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Abstract

Face-to-face interaction is characterised by head gestures that
vary greatly in form and function. We present on-going ex-
ploratory work in characterising the form of these gestures.
In particular, we define a kinematic annotation scheme and
compute various agreement measures among two trained an-
notators. Gesture type mismatches among annotators are com-
pared against kinematic characteristics of head gesture classes
derived from motion capture data.
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Introduction
Head gestures are known to play an important role in face-
to-face communication with distinct semantic, discourse and
interactive functions (Hadar, Steiner, Grant, & Rose, 1983;
McClave, 2000). Mapping the form and function of head
gestures is desirable both for understanding human commu-
nication as well as in the context of ECAs (Heylen et al.,
2011). Developing generative models for ECAs depends on
the availability of annotated corpora of multimodal interac-
tions (Lee, Wang, & Marsella, 2010).

However, head gesture annotation is costly as it requires
frame-by-frame analysis of video data (Allwood & Cerrato,
2003; Poggi, D’Errico, & Vincze, 2010), a fact that also in-
hibits statistical analysis over large data sets. Although this
limitation could be overcome by automatically detecting ges-
tures, existing detection algorithms focus on a restricted set
of portrayed gestures (typically nods and shakes) (Benoit &
Caplier, 2005; Morency, Sidner, Lee, & Darrell, 2005; Gunes
& Pantic, 2010) while natural interaction shows a greater
kinematic variety in head movement (Allwood, Cerrato, Joki-
nen, Navarretta, & Paggio, 2007).

There are several approaches to coding gesture types
which, depending on the study, are based on either the form or
the function of head gestures (Heylen, 2008). Definitions of
form are typically verbal descriptions of motions (Allwood
et al., 2007) which do not capture the actual variability of
head movements and rotations. In (Sargin, Yemez, Erzin, &
Tekalp, 2008), head movement patterns were learned entirely
from data but the number of patterns had to be defined arbi-
trarily and the information on motion included only rotations
and no lateral movement. The work presented here evaluates

a purely kinematic scheme using inter-annotator agreement
and motion-capture data acquired from high quality in-lab
recordings of multimodal dyadic interaction.

Data Collection
The material is a subset (4 dialogues, 60 minutes total in
8 videos) of the Dream Apartment Corpus, a collection
of dyadic interactions recorded in the MIntLAB (Kousidis,
Pfeiffer, Malisz, Wagner, & Schlangen, 2012). Subjects are
situated in a comfortable laboratory setting while a rich mul-
timodal recording is acquired. The recording includes HD
quality audio and video tracks, motion capture (Microsoft
Kinect1) as well as head, eye and gaze tracking data (Seeing
Machines Facelab2). Subjects do not need to be fitted with
any equipment in order to be recorded or tracked. This re-
duces the level of invasiveness, thereby allowing for a higher
degree of naturalness in interaction.

The participants are given a task to jointly design an apart-
ment, given a large amount of money is available in order to
cover the costs of purchase, furnishing and decoration. The
purpose of this task is to elicit spontaneous interaction as a
negotiation evolves, with frequent occurrences of iconic and
deictic gestures with the head or hands.

The tracking data for the head posture includes a 3D posi-
tion vector, a quaternion expressing the head orientation and
a simple tracking confidence measure. There are 60 frames
per second of tracking data.

Annotation Procedure
The report on the annotation procedure below follows the re-
comendations of Bayerl and Paul (2011). Each video was
annotated by two annotators, out of three in total, whose ex-
pertise level can be described as “schema developers”. Anno-
tation was performed in ELAN (Brugman & Russel, 2004)
using a front close-up view of the subject, without audio.
The goal was to annotate “any communicative head gesture”
which meant any head movement that might be perceived as a
signal, excluding inertial movement or movement caused by
body posture shift or articulatory movements.

1http://www.microsoft.com/en-us/kinectforwindows/
2Seeing Machines www.seeingmachines.com



The annotation scheme used(Table 1) is a superset of the
one in (Włodarczak, Buschmeier, Malisz, Kopp, & Wag-
ner, 2012) and also similar to that of (Paggio & Navarretta,
2011). Each label is defined purely kinematically and associ-
ated with one of six axes of motion. X, Y and Z denote move-
ment of the head left-right, up-down and front-back, respec-
tively. Pitch, Yaw and Roll denote, respectively, rotations of
the head up-down, left-right horizontally, and left-right verti-
cally (as in “leaning” the head).

Some gestures are implicitly cyclic (nod, shake, bobble)
but were also annotated when only “half” a cycle was present
(e.g. nodding downwards without pulling back up). Finally,
gestures frequently appear in connected sequences. These
were separated only if there was a perceivable “gap” between
them, otherwise they were assigned sequences of labels.

Table 1: Head gesture Inventory.

Label Description Axis
Nod Rotation down-up Pitch
Jerk ’Inverted nod’, head upwards Pitch
Tilt ’Sideways nod’ Roll
Shake Rotation left-right horizontally Yaw
Pro Pushing the head forward Z
Retr Pulling the head back Z
Turn Rotation left OR right Yaw
Bobble Shaking by tilting left-right Roll
Slide Sideways movement(no rotation) X
Shift Repeated slides left-right X
Waggle Irregular connected movement

Agreement Measures
Since the annotation schema is exploratory, the purpose of
computing an agreement measure is to evaluate the schema
itself rather than reach high agreement, which in itself is not
a reliable measure of correctness (Passonneau, Habash, &
Rambow, 2006). We are using mostly percentage measures,
as they are more informative, despite the fact that they can
be arbitrarily high, compared to stricter measures such as Co-
hen’s kappa. (Bayerl & Paul, 2011).

Event Agreement expresses whether annotators recognised
the same events as communicative head gestures. It equals
twice the number of annotated intervals that overlap, divided
by the sum of all intervals from both annotators. Intervals
can be counted more than once in the denominator if they
“participate” in more than one overlapping interval. In other
words, the error is halved, since neither annotator is “correct”.
Park, Mohammadi, Artstein, and Morency (2012) present a
similar approach which yields slightly lower scores.

Duration Agreement equals twice the sum of durations of
the overlaps, divided by the sum of all interval durations. This
is equivalent to “time slicing” in (Park et al., 2012) and ex-
presses, jointly, the agreement in marking onsets and offsets.

Label Agreement equals twice the matching unique labels
divided by the total number of unique labels. As a second,
more strict measure, we use the Levenshtein distance between
the two sets of labels (Levenshtein, 1966); it minimises the
“edit distance” to transform one set to the other, using inser-
tions, deletions and substitutions. All agreement measures
yield values between 0 and 1 and are expressed as percent-
ages.

Tracking data analysis
The tracking data is analysed using a collection of python
packages for scientific computing provided by EPD3. We
compute “energy signatures” or “profiles” for each gesture
label from the data, in order to explore whether (a) the kine-
matic properties match the axes defined in Table 1 and (b)
confusion in labels occurs due to proximity in the signatures.
At this time, only an energy profile is computed while other
properties such as direction and periodicity will be considered
in the future.

Energy profiles for gesture instances are calculated as
follows. The displacement (or rotation) for each axis is
smoothed using the Savitzki-Golay algorithm (Savitzky &
Golay, 1964) which also gives a velocity (or radial velocity)
vector. The sum of squares of the velocity yields the total en-
ergy for each axis. In order to compute an energy percentile
per axis, we take into account the ratio of mass to the moment
of inertia of the human head (Yoganandan, Pintar, Zhang, &
Baisden, 2009). Finally, in order to calculate a profile for
each gesture type, we use gestures with (a) a single matching
label for both annotators, (b) an average tracking confidence
of at least 60% and (c) a length of 200ms or more. Gesture
type profiles are simply the mean or median 6-dimensional
vectors from all instance profiles per type. As a result of the
above constraints, sample size is reduced and an energy pro-
file could be computed for only a subset of the label inventory.

Results and Discussion
In total 3055 events with 4117 labels were analysed. “Wag-
gle” was dropped due to low sample size. The event agree-
ment score (77%) indicates that the instruction to “annotate
all communicative gestures” allows for consistent identifica-
tion of relevant events, despite the relative difficulty in notic-
ing some gestures unless slow-motion playback is used. Con-
versely, about 20 % of all annotation intervals are “deletions”,
i.e. they are not matched by an interval from the second an-
notator. Figure 1 shows the percentage of deletions per la-
bel type (blue bars). A higher deletion rate indicates that a
movement form is more likely to be (a) perceived as non-
communicative, or (b) too subtle or difficult to recognise. It is
also possible that annotators are biased towards seeking those
gestures that occur more frequently (nod, turn, shake, tilt).

Duration agreement yields a similar score (79%) indicat-
ing consistency among annotators in marking gesture bound-
aries. For reference, a typical (single) head gesture lasts less

3Enthought Python Distribution. www.enthought.com
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Figure 1: Deletions per label type: Event deletions (blue) and
label deletions from event-sequences (grey)

than 500 ms, which translates the score to an average error
of 50ms per boundary, but is in fact lower: connecting two
single instances into a long sequence has a radical effect on
the duration agreement score.

Both label agreement and Levenshtein distance yield 74%.
87% of all single labels are (exact) matches. When taking
sequences into account, the percentage drops to 52% (44%
for Levenshtein distance). This indicates that confusion oc-
curs mostly in connected sequences of gestures rather than in
single gestures. Adding the deletions from annotated gesture
sequences (if a sequence is longer than the one it is compared
against), raises the deletion rate to 29 %. The distribution of
total deletions per label is shown in Figure 1 (grey bars).

Figure 2 shows the confusion between the labels, in both
single gestures and sequences, if a definite match or mismatch
can be found. Nods, shakes, turns and tilts are consistently
agreed upon. Overall label agreement is high as a result of
these four being the most common types. Shifts, slides and
bobbles are confused with one another and with tilt; all these
movement types share (theoretically) prominent axes (X and
Roll). Interestingly, turns and shakes share the Yaw axis but
are not confused; possibly because shakes are clearly cyclic
while turns are uniform, one-direction movements. Retrac-
tions and protrusions are both confusable with nods and jerks
but not with each other as they move in opposite directions.
However jerks are often confused with nod upstrokes.

The energy profiles in Table 2 show that the gestures are
not performed uniformly on one axis. However each gesture
has a higher percentile than other gestures on its prominent
axis. The high energy content on the translation axes is due to
the head rotating around the neck rather than its center, hence
any rotation is simultaneously a translation and vice versa.

Finally, the distances between gesture energy signatures
in Figure 3 show that “opposite” pairs (nod-jerk or pro-retr)
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Figure 2: Confusion matrix between head gesture labels

Table 2: Energy profiles of head gestures types

Label X Y Z Pitch Yaw Roll
nod 6 21 35 25 10 4
jerk 7 21 43 12 10 7
turn 30 5 23 7 32 3
tilt 14 9 29 18 13 17
shake 19 6 24 15 31 5
retr 8 16 40 14 11 11
pro 4 12 44 27 6 7

have indeed similar signatures. Further information, such
as direction, is used to distinguish them. Conversely, nods
are “far” from shakes, hence these two can be distinguished
fairly easily (by humans or algorithms). When no kinematic
classifier (energy, periodicity, direction) can differentiate two
gestures, they are often confused. The profile of tilts approxi-
mates the profile of nods on its prominent axis (Pitch), leading
to some confusion between tilts and nods.

Conclusions
We have explored the validity of an extended head gesture an-
notation scheme that attempts to cover the kinematic variabil-
ity of spontaneous face-to-face interaction. Annotator con-
sistency in segmenting and labeling relevant communicative
gestures was found, at least for the most common gestures.
Tracking data shows that kinematic content maps intuitively
to the expectation of what a gesture should look like. Energy
signatures can distinguish between head gesture “classes” but
more kinematic properties are needed to distinguish between
gestures sharing prominent axes.
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