( )  
     

      
   [  

    (
  
 

 )

    (
  
 

 
  )

]             

This result is inserted into equation [2-7] which leads to the following result for the velocity 

field in a micro channel with rectangular cross section under no-slip boundary conditions38. 

  (   )  
     

    
  ∑  

 

  
  [  

    (
  
 

 )

    (
  
 

 
  )

]    (
   

 
)

 

    

 [2-9] 

The result   (   ) is plotted in Figure 4 clearly showing the parabolic characteristics of a 

hydrodynamic flow profile along the z axis. The maximum of    depends quadratically on 

the channel’s height  , linearly on the applied pressure difference    and is 

antiproportional to the length of the channel   and the viscosity    One of the main tasks 

during the experiments concerning the separation of chiral microparticles (see paragraph 

4.3.3) is further modifying this flow profile to be fully asymmetric. 
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Figure 4: Flow profile in a micro channel with rectangular cross section, as calculated above by solving the 

non-transient Navier-Stokes equation with no slip boundary conditions via Fourier series for typical 

microfluidic parameters: h = 6 µm, w = 100 µm, η = 0,891*10
-3

 Pa s, L = 0,01m und p=10
4
 Pa. For better 

visibility, the   and the   axis are scaled differently. The limit of both Fourier series was approximated using 

Wolfram Mathematica®. The result shows the typical parabolic Hagen-Poiseuille flow profile along the z axis. 

 

2.2 ELECTRODYNAMIC EFFECTS IN MICROFLUIDIC SYSTEMS 

When a surface is brought into contact with a polar liquid such as water, a charge transfer 

between the surface and the liquid takes place. The result is a deprotonation of the surface. 

Hence, it gets negatively charged while the electrolyte gets positively charged. However, 

the global charge neutrality is maintained. The result is shown in Figure 5. Because of 

Coulomb interaction the positive counter ions in region A (Stern layer) are strongly 

attracted by the surface and are thus immobile. On the other hand, counter ions are 

repelled. The electric potential  ( ) drops linearly (Stern potential) starting from   , the 

surface potential to a value  , the so called zeta-potential. 

Further away from the surface in region B (Gouy-Chapman layer), diffusion plays a more 

important role as the Coulomb interaction is weaker. In this regime, the potential function 

drops exponentially 

 ( )      [ 
 

  
] 
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Figure 5: The ionic structure near a deprotonated surface which has been brought into contact with an 

electrolyte at thermal equilibrium. Because of Coulomb-interaction, an immobile layer of positive counter 

ions adsorbs to the negatively charged surface, the so called Stern-Layer (A) where the potential drops 

linearly. Further away from the surface, the more diffusive and mobile Gouy-Chapman layer (B) follows, 

where the potential drops exponentially, characterized by the Debye length   . 

where  

    √
    

 (  )   
 

is the so called Debye shielding distance or more common the Debye length. It is a measure 

for the screening effectiveness of surfaces charges. The term consists of the medium’s 

dielectric permittivity  , the thermal energy    , the valence of the ions  , the elementary 

charge   and the ion concentration     Typical Debye lengths are in the order of 

nanometers. Both layers A and B together are called the electric double layer39. 
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2.2.1 ELECTROOSMOSIS AND ELECTROPHORESIS 

Aside from transporting fluids and suspended particles via pressure differences and 

hydrodynamic flow, the use of electrokinetically induced flow such as electrophoresis and 

electroosmosis is imaginable. For this to work, an electric field has to be applied along a 

microchannel, generated here by a general voltage protocol 

 ( )             (  )  [2-10] 

where the frequency    ⁄  is always smaller or equal than 100 Hz. The time dependent 

part  ⃗⃗      (  ) of the resulting electric field 

 ⃗⃗( )   ⃗⃗    ⃗⃗      (  ) [2-11] 

generates oscillating back and forth movements and no effective migration. It is therefore 

neglected in the following discussion of electroosmosis and electrophoresis and seized 

again to describe dielectrophoresis in paragraph 2.2.2. 

In 1809, Reuss published an article describing his observation of water flowing through 

porous clay towards the cathode of an electric field56. The same principle can be exploited 

to transport fluids through micro channels. If such a channel is filled with a neutral 

electrolyte, an electric double layer will be generated at the channel walls, because silanole 

groups included in common materials like polydimethylsiloxane will be deprotonated (see 

introduction to section 2.2). If a voltage is applied along the channel, the loosely bound ions 

in the Gouy-Chapman layer will be transported due to the electric field. Because of inner 

friction the remaining fluid is transported as well. This so called electroosmotic flow has a 

non-parabolic flow profile and is characterized by the following modification to the 

incompressible Navier-Stokes equation38 

 (   ⃗  ( ⃗  ) ⃗)         ⃗       ( )  [2-12] 

Here,        ( ⃗) is the double layer’s equilibrium charge density which is assumed to be 

faster in equilibrium than the typical motion timescale. In the following, ideal electro 

osmotic flow in a channel with     is assumed, hence,         ,  ⃗⃗ is homogenous, 

     and the flow is in steady state38 . The effect should be purely electroosmotic so 

     and only the equation’s x-component along the channel is of interest. 
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 [  ( )  

   

 
 ( )] 

Using the boundary condition   ( 
 

 
)=0, one obtains the solution 

  ( )   [   ( )]
   

 
   

 ( ) vanishes very quickly because      is claimed. Hence, the electro osmotic flow for 

     for an electric field applied along the channel in x direction can be calculated by38  

       ( )   
  

 
   

                                       

[2-13] 

which is the Helmholtz-Smoluchowski equation39. The prefactor       
  

 ⁄  is called 

electrophoretic mobility and is in particular independent of the electric field. 

By changing the reference system, a second electromigration mechanism can be identified, 

known as electrophoresis. When a charged particle is immersed into an electrolyte, an 

electric double layer with a certain constant surface potential   ̅ will arise as well on the 

particle surface. When a voltage is applied along the channel, the result is a moving charged 

surface in a resting fluid. It can be described with the same formalism as above except for a 

changed presign 

     
  ̅

  
   

                    

[2-14] 

which is independent on the particle’s shape, as long as the Debye length is much smaller 

than the particle diameter and the surface potential is constant.  

In many experimentally relevant conditions (steady electric field, uniform fluid with uniform 

electric properties, constant surface potentials everywhere in the device and Debye lengths 

much smaller than relevant channel/particle features)      is proportional to the electric 

field with a locally constant proportionality factor57. The constraints mentioned above are 
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well justified for the experimental environments described in chapter 4. The electric field is 

steady because it is applied to the channels’ ends and varies only in irrelevant temporal 

orders of magnitude in relation to the effects described above. The devices itself and the 

particles are fabricated out of a homogenous material, so that   and   ̅ are constant 

everywhere and    is typically in the order of some nanometers for the given experimental 

conditions. Hence, it is three orders of magnitude smaller than the smallest channel 

feature. 

As a consequence, electro osmotic flow and electrophoresis can be fused to a single 

effective force. Combining equations [2-13] and [2-14] leads to the effective particle motion 

under ideal conditions 

 ⃗  
 ( ̅   )

 
 ⃗⃗  

 

2.2.2 DIELECTROPHORESIS 

The term dielectrophoresis was first defined by Pohl in the 1950s and refers to the motion 

of a polarizable but effectively uncharged object in an inhomogeneous electric field due to 

polarization effects58. For a particle with polarizability      ( ) this dielectrophoretic 

force can be calculated with21,59,60  

 ⃗      ( ⃗⃗   )  ⃗⃗   [2-15] 

This equation especially expresses the impact of the electric field  ⃗⃗ on the effectively 

induced dipole moment  ⃗       ⃗⃗. Generally, the polarizability    is a complex tensor 

which depends on the applied frequency of the electric field because of dielectric losses. 

However, in this case, the employed frequencies are chosen below 100 Hz which is, 

compared to the rearrangement speed of the involved charges very low. Additionally the 

considered particles are assumed to be spherical without internal structure. This justifies    

being a real valued scalar and thus independent of  . The frequency regime, where this 

assumption is not possible anymore depends on the system’s dielectric and geometric 

properties and lies typically in the order of 10-100 kHz61,62. 

However, as demonstrated in the previous paragraph, the polarizability is not a pure 

particle property but a complex interplay of the bulk material and the surrounding double 
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layer63. It is well documented that    depends e.g. on the ionic strengths and composition 

of the surrounding solution regarding flow behavior, its pH, or its viscosity64–70. 

It is possible to estimate the order or magnitude of    by disregarding all the complex 

effects just mentioned and focusing on a conductive dielectric spherical particle in a 

conductive dielectric medium. In this case, the effective dipole moment    ⃗⃗ generates a 

dipole field similar to a point dipole around the particle71. For low frequencies, conductive 

effects dominate polarization effects63. If the frequency is increased, conductive and 

dielectric impact may be witnessed and    becomes a frequency dependent function and 

can be calculated with63,71 

        
  

    

     
 [2-16] 

for spherical microbeads with radius    and conductivity    in a medium with conductivity 

 . In most experiments, the particles are non-conducting. Hence,     , resulting in 

         
  [2-17] 

If the frequency is further increased, the conductivities of particles and fluids are 

dominated by the contributions of dielectric effects. Hence, equation [2-16] needs to be 

replaced by 

        
  

    

     
  [2-18] 

where    and   are the dielectric permittivity of the particles and of the medium 

respectively. 

The dielectrophoretic force, calculated in equation [2-15] directly corresponds to a 

dielectrophoretic potential energy 

      
 

 
   ⃗⃗

  [2-19] 

or rather with equation [2-11] 
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  ( ⃗⃗  

  
 ⃗⃗  

 

 
) [2-20] 

where the factor ½ originates from time averaging  ⃗⃗  
  and where an electrostatic 

assumption was made. When  ⃗⃗ is inhomogeneous, particles are attracted by regions with 

high electric field strength (   , positive DEP) or low electric field strengths (   , 

negative DEP). The electric field enters quadratically in equations [2-19] and [2-20], in other 

words, dielectrophoretic effects are observed for both DC and AC voltages unlike 

electrophoresis or electroosmosis. Consequently, a voltage protocol like [2-10] with 

        can be used to specifically address electrophoresis/electroosmosis via     on 

one hand and particle trapping with dielectrophoresis via     on the other hand as 

exploited in sections 4.1 and 4.2. 

 

2.3 BROWNIAN MOTION AND THE COEFFICIENT OF DIFFUSION 

In 1828, Robert Brown, a Scottish botanist was engaged in the investigation of the 

reproduction mechanisms of plants72,73. When he observed micrometer sized particles from 

the pollen of Clarkia pulchella with his microscope, he witnessed an irregular random 

motion of those objects in a fluid droplet. At first, he thought that the motion resulted from 

the fact, that he investigated living material. However, in the same publication it was 

described, that it was observed with fossil particles and even with inorganic minerals as 

well. Roughly 100 years later, Einstein74 and Smoluchowski75 refocused on the problem and 

showed that Brownian motion is a deep physical principle based on the molecular theory of 

heat74. It was derived, that a particle ensemble with density      (   ) located at a 

certain point   at time     diffuses according to the diffusion equation 

        
    

where   is the diffusion coefficient given by the Einstein-Smulochowski equation 

  
   

 
  

Here   represents the friction coefficient of the particle in the medium. For Stokes friction 

(see section 2.1.2) the result is the Stokes-Einstein equation 
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  [2-21] 

For a given Brownian trajectory in a two-dimensional space typically considered here,   can 

be explicitly calculated via 

     
   

〈 ⃗ ( )〉  〈 ⃗( )〉 

  
   [2-22] 

as well and the radius of the observed particle is thus accessible quite precisely. Here  ⃗ is 

the particle’s position and the symbol 〈 〉 denotes averages over many realizations.  

The relation between directed transport and diffusional motion is characterized by the 

Péclet number76. This dimensionless quantity is obtained by multiplying the Reynolds 

number    (see paragraph 2.1.2) with the Schmidt number         and thus reads 

   
    

 
   

Consequently, when e.g. a studied microfluidic system is reduced in size, the rise of 

diffusion may be compensated by increasing the driving velocity accordingly. 

Concerning applications in micro- and nanofluidic devices, the thermal energy at room 

temperature                   plays a non-negligible role e.g. when collecting 

microbeads in dielectrophoretic traps which are usually of comparable order of magnitude. 

Hence, the thermal fluctuations are usually modeled by introducing a force term into a 

Langevin equation77  

 ⃗ ( )   √   ⃗( )   

The value  ⃗( )  (  ( )   ⃗    ( )   ⃗    ( )   ⃗ ) represents the energy input from the 

surrounding thermal heat bath and consists of three uncorrelated, independent, and 

Gaussian distributed white noise functions with zero average 〈  ( )〉    and the 

correlation function 〈  ( )  ( )〉       (   ).  
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2.4 STATISTICAL MECHANICS 

 

2.4.1 KRAMERS RATE AND DIFFUSION IN A TILTED PERIODIC POTENTIAL 

In 1940, Kramers published a theoretical model to describe chemical reactions that require 

activation energy78. He considered a piecewise harmonic metastable potential   ( ) 

(Figure 6) and a point particle subjected to Brownian motion therein. The potential function 

exhibits a potential minimum around    and a potential barrier around    with height     

which is larger but of comparable order of magnitude than the thermal energy     to 

obtain well defined states. The piecewise harmonic function is described by 

  ( )    (  )  {
 

 ⁄   
 (    )

                     

     
 ⁄   

 (    )                             
 

where    and    are the potential curvatures at    and    respectively79. When     is 

much larger than the thermal energy      a particle located at the metastable potential 

minimum around    will stay there for a certain time, until it receives a (stochastic) thermal 

kick providing enough energy for passing the barrier. 

This resulting particle flux out of the potential well can be described with the so called 

Kramers rate78–80 

   
|    |

   
   ( 

   

   
)   [2-23] 

From this value, it is possible to estimate the mean first passage time   , describing the 

average time interval (over many realizations) after which a single particle located at    at 

time     escapes out of the potential well due to thermal noise. It can generally be 

calculated using the inverse Kramers rate81 

   
 

  
 

   

|    |
   (

   

   
)       (

   

   
)  

Kramers’ initial intention was the identification of a model system to describe thermally 

initiated chemical reactions. However, the model can also be directly applied to obtain 

mean first passage times of a polarizable particle in a local dielectrophoretic potential 

minimum in combination with a tilting of the potential by a static external force81,82.  
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Figure 6: A metastable piecewise harmonic potential where the Kramers rate can be used to describe thermal 

escape processes. 

 

2.4.2 RATCHETS AND ABSOLUTE NEGATIVE MOBILITY  

When a classical system of resting Newtonian particles e.g. suspended in a liquid is not 

subjected to any external force, Newton’s second law states, that there is no acceleration 

of particles and thus the overall particle speed remains zero. When an external force is 

applied, it is usually the case, that the particles are transported into the direction of that 

force and the higher the force, the faster the resulting migration velocity (Figure 7 a).  

However, in spatially periodic environments with a nonlinear driving far from thermal 

equilibrium two other counterintuitive transportation modes can be observed 

experimentally and theoretically for microscopic classical particles namely a ratchet 

response (Figure 7 b)24,83–97 and the so called absolute negative mobility (Figure 7 c)98–104. 

 

Figure 7: When a particle is subjected to an external force, e.g. hydrodynamic flow (section 2.1) or 

electrokinetic driving (section 2.2) one would expect, that the direction of that force  ⃗⃗⃗  and the resulting 

speed of the particle  ⃗⃗⃗  point into the same direction (a). If a ratchet response (b) is observed, there is 

effective particle transport although the mean force is zero. It is even possible to steer the particle stream 

effectively against the not too large effective force (c), an effect termed absolute negative mobility. In 

spatially structured systems with nonlinear driving and far from thermal equilibrium, these two effects are in 

agreement with Newton’s second law and the second law of thermodynamics. 
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In contrast to the usual behavior, ratchet systems involve some kind of asymmetry in their 

structure so that useful work is extracted, although the mean applied force over time is 

zero (Figure 7 b). A macroscopic example of such a system is the clamping element of a 

lashing strap. Here an asymmetrically shaped cogwheel is rotated into one direction only by 

moving a lever back and forth. Thus, the attached webbing is coiled although no effective 

force into one direction was applied when averaging over time. Implementing such a device 

on the microscopic scale is a little more complex because now Brownian motion plays a 

non-negligible role. At first sight, one could think that thermal fluctuations moving the lever 

randomly with no mean force direction would lead to an extraction of work out of one 

thermal heat bath and the system would thus be a valid second kind perpetual motion 

machine. However, this is forbidden by the second law of thermodynamics. In reality, the 

lever would be moved by the ongoing bombardment of the gas atoms, but the cogwheel 

would be diffusing as well. As a consequence, no directed motion is extractable. However, 

the second law of thermodynamics is only applicable to systems in thermodynamic 

equilibrium. A solution would thus be to move the system away from equilibrium by e.g. 

introducing temperature gradients or applying strong periodic forces averaging out to zero. 

Following this approach several work groups proved, that indeed ratchet systems are 

theoretically and experimentally realizable on the microscopic scale 86–97,105–119.  

Although the particle current is zero for vanishing driving forces as intuitively expected in 

systems with absolute negative mobility, their behavior is even more counter intuitive 

when switching on not too strong effective forces. The negative slope in Figure 7 c indicates 

that particles will move in opposite direction and thus against the effective force. In 

contrast to a ratchet system, such absolute negative behavior occurs in periodically 

symmetric structures98 with nonlinear driving to overcome Newton’s second law120. The 

effect has been studied for several decades now in systems like semiconductors, 

photovoltaics, and special Josephson contacts (see25 and references therein). However, the 

observed effects are entirely of quantum mechanical nature and a comparable observation 

in the classical but still microscopic dimension was not expected. More recent studies 

showed that even classical systems are able to exhibit absolute negative mobility but only 

as collective phenomenon. Very recently theoretical98 and experimental120 evidence was 

presented that absolute negative mobility is possible on the single microscopic particle 

scale. 
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2.5 BIOLOGICAL AND CHEMICAL FUNDAMENTALS 

 

2.5.1 CHIRALITY AND STEREOCHEMISTRY 

When Napoleon’s soldiers went into war, their field pack contained only one single 

replacement boot121. The question whether this boot would fit to the left or to the right 

foot directly leads to the aspect of chirality (greek χειρ: hand). It means, that an object (like 

our feet or hands) is not superimposable onto its mirror image (see Figure 8)122. The term 

chirality has been popularized by Lord Kelvin in his famous Baltimore lectures123. Chirality is 

a fundamental principle in nature and can be observed in every order of magnitude: From 

galaxies124,125 to human and animal anatomy126–128 down to molecules129–134 and even in 

nuclear and particle physics135,136. 

One example of chiral organic molecules are amino acids (Figure 8). In both depicted 

representations, four groups are connected to a central carbon atom (the so called 

stereocenter129) in a way, that the two resulting structures cannot be transformed into each 

other without mirroring. However, both sum formulae and most physical parameters are 

identical130. Such representations of a chiral molecule are called enantiomers129. According 

to the frequently used Cahn-Ingold-Prelog-convention137,138 enantiomers are described 

using the prefix R (lat. rectus: right) and S (lat. sinister: left) and the corresponding 

molecule’s name. 

A clean sample of only one enantiomer is commonly called optically active, because the 

chiral molecules rotate the plane of linearly polarized light upon transmission through the 

sample. From the direction of rotation, one can infer the type of enantiomer. Chemicals 

resulting into positive direction are being assigned the prefix Dex-, because they behave like 

naturally available dextrose, and chemicals resulting into negative rotation are given the 

prefix Lev- because they behave like natural levulose132. A mixture of both enantiomers is 

called racemate130. Because the effects of positive as well as negative rotation cancel each 

other out, a racemate is not optically active, as long as both chiral forms are equally 

concentrated in the mixture. 
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Figure 8: The concept of chirality using the example of our hands and an amino acid prototype. These 

mirrored images are not superimposable onto each other. Taken with permission from the National 

Aeronautics and Space Administration (NASA). 

 

2.5.2 THE DNA-MOLECULE 

In the winter of 1868/69, Friedrich Miescher, a young swiss scientist discovered a substance 

produced by lymphocytes in pus samples. Because of its origin, the cell’s nuclei, he called it 

nuclein although he was unaware of the exact chemical composition139. 

Today, we know that the deoxyribonucleic acid (DNA) carries the genetic information of 

living organisms and it is thus of high interest for biotechnological and medical research and 

development140–142. It is a filamentary polymer with 2nm diameter and variable length. The 

basic building blocks that make up the DNA polymer are called deoxyribonucleotides (abbr. 

nucleotides) whose sequence encodes the genetic information of an individual. Every 

nucleotide consists of three components: a nitrogenous base, a 2-deoxyribose molecule, 

and a phosphate group (Figure 9). The deoxyribose and the phosphate group are common 

in all nucleotides and form the DNA’s backbone via phosphodiester bonds. The only 

difference between the nucleotides is the choice of the nucleobase attached to the ribose’s 

1’ end, where purine, (adenine and guanine) and pyrimidine (thymine and cytosine) 

derivatives occur. Each of these four bases can form hydrogen bonds only with a specific 

partner, namely A-T and G-C or vice versa (Figure 10). 

To form a polymer, the desoxyribose molecules are serially attached to each other by 

binding the phosphate group to the 3’ hydroxylgroup of a deoxyribose and to the 5’ 

hydroxylgroup of the next deoxyribose. Hence, one negative charge per phosphate group is 
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Figure 9: Four basic building blocks, the nucleotides, make up a DNA molecule. They consist of one out of four 

nucleobases (adenine (A), thymine (T), guanine (G) and cytosine (C)) which are attached with their 1’ (for 

purins) or 9’ (for pyrimidines) nitrogen atom to the 1’ carbon atom of a deoxyribose molecule which is then 

bound to a phosphate. The phosphate group is later used to link the nucleotides together and provides the 

negative charge of the DNA backbone. 

produced. To obtain a double stranded DNA molecule, a second nucleotide chain with 

complementary bases is attached via hydrogen bonds. This complementary arrangement of 

bases results in the formation of the famous right handed double helix with a diameter 

between 2.0 nm143 up to 2.6 nm in free solution144 where the two complementary 

nucleotide chains are wound around each other (roughly one turn every 10 basepairs145). 

Hence, the hydrophobic nucleobases are directed towards the center of the helix and the 
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hydrophilic backbone is located outwards and subsequently screened by positive ions in the 

surrounding solution (Figure 11). The two nucleotide strands are not enlaced around each 

other completely uniformly. Because of geometric reasons, so called minor grooves and 

major grooves occur143,145 with the size relation 7:4 resulting in a length of 2.2 nm and 1.2 

nm respectively.  

Because living organisms are highly complex systems, the corresponding DNA often 

contains millions or even billions of basepairs to encode their genetic properties. The 

human genome for example consists of 2.9 billion basepairs146 which results in a total 

length in the order of meters (stored separately in 46 differently sized chormosomes). This 

value results from the mean distance of 0.34 nm between two basepairs147,148. Compared to 

binary data this is equivalent to the storage capacity of a compact disc with roughly 700 

megabytes because the four possible degrees of freedom for each basepair need to be 

described by 2 bits.  

 

Figure 10: A short sequence (ACTG) of a double stranded DNA molecule. Two nucleotides are attached to 

each other with a phosphodiester bond where the 3’ hydroxylgroup of a deoxyribose is connected via a 

phosphate group to the 5’ hydroxyl group of the next deoxyribose. Hence, the DNA’s backbone is a negatively 

charged (red markers). On the opposite site, complementary nucleotides are arranged and hydrogen bonds 

are formed between two opposite bases. These bonds can only be effectively formed, when adenine and 

thymine or guanine and cytosine are opposed to each other. Hence, information is stored redundantly.  
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Figure 11: Schematic representation of a typical B-DNA molecule with its four possible nucleotides thymine 

(red), adenine (yellow), guanine (grey) and cytosine (blue). 

Intercalation of planar aromatic molecules into a DNA strand, a term introduced by Lerman 

in 1961149, is a process that can alter the physical and physiological properties of DNA, e.g. 

for fluorescence labeling150. A molecule, well suited for this purpose is the bisintercalating 

fluorophore YoYo-1, a homodimer of oxazole yellow (Figure 12) which has an affinity 

constant of                     in phosphatebuffer with pH=7, [NaCl]=100mM151. 

Because of its four positive charges, it is attracted by a DNA strand in free solution. The 

oxazole yellow monomers are planar structures and can therefore intercalate into the 

space between two adjacent basepairs149,152. It is possible, that both monomers intercalate 

into the DNA strand (bisintercalation) leaving one intercalations site free in between or that 

only one monomer intercalates (monointercalation) with significantly lower affinity 

constant. During intercalation, the YOYO molecule is deformed in such a way, that 

fluorescence emission is enabled, while in free solution, YOYO is practically invisible152. 

 

Figure 12: Structure formula of 1,1’ - (4,4,7,7 - tetramethyl - 4,7 diazaundecamethylene) - bis - 4 - [3 - metyl - 

2,3 - dihydro - (benzo - 1,3 - oxazole) - 2 - methylidene] -quinolinium tetraiodide (YOYO-1). The four positive 

charges are marked red
153,154

.  
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3 MATERIALS AND METHODS 

This chapter gives an overview over the experimental and theoretical procedures, which 

were employed within the framework of this thesis. The first section 3.1 lists all required 

chemicals, materials, and laboratory equipment, followed by an explanation of how the 

masterwafers, the microfluidic chips, and the chiral microparticles were fabricated (section 

3.2). The topic of section 3.3 is the preparation of the sample solutions and the treatment 

of channel surfaces. Section 3.4 deals specifically with the experimental setup whereas 

section 3.5 highlights the theoretical methods that were used to analyze the chiral 

separation experiments. 

 

3.1 LIST OF CHEMICALS AND LABORATORY EQUIPMENT 

The following two tables list all chemicals, materials, and laboratory equipment required for 

the experiments in this thesis. 

Table 1: Chemicals and Materials required for the experiments in this thesis. 

Chemical / Material Manufacturer 

4“ Si-Wafer, polished, undoped CrysTec, Germany 

5“ Si-Wafer, polished, undoped CrysTec, Germany 

Acetone (p.a.) VWR, Germany 

Deionized water, χ=0.3 mS/cm Millipore, USA (Equipment manufacturer) 

Deoxyribonucleic acid (DNA) 12000 bp Biotechnologisches Labor Dr. Bartling, Germany 

Deoxyribonucleic acid (DNA) 48502 bp Promega, USA 

Ethanol (p.a.) VWR, Germany 

Ethylenediaminetetraacetic acid (EDTA) Fluka, Germany 

Gamma botyrolactone Roth, Germany 

Hydrogenperoxide (H2O2), 30% VWR, Germany 

Isopropyl alcohol (p.a.) VWR, Germany 

Microbeads (carboxylated polystyrene) 
 ø=1.1 µm and ø=2.9 µm 

Interfacial Dynamics 

Microbeads (carboxylated polystyrene), fluorescent 
ø=0.5 µm and ø=1.9 µm 

Interfacial Dynamics 

Negative Photoresists SU-8 (2), (5) and (10) Microchem, USA 

Developer MR-DEV 600 Microresist, Germany 

Nitrogen (p.a.) Linde, Germany 

Nitrogen (tech.) Linde, Germany 

Oxygen (p.a.) Linde, Germany 

Performance optimized polymer (POP6) Applied Biosystems, USA 

Pluoronic F108 BASF, Germany 

Polyethylene glycol PEG3400 Nektar, USA 

Polyethyleneglycol PEG3400 Nektar, USA 

Soda lye, 1M (tech.) Merck, Germany 

Sulfuric acid (H2SO4), 96% VWR, Germany 

Tridecafluor-1,1,2,2-tetra-hydrooctyl-trichlorosilane (TDTS) ABCR, Germany 

Tween® 20 BASF, Germany 

YOYO-1, 1mM Molecular Probes, USA 

β-Mercaptoethanol Fluka, Germany 

3
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Table 2: Laboratory equipment required for the experiments in this thesis. 

Microscopy equipment and accessoires Manufacturer 

CCD-Camera, model Sensicam qe PCO, Germany 

Computer for image acquisition (PC II) TICO, Germany 

CP-Achromat 10x objective Zeiss, Germany 

Fluorescence filter cube consisting of 
BP 450-490, BP 515-565, FT-510 

Zeiss, Germany 

Inverted fluorescence microscope, model Axiovert 200 Zeiss, Germany 

LD-Achroplan 20x objective Zeiss, Germany 

LD-Achroplan 60x objective Zeiss, Germany 

Mercury Arc Lamp, model HBO100, P = 100 W Zeiss, Germany 

Motorized microscopy stage, model 99S008 Ludl Electronics, USA 

PANdrive stepper motor incl. cabling, model PD-110-42 Trinamic, Germany 

Plan-Neofluar 100x objective, Na=1.3 Zeiss, Germany 

Scanning electron microscope, model JSM 880 Jeol, Japan 

    
Experimental Setup Manufacturer 

Control computer (PC I) TICO, Germany 

Data acquisition PCI card, model PCI 6704 National Instruments, USA 

Digital Signal Processor, model Adwin Gold II Adwin, Germany 

Digital valves MHA2-MS1H3/2GK-2-K-196121 (6 pcs.) incl. tubing Festo, Germany 

Electrometer, model 6517A Keithley, USA 

GPIB interface PCI card, model PCI-GPIB National Instruments, USA 

High Voltage amplifier, model AMS-1B30 incl. cabling Matsusada Precision, Japan 

High Voltage transformers, model FUG HCL 14-12500 (2 pcs.) FUG Elektronik, Germany 

Proportional pressure regulator Airfit Tecno PRE-U Hoerbiger, Germany 

Security Relais Box Self-constructed 

Sidewinder Force Feedback 2 Microsoft, USA 

    

Cleanroom equipment Manufacturer 

Centrifuge, model 5417c Eppendorf, Deutschland 

Centrifuge, model Delta 10 BLE, Germany 

Desiccator incl. rotary vane pump n/a 

Fineplacer® Lambda Finetech, Germany 

Glass vials, V = 2 ml VWR, Germany 

Glass-chromium-photomasks Delta Mask, The Netherlands 

Oxygen-plasma device Self-constructed, see 
49,155,156

 

Profilometer, model DEKTAK 3030 ST Sloan, USA 

Programmeable hot plate, model PR 5 SR Detlef Gestigkeit, Germany 

Spincoater, model ST147 Convac, Germany 

Sputterdevice, model MCS 010 BAL-TEC, Liechtenstein 

Ultrasonic bath, model T490DA Elma, Germany 

UV-exposer unit, model 8011 Oriel, USA 

    

Microchip fabrication materials Manufacturer 

Acrylic glass, 5mm thickness Miscellaneous  

Connecting piece for silicone tube, ø =3mm Festo, Germany 

Microscope slides 24 mm x 60mm Menzel-Gläser, Germany 

Platinum wire, ø = 0.4mm Chempur, Germany 

Polydimethylsiloxane Sylgard 184 (PDMS) Dow Corning, USA 

Silicone tube, ø =3mm Festo, Germany 
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3.2 FABRICATION PROCEDURES 

This section deals with procedures to fabricate the three fundamental components for the 

experiments. The basis for the chip production are masterwafers (paragraph 3.2.1) as a 

mold for soft lithography with PDMS (paragraph 3.2.2). The fabrication procedure for the 

chiral test particles is discussed in paragraph 3.2.3. 

 

3.2.1 MASTERWAFERS 

The basis for the microfluidic chip fabrication is a 4 inch or 5 inch silicon wafer. Negative 

reliefs of the desired chip structure are lithographed onto its polished surface using the 

negative tone photoresists SU-8. 

For this purpose, the wafers are cleaned in caroic acid, a 1:3 mixture of hydrogen peroxide 

and 95% sulfuric acid, for at least 20 minutes and rinsed thoroughly with deionized water 

afterwards. Centrifugation and heating the wafer up to 200°C for another 20 minutes 

removes residual water on the surface. Depending on the structure’s desired thickness, SU-

8 (2), (5), or (10) is now applied to the wafer and spincoated for 5 seconds at 500 rpm and 

for 30 seconds at a predefined speed between 1500 rpm and 3000 rpm (see Table 3). After 

the prebake procedure (40°C, 60°C for 5 minutes and 90 °C for 15 minutes, ramp rates: 3 

°C/min, 2°C/min, 2 °C/min) a chromium-glass mask is used to control cross linking of the 

resist with the i-line of a mercury pressure lamp with roughly 140 mJ/cm² (Figure 13 A). The 

samples are now postbaked with the same parameters as during the prebake and 

developed in MR-DEV 600 for 30 s, rinsed with acetone and isopropyl alcohol, and dried 

with nitrogen. After an optical inspection under a microscope the wafer is heated up to 

200°C for a few minutes (hard bake) to repair small defects and harden the SU-8 structure 

(Figure 13 B). 

Afterwards, a thin TDTS layer is deposited onto the wafer’s surface to prevent sticking of 

PDMS in the following fabrication steps. Therefore, the wafer is placed together with a glass 

coverslip with a few droplets of TDTS into a desiccator which is then evacuated for 15 

minutes with a standard rotary vane pump and sealed for further 15 minutes. 
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Table 3: Parameters for the SU-8 processes employed for the different experiments in this thesis. 

Experiment Section Height [µm] Su-8 type Spin speed [rpm] 

Selective Ratchet 4.1 10 10 3000 

DNA Microchips 4.2 6 5 2250 

Post Array Chip 4.3.2 6 5 2250 

Structured 2D sidewalls 4.3.3 6 5 2250 

Structured 3D sidewalls 5 10 10 3000 

 

 

 

Figure 13: Procedure for fabricating the microfluidic devices that were used in the experiments for this thesis. 

a): A standard silicon wafer is precleaned with caroic acid and spincoated with the negative tone photoresist 

SU-8. After a prebake step, a photo mask which is transparent for UV radiation at certain areas is placed on 

top and irradiated with UV light. b): The photomask is removed and the wafer is developed after the post 

bake procedure. A negative relief of the desired channel structures resides on the wafer surface and is 

hardbaked and covered with TDTS afterwards. c): PDMS is mixed in a 10:1 ratio with a platinum linker and 

cured by heating it to 85°C for four hours. It can now be removed from the wafer surface and the channels are 

cut out and reservoirs are punched. The chip is then covalently bound to a PDMS coated glass coverslide using 

oxygen plasma. 
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3.2.2 MICROFLUIDIC CHIPS 

The fabricated masterwafer is now ready to use for the following soft lithography 

procedure157,158. 20 g of the Sylgard® 184 base polymer are mixed with 2 g of the curing 

agent included in the packaging and thoroughly mixed. The mixture is distributed onto the 

wafer while being placed in a petri dish. Residual air bubbles from the mixing process are 

removed subsequently by placing the wafer into a desiccator for a few minutes. The PDMS 

linking process is initialized by heating the wafer to 85°C for four hours in a dryer oven. 

After cooling down to room temperature, the cured PDMS can be peeled off the wafer and 

the regions of interest containing the microchannels are cut out with a scalpel. The 

Reservoirs are punched into the PDMS using modified punch pliers. Subsequently the chips 

are cleaned in an ultrasonic bath while immersed in acetone, ethanol, and dionized water in 

sequence and dried with nitrogen. 

To permanently seal the microfluidic chip, the PDMS slips and PDMS coated microscopy 

cover slides are exposed to an oxygen plasma in a self-developed plasma chamber, based 

on49 with the process parameters given in Table 4. The PDMS coated cover slides for sealing 

the channels are fabricated in advance by spincoating 1ml of PDMS onto their surface 

before baking them at 85°C onto a hotplate for 30 minutes. Both plasma treated surfaces 

are now gently pressed against each other. After approximately 30 minutes, the PDMS slip 

and the microscopy cover slide are attached to each other by stable covalent bonds (Figure 

13 C). The inspection of the microchip designs is performed while being unsealed with a 

scanning electron microscope after sputtering approximately 10 nm of gold onto their 

surface. However, those gold-coated chips were not used in the experiment and disposed 

after inspection. 

Table 4: Process parameters for the oxygen plasma to seal the microfluidic devices. 

Parameter Value 

Oxygen pressure 10-1 mbar 

Operation Voltage 50 kV 

Operation Frequency 500 kHz 

Distance of electrodes 6.15 cm 
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3.2.3 CHIRAL MICROPARTICLES 

The fabrication procedure of the microparticles is similar to the master wafers. A silicon 

wafer is cleaned in caroic acid for 20 min and rinsed with deionized Water. Centrifugation 

and heating up to 200 °C for 20 min on a contact hotplate removes residual water. 

SU-8 (2) is applied to the wafer and spincoated at 500 rpm for 5 s and subsequently at 

2000rpm for 30s (see Figure 14 a)). After the prebake procedure (40°C, 60°C for 5 minutes 

and 90 °C for 15 minutes, ramp rates: 3 °C/min, 2°C/min, 2 °C/min) a chromium-glass mask 

is used to initialize cross linking of the resist with the i-line of a mercury pressure lamp with 

approximately 140mJ/cm². The samples are postbaked with the same parameters as for 

prebake and developed in MR-DEV 600 for 30 s, rinsed with acetone and isopropyl alcohol, 

and dried with nitrogen (see Figure 14 b)). Prior to the particle’s characterization via 

scanning electron microscopy while still attached on the surface, a 20nm layer of gold was 

sputtered onto them in advance. These gold-coated particles were not used in the 

experiment and disposed after inspection. 

For particle release, the substrate’s structured part is cut out of the wafer and dropped into 

a small vial together with 2 ml deionized water. The vial is subsequently placed in an 

ultrasonic bath at full power for 10-30 seconds until the particles are fully released (see 

Figure 14 c)). Afterwards the silicon substrate is removed from the vial.  

 

 

Figure 14: Fabrication procedure of the microparticles that are used for the chiral separation experiments. a): 

A standard silicon wafer is precleaned with caroic acid and spincoated with the negative tone photoresist SU-

8 (2). After a prebake step the wafer is masked and irradiated with UV light. b): The wafer is developed after 

the post bake procedure. Microparticles reside on the wafer surface which is not hardbaked in this 

procedure. c): The wafer’s structured area is cut out and placed with 2 ml of water in a vial. Sonificating the 

vial for 10-30 seconds at full power removes the particles from the surface. 
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3.3 SAMPLE AND SURFACE PREPARATION 

The channel surfaces and the considered analytes were pretreated before the experiment 

according to the following procedures. 

Microbeads 

Prior to usage (in sections 4.1 and paragraph 4.3.3), approximately 50 µl of the original 

solution of carboxylated polystyrene microbeads are mixed with 1000 µl of 1 M soda lye 

and thoroughly mixed. After centrifugation (5 minutes at 10 krpm) the fluid is removed and 

1000 µl of new soda lye are added. This process is performed three times. After the last 

centrifugation step, the particles are resuspended into 1000 µl 10mM phosphate buffer 

(pH=8.3) containing 200 µM Tween® 20. 

DNA and DNA Buffer 

The basic buffer solution for all DNA experiments (section 4.2) consists of 10 mM 

phosphate buffer (pH=8.3), 1mM EDTA, and 0.1 % POP-6. The DNA solution is furthermore 

spiked with 50 pM of the corresponding DNA type, 0.2 % β-Mercaptoethanol, and 1 YoYo-1 

molecule per 10 base pairs. All solutions for the measurements concerning the dependence 

of the ionic strength on the polarizability (paragraph 4.2.2) were adjusted accordingly by 

adding different amounts of sodium chloride until the desired ionic strength is achieved. 

The experiments to investigate the dependence of YoYo-1 on the polarizability (paragraph 

4.2.3) were carried out with no extra sodium chloride but with different amounts of YOYO-1 

which was given enough time to intercalate into the DNA by incubating the freshly 

generated mixtures of DNA and YoYo at least for 48 hours in a fridge before usage. 

Chiral Particles 

Directly after sonification and removal of the substrate, 200 µM Tween® 20 is added to the 

deionized water, the particles are suspended in. 

Channel Surfaces 

The microfluidic chips used for the tunable ratchet experiment (section 4.1) are coated with 

the commercially available triblock copolymer F108. For that purpose 500 µM of F108 

dissolved in deionized water are filled into one of the reservoirs 30 minutes after chip 

assembly. After the complete channel is filled, the other reservoir is filled as well. The F108 

solution is now incubated for at least 3 hours. Subsequently the liquid in the reservoirs is 
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dumped and refilled with 10 mM phosphate buffer (pH=8.3). Excess F108 is washed out of 

the channel by applying a water-jet vacuum pump to one of the reservoirs for 20-30 

seconds. This reservoir is then filled with the bead solution described above. For the DNA 

experiments (section 4.2), the channels are covered with 3 µM PEG-3400 with the same 

protocol, except that no water-jet pumping was carried out and the solution was incubated 

only for exactly 20 minutes. The micro channels for the chiral separation experiments 

(section 4.3) were not pretreated and only filled with deionized water 30 minutes after 

oxidization, because here, no electrical driving is used. 

 

3.4 EXPERIMENTAL SETUP 

The central element of the experimental setup (Figure 15 - Figure 17) is an inverted 

fluorescence microscope which has been equipped with a 100 W mercury short arc lamp at 

its backport and a fluorescence filter set consisting of the emission filter BP 515-565, the 

dichroic mirror FT-510, and the excitation filter BP 450-490 (Figure 15) to enable 

fluorescent imaging of microbeads and DNA. Non-fluorescent objects are illuminated with 

the installed halogen white light lamp. For observation, the microfluidic chip is installed 

onto an automatically moveable stage, which can be controlled via the software 

micromanager159 or manually with a joystick. For image acquisition, a CCD camera is 

attached to the microscope’s primary camera port. A computer (PC II, see Figure 16) with 

installed Sensicam PCI Interface board reads out the camera and visualizes video data using 

Micromanager159. The software provides an autofocusing routine as well. Via a self-

constructed focus-drive add-on based on a PANdrive PD-110-42 attached to one of the 

manual focusing handles, the microscope has been upgraded with autofocusing 

capabilities. 

The setup provides hydrodynamic (green box in Figure 16, see section 2.1) and electric 

(grey box in Figure 16, see section 2.2) flow control for microfluidic chips, operated by PC I. 

The required voltage protocols are generated by an Adwin Gold II digital signal processor 

(for source code see appendix A2.2) and amplified 100 fold afterwards by a Matsusada AMS 

1B30 HV amplifier. 
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Figure 15: Scheme of the optical components. The inverted optical fluorescence microscope Axiovert 200 is 

equipped with a sensicam qe CCD camera (A). Besides the illumination of the microfluidic chip (C) with white 

light (B, D), fluorescence imaging is conducted via Zeiss filter set 10 (see enlargement). It consists of the 

emission filter BP 515-565 (E), the dichroic mirror FT-510 (F), and the excitation filter BP 450-490 (G). 

Excitation light is provided by a 100W HBO100 mercury short-arc lamp (H). Automated focusing is enabled 

with a self-constructed focus drive (I) operated by the software Micromanager
159

. Modified with kind 

permission from
160

. 

To control signal quality, the amplifier’s voltage monitor output (Vmoni) is looped back to a 

DSP voltage input. Hence, especially offset correction of sinusoidal alternating voltages up 

to a peak value of 1 kV with 25 millivolts precision (after amplification) is possible as the 

DSP continuously monitors, evaluates, and corrects its own output including effects 

introduced by the amplifier. There are two further voltage sources (FUG HCL 14-12500 HV 

transformers) with less precision and voltage shifting speed for support purposes. All three 

voltage sources are connected to a self-constructed relay box for security reasons which 

can either be operated manually or via PC II while manual operation strictly overrides 

automated operation. A fourth connector provides ground potential. Hydrodynamic flow 

control is provided by a very precise self-constructed pneumatic pumping device basically 

consisting of two linear pressure regulators Airfit Tecno PRE-U (for detailed information 

consult appendix A1) which are controlled by PC II as well. 
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Figure 16: Schematic of the electronic and pneumatic setup. The basic component of the arrangement is a 

fluorescence microscope for observation and video microscopy of the microfluidic chips (blue box). During 

the experiment, the chips are operated by either electrical potentials (grey box) or hydrodynamic pressure 

differences (green box) or both, provided by the four chip connectors 1,2,3,4. The desired voltage protocols 

are generated by an Adwin Gold II DSP and 100 fold amplified with an AMS 1B30 HV amplifier. The voltage 

monitor-port Vmoni of the amplifier is reconnected to one of the DSP voltage input ports to setup a feedback 

loop. All high voltage lines are secured with an emergency relay switch, operated either manually or by PC I. 

Hydrodynamic control is provided by a self-constructed pneumatic pressure pump, described in detail in 

appendix A1. The schematic of the microscope is taken with kind permission from
160

. 

 

 

Figure 17: Photograph of the experimental setup. 
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3.5 NUMERICAL PREDICTION OF CHIRAL SPLITTING ANGLES 

To effectively identify a design parameter set for the separation of chiral microparticles 

(paragraph 4.3.2) extensive numerical simulations were conducted before. The underlying 

model is depicted in Figure 18 b). 240 tightly packed and rigidly connected “monomers” 

with diameter    are arranged in a way, that they imitate the experimental microparticle 

in Figure 18 a) with a length of the long axis   as good as possible161. The behavior of this 

construct while traveling through the post lattice is described by three degrees of freedom: 

x and y coordinate as well as the current rotation angle   in the x y plane. The movement in 

z direction as well as rotations in the x-z and y-z plane are omitted because the experiment 

is considered to be quasi two dimensional (see paragraph 4.3.2). Hence, the remaining core 

problem of the applied numerical calculation is solving the stochastic differential equation 

  [ ⃗ ( ⃗ ( ))    ⃗⃗⃗
̇ ( )]        ( ⃗)  ∑ ⃗  ( ⃗ ( )  ⃗ ( ))

   

 √        ⃗ ( )    

for each monomer  . This so called Langevin equation describes dynamics in an 

overdamped limit. It consists of   , the friction coefficient between fluid and particle   (see 

paragraph 2.1.2),       a linear periodic potential (        and zero outside the post), 

used to model particle-wall collisions,  ⃗ the velocity of the fluid, √        ⃗ ( ), a 

stochastic force acting on the particle resulting from Brownian motion at room 

temperature where            (see section 2.3), and  ⃗  , the forces exerted by another 

monomer   due to their rigid connection. The hydrodynamic field  ⃗(   ) is obtained before 

by solving the Navier-Stokes-equation (see section 2.1) via Comsol Multiphysics® (version 

3.5a) on a regular spatial grid with             where no slip boundary conditions 

were assumed on all surfaces (as justified in paragraph 2.1.1). The impact of the chiral 

particle on the fluid flow however has been neglected. For the computation of the actual 

particle trajectories an Euler algorithm with dynamically adjusted time steps between 1 ps 

and 50 ms implemented by M. Fliedner was used.  

Each data point in the overview plots in Figure 46, Figure 47, and Figure 48 consists of 50 

single trajectories for each chiral flavor. The results for the migration angles were obtained 

by computing the average displacement vector between the first and the last point of each 

trajectory together with the appropriate standard deviation. To generate Figure 49 a set of 

100 single trajectories for each chiral flavor per value of  , the array tilting angle, were 

simulated and processed in the same way. 
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Figure 18: a) Electron microscope image of a chiral particle that was used in the experiments. Note that no 

scale bar is provided, because the image has been taken slightly from the side. b) Theoretical model for a 

chiral particle traveling through an elementary cell of the post array (blue, with periodicity   ) with posts of 

diameter   . The particle with long axis   is mimed by a densely packed and rigidly connected shell of 240 

beads with diameter    (see magnification). A constant force that will drive the particle is applied to the 

elementary cell under an angle of     The resulting force field is given by the Navier Stokes equation and 

solved with Comsol Multiphysics® before.  
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4 RESULTS AND DISCUSSION 

The main theme of the present work is the use of spatially structured microfluidic channels  

for separating and analyzing different (bio-) particle species. The three main projects are 

represented by the three sections in this chapter. 

With a new generic ratchet concept implemented in a microfluidic channel, a device is 

engineered, which is able to sort (bio-) particles with a freely and instantly tunable 

selectivity criterion (see section 4.1). As a result, a subset of particle species (arbitrarily 

chosen by applying specific voltage pulses to the device) is made to migrate into opposite 

direction than the remaining species. However, a different series of voltage pulses will 

instantly select other species to be extracted. 

Many microfluidic systems rely on dielectrophoresis to sort or manipulate a polarizable 

sample60,63,162–164 in microfluidic environments. Unfortunately the polarizability of the 

considered single objects usually remains unknown. Appropriate electric fields are chosen 

via trial and error methods because so far, quantitative values of the polarizability    are 

only addressable via macroscopic ensemble methods. Section 4.2 discusses a method to 

automatically obtain single molecule polarizabilities, based on a structured microfluidic 

system82. The technique is applied to investigate the influence of intercalating dyes on the 

DNA’s polarizability. 

Chiral separation remains a challenge in analytical organic chemistry because a suitable 

chiral selector or derivatization chemical needs to be specially developed for every new 

analyte to perform chromatography. Section 4.3 deals with two different generic 

approaches to continuously separate chiral objects from each other via physical symmetry 

breaking and thus without the need for any selector.  

 

4.1 MICROFLUIDIC RATCHETS WITH DYNAMICALLY CHANGEABLE SELECTIVITY 

Standard biotechnological separation techniques 

hold the disadvantage, that the separation 

criterion is usually unchangeably implemented 

during fabrication. Gel electrophoresis165–167 is 

such a technique, where the order of resulting 

Results discussed in this section have been 
published in: L. Bogunovic, R. Eichhorn, J. 
Regtmeier, D. Anselmetti & P. Reimann: 
Particle sorting by a structured microfluidic 
ratchet device with tunable selectivity: theory 
and experiment, Soft Matter 8 (2012), 3900-
3907 
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bands is unchangeable and where the predefined and therefore fixed gel density dictates 

the selectivity range. Additionally, such techniques usually require huge amounts of sample 

material compared to microfluidic devices being able to operate on single molecule scales. 

The aim of the present project is the development of a microfluidic device for the 

extraction of any desired subset of particle species out of a mixture of   different species. 

Additionally the particles to extract should effectively migrate into the opposite direction 

with respect to the remaining species (for a schematic example with    , see Figure 19). 

This separation criterion should only be implemented by instantly changeable electrokinetic 

driving applied to the system and not by any fixed geometric feature in the channel. 

A microfluidic channel is structured with non-conducting posts with inherent broken 

symmetry in x-direction, the relevant transport direction. Together with the applied electric 

voltage scheme  ( )  furnishing sufficient tilting of the potential acting on the particles, the 

microfluidic device shows features of a ratchet characteristic24,83–85 (see paragraph 2.4.2).  

So far, such ratchet systems have been studied and widely used for different sorting 

purposes. In 1994 Rousselet et al. presented the first realization of a Brownian ratchet on 

the microfluidic scale86. They used an asymmetric microelectrode array driven with a 

symmetric AC voltage to transport microparticles through a microchannel with no effective 

bias force. Here the effective particle transport is carried out by Brownian motion rectified 

by an asymmetric dielectrophoretic potential. Based on that design, Faucheux and 

Libchaber separated two different types of microspheres according to their diffusion 

coefficients108. A quite similar system has been studied in more detail by Gorre-Talini et al. 

 

Figure 19: Schematic representation of the underlying separation principle (not to scale) using an extended 

ratchet mechanism for three different exemplary particle species (black, red, and blue). An applied voltage 

protocol U(t) is applied to a periodically structured microfluidic channel. Using a sophisticated interplay 

between electrophoretic forces and dielectrophoretic forces, the system is capable of extracting a freely 

choosable particle species out of the mixture by moving it to the opposite direction according to a), b), or c). 

The voltage protocol is instantly changeable resulting in considerable dynamic selectivity of the device.  
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some years later111,112. With an alternative approach based on free standing asymmetric 

posts, Duke et al.168 as well as Ertaş169 introduced a second dimension for particle 

separation. In their studies, the authors independently realized continuous separation of 

particles based on their diffusion coefficients by exploiting the induced transverse drift with 

respect to the applied forces. Ten months later, this idea was improved by Derényi and 

coworkers105. Mostly based on these studies, a huge variety of different ratchet systems in 

microfluidic devices were developed in the last two decades e.g.106,107,109,110,113–116,118,119,170–

174. 

By combining all possible ways of symmetry breaking concerning ratchet effects (spatial, 

temporal/dynamical, and bias forces) the present approach addresses the next natural 

challenge – a device being able to extract an anytime freely selectable subset of the   

introduced particle species out of the mixture by moving it into opposite direction. 

The microfluidic system which has been developed in this context is depicted in Figure 20 

and was fabricated as described in paragraph 3.2.2. The structure consists of a straight 1 cm 

long (x direction) and 300 µm wide (y direction) microchannel with 10 µm height (z 

direction), located between two fluid reservoirs with 2 mm diameter (see Figure 20 a)). The 

channel is structured with triangular posts (structured region drawn in grey) with lattice 

constants of 20 µm in x direction and 14 µm in y direction. The triangles have a length and 

 

Figure 20: a) Schematic representation of the experimental setup. A 10 µm high (z direction) and 300 µm wide 

(y direction) microfluidic channel connects two reservoirs with immersed electrodes. It is structured with 

triangular obstacles to form dielectrophoretic traps for selectively manipulating a certain particle species. b) 

Optical micrograph of the post array. This structured region extends over 1cm in x direction (lattice constant 

20 µm) and 300 µm in y direction (lattice constant 14 µm). Each post extends over 10 µm in x as well as in y 

direction. The gaps are 10 µm wide in x direction and 4 µm wide in y direction. c) Magnification of the framed 

region in b). The channel is filled with an emulsion containing particles with a diameter of 1.1 µm, 1.9 µm 

(fluorescent), and 2.9 µm respectively. These three species can easily be distinguished by their size and 

fluorescence under a microscope. 
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width of 10 µm and are completely extended from the channel bottom to the ceiling (see 

Figure 20 b and c). For the experimental realization, three different particle species with 

diameters of 1.1 µm (small black spots in Figure 20 c), 1.9 µm (fluorescent), and 2.9 µm (big 

black spots) are immersed into a buffer solution (see section 3.3) and filled into the device. 

Because of the specific fluorescent labeling and the different diameters, the particles can 

be easily distinguished visually under the microscope. 

In this section the proposed idea of the dynamically changeable separation device based on 

an extended ratchet concept with built in arbitrary extraction of any particle subset is 

described and discussed in detail. The basic idea behind the separation scheme is 

theoretically devised in paragraph 4.1.1 and the special case of three different particle 

species, later considered in the experiment is discussed in more detail. The experimental 

results are presented in paragraph 4.1.2. The option to further increase the number of 

particles is evaluated theoretically in paragraph 4.1.3 followed by concluding remarks in 

paragraph 4.1.4. 

 

4.1.1 THE SEPARATION CONCEPT 

The main purpose of the developed device is the extraction of an arbitrary subset of certain 

particle species out of a mixture by forcing it/them to move in the opposite direction with 

respect to all remaining particles. This paragraph describes how the claimed task can be 

accomplished by applying a time dependent voltage protocol to the chip. 

When a time dependent signal 

 ( )             (  ) 

with            is applied to the terminals of the microfluidic channel, an electric field 

 ⃗⃗( ⃗  )   ⃗⃗  ( ⃗)   ⃗⃗  ( ⃗)     (  )  

results in the device (see Figure 21). Consequently a charged and polarizable particle like 

the carboxy-terminated polystyrene particles and most biological macromolecules will be 

subjected to three different kinds of forces (see paragraphs 2.2.1, 2.2.2, and section 2.3 for 

details): 
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 The electrophoretic force  ⃗  ( ⃗  )      ⃗⃗( ⃗  ), where    is the effective charge 

of the particle system 

 The dielectrophoretic force  ⃗   ( ⃗  )     ⃗⃗⃗ ⃗⃗ ( ⃗  ), which is dependent on the 

field gradient caused by the non-conducting triangular structures 

 The stochastic forces, induced by the omnipresent thermal fluctuations  ⃗ ( )  

 √    ⃗( ). 

While the only (unpractical) option to control  ⃗  in the present device is changing the 

temperature, the remaining forces  ⃗   and  ⃗    depend on the actual space and time 

dependent electric field  ⃗⃗( ⃗  ) which can be easily adjusted. For |   |   |   | and 

sufficiently large     one can safely argue, that  ⃗⃗      (  ) is only responsible for 

dielectrophoretic forces and that only  ⃗⃗   contributes to the electrophoretic motion 

only. Because of the involved strictly symmetric sine function, all effects induced by 

 ⃗⃗      (  ) are symmetric as well and thus average out on a timescale much larger 

than the period length.  Because of the relatively high frequency            , one  

 

Figure 21: Electric field  ⃗⃗⃗  generated by    between the triangular posts structured in the microfluidic 

channel. Because the structures are non-conducting, the electric field lines are deformed and thus electric 

field gradients emerge which are required for dielectrophoretic forces. 
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can thus safely argue that the AC component of the electric field does not play a significant 

role when considering electrophoretic effects on the relevant timescale of several minutes. 

On the other hand, the time averaged dielectrophoretic force  ⃗    
 

 
  ⃗⃗⃗ ⃗⃗ ( ⃗  ) is 

proportional to  

  ⃗⃗⃗ ⃗⃗ 

 
( ⃗)  
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where  ⃗⃗ ( ⃗) is the electric field resulting from applying the unit voltage       with 

valid electrostatic approximation which can be calculated via  

 ⃗⃗( ⃗  )   ( )
 ⃗⃗ ( ⃗)

  
   

For small     compared to     in equation [4-1], the impact of     on the overall 

dielectrophoretic forces is evanescent as long as     is high enough. During the 

experiments, this is the case, as     is typically in the order of some volts while     is 

chosen between 300 and 400 Volts. This justifies, that     can be used to selectively 

control the electrophoretic motion and that     controls the strength of dielectrophoretic 

traps.  

The two induced forces  ⃗  ( ⃗  ) and  ⃗    result in a combined potential landscape 

between the structured posts, theoretically evaluated in Figure 22 for the case of negative 

dielectrophoresis. The color coded potential function is characterized by several local 

minima and maxima which occur at locations where the electric field has an extremal value 

as well (cf. equation [2-19]). The polystyrene microspheres are attracted by the potential 

minima near the sharp tip on the right side of each post and by the flat wall on the left 

(marked as red circles). The tips on the upper side and on the lower side are potential 

maxima and thus repel the particles. The higher    , the stronger are the field gradients 

and thus  ⃗   . In contrast, the higher    , the stronger  ⃗    which helps the particles to 

escape from the dielectrophoretically created potential minima together with the 

stochastic forces (see paragraph 2.4.1.). In other words, it is possible to adjust the relation 

between     and     in a way, that the system is transporting microparticles (when     is 

relatively high and     is relatively low) or trapping microparticles (when     is relatively 

low and     is relatively high). 
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Figure 22: Effective potential (color code in arbitrary units) and resulting force exerted on a polystyrene 

particle (normalized vectors) flowing through the structured part of the microfluidic device. For the used 

polystyrene particles (negative dielectrophoresis) potential minima (marked red) can be found near the 

triangle’s left flat wall and near the sharp tip on the right because here, the electric field strength has a 

minimum as well. Regions of high field strength on the other hand are potential maxima because the particles 

are repelled from such regions. When the relation between     and     is properly tuned, one can transport 

the microparticles through the post array or trap them at the potential minima as desired. 

In general, the balance of     and     is dependent on the exact    and    values of the 

considered particles, because the dielectrophoretic force  ⃗    is proportional to    and the 

electrophoretic force  ⃗   is proportional to the effective particle charge   . Consequently 

when multiple particle species with e.g. different diameters and hence different       are 

introduced into the system, the exact relation between     and     that traps or 

transports a certain particle species, is different (see Figure 23 showing the case     that 

was considered in the experiment). In the given parameter space spanned by     and     

one can identify four different regimes A, B, C, and D. These regions represent four 

different states of the device concerning which particle species is trapped and which 

species migrates through the structure.  
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Figure 23: Parameter space spanned by     which corresponds to the strength of the electrophoretic forces 

resulting in a tilting of the potential landscape and     which corresponds to the strength of the 

dielectrophoretic traps. When     is increased while     is kept constant (horizontal movement to the right 

in the diagram), more and more different particle species start to escape from the traps and are transported. 

On the other hand, when     is increased with constant     (movement upwards in the diagram) more and 

more particle species are trapped. The letters A, B, C, and D mark regions were certain particle species in the 

experiment will be trapped or transported. The black lines (here for the exemplary case     particles 

realized in the experiment) mark those relations between     and     where the traps for some particles 

barely vanish. Thermal noise is not considered in this picture. If considered, the trapping times would be 

finite and approach zero exponentially when approaching a border. The plot is symmetric for negative     

and is thus not presented here. However, due to the asymmetric posts structured in the microchannel, there 

are slight deviations in the proportionality factor    

A) All three particle species are trapped 

B) Only the two largest species (ø = 2.9 µm and ø = 1.9 µm) are trapped. The 

smallest particles (ø = 1.1 µm) are moving through the structure. 

C) Only the largest particle is trapped due to increasing    . All other particles are 

moving through the structure. 

D)     is so strong, that no particle species is trapped and all species are moving 

through the structure. 

For increasing     and constant     more and more particle species are able to escape out 

of the traps in a short time and follow the electric field because the electrophoretic force is 

increased and the dielectrophoretic force generating the traps is kept constant. If     is 

increased and     is kept constant, the situation is vice versa.  

Keeping in mind, that the dielectrophoretic force is proportional to      
  and that the 

electrophoretic force is proportional to       the borderlines in Figure 23 are described by 
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|   

  is a proportionality constant depending e.g. on the exact shape of the microstructure, the 

sign of   , or the sign of     in the case of asymmetric structures like here. Otherwise,   is 

independent of          , and    . The equation further reveals that the relation       

is the important separation criterion in this microfluidic device. Hence, only particles with 

different       can be separated. However, thermal effects are not accounted for in this 

equation. 

With this framework being developed, it is now possible to envision a voltage protocol to 

induce separation that serially addresses the different system states where   particles are 

moving and     particles are trapped for a certain period    . Before a special protocol 

for the case     species (considered in the experiment) is developed, a general case of 

arbitrary   is investigated. 

As already mentioned, the main separation goal is to move every particle species 

          a certain and unrivaled effective multiple     of the lattice constant in 

(positive or negative) x direction. The voltage protocol generally requires not more than 

    time intervals of length     with properly tuned and during one timestep constant 

   
  and    

 . As a result, the average species specific migration velocity is 

  
  

 (   )   (    )

  
 [4-2] 

where    ∑    
 
    is the duration of one realization of the complete voltage protocol. 

The species index   is now chosen (without loss of generality) in a way that the particles 

with     are moving during the time interval   and those with     are trapped. In 

other words, a certain particle species   is moving whenever     and trapped whenever 

   . As a consequence   increases with decreasing       (and thus better polarizable 

particles). 

At first, the best polarizable particle species     is considered and the voltage protocol is 

thus constructed backwards in time. It is only moving during the last time interval    . 

During this interval    
( )

 and    
( )

 must be chosen in a way, that this species     is able 

to move and cover the distance    . However, all the other particle species     are 

moving as well during this time step because they have a higher       and thus cover the 
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distances    . After     the voltages    
(   )

 and    
(   )

 are set for a new time interval 

with      . Now    
(   )

 is chosen a little higher than    
( )

 to keep particle     trapped 

but still allowing all the other particles to move and    
(   )

 is reversed. The total 

displacement of particle   is thus only    . In this next step, the particles          

   have to exhibit displacements of    
        . In the same way, the parameters for 

              can be set. 

Note that when a separation task with sieving characteristic is desired (particles with 

adjacent   values are grouped and thus urged to move into the same direction) the 

required protocol may be simplified. Thus, fewer steps are needed than required by the 

theoretically introduced prototype because the relevant particles species can be considered 

as one.   is therefore decimated accordingly. The timestep     where all particles are 

trapped and no species is moving seems to be a theoretical artifact without use in the 

experiment. However, it turned out, that it is helpful to include this timestep into the final 

protocol. It guarantees that the system is in a well-defined state because all particles are 

trapped when the procedure is repeated. After the whole set of time steps     for all   is 

completed, the protocol may be repeated for further spatial separation. In practice, there 

are various deviations from this optimal scheme because of disturbing influences. It is e.g. 

unavoidable, that different particle species and even sometimes particles from the same 

type show slightly different electrophoretic mobilities. 

The experimental proof of this separation principle is carried out with     different 

particles (ø=2.9 µm, ø=1.9 µm, and ø=1.1 µm). The required protocol is illustrated in Figure 

24 and explicitly formulated in terms of the required voltage arrangements in Table 5 for 

the three possible scenarios. Protocol a) is the exact reproduction of the theoretically 

proposed principle. In a first step,     is set to a high value and     is switched off to set 

the system to a well-defined state for 10 seconds where all particles are trapped. Now     

is switched on to 15 V while     is kept constant and only the smallest 1.1 µm particles 

(black) are moved by electrophoresis in negative x direction. After 90 seconds,     is 

lowered to 320 V to additionally release the middle-sized 1.9 µm particles (red). The 

polarity of     is reversed, because the 1.9 µm particles must be transported to the 

opposite direction than the 1.1 µm particles. The last step transports all particles back to 

the left as the sign of     is changed again and     is switched off. The result is, that the 

smallest and the largest particles were transported to the left while the remaining middle 

sized particles were transported to the right (see last row of Figure 24). 
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Figure 24: Scheme of the separation protocol for     different particle species with diameters of 1.1 µm 

(black), 1.9 µm (red), and 2.9 µm (blue). Protocol a) separates the 1.9 µm particles from the remaining 

particles. Protocol b) isolates the smallest particles from the other two species and protocol c) is used to 

move the biggest particles into opposite directions than the remaining two species. Case a) is the most 

complicated case because it does not introduce a sieving characteristic like b) and c) but extracts particles 

that are centrally located in the      space out of the mixture. Therefore, all theoretically recommended 

    protocol steps are required. When applying protocols b) or c) it is possible to treat two particle species 

as one which are the two largest particles in b) and the two smallest particle species in c). Hence, protocols b) 

and c) are one step shorter than a). 

Protocol b) is used to consider a simpler case. Here the system operates with sieving 

characteristics as it lets the smallest 1.1 µm particles move to the left and the remaining 

species to the right. Again, the first step is a 10 second phase of high     without     to 

set the system to a defined state. Now the smallest particles are being transported to the 

right. Subsequently all particles are released and transported into the opposite direction. 

Protocol c) operates analogous to b) with the exception that the two smallest particle 

species with 1.1 µm and 1.9 µm diameters are transported together in the first step. 

Table 5: Voltage protocols for the experimental separation of three different particle species. While protocol 

a) extracts the medium-sized 1.9 µm particles from the other species, the protocols b) and c) have sieving 

characteristics and extract the smallest 1.1 µm particles (b) and the largest 2.9 µm particles (c) from the 

remaining species. The values were roughly prospected theoretically but fine-tuned in the experiment. The 

protocol may be repeated several times for a better result. 

a) b) c) 

                                       

10 0 400 10 0 400 10 0 400 

90 15 400 40 15 360 50 -15 320 

25 -16 330 12 -10 0 12 10 0 

10 10 0       
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Several mechanisms that induce peak broadening and thus lower the separation resolution 

are present. First of all, thermal fluctuations are prominent at the given order of 

magnitude. They play an important role during the particle transportation as they 

intrinsically induce peak broadening according to the diffusion equation. 

Secondly, they influence the escape process of particles out of dielectrophoretic traps as 

well. While for low temperatures,    
  could be sufficient to safely trap a certain particle 

species for a certain amount of time, thermal noise will support the (unwanted) escape 

process during the same amount of time for larger temperatures. This behavior is the key 

ingredient for an effect termed diffusion enhancement so far observed theoretically and in 

experiments175–177. A periodic potential (created here by the dielectrophoretic traps) has to 

be tilted (done here via electrophoretic forces). At some point the tilting becomes critical. 

In other words thermal escape processes out of the traps are supported by the tilting of the 

potential in a way, that the slightest thermal kick is sufficient for a successful surmounting 

of the potential barriers. This effectively leads to a (quite convincing) increase of the 

effective diffusion coefficients and thus the peak broadening is increased. Slight 

imperfections in the regularity of the potential periodicity (like typical imperfections due to 

soft lithography) may further boost the effect178. On the other hand, Brownian motion 

enables the functionality of the device. Without diffusion, particles that are located exactly 

at a triangle’s right tip would in theory hit the flat wall of the next triangle when 

transported in positive x direction. Consequently, as there is no force acting in y-direction, 

the particles would be trapped there forever. 

A third reason for undesired band broadening corresponds to the previously mentioned 

diffusion enhancement. Although the particles can be regarded as massless and therefore 

inertia free, there are sometimes certain transition times before a particle adapts to the 

updated voltages. This is sometimes the case when switched from trapped to moving 

because it might still collide with a post’s wall before it is migrating freely due to the finite 

size of the traps. 

 

4.1.2 EXPERIMENTAL SEPARATION OF THREE PARTICLES SPECIES 

The voltage protocol that is defined in Table 5 is now used to experimentally test the 

proposed separation principle in detail. The objective is to separate     species of 

polystyrene particles with different diameters (2.9 µm, 1.9 µm, and 1.1 µm) and thus  
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Figure 25: The experimental trajectories of three different polystyrene beads (1.1 µm black, 1.9 µm red, and 

2.9 µm blue) for at least two periods the corresponding separation protocol a), b), or c). In a), the middle-

sized 1.9 µm particles are effectively moving into positive x direction while the remaining 1.1 µm and 2.9 µm 

move with negative effective velocity in x direction. Further repetitions of the protocol will further separate 

the particles. In b) the system has been set to sieving mode and the smallest 1.1 µm particles are separated 

from the middle-sized 1.9 µm particles and the largest 2.9 µm particles. The third trajectory set in c) 

illustrates how the microfluidic device separates the largest 2.9 µm particles from the remaining 1.9 µm and 

1.1 µm beads. Note that only a change in the applied voltage protocol (see Table 5) is sufficient to radically 

change the separation behavior. 

different       values and to realize all three imaginable separation modes (see Figure 24). 

As already stated, no change to the system itself with the exception of the applied voltage 

protocol is required to change the selectivity.  

In Figure 25, exemplary experimental single particle trajectories are presented with at least 

two periods of the voltage protocol for all three possible separation modes. As prospected, 

applying protocol a) (see Table 5) causes the middle-sized 1.9 µm bead (red) to effectively 

migrate with a positive velocity in x direction while the remaining 1.1 µm (black) and 2.9 µm 

particles (blue) show a negative effective velocity in that direction. A quick change to 

protocol b) modifies the separation behavior instantly. Now the device operates in sieving 

mode and isolates the smallest 1.1 µm particle which migrates with effective negative 

velocity through the structure. The 1.9 µm and the 2.9 µm particle travel with positive 

effective velocity. Finally protocol c) separates the largest 2.9 µm particle from the other 

two by letting it move with negative velocity in x direction while the other two species 

migrate with positive velocity.  

As already mentioned, once in a while slight imperfections can be observed in some 

trajectories, e.g. in the behavior of the 1.1 µm particles (black) in Figure 25 a) and b). For 

example around         in Figure 25 b) the 1.1 µm particle heavily interacted with one of 

the posts and got stuck for a moment because of geometric reasons. Hence, the trajectory 

proceeds horizontally for an instance (         ) which leads to deviations in the mean 

particle velocities. Figure 25 a) shows quite similar disturbances of the 1.1 µm particle 

between              . Here the mean velocity in x direction is smaller than in the 

driving period before (            ) because of undesired interactions with the  
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Table 6: Mean velocities and standard deviations of an ensemble of 100 particles per species for the three 

separation protocols a), b), and c). 

Protocol a) b) c) 

1.1 µm - 0.27 ± 0.26 µm/s - 1.28 ± 0.27 µm/s + 1.10 ± 0.20 µm/s 

1.9 µm +0.45 ± 0.24 µm/s +1.51 ± 0.83 µm/s + 1.69 ± 0.41 µm/s 

2.9 µm - 0.24 ± 0.17 µm/s + 1.21 ±0.38 µm/s - 0.68 ± 0.20 µm/s 

 

structure. Transient effects can be observed as well, e.g. in Figure 25 c). Here, the 2.9 µm 

particle (blue) needs some additional time after the driving direction changed to adapt to 

the new conditions. 

All these effects broaden the statistic distributions for the mean velocities of a reference 

ensemble for each driving protocol which are illustrated in Figure 26 and summed up in 

Table 6 . To generate the histograms, trajectories of 100 particles per species and protocol 

were considered by evaluating their mean experimental velocities over one driving period 

according to equation [4-2]. Figure 26 a) depicts the results for the isolation of the middle-

sized 1.9 µm particles. As one could already suspect from the single particle trajectories in 

Figure 25, the 1.9 µm particle ensemble is migrating on average with positive velocity while 

the distributions for the remaining species have their center in the region of negative 

velocities. However, very few particles were transported in the wrong direction although 

with quite low speeds. This could be an artifact, because the peak broadening (proportional 

to √ ) dominates over the covered transport distance (proportional to  ) for short running 

times. The velocity distributions in Figure 26 b) are considerably better distinguishable 

although there are still very few particles that travel in the wrong direction.  The best result  

 

Figure 26: Experimental ensemble mean velocities  of the three different modes of separation discussed in 

Figure 25. 100 trajectories of each species per case were analyzed after one period of the corresponding 

voltage protocol (see Table 5). The sketches in the lower part illustrate schematically the desired outcome of 

the separation procedure for clearification. 
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is obtained for the isolation of the 2.9 µm particles in Figure 26 c) because not a single 

particle is transported in the wrong direction and hence no wrong particle classification was 

observed. 

The field of view of the available microscopy equipment is limited. Consequently a 

simultaneous observation of all particles for more than one or two periods of the driving 

protocol is impossible which is, however, required to investigate the possibly time 

dependent spatial resolution of the separations, defined here as 

   (
 ̅   ̅ 

     
)   [4-3] 

 ̅  and  ̅  are the mean positions for the two considered particle distributions and    and 

   represent the corresponding standard deviations. Nevertheless it is possible to extract 

the required data of a long time observation of up to 100 driving periods out of the 

experimental velocity histograms. For this purpose, random velocities with the same 

distributions as printed in Figure 26 were generated. With this data, 100 trajectories per 

species were calculated by repeatedly assigning a random velocity out of the distribution to 

a particle and calculating its new position. With this data at hand, spatial distributions that 

represent particle positions after 1, 3, 5, and 100 driving periods for all three separation 

protocols a), b), and c) are extrapolated (see Figure 27).  

While only the isolation of the 2.9 µm particles in c) leads to baseline resolution after just 

one single period, the other two results are distinguishable but not well resolved. However, 

the separation performance increases when the protocol is repeated. After only five 

realizations all three separation schemes show baseline resolution regarding the isolated 

species and the nearest remaining particle type. After 100 repetitions of the voltage 

protocol the three particle types are macroscopically separated from each other and at 

least two separation schemes (b and c) lead to a splitting of the remaining two species. 

The data presented in Figure 27 suggests that the spatial resolution of the separation is 

time dependent. If the protocol is repeated more often, the achieved resolution seems to 

increase. This hypothesis is supported by Figure 28. Spatial resolutions between the three 

possible combinations of particle types were calculated according to equation [4-3] from 

the extrapolated datasets which are partially illustrated in Figure 27. All results in the 

double logarithmic plots are highly proportional to √  which seems plausible with the  
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Figure 27: Extrapolated spatial distributions of an ensemble of 100 microparticles after 1, 3, 5, and 100 driving 

periods for all three separation protocols a), b), and c). In general, it can be observed, that the sometimes 

occurring wrong classifications of some microparticles does not play a significant role when more than five 

driving periods of the separation protocols are performed. After 100 periods, the particles are 

macroscopically well distinguishable as well. In two cases, even the two species that travel into the same 

direction are resolvable. Note the different scaling of the x axis in the plots that illustrate the particle 

distributions after 100 driving periods. 
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Figure 28: Temporal characteristics of the achieved spatial resolution with the discussed voltage protocols a), 

b) and c) plotted double logarithmic and averaged over 1000 trajectories. The three curves in each diagram 

represent the three possible particle combinations between which the resolutions were calculated according 

to equation [4-3]. A time dependence of the resolution which is proportional to √  is notable. 

following consideration. The numerator  ̅   ̅  in equation [4-3] is proportional to  . 

Further assuming, that the observed peak broadening represented by       is of diffusive 

nature and thus proportional to √  leads to 

   (
 ̅   ̅ 

     
)  

 

√ 
 √  

which reproduces the character of the resolution functions in Figure 28. The discussed 

disturbing effects (Brownian motion, diffusion enhancement and transient effects, see 

paragraph 4.1.1) dominate for short running times as they are proportional to √  in 

comparison to the transportation of particles being proportional to  . The comparison 

furthermore shows, that different electrophoretic mobilities of particles belonging to the 

same species do not significantly broaden the peaks, as such effects would be proportional 

to   and not to √ . 

 

4.1.3 EXPANSION OF THE PRINCIPLE TO MORE THAN 3 SPECIES 

It has been stated in paragraph 4.1.1, that the separation principle behind the just 

discussed experiment with three particle species can be extended to   different particle 

types. A theoretical example with exemplary single particle trajectories and ensemble 

results for 100 particles per species for the case     is illustrated in Figure 29. These 

simulations are a generous contribution from Dr. Ralf Eichhorn (Nordic Institute for 

Theoretical Physics (NORDITA)) at the Royal Institute of Technology and Stockholm 

University, Sweden) and based on the experimental findings from the previous chapter. The 

numerical procedure is analogous to the approach in paragraph 3.5 and technical details 

can be found in179. The most difficult three separation modes a), b), and c) are 



60  
 

demonstrated. At first, in a) it is validated, that the middle sized 2.0 µm particles can be 

efficiently extracted out of the remaining species and consequently move into the opposite 

direction. In b) the largest and the smallest species (1.0 µm and 3.0 µm) are isolated from 

the other particles and effectively travel with negative velocity in x direction while the 

other particles move into the opposite direction. Finally the separation protocol c) lets the 

particles alternatingly move to the left and to the right so that the 1.0 µm, the 2.0 µm, and 

the 3.0 µm particles effectively move to the left and the 1.5 µm and the 2.5 µm beads are 

finally transported to the right. This separation mode is exactly derived according to the 

original full protocol proposed in paragraph 4.1.1. The appropriate voltage protocols to 

achieve the illustrated results are provided in Table 7. 

The key parameters for the simulations are suitable particle diffusion coefficients which are 

calculated using equation [2-21] and polarizabilities obtained via equation [2-17]. The 

effective particle charge is assumed to be proportional to their size because the overall 

electrophoretic velocity of all particles should be identically        at           The 

 

Figure 29: Exemplary single particle trajectories and ensemble velocity results for 100 particles per particle 

species and separation mode after one period. Here, five different particle species (1.0 µm (black), 1.5 µm 

(red), 2.0 µm (blue), 2.5 µm (magenta), and 3.0 µm (green)) in three different modes were considered: a) 

extraction of the middle sized blue 2.0 µm particles, b) moving the largest green 3.0 µm particles into 

opposite direction than the remaining species and c) the migration of every second particle species (1 µm, 

2µm, and 3 µm) to the left while the 1.5 µm and the 2.5 µm particles move to the right.  
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Table 7: Voltage protocols a) b), and c) for the simulated separation of five different particle species as shown 

in Figure 29. Protocols a) and b) have less steps than protocol c) because some particles were again grouped 

together (sieving characteristics).  

a) b) c) 

                                       

8 0 1000 8 0 1000 8.5 0 1000 

9 20 530 9 -20 910 7.5 -20 910 

9 -20 490 9 +20 350 9 +20 530 

4 +19 0 4 -20 0 11 -20 490 

      10 +20 350 

      4 -20 0 

 

resulting parameters are summarized in Table 7. The data in Figure 29 impressively shows, 

that it is generally possible to expand the experimentally demonstrated separation principle 

to higher   as not a single particle has ever been effectively transported into the wrong 

direction and all the relevant distributions are well baseline separated. 

As motivated in paragraph 4.1.1 the underlying generic principle can be extended to 

arbitrary   with different       values. However, when the involved particles exhibit too 

small  (     )  |  
     

     
       

|, the resolution of the separation will suffer as 

well. Critical  (     ) in particular compete with the already mentionined disturbing 

effects. This is especially the case when the difference between the dielectrophoretic 

energy barrier that holds particle species   trapped and the energy barrier that holds 

particle species     trapped is comparable to the thermal energy    , hence |     

      
|     . 

Table 8: Particle parameters used for the theoretical consideration of the separation of     particles 

discussed in Figure 29. 

Particle Diameter 
[µm] 

Charge    
[10-15 C] 

Polarizability    

[10-28 Fm²] 

Diffusion coefficient D 
[µm²/s] 

1 -0.22 -5.6 0.25 

1.5 -0.33 -18.8 0.16 

2 -0.44 -44.5 0.12 

2.5 -0.55 -86.9 0.099 

3 -0.66 -150 0.082 
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4.1.4 SUMMARY 

In summary, a microfluidic ratchet device has been developed that is able to separate   

different particle species with an elaborate scheme of dynamically changeable voltage 

protocols triggering trapping as well as transportation of the analyte particles. The utilized 

subtle competition between electrophoretic and dielectrophoretic forces does not only 

lead to spatial particle separation but also effectively steers the desired particle classes to 

extract into opposite direction than the remaining species. Unlike standard biotechnological 

separation equipment like e.g. gel electrophoresis, the separation criterion is not statically 

implemented in the system. Consequently the choice of the particles to extract can be 

easily changed instantly just by applying a different voltage pulse scheme. 

This generic principle has been experimentally demonstrated for     particles types with 

different       values and expanded theoretically to     based on the experimentally 

gained data. Although slight modifications to the microfluidic structure design might be 

required to tune the dielectrophoretic traps, the separation concept itself is generically 

applicable to any charged and polarizable (bio-) particle class, like DNA, cells, or proteins. 

Their dielectrophoretic addressability was proven in various experimental studies (for a 

review see e.g.60). 

 

4.2 AUTOMATED QUANTIFICATION OF SINGLE MOLECULE POLARIZABILITY 

The term dielectrophoresis was first defined by 

Pohl in the 1950s and refers to the motion of a 

polarizable but effectively uncharged object in an 

inhomogeneous electric field due to polarization 

effects58. Many microfluidic devices (like the one 

developed in section 4.1) are based on dielectrophoresis, which can nowadays be 

considered as a very well established standard technology to immobilize, sort, or 

manipulate a given sample without any labeling. For this purpose the required electric field 

gradient is typically either induced by metallic electrodes (electrode based 

dielectrophoresis) or by obstacles, posts or constrictions made from an insulating material 

with external electrodes (electrode less dielectrophoresis) inside a microfluidic 

device21,60,63,162–164. 

Results discussed in this section have been 
published in:  J. Regtmeier, R. Eichhorn, L. 
Bogunovic, A. Ros & D. Anselmetti: 
Dielectrophoretic trapping and polarizability 
of DNA: The role of spatial conformation, 
Analytical Chemistry 82 (2010), 7141-7149 
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Figure 30: Schematic operation principle of the microfluidic approach (not to scale) to measure the 

polarizability of large macromolecules via dielectrophoretic trapping
177,82

. A small ensemble of analyte 

molecules (here DNA) is injected into a microfluidic channel with an inherent regular array of rectangular 

posts and an alternating voltage         (  ) biased by     is applied. Because the posts are non-

conducting, electric field gradients are generated in between resulting in dielectrophoretic traps and thus 

local potential minima induced mainly by    . Consequently DNA molecules transported by     will be 

trapped between the posts for a certain time    until they are able to escape due to the random influence of 

thermal motion. Because the strength of the dielectrophoretic traps depends on the molecules’ 

polarizabilities.  

The key parameter for dielectrophoretic experiments is the single molecule polarizability 

   of a given sample which is typically only addressable via macroscopic ensemble methods 

like transient electric birefringence180,181, conductivity dispersion182, or time domain 

reflectometry183 measurements. Therefore, it usually remains unknown and appropriate 

electric fields have to be chosen via trial and error methods. However, automated, fast and 

high throughput methods for polarizability measurements of small molecular ensembles 

would be a very helpful tool not solely for basic researchers but also in commercially 

available microfluidic products e.g. for automated flexible adaption of DEP-devices (like the 

one described in section 4.1) to a given sample class. 

In the present section, a very versatile microfluidic approach whose basic features were 

developed by Jan Regtmeier, Thanh Tu Duong, and Ralf Eichhorn in our workgroup before, 

is extended to be a fully automated and large throughput method to estimate the 

polarizability of very small DNA molecule ensembles177,82. The very basic experimental 

principle is illustrated in Figure 30. A small ensemble of DNA molecules is injected into a 

channel structured with an array of rectangular non-conducting posts. Upon applying an 

electric voltage  ( )            (  ), the DNA molecules are transported by 

electrophoresis due to     and potential wells between the posts are caused by dielectro- 
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Figure 31: Schematic of the microfluidic device for polarizability quantification (not to scale). A typical cross 

injector is connected to the structured analysis channel (grey area) and fluid reservoirs are located at every 

channel inlet. All four channels are 6 µm high. The injector channels 1, 2, and 4 are each 2mm long and 95 µm 

wide except channel 1 which is 100 µm wide. The analysis channel 3, where the actual experiment is carried 

out is 5 mm long and 100 µm wide as well. It is structured with 180 columns (lattice constant in x direction: 21 

µm) of 2.2 µm x 7.4 µm sized non-conducting posts reaching over the whole range of 6 µm in z direction. The 

gap in y direction between these posts, where the dielectrophoretic traps are generated, is 2.3 µm wide. The 

structured area starts 100 µm away from the channel cross. The system can be set to two modes of operation 

for the pinched injection of the analyte molecules (marked in green). In a), constant voltages are applied to 

the reservoirs via platinum electrodes to let the sample flow through the injector channel to the waste 

reservoir 2. During this process, the stream is focused at the channel crossing. After some time, the system is 

set to b). Now all reservoirs are grounded except for channel 1. Here  ( ) is applied, injecting a small DNA 

ensemble into the analysis channel and providing the electric fields for dielectrophoretic trapping. 

phoresis mainly triggered by      After a molecule was trapped in such a local potential 

minimum, whose depth is dependent on the particle’s polarizability, it is on average able to 

escape again due to thermal noise after some time    (see paragraph 2.4.1). Somehow 

measuring this average trapping time    thus yields single molecule polarizabilities, as 

explained in paragraph 4.2.1. 

The corresponding microfluidic device is illustrated in Figure 31, consisting of a standard 

cross injector to perform pinched injection (channels 1, 2, and 4) and an analysis channel 3 
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containing the required structured post array. The reservoirs at the end of each channel are 

equipped with platinum electrodes to apply a certain voltage protocol to the system to 

achieve injection and analysis in two subsequent steps. Figure 31 a) shows the system in its 

initial state. Analyte molecules (here DNA, illustrated in green) are filled into reservoir 4 

while the remaining reservoirs are filled with the corresponding buffer solution (see section 

3.3). While the waste reservoir 2 is grounded, all remaining reservoirs are set to -30V. 

Consequently, the negatively charged DNA is transported towards the waste reservoir and 

focused at the intersection. The experiment is commenced by grounding reservoirs 2, 3, 

and 4 and applying  ( ) to reservoir 1 (see Figure 31 b) and thus injecting a small DNA 

portion into the analysis channel and recording its behavior via video fluorescence 

microscopy. 

The present section deals with a method to obtain single molecule polarizabilities in an 

automated way. Paragraph 4.2.1 describes the developed experimental procedure in detail. 

To evaluate this method, the scaling of the polarizability in dependence of the ionic 

surrounding is quantified for 12.2 kbp and 48.5 kbp double stranded DNA and compared to 

the known scaling behavior in paragraph 4.2.2. A potential drawback of the presented 

method might be the constraint to employ fluorescent straining. Therefore, its influence on 

the polarizability measurements of DNA is investigated in paragraph 4.2.3 followed by 

concluding remarks in paragraph 4.2.4. 

 

4.2.1 AUTOMATED ANALYSIS OF SINGLE MOLECULE DNA POLARIZABILITY 

When an electric voltage signal 

 ( )         (  )      

with           and          is applied to the considered microfluidic system (see 

Figure 31) an electric field distribution 

 ⃗⃗( ⃗  )   ⃗⃗  ( ⃗)   ⃗⃗  ( ⃗)     (  )  

is the consequence, which is depicted in Figure 32. In such a system, a charged and 

polarizable macromolecule or (bio-) particle will be subjected to a potential landscape 

induced by three different effects. First of all, the electric field gradients emerging in the  
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Figure 32: Electric field  ⃗⃗⃗ generated by  ( ) between the rectangular posts structured in the microfluidic 

channel. Because the structures are non-conducting, the electric field lines are deformed and electric field 

gradients emerge which are required for dielectrophoretic forces. 

vicinity of the structured non-conducting posts induce dielectrophoretic traps described by 

the potential function (see paragraph 2.2.2) 

      
 

 
   ⃗⃗

    [4-4] 

Regions with high electric field strength are thus local potential minima for the DNA 

molecules. Secondly the applied DC offset     causes a constant tilt of the whole potential 

landscape because the electrophoretic force is proportional to the electric field and thus 

induces electrophoretic motion of the analyte molecules (see paragraph 2.2.1). Finally the 

omnipresent thermal energy     introduces thermal fluctuations (see section 2.3).  

In summary, electrophoresis and dielectrophoresis create the effective potential landscape, 

illustrated in Figure 33 being basically an inclined plane superimposed by an array of 

dielectrophoretically induced local potential minima. A cross section of Figure 33 parallel to 

the x axis along a line of dielectrophoretic traps is illustrated schematically in Figure 34. A 

charged and polarizable (bio-) particle (brown circle) is migrating down the inclined plane 

parallel to the x axis driven by electrophoresis until it is trapped by a local dielectrophoretic 

potential minimum. The relevant potential barrier         is so high, that the particle 

x [m] 

y 
[m

] 
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Figure 33: Effective potential (color code in arbitrary units) and resulting force (normalized vectors) exerted 

on a DNA molecule flowing through the structured part of the microfluidic device. For the used DNA 

molecules (positive dielectrophoresis) potential minima can be found in the gaps between the posts because 

here, the electric field strength has a maximum. Regions of low field strength on the other hand are potential 

maxima.  

would be trapped forever without diffusion. However, if         is only slightly larger 

than the ambient thermal energy    , it is possible for the particle to escape out of the 

trap in a reasonable time and migrate further through the structure until it is trapped by a 

further potential minimum. 

Recalling paragraph 2.4.1, the escape rate out of such a potential minimum can be 

described with a Kramers rate    

      [ (
       

   
)] 

with its inverse 

      (
       

   
) [4-5] 

which is the average time, a particle is trapped before it is able to escape due to a thermal 

kick with sufficient energy. The next step is the quantification of the numerator in equation 

[4-5]. It is dependent on the particle’s polarizability being the desired result. 

 

x [m] 

y 
[m

] 
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Figure 34: Cross section of the effective potential landscape parallel to the x axis through the 

dielectrophoretic traps (schematically). While local potential minima (traps) are induced by dielectrophoresis, 

the applied Bias     homogenously tilts the effective potential function along the x axis. A charged and 

polarizable (bio-) particle (brown circle) thus migrates down the inclined plane until it reaches a potential 

minimum with height         where it is permanently trapped in the first instance. However, if this 

potential barrier is not too large compared to the thermal energy    , it will randomly be able to leave the 

trap when it receives a sufficient thermal kick and migrate further through the channel until it enters the next 

trap. The escape process can be modeled with a Kramers rate    (see paragraph 2.4.1) to calculate mean 

trapping times and thus the effective particle polarizability   . 

To obtain a value for        , the electric field between the posts, that is dependent on 

the applied voltages and especially the channel geometry needs to be quantified. This 

dependence is expressed by a proportionality constant   in the relationship 

        
    

Here, the contribution of the DC voltages to the dielectrophoretic traps is neglected 

because usually        .   has been obtained previously by Regtmeier et al. via 

approximating the microfluidic channel with a network of resistors resulting in   

          82. Inserting equation [4-4] into equation [4-5] to express    then leads to 

      (  

    
 

   
) 

assuming again that        . Because      is kept constant, in can be absorbed into 

the proportionality constant. To obtain    experimentally it is now necessary to measure 

the average logarithmic trapping times   (  ) for different    
  and constant     because 
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and thus 

   
   

   
 

⏟
 

   

 
   

When fully considering equation [2-23] also non-exponential terms occur which are, 

however, still dependent on   . Therefore, logarithmic corrections to the otherwise linear 

fit in an      vs.    
  plot are required and thus the actual general fit function for such a 

plot is 

 ( )        ( )     

where   and    are fit parameters184 .  

Consequently the key problem for the quantification of single molecule polarizabilities is 

the measurement of the mean trapping time    in dependence of    . Of course one could 

count the number of frames a specific molecule stays in a trap and average over many 

molecules, but this procedure has three major drawbacks. First of all, it is very tedious work 

taking several hours to gain enough information so that statistical significance is achieved. 

Secondly, the maximum available frame rate of 10 fps is usually not high enough to exactly 

determine the instant of time of entering and escaping processes. Finally, not all molecules 

are considered and the evaluated portion is chosen by the experimenter and thus not 

completely random. 

Therefore, an alternative evaluation method with high potential for automatization in the 

context of a final commercial product is considered. During an experiment, fluorescently 

labeled DNA ensembles are migrating through the structure and the recorded greyscaled 

image series thus contain spatially and temporally localized brightness information. The 

basic idea behind the automated analysis of DNA polarizability is the reduction of the 

problem to a simple time dependent measurement of fluorescent brightness. This quantity 

is proportional to the number of visible DNA molecules assuming that the DNA has been 

homogenously stained and when taking care, that the DNA concentration is sufficiently low 

to avoid camera saturation. After    columns of posts (in this thesis      was used, 

counted from the sinistral beginning of the structure) a rectangular region of interest which 

spans over the whole image in y direction and 10 pixels ( ̂ 5.2 µm) in x direction is defined  
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Figure 35: Definition of a region of interest for the analysis of the temporal evolvement of fluorescence 

intensity required for the quantification of single DNA (white spots) polarizability. It is located behind four 

columns of posts from the left beginning  of the structure (not completely shown in the image) and spans 

over the whole image height (y direction) and over 10 pixels ( ̂ 5.2 µm) in x direction. The final result is a 

convolution of the time dependent fluorescence intensity function and the geometry of the region of interest 

which should thus be set infinitesimally small in x direction. However, this is unpractical for accurate image 

analysis because the signal to noise ratio would be too small. Thus, the actual width of 10 pixels is a 

convenient compromise which was identified empirically.  

(see Figure 35). Subsequently the mean brightness of all pixels in the region of interest is 

determined for each image. The result is a time dependent distribution    
( ) that is 

automatically baseline corrected by subtracting the mean value of    
( ) obtained over 

the first 60 frames of the video where typically no DNA is visible. 

The mean migration time it takes for a DNA molecule from the injector to the region of 

interest can be extracted out of    
( ) via 

〈 〉  
∑    

(  )     

∑    
(  ) 

   [4-6] 

Because the potential tilting induced by     is usually large enough, one can safely assume 

that a specific molecule cannot be trapped by more than one trap in a single column. The 

result is the actual sum of free migration times       and the mean trapping times in    

traps which is       provable as follows184. First, three statistical distributions are defined: 

     ( ): Distribution of trapping times 

   ( ): Distribution of free migration times between the traps 

   ( ): Distribution of free migration times between the injector and the structure 

Combining these functions leads to a theoretical description of the brightness distribution 

in the region of interest after the molecules passed    traps: 
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      (  )  (  
 )   [  ( ̃  ∑      

 

  

   

)]

  

   

 [4-7] 

Assuming that the description with a Kramers rate is valid (see paragraph 2.4.1) or in other 

words assuming that the thermal energy is small compared to the dielectrophoretic 

potential barrier (      ),      can be directly identified as 

    ( )  
 

〈  〉
   ( 

 

〈  〉
)  

It is furthermore assumed, that the distribution of DNA molecules directly after the 

injection is describable with a  -function. This is reasonable when compared with the DNA 

distribution after    traps. Additionally it is safe to assume that distribution broadening is 

only induced by the traps and not in between by diffusion. With these assumptions,   ( ) 

and   ( ) can be explicitly declared as well: 

  ( )   (    )                       ( )   (    ) 

Here    is the time it takes for a molecule to travel from one trap to the next and    is the 

time, a molecule needs to migrate from the injector to the first trap. With these 

assumptions, equation [4-7] can be simplified to 

  ( )  ∫∏       (  )   (          ∑   

  

   

)

  

   

 

    ∫∏       (  )   (        ∑   

  

   

)

  

   

  

where                Using a Laplace transformation the problem can be solved and 

one obtains  

   
( )  

 

  (    ) 
 (

       
  

)
    

    ( 
       

  
)   (       ) 

where  (       ) denotes the Heaviside step function to suppress negative values of the 

brightness function before the DNA arrives. The mean time it takes for a DNA molecule to 

arrive at the region of interest can now be calculated via 
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〈 〉  ∫      
( )    

                 

or in other words 

   
〈 〉       

  
  [4-8] 

As already mentioned, 〈 〉 can be extracted from the time dependent fluorescence 

brightness distributions by weighting discrete time points with the measured brightnesses. 

      is obtained experimentally by additionally providing a measurement without 

dielectrophoretic traps (     ) because  

      〈  (     )〉   

In conclusion, an automated setup for the determination of the polarizability    is 

proposed to operate according to the following algorithm (source codes are given in 

appendix A2.1). 

1. Record image sequences of DNA migrating through the structured area of the chip 

for different    , especially for         and constant    . 

2. Set region of interest after    columns of traps and analyze mean brightness of all 

pixels therein as a function    
( ) of the elapsed time for every image stack with 

different    . 

3. Calculate the individual baseline of each stack by averaging the first 60 frames and 

subtract this value from every frame in the currently considered    ( ). 

4. Calculate 〈 〉 according to equation [4-6] and with that result    with equation [4-8] 

for every realization. 

5. Calculate a statistical error with a bootstrapping method. Here 2/3 of all data points 

are randomly selected 10.000 times and equation [4-6] is evoked once again on this 

subset. The statistical error  〈 〉 is the standard deviation of the bootstrapped 

values from the original result for 〈 〉. 

6. The results for    are plotted in the form     (   
 ) and the function is analyzed 

with the fit function  ( )        ( )     via   and   . 

The question remains whether the discussed automated evaluation method based on the 

analysis of fluorescent brightness distributions yields comparable results compared to a 
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manual analysis of 30 molecules. A quantitative comparison between both methods is 

provided in Figure 36 where the mean trapping times    of  -DNA (48 502 bp) are obtained 

for several different     values. While the blue plot is obtained by manually counting the 

video frames a molecule stays in a trap and averaging over 30 individual molecules (result 

   (       )           ), the red plot shows data obtained with the newly developed 

brightness distribution method which considers all present molecules (result    (    

   )           ). In this comparison, no significant difference, in particular no systematic 

deviations of the considered data points is notable.  

However, directly comparing these values to the literature is difficult. Besides the different 

employed techniques, especially the DNA length, applied frequencies, and the ionic 

conditions in the surrounding solution have an impact on the polarizability (see paragraph 

4.2.2). Unfortunately several different buffer systems instead of a single standard were 

employed in the literature. Furthermore, the present approach requires fluorescent 

staining whose impact is closer discussed in paragraph 4.2.3. 

 

 

Figure 36: Exemplary measurement of the mean trapping time    of linear λ-DNA for different     values, 

analyzed with two different methods (with lines as guides to the eye). The blue dataset is obtained by simply 

counting the video frames a molecule stays in a trap and average the results of 30 individual molecules. The 

red dataset is an evaluation of the same experimental data with the newly developed automated method 

which relies on analyzing florescence brightness distributions as described above. There is now significant 

difference between the results and in particular no systematic deviation. 
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Nevertheless the obtained values for  -DNA are quite comparable to the literature. Using 

transient electric birefringence, e.g. Rau and Bloomfield quantified the polarizability of 39.9 

kbp T7 phage DNA and obtained               in 0.5 mM sodium phosphate buffer at 

pH=6.9180. For an even shorter 4.4 kbp DNA fragment in 0.2 mM Tris buffer at pH=8, 

Stellwagen found                with the same technique181. Another approach which 

also employs dielectrophoretic trapping in a tilted potential was recently made by 

Tuukkanen and colleagues185. Here, a dielectrophoretic field induced by a pair of structured 

electrodes is chosen such that it barely overcomes thermal energy. In the following 

calculation, the dielectrophoretic potential well is equalized with the thermal energy and 

thus the polarizability value is obtained. Their shorter 8 kbp DNA fragment showed a 

polarizability of               (3mM Hepes, 1mM NaOH, pH=6.9, 200 kHz). This value is 

quite comparable to the obtained data for   DNA here keeping the different buffer solution 

and the shorter DNA fragment in mind. As already stated, the exact comparison of the 

polarizability values with the exemplary data from the literature is impossible due to the 

influence of many side effects and technical details. However, the experimental results 

obtained here lie well within similar orders of magnitude. Furthermore the comparison 

shows, that the slight deviation of 9.6 % between the manual evaluation and the new 

automated procedure is insignificant. The manual evaluation involves besides other severe 

drawbacks very tedious work as one data point requires approximately 15 – 20 minutes for 

its analysis. A typical dataset like the one illustrated in Figure 36 with eight data points is 

thus processed in roughly 2½ hours. Depending on the available hardware, the script (see 

appendix A2.1) completes its analysis of the same data in less than one minute and 

considers all of the several hundred injected DNA molecules. 

 

4.2.2 VERIFICATION: POLARIZABILITY VS. IONIC STRENGTH 

A scaling law, well-documented in the literature and studied so far with different 

techniques is the correlation between the molecular polarizability and the ionic strength of 

the surrounding solution180,186–188. In this paragraph this scaling law        √ ⁄ , where 

   represents the Debye-length and   the ionic strength is closer analyzed to validate the 

new automated quantification method for molecular polariziabilities. The results for 12 kbp 

and 48.5 kbp DNA are summed up in Table 9 and plotted with two logarithmic axes in 

Figure 37 to obtain scaling exponents.  
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Table 9: Measured polarizability values in dependence of the ionic strength   for two different double 

stranded DNA fragments, 12 kbp and the 48.5 kbp long  -DNA. 

12 bbp linear DNA 48.5 kbp linear DNA 

Ionic strength   
[10-2 mol/l] 

Polarizability    

[10-29 Fm²] 

Ionic strength   
[10-2 mol/l] 

Polarizability    

[10-29 Fm²] 

0.48 5.13 ± 0.15 1.13 3.44 ± 0.54 

0.74 3.11 ± 0.11 2.13 2.10 ± 0.83 

0.99 3.30 ± 0.13 4.13 2.19 ± 0.03 

1.48 4.64 ± 1.59 5.13 1.73 ± 0.08 

2.21 2.65 ± 0.17   

3.73 1.79 ± 0.07   

4.74 1.76 ± 0.11   

 

For both DNA types, it is observable that the molecular polarizability decreases with 

increasing ionic strength. The slopes of the double logarithmic depictions in Figure 37 are 

                  and              which lies very close to -1/2. This means 

that indeed the scaling law     √ ⁄  is reproduced by the present approach with 

deviations below    on the single molecular scale. 

 

 

Figure 37: Dependence of the polarizability    on the ionic strength of the surrounding solution tuned by 

adding monovalent sodium chloride ions for two different DNA lengths. The resulting slopes of the weighted 

linear fit functions are             for the 12 kbp DNA in a) and            for the λ-DNA with 48.5 

kbp in b).  
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4.2.3 POLARIZABILITY IN DEPENDENCE OF DYE CONCENTRATION 

In comparison to established macroscopic techniques for the quantification of 

polarizabilities180–183 the present microfluidics based method requires the use of fluorescent 

staining or some other tag to detect the position of the molecule. However, a molecule like 

YOYO-1 carrying four positive charges and intercalating into the DNA strand (see paragraph 

2.5.2) is suspected to somehow alter the polarization behavior because it might have an 

impact on the dynamics of the ion cloud surrounding the DNA and on the persistence 

length. This could be considered as drawback of the present approach. This paragraph 

investigates the impact of fluorescent staining with different YOYO-1 concentrations on the 

resulting polarizability of double stranded 12 kbp DNA. Using the method introduced in 

paragraph 4.2.1 the main result is depicted in Figure 38 for a practically relevant spectrum 

of dye concentrations. 

The dependence of fluorescent staining with YOYO on the system’s polarizability is weaker 

than the deviations induced by a change of the buffer’s ionic strength (cf. Table 9) but lies 

in the same order of magnitude. However, the influence is notable and shows a significant 

non-monotonic behavior around concentrations of 15 to 20 basepairs per dye molecule. 

From 1 to 15 basepairs per YOYO (Figure 38 a) the polarizability    of the DNA-YOYO 

compound is decreasing with decreasing dye concentrations. On the other hand from 15 to 

30 basepairs per YOYO molecule (Figure 38 b) a notable increase in polarizability is 

observed for decreasing dye concentrations. 

 

Figure 38: The analysis of the polarizability of 12 kbp doublestranded DNA intercalated with different 

concentrations of YOYO-1 reveals a relatively weak but non-monotonic dependence compared to a change of 

the buffer’s  ionic strength. The black solid lines are meant as guide to the eye. 
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The observations in the red part of Figure 38 can be explained with a very simple picture. 

The YOYO intercalation is characterized as equilibrium reaction (see paragraph 2.5.2 and 

references therein). Thus, increasing the overall concentration of free YOYO in the buffer 

will inevitably lead to an increased absolute number of intercalated molecules. Because 

YOYO carries four positive charges (in contrast to the negatively charged backbone of the 

DNA) more intercalated dye molecules will lower the effective charge of the DNA-dye 

system. Thus, less buffer ions are required to shield it in the liquid. However, the charges in 

the ion cloud are one major contributor to the overall polarizability of the DNA 

molecule65,187,189. Consequently the polarizability decreases with increasing dye 

concentration. 

An alternative or possibly coexistent mechanism could be the following. With increasing 

YOYO-concentration, more and more free dye molecules are present in the surrounding 

liquid as well. Although the YOYO-molecules interact differently with the DNA than sodium 

ions, the decrease of polarizability in this regime can be somehow compared to the results 

from paragraph 4.2.2 where the polarizability decreases with increasing ionic strength. 

Assuming a typical DNA concentration in the microfluidic device of         and a 

basepair/dye ratio of 8:1, approximately         YOYO are present in the buffer. According 

to Larsson et al.153 the typical binding constant of YOYO in this concentration regime is 

        . Consequently, only a tiny amount of 
       

               of free unbound YOYO is 

available. This corresponds to an increase of ionic strength of            which will 

have a fairly low influence on the polarizability compared to the results e.g. of paragraph 

4.2.2. Thus, the first hypothesis, that the total charge of the DNA molecule is reduced by 

intercalating YOYO seems to be more likely. 

However, the increase of polarizability with further increase of the dye concentration in the 

blue part of Figure 38 is not that intuitive. First of all, the question arises, why the system 

behaves non-monotonic. In their study of YOYO binding behavior, Larsson et al. identified a 

critical dye concentration, where the preferred binding mechanism to DNA changes153. 

Below this concentration, the usual bisintercalation of YOYO is observed. For higher dye 

concentrations, it is stated therein, that the YOYO molecules start to adsorb to the DNA 

grooves (see paragraph 2.5.2) and thus act as tetravalent groove binders. The critical value 

observed here is not exactly located at a concentration of 1:8 but lies in close proximity. 

Now, that the YOYO molecule does not intercalate anymore the possibility to treat it as a 

tetravalent ion somehow adhering to the DNA opens up. A similar adhesion to DNA is 
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described in the literature for two other (however quite different) substances, the 

tetravalent spermine and the trivalent spermidine which are known to collapse and 

reexpand a DNA molecule in depence of their concentration190,177. Murayama et al. 

observed such a reexpansion for high spermidine concentrations (which is only trivalent) 

via force spectroscopy with optical tweezers. The adhered strongly positively charged 

molecules adhere to the DNA molecule and thus shield the intramolecular negative charges 

of the DNA backbone against each other. Thus, the overall persistence length is reduced 

which was also observed by Matsuzawa and Yoshikawa for the minor groove binder 4’,6-

diamidion-2-phenylindole191. The reason for the subsequent expansion of the DNA for even 

higher ion concentrations is speculated to be DNA overcharging190  which means that even 

though the DNA is fully neutralized, further positive ions are accumulated192. Obviously an 

inverted overall charge of the DNA system would lead to an inverse electrophoretic 

mobility which was not observed in the present experiment. Nevertheless Hsiao et al. 

demonstrated in simulations, that such a described collapse in combination with 

subsequent reexpansion may be accomplished even without charge inversion. However, 

this effect is strongly dependent on the geometry of the considered multivalent ion193,192. A 

possibility to investigate whether YOYO induces similar behavior would be a future 

experiment, where diffusion coefficients and thus radii of gyration of DNA for different dye 

concentrations are analyzed. 

As the experiment in this paragraph demonstrates, there is a certain non-monotonic 

dependence of the polarizability    of DNA on the actual concentration of the employed 

fluorescent dye (here YoYo-1). However, the deviations compared to the results in 

paragraph 4.2.2 are notable but slightly weaker. Although the concentration of the dye was 

changed by a factor of 30 from 1 bp/YOYO to 30 bp/YOYO, the actual polarizability    

changed only by approximately              . 

 

4.2.4 SUMMARY 

A microfluidic chip with structured non-conducting posts to generate electrodeless 

dielectrophoretic traps has been used to implement an automated quantification method 

for single molecule polarizabilities. Using two different DNA types the idea has been tested 

by successfully reproducing the well-known relation     √ ⁄  between the polarizability 

and the buffer’s ionic strength. The method requires spatial localization of the analyte 
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molecules e.g. here via fluorescence staining. For this reason the influence of the dye 

concentration on the DNA polarizability is investigated and found to be non-monotonic but 

in general rather weak. 

 

4.3 ENANTIOSELECTIVE SEPARATION OF MICROPARTICLES  

Two molecules which are chiral to each other behave like image and mirror image and 

cannot be transformed into each other by rotation or translation although they are 

described by the same chemical sum formula (see section 2.5.1).  Biological systems such as 

the human body are highly chiral environments, because most of the basic building blocks 

of life (for instance typically left handed natural amino acids or typically right handed 

natural sugars194) are chiral organic molecules. In most cases e. g. only one specific 

representation of a guest molecule can bind to a chiral receptor. A macroscopic example of 

everyday life would be the attempt to shake someone’s left hand with one’s right hand. 

Therefore, chiral partners (e.g. enantiomers) being used as racemic agents in 

pharmaceutical products may act completely different. While one form could show a 

therapeutical effect the other forms might be ineffective or even toxic when incorporated 

into an organism although their physical properties are identical (aside from optical 

phenomena)129,130,132,134,195–197. 

During in vitro synthesis of organic molecules a racemate is usually created with equal 

amounts of all chiral forms. Up to the 1980s, most of the newly introduced synthetically 

prepared pharmaceutical agents were sold without any chiral purification because such a 

complicated and costly process was unattractive. Hence, only 12 % of all available chiral 

products were distributed enantiopure at this time. During the second half of the 1980s this 

attitude changed, especially after the publication of a provoking article by Ariëns131 in 1984. 

It was stated in that publication, that inactive chiral constituents of a racemic 

pharmaceutical have to be regarded as an impurity and studies were referenced where 

they could even be identified as the main reason for side effects, may have opposite 

effects, or may be converted by the metabolism to active forms again, and so on. It took 

two decades until in 2004 no further racemic or diastereomeric new drugs were introduced 

to the market (see Figure 39)198.  
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Figure 39: Overview of synthetic pharmaceutical product launches from 1985 to 2004. The trend towards 

clean enantiopure medication (red line) containing only single enantiomers is clearly visible. Drawn with data 

from
198

. 

As a consequence, there is an increasing demand for chiral separation techniques in the 

chemical and pharmaceutical industry which are today mostly based on chromatography 

and electromigration. Since these methods strongly rely on so called chiral selectors or 

chiral derivatisation agents their main disadvantage is, that these chemicals have to be 

precisely predesigned and developed for each chiral analyte11,199–204. 

Besides the utilization of different chemical affinities of enantiomers, physical effects, 

based on the chiral object’s geometry have been studied in recent publications mostly from 

a theoretical point of view. The main advantages of these techniques are the abolition of 

the elaboration of chemical selectors. De Gennes predicted e.g. that two macroscopic chiral 

crystals would slide into different directions down an inclined plane205. Kostur et al. 

exploited a flow field with variable vorticity to theoretically demonstrate the separation of 

chiral particles206. Very recently, the same group studied the motion of deformable chiral 

objects in uniform shear flows delivering an even more realistic model207. A rotating drum 

filled with liquid and macroscopic chiral crystals was proposed for an experiment by 

Howard and coworkers for separation208. A quite similar system has been studied by 

Makino et al. theoretically and experimentally209. Shear flows have also been used by Chen 

et al. to induce different lifting forces of chiral helices in the flow210. Kirkinis et al. simulated 

the separation of chiral ferromagnetic nanoparticles in electromagnetic fields211. Even 

achiral objects with anisotropic rigidity may be separated with shear flows according to the  
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theoretical study of Watari and Larson212. Another straightforward concept of dynamic 

symmetry breaking concerning the realization in a microfluidic device has been introduced 

by Speer et al. theoretically213,214. A lattice of periodic potentials is tilted by a certain angle 

with respect to a constantly biased force. The chiral particles are subjected to this system 

and move under different deflection angles through the array for an array tilting angle of 

45°. The symmetry breaking is thus dynamic. In contrast, Eichhorn proposed a theoretical 

concept where enantioseparation of chiral micro particles has been induced by using 

channels ruled by a force field with broken symmetry215,216. However, the studies 

concerning experimental applications in the microfluidics scale or lower are rare. It seems 

that so far only Marcos et al. observed helical bacteria pumped through a very long 

serpentine micro channel217. Nevertheless they considered only one chiral flavor of these 

bacteria. 

In this section, efficient experimental separation of chiral microparticles in the microfluidic 

scale is presented which was carried out with two conceptual different approaches. The 

first concept, inspired by the purely theoretical work of Speer et al.213,214, is discussed in 

section 4.3.2 and employs a tilted array of posts within a microfluidic channel to mime the 

modeled periodic potentials (see Figure 40). A fluidic stream of chiral microparticles that 

interacts with this kind of structure is shown to split up according to the corresponding 

particle species. Eichhorn proposed a second realization based on the interaction of chiral 

microparticles with an asymmetric flow profile within a microfluidic channel, realized with a 

spatially structured sidewall215,216. It will be shown in section 4.3.3 that microparticles 

subjected to such a system will split up according to their chirality as well (see Figure 41). 

Both experiments are carried out with L and Γ shaped chiral microparticles fabricated with a 

newly introduced simplified quick release lithography procedure, discussed in section 4.3.1.  

 

Figure 40: Schematic representation of the underlying separation principle (not to scale) for chiral 

microparticles in L (blue) and Γ form (red). A straight microchannel is equipped with a periodic array of 

potentials, tilted by a certain angle (neither 45° nor 90°) with respect to a constant biased force represented 

by the hydrodynamic transport from left to right. In this experiment, the potentials are mimed by periodically 

structured cylindrical posts which range from the channel bottom to the top. Because of the (asymmetric) 

particle interaction with the posts, the outcome is asymmetric as well and a splitting of the inserted particles 

according to the red and the blue arrow into two distinct streams will be observed. 
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Figure 41: Schematic representation of the second underlying separation principle (not to scale). A straight 

micro channel is equipped with a triangular saw tooth structure on one side. Hence, the asymmetric micro 

particles with L and Γ shape interact differently with the resulting asymmetric flow profile and split up into 

two distinct streams at the end of the channel. 

 

4.3.1 QUICK RELEASE LITHOGRAPHY 

Besides being the essential ingredient for the 

presented chiral separation experiments, 

microparticles are important key elements in 

biotechnological, chemical and physical sciences. 

Possible applications might be carriers for 

vaccines218, self-assembly of new materials219, 

photonic materials220, microfluidic carriers221, or even model systems for acoustics in 

media222. Almost all commercially available micro and nano particles are spherical. 

Concerning the study of shape dependent phenomena, their field of application is thus 

strongly limited. However, several approaches were made to synthesize nonspherical 

microparticles employing many different materials and fabrication strategies223–231. So far, 

two major strategies have been observed in the literature. On the one hand, particles were 

fabricated within the liquid phases of microfluidic systems where their shape was 

determined by the shape of the channels225,226,228. On the other hand, the particles were 

structured on a substrate e.g. by lithography and released either mechanically227, with 

acids224, solvents231, or sacrificial layers229,230.  

The most common materials for fabricating these non-spherical particles are e.g. 

poly(ethylene glycol) diacrylate226–228, silicondioxide224, and the well characterized epoxy-

based negative photoresist SU-8229–231. SU-8 is a standard material in MEMS-technology due 

to its mechanical and chemical stability and its excellent processing properties232. It is 

furthermore ideally suited for particle production as it offers the possibility to create 

structures with high aspect ratios at submicrometer resolution. Structures made of SU-8  

Results discussed in this paragraph have been 
published in:   L. Bogunovic, D. Anselmetti & J. 
Regtmeier: Photolithographic fabrication of 
arbitrarily shaped SU-8 microparticles without 
sacrificial release layers, Journal of Microme-
chanics and Microengineering 21 (2011), 
027003 
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Figure 42: Scheme of the L-shaped particles to define dimensions. A): Scanning electron micrograph (colored) 

of the structured particles while they are still bound to the silicon substrate prior to removal. B): The L-

shaped particles in free solution after they have been released from the substrate. 

 

were even demonstrated be fully biocompatible and even suitable for implantation and in 

vivo applications according to ISO 10993233.  

Unfortunately, SU-8 is usually unsuited for lift-off processes complicating the release of the 

fabricated particles232. Therefore, sacrificial layers of Omnicoat229,230 or polyimide are 

commonly used to release SU-8 patterns. A typical protocol contains the following steps: 

1. spincoating and baking of the sacrificial layer. 

2. spincoating and prebake of SU-8. 

3. Exposure to UV light and postbake. 

4. Development of the SU-8 structures. 

5. Dissolution of the sacrificial layer and particle release. 

6. Centrifugation and redispersion of the particles in a favored solution to remove the 

chemical agent for dissolution of the sacrificial layer (repeated up to three times). 

The chiral microparticles used for the separation experiments in this thesis were fabricated 

according to a simplified new procedure without sacrificial layers or removal agents. The 

technique reduces the number of processing steps from 6 to 4, is cost efficient, freely 

scalable to large throughputs and requires less harmful chemicals. 

Figure 14 shows the simplified lithography procedure for producing SU-8 microparticles 

with just 4 processing steps: 

1. A SU-8 film is spincoated and prebaked. This step controls the height of the 

particles. 
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2. The photoresist is exposed to UV light and postbaked. The shape of the particles is 

controlled by the UV transparent regions on the mask. 

3. The photoresist is developed. 

4. Release of the particles by placing the silicon substrate in a vial filled with DI water 

in an ultrasonic bath. 

As an example, L-shaped particles are shown in Figure 42 before and after release. 

Optical inspection revealed no destroyed or broken particles after sonification and 

release. Furthermore, no intra-particle adhesion was observed. An analysis of the size 

distribution by scanning electron microscopy is given in Figure 43. The deviations are 

less than 2.3 % and therefore competitive compared to recently published 

lithographically formed SU-8 particles: Badaire et al. demonstrated 6 % deviation using 

Omnicoat229,230 and Moon et al. 10-50 % by using interference lithography and 

polyimide for lift-off231. 

 

 

Figure 43: The measured four characteristic dimensions of the L-shaped reference particles in comparison to 

their corresponding obliged values and standard deviations / variations. The identifiers a,b,c, and d 

correspond to those in Figure 42. The sample size is n=50. 
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Finally Figure 44 shows more examples of microparticles, fabricated with the presented 

technique before (A, B, C) and after lift-off (D). 

Usually SU-8 is considered as a hard to remove photoresist234,235. The wide usage of 

products to generate sacrificial layers below the resist structure supports this claim. 

However, one could think of two effects that might sufficiently weaken the adhesion forces 

between the resist pattern and the substrate. First of all, instead of fabricating widespread 

microstructures with large contact areas, which is the typical application of SU-8, the micro 

particles here are relatively small. Secondly, during the lithography procedures, in some 

extend quite intense mechanical stress occurs up to 19 MP during postbake. These strains 

are provoked by material shrinkage due to cross-linking (up to 7.5 %), solvent evaporation 

or thermal expansion/retraction (up to 52 ± 5 ppm/K at 95°C) and might thus sufficiently 

weaken the adhesion to induce liftoff in the ultrasonic bath232. 

 

 

Figure 44: Scanning electron micrographs (colored) of further arbitrarily shaped microparticles before their 

lift-off: cuboids (A), cylinders (B), stars (C). D) shows the particles from A, B, and C after successful removal 

from the substrate in free solution via optical bright field microscopy. 
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4.3.2 CHIRAL PARTICLE SEPARATION WITH A NON-CHIRAL ARRAY OF POSTS 

As already stated in the introduction of 

section 4.3, breaking the symmetry of the 

surrounding of chiral objects in every relevant 

dimension is sufficient to cause an 

asymmetric outcome which is the desired 

chiral separation (Curie’s Principle26). According to the purely theoretical work by Speer and 

coworkers213,214, chiral objects transported by a constant bias force that interact with a 

regular array of potentials tilted by an angle       against that driving force will 

effectively migrate into different directions. 

The experimental realization of a related principle is schematically depicted in Figure 45. A 

1 cm long (x direction), 1 mm wide (y direction) and 6 µm high (z direction) microfluidic 

channel connects two fluidic reservoirs that contain a solution of microfluidic test particles 

in deionized water. Their concentration is sufficiently low so that their interaction among 

each other is negligible. The experiment is carried out with chiral test particles with L and Γ 

shape fabricated according to paragraph 3.2.3 and closer elucidated in paragraph 4.3.1. The 

length of their long and short axis is   and   respectively with 3.0 ± 0.3 µm thickness and a 

fixed aspect ratio. Their height of roughly 3 µm is an important parameter and has to 

correspond with the height of the microchannel under consideration which is 6 µm in this 

case. If the channel height is too low, particles cannot be injected into the channel. If it is 

too high, the particles may rotate along their long axis which means, that they would flip 

and hence change their chirality which is undesired. Here the relationship between particle 

and channel height is chosen in a way, that the particle can be injected into the channel but 

cannot switch its chirality. As a consequence the experiment can be regarded as effectively 

two-dimensional without loss of generality making complex three-dimensional structuring 

and evaluation unnecessary. 

To realize potential functions analogous to213 the whole microchannel is equipped with an 

array of cylindrical posts with diameter    and lattice constant   , tilted by an angle   with 

respect to the x axis. The particle flow through the microfluidic channel is maintained with a 

self-constructed pneumatic precision pump (see Appendix A1), connected to both 

reservoirs using silicone tubing. A hydrodynamic velocity of roughly 100 µm/s is achieved by 

applying a pressure difference of           . During the experiment the particles are 

tracked via digital video microscopy (see section 3.4). 

Results discussed in this paragraph have been 
published in:   L. Bogunovic, M. Fliedner, R. 
Eichhorn, S. Wegener, J. Regtmeier, D. 
Anselmetti & P. Reimann: Chiral particle 
separation by a non-chiral micro-lattice, 
Physical review letters 109 (2012), 100603 
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Figure 45: Schematic and a micrograph of the microfluidic setup used for the chiral separation with a tilted 

post array. A 1cm long (x direction), 1 mm wide (y direction) and 6 µm high (z direction) microfluidic channel 

connects two fluidic reservoirs where the particle solution is filled in before the experiment. A pneumatic 

precision pump (see Appendix A1) is attached with silicone tubes to both reservoirs and creates a pressure 

gradient    to transport the fluid through the channel. The required periodic potentials are mimed with an 

array of structured cylindrical posts, tilted by a certain angle   against the x axis. 

 

4.3.2.1 THEORETICAL EVALUATION 

The quantity of interest during this experiment are the mean velocities  ⃗  and  ⃗  of the 

injected L and Γ particles and especially the angle between  ⃗  and the x axis (  ) and  ⃗  and 

the x axis (  ) respectively. 

Although the parameter space spanned by the four possible design characteristics 

(         ) of the microfluidic device and the particles (see paragraph 4.3.2) is only four 

dimensional, it is still far too huge for efficiently designing a corresponding microfluidic 

layout that will produce significant    |      |. Thus, extensive numerical simulations 

(see section 3.5) were conducted, to identify possible parameter sets as basis for a real 

microstructure and particles. However, the present section is confined to a well-fitting and 

experimentally realized parameter set although there are other solutions which produce 

significant    values with comparable or less performance. 

Because the system operates far from turbulent behavior at very low Reynolds numbers 

(see paragraph 2.1.2) a moderate rescaling of the complete system including 

microstructure and particles will not lead to significantly different results. Hence, the exact 

scale of the microfluidic setup is unsignificant as long as all involved objects keep their 

aspect ratio and    is still adequately small. To eliminate one degree of freedom of the 

problem, the lattice constant of the post array is fixed arbitrarily to            in a first 

step, because it is experimentally well within the available soft lithography process.  
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Figure 46: Upper image: Resulting separation angle      at       for different radii of the structured posts 

     and for different particle sizes in terms of the radii of one monomer      (the total number of 

monomers is kept constant). Parameters lying in the white areas do not produce significant      whereas 

regions with strong blue or red color produce optimal splitting. The region in the upper right corner is 

characterized by significant interaction between the posts and the particles as they tend to stuck within the 

structure while migrating. This leads to a significant increase of the error bars obtained for      which are 

depicted in the lower image. From this result, the tuple from the darker blue region was selected, which 

promises significant    and on the other hand holds enough distance to the unstable areas in the upper right 

corner: (         )  (              )   
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The second step is the evaluation of the correlation between particle size (expressed here 

in terms of the radius of one monomer      (see section 3.5)) and the radius of the 

structured posts      for different array tilting angles  . Figure 46 shows a well working 

result for       where 50 trajectories for each particle species per spot were averaged. 

The upper (colored) image represents the splitting angle      |      | in depence of 

the particle size (represented by the size of a monomer) and the radius of the posts. The 

stronger the blue or red color, the larger is the angle of separation. White areas do now 

show any significant splitting. The upper corner where relatively large particles are brought 

in contact with small gaps between the posts (because of large post diameters) is 

characterized by increasing problems with particles getting stuck. As a result, the error bars 

for      that are shown in the lower part of Figure 46 are increasing in this area.  

A closer inspection of Figure 46 reveals that the actual motion of the particles through the 

array is a complicated process which is often not intuitively predictable. There are certain 

windows of separation where a significant splitting is observed. On the other hand there 

are certain regions, where both particle species only migrate along the structure without 

any notable splitting. For the actual separation process, a parameter tuple from the strong 

blue region in the middle of the shown parameter space was selected. It should on the one 

hand produce significant    and on the other hand be sufficiently far away from the 

unstable areas in blue because in the experiment small particle or post deviations cannot 

be precluded. In the following, the tuple (         )  (              ) has been 

selected (marked red in Figure 46) and is subject to a closer inspection below. 

Figure 47 and Figure 48 depict further results for                     ,      and       

and their corresponding error bars in the same arrangement as in Figure 46. These values 

are obviously not as suitable for chiral separation as the previous case of      . While 

     does not produce any separation at all (e.g. both particles species migrate along the 

array axis and no locking occurs) the separation performance as well as the error bars 

increase with increasing   up to an optimum value for      . Larger values of   are again 

characterized by decreasing performance of separation while the standard deviations are 

further increasing, especially in those areas, where large particles interact with large posts.  

Because of limited computing power, only a few values of   could be simulated in full detail 

as presented in Figure 47 and Figure 48. Instead, only the selected tuple (         )  

(              ) which performs well under       is now analyzed in more detail 

concerning the migration behavior under different values of   with finer resolution and  
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Figure 47: Separation results for                 and     presented analogously to Figure 46. It is 

generally observable, that the separation performance increases for higher values of  . However, certain 

regions are more and more characterized by a strong increase of statistical errors for larger    



Results and discussion 91 
 

 

Figure 48: Separation results for                   and     presented analogously to Figure 46. It is 

generally observable, that the separation performance decreases for higher values of  . However, certain 

regions are characterized by very large statistical errors for, especially in regions were large particles interact 

with large posts (upper right parts). 



92  
 

 

Figure 49: Effective migration angles for Γ and L particles at the point (         )  (        ) in 

dependence of different array tilting angles  . An effective window of separation around       is 

observable and closer investigated experimentally. 

with 100 averaged trajectories per point and particles species (see Figure 49). Here, instead 

of the effective angle of separation      the absolute migration angles for both species 

with respect to the x-axis are depicted. From      to      the particles essentially 

follow the axis of the array. Subsequently, three different windows of separation with even 

different sign of    follow from      to approximately 16°. Around       and       

the L particles mainly migrate along the array axis and the Γ particles migrate with negative 

migration angle. On the other hand, around      , the situation is contrary. The Γ 

particles move along the array axis upwards under a positive migration angle and the L 

particles move downwards. The third region for       is characterized by considerably 

increasing error bars caused by coexistence of more than one migration mode.  

With the additional results of Figure 49 in mind, the experimentally realized value of   was 

fixed to       because here, a maximum    is predicted. This is the main difference to 

the theoretical work of Speer and coworkers213. In their simulations, spontaneous 

symmetry breaking for an a priori symmetric environment (     ) was observed but no 

noteworthy chiral separation for much smaller   and thus asymmetric systems. To further 

verify Figure 49 experimentally and especially the predicted change of sign of    around 

      a second microfluidic device with       will be evaluated in a second 

experiment. With these two values of   the migration behavior of the two particle species 

was analyzed in more detail (single particle trajectories in Figure 50). While there is optimal 

separation performance for       with                   and 100% correct 

classification of the particle species, the performance of       is lower with only 
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Figure 50: Numerically calculated trajectories of the L (blue) and Γ particles (red) for      (left) and 

      (right). 10 particles of each species were analyzed in detail leading to theoretical separation angles 

of                   and                 . 

 

                  as already anticipatable from the corresponding regions in Figure 

49. In conclusion, the theoretical analysis of this separation principle leads to the 

parameters in Table 10, which are experimentally realized in paragraph 4.3.2.2. 

 

Table 10: Theoretically evaluated parameter set which results in significant values of    and which is 

experimentally realized in paragraph 4.3.2.2. 

Parameter Symbol Value 

Radius of posts      3.34 µm 

Radius of monomer      0.1 µm 

Array tilting angle   12°, 15° 

Lattice constant of array    20.5 µm 

 

4.3.2.2 EXPERIMENTAL EVALUATION 

The numerically evaluated results from paragraph 4.3.2.1 were used to design a 

microfluidic experiment, which has already been depicted in Figure 45. It consists of a 1cm 

long (x direction), 1 mm wide (y direction), and 6 µm high (z direction) microchannel 

structured with an array of posts with the following measured design parameters (see Table 

11). The main experimental result of this project is shown in Figure 51. 10 L and 10 Γ shaped 

microparticles were transported through the microchannel structured with a fixed array 

tilted by      . In accordance with the numerical simulations, it could be observed, that 

the blue L particles are basically following the structure of the post array under an effective 
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Table 11: Experimental design parameters of the microchannel with structured posts for the separation of 

chiral microparticles which were quantified with an electron microscope. 

Parameter Symbol Value 

Particle long axis a 14.7 ± 0.3 µm 

Tilting angle   15°, 12° 

Lattice constant    20.5 ± 0.2 µm 

diameter of posts    6.68 ± 0.2 µm 

mean migration angle of   
              with respect to the x axis of the channel. The 

red Γ particles migrate through the structure with a mean migration angle with opposite 

sign of   
              . Hence, under the given array tilting angle of      , the 

device splits the trajectories of the chiral microparticles very efficiently with a total angle of 

separation of  

     |  
      

  |             

without any false results although the post array itself is not chiral. Furthermore, Figure 51 

demonstrates that after already           travelled distance which is roughly 14 times 

the longest dimension of the analyzed particles, a clear separation with baseline resolution 

was achieved. Compared to microfluidic separation results from other groups, this value is 

extremely low. The 16 µm long helical bacteria of Marcos et al. needed approximately 100 

cm for a clear differentiation which is 62500 times the dimension of the considered 

particles217.  

 

Figure 51: Trajectories of the 10 L (blue) and 10 Γ particles (red) which were observed experimentally in an 

array with      . The device shows excellent sorting properties with a splitting angle of            

     of the device. Not a single particle was migrating into the wrong direction. However, there is no clear 

estimate of an actual resolution, because it is a non-constant function of x. Redrawn with data from
236

. 
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Figure 52: Observed experimental attractors for the case       for Γ particles (red) and L particles (blue). 

The frequency of occurrence is denoted in terms of video frames where this certain attractor could be 

observed. The frame rate is kept constant throughout all experiments. While there are only two distinct 

attractors observable in case of the Γ particles, the motion of the L particles is governed by five different 

attractors. However, there are altogether only three predominant attractors which represent 96.5% of all Γ 

trajectories (   
 ) and 96.9% of all L trajectories (   

  and    
 ).  

The actual trajectories for       through the array of posts can be described with a set of 

attractors (schematically depicted in Figure 52) located in the space of all physical 

trajectories. The trajectory of a migrating particle with random initial condition concerning 

location and rotation will almost instantly converge to one of the identified attractors and 

continue its motion. Two distinct attractors    
  and    

  could be identified for the case of a 

moving Γ particle where    
  is by far the strongest among them. 360 out of 373 video 

frames (96.5%) captured of moving Γ particles show a behavior, drawn schematically in the 

corresponding picture in Figure 52 (top left). Here the short end of the particle collides with 

a post while the hydrodynamic friction at the long end pulls the particle downwards. As a 

consequence, all Γ trajectories in Figure 51 have a negative effective angle of migration   
  . 

The very few video frames where behavior according to    
  is observed lead to some small 

deviations at the beginning only. 

The case of the L particles is a little more complex, as it is characterized by two main 

attractors    
  and    

  which together represent 448 out of 462 (96.9%) video frames. In 

both cases, L particles, that collide with a post further migrate parallel to the array (grey 

lines in Figure 52) and hence show a positive effective migration angle   
   under      . 

The underrepresented attractors    
     

 , and    
  lead to some minor deviations. 

It is observable that the current migration mode is subjected to changes once in a while 

(see Table 12). In most cases of the Γ particles for instance, the stable attractor    
  is not 

reached directly at the beginning of the trajectory. In fact, disadvantageous initial 

conditions like in cases 1, 2, 4, 5, 7, and 9 lead to an approach towards the weaker attractor   
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Table 12: Initial conditions and sequences of occurred migration modes (see Figure 52 for details). The 

number in brackets represents the number of video frames the particle migrated in the given mode. 

 Γ particles  L particles 

# 
Initial 
condition 

Migration 
mode 

 
Initial 
condition  

Migration 
mode 

1 

 

   
 ( )    

 (  ) 
 

 

   
 (   ) 

2 

 

   
 ( )    

 (  ) 
 

 

   
 (  ) 
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 (  ) 
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 ( )    
 (  ) 
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 (  ) 
 

 

   
 ( )    

 ( )    
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 (  ) 
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 Γ particles  L particles 

# 
Initial 
condition 

Migration 
mode 

 
Initial 
condition  

Migration 
mode 

8 

 

   
 (  ) 

 

 

   
 ( )    

 ( )    
 ( )  

   
 ( )    

 ( )     
 ( )  

   
 ( )    

 ( )    
 ( )  

   
 ( )    

 ( ) 

9 

 

   
 ( )    

 (  ) 
 

 

   
 (   ) 

10 

 

   
 (  ) 

 

 

   
 ( )    

 ( )    
 ( )  

   
 ( )    

 ( )    
 ( )  

   
 ( ) 

   
  instead of    

 . Because the simulated trajectories, where only Brownian motion is 

accounted for (see section 3.5 and the left part of Figure 50) did not show any attractor 

changes in the case of       it can be concluded, that here, a stronger stochastic 

disturbance, e.g. the collision with the ceiling or the bottom of the channel is required for 

the trajectory to change the attractor. The particles made out of SU-8237 (density 1190 

kg/m²) have a slightly higher density then water at room temperature50 (densitiy 1003 

kg/m³). Consequently during their motion through the channel these particles will slowly 

sediment to the channel floor. On the other hand, Brownian motion will oppose this motion 

and might hinder the particles from hitting the channel bottom. Faucheux and Libchaber 

investigated this problem for spherical objects and demonstrated that Brownian motion in 

confined spaces under the influence of gravity results in a non-vanishing mean vertical 

position of the particle over ground238. In their publication, spherical particles with 

diameters between 1 and 3.5 µm with a slightly lesser density of 1050 kg/m² in equally high 

channels were considered among others which showed a mean height over ground 

between 2.4 and 2.8 µm. However, the particles considered in the present experiment are 

denser and show much less diffusion. In fact, diffusion is even unobservable under the 

microscope. Thus, the assumed interaction with at least the floor of the channel is quite 

likely. Furthermore slight deviations in the channel structure could be sufficient as well. On 
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the other hand,    
  is stable enough, so that there are no reoccurrences of    

  once    
  has 

been reached. 

For the L particles, the situation is more complex. Again depending on the initial conditions 

trajectories select the closest corresponding attractor and then change to    
  or    

  after a 

while. However, in the case of the L particles these two attractors seem weaker compared 

to the disturbance effects and hence, further reallocations (up to ten) were observed. 

As already predicted by the numerical simulations in paragraph 4.3.2.1, a slight change of 

the array tilting angle   can have a tremendous impact on the separation characteristics 

and performance. To verify this prediction experimentally, a similar microfluidic channel 

with       instead of       has been considered as well. 

The experimental results for       are depicted in Figure 53 where the trajectories of 7 L 

and 8 Γ particles could be recorded. Although the array tilting angle   has been changed 

only by three degrees, the separation result is significantly different and worse compared 

to the case      . Here the L particles move under a mean deflection angle of 

  
              and the Γ particles with   

            . From these values, the 

mean angle of separation is only 

     |  
      

  |              

In addition to the smaller     , there are further differences to the previously discussed 

case as the signs of   
   and   

   are swapped. This time, the (red) Γ particles travel along  

 

Figure 53: The same experiment as in Figure 51 but with       instead of       for 7 L and 8 Γ particles. 

The change of the array tilting angle has led to a significant change of the sorting performance. This 

separation attempt lead to a poor splitting angle of only               . 
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Figure 54: Observed experimental attractors for the case       for Γ particles (red) and L particles (blue). 

The frequency of occurrence is again denoted in terms of video frames where a certain attractor could be 

observed. The most important difference besides the three additional Γ trajectories and the missing fifth L 

trajectory are the existence of multiple dominant attractors resulting in migration angles with different sign 

(   
  and    

 ). 

the post array with positive   
   and the L particles migrate through the array downwards 

with negative   
   as predicted by the simulation in paragraph 4.3.2.1. 

Further differences can be extracted from Figure 54. Instead of two Γ and five L attractors, 

there are now five Γ and four L attractors. Instead of one dominant Γ and two dominant L 

attractors, the situation is opposite, because now two dominant Γ and only one dominant L 

attractor are present. Furthermore this time the migration angles of the two dominant Γ 

attractors have different signs. While trajectories following    
  proceed along the array 

(grey lines), the    
  trajectories pass the grey lines and migrate through the structure. This 

is the cause of the larger error of   
   compared to   

  .  

Table 13 shows the observed migration modes of the Γ and L particles and the 

corresponding initial conditions. Here in the case of       both Γ and L trajectories 

change their attractors more often than for        It seems, that for smaller   and hence 

less chiral environments, not only the already discussed collisions with the channel’s  ceiling 

or bottom (which is supposed to be equal here) play an increasingly important role, but also 

the disturbing effects of Brownian motion. This claim is supported by the right part of 

Figure 50 where only Brownian motion as a possible disturbance is accounted for. While for 

     , the considered Brownian motion did not lead to any significant changes of the 

corresponding attractors, thermal noise is now strong enough to regularly disturb the 

process of a given trajectory experimentally as well as theoretically. 
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Table 13: Initial conditions and sequences of occurred migration modes (see Figure 54 for details). The 

number in brackets represents the number of video frames the particle migrated in the given mode. “undef” 

means, that the current mode of migration could not be clearly identified because of bad image quality. 
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 Γ particles  L particles 

# 
Initial 
condition 

Migration 
mode 

 
Initial 
condition  

Migration 
mode 
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 (   ) 

 

 

4.3.2.3 COMPARISON OF NUMERICAL SIMULATION AND THE EXPERIMENT 

In the previous paragraph, it was shown that the numerical simulations qualitatively 

reproduce the experimental data quite well (especially for      ) as the sorting behavior 

itself and the correct signs of the migration angles   
   and   

  as well as   
   and   

   were 

predicted correctly. This paragraph provides a closer quantitative comparison between 

experiment and simulations concerning a) the resulting migration angles (  
     

     
  ,  

  ) 

and the effective angles of separation      and      and b) the reproduction of the 

observed attractors of migration.  

Table 14 summarizes the obtained values for the angles of migration and the angles of 

separation from the numerical and the experimental analysis. In all cases with the 

exception of   
   the theoretical value is located within the   interval of the corresponding 

experimental value. The deviation for   
   is significantly larger but can still be found within 

the 2   regime of the experimental value. Generally, the obtained experimental errors are 

Table 14: Comparison of experimental and theoretical angles of migration for       and      . The 

numerical data is gathered by averaging over 100 trajectories per particle species and value of    The 

experimental values are identified accordingly with all available experimental trajectories and the statistical 

errors are the corresponding standard deviations or calculated according to the Gaussian error analysis 

respectively. 

Parameter Experiment Simulation 

  
   + 3,98° ± 4,60° + 3,07° ± 0,19° 

  
   - 1,78° ± 3,93° -2,54° ± 1,55° 

     5.76° ± 6.05° 5,61° ± 1,56° 

  
   -10,66° ± 0,75° -11,11° ± 0,30° 

  
   +12,10° ± 3,45° + 7,86° ± 0,16° 

     22.76° ± 3.53° 18.97° ± 0.34° 
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larger than their numerical counterparts. The reason can be found with a closer inspection 

of the trajectories in Figure 50, Figure 51, and Figure 53. Large deviations in the resulting 

angle of migration are generated when particles switch their attractor of migration as 

demonstrated e.g. for the L trajectories in Figure 51 experimentally. As already stated for 

      the experimental attractors are so strong, that Brownian motion alone is too weak 

to induce attractor changes because no changes can be found in the simulation. 

Consequently, the experimental particles must have been subjected to even stronger 

stochastic disturbances e.g. a collision with ceiling or floor of the channel which are omitted 

in the simulation. Thus, the resulting experimental error is larger. For       Brownian 

motion is just strong enough to induce significant disturbances that result in changes of 

attractors at least for the L particles (see Figure 50) because now, these disturbances can be 

seen even in the theoretical results. However, disturbances in the experiment (e.g. 

collisions with ceiling or floor) are still dominant and hence the experimental error is again 

larger than the theoretical error.  

The exact numerical prediction of separation angles is most important for an experimental 

reproduction and further technological use of the presented principle. However, a closer 

comparison of the experimentally and theoretically observed attractors of migration is also 

adjuvant to further judge the quality of the applied numerical model. Figure 55 shows 

stroboscopic image series of the actual movement of L and Γ particles in the array of posts  

 

Figure 55: Stroboscopic images of the attractor    
  (see Figure 52) observed in the experiment (top left) and 

in the simulation (top right) for      . The two lower panels show the attractor    
 . While the prediction 

of    
  is perfect in the simulation, the situation for    

  is not that clear. Note the different value for dt in the 

left upper image because of non-optimal image quality. All images were generated with the GIMP layer effect 

“darken only”, were a stack of images is properly aligned manually and the resulting image is generated by 

using the darkest color value for every pixel which can be found in all stacked images at this position. The 

contrast of the experimental images is later adjusted with GIMP’s brightness & contrast tool. 
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Figure 56: Stroboscopic images of the two attractors    
  and    

  which occur quite often in the experiment 

but for which no numerical counterpart could be found. 

for       and their theoretical counterparts while being attracted by the two prominent 

attractors    
  and    

 . The simulation predicts the movement of the Γ particles perfectly. 

Even the spatial periodicity of the particle movement (2 elementary cells) is calculated 

correctly according to the experiment. On the other hand the attractor    
  shows slight 

differences between the experimental and the theoretical result. While the L particle 

moves straight along the inclined row of posts during the experiment, the simulation shows 

regular deviations from that behavior. Here, the L particle passes the row roughly every ten 

elementary cells. As a result, the obtained values for   
   from the experiment and the 

simulation are equal only within the    regime of the experimental value (see Table 14). 

The experimentally rarely observed attractors    
      

 ,    
   and    

  could not be observed 

in the simulation. These might have their origin in the already discussed disturbances 

because a particle hits the channel floor or the ceiling. However, there is an experimentally 

quite prominent attractor    
  which could not be observed in the simulation as well (left 

image in Figure 56). 

The situation for       is quite similar. Figure 57 compares the two experimentally most 

prominent attractors    
  and    

  to the corresponding numerical predictions. In this case, 

the behavior of the L particles is perfectly predicted by the simulation and even the spatial 

periodicity of the motion (3 elementary cells) is calculated correctly. While the 

experimental trajectory of the Γ particles is straight along a row of structured posts, the 

numerical analysis shows regular deviations from this behavior as particles sometimes pass 

the row and then migrate further along the array. As a result the numerical and 

experimental results for    
  differ by nearly 1° which is, however, still within the 

experimental error.  

A third attractor    
  that is still occurring quite regularly in the experiment could not be 

predicted by the theory as shown in the right part of Figure 56. Like for       the very  



104  
 

 

Figure 57: Stroboscopic images of the attractor    
  (see Figure 54) observed in the experiment (top left) and 

in the simulation (top right) for      . The two lower panels show the attractor    
 . While the prediction 

of    
  is perfect in the simulation, the numerically evaluated behavior of the Γ particle in the upper two 

images is slightly different compared to experiment. The images were generated as described in the caption 

of Figure 55. 

rarely observed experimental attractors    
 ,    

 , and    
  as well as    

     
 , and    

  could 

not be predicted in the simulation. Their very sporadic occurrence in the experiment and 

their absence in the simulation can again be interpreted as disturbance induced by 

imperfections of the channel geometry or collisions with the floor or ceiling of the channel. 

The numerical simulations were originally conducted to quickly identify possible design 

parameters for an optimal experimental realization. With these guidelines in mind, the 

theoretical model behind the presented simulations (see section 3.5) contains the following 

approximations to be as economic as possible concerning development and computing 

time but precise enough for correctly identifying a working design: 

1. The simulation is purely two dimensional, which means that the interaction of a 

particle in z direction with the ceiling or the floor of a microchannel is neglected. 

This could be the reason, why the experimentally rarely occurring attractors 

   
     

      
  and    

      
     

     
  which might be induced by such a collision 

with ceiling or floor are not present in the simulation as thermal noise alone is too 

weak to overcome the dominant attractors in most cases. 

2. The structure of the microchip deviates from a perfect array with posts of equal 

size and shape. Small imperfections and defects as well as deviations from the 

prospected dimensions lie within the nature of the soft lithography process and 

could not be further reduced. On the other hand, the data presented in Figure 46, 

Figure 47, and Figure 48 shows that slight deviations from optimal values may lead 
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to significantly different migration behavior. Such randomly appearing faults in the 

geometry are presently not included in the model. 

3. Although the actual force field, that drives the monomers of a particle is obtained 

by solving the Navier-Stokes-equation for a given elementary cell, the influence of 

the particle on the flow field is not accounted for because then one would have to 

solve the flow equations not just once but for every time step. This is a very time 

and resource consuming endeavor and hence practically unfeasible.  

However, the predicted window of separation from Table 10 yielded excellent separation 

results for       in the experiment. In fact, not a single particle was sorted incorrectly. 

Furthermore the predicted angles of separation could all be confirmed by the experiment 

(see Table 14) with the exception of    
  which nevertheless still lies within the    regime 

of the corresponding experimental value.  

 

4.3.3 CHIRAL SEPARATION WITH STRUCTURED SIDEWALLS 

In this paragraph, a second approach demonstrating enantioselective separation of chiral 

objects based on the systematic breaking of relevant spatial symmetries is discussed. 

Instead of exploiting the direct interaction of the model particles with certain asymmetric 

channel structures, it is also sufficient to break the symmetry of the otherwise typical 

parabolic flow profile through the microchannel (see paragraph 2.1.2 and especially Figure 

4)215,216. Chiral microparticles transported within such a shear flow are shown to accumulate 

near opposite sidewalls. 

The experimental realization of this principle is displayed in Figure 58. A 16 mm long (x 

direction) and 6 µm high (z direction) straight microchannel connects two fluid reservoirs 

with a diameter of 2 mm. To introduce the broken symmetry of the flow profile, one 

sidewall of the channel is structured with triangles so that the overall 70 µm wide (y 

direction) channel is periodically constricted to a total width of 40 µm (periodicity: 50 µm). 

The fluid within the channel is transported with a pressure gradient            created 

by a self-constructed pneumatic precision pump (see Appendix A1), that is connected with 

silicone tubing to both reservoirs. 
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Figure 58: Schematic and a micrograph of the microfluidic setup used for the chiral separation with a 

structured sidewall. A 16 mm long (x direction), 40-70 mm wide (y direction) and 6 µm high (z direction) 

microfluidic channel connects two fluidic reservoirs where the particle solution is filled in before the 

experiment. A pneumatic precision pump (see Appendix A1) is attached with silicone tubes to both reservoirs 

and creates a pressure gradient to transport the fluid through the channel. The symmetry of the typically 

parabolic flow profile which leads to the desired particle separation is broken by the triangularly structured 

sidewall. 

A sufficiently low concentrated solution of 3 µm high chiral testparticles with   

               and                  is injected into the fluidic reservoirs. Like 

already discussed in the previous paragraph 4.3.2 the experiment can be regarded as quasi 

two dimensional because the channel is adequately flat so that the particles cannot rotate 

along their long axis and hence their chirality is maintained. 

4.3.3.1 HYDRODYNAMIC FLOW PROFILE 

Figure 59 shows the experimentally obtained effective flow profile through the channel 

averaged over one period of triangles. The triangles are located in the region of negative y 

values. The plot shows, that the flow profile is clearly asymmetric as required. The shear 

flows occur in regions with a width of approximately 10-15 µm around y = -10 µm and y = 

35 µm. This width corresponds to the dimensions of the microparticles so that they 

optimally couple to the shear flow field without losses or overcompensation. 

However, the walls show significant artificial slip length due to the finite size of the tracer 

particles and their resulting inability to move sufficiently close to the walls. Although the 

channel is isotropic along the z-axis, there are still no-slip conditions occurring at the 

bottom and at the ceiling of the channel and thus a parabolic profile along the z-axis is 

present (cf. Figure 4). The flow speed is thus homogenously reduced over the whole width 

in y direction of the channel. Hence, the microscope focus was placed approximately  
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Figure 59: Flow profile of the hydrodynamic flow created by the triangular sawtooth structure of the 

considered micro channel (data smoothed). 75 trajectories of fluorescent tracer particles (ø=0.5 µm) with 

velocity   
       and with approximately 25 data points each were considered. Because of the very low 

Reynolds numbers, the system operates free from inertia and the particles thus always adopt the velocity of 

the surrounding medium immeasurable fast. The structure is located where y < 0. The asymmetry is clearly 

visible and sufficient for baseline separation as shown below. 

between floor and ceiling, so that unfocused particles near the boundaries were not 

considered for evaluation. However, this effect would only rescale the shown flow profile  

and not alter its characteristic shape. 

 

4.3.3.2 EXPERIMENTAL EVALUATION 

The enantioselective separation experiments are invoked by injecting the particle analyte 

solution into one reservoir and filling the other reservoir with deionized water. The 

particles which are at this time still all identical select their chirality when they get injected 

into the main channel because the 3 µm high micro particles cannot rotate along their long 

axis to change their chirality in a 6 µm high channel once they leave the reservoir. Now, one 

particle is selected and transported back and forth through the whole channel and tracked 

via video microscopy. As the field of view is too small for the observation of the whole 

channel, the microscopy stage is moved at a constant velocity and the number of covered 

triangles is counted for later coordinate correction. It was furthermore taken advantage of 

the effect, that one and the same particle controllably changes its chirality without rotation 

when the direction of migration changes due to symmetry reasons. Therefore, transporting 

one particle back and forth through the channel to generate statistically sufficient 

realizations is sufficient and desired for reasons of reproducibility. Hence, one does not 
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have to deal with minimal deviations of the particle geometry, that could have an influence 

on their actual behavior and the experimental procedure is alleviated. However, in the 

following the expression L and Γ particles are still used for reasons of readability although 

only one single particle, pumped back and forth is actually considered. 

Figure 60 shows the main result, where 16 effective L trajectories (blue) and 18 effective Γ 

trajectories (red) could be recorded. All absolute x coordinates were transformed to 

relative coordinates, so that every trajectory starts at x=0 and the corresponding 

unchanged y value and all particles move effectively move from left to right. 

There is no argument why asymmetrical particles like the considered L and Γ particles 

should move with the same velocity vector  ⃗⃗  in an asymmetric environment26,213. Hence, 

due to their interaction with the asymmetrically engineered flow profile within the channel 

(Figure 59) the particle species split up and approach different attractors according to their 

chirality. The L species (blue) accumulates near the structured sidewall, whereas the Γ 

species (red) is attracted by the flat wall in all cases. There is no explicit false classification 

of particles by the device within these 34 realizations, although there are three particles 

(one L and two Γ) which show no action because they were already at the right y position  

 

Figure 60: a) Experimental trajectories of 16 L particles (blue) and 18 Γ particles (red). After roughly 2000 µm 

of covered distance in x direction, the particles have split up according to their chirality (attractor of L near 

the structured sidewall and attractor of Γ on the opposite wall.) Some particles are already at the correct 

position and thus show no action. There is no explicit false classification of any particle. Redrawn with data 

from
239

. b) Histogram plot along the line x = 2000 µm to demonstrate the resolution of the separation 

concept. Because the Γ particles are moving along the flat wall, the red peak is thinner than the blue peak. 

The L particles move in the vicinity of the triangular structure and therefore have a non-vanishing y 

component in their velocity. The resolution of this separation is 3.75. 
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before the experiment started. Furthermore, Figure 60 demonstrates that all particles have 

been sorted after they travelled a distance of only            in x direction which is 

133 times the longest dimension of the particles. Compared to experimental microfluidic 

separation results from other groups, this value is extremely low. The 16 µm long helical 

bacteria of Marcos et al. needed approximately 100 cm for a clear diffraction which is 

62500 times the dimension of the considered particles217. 

Separation efficiency 

From Figure 60 one can already infer, that the presented separation concept is quite 

efficient in terms of correct selection of particles. The histogram plot in Figure 60 b) along 

the line x = 2000 µm further supports this claim. 

Both species have clearly been baseline separated into distinct streams. Splitting up the 

microchannel at x = 2000 µm and y = 20 µm into two distinct channels would lead to a 

collection of the particles in different reservoirs. However, the blue peak is broadened due 

to the triangular structure at this side of the channel. The particles do not accumulate in the 

vicinity of a flat wall but enter the space between the triangles disturbing their trajectory 

because they have a non-vanishing y component in their velocity.  

The resolution of this separation can be calculated via 

  (
    

      
 

           )       

where     
          and     

          are the peak positions of the Γ and the L 

particles respectively and              and              are the full width half 

maximum values of both peaks. 

However, one has to keep in mind, that the actual resolution is not necessarily a function of 

the channel width. For the separation mechanism to work, the y dimension of the 

triangular side structure has to be rescaled with the channel width. Otherwise, the 

asymmetric flow profile would be deformed as well and the shear gradients could be 

reduced lowering separation performance. The broadening of the triangular structure 

would thus lead to a broadening of the blue peak in Figure 60 b) and thus to an 

approximately constant resolution when broadening the channel width.  
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Migration behavior 

Migration velocity. So far, only the transverse migration of the microparticles in y direction 

has been studied. With a continuously working separation device in mind, this mode of 

operation is most practical. However, there is also a temporal resolution observable (Figure 

61) which could be theoretically predicted215,216. From Figure 59 one can already infer, that 

the flow speed near the flat wall is larger, than in the triangularly structured regime. If the 

selection process of a microparticle is over, the microparticles migrate exactly in these 

regimes. The result is a difference in migration speeds of approximately 13 per cent. 

Further analysis of Figure 61 reveals that the flow speed of the surrounding medium 

(measured with tracer particles) is nearly twice as fast as the migration speed of the 

particles. Since the system operates with very small Reynolds numbers, there is no inherent 

inertia in the system. Therefore, the particles should immediately adopt the speed of the 

medium. The only reason for the observed deceleration can be a permanently acting force 

on the particles for example their sporadic friction with the bottom or the ceiling of the 

microchannel. Since the density of SU-8 is higher than water, the particles will sediment. 

This effect is compensated by Brownian motion. However, this effect is fairly low as 

diffusion of the chiral particles is not observable under the microscope (cf. paragraph 

4.3.2.2). Hence, it is very likely, that the particles will collide with the bottom from time to 

time leading to a reduction of their mean velocity. The stochastic influence of this friction is  

 

Figure 61: Effective migration velocities of the considered L and Γ particles in x direction. Because of small 

leakages in the tubing, the actual speed of the liquid in the channel is not exactly controllable. Hence, tracer 

particles have been added to the medium as described above and the migration velocities of the particles 

have been normalized with the x component of the speed of the tracers. The result is a small difference in 

migration velocity which could already be suspected in Figure 59. 
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not very dominant in view of complete particle trajectories (see Figure 60). The sorting 

mechanism itself still seems to be stronger because there are no large fluctuations in the 

trajectories and particle leaving their attractor were not observed. An alternative 

explanation could be the fact, that the fluid velocity is not homogenously distributed along 

the z-axis (cf. Figure 4). The channel is roughly twice as high as the chiral particles. 

Therefore, particles that somehow sediment might experience a slower hydrodynamic flow 

and their migration speed is thus lower. 

Attractor allocation. The separation of the chiral microparticles is a complicated interplay 

between the asymmetric structure of the particles and the engineered asymmetric flow 

profile. At some point during their trajectory through the channel, one of the two available 

attractors, either the flat or the structured sidewall prevails and thus attracts the particle. 

Within this context, Figure 62 reveals an overview over the distances   , a certain particle  

needs to travel along the channel before it is fully attracted by its attractor. The three 

particles that were already close to the correct attractor were omitted in this overview. 

Figure 62 shows, that the L particles start migrating towards their attractor before they 

have travelled a distance of only 600 µm which is approximately 66 times the particle 

dimension. There are no significant deviations in this aspect. However, there are quite large 

variations in the group of the Γ particles. Approximately only one half of them have started 

to head for their corresponding attractor, before the mark of 600µm. In fact, it takes up to 

approximately 1400 µm until all particles were sufficiently affected by the shear flow. This 

behavior can be explained with the predominant asymmetric flow shown in Figure 59. The  

 

Figure 62: Analysis of the distance in x direction a particle needs before approaching its certain attractor, 

either the flat sidewall or the structured sidewall. Although there is no huge difference the Γ particles need a 

little more traveling distance than the L particles although they have a larger mean velocity. 
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gradient of the shear flow is much smaller on the structured sidewall (y < 0) than on the flat 

sidewall. Most of the Γ particles were located near the triangular wall before the actuation 

was switched on. As a result, the shear forces a particle is subjected to are smaller. On the 

other hand, the L particles are subjected to a much larger shear gradient resulting in 

quicker reaction to the asymmetric actuation by this species. From these facts, one may 

conclude that the separation mechanism is based on the occurrence of shear gradients and 

that the strength of these gradients corresponds to the separation efficiency. 

 

4.3.4 COMPARISON OF THE TWO APPROACHES 

Two conceptually different microfluidic approaches to continuously separate chiral model 

enantiomers from each other were presented and discussed in detail in this section. Both 

approaches require a microfluidic environment of comparable complexity with somehow 

broken symmetry in every relevant dimension, either introduced with a tilted (symmetric) 

array of structured posts (Principle A, paragraph 4.3.2) or by a single structured sidewall 

that creates shear flows (Principle B, paragraph 4.3.3) (cf. Figure 40 and Figure 41). In both 

cases, the particles are actuated by a hydrodynamic flow of the carrier solution through the 

channel. However, the resulting forces on the particles in y direction are induced 

differently. While the particles according to principle A directly hit the hard walls of the 

integrated channel structure, principle B employs the soft interaction of the particles with 

the induced shear flow of the carrier medium. 

Both approaches worked very robust and separated the model enantiomers continuously 

while no explicit false classification of particles could be observed (compare Figure 51 and 

Figure 60). However, the differently intense interactions between the particle and the 

asymmetric environment employed in principles A and B redound to different overall 

separation performances. While the intensive interactions with the hard walls of the closely 

structured posts lead to an overall traveling distance of only 200 µm before the particle 

streams can be clearly differentiated, the softer interaction of the particles with the 

hydrodynamic shear flow requires at least 1800 µm for a clear separation. Both values are 

nevertheless orders of magnitude shorter, than comparable experimental microfluidic 

approaches217. 

The excellent (roughly) 10 fold better density of separation performance of principle A in 

contrast to principle B comes along with certain drawbacks concerning a potential practical 



Results and discussion 113 
 

realization on the molecular scale. Because of the very narrow gaps, especially for the 

suboptimally working case      , some particles got stuck between two posts from time 

to time. Furthermore the corresponding numerical analysis (see e.g. Figure 46 and Figure 

49) predicts that the slightest changes of the surrounding geometry can have a large impact 

on the separation result. In turn, this means, that a certain device requires a precise 

adaption to the desired analyte before a separation can take place. From an experimental 

point of view, the explicit realization of such a small regular post array is currently a very 

complicated endeavor. On the other hand, the less complex but also slightly less efficient 

principle B did not suffer from these limitations and could therefore be a more promising 

candidate for further downscaling.  

The currently used microparticles showed excellent coupling to the hydrodynamic shear 

flow field for principle B. However, the question remains whether such a coupling would be 

as effective when the device is downscaled to the actual molecular scale. While the 

microparticles showed no measurable diffusion, real molecules are subjected to very 

considerable Brownian motion. In theory, the larger coefficients of diffusion can be 

compensated by increasing the driving speed, so that the Péclet number is kept constant 

(see section 2.3). Hence, the current relative magnitude of diffusion with respect to the 

flow speed is maintained. However, at very small scales, this might require quite significant 

applied hydrodynamic pressures. On the other hand, from the perspective of a small 

molecule, the ambient water consists of single dipolar molecules that cannot be considered 

as a continuous fluid anymore. If the chiral analytes are charged, they will even acquire a 

hydrate hull fixed by hydrogen bonds. These effects might conceal the real shape of the 

chiral molecules and thus can prevent them from specifically coupling to the shear flow. 

Nevertheless, there are certain hints in the literature that small molecular structures are 

able to couple to a shear flow (see 194,240, and references therein). For example, Kondepudi 

and coworkers created optically active crystals out of (non-chiral) sodium chlorate 

molecules with high purity. Nucleation sites with broken symmetry were induced by a 

stirring apparatus creating a shear flow in the solution. Its direction of rotation determines 

the handedness of the crystals241. Ribò et al. used self-aggregating achiral chromophores in 

a stirring setup and detected a strong specific rise of signals in their circular dichroism 

spectra upon stirring in a certain direction242. 

Although the setting in these experiments is slightly different, because achiral monomers 

were crystallized to form chiral crystals, they still demonstrate that the shear flow has an 
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impact on how asymmetric nucleation seeds under the influence of diffusion and hydrate 

hulls are formed. Thus, it seems plausible, that small chiral molecules might couple to shear 

flows as well. 

 

4.3.5 SUMMARY 

The present idea for the separation of chiral microobjects within symmetry broken 

environments in microfluidic channels was inspired by Curie’s Law. It refers to the 

asymmetric outcome of an experiment that has to be caused by asymmetric elements in 

the experimental device. The aim of the present project was an implementation of such 

elements in a microchannel by a slightly rotated non-chiral lattice of structured posts and 

by a triangular structure of one sidewall resulting in a shifted flow pattern. It could be 

successfully demonstrated that in those environments with broken symmetries, chiral 

microparticles are deflected axially in different directions. 

Using homemade model enantiomers, both approaches performed excellent under the 

present experimental conditions. While the particles flowing through the device with the 

structured sidewall required roughly 1800 µm to be fully separated, the channel featuring 

the microlattice shows a roughly 10 fold better performance density. Not a single particle 

was falsely classified in both experiments.  
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5 SUMMARY AND OUTLOOK 

Microfluidic devices are a very versatile cost- and sample efficient alternative to common 

laboratory techniques with currently lots of interesting and fruitful research and application 

perspectives. In this thesis three different projects with the goal to implement new 

advanced separation techniques on the microfluidic scale for single (bio-)molecules and 

particles such as micro beads or cells are presented in detail.  

Advanced particle separation with tunable selectivity 

In the first project, a microfluidic ratchet device has been constructed, that is able to 

separate   different particle species by using an elaborate scheme of dynamically 

changeable voltage protocols which triggers both trapping of particles and their 

transportation. Unlike standard biotechnological separation equipment like e.g. gel 

electrophoresis, the separation criterion is not statically implemented in the system but 

may freely be changed instantly at any time. Additionally, the effective direction of motion 

may be independently selected for every considered particle species. 

The generic separation principle has been experimentally verified using     species of 

polystyrene microparticles with different       values where    is the effective charge and 

   the polarizability of a particle. Upon applying appropriate voltage schemes, it was 

possible to transport any arbitrary subsection of the mixture into negative  -direction while 

the remaining species moved with positive velocity into  -direction. Seizing the provided 

generic separation principle, simulations demonstrated that it is also working with higher   

(here    ) in different modes of separation. 

Electrophoresis and dielectrophoresis are two very common techniques in (bio)-

technological applications and are able to address a wide range of possible analyte classes, 

e.g. nanoparticles, DNAs, proteins, cells, carbon nanotubes, and many more. Consequently, 

those substance classes should be analyzable with the present device as well, although 

slight adaptions (e.g. to generate higher electric field gradients and thus stronger 

dielectrophoretic traps) might be required. Since the present device relies on different 

      values for separation, even objects with identical size, but different material 

parameters are separable. This is especially interesting when e.g. DNAs of the same length 

but in different conformations need to be separated which is possible with means of 

comparable dielectrophoretic traps243. 
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So far, the separation takes place only in one dimension parallel to the x-axis. The 

application of a second pair of electrodes parallel to the y-direction will open up a further 

useable dimension allowing for more complex separation tasks. Additionally, the 

structuring of the channel with different types of posts along the  -direction might further 

boost possible multidimensional analysis, analogous to e.g. a two dimensional gel 

electrophoresis of proteins. 

Of course, with more complex separation tasks the voltage pulses to apply will be even 

more complex as well and very hard to predict for the (perhaps inexperienced) 

experimenter. With a functional particle tracking software244 and an appropriate training 

algorithm the computer controlling the voltage pulses should be able to choose the best 

working voltage protocol on its own. Such a training algorithm would consist of at least a 

sequence were the electrophoretic mobility of each particle class is quantified and one 

where the corresponding polarizabilities are analyzed (e.g. with the technique discussed in 

section 4.2) because       is the relevant quantity. 

Automated quantification of single molecule polarizability 

Dielectrophoresis is a very common physical principle used in microfluidic systems to sort, 

immobilize, or manipulate a polarizable sample without any labeling. The overall 

performance of the final device is usually dependent on the actual polarizability of the 

present analyte under consideration. However, the actual value usually remains 

unquantified and correct parameters for dielectrophoresis are thus obtained via trial and 

error methods in the experiment. The aim of the second project was the implementation of 

an automated and easily useable microfluidic device to quantify polarizability values on the 

single molecule scale. Therefore, an analysis channel structured with rectangular posts is 

employed to generate dielectrophoretic traps where the electrophoretically driven analyte 

molecules (here DNA) are trapped for a certain time, before they are able to escape due to 

thermal energy. The polarizability can be calculated using the mean trapping times which 

are extracted automatically from fluorescence microscopy data by a home written script 

whose function is proofed theoretically. 

As a proof of principle, the well-known relation     √ ⁄  between the ionic strength   of 

the buffer and the molecular polarizability    of 12 kbp and 48.5 kbp double stranded DNA 

could be reproduced with this technique and a comparison between the automated 

method and a manual evaluation was provided. However, this technique requires spatial 
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localization of the analyte molecule that is usually accomplished with fluorescent staining 

(here with YoYo-1). Thus, the impact of the dye concentration on the molecular 

polarizability is investigated demonstrating that there is a weak but notable non-monotonic 

dependence. 

Such an automated evaluation method is a useful tool not only for the quantification of 

single object polarizabilities in basic research. In a productive laboratory environment, 

micro devices with a broad range of possible analysis targets which are thus cost efficient 

and easy to use are demanded. However, a microfluidic device based on dielectrophoresis 

somehow automatically needs to adapt to the present sample which requires the 

automated analysis of its polarization behavior – a task that could be accomplished with the 

presented method. 

Continuous selector free separation of chiral objects  

Chiral organic molecules have mostly different pharmacological activities underlining the 

need for preparational and analytical techniques. Traditionally, for their purification, chiral 

selectors are used that specifically bind or derivatize only one enantiomeric form in a 

chromatography setup. This approach, however, requires the identification of new 

selectors for every new analyte and is working in batch-mode only. The third project thus 

deals with two different microfluidic devices with inherently broken symmetry to separate 

chiral microobjects without selectors. 

The present concept to separate chiral microobjects by means of symmetry broken 

environments in microfluidic channels was inspired by Curie’s Law. According to this 

principle the asymmetric outcome of an experiment has to be caused by asymmetric 

elements in the experimental device. 

These elements are introduced by 

1. chiral microparticles in combination with a non-chiral lattice of structured posts, 

slightly rotated against the x axis by an angle   (see Figure 40). 

2. a triangular structuring of one sidewall of a straight microchannel which results in a 

shifted and thus asymmetric flow pattern (see Figure 41). 

Because of these broken symmetries, chiral microparticles are deflected laterally within the 

fluid stream. 
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Both continuously working approaches performed excellent under the present 

experimental test conditions with homemade model enantiomers. Not a single particle was 

falsely classified in both devices. At optimal working conditions (     , see Table 11), the 

channel featuring the microlattice required approximately 200 µm in x direction for clearly 

splitting the particle stream. In this case, an overall splitting angle of                 

under which the two particles species departed from each other has been observed 

experimentally. It was furthermore demonstrated in the experiment as well as 

theoretically, that the actual system geometry significantly influences the separation 

performance. Besides the dimensions of particles and posts, the tilting angle   plays an 

important role as e.g. demonstrated in a second experiment with      . In this case, the 

separation performance was significantly lower (               °) and the behavior of 

L and Γ particles swapped. In all cases, the theoretically obtained results predicted 

experimental splitting angles quite well. All simulation results were located in the    

regime around the experimental counterparts with the exception of      which lies in the 

   regime. 

The particles flowing through the device with the structured sidewall were observed to split 

up laterally in the flow as well and required roughly 1800 µm to be fully baseline separated. 

A total spatial resolution along the y axis of 3.75 was obtained. Additionally a significantly 

different migration speed of the two particle species in x direction was observed 

(  
                 and   

                 ). 

Further development stages of the current system could be envisioned. First of all, for 

reasons of simplification the so far presented systems are quasi two dimensional because 

the generic principle behind the presented projects is independent of the dimensionality. 

However, for a real application with three dimensional samples, the symmetry in z direction 

has to be broken as well. This can e.g. be accomplished with a combination of asymmetric 

hydrodynamic flows (like in the 2D experiments) and a surface modification (e.g. with F108) 

on either the ceiling or the floor of the considered microchannel. An electric field applied to 

such a channel will induce an electroosmotic flow, partly suppressed on the modified 

surface but unhindered near the uncoated surface. When this electroosmotic flow is 

directed against the hydrodynamic flow, a flow field with completely broken symmetry, 

displayed in Figure 63 can be experimentally realized. 

Regardless of the full three dimensional realization, the current scale of the two model 

systems is too large for actual molecular considerations. Hence, further downscaling of the 
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discussed generic principles is required. However, with current state of the art lithography 

e.g. with our newly obtained helium ion microscope practical feature sizes down to some 

nanometers are possible245 which is still too large for actual pharmaceutical compounds 

even if a channel with structured sidewalls is used. One could think of an asymmetrically 

self-organizing system of e.g. nanocrystals246–248 which is, however, in a very early stage of 

research249. 

 

 

Figure 63: Left: Schematic overview of a chip prototype that creates a flow profile with broken symmetry in 

all three dimensions. Two separate prestructured pieces of PDMS A and B are precisely aligned and bonded 

with a Fineplacer® Lambda System after an oxygen plasma treatment. Only piece B which carries the 

triangular structure on its sidewall has been surface modified with F108 to suppress electroosmotic flow on 

its surface. Piece A is unmodified. Right: The resulting experimental and fully three dimensional flow profile 

for the separation of three dimensional chiral microparticles. Here electroosmotic flow and hydrodynamic 

flow act against each other. While the hydrodynamic flow is dominant near the modified ceiling and the 

triangular structure, the situation near the unmodified bottom and the flat wall is contrary. Here, 

electroosmotic effects annihilate hydrodynamic effects and even move liquid to the opposite direction (   

changes sign over the height of the channel). With such a device, chiral particles could even be separated by 

letting them flow against each other into opposite directions. Plot redrawn with data from
250

. 
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APPENDIX  

 

A1 CONSTRUCTION OF A MICROFLUIDIC PRECISION PUMP 

The generation of hydrodynamic flows in microfluidic chips requires a highly precise 

pneumatic pumping device, which was developed within the framework of this thesis (see 

Figure 64). The requirements are non-pulsating operation, low cost, and very fine control of 

the applied pressure. Therefore, the established peristaltic pumps were waived. 

The self-developed system contains of two independently working control units and can 

therefore operate microfluidic chips with up to four reservoirs. The two proportional 

pressure regulators Airfit Tecno PRE-U are the central components, attenuating the inlet 

pressure of        bar nitrogen to values between 0 and 200 mbar proportionally to an 

applied voltage (see Figure 64 B). They are particularly characterized by low response 

sensitivities (see Table 15).  

Using the pressure regulators, the actual applied pressures    and    can be measured as 

well. Connected upstream, two digital locking valves interrupt the nitrogen stream in an 

exceptional case (see Figure 64 A). The flow direction inside the micro channels can be 

chosen using two arrays consisting of two MHA2-MS1H3/2G-2-k digital valves in each array 

(see Figure 64 C). Both digital valves are coupled logically inversely resulting in one of 

letting the nitrogen pass, while the other one blocks the stream and connects the tube to 

the environmental atmosphere, causing de-aeration.  

The whole system is controlled by a self-developed LabView program, which can either be 

controlled manually with a joystick or in an automated fashion by programming certain 

Table 15: Characteristics of the used pressure regulators Airfit Tecno PRE-U according to the technical 

datasheet. 

Parameter Value Unit 

Inlet pressure 1,5-2,5 bar 

Outlet pressure 0-0,2 bar 

Nominal flow 200 l/min 

Maximum flow 350 l/min 

Hysteresis <0,5 % 

Repeatability <0,5 % 

Response sensitivity <0,5 % 

Linearity <0,5 % 
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sequences in advance. The exceptional case status where the valves A close can be 

triggered by pressing joystick button 1. The tubes 1.A, 1.B, 2.A, and 2B are connected to the 

microfluidic chip using Festo tube connectors screwed into the acrylic glass block that holds 

the microfluidic chip (see Figure 65). Hence, an air tight macro-micro-interface with 

extraordenary stability is obtained. 

 

Figure 64: Schematic of the constructed precise pumping system for microfluidic devices. Liquid in two 

separate channels can be driven at the same time pneumatically. Central components (B) are two electronic 

linear pressure regulators Airfit Tecno PRE-U which are operated with an inlet pressure of            from 

a nitrogen bottle. Two digital locking valves with magnetic triggers stop the nitrogen supply in case of an 

emergency (A). Depending on the voltages applied to the regulators, pressures between 0 and 200 mbar 

(     ) can be generated, measured and controlled at the same time. Two arrays with two Festo MHA2-

MS1H3/2G-2-k digital valves (C) in each array control the flow direction by directing the nitrogen stream to 

one of the outlets (e.g. 1.A) while the other outlet (1.B) is connected to the environmental pressure due to 

the logically inverse coupling of the valves. 
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Figure 65: Picture and design drawing of the pump to microchip interface. Chip sticks due to adhesion forces 

onto the lower side of an acrylic glass block which contains holes placed congruently with the reservoirs. 

Using Festo tube connectors which are screwed into the holes, an air tight and very stable connection 

between the tubing of the pump and the micrfoluidic chip is created. For exploiting electrical driving 

techniques, platinum wires have been integrated into the chip holder as well. All measures in mm. 

 

A2 SOURCECODES 

Software packages were developed to analyze experimental data and operate the 

laboratory setup. This section lists the corresponding source codes. 

 

A2.1 EVALUATION OF MEAN TRAPPING TIMES 

The automated quantification of single molecule polarizabilities is based on an analysis of a 

time series of fluorescence microscopy images as described in paragraph 4.2.1. The analysis 

operation is controlled by the perl script ‘dna.pl’ which controls image analysis via ImageJ251 

and evaluates the resulting numerical data via the C-program ‘bootstrap.c’ and readin.h. All 

sourcecodes are listed below. The evaluation routine is started by launching dna.pl and 

providing the path to the fluorescence image data. 

dna.pl 

#! /usr/bin/perl –w 
### 
#Definition of path to ImageJ. Please change if this is wrong. 
$ijpath="/home/user/dep"; 
### 
 
#Prints welcome message and reads path to DNA fluorescence data. 
 
print "\n\nScript zur Auswertung von DNA-Migrationsdaten.\n"; 
print "Dieses Script geht davon aus, dass sämtliche Messpunkte\nin je einem Ordner in einem 
Mutterpfad liegen. Bitte jetzt diesen Mutterpfad eingeben:\n\n"; 
print "\t >>"; 
$mutterpfad = <STDIN>; 
chomp ($mutterpfad); 
@verzeichnis = &getDirEntry($mutterpfad); 
$len=@verzeichnis; 
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chdir ($mutterpfad); 
print "Es wurden $len Datenpunkte (Verzeichnisse) gefunden.\n\n"; 
print "---------------------------------------------------\n"; 
 
#Generates ImageJ macro $ijmacro and writes it into every image folder. Launches bootstrapper 
and prints results 
 
for ($i=1;$i<=$len;$i++) 
 { 
 $name=shift(@verzeichnis); 
 chomp ($name); 
 $path= $mutterpfad."/".$name; 
 chdir ($path); 
 $macro= $path.'/ep-macro.txt'; 
  
 $ijmacro="run(\"Clear Results\"); 
  dir = \"".$path."\" 
  list = getFileList(dir); 
  run(\"Image Sequence...\", \"open=".$path."/img_0001.TIF number=1000 
starting=1 increment=1 scale=100 file=\"); 
  makeRectangle(72, 1, 13, 125); 
  run(\"Set Measurements...\", \" mean redirect=None decimal=6\"); 
  for (i=0; i<list.length; i++) 
   { 
   run(\"Measure\"); 
   run(\"Next Slice [>]\"); 
   } 
  run(\"Input/Output...\", \"jpeg=75 file=.dat\"); 
  saveAs(\"Measurements\", \"".$path.".dat\"); 
  close(); 
  run(\"Window Closer\"); 
  run(\"Quit\");";   

 &writeFile($ijmacro,$macro); 
 chdir ($ijpath); 
 system("./jre/bin/java -mx256m -cp ij.jar ij.ImageJ $path/ep-macro.txt"); 
 system("more +2 $path.dat > $path.dat.temp"); 
 $ergebnis=`bootstrap $path.dat.temp`; 
 print ("\n\nGewichteter Mittelwert beträgt: \n\n$ergebnis\n\n"); 
 @results[$i]=$ergebnis; 
 } 

print "\n###########################\n"; 
print "\nErgebnisse\n"; 
print "\n###########################\n"; 
print "Directory\t\t\t\tGewichtetes Mittel \t Fehler \t Nulllinie\n"; 
 

for ($i=1;$i<=$len;$i++) 
 { 
 print @results[$i]; 
 #&writeFile(@results[$i], $mutterpfad.'/results.dat'); 
 } 

print "\n---------------------------------------------------\n"; 
exit (0); 

# A subroutine to write a file with given content 

sub writeFile 
{ 
    my ($data,$file) = @_; 
    open (WRITE,">$file") || die "Kann nicht in $file schreiben.\n\n"; 
    print WRITE $data; 
    close WRITE; 
} 

# A subroutine to read the content of a given directory 

sub getDirEntry 
{ 
    my $dirToDo = shift || ''; 
    my $temp; 
    my @dirEntry ; 
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    opendir(DIRHANDLE,"$dirToDo") || die "\n\n\n$dirToDo gibt es garnicht!\n\n"; 
    foreach $temp (sort readdir(DIRHANDLE)) 
   { 
 if(!grep /^\.(.*)?$/,$temp) 
 { 
      push(@dirEntry,"$temp"); 
 } 
    } 
    closedir(DIRHANDLE); 
    return @dirEntry; 
} 
 

 

Bootstrap.c 

#include <stdio.h> 
#include <math.h> 
#include <sys/types.h> 
#include <time.h> 
#include <stdlib.h> 
#include "readin.h" 
#define NMAX 20000 

int main(int argc, char **argv ) 
{ 
 
//Definition of variables 
 
    double xin[NMAX] , yin[NMAX]; 
    double xeval[NMAX], yeval [NMAX]; 
    double max=0,mittelwert[NMAX], stdawsum=0,stdaw=0,var=0; 
    int p=66,n=0; 
    int rnd=0,i=0,end=0,ndata=0; 
    double mean=0,sumx=0,sum=0; 
    double sum_mid=0,nulllinie=0; 
 
//------------------------------------------------------ 
 

    srand( (unsigned)time( NULL ) ); 
    ndata=readin(argv[1],xin,yin)-1; 
    max=floor(p*ndata/100); 
    end=max; 
 

//Calculation of mean value in first 60 frames and generation of baseline to substract 
 

    sum_mid=0; 
    for (i=1;i<=60;i++) 
 { 
 sum_mid=sum_mid+yin[i]; 
 } 

    nulllinie=sum_mid/60; 
 

//Execution of baseline correction 
 

for (i=1;i<=ndata;i++) 
   { 
    yin[i] = yin[i] - nulllinie; 
    } 
 

//Calculation of weighted mean value 
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    for (i=1;i<=ndata;i++) 
       { 
        sum=sum+(yin[i]*xin[i]); 
        sumx=sumx+yin[i]; 
        } 
    mean=sum/sumx; 
 

//Generation of randomly bootstrapped stacks and calculation of mean values 
 

   for (n=1; n<=10000; n++) 
       { 
        for (i=1;i<=end;i++) 
           { 
            rnd=1+(rand() % (ndata)); 
            xeval[i]=xin[rnd]; 
         yeval[i]=yin[rnd]; 
            } 
        sum=0; 
        sumx=0; 
        for (i=1;i<=end;i++) 
           { 
            sum=sum+(xeval[i]*yeval[i]); 
            sumx=sumx+yeval[i]; 
            } 
        mittelwert[n]=sum/sumx; 
        } 
 

//The standard deviation of those values from mean is the final statistical error 
  

        for (n=1;n<=10000; n++) 
           { 
            stdawsum= stdawsum+pow(abs(mittelwert[n]-mean),2); 
            } 

        var=stdawsum/10000; 
        stdaw=sqrt(var); 

        printf("%s\t%f\t%f\t%f\n",argv[1],mean,stdaw,nulllinie); 
        return(0); 
} 

 

 
readin.h 

#include <stdlib.h> 
/*************************************************************** 
 int readin(char *fname, double x[], double y[]) 
 ----------------------------------------------- 
Reads data pairs x[i] y[i) (i=0…(ndata-1)) from fname. The function returns the number of 
aquired data pairs. 
****************************************************************/ 
 
int NMAX=10000; 
int readin(char *fname, double x[], double y[]) 
{ 
    FILE   *fin;               
    int    i=1,ndata;         
    fin = fopen(fname,"r");    
    do 
   { 
 if (i>NMAX) 
 { 
     printf("Number ofiInput lines > NMAX.\n please redefine NMAX in the c-file an in 
readin.h\n"); 
     exit(1); 
 } 
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 if (fscanf(fin,"%le %le",&x[i],&y[i]) == 2) 
     i++; 
    } 
    while(!feof(fin)); 
    ndata=i; 
    fclose(fin); 
    return(ndata); 
} 

 

A2.2 DSP SOFTWARE 

The following software (kindly developed by C. Pelargus) controls the Adwin Gold II digital 
signal processor and implements a signal generator and the offset feedback loop. 

#INCLUDE ADwinGoldII.inc 
Dim n, m, 
freq,t,e,esum,esummittel,esummittelold,firstcal,delayP,TimeOld,Time2,Time32,diff2,sinus_out_2
,rate,e2 as long 
Dim analog_in, analog_in_2,sinus_out,amp,ampDig,w,diff,ampoff,Time,  
integriert,efloat,ampDigtmp,ampofftmp,Timetmp as float 
Dim multi16, multi24 as float 
Dim Data_1[3000],Data_2[3000],Data_3[3000],Data_4[3000] as float 
 
#define pi 3.141592654 
#define offset16 32768   '16bit -> 3.051757813E-4 
#define offset24 8388608  '24bit -> 1.192092896E-6 
#define procfreq 300E+6   'Prozessortakt in Hz --> 300MHz = 3.3333333333E-9s 
 
Init: 
  delayP = 1500 
  Processdelay=delayP '= Abtastgeschwindigkeit Bsp: 3000*3.3333333E-9 = 10µs --> 100kHz  !! 
max 100kHz wegen AD (stabil)!! 
  m = 1 
  t = 0 
  multi16 = 20/65536  '20 -> Messbereich +/-10V 
  multi24 = 20/16777216 
  e = 0 
  diff = 1 
  diff2 = 1 
  firstcal=0 
  esum = 0  
  esummittel= 0 
  esummittelold=0 
  integriert=0 
  e2=0 
  efloat=0 
  ampDigtmp=0 
  '------Eingabe-------------------------------------- 
  FPar_19 = 100 'Anzahl der Abtastwerte pro Periode; Dauer einer Periode = 
300E+6/Processdelay/FPar_19 --> 1/DeP=Frequenz in Hz 
  FPar_21=0   'Amplitude in Volt  
  FPar_22=0   'DC Offset in Volt 
  FPar_24=0   'Störamplitude in Volt der Symetrie 
  FPar_25=0   'Störamplitude in Volt der Amplitude (wird nicht kompensiert!) 
  Par_6 = 1   '1= mit Analogeingang und Regelung --> Processdelay max 2000 --> 150kHz 0 = 
PDmax 600 --> 500kHz 
  Par_3=1       '1 = Integration über eine Periode  
  FPar_12=0     'Symetriedifferenz durch Integration über eine Periode 
  Par_18=10     'Anzahl der Werte die gemittelt werden für Symetrieregelung 
  Par_60=0      'DIO setzen 1= true 
  Par_66=0 
  Par_67=0 
  Par_68=0 
  Par_69=0 
  Par_70=0 
  Par_71=0 
  Par_72=0 
  Par_73=0 
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  Par_74=0 
  Par_75=0 
  Par_76=0 
  Par_77=0 
  '-------------------------------------------------------- 
  SET_MUX1 (00 000b)    'Mux 1: Kanal und Verstärkung 1 setzen ; Einschwingzeit gespart max 
2µs 
   
  CONF_DIO(1100b)       'setzt DIO 0-15 als Eigänge und 16-31 als Ausgänge 
  DIGOUT_LONG(0b) 
   
event: 
 'DIO- Ausgänge setzen Par_66-77 --> 12 DIO (16-28) --> Pin 19-7 DGND 37-25 
  if ((t=Time*2) and (Par_60=1))then 
    DIGOUT(16,Par_66) 
    DIGOUT(17,Par_67) 
    DIGOUT(18,Par_68) 
    DIGOUT(19,Par_69) 
    DIGOUT(20,Par_70) 
    DIGOUT(21,Par_71) 
    DIGOUT(22,Par_72) 
    DIGOUT(23,Par_73) 
    DIGOUT(24,Par_74) 
    DIGOUT(25,Par_75) 
    DIGOUT(26,Par_76) 
    DIGOUT(27,Par_77) 
  endif 
   
  Time = FPar_19/2 ' (procfreq/FPar_19/delayP)/2 '1000/2 'FPar_19/2 '--> Bandbreite = 
Abtastgeschwindigkeit x Periodendauer T 
  FPar_18=procfreq/FPar_19/Processdelay    'Frequenz einer Periode in Hz 
  FPar_20 = Time      'Abtastwerte einer Periode 
  ampDig = FPar_21/multi16 
  ampoff = FPar_22/multi16 
  Par_1 = m                   'Data_1 Analog_in zähler 
  Par_2 = t                   'Zähler für eine Periode der Sinus- kurve 
  Par_4= diff                 ' Differenzzähler für Symetrieabweichung: e 
  Par_8=esummittel 
  Par_13=esummittelold 
  FPar_6=Processdelay*3.33333333*10^-6  '--> Abtastrate in ms6 
   
  '------generation of sine function------------------------- 
   
  if (Par_6=1)then      'Bei Regler ein: 
    if (t=0) then       'lässt Änderungen der Amplitude, Offset und Frequenz erst nach Ablauf 
einer Periode zu 
      w = pi/Time 
      sinus_out = (ampDig+FPar_25/multi16)*(Sin(w*t))+offset16  -esummittel/2-esummittelold/2   
+ampoff +FPar_24/multi16 
      ampDigtmp=ampDig 
      ampofftmp=ampoff 
      Timetmp=Time 
    else 
      w = pi/Timetmp  
      sinus_out = (ampDigtmp+FPar_25/multi16)*(Sin(w*t))+offset16  -esummittel/2-
esummittelold/2 +ampofftmp +FPar_24/multi16 
    endif 
     
  endif 
   
  'Regler aus nur Frequenzgenerator mit offset 
  if (Par_6=0)then sinus_out = (ampDig+FPar_25/multi16)*(Sin(w*t))+offset16 +ampoff 
     
   
  '-----DA-Output-------------------------- 
   
  sinus_out_2=sinus_out +0.5 
  FPar_5 = sinus_out 
  Par_5 = sinus_out_2 
  DAC(1,(sinus_out_2)) 
   
  '-----AD--Input------------------------------  
  if (Par_6=1)then        'Analog auslesen und Regeln = 1 
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    Start_Conv(1)          'Start AD-Wandlung ADC1 
    Wait_EOC(1)            'Wandlungsende des ADC1 abwarten 
    analog_in = Read_ADC(1)  
     
    'analog_in=adc(1)  
    Data_1[m] = (analog_in-offset16) * multi16    '(lese AD Wandler - offset)*bit to volt 
    Data_3[m] = (analog_in) 
         
    '-----symetrische-Abweichung-pos-neg-Flanke--------------------- 
   
    Time2=(Time/2)+0.5 
    FPar_30=Time2 
    Time32=(Time*3/2)+0.5 
    FPar_31=Time32 
     
    if (Par_3=0)then    
      if (t=(Time2)) then  
        Par_10=(Data_3[m]-offset16) '* multi16 
      endif 
   
      if (t=(Time32)) then  
        Par_11=(Data_3[m]- offset16) '* multi16 
      endif 
      e=Par_10+Par_11-2*ampoff 
    endif 
     
    if (Par_3=1)then 
      integriert =(Data_3[m]- offset16)+integriert 
      if (t=Time*2-1)then 
        efloat = (integriert/(Time*2)) 
        if (efloat<0)then efloat=efloat-0.5 
        if (efloat>0)then efloat=efloat+0.5 
        e2 = efloat 
        e = e2-ampoff 
        integriert=0 
      endif  
    endif 
       
    FPar_12=efloat-ampoff 
    Par_12=e 
    Data_2[diff2]=e 
    Data_4[diff2]=e*multi16*1000 'im mV 
 
    '---------------------------------------------------------------- 
       
    FPar_1=analog_in 
    inc m 
      
    if (diff>Par_18) then 
      esummittelold=esummittel+esummittelold 
      if ((esum/(diff-1))<(0))then esummittel = (esum/(diff-1))-0.5 
      if ((esum/(diff-1))>(0))then esummittel = (esum/(diff-1))+0.5 
      FPar_9 = esummittel 
      esum=0  
      diff=1 
    endif 
    
    if (m=3000) then m=1 
       if (diff2=3000) then diff2=1 
    endif 
     
    inc t 
    if (t>=Time*2)then 
       esum=e+esum 
       t=0  
       inc diff 
       inc diff2 
    endif 

endif  
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