
A corpus-based approach for the induction of
ontology lexica

Sebastian Walter, Christina Unger, and Philipp Cimiano

Semantic Computing Group, CITEC, Bielefeld University

Abstract. While there are many large knowledge bases (e.g. Freebase,
Yago, DBpedia) as well as linked data sets available on the web, they
typically lack lexical information stating how the properties and classes
are realized lexically. If at all, typically only one label is attached to these
properties, thus lacking any deeper syntactic information, e.g. about syn-
tactic arguments and how these map to the semantic arguments of the
property as well as about possible lexical variants or paraphrases. While
there are lexicon models such as lemon allowing to define a lexicon for
a given ontology, the cost involved in creating and maintaining such
lexica is substantial, requiring a high manual effort. Towards lowering
this effort, in this paper we present a semi-automatic approach that
exploits a corpus to find occurrences in which a given property is ex-
pressed, and generalizing over these occurrences by extracting depen-
dency paths that can be used as a basis to create lemon lexicon entries.
We evaluate the resulting automatically generated lexica with respect
to DBpedia as dataset and Wikipedia as corresponding corpus, both in
an automatic mode, by comparing to a manually created lexicon, and
in a semi-automatic mode in which a lexicon engineer inspected the re-
sults of the corpus-based approach, adding them to the existing lexicon
if appropriate.

Keywords: ontology lexicalization, corpus-based approach, lemon

1 Introduction

The structured knowledge available on the web is increasing. The Linked Data
Cloud, consisting of a large amount of interlinked RDF datasets, has been grow-
ing steadily in recent years, now comprising more than 30 billion RDF triples1.
Popular and huge knowledge bases exploited for various purposes are Freebase,
DBpedia, and Yago.2 Search engines such as Google are by now also collecting
and exploiting structured data, e.g. in the form of knowledge graphs that are
used to enhance search results.3 As the amount of structured knowledge avail-
able keeps growing, intuitive and effective paradigms for accessing and querying

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2 http://www.freebase.com/, http://dbpedia.org/, http://www.mpi-inf.mpg.de/
yago-naga/yago/

3 http://www.google.com/insidesearch/features/search/knowledge.html

2 Sebastian Walter, Christina Unger, Philipp Cimiano

this knowledge become more and more important. An appealing way of access-
ing this growing body of knowledge is through natural language. In fact, in
recent years several researchers have developed question answering systems that
provide access to the knowledge in the Linked Open Data Cloud (e.g. [8], [13],
[14], [2]). Further, there have been some approaches to applying natural lan-
guage generation techniques to RDF in order to verbalize knowledge contained
in RDF datasets (e.g. [10], [12], [4]). For all such systems, knowledge about how
properties, classes and individuals are verbalized in natural language is required.
The lemon model4 [9] has been developed for the purpose of creating a standard
format for publishing such lexica as RDF data. However, the creation of lex-
ica for large ontologies and knowledge bases such as the ones mentioned above
involves a high manual effort. Towards reducing the costs involved in building
such lexica, we propose a corpus-based approach for the induction of lexica for
a given ontology which is capable of automatically inducing an ontology lexicon
given a knowledge base or ontology and an appropriate (domain) corpus. Our
approach is supposed to be deployed in a semi-automatic fashion by proposing
a set of lexical entries for each property and class, which are to be validated by
a lexicon engineer, e.g. using a web interface such as lemon source5.

As an example, consider the property dbpedia:spouse as defined in DB-
pedia. In order to be able to answer natural language questions such as Who
is Barack Obama married to? we need to know the different lexicalizations of
this property, such as to be married to, to be the wife of, and so on. Our ap-
proach is able to find such lexicalizations on the basis of a sufficiently large
corpus. The approach relies on the fact that many existing knowledge bases
are populated with instances, i.e. by triples relating entities through properties
such as the property dbpedia:spouse. Our approach relies on such triples, e.g.
〈dbpedia:Barack Obama, dbpedia:spouse, dbpedia:Michelle Obama〉 to find
occurrences in a corpus where both entities, the subject and the object, are men-
tioned in one sentence. On the basis of these occurrences, we use a dependency
parser to parse the relevant context and generate a set of lexicalized patterns
that very likely express the property or class in question.

The paper is structured as follows: in Section 2 we present the general ap-
proach, distinguishing the case of inducing lexical entries for properties and for
classes. The evaluation of our approach with respect to 80 pseudo-randomly se-
lected classes and properties is presented in Section 3. Before concluding, we
discuss some related work in Section 4.

2 Approach

Our approach6 is summarized in Figure 1. The input is an ontology and the
output is a lexicon in lemon format for the input ontology. In addition, it relies
on an RDF knowledge base as well as a (domain) corpus.

4 For detailed information, see http://lemon-model.net/.
5 http://monnetproject.deri.ie/lemonsource/
6 Available at https://github.com/swalter2/knowledgeLexicalisation

Lexicalizing Linked Open Data 3

Fig. 1: System overview

The processing differs for properties and classes. In what follows, we describe
the processing of properties, while the processing of classes, which does not rely
on the corpus, is explained below in Section 2.5. For each property to be lexical-
ized, all triples from the knowledge base containing this property are retrieved.
The labels of the subject and object entities of these triples are then used for
searching the corpus for sentences in which both occur. Based on a dependency
parse of these sentences, patterns are extracted that serve as basis for the con-
struction of lexical entries. In the following, we describe each of the steps in more
detail.

2.1 Triple retrieval

Given a property, the first step consists in extracting from the RDF knowledge
base all triples containing that property. In the case of DBpedia, for the property
dbpedia:spouse, for example, 44 197 triples are found, including the following7:

– (resource:Barack Obama, dbpedia:spouse, resource:Michelle Obama)
– (resource:Alexandra of Denmark, dbpedia:spouse, resource:Edward VII)
– (resource:Hilda Gadea, dbpedia:spouse, resource:Che Guevara)
– (resource:Mel Ferrer, dbpedia:spouse, resource:Audrey Hepburn)

7 Throughout the paper we use the prefixes dbpedia and resource for
http://dbpedia.org/ontology/ and http://dbpedia.org/resource/, respec-
tively.

4 Sebastian Walter, Christina Unger, Philipp Cimiano

2.2 Sentence extraction and parsing

For each triple (s, p, o), that was extracted for a property p, we retrieve all sen-
tences from the domain corpus in which the labels of both entities s and o occur.
This step is performed relying on an inverted index. An example sentence ex-
tracted from Wikipedia for the subject/object pair Barack Obama and Michelle
Obama is the following:

The current First Lady is Michelle Obama, wife of Barack Obama.

Each of the retrieved sentences is parsed with the pre-trained Malt depen-
dency parser8. In order to avoid errors in parsing, the entity occurrences are
replaced with a single word. For example, Queen Silvia of Sweden is replaced
with QueenSilviaofSweden; this ensures that it is tagged as a named entity. Once
a sentence has been parsed, the dependency parse is added to the index. This
speeds up the process when the same sentence is retrieved again later.

From the dependency parses, we extract all paths that connect the entities
in question. For the sentence above, for example, the following path connecting
Barack Obama and Michelle Obama is found:

The current First Lady is MichelleObama , wife of BarackObama .

root

appos

prep pobj

2.3 Pattern generation, postprocessing and filtering

On the basis of the discovered dependency paths, patterns are generated by
abstracting over the specific entities occuring in the parse. The above mentioned
path would for instance be generalized to:

x wife of y

appos prep pobj

In addition, the generalized patterns are postprocessed, e.g. by removing
determiners such as the. To avoid unnecessary noise, only patterns with a length
of at least three but not longer than six tokens are accepted. Also, if the entities
x or y are related to another token by nn, i.e. are modifiers, the pattern is not
considered. Additional processing, such as subsuming similar patterns under a
single one, are planned but not yet implemented.

Finally, for each property we compute the relative frequency of the found
patterns, i.e. the number of sentences that yielded a certain pattern in relation
to the overall number of sentences for that property. We then consider only those
patterns that occur at least twice and surpass a certain threshold θ, which is
determined empirically in Section 3.3 below.

8 http://www.maltparser.org/

Lexicalizing Linked Open Data 5

2.4 Generation of lexical entries

All patterns found by the above process, whose relative frequency is above a
given threshold θ, are then transformed into a lexical entry in lemon format. For
instance, the above mentioned pattern is stored as the following entry:

1 :wife a lemon:LexicalEntry ;

2 lexinfo:partOfSpeech lexinfo:noun ;

3 lemon:canonicalForm [lemon:writtenRep "wife"@en] ;

4 lemon:synBehavior [rdf:type lexinfo:NounPPFrame ;

5 lexinfo:copulativeArg :x_appos ;

6 lexinfo:prepositionalObject :y_pobj] ;

7 lemon:sense [lemon:reference

8 <http :// dbpedia.org/ontology/spouse >;

9 lemon:subjOfProp :x_appos ;

10 lemon:objOfProp :y_pobj] .

11

12 :y_pobj lemon:marker [lemon:canonicalForm

13 [lemon:writtenRep "of"@en]] .

This entry comprises a part of speech (noun), a canonical form (the head
noun wife), a sense referring to the property spouse in the ontology, and a syn-
tactic behavior specifying that the noun occurs with two arguments, a copulative
argument that corresponds to the subject of the property and a prepositional
object that corresponds to the object of the property and is accompanied by a
marker of.9 The specific subcategorization frame is determined by the kind of
dependency relations that occur in the pattern. Currently, our approach covers
nominal frames (e.g. activity and wife of), transitive verb frames (e.g loves),
and adjectival frames (e.g. Spanish).

2.5 Lexicalization of classes

The lexicalization process for classes differs from that for properties in that
the corpus is not used. Instead, for each class in the ontology, its label is ex-
tracted as lexicalization. In order to also find alternative lexicalizations, we con-
sult WordNet to find synonyms. For example, for the class http://dbpedia.
org/ontology/Activity with label activity, we find the additional synonym
action, thus leading to the following two entries in the lemon lexicon10:

1 :activity a lemon:LexicalEntry ;

2 lexinfo:partOfSpeech lexinfo:noun ;

9 From a standard lexical point of view the syntactic behavior might look weird.
Instead of viewing the specified arguments as elements that are locally selected
by the noun, they should rather be seen as elements that occur in a prototypical
syntactic context of the noun. They are explicitly named as it would otherwise be
impossible to specify the mapping between syntactic and semantic arguments.

10 As linguistic ontology we use ISOcat (http://isocat.org); in the examples, how-
ever, we will use the LexInfo vocabulary (http://www.lexinfo.net/ontology/2.0/
lexinfo.owl) for better readability.

6 Sebastian Walter, Christina Unger, Philipp Cimiano

3 lemon:canonicalForm [lemon:writtenRep "activity"@en] ;

4 lemon:sense [lemon:reference

5 <http :// dbpedia.org/ontology/Activity >] .

6

7 :action a lemon:LexicalEntry ;

8 lexinfo:partOfSpeech lexinfo:noun ;

9 lemon:canonicalForm [lemon:writtenRep "action"@en] ;

10 lemon:sense [lemon:reference

11 <http :// dbpedia.org/ontology/Activity >] .

These entries specify a part of speech (noun), together with a canonical form
(the class label) and a sense referring to the class URI in the ontology.

3 Evaluation

In this section, we describe the methodology used in our evaluation as well as
the evaluation measures, followed by a presentation and discussion of the results.
Note that we evaluate our methodology in terms of how well it can support the
creation of a lexicon. Of course the extracted patterns could also be used to find
new instances of a relation within an information extraction paradigm. However,
an evaluation of this potential use is out of the scope of the current paper.

3.1 Methodology and dataset

We evaluate our approach in two modes: fully automatic and semi-automatic. In
the automatic mode, we evaluate the results of our corpus-based lexicon induc-
tion method by comparing the automatically generated lexicon with a manually
constructed lexicon for DBpedia. The manually constructed lexicon was cre-
ated by two persons not directly involved in the development and evaluation
of the approach presented in this paper. In particular, these lexicon engineers
did not have access to the results of the algorithm proposed here when creating
their lexica. For the evaluation of our approach in the semi-automatic mode,
the above mentioned lexicon engineers and one of the authors inspected the au-
tomatically generated lexica and added all appropriate lexical entries to their
manually created lexicon in case it was appropriate and missing in the lexicon.
In this evaluation mode we thus compare the automatically generated lexicon
with a superset of the manually constructed lexica. By this, we do not penalize
our approach for finding lexical entries that are correct but not contained in
the manually constructed lexicon, thus representing a fair evaluation of our ap-
proach with respect to the targeted setting in which a lexicon engineer validates
the automatically constructed lexical entries.

For the purposes of evaluation, we selected a training set for parameter tun-
ing and a test set for evaluation, each consisting of 10 DBpedia classes and 30
DBpedia properties, in a largely pseudo-random fashion in the sense that we
randomly selected properties from different frequency ranges, i.e. ranging from
properties with very few instances to triples with many instances. We then fil-
tered those that turned out to either have no instances—leaving in only one

Lexicalizing Linked Open Data 7

empty property per set, meltingPoint and sublimationPoint, in order to be
able to evaluate possible fallback strategies—or to not have an intuitive lexical-
ization, e.g. espnId. On average, the properties selected for training have 36 100
instances (ranging from 15 to 229 579), while the properties in the test set have
59 532 instances on average (ranging from 9 to 444 025). The training and test
sets are also used in the ontology lexicalization task of the QALD-3 challenge11

at CLEF 2013.

We use the training set to determine the threshold θ, and then evaluate the
approach on the unseen properties in the test set.

3.2 Evaluation measures

For each property, we evaluate the automatically generated lexical entries by
comparing them to the manually created lexical entries along two dimensions:
i) lexical precision, lexical recall and lexical F-measure, and ii) lexical accuracy.
In the first dimension, we evaluate how many of the gold standard entries for a
property are generated by our approach (recall), and how many of the automat-
ically generated entries are among the gold standard entries (precision), where
two entries count as the same lexicalization if their lemma, part of speech and
sense coincide. Thus lexical precision Plex and recall Rlex for a property p are
defined as follows:

Plex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesauto(p)|

Rlex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesgold(p)|

Where entriesauto(p) is the set of entries for the property p in the automatically
constructed lexicon, while entriesgold(p) is the set of entries for the property p
in the manually constructed gold lexicon. The F-measure Flex(p) is then defined
as the harmonic mean of Plex(p) and Rlex(p), as usual.

The second dimension, lexical accuracy, is necessary in order to evaluate
whether the specified subcategorization frame and its arguments are correct,
and whether these syntactic arguments have been mapped correctly to the se-
mantic arguments (domain and range) of the property in question. The accuracy
of an automatically generated lexical entry lauto for a property p w.r.t. the cor-
responding gold standard entry lgold is therefore defined as:

Ap(lauto) =(frameEq(lauto, lgold) +
|args(lauto) ∩ args(lgold)|

|args(lgold)| +

∑
a∈args(lauto)

map(a)

|args(lauto)|)/3

where frameEq(l1, l2) is 1 if the subcategorization frame of l1 is the same
as the subcategorization frame of l2, and 0 otherwise, where args(l) returns the

11 http://www.sc.cit-ec.uni-bielefeld.de/de/qald

8 Sebastian Walter, Christina Unger, Philipp Cimiano

syntactic arguments of l’s frame, and where

map(a) =

1, if a in lauto has been mapped to the same semantic argument

of p as in lgold

0, otherwise

When comparing the argument mapping of the automatically generated entry
with that of the gold standard entry, we only consider the class of the argu-
ment, simply being subject or object. This abstracts from the specific type of
subject (e.g. copulative subject) and object (e.g. indirect object, prepositional
object, etc.) and therefore allows for an evaluation of the argument mappings
independently of the correctness of the frame and frame arguments. The lexical
accuracy Alex(p) for a property p is then computed as the average mean of the
accuracy values of each generated lexicalization. All measures are computed for
each property and then averaged for all properties. In the sections below, we will
report only the average values.

3.3 Results and discussion

Figure 2a shows results for the 30 training properties in automatic mode in terms
of Plex, Rlex, and Flex, depending on the threshold θ. Accuracy is not plotted, as
it is not influenced by θ. Neither are results for the classes, as they also do not
vary with θ (recall is 0.73, precision is 0.55, and accuracy 0.9). The value θ is the
likelihood that a specific pattern occurs given all the sentences expressing the
property in question. On the basis of these results, we identify two θ values that
are of interest: a low value around 0.2, which leads to high recall, and a high
value around 5.0, which results in a drop in recall but an increase in precision.
Having in mind a semi-automatic scenario, in which a lexion engineer validates
and, if necessary, corrects the automatically generated lexical entries, we put
more emphasis on recall, as it is easier and faster to filter out wrong entries than
to discover and add missing one.

Figure 2b gives the results in terms of the average precision Plex, recall Rlex,
and F-measure Flex, as well as average accuracy Alex for the test set in both
evaluation modes, for both relevant θ values, and on all 40 URIs. As with the
training set, precision increases and recall decreases for higher θ.

In automatic mode, roughly half of the gold standard entries are generated,
usually with a fair precision and accuracy, together with an additional amount of
lexicalizations, ranging from 2 to 500, that are not in the gold standard. Of these
additional lexicalizations, on average 1.4 entries are correct and were added to
the gold standard lexicon. This improved precision and recall roughly by 0.2,
accuracy even 0.3 and 0.4.

The property programmingLanguage is an example of a proeprty that per-
forms quite bad in terms of precision. Here, six out of seven gold standard lex-
icalizations are found, leading to a recall of 0.85 and accuracy of 0.96, but also
more than 500 wrong lexicalizations are created, yielding a precision of 0.01. The
main reason is that the entity labels are not yet preprocessed and therefore take

Lexicalizing Linked Open Data 9

0 2 4 6
0

0.2

0.4

0.6

0.8

1

R
P
F

θ (Liklihood of pattern)

R
es

u
lt

(a) Results on train in automatic mode,
with varying θ

θ Rlex Plex Flex Alex

Full 0.2 0.43 0.27 0.24 0.37

5.0 0.42 0.4 0.34 0.37

Semi 0.2 0.64 0.48 0.41 0.76

5.0 0.59 0.69 0.55 0.68

(b) Results on test in fully automatic
and semi-automatic mode, with fixed θ

Fig. 2: Results on training (a) and test (b) dataset.

forms such as C (programming language), which, in combination with the index
lookup, leads to the extraction of sentences that might not be relevant, and also
hinders the dependency path search between those entities. A similar problem
is connected to datatype properties: Literals, such as floating point numbers
and dates, have to be preprocessed in order to be found in corpus sentences.
Also, the property elevation, for example, relates (among others) Barcelona
with the number 12, which co-occur in quite some sentences that have noth-
ing to do with the property, such as: Originally from Barcelona, Spain, he was
born March 12, 1971. A more sophisticated way of filtering patterns found for
datatype properties is thus of high importance.

A more general limitation of our tool is that it yet only creates three frame
types, so more complex entries such as to write music for (lexicalizing the prop-
erty musicBy) still cannot be created. Another problem of the approach is that
not all lexicalizations in the gold standard lexicon do occur in the given cor-
pus. For example, for write music for no sentence can be found; also no sen-
tences with sublime are found that contain an entity pair related by the property
sublimationPoint.

The average processing time amounts to around 15 seconds per property for
the test dataset, assuming that the sentences extracted from the corpus have
already been parsed.

4 Related work

In this section we briefly discuss related work in the area of extracting lexical
patterns or paraphrases from corpora that verbalize a given relation in an ontol-
ogy. An approach that is similar in spirit to our approach is Wanderlust [1] which

10 Sebastian Walter, Christina Unger, Philipp Cimiano

relies on a dependency parser to find grammatical patterns in a given corpus—
Wikipedia in their case as in ours. These patterns are generic and non-lexical
and can be used to extract any semantic relation. Wanderlust differs from our
approach in several aspects. First, our dependency paths are anchored in par-
ticular lexical entries. Second, we start from a given property and use instance
data to find all different lexical variants of expressing one and the same prop-
erty. Wanderlust, on the other hand, maps each dependency path to a different
property (modulo some postprocessing to detect subrelations) and is in principle
not able to find different variants of expressing one and the same property, so
that semantic normalization is not achieved.

Another related tool is DIRT [7] (Discovery of Inference Rules from Text),
which is an unsupervised method for finding inferences in text, so that x is author
of y is a paraphrase of x wrote y. DIRT relies on a similarity-based approach
to discover similar dependency paths, where two paths are similar if they show
a high degree of overlap in the nouns that appear at the argument positions of
the paths. We could esily extend our approach to also exploit similarity of the
nouns occurring as arguments in patterns to find further paraphrases. The main
difference to our approach is that DIRT does not rely on an existing knowledge
base of instantiated triples to bootstrap the acquisition of patterns from textual
data, thus being completely unsupervised. Given the fact that nowadays there
are large knowledge bases such as Freebase and DBpedia there is no reason why
an approach should not exploit the available instances of a property or class to
bootstrap the acquisition process.

A very similar system, BOA [5], also relies on existing triples from a knowl-
edge base, in particular DBpedia. BOA applies a recursive procedure, starting
with extracting triples from linked data, then extracting natural language pat-
terns from sentences and inserting this patterns as RDF data back into the
Linked Data Cloud. However, BOA rely on simple string-based generalization
techniques to find actual patterns. This makes it difficult to discard optional
modifiers and can generate a high amount of noise. This has been corroborated
by initial experiments in our lab on inducing patterns from all the context be-
tween the two entities in question.

Espresso [11] employs a minimally supervised bootstrapping algorithm which,
based on only a few seed instances of a relation, learns patterns to extract more
instances. Espresso is thus comparable to our approach in the sense that both
rely on a set of seed sentences to induces patterns. In our case, these are derived
from a knowledge base, while in the case of Espresso they are manually anno-
tated. A difference is that we rely on dependency paths connecting two entities,
which yields a principled approach to discarding modifiers and yielding more
general patterns. A system that is similar to Espresso and uses dependencies is
the one proposed by Ittoo & Bouma [6]. In contrast to Espresso, we have not
evaluated our approach on a relation extraction task. A further difference is that
Espresso leverages the web to find further occurrences of the seed instances. The
corpus we use, Wikipedia, is several order of magnitude bigger compared to the
corpora used by Espresso, but nevertheless it would be interesting to extend our

Lexicalizing Linked Open Data 11

approach to work with web data in order to overcome data sparseness (e.g. as
in [3]). This is clearly an option to make use of in case not enough instances
are available or not enough seed sentences can be found in the given corpus to
bootstrap the pattern acquisition process.

5 Conclusion and future work

We presented an approach to the automatic induction of ontology lexica and in-
stantiated it for DBpedia with a corresponding Wikipedia corpus. The approach
itself is independent of the chosen domain and could be applied to any other
dataset. The results will, however, depend on the specific modelling of the RDF
data and the size and quality of the corpus. In particular, our approach faces two
principled shortcomings that we want to address in future work. They concern
domain and range restrictions as well as verbalizations of complex senses.

First, our approach does not yet check whether patterns are appropriate
verbalizations only for a domain or range of the target property. For example,
the property team, which connects an athlete or manager with a sports team,
could be verbalized as plays for in case the subject is a football, basketball or
volleyball player, as races for in case the subject is a cyclist or race driver,
and as manages if the subject is a sports manager. This can be captured by
additionally checking the set of entity pairs that led to a certain pattern for a
common subclass of the domain or range of the target property.

Second, our approach only finds verbalizations for simple classes and prop-
erties, but not for more complex constructs such as property chains. For ex-
ample, born in is found as verbalization for dbpedia:birthPlace, connecting
people to the city and sometimes also the country of their birth. This, however,
misses the fact that in the dataset the country of birth is not always expressed
directly by dbpedia:birthPlace, but often indirectly by the property chain
dbpedia:birthPlace ◦ dbpedia:country. A generated lexicon should contain
both senses for born in.

Additionally, future work will include an ongoing effort in increasing the
number and quality of patterns found. One direction to explore is the extent to
which our approach can benefit from the preprocessing of corpus sentences, e.g.
by applying reference resolution. Consider, for example, the following sentences:
Barack Obama hosted a White House dinner. He and his personal secretary
decided to mainly serve vegan food. The pattern and his personal secretary in
the second sentence can only be extracted if the reference of the pronoun he is
resolved to the entity Barack Obama.

Overall, in this paper we have proposed a first step towards lowering the
cost for creating lexica for a given ontology. Such lexica are crucial for any
approach requiring access to information about how properties and classes are
verbalized in a given language. While our evaluation has shown that our approach
is promising, future work will provide a more extensive proof-of-concept, showing
that the lexica can be exploited successfully for tasks such as question answering
and natural language generation, also in a multilingual settings.

12 Sebastian Walter, Christina Unger, Philipp Cimiano

Acknowledgment This work has been funded by the European Union’s Sev-
enth Framework Programme (FP7-ICT-2011-SME-DCL) under grant agreement
number 296170 (PortDial).

References

1. A. Akbik and J. Broß. Wanderlust: Extracting semantic relations from natural lan-
guage text using dependency grammar patterns. In Proceedings of the Workshop on
Semantic Search in Conjunction with the 18th Int. World Wide Web Conference,
2009.

2. A. Bernstein, E. Kaufmann, C. Kaiser, and C. Kiefer. Ginseng: A guided input nat-
ural language search engine. In Proceedings of the 15th Workshop on Information
Technologies and Systems, pages 45–50, 2005.

3. Sebastian Blohm and Philipp Cimiano. Using the web to reduce data sparseness in
pattern-based information. In Proceedings of 11th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases, pages 18–29. Springer,
2007.

4. N. Bouayad-Agha, G. Casamayor, and L. Wanner. Natural language generation
and semantic web technologies. Semantic Web Journal, in press.

5. D. Gerber and A.Ngomo. Bootstrapping the linked data web. In Proceedings of
the 10th International Semantic Web Conference (ISWC), 2011.

6. Ashwin Ittoo and Gosse Bouma. On learning subtypes of the part-whole rela-
tion: Do not mix your seeds. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 1328–1336, 2010.

7. D. Ling and P. Pantel. DIRT - discovery of inference rules of text. In Proceedings
of the 7th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 323–328. ACM, 2001.

8. V. Lopez, M. Fernandez, E. Motta, and N. Stieler. Poweraqua: Supporting users in
querying and exploring the semantic web. Semantic Web Journal, pages 249–265,
2012.

9. J. McCrae, D. Spohr, and P. Cimiano. Linking lexical resources and ontologies on
the semantic web with lemon. In Proceedings of the 8th Extended Semantic Web
Conference (ESWC), pages 245–259. Springer, 2011.

10. C. Mellish and X. Sun. The semantic web as a linguistic resource: opportunities for
natural language generation. In Proceedings of 26th SGAI International Conference
on Innovative Techniques and Applications of Artificial Intelligence, pages 298–303.
Elsevier, 2006.

11. P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for auto-
matically harvesting semantic relations. In Proceedings of the 21st International
Conference on Computational Linguistics (COLING), pages 113–120. ACM, 2006.

12. A. Third, S. Williams, and R. Power. OWL to english: a tool for generating
organised easily-navigated hypertexts from ontologies. In Proceedings of of 10th
International Semantic Web Conference (ISWC), pages 298–303, 2011.

13. C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga-Ngomo, D. Gerber, and
P. Cimiano. Sparql template-based question answering. In Proceedings of the
World Wide Web Conference (WWW), pages 639–648. ACM, 2012.

14. S. Walter, C. Unger, P. Cimiano, and D. Bär. Evaluation of a layered approach
to question answering over linked data. In Proceedings of the 11th International
Semantic Web Conference (ISWC), pages 362–374. Springer, 2012.

