
AsapRealizer in Practice — A Modular and Extensible

Architecture for a BML Realizer

Dennis Reidsmaa, Herwin van Welbergenb

aUniversity of Twente, Department of Human Media Interaction, Netherlands
bUniversity of Bielefeld, CITEC, Sociable Agents group, Germany

Abstract

Building a complete virtual human application from scratch is a daunting
task, and it makes sense to rely on existing platforms for behavior generation.
When one does this, one needs to be able to adapt and extend the capabilities
of the virtual human as offered by the platform, without having to make
invasive modifications to the platform itself. This is not trivial to support,
and not all existing platforms facilitate this equally well. This paper describes
how AsapRealizer (successor to Elckerlyc), a novel platform for controlling
virtual humans, offer these possibilities.

Keywords: Elckerlyc, AsapRealizer, Behavior Markup Language, Virtual
Human, Embodied Conversational Agents, Architecture, System
Integration, Customization

1. Introduction

Virtual Humans (VHs) are commercially used in many educational and
entertainment settings: serious gaming, interactive information kiosks, ki-
netic and social training, tour guides, storytelling entertainment, tutoring,
entertaining games, motivational coaches, and many more. Researchers work
with VHs to investigate the impact of specific social and communicative be-
haviors on the perception that users have of the VH, and the impact of a VH
on the effectiveness and enjoyability with which tasks are completed. Build-
ing a complete VH from scratch is a daunting task, and it makes sense to

Email addresses: d.reidsma@utwente.nl (Dennis Reidsma),
hvanwelbergen@techfak.uni-bielefeld.de (Herwin van Welbergen)

Preprint submitted to Entertainment Computing April 23, 2013



rely on existing platforms, for researchers and commercial developers both.
However, when one builds a novel interactive VH application, using ex-

isting platforms has its own drawbacks. One often needs to be able to adapt
and extend the capabilities of the VH offered by the platform, and not all
existing platforms facilitate this equally well. Specific additional gestures
and face expressions might be needed; the application might need to run
distributed over several machines; an experimenter might need detailed logs
of everything that the VH does; one might want to replace the graphical
embodiment of the VH, or its voice; the graphical embodiment of the VH
might need to reside in a custom game engine; and one might need to plug in
completely new custom behaviors and modalities for a specific usage context.
Furthermore, all of these extensions and adaptations should be made without
having to make invasive modifications to the platform itself. This last point
is crucial, and will be worked out in more detail in the next chapter.

AsapRealizer, successor to Elckerlyc, is a state-of-the-art Behavior Real-
izer for virtual humans. Elsewhere, we described Elckerlyc’s mixed dynamics
capabilities, that allow one to combine physics simulation with other types of
animation, and its focus on continuous interaction, which allows it to mon-
itor its own performance and allows for on-the-fly modification of behavior
plans with respect to content and timing, which makes it very suitable for
VH applications requiring high responsiveness to the behavior of the user [1].
AsapRealizer [2] has been developed to combine these advantages of Elckerlyc
with the incremental scheduling and co-articulation capabilities of ACE [3].
In thyis paper, we will focus on the role of AsapRealizer as a component in
a larger application. We discuss how one can adapt AsapRealizer to suit the
needs of a particular application, without giving up the level of abstraction
offered by the BML Realization interface, and without having to modify the
core AsapRealizer system itself.

2. Requirements for a Modular and Extensible Virtual Human
Platform

A virtual human does generally not function in isolation: rather, they
need to fulfill a role in a larger application context. The SAIBA framework
[4] provides a good starting point for integrating interactive VHs in a larger
system. Its Behavior Markup Language (BML, see Fig. 1) allows an applica-
tion to specify the form and relative timing of the behavior (e.g. speech, facial

2



��������	

��������	���
��

����������	��	��������
��

������������������

������ �������	���
!�����	���������� 
��

�����"��#���$�����������%���%�����%&

����"��

������� �

������

�
������

����������������

����������

Figure 1: An example BML script with two BML behavior elements

expression, gesture) that a BML Realizer should display on the embodiment
of a VH.

Although this level of abstraction, and the existence of several modern
BML Realizers, saves a tremendous amount of effort when building new VH
applications, BML does not provide the level of control over all details of
the VH that is required by many applications. To those who need access to
such details the BML Realizer should therefore not be a black box system,
but allow access to such details. Yet, these details, configuration options and
possibilities for extension should not add complications for people who do
not need them.

2.1. Extensions and Modifications should be Non-Invasive

Developing extensions or alternative configurations of a BML realizer
should be possible without requiring changes to the core system (that is,
extensions should not require recompilation of the BML realizer source).
After all, if extensions lead to a modification of the BML realizer itself, then
this would essentially lead to a separate source code fork for every application
using the BML realizer. This would make it difficult to share new extensions
with the community. Also, once the BML realizer code has been forked to
accomodate a new modality engine or behavior type, it becomes difficult to
take advantage of improvements in the original ‘core’ source: they need to
be painstakingly merged into the fork.

Ideally, a non-invasive extension or modification to a BML realizer only
involves adding new run-time libraries or new resources to the classpath, and

3



should not require compile time dependencies for the BML realizer on new
code. This requirement is the driving force behind many of the architectural
choices described later in this paper.

2.2. Requirements for Extensibility and Configurability

Below follows a number of extensibility requirements for BML realizers
that should be implemented as non-invasive modifications. In the next chap-
ter we will explain each requirement in more detail and show how each was
solved in Elckerlyc and AsapRealizer; after that, we will compare our solu-
tions to related state-of-the-art systems.

• It should be possible to integrate new renderers

• It should be possible to integrate new speech synthesizers

• It should be possible to integrate new physics simulators

• Transport of the BML stream to the realizer should be flexible and
configurable

• It should be possible to adapt the BML stream with capabilities for
filtering and logging

• The realizer needs a transparent and configurable mapping from input
(BML behavior elements) to output (control of the VHs embodiment)

• It should be easy to add new behavior types or output modalities

• The realizer needs the capability to be integrated as a component in
application, independent of variables such as the OS and programming
language on which the application is developed

• It should be easy to run the realizer as part of a setup distributed over
multiple machines

• The realizer requires the possibility (and tools) to add new assets such
as new 3D models or new behavior repertoire (e.g., animations and face
expressions)

The BML realizer Elckerlyc facilitates all these possibilities for modifica-
tion and extension without requiring invasive modification to Elckerlyc itself.
Its successor AsapRealizer additionally meets the following requirements:

4



• It should be possible to change the BML Scheduler, as BML Scheduling
is non-trivial, especially when one wants to allow on-the-fly modifica-
tion of plans [5]; we need flexibility to experiment with new scheduling
algorithms and compare them with the existing ones

• It should be possible to hook up different lipsync modules to the same
TTS system, allowing lipsynch on different embodiments (e.g., robot,
avatar or jpeg picture) and allowing one to experiment with different
lipsync algorithms (e.g., various co-articulation solutions, visual emo-
tional speech)

• It should be possible to configure the whole setup of a virtual human in
run-time, preferably through easy-to-use configuration files (determin-
ing, e.g., which embodiments to use, which gesture repertoire to load,
which lipsynch solution to apply, and many other things)

3. AsapRealizer: Basic Architecture

Before going into detail concerning the possibilities for extension and
configuration, this chapter introduces the basic architectural concepts behind
AsapRealizer. Fig. 2 shows a simplified view of its SAIBA architecture. The
Behavior Planner controls the VH by sending a stream of BML Blocks (cf.
Fig. 1) to AsapRealizer through a BML Realizer Port.1 The BML Blocks
describe what behavior the VH should display. AsapRealizer, as the BML
Realizer, controls the embodiment of the virtual human to make this happen,
and sends back feedback about the progress.

Fig. 3 shows the parsing and routing of BML blocks in more detail. The
Parser parses the BML stream, and provides the Scheduler with a list of
behaviors and time constraints between these behaviors.2 The Scheduler
generates an execution plan based on these elements and constraints. Differ-
ent Engines (e.g., a speech engine, an animation engine, a face engine) keep
track of, and manage, unimodal plans for their specific modality. The Sched-
uler uses a configurable mapping to determine which Engine must handle

1Section 4.1 discusses how Ports can be used, e.g., to integrate AsapRealizer with
various distributed messaging systems.

2Section 4.4 discusses how to add custom BML behavior elements, and how to register
them with the Parser.

5



Figure 2: Global overview: Simplified SAIBA architecture[4]. A Behavior Planner con-
structs BML scripts that describe what behavior the VH should display; the BML Realizer
controls the embodiment to make this happen; progress feedback is sent back to the Be-
havior Planner.

which of the behaviors.3

Fig. 4 shows that Engines are responsible for translating the behaviors
and constraints to a form that is actually displayed on the Embodiment of
the VH. Ultimately, behaviors are displayed on an Embodiment by accessing
the control primitives of that Embodiment. A FaceEmbodiment is controlled
by setting MPEG4 values; a SkeletonEmbodiment is controlled by rotating
joints; etcetera. There may be multiple implementations of a specific Embod-
iment interface, offering exactly the same control primitives. For example,
Fig. 5 shows two implementations of the FaceEmbodiment interface: a 3D
graphical face where MPEG4 values (the control primitives of FaceEmbod-
iments) result in mesh deformations, and a 2D cartoon face where MPEG4
values lead to modification of the Bezier curves defining the elements of the
face.

The control primitives of the Embodiments are accessed by Engine spe-
cific Plan Units; an Engine will indirectly control the embodiments by trans-
lating the behaviors and constraints into an unimodal plan of these Plan

3Section 4.5 discusses how to add new Engines.

6



Figure 3: The parsing and routing of BML in AsapRealizer in more detail: Incoming BML
blocks are parsed; the scheduler maintains the multimodal plan, distributing the behaviors
and constraints over the various unimodal engines.

Units.4 A FaceEngine maintains a plan of FacePlanUnits; each FacePlan-
Unit will modify the MPEG4 values of a FaceEmbodiment while it is being
played. An AnimationEngine, in comparison, maintains a plan of Anima-
tionMotionUnits; these will control a SkeletonEmbodiment by modifying its
joint rotations.5 An overview of various Engines, their Plan Units, and the
types of Embodiment they control, can be found in Appendix A.

4Section 4.2 discusses how this mapping from abstract behavior element to concrete
forms can be reconfigured.

5Section 4.3 discusses various types of embodiments available in AsapRealizer, and how
to add new ones. Section 4.6 shows how graphical embodiments can reside in any render
engine.

7



Figure 4: Realizing the behaviors on an Embodiment: A unimodal Engine is responsible
for translating the behaviors into a form that can be displayed on the embodiment of the
virtual human.

4. Solutions for a Flexible and Extensible BML Realizer

The figures in the previous chapter already indicate a few points where
AsapRealizer allows for easy configuration and extension. In this chapter
we discuss in more detail the elements in AsapRealizer’s architecture that
facilitate configuration, extension, and adaptation of the system. For each
topic we first sketch a ‘user need’; subsequently, we show which elements of
AsapRealizer are designed to meet that user need.

4.1. Ports, Pipes, and Adapters

User need 1: Connecting the application to AsapRealizer

AsapRealizer is designed to be used as component in a larger application con-
text. The application may need to run distributed over several machines,
platforms, and programming languages. The developer may want to log all
interactions for post-hoc analysis. Nevertheless, the interface between As-
apRealizer and application should remain as simple as possible: BML goes

8



Figure 5: A FaceEngine can control any kind of FaceEmbodiments by accessing its control
primitives (i.e., setting MPEG4 values).

Figure 6: The BML Realizer and Behavior Planner are connected directly on a Realizer-
Port.

in; feedback comes out. Adding logging, network transport, and such, should
not be noticable in how AsapRealizer and the application communicate with
each other.

A minimal interface between application and BML Realizer has function-
ality to (1) send a BML string to the Realizer and (2) register a listener for
Realizer feedback. This is the BMLRealizerPort in Fig. 2 —displayed in iso-
lation in Fig. 6. The Behavior Planner and the BML Realizer are connected
to the front and back end of such a BMLRealizerPort. The adapter pattern
[6] allows one to change the exact transport of BML and feedback to and
from a BML Realizer, with no impact on the Behavior Planner and BML
Realizer.

9



Figure 7: A LogPipe logs the messages that pass through it to a file.

Figure 8: The Realizer and BehaviorPlanner are connected through the Semaine API;
they are unaware of this plumbing, they still communicate through RealizerPorts. Similar
implementations already exist for ActiveMQ and for direct TCP/IP transport.

AsapRealizer implements the BMLRealizerPort interface. We have im-
plemented Adapters that plug into BMLRealizerPorts and transport their
messages over various messaging frameworks (Fig. 8). Pipes are used to in-
tercept the BML messages and the feedback, allowing one to measure it, let
it go through slightly modified, or at a different rate. We have developed
a pipe that logs the BML and feedback passing through (Fig. 7), and one
that buffers BML messages for a BMLRealizerPort that can only handle one
BML message at a time.

4.2. Gesture Binding and Other Bindings

User need 2: Transparently Mapping requested Behaviors to PlanUnits

BML provides BML elements to steer the behavior of a VH. A specific BML
Realizer is free to make its own choices concerning how these abstract behav-
iors will be displayed on the VH’s embodiment. For example, in AsapRealizer,
an abstract ‘beat gesture’ is by default mapped to a procedural animation from
the repertoire of the Greta realizer by Pelachaud and her team (see also Sec-
tion 5). The developer may want to map the same abstract behavior to a
different form, e.g., to a motion captured gesture.

10



In AsapRealizer, unimodal Engines are responsible for mapping the re-
quested Behaviors to PlanUnits (cf. Fig. figPlanUnitAndEmbodimentGeneric).
In AsapRealizer, XML files called Bindings are used to allow one to config-
ure this mapping. AsapRealizer’s AnimationEngine uses the GestureBinding
to achieve a mapping from the behaviors and constraints (delivered by the
Scheduler) to Animation Plan Units that determine how the behavior will
be displayed on the embodiment. The GestureBinding XML file, clearly il-
lustrated in Fig. 9, can be customized by the application developer; other
Engines provide similar bindings.

4.3. New Embodiments

User need 3: Adding new Embodiments

A specific Engine should be able to control any new type of VH body that offers
the right type of control, without necessitating changes to the implementation
of the Engine. For example, the default AnimationEngine could conceivably
control any VH body that allows for joint rotations in an H-Anim hierarchy.
For this to succeed, these bodies all need to offer the same interface with the
same control primitives to the AnimationEngine.

Each type of Engine in AsapRealizer is designed to control an Embodi-
ment that implements a specific interface. An AnimationEngine requires its
Embodiments to implement the SkeletonEmbodiment interface. The con-
trol primitives for that type of Embodiment allow setting joint rotations in
an H-Anim joint hierarchy. Current implementations include one control-
ling an avatar in our own OpenGL rendering enviropment, one controlling
(through Thrift [7]) an avatar in Ogre, and one controlling an avatar residing
in a Re-Lion SUIT environment. A FaceEngine requires its Embodiments
to implement the FaceEmbodiment interface, which offers control primitives
for Mpeg-4 facial animation parameters. Current implementations of this
interface include one controlling avatars in our own OpenGL rendering envi-
ronment, a Mpeg-4 controlled 2D cartoon face, and an implementation that
allows our FaceEngine to control an XFace talking head [8]. Other Engines
have their own required Embodiments.

For each new implementation of a certain Embodiment interface to be
used in our Engines, a loader class needs to be implemented that makes the
Embodiment type available in our XML based virtual human loader system.
This loader system will be discussed in a later secction.

11



���������	
�	
�

���������	
�	
��

���	�
�
	������������������

����
����	
���

�����
����	
��
��������	�
�������������� �!�"�

�����
����	
��
����������	�
���������!�#�"�

��"��
����	
���

���������������

����������������������
����������"�

����������������������������������"�

��"�������������

�������������$������

���������������$�����
���������������%&'�"�

���������������$�����
���������������(�"�

��"�����������$������

����	�
�
	��������)����
	���	�
��$	����
��&*���"�

�"��	�
�
	������

���	�
�
	������������������

����
����	
���

�����
����	
��
��������	�
�������������� �!�"�

�����
����	
��
����������	�
����������+�,-�"�

�&&&

�"��������	
�	
��

�������	�	���	�
�����������
��

�����	������(��

�������	���
��(����������./�����	�
������� �!�������	�
��!�#�"�

�"����

��������������	�
��
	�����	
���	
�
������

�)����
	���	�
����$#����	�
��(&%��

��������	�
�����������0�

��������	�
���1%&'1�	
2�����131�	1�45%5%�"�

��������	�
����������6���������

��������	�
���1%&'1�	
2�����131�	1�45%5%�"�

���)���������	�����"�

���)���������	�����"���

�")����
	���	�
�

Figure 9: Gesture Binding fragment binding the head element to the nod Plan Unit. Both
the nod and shake motion units execute behaviors of type “head”. They both satisfy the
constraint action=“ROTATION”, but only the nod motion unit satisfies the constraint
rotation=“NOD” and is therefore selected to execute the head nod. The Gesture Binding
maps the repeats parameter value in the BML behavior to the value of parameter r

specified in the procedural motion unit. The value of parameter a is not defined in the
BML head behavior, therefore the default value of a, as defined in the Gesture Binding,
is used in the procedural animation.

12



4.4. BML Elements and Plan Units

User need 4: Adding new behavior types

The various Engines in AsapRealizer offer a large repertoire of Plan Unit
types that can be mapped in a Binding to give form to the abstract BML behav-
iors: physical simulation, procedural animation, morph target and MPEG-4
face control, Speech Units, etcetera. Still, a developer may need completely
new Plan Unit types, for existing or newly developed types of Embodiments.
For example, to make the VH more lively, one may want to add a Perlin-
Noise Plan Unit that applies random noise to certain joints of the VH, as a
kind of ‘idle motion’. Such new Plan Units need to become available in the
GestureBinding (see previous section); furthermore, one might want to ex-
tend the XML format of BML with <PerlinNoiseBehavior> to allow direct
specification of this idle motion by the Behavior Planner.

New BML elements are created by subclassing the abstract class BML-
BehaviorElement; they can be registered with the Parser using a static call:
BMLInfo.addBehaviourType(xmltag, BehaviorElementClassName);

At initialization of AsapRealizer, the new BML behavior type are coupled
to a single Engine by adding it to the behavior class → engine mapping
(see Fig. 3; note that multiple behavior types can be coupled to the same En-
gine). This can also be done through a static call, or by adding a <Routing>

section to the VH loader XML file (see Fig. 15).
New Plan Units implement the appropriate subinterface of the PlanUnit

interface (for the AnimationEngine: MotionUnits that rotate joints on the
basis of time and animation parameters [1]). Such Plan Units are initialized
from the GestureBinding through their class name (as a string), using Java’s
reflection mechanism (that is, the ability to construct a new object from
its class name). This ensures that any Plan Unit implementing the right
interface for an Engine can be used in the Binding for that Engine without
requiring additional compile time dependencies.

4.5. New Modality Engines

User need 5: Adding new modality Engines

The Nabaztag is a robot rabbit with ears that are controlled by servo motors
and a body on which colored LED lights are displayed. We needed to control
this rabbit using BML, without encumbering AsapRealizer itself with Nabaztag
specific code and libraries. To achieve this, we built a new Nabaztag Engine

13



that was registered for handling all non-speech behaviors. For example, BML
head nods were mapped in the NabaztagBinding to a NabaztagPlanUnit that
would move the ears shortly forward and back again; a sad face expression
was mapped to a NabaztagPlanUnit that let the ears droop; etcetera.

Figure 10: AsapRealizer’s Engine Interface. Dashed blocks are changeable at initialization.

To facilitate development of new Engines, a series of default implementa-
tions of many of the necessary components are available. One generally has
to re-implement only very few of these components to achieve a complete new
Engine. As already discussed in Chapter 3, an Engine needs to maintain a
modality-specific plan. Fig. 10 shows this in more detail. The data structure
for the unimodal plan is maintained by a default PlanManager that provides
several functions to query its state and modify it. Playing the plan (i.e., ex-

14



ecuting the PlanUnits on the embodiment) is coordinated by a Player, that
generally delegates this to one of the default PlanPlayer implementations (a
multi threaded PlanPlayer when calls to the Embodiment’s control primitives
are blocking, and a single threaded Planplayer, otherwise). Implementing a
new Engine usually requires three steps: implementing PlanUnits specifically
for this Engine (cf. Fig. 4), implementing a Binding to easily define a con-
figurable mapping from behaviors to these PlanUnits, and implementing a
Planner specialized in constructing plans for this modality. The Animation
Engine and Face Engine in addition require specialized Players that man-
age the combination of Plan Units that act simultaneously on the VH (e.g.
physical simulation and keyframe animation), but can still delegate most of
their playback functionality to a PlanPlayer. A DefaultEngine implementa-
tion of the Engine interface encapsulates these elements, connects them to
each other, and provides the BMLRealizer with access to their functionality
to the BML Realizer through the Engine interface.

4.5.1. The Nabaztag Engine

Building the new Nabaztag Engine involves developing the Plan Units
that implement the basic control for the modality. A Plan Unit defines a
way to control the robot —using one of its control primitives, see below—
over the duration from the start time till the end of the Plan Unit. The
control primitives for the Nabaztag robot are (1) move the ears of the robot
to a specified position, (2) move the ears forward or backward by a specified
amount, and (3) set one of the LEDs to a certain color. We implemented
two Plan Unit types. The “MoveEarTo” Plan Unit moves the ears to a spec-
ified position by linear interpolation during the duration of the Plan Unit.
The “WiggleEarTo” Plan Unit interpolates the ear from its current position
to the specified target position and back to the starting point, during the
duration of the Plan Unit, using a sinoid interpolation. Given these Plan
Units, and a NabaztagBinding for mapping BML behaviors to Nabaztag
PlanUnits, the Nabaztag Engine is constructed using the standard available
Engine components. A completely new modality Engine has been added by
implementing two basic control Plan Units and an XML Binding. Due to
the setup of Scheduler and Engines, synchronisation between the new Nabaz-
tag Units and other modalities —e.g., speech— is automatically handled by
AsapRealizer and requires no further implementation effort.

15



Figure 11: The PictureEngine running on an Android smartphone.

4.5.2. Other Engines

We have implemented a variety of other useful engines in AsapRealizer.
The TextEngine, for example, can be used to re-route speech behaviors, so
they are not realized by text-to-speech synthesis. Instead, the TextEngine
employs TextUnits that display the text string representing the speech on a
TextEmbodiment (e.g., console output, a text label in the GUI, cartoon text
balloons, etcetera). The PictureEngine is particularily useful for building
cartoon agents: it allows one to have BML behaviors realized as a series
of layered pictures, instead of a skeleton animation. The PictureEngine has
been employed in the Smarcos project to port the AsapRealizer BML Realizer
to an Android Smartphone that did not have enough processing power for
displaying full 3D OpenGL based graphics (see Fig. 11) [9]. The NaoEngine
is implemented in a way similar to the NabaztagEngine, to control a Nao
Robot6 using AsapRealizer. We are currently working on implementing more
Engines for various robotic embodiments.

4.6. Integration with Renderers

User need 6: Integration with other rendering environments

6http://www.aldebaran-robotics.com

16



By default, AsapRealizer renders the VH in its own OpenGL based rendering
environment. One might, however, want to use AsapRealizer to animate an
embodiment in another rendering environment such as Half Life, Ogre, or
Blender.

Integration of AsapRealizer with any new renderer is simply a matter of
adding an implementation of the SkeletonEmbodiment interface that com-
municates joint rotations (as set by AsapRealizer) to the graphical avatar
displayed in the renderer, and one for the FaceEmbodiment (communicating
MPEG4 values). The SkeletonEmbodiment needs to support functionality to
(1) provide AsapRealizer with the joint structure of the VH at its initializa-
tion, and (2) provide AsapRealizer with means to copy joint rotations to the
virtual human in the renderer. The FaceEmbodiment needs only to provide
AsapRealizer with means to set MPEG4 values. These requirements should
be satisfied in a manner independent of renderer and transport (e.g. through
TCP/IP, function call, shared memory). We use the remote procedural call
framework Thrift [7] to achieve this. We have designed a language indepen-
dent interface (using Thrift’s interface definition language) that a renderer
should implement to achieve connectivity with AsapRealizer. This interface
is automatically compiled to an interface in the target language of the ren-
derer. The transport mode is chosen at initialization time. We have made
a proof-of-concept implementation for the Ogre rendering environment, and
for Re-Lions7 SUIT environment.

4.7. Text-To-Speech Generation and Speech Scripts

User need 7: Integration with text-to-speech synthesis systems

Different applications might have different requirements for the text-to-speech
voices. Another language, another TTS system, another markup language
offering control of exactly the right voice features at times all need to be
integrated with a VH configuration.

Speech for virtual humans can be generated using various Text-To-Speech
systems. Furthermore, each TTS system may be able to use several stan-
dardized (e.g. SSML) or vendor-specific (e.g. MaryTTS, Microsoft Speech

7http://www.re-lion.com

17



API, Fluency TTS) speech description languages that allow one to change
features of the produced speech.

AsapRealizer provides the extensibility to easily hook up new TTS gener-
ators, and new TTS specification languages having their own XML markup
format. To use a certain speech engine, and to allow it to generate speech
using a specific speech description language, one should implement a TTS-
Bridge for that language and engine. This TTSBridge provides a standard-
ized interface to 1) speak a string, 2) store speech specified in a string to a
file, and 3) get timing information on a to-be-spoken string. These strings
should contain the speech text, specified in the specific language for that
bridge. The speech engine is set up at initialization time with a TTSBinding
that maps a specific extension of a speech behavior (“markup language”) to a
specific TTSBridge. TTSBridges are currently implemented for default BML
speech in Mary TTS, default BML speech in Microsoft Speech API, SSML in
Mary TTS, SSML in Microsoft Speech API, SAPI XML in Microsoft Speech
API, several Mary TTS XML formats, and default BML speech using the
Android speech synthesis SDK. Default TTSBindings are also available for
MaryTTS and Microsoft Speech API. These default TTSBindings map all
speech behaviors the TTS generator supports to matching TTSBridges for
that TTS generator. Adding more TTSBridges and TTSBindings is a matter
of implementing the right interfaces and adding the resulting jar file to the
classpath – AsapRealizer will automatically pick up and make available the
new voices and speech markup languages.

4.8. Lipsync

User need 8: Setting up lipsync

The same TTS-system may have to be used to steer the lips of very differ-
ent embodiments (robots, virtual humans, 2D cartoon figures), using similar
control primitives (e.g. visemes). Additionally, users might want to experi-
ment with different lipsync algorithms for the same embodiment, or apply a
specialized lipsync strategy on a custom face.

Lip motion can be generated using a wide array of specific motion engines
(e.g. the AnimationEngine, FaceEngine or specialized engines for motion on
robots or 2D characters). Rather than directly coupling the SpeechEngine to
such motion engines, the SpeechEngine steers one or more LipsyncProviders
that are registered to it. Implementations of a LipsyncProvider (see Fig. 12
for its interface) then steer lip motion on their specific engine, with the

18



public interface LipsynchProvider

{

void addLipSyncMovement(BMLBlockPeg bbPeg, SpeechBehaviour beh,

TimedPlanUnit speechUnit, List<Visime> visemes);

}

public final class Visime

{

private final int duration; //duration in ms

private final int number; //visime number

private final boolean stress; //stressed in current word?

...

}

Figure 12: The interface of a LipSyncProvider and the Viseme value class. Lipsync mo-
tion is requested per speechbehaviour, given the bml block, the TimedPlanUnit of the
accompanying speech and a list of Visemes.

desired lip sync algorithm. The registration of selected LipsyncProviders on
the SpeechEngine is arranged at initialization time. In Fig. 13 we illustrate
a typical configuration for a 3D virtual human.

4.9. Loading a Complete System

User need 9: Connecting everything together

A system that offers so many ways of extending and modifying the capabili-
ties of the virtual human may be very confusing to initialize. How does one
connect all the modules together? Load the correct embodiments? Connect
them to the appropriate Engines?

AsapRealizer offers many ways to extend the system. Add one library to
the classpath, and you have a new type of Embodiment available that, for
example, allows you to control an avatar in the Half Life rendering environ-
ment. Add another library to the classpath, and you suddenly have a new
TTS system available for the SpeechEngine, are able to control your new
robot using BML, etcetera. In addition, there are several so-called “Environ-
ments” available: a default render environment in which you can load and
render avatars that are controlled by the various Engines, a physics environ-

19



AsapAnimation

Engine

AsapSpeech

Engine

AsapFace

Engine

LipsyncProvider LipsyncProvider

<Loader id="animationengine" ... </Loader>

<Loader id="faceengine" ... </Loader>

<Loader id="facelipsync" requiredloaders="faceengine"

loader="asap.faceengine.loader.

TimedFaceUnitLipSynchProviderLoader">

<MorphVisemeBinding resources="Humanoids/armandia/facebinding/"

filename="ikpvisemebinding.xml"/>

</Loader>

<Loader id="jawlipsync" requiredloaders="animationengine"

loader="asap.animationengine.loader.

TimedAnimationUnitLipSynchProviderLoader">

<SpeechBinding basedir=""

resources="Humanoids/shared/speechbinding/"

filename="ikpspeechbinding.xml"/>

</Loader>

<Loader id="speechengine" loader="asap.speechengine.loader.

SpeechEngineLoader"

requiredloaders="facelipsync,jawlipsync">

...

</Loader>

Figure 13: Top: a common lipsync configuration for 3D virtual humans. The SpeechEngine
is hooked up to a LipsyncProvider that connects to the AnimationEngine providing it with
jaw joint rotations for lipsync, and with a LipsyncProvider that connects to the FaceEngine
and provides facial animation through blend shapes. Bottom: the initialization as specified
in a loader to achieve this particular lipsync configuration.

20



ment that does the physics simulation, an audio environment that takes care
of playing voices and audio for multiple VHs, etcetera.

In order to facilitate easy initialisation and configuration of the various
Engines and Embodiments, AsapRealizer offers an Environment package with
support for developing Engines and Embodiments and for loading them and
connecting them with each other, and a generic XML based loader package
with support for configuring a complete VH setup using one XML file. The
latter depends on the Java reflection mechanism for identifying the loader
classes present in the libraries for every type of Embodiment and Engine.
Fig. 14 shows an example code fragment setting up a VH in an Environment
and Fig. 15 an XML fragment of a VH loader specification.

//create all required environments
RenderEnvironment hre = new RenderEnvironment();
OdePhysicsEnvironment ope = new OdePhysicsEnvironment();
MixedAnimationEnvironment mae = new MixedAnimationEnvironment();
AudioEnvironment aue = new AudioEnvironment();
AsapEnvironment ae = new AsapEnvironment();

ArrayList<Environment> environments = new ArrayList<Environment>();
environments.add(hre);
environments.add(ope);
environments.add(mae);
environments.add(aue);
environments.add(ae);

//initialize the environments
hre.init();
ope.init();
aue.init();
mae.init(ope);
ae.init(environments);

//after initialisation: start the physics and animation clocks
hre.startRenderClock();
ope.startPhysicsClock();

//load a virtual human

Figure 14: Example code fragment loading and starting the Environment in which a
Virtual Human will be loaded.

21



<Loader id="realizer"
loader="realizerembodiments.AsapRealizerEmbodiment">

<PipeLoader id="logpipe" loader="bmlpipe.LogPipeLoader">
<Log requestlog="saiba.bml.requests"/>

</PipeLoader>
<PipeLoader id="activemqpipe" loader="bmlpipe.ActiveMQPipeLoader"/>
<ServerAdapter requestport="7521" feedbackport="1257"/>

</Loader>

<!-- graphical embodiment implements both SkeletonEmbodiment
and FaceEmbodiment -->

<Loader id="graphicalembodiment"
loader="renderenvironment.HmiRenderEmbodimentLoader">

<Body filename="collada_avatar.bin"/>
</Loader>

...

<Loader id="animationengine"
loader="animationengine.MixedAnimationEngineLoader"
requiredloaders="mixedskeletonemb,physicalemb">

<GestureBinding filename="gesturebinding.xml"/>
</Loader>

<Loader id="faceengine"
loader="faceengine.FaceEngineLoader"
requiredloaders="graphicalembodiment">

<FaceBinding filename="facebinding.xml"/>
</Loader>

<Loader id="speechengine"
loader="speechengine.SpeechEngineLoader"
requiredloaders="faceengine,animationengine">

<Voice voicetype="SAPI5" voicename="Kate"/>
</Loader>

<!-- This overrides the default Engine routing -->
<BMLRouting>

<Route behaviourclass="saiba.bml.core.FaceBehaviour"
engineid="faceengine"/>

</BMLRouting>

Figure 15: Partial XML specification for loading a VH setup

22



4.10. Conflict Resolution

User need 10: Conflict resolution

Multiple engines (or the same engine) might steer the same embodiment si-
multaneously in different manners. How are conflicts between such engines
managed?

The complete freedom that the above XML Loader mechanism offers,
leads to the distinct possibility that there are multiple Engines all claiming
to steer the same Embodiment. For example, the FaceEmbodiment might
be steered both by the FaceEngine for face expressions, and by a WizardO-
fOzEngine in which the eye rotations and blinking are controlled based on
the eye movements of a human operator. In AsapRealizer, such conflicts are
currently handled on one of two ways. Firstly, the class that implements the
Embodiment interface might itself have mechanisms to recognize conflict-
ing demands, and resolving them by giving higher priority to certain types
of requests, or actively blending the result of two conflicting requests. The
standard FaceEmbodiment implementation, for example, will add MEG4 re-
quests from multiple sources to each other, resulting in a cumulative effect
on the MPEG4 control points. Secondly, an Embodiment interface might
offer a way in which an Engine can exclusively claim a certain control prim-
itive, thereby actively disallowing other Engines to use that particular con-
trol primitive. The latter mechanism is used in AsapRealizer to prevent the
AnimationEngine and the WizardofOzEngine simultaneously attempting to
rotate the neck of the virtual human.

4.11. Conclusion

In this chapter, we described in detail many of the architectural elements
of AsapRealizer that facilitate non-invasive configuration and extension of the
capabilities of a Virtual Human, that do not require recompilation of the core
of AsapRealizer itself. Some elements involve only modification of resource
files. The other changes only involve implementing a few interfaces and
adding the resulting jar to the classpath – AsapRealizer will automatically
pick up the new Embodiments, Engines, and capabilites as soon as they are
referred to in the XML Loader file with which a new VH is loaded. In the
next chapter, we will compare these aspects with the most prominent related
work.

23



5. Comparison with other platforms

Table 1: Capabilities that can be changed without recompilation, per realizer.

S
m
a
rt
B
o
d
y

E
M

B
R

G
re
ta

A
C
E

E
lc
k
e
rl
y
c

A
sa
p
R
e
a
li
ze

r

Renderer 4 4 4 4 4 4

TTS system 4 8 8 4 4 4

BML transport wiring 8 8 8 8 4 4

BML to scripted output mapping 4 4 4 4 4 4

BML to procedural output mapping 8 8 8 8 4 4

Output modality 8 8 8 8 4 4

Behavior scheduling algorithm 8 8 8 8 8 4

Lipsync algorithm 8 8 8 8 8 4

Lipsync modality 8 8 8 8 8 4

Like AsapRealizer, the BML Realizers Smartbody [10], EMBR [11] and
Greta [12] were specifically designed for integration with new and existing
renderers, to allow a wide range of behavior types, to provide tools for as-
set creation, and/or to facilitate integration in a larger application setup.
AsapRealizer additionally contributes a transparent and adjustable mapping
from BML to procedural output (rather than the mostly hardcoded map-
pings in other realizers), and allows for easy integration of new modalities
and embodiments, for example to control robotic embodiments. In addition
to this, AsapRealizer provides the unique capability to plug in new lipsync
algorithms, lipsync modalities, and scheduling algorithms, without recompi-
lation of its core.

In this section, we discuss if and how various requirements were solved
for the three realizers mentioned above, and shortly indicate the differences
with our solutions. Clearly, there are more reasons to prefer one realizer over
another than just configurability and ease of integration. For example, a
aprticular strong point of SmartBody is their high quality animations; Greta
is well known for its state-of-the-art face expression control and especially
its emotional visual speech generation; AsapRealizer is particularily suitable

24



for applications that require anytime, on-the-fly, adaptation of generated be-
havior; and EMBR offers a detailed specification language for procedural
animation, facilitating precise reproduction of annotated gestures. In this
paper, though, we focus mostly on the requirements related to configura-
bility, adaptability, and ease of integration into larger application contexts,
especially for users who want to use a BML realizer, but are not develop-
ers of realizers themselves. Table 1 provides an overview of the comparison
detailed in the rest of this section.8

5.1. Integration with New and Existing Renderers

When a VH is used in an application, it may need to reside in a 3D world
running in any (new or existing) render engine. A BML Realizer should
therefore be able to control avatars in such a render engine as easily as its
‘standard embodiments’.

Smartbody provides the BoneBus library to connect the Smartbody real-
izer to a renderer. BoneBus uses UDP to transport (facial and skeletal) bone
positions and rotations from the realizer to the renderer. BoneBus is de-
signed to hide the details of the exact communication protocol used, so that
its exact implementation can be changed at a later stage without changing
realizers or renderers that use the library. As the data transport protocol
is non-trivial and due to change, reimplementing BoneBus in programming
languages other than C++ or using the BoneBus interface with other trans-
port mechanisms (TCP/IP, shared memory, etc.) is infeasable. SmartBody
has been integrated with the Unreal 2.5 and Panda3D (in CADIA’s branch
of Smartbody) renderers; partial integrations are available for Gamebryo,
Half-Life 2 and Ogre.9

In EMBR, the renderer is seperated from the realizer, and both provide a
representation of the steered virtual character (e.g. join rotations, morphs).
A python script is used to synchronize the two character representations. An
implementation of the renderer is provided in Panda3D.

8In this comparison we have made use of the SmartBody version as obtained through
the SmartBody SVN at July 1st 2012, EMBR release 0.5.2 and the articles describing the
system [11, 13], the Greta version that was freely available online at July 1st 2012, the
latest version of ACE at July 1st 2012, version 0.9 beta of Elckerlyc and the latest version
of AsapRealizer at July 1st 2012.

9http://www.unreal.com/, http://www.panda3d.org/, http://www.emergent.

net/, http://www.valvesoftware.com/, and http://www.ogre3d.org/

25



The output of Greta contains MPEG-4 facial and body action parameters.
By using the MPEG-4 standard, Greta can potentially be used with any
renderer that supports MPEG-4. However, MPEG-4 —especially for body
animation— is not widely supported.

AsapRealizer controls animation through the Embodiment interfaces dis-
cussed in Section 4.3. New renderers are supported through implementing
two interfaces: the embodiment interface through which one controls a joint
hierarchy, plus a loader class for instantiating it. AsapRealizer can control
the skeleton in any new render environment as soon as the library is added
to the class path. We have, so far, made several implementations: one for
our own OpenGL renderer; a simple custom XML based TCP/IP protocol
that allows AsapRealizer to control avatars running in the SUIT render en-
vironment of Re-Lion10; and a proof-of-concept implementation that allows
AsapRealizer to control avatars in the Ogre engine. The latter uses the
Thrift remote procedure call (RPC) framework [7] to handle its communica-
tion with the renderer. Unlike the BoneBus library, Thrift allows us to set
up a communication channel that is agnostic to the programming language
used on either side and that allows one to configure and change the mode
of transport (e.g. TCP/IP, shared memory, pipes). ACE follows a similar
design strategy.

5.2. Integration with New and Existing Text-To-Speech Systems

SmartBody and ACE allow one to replace the Text-To-Speech (TTS)
system without recompilation. To do this one needs to implement a plugin-
module (e.g. as dll) that links the desired text to speech system to an in-
terface standardized for the realizer. AsapRealizer provides integration with
Text-To-Speech systems in a similar manner. Additionaly, it provides the
functionality to hook up multiple (might be instances of the same, config-
ured diferently) TTS systems, and to support the use of multiple TTS speech
markup languages in alternation for the same loaded virtual human (e.g.
MaryTTS script, SSML, MS SAPI).

5.3. BML Transport Wiring

When a VH is to be integrated into an application, it may be necessary
to be able to control the VH by sending BML from another programming
language, a different Operating System, or a remote machine.

10http://www.re-lion.com

26



SmartBody offers integration with the Active MQ11 messaging system
to provide independency of platforms and programming language, and to
allow distributed setups. EMBR and Greta offer integration with the SE-
MAINE/Active MQ [14] messaging frameworks to achieve this; Greta addi-
tionally offers integration with Psyclone.12

In AsapRealizer, a crucial requirement was that the BML transport could
easily be adapted. To this end, we took a different design philosophy for BML
transport than the realizers mentioned above. Rather than relying on one
(or few) BML transport mechanisms or middleware systems, we argue that
BML transport is not a responsibility of the core realizer itself. Therefore we
provide a clean and simple interface (in Java) in which BML strings can be
send to the realizer and feedback listeners can be registered. Adapters and
pipes in seperate modules are used to compose more intricate BML transport
mechanisms. Current implementations of such modules include adapters for
the SEMAINE system, for ActiveMQ and a simple direct TCP/IP connection
and pipes that allow logging and throttling for multithreaded execution. Our
design philosophy is similar to that used to compose complex functionality
out of the composition of several simple Unix programs that are connected
with simple standard interfaces (e.g. text through the stdout) [15] and to
Alistair Cockburn’s Hexagonal architecture.13

5.4. BML to Output Mapping

All realizers provide functionality to map BML behaviors to scripted units
(e.g. keyframe animations or predefined animation scripts). SmartBody pro-
vides a configuration file in which one can set up a one to one mapping
from gesture lexeme to keyframe animation file. EMBR and Greta convert
the BML behavior into a query that is used to search their behavior lexi-
cons; adaptations in existing animations in the lexicon and additions to the
lexicon are thus automatically handled in these realizers. In ACE, anima-
tions are constructed dynamically on the basis constraints specified in the
MURML script language. In addition to being able to run scripted anima-
tion, these realizers also provide several procedural animation systems that
are hardcoded in the realizer, including gaze systems, locomotion systems or
pointing systems. However, none of the realizers mentioned above allows one

11http://activemq.apache.org/
12http://www.cmlabs.com/psyclone/
13http://alistair.cockburn.us/Hexagonal+architecture

27



to add a new procedural (e.g. locomotion, pointing, gaze) output or change
the existing one, without recompiling their core system.

AsapRealizer contributes the ability to specify the mapping of BML to
procedural output units without requiring modifications to AsapRealizer’s
source code. This flexibility is offered by AsapRealizer’s binding (see Sec-
tion 4.2). Like the lexicons of Greta and EMBR, the binding can be queried
by BML. In addition to that, the binding can map BML parameters to e.g.
animation parameters and can provide default parameter values. The latter
allows reuse of e.g. an animation for different BML behaviors. For exam-
ple: a keyframe animation of a left hand gesture can also be as a right hand
gesture, by setting its mirror parameter to true.

5.5. Output Modality

In SmartBody, EMBR, Greta and ACE it is not possible to change the
modality of a BML behavior (e.g. a virtual human vs a robotic head vs a
cartoon head, text vs TTS) without recompilation of the realizer. AsapRe-
alizer provides Engine and Embodiment abstractions to allow this. This
architectural feature is discussen in Sections 4.3 and 4.5.

5.6. Lipsync Algorithm

In SmartBody, EMBR, Greta, ACE and Elckerlyc, the lipsync algorithm
and output modality are hardcoded in the realizer. In AsapRealizer, lipsync
module(s) can be registered to the SpeechEngine, without recompilation of
the SpeechEngine or AsapRealizer’s core. This allows one to both apply
different lipsync strategies (e.g. new strategies that allow co-articulation)
and to easily apply lipsync on different embodiments (e.g. a robot or a 2D
cartoon character). AsapRealizer’s lipsync strategy is dicussed in detail in
Section 4.8.

5.7. Available Behavior Types and Extensibility

There are many different paradigms for the generation of specific behav-
iors for avatars (see, e.g., [16] for a survey of animation techniques). The
choice which paradigm is the most suitable in a given situation depends
(also) on the application. A BML Realizer should therefore support as many
behavior types as possible, and should preferebly be easy to extend with new
types.

Smartbody uses keyframe animation and a fixed set of biologically moti-
vated motion controllers (e.g. for gaze) to achieve facial and body motion.

28



EMBR uses keyframe animation, procedural animation with a fixed set of
expressive parameters, autonomous motion (such as eyeblink and balancing),
morph targets for facial animation, and controllable shaders (e.g. for blush-
ing). Greta uses procedural body animation with a fixed set of expressivity
parameters, and Ekman’s action units [17] for facial animation.

AsapRealizer allows all of the above, and adds physically simulated ani-
mation behaviors and sound effects (one can specify sound files to be played
in synchronisation to other behaviors, through a custom SoundEngine with a
sound behavior BML extension). More importantly, we contribute the abil-
ity to add custom behavior types and output modalities without requiring
modifications to AsapRealizer’s source code, as described in Sections 4.4 and
4.5.

6. Discussion

We have discussed how AsapRealizer can be tailored to the needs of spe-
cific applications, without requiring invasive modifications to AsapRealizer
itself. AsapRealizer’s flexibility has allowed us to connect it to a behavior
planner using either the SEMAINE framework or simple function calls, and
to switch between such connections with a simple configuration option. For
example, a group of educational technology researchers succeeded in sending
BML from their tutoring application to AsapRealizer, embedding our vir-
tual human as embodied tutor in their educational software, doing a series of
user experiments with this setup. In our own experiments, the logging port
allowed us to easily record all communication with AsapRealizer for user
experiments, by simply changing the wiring between the behavior planner
and AsapRealizer. The BMLRealizerPort also allowed us to exchange both
the realizer and the behavior planner very easily. We have designed several
behavior planners that implements behavior planning of a VH and one that
replaces the VH behavior planning by a generic Wizard of Oz interface. The
ability to easily replace the BML Realizer and behavior planner is also valu-
able for testing. We have designed a mockup BML Realizer that allows us to
test behavior planners rapidly. This mockup BML Realizer does not actually
execute the BML behavior, but does provide the behavior planner with ap-
propiate BML feedback. We have also designed a behavior planner that tests
realizer implementations. This behavior planner executes test BML scripts
on the realizer and inspects if the realizer provides the appropiate feedback.
Since this test behavior planner communicates with the realizer through the

29



generic BMLRealizerPort, it can not only test any configuration of AsapReal-
izer, but also test Realizers designed by other research groups (by writing an
adaptor from the BMLRealizerPort to their input and output channels), as
discussed in [18]. AsapRealizer’s ability to add new modalities has allowed us
to hook it up with the Nabaztag rabbit (see also Section 4.5) and to steer this
rabbit with generic BML commands. The Nabaztag extension was achieved
in a matter of days and did not require any changes in the AsapRealizer’s
source code.14 An Embodiment and Engine implementation for a humanoid
robot head was implemented by another research group, allowing them to
steer the head and gaze behavior of their robot using BML requests that are
realized by AsapRealizer.

AsapRealizer is compliant with BML version 1.0. Switching from the
Draft 1.0 version of BML was mostly a matter of updating the SAIBA BML
parsing packages15 and updating the XML descriptions for the various Bind-
ings. Minor changes to the standard will require no more than that; slightly
more extensive changes require modifications of the scheduler and the en-
gines, but those are often still local to a specific engine. The BML Realizer
Tester framework mentioned above helps in smoothly moving to new versions
of the BML standard.

AsapRealizer’s extensibility is mainly achieved by a very flexible initial-
ization stage. In this initialization stage, a desired setup of the AsapRealizer
is constructed by combining and configuring different components that are
provided by AsapRealizer’s code base or by custom extensions. We have
designed an XML configuration file format that describes such a configura-
tion. Several default configurations are available, and new configurations are
typically easily achieved by slight modifications of an existing configuration.

7. Acknowledgements

This research has been supported by the GATE project, funded by the
Dutch Organization for Scientific Research (NWO) and the Dutch ICT Regie,
and by the Dutch national program COMMIT.

14See http://elckerlyc.sourceforge.net/ for screenshots and movies.
15available from http://sourceforge.net/projects/saibabml/

30



References

[1] H. van Welbergen, D. Reidsma, Z. M. Ruttkay, J. Zwiers, Elckerlyc:
A BML realizer for continuous, multimodal interaction with a virtual
human, Journal on Multimodal User Interfaces 3 (2010) 271–284.

[2] H. van Welbergen, D. Reidsma, S. Kopp, An incremental multimodal
realizer for behavior co-articulation and coordination, in: Y. Nakano,
M. Neff, A. Paiva, M. A. Walker (Eds.), IVA, volume 7502 of Lecture
Notes in Computer Science, Springer, 2012, pp. 175–188.

[3] S. Kopp, I. Wachsmuth, Synthesizing multimodal utterances for con-
versational agents, Computer Animation and Virtual Worlds 15 (2004)
39–52.

[4] S. Kopp, B. Krenn, S. Marsella, A. N. Marshall, C. Pelachaud, H. Pirker,
K. R. Thórisson, H. H. Vilhjálmsson, Towards a common framework for
multimodal generation: The behavior markup language, in: IVA, pp.
205–217.

[5] D. Reidsma, H. van Welbergen, J. Zwiers, Multimodal plan represen-
tation for adaptable bml scheduling, in: H. Vilhjálmsson, S. Kopp,
S. Marsella, K. Thórisson (Eds.), Intelligent Virtual Agents - 11th In-
ternational Conference, IVA 2011, Reykjavik, Iceland, September 15-17,
2011. Proceedings, volume 6895 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2011, pp. 296–308.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Adisson-Wesley, 1995.

[7] M. Slee, A. Agarwal, M. Kwiatkowski, Thrift: Scalable cross-language
services implementation, 2007.

[8] K. Balci, Xface: MPEG-4 based open source toolkit for 3d facial ani-
mation, in: AVI04, Working Conference on Advanced Visual Interfaces.

[9] R. Klaassen, J. Hendrix, D. Reidsma, R. op den Akker, Elckerlyc goes
mobile: Enabling technology for ecas in mobile applications, in: UBI-
COMM 2012, The Sixth International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, pp. 41–47.

31



[10] M. Thiebaux, A. N. Marshall, S. Marsella, M. Kallmann, Smartbody:
Behavior realization for embodied conversational agents, in: AAMAS,
pp. 151–158.

[11] A. Heloir, M. Kipp, Real-time animation of interactive agents: Specifi-
cation and realization, Applied Artificial Intelligence 24 (2010) 510–529.

[12] M. Mancini, R. Niewiadomski, E. Bevacqua, C. Pelachaud, Greta: a
SAIBA compliant ECA system, in: Agents Conversationnels Animés.

[13] M. Kipp, A. Heloir, M. Schröder, P. Gebhard, Realizing multimodal be-
havior: Closing the gap between behavior planning and embodied agent
presentation, in: J. Allbeck, N. Badler, T. W. Bickmore, C. Pelachaud,
A. Safonova (Eds.), Proceedings of the 10th International Conference on
Intelligent Virtual Agents, volume 6356 of Lecture Notes in Computer
Science, Springer, 2010, pp. 57– 63.

[14] M. Schröder, The SEMAINE API: Towards a standards-based frame-
work for building emotion-oriented systems, Advances in Human-
Computer Interaction (2010).

[15] E. S. Raymond, The Art of UNIX Programming, Addison-Wesley, 2003.

[16] H. van Welbergen, B. J. H. van Basten, A. Egges, Z. M. Ruttkay, M. H.
Overmars, Real time animation of virtual humans: A trade-off between
naturalness and control, Computer Graphics Forum 29 (2010) 2530–
2554.

[17] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for
the Measurement of Facial Movement., Consulting Psychologists Press,
Palo Alto, 1978.

[18] H. van Welbergen, Y. Xu, M. Thiébaux, W.-W. Feng, J. Fu, D. Reidsma,
A. Shapiro, Demonstrating and testing the bml compliance of bml re-
alizers, in: H. H. Vilhjálmsson, S. Kopp, S. Marsella, K. R. Thórisson
(Eds.), Intelligent Virtual Agents - 11th International Conference, IVA
2011, Reykjavik, Iceland, September 15-17, 2011. Proceedings, volume
6895 of Lecture Notes in Computer Science, Springer, 2011, pp. 269–281.

32



Appendix A: Engines and Embodiments

Table 2: Overview of Engines available in AsapRealizer,
the BML behaviors they can deal with, the Plan Units
they use for this, and the Embodiments (and their control
primitives) controlled by the Engine.

TTSEngine
Core BML: speech

BML extensions: Dynamically set by binding. E.g: SSML, MS
SAPI, MaryXML

Plan Units: TimedTTSUnit (impl: TimedWavTTSUnit,
TimedDirectTTSUnit)

Embodiment interface: TTSGenerator
Implementations: AndroidTTSGenerator, MaryTTSGenerator,

SAPI5TTSGenerator

TextEngine
Core BML: speech

Plan Units: TimedTextSpeechUnit
Embodiment interface: TextOutput

Control primitives: text
Implementations: JLabelTextOutput, StdoutTextOutput

AnimationEngine
Core BML: head, gaze, gesture, posture,

postureShift, pointing

BML extensions: procanimation, controller, keyframe,

noise, murmlgesture

Plan Units: TimedAnimationUnit (impl: PointingUnit, Pro-
cAnimationUnit, GestureUnit, NoiseUnit, Physi-
calControllerUnit, KeyframeUnit, MURMLUnit,
GazeUnit, PostureUnit)

Embodiment interface: SkeletonEmbodiment
Control primitives: joint rotation, translation

Implementations: HmiRenderBodyEmbodiment, RelionEmbodi-
ment

Embodiment interface: PhysicalEmbodiment

33



Table 2 – Continued from previous page

Control primitives: joint torque, root force
Implementations: OdePhysicalEmbodiment

FaceEngine
Core BML: faceFacs, faceLexeme

BML extensions: murmlface, facemorph

Plan Units: TimedFaceUnit(impl: AUUnit, FACSUnit, Mor-
phUnit, PlutchikUnit)

Embodiment interface: MorphEmbodiment
Control primitives: morph targets

Implementations: FaceController
Embodiment interface: MPEG4Embodiment

Control primitives: MPEG-4 FAPS
Implementations: FaceController, XFaceController

AudioEngine
BML extensions: audiofile

Embodiment interface: SoundManager
Control primitives: audio

Implementations: ClipSoundManager (java default), JoalSound-
Manager (openal)

NabaztagEngine
BML extensions: moveearto, wiggleear

Plan Units: MoveEarToNU, WiggleEarNU
Embodiment interface: NabaztagEmbodiment

Control primitives: earposition

PictureEngine
Core BML: faceLexeme, gesture

BML extensions: setImage, addImage, addAnimationXML,

addAnimationDir

Plan Units: TimedPictureUnit(impl: SetImagePU, AddIm-
agePU, AddAnimationPU, AddXMLPU)

Embodiment interface: PictureEmbodiment
Control primitives: add/remove/replace image at layer x

Implementations: JFramePictureEmbodiment, AndroidPictureEm-
bodiment

34



Table 2 – Continued from previous page

FlobiEngine
Core BML: gaze, head, faceFacs

Plan Units: Facs, HeadOrientation, HeadRotation
Embodiment interface: XS2Output

Control primitives: NAORSB calls (nao is a misnomer here, same
library is used for both Flobi and Nao)

NaoEngine
Core BML: locomotion, head, faceFacs

Plan Units: Locomotion, HeadOrientation, HeadRotation
Embodiment interface: XS2Output

Control primitives: NAORSB calls

LiveMocapEngine
BML extensions: remoteFaceFACS, remoteHead

Plan Units: LiveMocapTMU(impl: RemoteHeadTMU, Re-
moteFaceFACSTMU)

Embodiment interface: a PlanUnit specific (Sensor,Embodiment) pair
Implementations: EulerInput-¿EulerHeadEmbodiment,

FACSFaceInput-¿FACSFaceEmbodiment

35


