
Inter-Event Dependencies support Event Extraction
from Biomedical Literature

Roman Klinger1, Sebastian Riedel2, and Andrew McCallum2

1 Department of Bioinformatics
Fraunhofer Institute Algorithms and

Scientific Computing (SCAI)
Schloss Birlinghoven

53754 Sankt Augustin, Germany
klinger@scai.fraunhofer.de

2 Information Extraction and Synthesis Lab
University of Massachusetts
Amherst, MA 01003, USA

{riedel,mccallum}@cs.umass.edu

Abstract. The description of events in biomedical literature often follows dis-
course patterns. For example, authors may firstly mention the transcription of a
gene, and then go on to describe how this transcription is regulated by another
gene. Capturing such patterns can be beneficial when we want to extract event
mentions from literature. For instance, detecting the mention of a transcription of
gene A gives us a hint to actively look for mentions of regulations involving A.
With this hint we could find such mentions even if they follow unseen lexical or
syntactic patterns. To exploit such hints we need to perform event extraction in a
cross sentence manner.
It is shown that imperatively defined factor graphs (IDF) are an intuitive way to
build Markov Networks that model inter-dependencies between mentions of events
within sentences, and across sentence-boundaries. Small pieces of procedural code
define the graph structure, feature functions and hooks for efficient inference.
Empirically, this leads to an efficient cross-sentence event extractor with very
competitive results on the BioNLP shared task. One of our inter-event features
shows an impact of 1.94 points in F1 for the class of regulation events.

1 Introduction
Finding relevant information is one of the most important challenges in our time. In
particular in life science a huge amount of new publications, research reports and patents
is produced every year. For users of very large text corpora like MEDLINE3, which
contains 19 million citations as of June 2010, document categorization, ranking and
finding entity-related information is an important help in their daily research and work
life. Especially gene and protein names are of high interest, and methods for their
recognition and normalization as well as protein-protein interaction identification are
developed since several years [2,5,6]. These tasks typically target the reconstruction of
flat relations between entities.

3 http://www.ncbi.nlm.nih.gov/pubmed/

http://www.ncbi.nlm.nih.gov/pubmed/


The BioNLP Shared Task 2009 [8] aims to extract nested bio-molecular events
from research abstracts. Events of interest are gene expressions, transcriptions, protein
catabolisms, phosphorylation and localization, which can have exactly one gene as
argument (the theme of the event). Bindings can have multiple genes as themes, and
regulations, optionally specified as positive or negative, are declared by a theme and a
cause, while these arguments can be genes as well as other events. These descriptions
follow the definition of the gene ontology (GO, [1]). An example of such structure is
shown in Figure 1.

So far, work on this problem has pri-

inducers of IL-6 gene expression

Gene Expression
Event

Positive Regulation
Event

Trigger

Theme

TriggerTheme

Fig. 1: Example regulation structure from
training data [24]

marily focused on two aspects: effective
features for the tasks of clue/trigger word
detection and argument attachment [3],
and joint models of the full event ex-
traction task [18,16,19,12,22]. What has
mostly been neglected are correlations
between pairs of events.

Why would we want to model event-
event dependencies? An intriguing case for event-event correlations becomes apparent
when we consider that events are not just expressed in single sentences. Instead, they
are usually introduced and further explained in a discourse. For example, an author may
begin with the observation that “protein A regulates protein B”. In the course of the
document the author then elaborates that A regulates the gene expression of B.

The above intuition can be measured by considering the sequence of events within
a document that concern a given protein. We have observed that for this sequence,
strong correlations in terms of event types hold. For example, if one sentence mentions
a transcription of gene A, then there is a 44% probability that the next mention of this
gene concerns a positive regulation of A.

We have chosen to use Imperatively Defined Factor Graphs (IDF,[10,11]) to model
such event-event interactions. When building IDFs, the probabilistic modeler uses small
pieces of imperative code instead of declarative formulae to define the structure of a
graphical model (as necessary in Markov Logic [17]). Crucially, during Markov chain
monte carlo (MCMC) inference this code only unrolls the network relevant to the current
variable assignment. Working with this partial network is extremely efficient—to the
extent that large scale joint inference can still remain tractable [21]. In addition, when
working with IDFs we can plug-in tailor-made proposal functions that allow for even
faster inference.

In this work, we present an IDF approach to biomedical event extraction. Notably,
to our knowledge it is the first that captures document-wide interactions between pairs
of events. We show that by modeling such interactions error reductions of 1.2 points
in F1 measure over a strong baseline are possible. This leads to results that tie the best
ever reported numbers on the BioNLP shared task development set, and to the third best
results on the test set. Moreover, we show that despite the added complexity, inference
and learning in our model are still efficient.



2 Methods
2.1 Imperatively Defined Factor Graphs
A factor graph [9] is a bipartite graph over factors and variables. Let factor graph G
define a probability distribution over a set of output variables y conditioned on input
variables x. A factor Ψi computes a scalar value over the subset of variables xi and yi
that are neighbors of Ψi in the graph. Often this real-valued function is defined as the
exponential of an inner product over sufficient statistics {fik(xi,yi)} and parameters
{θik}, where k ∈ [1,Ki] and Ki is the number of parameters for factor Ψi. Let Z(x) be
the data-dependent partition function used for normalization. The probability distribution
can be written as

p(y|x) = 1

Z(x)

∏
Ψi∈G

exp

(
Ki∑
k=1

θikfik(xi,yi)

)
.

In practice, factor graphs often use the same parameters for several factors, this is
termed parameter tying. A factor template Tj consists of parameters {θjk}, sufficient
statistic functions {fjk}, and a description of an arbitrary relationship between variables,
yielding a set of satisfying tuples {(xj ,yj)}. For each of these variable tuples (xi,yi)
that fulfil this relationship, the factor template instantiates a factor that shares {θjk} and
{fjk} with all other instantiations of Tj . Let T be the set of factor templates. In this case
the probability distribution is

p(y|x) = 1

Z(x)

∏
Tj∈T

∏
(xi,yi)∈Tj

exp

 Kj∑
k=1

θjkfjk(xi,yi)

.
The process of instantiating individual factors from their templates is termed un-

rolling. For a factor Ψi that is an instantiation of factor template Tj , the inner product of
{fjk(xi,yi)} and parameters {θjk} is termed the score of the factor.

Imperatively-defined factor graphs (IDFs) are an approach to probabilistic programming
that preserves the declarative semantics of factor graphs, while leveraging imperative
constructs (pieces of procedural programming) to greatly aid both efficiency and natural
intuition in specifying model structure, inference, and learning.

FACTORIE4 [10,11] is an implementation of IDFs in the context of Markov chain
Monte Carlo (MCMC) inference, a common approach for inference in very large graph
structures [4,17,13]. It only requires to represent a single world at one time by proposing
a change to the current world and accepting that change depending on the ratio of post-
and pre-proposal model scores. In this framework, factors that touch unchanged variables
do not need to be evaluated.

IDF programming consists of four stages: (1) representing data through variables,
(2) designing templates that define the graphical structure of the network, (3) optionally
providing application specific hooks for efficient inference, (4) reading in the data,
learning parameters (using Sample-Rank in this paper [20]), testing, and evaluating.

These steps, for the case of biological event extraction, are described in the following
sections, the fourth stage is part of Section 3.

4 http://factorie.cs.umass.edu

http://factorie.cs.umass.edu


Table 1: Variables to represent an event structure on sentences.
Variable Description

Document Sequence of sentences
Sentence Sequence of tokens together with a sequence of spans
Token Member of Sentence and Span, never changed
Span Contains consecutive tokens in sentence, associated with event or gene,

member of Sentence
Event Attribute of span, multiple events on one span possible, contains clue word

and arguments
Gene Attribute of span, never changed
Argument Points to a gene or an event, can be a theme or a cause

2.2 Data and Variable Representation

For any kind of probabilistic modeling we need to represent data, or possible worlds,
through variables. In the case of IDFs we use an object-oriented model that uses classes,
member fields and methods to achieve the same. In fact, we can use the full repertoire of
constructs in a modern programming language—in the case of FACTORIE this language
is Scala.5

In our representation, each document is divided into sentences which are sequences
of tokens. Each sentence has spans over tokens that are associated with the entities these
spans express. Entities can either be genes/proteins, or events. In the case of the latter,
the corresponding span is an event clue. Each event entity can have a set of arguments.
An argument is either a gene or an event, and is labelled with a theme or cause role. The
variables are summarized in Table 1.

For our actual experiments we restrict us to a set of candidate spans that are allowed
to become event clues during inference. We fill this set with all spans of token length
one, except for those that are preceded by a hyphen (e. g. “up - regulation”). In this case
we instead add a span that includes the token itself and its preceding two tokens. No
spans are generated on tokens whose words never appear as clues in the training data.

2.3 Templates

As described in Section 2.1, templates define the sets of variables that form factors
(i. e., the graphical structure), the sufficient statistics/features defined on these factors,
and the parameters associated with them. In FACTORIE, templates are Scala classes
implementing unroll methods to define the connectivity of the graphical model. This
method returns all factors the current templates associates with a given variable. This is
very suitable for MCMC inference which requires, for each proposed jump, all factors
associated with a changed variable.

Sufficient statistics/features are implemented through methods of a template class as
well. Given a factor, a statistics method returns a feature vector representation of this
factor.

5 http://www.scala-lang.org/

http://www.scala-lang.org/


In the following, we will distinguish between two types of templates. The first one
defines factors that touch a single event (described in Section 2.4). The second one
covers factors that assess pairs of events (described in Section 2.5).

2.4 Single Event Template

Given an event as input, the unroll method of these templates returns factor containing
only the event itself.

The sufficient statistics/features assess three aspects of an event: (a) its clue, (b) the
combination of clue and each of the event’s arguments, and (c) each pair of its arguments.

We describe these features as patterns. The corresponding feature vector is binary
and has active components corresponding to the patterns present in the event variable
that touches the factor.

Features measuring the event clue are created by conjoining different representations
of the clue word with different representations of the event type. Table 2 shows the
representations used. String yields the type name or clue word as is. Stem refers to
the clue stem and Dict to test the membership in a dictionary. Pre-Hyphen returns the
word at token i − 2 if a hyphen is at i − 1. Normalized yields “Regulation” for each
regulation type, and the type name as is for each other type. Any fires for each possible
type or clue. Features for event clues are generated from the cross-product of the above
representations.

To assess the compatibility of event type and clue with an event argument, represen-
tations of the clue word, event type (as before), the dependency path between clue and
argument head, the argument token itself, and the role of the argument are generated.
These representations are then conjoined to form features. Table 2 lists the representa-
tions for each of these components under “Clue Argument”. Stem/Prot, which returns
a “PROT” if the argument is a protein, and the argument stem word otherwise. For
dependency path representations we use: Full, which amounts to the full path (including
directions) between clue and argument; Start and End which yield partial paths which
start at the clue or end at the argument, respectively; Length, which returns the length
of the path; Norm., which normalizes the dependency path by replacing “conj X” with
“conj” labels (to generalize over conjunctions), and removes “appos” and “abbrev” edges
from the path (as they are representing equivalence). Again, features are created from the
cross-product of the above representations, and for each clue-argument pair in the event.

The above features cannot assess how compatible the arguments are to each other. For
example, they cannot differentiate between a binding event at clue T with two arguments
A and B, and two binding events at T, one with argument A and one with argument B.
Therefore, argument pair features are created by conjoining different representations
of the two arguments, and of the path between the two arguments. Table 2 shows the
used representations under “Argument Pair”. We include 1/2 Gram representations of
the dependency path, and Rel Position, which yields the relative positions of the first and
second argument with respect to the clue word. The latter representation is motivated as
follows. In a sentence such as “A binds with B and C” two events are expressed: A binds
B and A binds C. Here arguments on the same side of the clue do not belong together,
but arguments on opposite sides do. Features are again created from the cross-product,
and for each unique (unordered) pair of arguments.



2.5 Event Pair Templates

There are two types of templates for factors between events. The first measures compat-
ibility between certain pairs of events in the same sentence, the second compatibility
between events in different sentences of the same document.

There are dependencies between regulation events and their argument events. For
example, it is less likely to see positive regulations of negative regulations than it is
to have positive regulations of gene expressions. Moreover, regulations tend to not
share arguments with their themes, and if they do, these shared arguments would rather
be themes than causes. This is assessed by a parent-child template. To capture these
dependencies we define factors between regulation events (the parents) and the events
they regulate (the children). For any event e the method returns all pairs (p, e) where p
is a parent of e, and all pairs (e, c) where c is a child of e. The sufficient statistics of this
template measure the compatibility of the event types of parent and child, as well as their
arguments and relative position to each other. In particular, the features test whether or
not parent and child share an argument.

The idea behind the second of the event pair templates, the document wide template
is to capture how the description of a gene changes throughout the document. To this
end it connects events that concern the same genes (as determined by simple string
match). Instead of pairwisely connecting all such events, we only connect those of
directly succeeding gene mentions. This allows to model the transitions we mentioned
in Section 1, and describe in more detail in Section 3.

For a given event e the document wide template returns the pair (p, e), where p is an
event that concerns a preceding mention of a protein in e. It also returns the corresponding
pairs in forward direction. Note that the IDF approach helps us to make unrolling for this
template very efficient: we can simply add an index to our data-structure that maps gene
mentions to preceding mentions of the same gene. As sufficient statistics the template
returns the conjunction of event types of both events. This allows to model transitions
such as the one in Figure 2 that progresses from Gene Expression to Positive Regulation.

Table 2: Features defined on single events
Event Clue

Clue Stem,Dict,Any,Pre-Hyphen
Type String, Normalized

Clue Argument

Type String, Normalized
Clue String, Stem, Dict
Path Full, Split, Length, Norm.
Role String
Arg String/Prot, Stem, Dict

Argument Pair

Arg1/2 String/Prot
Type String
Path Full, 1/2 Gram, Length, Rel Position



Trigger

TriggerTheme

Theme

. . . TF expression by circulating monocytes is associated with thrombotic

Transcriptional activation of the human TF gene in monocytic cells. . .
and inflammatory complications in a variety of diseases.

Pos. Regulation

Gene Expression

Fig. 2: Example text snippet depicting the transition of the event type from gene expres-
sion to positive regulation of the gene TF [15].

2.6 Sampling

We need to know how to move from one possible world (set of events) to other likely
possible worlds. This is required for finding the MAP configuration, as well as for
learning the parameters of our model. We will refer to this process as sampling, although
technically it may be closer to local search because our models are discriminatively
trained, and we do not take into consideration backward probabilities of our moves.

One iteration of the sampler consists of two phases. The first one processes each
candidate clue span and proposes events. The second one considers existing events and
proposes changes to these.

At the beginning, each span is either mentioning a gene or is empty. The sampler
starts by proposing the generation of events with all possible event types (gene expression,
phosphorylation, regulation etc.) on each span as a clue. Depending on model score, one
of them is accepted. Next, we propose to attach one of available events or genes as an
argument to the newly generated event. We take care to not propose invalid events such

...

inducers of IL-6 gene expression

Pos. Regulation

Trigger

Neg. Regulation
Regulation

Gene Expression

Binding
· · ·

...

Pos. Regulation

Trigger

Neg. Regulation
Regulation

Gene Expression

Binding
· · ·

(a) Step 1: Propose events with all possi-
ble types on spans

inducers of IL-6 gene expression

Pos. Regulation

Trigger Trigger

Gene Expression

(b) Step 2: Keep one event per clue word

inducers of IL-6 gene expression

Pos. Regulation

Trigger Trigger

Gene Expression

Theme

Theme

Theme

Theme

(c) Step 3: Propose themes for each
event

inducers of IL-6 gene expression

Pos. Regulation
Trigger Trigger

Gene ExpressionTheme

Theme

(d) Step 4: One Event on each span is
kept with the according theme, alterna-
tively, the event is removed

Fig. 3: Proposing the generation of events with themes.



as gene expressions with multiple themes. Moreover, we take into account that events
can only take other events as arguments if their event type is positive regulation, negative
regulation or regulation. The sampler is forced to accept this event with one argument,
or to remove it completely from the data structure. In this manner we guarantee that
after the end of phase two there are no “dangling” events without themes. The above
sampling steps are visualized in Figure 3.

In the latter phase, events which already have a theme can be further altered. This can
happen in different ways: If the event to be changed is a (positive, negative, or general)
regulation, a cause can be added which is a gene or event. If the event is a binding, more
genes can be added as themes. Similarly, an argument can be proposed to be removed
provided that at least one theme is remaining.

For each existing event we additionally propose to change the type while respecting
the current configuration of arguments. If multiple themes are currently attached, a
change is not possible because only bindings can be in such state. If a cause is currently
attached and the type is to be changed to a non-regulation, the cause needs to be removed
(because only regulations can have causes). Finally, we also propose to remove the
complete event.

2.7 Learning and Objective Function

In order to learn the parameters of our model we apply SampleRank [23] . This allows to
make parameter updates within inference and hence to speed-up convergence. A crucial
component in the SampleRank framework is the objective function.

Our objective function consists of two parts. The first part assesses event types and
their arguments in isolation. This means that getting the type wrong, but one argument
right, still gives partial credit. Let e be the event to be evaluated and 1ClueType = 1 iff the
clue and type is correct. Let TPArgClue the number of correct arguments provided that
clue and type are correct, and TPArg the number of correct argument pairs regardless of
the correct clue and type. Note that the latter can differentiate between two events with
one argument each, and one event with both of the arguments.

With the above definitions we use as a measure for the correctness of an event TP(e)
(FP(e) analogously):

TP(e) = 1ClueType +TPArgClue +TPArg .

The objective function f(e) to be evaluated on event e is then

f1(e) = TP(e)− FP(e) .

This objective function cannot measure the global goodness of events. For example, it
rewards duplicate true positives. Therefore, we additionally use an objective function
which is to be evaluated on a per-sentence basis. This objective is simply

f2(s) = TPClueTypeTheme − FPClueTypeTheme

and rewards the true events respecting the clue, event type and theme. In particular, this
addresses the generation of duplicate events. If a proposal changes sentence and event,
objective is f(·) = f1(·) + f2(·).



3 Results
The data provided by the BioNLP Shared Task 2009 organizers is divided into several
sets: A training set with 800 abstracts, a development set with 150 abstracts, and a test
set with 260 abstracts. The gold data for the latter is not available but predictions on the
test abstracts can be evaluated online once on a day on the data publishers website.6 In
this way, an adaption of a system to the test set is not possible.

We evaluate different subsets of templates using the development set. Of special
interest is the impact of our proposed global features that capture (a) correlations between
parent and child events and (b) the transitions of event types for events with the same
gene argument throughout the text. We also assess the impact of our argument pair
features. To our knowledge, these have not yet been applied in the context of biomedical
event extraction.7

To get a better sense of the document-wide transitions between events that concern
the same genes, we show an event type transition matrix on the development set in
Table 3. As expected, in general self-transitions from and to the same state are the most
probable for most of the event types (Gene Expression, Localization, Phosphorylation,
Protein Catabolism, and Negative Regulation).

More interesting are transitions between different states that have a high probability.
Transitions from Regulation to Positive Regulation are frequent (probability 0.44) which
point to concretions in the text. Interestingly, the transition to Negative Regulation
is comparatively low (with only 0.08). Eye-catching is also the transition between
Transcription and Positive Regulation with 0.44.

The results on the development set (using the approximate span, recursive evalua-
tion used in the competition to rank the participants) are shown in Table 4. Our best
configuration including the templates with features explained in Sections 2.4 and 2.5

6 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
eval-test.shtml

7 Note that they do resemble sibling features in dependency parsing. In this same context parent-
child features are closely related to so called grandparent features.

Table 3: Markov Chain-like transitions describing the change of the events concerning
the same gene throughout the document. Transitions to or from gene mentions outside
any event are not shown.

GE L Ph PC T B R PR NR

Gene expression 0.53 0.02 0.01 0.01 0.05 0.10 0.04 0.19 0.06
Localization 0.20 0.43 0.13 0.03 0.10 0.10

Phosphorylation 0.03 0.57 0.07 0.27 0.03 0.03
Protein Catabolism 0.08 0.33 0.42 0.17

Transcription 0.22 0.07 0.11 0.02 0.13 0.44 0.02
Binding 0.10 0.03 0.03 0.02 0.03 0.60 0.06 0.07 0.04

Regulation 0.10 0.01 0.02 0.03 0.23 0.08 0.44 0.08
Positive Regulation 0.12 0.01 0.04 0.12 0.11 0.07

Negative Regulation 0.16 0.01 0.02 0.02 0.05 0.31 0.42

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/eval-test.shtml
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/eval-test.shtml


yields an F1 score of 55.6 on the development set, in range of the currently best perform-
ing system [19]. The impact of the global features presented in Section 2.5 is shown
by removing each template: The Argument-Pair template has an impact of 1.1 in F1

(significant8 for regulations p ≤ 0.03), the detection of an event-argument structure
between two events contributes 0.6 (significant for negative regulations, p ≤ 0.04).
Detecting the transition of event types of events which have the same gene mention has
an impact of 1.2 proving such approach to be valuable on a competitive system. We
observe the highest impact for regulations (Regulation: 0.74, Positive Regulation: 1.83,
Negative Regulation: 3.46, All Regulations: 1.94, results are significant, p ≤ 0.02 for
all regulations, for all events, p ≤ 0.07 holds).9 This is consistent with our expectation:
Especially regulations are highly probable to be the successor of several other event
types.

A decrease in performance can be observed for Protein Catabolism. This type has
the lowest number of annotations in the development set (20). Learning a global feature
for such low-frequent types is generally error-prone.

The overall increase in performance does not involve a problematic runtime raise.
Training on the training set with 20 iterations together with 20 iterations for prediction
takes 101 minutes (on a single core of a Quad Core AMD Opteron CPU with 2.3
GHz). Without the event wide template, the runtime is still 92 minutes. The reason for
this limited increase in runtime is that per change the document wide template only
instantiates two factors: one for the previous event with same gene, one for the following
event with same gene.

The results on the test set with the best configuration on the development set has
near state-of-the-art results with an F1 measure of 49.6 (cf. Table 5). Interestingly, akin
to [16] who achieve 50.0 F1, we observe a 6% drop from development to test set.

8 Tested via sign-test [7].
9 Full results per entity type for all four configurations are omitted for brevity.

Table 4: Results for different configura-
tions on the development set and com-
parison with other approaches using the
approximates span and recursive evalu-
ation. The ∗ denotes a significant con-
tribution of the template (α = 0.05) to
regulations. F1 shows the overall perfor-
mance, F1 Reg. for all regulations.

Configuration Precision Recall F1 F1 Reg.

No Arg-Pair 68.4 45.3 54.5 43.6 *
No parent event 68.9 45.8 55.0 43.8
No doc-wide 68.3 45.3 54.4 43.6 *
Best 68.5 46.7 55.6 45.6

Miwa 2010 [14] – – 55.6
Riedel 2010 [19] 67.9 51.8 58.7

Table 5: Results on the test set
Event Class Prec. Rec. F1

Gene Expression 78.7 62.7 69.8
Transcription 71.0 16.1 26.2
Protein Catabolism 85.7 42.9 57.1
Phosphorylation 79.3 79.3 79.3
Localization 93.3 40.2 56.2
Binding 56.7 34.0 42.5

Regulation 45.0 23.0 30.6
Positive Regulation 56.9 31.8 40.8
Negative Regulation 51.5 31.1 38.8

Total 65.0 40.0 49.6



4 Discussion and Future Work

This paper presented the use of imperatively defined factor graphs to incorporate novel
global features into an event extraction model. The global feature with the biggest gain
of 1.2 in total F1 (and 3.46 F1 for the event class of negative regulations) is based on a
document-wide factor template contributing significantly to the recognition of events. It
assesses progression of event types for events that concern the same gene.

A further idea would be to model the explanation of an event across a document in
a more detailed fashion. For example, often the regulation of a gene A is mentioned
first, and this is expanded to a regulation of an expression of gene A. In fact, we also
assembled the transition matrix for this scenario, and it resembles the one in Table 3.
However, we could not produce a performance gain with a template that we designed to
capture the properties of this matrix. A reason may be that the transitions of interest are
not as frequent as the ones in Table 3, and hence harder to exploit.

The described document-wide template concerns mentions of the same gene; until
now, we used exact string match to identify these mentions. Obviously, this approach can
be improved by using a more sophisticated co-reference approach, which will hopefully
increase the impact of this template. So far our models have only been applied to abstracts.
Moving to full papers may also increase the impact of document wide features.

Acknowledgements
This work has been performed during a visit of Roman Klinger at the University of Mas-
sachusetts, partially financed by a scholarship of the Germany Acadamic Exchange Service
(DAAD). This publication is partically funded in the context of the Positive-Spaces project
(http://www.positivespaces.eu/) by the European Community’s Seventh Framework
Programme [FP7/2007-2011] under grant agreement no. 248726.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics
25(1), 25–29 (May 2000)

2. Bañeres, B., Cesareni, G., Hirschman, L., Krallinger, M., Leitner, F., Valencia, A. (eds.):
Proceedings of the BioCreative II.5 Workshop. CNIO, Madrid, Spain (2009)

3. Bjorne, J., Heimonen, J., Ginter, F., Airola, A., Pahikkala, T., Salakoski, T.: Extracting
complex biological events with rich graph-based feature sets. In: Proceedings of the Workshop
on BioNLP: Shared Task. pp. 10–18. Association for Computational Linguistics, Boulder,
Colorado (June 2009)

4. Culotta, A., McCallum, A.: Tractable Learning and Inference with High-Order Represen-
tations. In: International Conference on Machine Learning (ICML) Workshop on Open
Problems in Statistical Relational Learning (2006)

5. Hirschman, L., Krallinger, M., Valencia, A. (eds.): Proc. of the Second BioCreative Challenge
Evaluation Workshop. Centro Nacional de Investigaciones Oncologicas, CNIO (2007)

6. Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of BioCreAtIvE: critical
assessment of information extraction for biology. BMC Bioinformatics 6 Suppl 1, S1 (2005)

http://www.positivespaces.eu/


7. Kanji, G.K.: 100 Statistical Tests. Sage (2006)
8. Kim, J.D., Ohta, T., Pyysalo, S., Kano, Y., Tsujii, J.: Overview of BioNLP-09 Shared Task

on Event Extraction. In: Proceedings of the Workshop on BioNLP: Shared Task. pp. 41–49.
Association for Computational Linguistics, Boulder, Colorado (June 2009)

9. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
Information Theory, IEEE Trans on 47(2), 498–519 (Feb 2001)

10. McCallum, A., Rohanimanesh, K., Wick, M., Schultz, K., Singh, S.: FACTORIE: Efficient
Probabilistic Programming via Imperative Declarations of Structure, Inference and Learning.
In: NIPS Workshop on Probabilistic Programming (2008)

11. McCallum, A., Schultz, K., Singh, S.: FACTORIE: Probabilistic Programming via Impera-
tively Defined Factor Graphs. In: Advances on Neural Information Processing Systems (NIPS)
(2009)

12. McClosky, D., Surdeanu, M., Manning, C.D.: Event extraction as dependency parsing in
bionlp 2011. In: BioNLP 2011 Shared Task (2011)

13. Milch, B., Marthi, B., Russell, S.: BLOG: Relational Modeling with Unknown Objects. Ph.D.
thesis, University of California, Berkeley (2006)

14. Miwa, M., Pyysalo, S., Hara, T., Tsujii, J.: Evaluating Dependency Representation for Event
Extraction. In: Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010). p. 779787 (2010)

15. Oeth, P., Mackman, N.: Salicylates inhibit lipopolysaccharide-induced transcriptional acti-
vation of the tissue factor gene in human monocytic cells. Blood 86(11), 4144–4152 (Dec
1995)

16. Poon, H., Vanderwende, L.: Joint Inference for Knowledge Extraction from Biomedical
Literature. In: Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL-HLT) (2010)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136
(2006)

18. Riedel, S., Chun, H.W., Takagi, T., Tsujii, J.: A Markov Logic Approach to Bio-Molecular
Event Extraction. In: Proceedings of the Workshop on BioNLP: Shared Task. pp. 41–49.
Association for Computational Linguistics, Boulder, Colorado (June 2009)

19. Riedel, S., McCallum, A.: Fast and robust joint models for biomedical event extraction. In:
Proceedings of the Conference on Empirical methods in natural language processing (EMNLP
’11) (2011), to appear

20. Rohanimanesh, K., Wick, M., McCallum, A.: Inference and Learning in Large Factor Graphs
with a Rank Based Objective. Tech. Rep. UM-CS-2009-08, University of Massachusetts,
Amherst (2009)

21. Singh, S., Schultz, K., McCallum, A.: Bi-directional Join Inference for Entity Resolution and
Segmentation Using Imperatively-Defined Factor Graphs. In: Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (2009)

22. Vlachos, A., Craven, M.: Search-based structured prediction applied to biomedical event
extraction. In: Proceedings of the 13th Conference on Computational Natural Language
Learning (CoNLL’ 11) (2011)

23. Wick, M., Rohanimanesh, K., Bellare, K., Culotta, A., McCallum, A.: SampleRank: Training
factor graphs with atomic gradients. In: Proceedings of the International Conference on
Machine Learning (ICML) (2011)

24. Zhang, Y., Broser, M., Rom, W.N.: Activation of the interleukin 6 gene by Mycobacterium
tuberculosis or lipopolysaccharide is mediated by nuclear factors NF-IL6 and NF-kappa B.
Proc Natl Acad Sci U S A 91(6), 2225–2229 (Mar 1994)


	Inter-Event Dependencies support Event Extraction from Biomedical Literature

