
Coreference without Discourse Referents
A non-representational DRT-like discourse semantics

Gianluca Giorgolo, Christina Unger

UiL-OTS, Universiteit Utrecht

Abstract

We propose a non-representational, compositional treatment of anaphora. By non-
representational we mean working directly with denotations without relying on specific
features of a representational language, such as discourse referents. The approach is based
on an adapted version of the montagovian theory of generalized quantifiers. Furthermore
we use a language abstraction borrowed from programming language semantics to enforce
a specific order of evaluation for the interpretations. This allows us to reproduce the se-
quential dynamics of anaphora. We present a complete formalization of our theory that
can be easily implemented in a functional computational paradigm. In the end we discuss
limitations of our approach and present preliminary solutions.

1 Introduction

This paper presents a compositional treatment of anaphora. Other similar pro-
posals can be found in the literature: Groenendijk and Stokhof (1991) modify
the interpretation of quantifiers in first-order logic by letting them have an unlim-
ited scope, Muskens (1996) emulates DRT in type theory by adding sorts for dis-
course referents (thus maintaining a representational component), while de Groote
(2006) employs a continuation-passing like approach where each sentence takes
the continuation of the discourse as an argument, thus allowing a re-use of bound
variables. The main goal of our work is to work directly with the denotations of
linguistic constituents rather than relying on specific features of some represen-
tational language, as it is the case for more traditional approach to anaphora like
DRT (Kamp and Reyle 1993) and file change semantics (Heim 1983).

In addition to this theoretical concern, we would also like to maintain some
intuitive insights from DRT that are somehow obfuscated by the complexity of the
formal machinery in proposals like the already cited de Groote (2006). And from a
more applied perspective we would like to be able to go almost mechanically from
a Montague-style lexicon to a “dynamic” lexicon.

Another fundamental issue that our proposal takes into account is the need to
deal with time related phenomena. Anaphora, for example, enforces a particular
sequence of linguistic events: first the antecedent noun phrase is introduced and
then an anaphoric pronoun picks up the reference. A purely compositional account
is however unable to capture these restrictions, but, as suggested by Shan (2002),
we can simulate such capability through monads, a category-theory derived triple
of mappings mainly used in programming language semantics to account for side-
effecting computations (Moggi 1989, Wadler 1995).1 This is similar to the ap-

1At the same time monads will allow us to express more concisely the complex mathematical objects



proach of Barker and Shan (2008) who employ continuation to enforce a specific
order of evaluation.

The paper is structured as follows: in section 2 we present at an intuitive level
the model and how we can treat the main aspects of anaphora in a purely compo-
sitional way. Section 3 elaborates on the ideas presented in section 2 by giving a
formal implementation of the system. As the reader will notice, our formalization
is strongly influenced by functional programming. Finally, in section 4 we illus-
trate how the system works by presenting a sample lexicon and working out some
simple examples. We conclude with some problematic cases on which we are still
working.

2 Compositional anaphora

2.1 Formal and notational preliminaries

As customary, we will assume that the denotations of natural language expressions
can be identified with elements of set theoretic objects joined together in a set,
referred to as a frame. We define a frame F inductively as follows:2

1. t ∈ F, with t = {0, 1}.

2. e ∈ F, where e is a non-empty arbitrary set, the set of entities.

3. If σ ∈ F and π ∈ F then (σ → π) ∈ F, where (σ → π) denotes the set of
all functions with domain σ and codomain π

In the following, when we name elements of F, we will drop outermost parentheses
and assume right associativity for functional abstraction (→). We will also call
these elements types, and state that an object has a certain type if it is a member of
the set named by that type. When the exact type is not relevant we will use lower
case Greek letters to indicate a type meta-variable.

Sometimes we will refer also to objects outside the frame but we will also refer
to them using types. In particular we will mention an arbitrary singleton set and
call it Unit.3

Often we will also need to state that a particular mathematical object is a mem-
ber of a certain set (or type). To do this we will follow the type theoretical conven-
tion of writing ` : τ , meaning that the object ` is a member of the set (or has type)
τ .

Finally, we will represent the mathematical objects of our frames by using λ-
terms. The syntax we use is fairly standard: constants of various types (the exact
type is normally left implicit but it is clear from the context) are typeset in boldface
(e.g. c), variables are typeset in italics (e.g. x), we write the application of a term t
to a term u as t u, abstraction is represented as usual by a prefixed λ followed by

required by our approach.
2In our definition we do not distinguish types and domains.
3The nature of the single inhabitant of this type is completely irrelevant, as this is the value produced
by computations which are interesting only for their side-effects.



the name of the variable that is abstracted in the rest of the term, we write 〈t, u〉
for the ordered pair formed by terms t and u, and π1 p and π2 p for the first and
second projection of the pair p respectively.

2.2 Doing without discourse referents

In a theory like DRT, referents are purely linguistic4 devices, that require an ad-
ditional mechanism, an assignment function, to be interpretable. Our goal is to
work directly with denotational objects and remove the need for a representation.
Our solution is based on denotational objects corresponding to generalized quan-
tifiers. The idea is to consider reference as a process that creates a function (the
generalized quantifier) that given a particular set of conditions (equivalent to the
conditions expressed in body part of boxes in DRT) produces a filter on the set
of entities. In other words, noun phrases that introduce a reference contribute to
discourse meaning by providing a promise of an entity-filter that can be fulfilled
only when the predication connected to the noun phrase is complete.

Type theoretically this amounts to considering two kind of objects: on one
hand filters, i.e. objects of type (e → t) → t, and on the other hand conditions,
i.e. objects of type e→ t. The pair formed by a filter and a condition is the funda-
mental mathematical gadget of our approach, and we will call it a reference pair.
It captures the idea that a discourse basically highlights specific regions of its do-
main of interpretation (in the simplest case sets of entities) and then incrementally
and monotonically provides information regarding these areas of interest. The fi-
nal interpretation of the discourse (type theoretically its truth value) is obtained by
applying the filters to the corresponding conditions and conjoining the resulting
truth values.

For example, the discourse “Someone shouts.” can be roughly modeled by
assuming that the noun phrase someone introduces a filter λP.∃x.P x, which is
then coupled with then condition λx.shoutx, contributed by the predicate shouts.
We represent this situation as follows:

Φ = λP.∃x.P x Γ = λx.shout x (1)

Now suppose that the discourse is continued with the sentence “She bleeds.”: our
account requires the condition to be updated with the new predication5 introduced
by the verb-phrase bleeds. The resulting pair can be represented as follows:

Φ = λP.∃x.P x Γ = λx.shout x ∧ bleed x (2)

The details concerning the compositional process that results in this pair are ex-
plained in section 2.4, but the idea behind it is that the new condition is merged,
through intersection, with the already present condition.

4The language we are referring to is the box language or any formal substitute, not natural language.
5Of course assuming that the pronoun she refers back to the “someone” mentioned before.



Φa Γa

Φb Γb

Φc Γc Φd Γd

Figure 1: Sample reference tree

2.3 Coreferential availability

One of the strength of a theory like DRT is the ability to predict the possibility
for discourse referents to be “picked up” by an anaphoric noun phrase. DRT en-
codes this information in terms of accessibility, a notion related to the structural
properties of the terms used to represent a discourse. To maintain this predictive
capability we also need to keep track of discourse structure.

We want to structure the introduced references so that availability for corefer-
ence and saliency are easily computable. We thus organize the reference pairs in a
tree of stacks of such pairs. We will call such a tree a reference tree. Together with
this structure we keep a pointer to the node we are currently operating on. The
tree structure allows us to reproduce the DRT notion of accessibility in terms of
node dominance: from the current position we have access to reference pairs that
are either in the same node (somewhere in the stack) or in a node that dominates
the current one. The information in any other node is not accessible. The use of a
stack in the each node is a crude way to encode saliency: pairs higher in the stack
are more recent and thus more salient for coreference resolution.6

For example, if the reference tree built so far is the one represented in figure
1 and the current position is signaled by the arrow, at this specific point we have
access to the information encoded by the Φd,Γd pair, by the two pairs in the dom-
inating node, Φa,Γa and Φb,Γb, but not to the pair Φc,Γc.

Let us consider a more concrete example. First we assume that indefinite noun
phrases introduce a reference pair in the current node, while universally quantified
noun phrases first create a new child node and then introduce a reference pair
in the newly created position. Upon exiting the scope of the universal quantifier
the pointer is moved up again to the topmost position. In this way the reference
introduced by the universal quantifier will not be available for future coreference.
Thus, if we are given the discourse “A droid entered. A woman arrived. Each
man laughed.”, we can represent the denotation we will get after processing the

6Our model is actually completely independent of any coreference resolution strategy, so it could be
coupled with a more advanced algorithm for saliency computation. We are using this simple strategy
just for illustrative purposes.



last sentence as follows:

Φ = λP.∃x.P x Γ = λx.woman x ∧ arrive x
Φ = λP.∃x.P x Γ = λx.droid x ∧ enter x

Φ = λP.∀x.P x Γ = λx.man x→ laugh x (3)

The reference pairs introduced by the two sentences “A droid entered.” and “A
woman arrived.” are still available for further expansion, we could for exam-
ple extend the condition on the “woman” filter by uttering something like “She
sat down.”. On the other hand, the reference pair introduced by “Everyone
laughed.” is inaccessible, disallowing any attempt to modify it. This is in line
with the intuition that a discourse continuation like “He found her funny.” should
be ruled out.7

2.4 Building denotations

We turn now to the process of building the denotational structures introduced in
the previous section. The strategy we present combines the principle of composi-
tionality with a notion of information threading.

The main idea is that sentences are processed one at the time in a completely
compositional fashion, and, similarly to a standard montagovian setting, they pro-
duce a value. However, while the value produced by a sentence is considered to
be a truth value in standard Montague semantics, in our case a sentence will pro-
duce a value that corresponds to a condition, a function of type e→ t, roughly the
denotation of the verb phrase. This condition is then integrated in the condition of
the current most salient reference pair through set intersection.8 The modified ref-
erence tree is then passed as a context for the subsequent sentence. The integration
and the state passing is performed by an operator referred to as merge.

Noun phrases corresponding to generalized quantifiers contribute to discourse
meaning by pushing new reference pairs on the stack of the current node, while
definite noun phrases and pronouns alter the position of the pointer in the current
reference tree.

The interpretation of the whole discourse is obtained by taking the conjunction
of the application of each filter to its condition. For example, if the discourse
we want to interpret results in a reference tree like the one in figure 1, then the
interpretation of the discourse corresponds to the formula:

Φa Γa ∧ Φb Γb ∧ Φc Γc ∧ Φd Γd (4)

This formula is equivalent to the predicate logic translation of the discourse’s rep-
resentation structure that DRT would build.
7Of course assuming that we can pick up the “droid” reference only with a neuter pronoun it.
8Objects of type e→ t can in fact be regarded as sets, as they corresponds to the characteristic function
of a set: for every object of type e they tell us if the element is in the set (returning 1) or not (returning
0).



3 Formalization

In this section we formally describe how to implement the ideas outlined in section
2. All our definitions have a functional programming flavour, and in fact they
can be implemented quite literally in a functional language like Haskell or ML.
We think that expressing the model directly in a well understood computational
paradigm is a major advantage as it guarantees a correct implementation.

3.1 Adding a level of abstraction: monads

The main reason for introducing monads is the fact that they allow the simulation
of the notion of sequencing without the need to leave the known ground of pure
compositionality. Thus, we don’t need to extend our models to account for an
operator corresponding to the well known ; of imperative programming languages
(see for example (Muskens 1996)).

Actually monads can be used to simulate many more “side effects” than se-
quencing, and in fact we will use them also to simulate state changing computa-
tions. In the previous discussion we often referred to threading a modified refer-
ence tree from one sentence to another, and monads allow us to model this process
in an elegant way.

A monad is defined as a triple 〈M,η, ?〉 where:

• M is a name for the set representing the monadic computations, most often
some type of function. M is usually used in a parametrized fashion: M α
indicates that we are looking at the specific sets of monadic computations
that yield an object of type α.

• η (pronounced “unit”) is a function from any set α to the set M α, we can
think of it as the function that lifts any value into a monadic computation.

• ? (pronounced “bind”) is a function of type M α→ (α→M β)→M β (a
sort of “monadic apply”), it extracts a value from a monadic computation,
plugs it into function that uses the value to create a new monadic computa-
tion and returns the new monad.

The specific monad we are going to use is commonly referred to as the State
monad. It can be used to simulate computations that produce a value by reading
and possibly modifying an environment, and simultaneously to introduce a notion
of sequencing. For the State monad, M will correspond to the a set of functions
from the set of objects we decide to consider as environments to a pair composed
of a value and a (possibly new) environment. Assuming that we call the set of
environments env, we can concisely refer to set corresponding to this monad with
the type env → 〈α, env〉, where α is the result type of the computations we are
interested in9. In our case, of course, the environment will be a tree of reference
pairs.

9So, strictly speaking, M is not a set but the set of all sets corresponding to the computations with a
specified result type.



In the case of the State monad, η couples a value with an unmodified environ-
ment:

η : a→M a (5)
η a = λs.〈a, s〉

The function ? simulates the sequencing of operations:

? : M a→ (a→M b)→M b (6)
v ? k = λs.k (π1 (v s)) (π2 (v s))

In words, ? passes the current computational environment to the first monadic
computation and then uses the result of this computation plus the resulting envi-
ronment to start the second computation.

For practical reasons it is useful to introduce a third function . : Ma→Mb→
M b defined on the base of ? as follows: k . v = k ? (λx.v), where x must not
occur free in the term v. This function will be used to thread operations that only
affect the environment without producing any meaningful value.

3.2 Implementation

To implement the theoretical notions presented in section 2 we need to define the
following functions:

• ◦ (pronounced “apply”) is the monadic version of functional application. It
represents the compositional step of standard Montague-semantics lifted at
the level of stateful computations. It can be defined as follows:

◦ : (M (α→ β))→ (M α)→ (M β) (7)
g ◦ v = g ? (λf.v ? (λx.η (f x)))

The idea is the following: first the computation g is performed, and its value
is named f , subsequently the computation v is carried out, within the context
produced by the previous computation, and produces a value that we call x.
Finally the result of applying the function f to its argument x is plugged into
a computation that keeps the environment returned by the last computation.

• ⊕ (pronounced “merge”) represents the merge operation introduced in sec-
tion 2.4. Its definition is based on a couple of helper functions that are
specific for the environment we assume for our State monad:

– addCondition : (e → t) → M Unit, which intersects the passed
condition with the condition in the currently most salient reference
pair.

– backToTop : M Unit, a function that moves the pointer from the
current reference pair to the most salient pair in the root of the tree.



Assuming these two functions we can define ⊕ as follows:

⊕ : M (e→ t)→M (e→ t)→M (e→ t) (8)
c⊕ k = c ? (λv.addCondition v . (backToTop . k))

In words,⊕ extracts the condition generated by the first sentence (remember
that sentences have the type of predicates in our theory), adds it as a con-
dition for the current most salient reference pair, moves the pointer to the
topmost node and then goes on by calculating the computation that repre-
sents the contribution of the second sentence to the discourse.

Finally we introduce some useful functions that will be used in the example
lexicon introduced in the following section:

• addChild : M Unit, which attaches to the tree a new node as a child of the
current node and sets the newly created node as the current node.

• createRef : ((e → t) → t) → M Unit, which creates a new reference
pair in the current node, by using the filter passed as an argument and the
constantly true function λx.1 : e → t as a default condition. This function
is the identity element of set-intersection on ℘(e)10, so it can be safely used
as a place holder until the real condition is computed.

• moveToMostSalientRef : M Unit, which moves the pointer to the most
salient reference pair.

• getMostSalientRef : M 〈((e → t) → t), (e → t)〉11, a function that
returns the currently most salient reference pair.

4 A toy lexicon and examples

The construction of a lexicon is a straightforward procedure: we start with a stan-
dard montagovian lexicon and lift to the monadic level all the lexical items that do
not have any referential power by means of the η function. All the items that have
some referential power (e.g. generalized quantifiers, pronouns, etc.) are instead
paired with a denotation reflecting the principles illustrated above.

For example, in the case of an intransitive verb like run, whose denotation is
a subset of the domain of entities that we can represent as run : e → t, we can
obtain the denotation for our dynamic semantics by applying η to run. We obtain
an object of type M (e→ t), representable as λe.〈run, e〉.

In the case of generalized quantifiers, determiners and pronouns, we need a
different approach. All these items play some role in anaphoric reference, and their
dynamic denotation must reflect this. To better understand how we can formally
capture the intuitions presented above let us work out the denotation of a quantified

10As stated above, we can identify a set with its characteristic function and of course λx.1 represents
the complete domain e. It is trivial to see that for every A ⊆ e we have A ∩ e = e ∩A = A.

11Here we abuse notation by lifting the syntax for pairs from terms to types.



WORD TYPE/DENOTATION

someone M ((e→ t)→ e→ t)
createRef(λP.∃x.P x) . η(λp.λx.p x)

Yoda M ((e→ t)→ e→ t)
createRef(λP.P yoda) . η(λp.λx.p x)

some M ((e→ t)→ (e→ t)→ e→ t)
createRef(λP.∃x.P x) . η(λp.λq.λx.p x ∧ q x)

every M ((e→ t)→ (e→ t)→ e→ t)
addChild . createRef(λP.∀x.P x) . η(λp.λq.λx.p x→ q x)

Table 1: Generalized quantifiers and determiners

noun phrase like “everyone”. First of all we have to decide the type we want to
assign to it. We can start from the classical montagovian type (e → t) → t and
adapt it to the dynamic context. The new denotation should still be an object that
takes a predicate of type e → t as an argument but instead of returning a truth
value, the type of sentence denotations in Montague semantics, it should return a
condition as described above. The denotation must be wrapped in a monadic layer,
so the type of the denotation of a generalized quantifier should be something of
typeM ((e→ t)→ (e→ t)). The specific mathematical object that represents the
denotation of “everyone” should have the following effects on the environment:

• it should add a new level in the reference tree,

• create a new filter-condition pair whose filter is a function that checks that
the corresponding condition is universally satisfied,

and then produce as a result the condition generated by the predicate of the sen-
tence. With the tools presented so far we can formally represent such an object as
follows:

addChild . createRef(λP.∀x.P x) . η(λp.λx.p x). (9)

We give some more examples of generalized quantifier and determiner denotations
in table 1.

In the case of the non referential use of quantified noun phrases, as it is the case
for de dicto readings, we can simply keep the montagovian denotation and lift it
to the monadic level by the use of η. The effect we obtain is basically to trap the
quantifier inside a condition and make it inaccessible for further modification.

LEXICAL ENTRY TYPE DENOTATION

someone M ((e→ t)→ t) η(λP.∃x.P x)
every M ((e→ t)→ (e→ t)→ t) η(λP.λQ.∀x.P x→ Q x)

The denotation of anaphoric pronouns in our dynamic semantics is a function
that has the only effect of moving the pointer to the currently most salient reference



pair and then let the condition defined by the predicate it scopes over to be added
to this reference pair. For example, the denotation of a pronoun like she will be a
function of type M ((e→ t)→ e→ t) that we can represent as follows:

moveToMostSalientRef . η(λp.λx.p x) (10)

As it was the case for quantified noun phrases, pronouns do not produce any “us-
able” value but rather direct the values produced by the predicates to the correct
reference pair.

We conclude this section illustrating the implementation of our system with a
simple example. Suppose we want to analyze the discourse “Yoda woke-up. He
was tied-up.”. We will simplify the treatment by ignoring issues like tense and
aspect and consider the past participle tied an adjective (together with the particle
up). The lexical entries for the words of this discourse can be derived from the
discussion above, with the exception of the verb to be, which we will consider to
be the identity function on objects of type e → t (of course lifted to the monadic
level). The computation of the meaning of the discourse starts in the context of
a reference tree with a single node, containing an empty stack of reference pairs.
The computation of the denotation of the first sentence equals to the evaluation of
the following term:

(createRef(λP.P yoda) . η(λp.λx.p x)) ◦ η(wake-up) : M (e→ t)
(11)

Evaluating this term produces the value wake-up but also modifies the environ-
ment producing the following reference tree:

Φ = λP.P yoda Γ = λx.1 (12)

The result of the computation is then merged with the result of computing the
denotation of the second sentence:

(wake-up)⊕ ((moveToMostSalientRef . η(λp.λx.p x))◦ (13)
(η(λp.λx.p x) ◦ η(tied-up)))

The ⊕ operation will first intersect the condition wake-up with the reference pair
currently pointed at, producing the environment:

Φ = λP.P yoda Γ = λx.1 ∧ wake-up x (14)

This is the environment used to compute the denotation of the term to the right of
⊕ in 13. Evaluating the denotation of the pronoun he moves the pointer to the most
salient referent (we have only one referent, so the environment is left unchanged),
so the evaluation of term 13 ends with the environment represented in 14 and the
value tied-up. To finish he computation of the discourse semantics we can merge
the discourse with the empty condition η(λx.1) : M (e→ t), similarly to what we



would do in a continuation passing regime by passing the identity function at the
end. The resulting reference tree is the following:

Φ = λP.P yoda Γ = λx.1 ∧ wake-up x ∧ tied-up x (15)

which can be flattened into the formula:

wake-up yoda ∧ tied-up yoda (16)

4.1 Open issues

We have not given a treatment of pronouns in object position yet. If we keep the
simplistic approach presented in the previous section, we can assume that pronoun
in object position retrieves from the environment the reference pair it refers to, and
then fills the object position of the transitive predicate with it. The denotation of
such a pronoun is an object of type M ((e → e → t) → e → t) and we can
represent it with the following term:

getMostSalientRef ? (λ〈t, c〉.η(λr.λy.t(c ∩ (λx.r(x)(y))))) (17)

To exemplify the resulting semantics consider the simple discourse “A jedi
entered. Everyone watched her.”. We skip all the details of the computation
and present the final environment:

Φ = λP.∃x.P x Γ = λx.jedi x ∧ enter x

Φ = λP.∀x.P x Γ = λx.∃y.jedi y ∧ enter y ∧ watch y x (18)

However, this approach is problematic. The first problem shows up in the
case of a discourse like “A jedi entered. Someone helped him. He was
wounded.”: in this case our treatment would produce a condition for the reference
pair introduced by someone that enforces only the fact that some entity helped an
entity that is a jedi and not a wounded jedi.

The second problem is that the formula that we get once we flatten the refer-
ence tree does not describe the model we intuitively associate with the discourse.
In fact the formula we obtain describe a situation roughly equivalent to the dis-
course “A jedi entered. Everyone watched a jedi.”. We do not encounter the
same problem if the pronoun is under the scope of an existential quantifier, as the
following holds

(∃x.P x ∧ (∃y.R x y))↔ (∃x.P x ∧ (∃y.∃z.P z ∧R z y))) (19)

This observation suggests that we could change the denotation for universal quan-
tifiers. Instead of interpreting as reference introducers, we can keep the classical
montagovian interpretation for them. Note that this does not change their accessi-
bility, because even if we interpret them as introducing a referent in the discourse,



this referent cannot be picked up by subsequent pronouns. For example, we can
associate everyone with the following denotation:

η(λP.∀x.P x) : M ((e→ t)→ t) (20)

However, composing this interpretation with the one of watched her would result
in an object of type t, while we assume sentences to be of type e→ t. To solve this
problem and to get the correct interpretation of this sentence, we need to change
the denotation for the anaphoric pronoun as well: the pronoun should take as ar-
guments the transitive verb and the generalized quantifier and generate a condition
that can then be intersected with the one of the reference pair it points to. More
formally, we can assign to her the following denotation:

moveToMostSalientRef . η(λP.λQ.λx.Q (P x)) : (21)
M ((e→ e→ t)→ ((e→ t)→ t)→ e→ t)

With this semantics the discourse “A jedi entered. Everyone watched her. She
bled.” produces the following reference tree:

Φ = λP.∃x.P x Γ = λx.jedi x ∧ enter x ∧ ∀y.watch x y ∧ bleed x (22)

This reference tree in turn produces the desired truth conditions. Nevertheless it
forces us to make an unnatural distinction between the denotation of pronouns in
object position coupled with universal quantifiers and those under the scope of
existential quantifiers. In addition we need to postulate a phonologically silent
operator that lifts the type of a sentence such as Everyone smiled to the type of
conditions and adds it to the currently most salient reference pair.

The solutions presented here are only partial and require further research.

5 Conclusion

We presented a completely compositional model for discourse semantics capable
of capturing the main aspects of anaphoric coreference. Our approach extends the
montagovian approach to phenomena that are traditionally accounted for with ad
hoc mechanisms. We grounded our approach on the notion of generalized quanti-
fiers showing how the decoupling of the quantificational component (the filter in
our terms) and the restrictive component (the condition) of their usual denotation
can be used to represent updatable reference. To capture the sequential nature of
discourse we borrowed the notion of monads from programming language seman-
tics. This allowed us to enforce a specific order of evaluation needed to capture
the dynamics between introduction and backward-reference in discourse seman-
tics. At the same time, monads allowed for a neat emulation of evolving state, a
notion that intuitively captures the ongoing changes in the creation of a discourse
model.

Finally, we pointed out some limitations of our approach and proposed partial
solutions. At the moment we are working on alternative approaches to pronoun
semantics.



References

Barker, Chris and Chung-chieh Shan (2008), Donkey anaphora is in-scope binding,
Semantics and Pragmatics 1 (1), pp. 1–46.

de Groote, Philippe (2006), Towards a montagovian account of dynamics, Pro-
ceedings of Semantics and Linguistic Theory XVI.

Groenendijk, Jeroen and Martin Stokhof (1991), Dynamic predicate logic, Lin-
guistics and Philosophy 14 (1), pp. 39–100.

Heim, Irene (1983), File change semantics and the familiarity theory of definite-
ness, in Bäuerle, Rainer, Christoph Schwarze, and Arnim von Stechow,
editors, Meaning, use, and interpretation of language, de Gruyter.

Kamp, Hans and Uwe Reyle (1993), From Discourse to Logic, Kluwer, Dordrecht.
Moggi, E. (1989), Computational lambda-calculus and monads, Proceedings of

the Fourth Annual Symposium on Logic in computer science, IEEE Press,
Piscataway, NJ, USA, pp. 14–23.

Muskens, Reinhard (1996), Combining Montague Semantics and Discourse Rep-
resentation, Linguistics and Philosophy 19, pp. 143–186.

Shan, Chung-Chieh (2002), Monads for natural language semantics, CoRR.
Wadler, Philip (1995), Monads for functional programming, Advanced Func-

tional Programming, First International Spring School on Advanced Func-
tional Programming Techniques-Tutorial Text, Springer-Verlag, London,
UK, pp. 24–52.


