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Modeling the Knowledge Base

of Mathematics Learners:
Situation-Specific and
Situation-Nonspecific Knowledge

IPKE WACHSMUTH

Introduction

This chapter describes an approach 1o modeling the domain-specific knowl-
edge of mathematics learners in a predicate-logic formalism suited for com-
puter implementation. Two hypotheses are central to this approach. First,
4 person’s cognitive behavior is a knowledge-based process that evolves
from relatively simple component processes of an inferential nature. The
complexity of a person’s observed behavior in a domain depends on the
knowledge base: how many facts and rules he or she has and how these
facts and rules are organized. Second. a person’s behavior in a task situa-
tion is generally not supparted by the total body of his or her long-term
knowledge. Rather, it is assumed that knowledge must be activated to be
used in a given situation and that the accessibility of particular knowledge
depends on contextual cues in the situation. The degree to which particular
knowledge is contextually bound with respect to a set of specific situations
is called situation specificity.

The activation of particular-knowledge may depend on various kinds
of contextual information. Significant context information is carried by
the language involved in communicating a task situation. Language is a
primary carrier of instructional transactions and is thus a dimension to be
considered in modeling the knowledge of mathematics learners along with
the dimension of operational knowledge as captured by the rufe-based
approach. This discussion focuses on the linguistic dimension.

The chapter begins with a brief discussion to motivate and exemplify
the issue of situation specificity. A short introduction to computerized
learner models follows, The major part of the chapter presents a logical
programming approach to modeling student knowledge on the basis of
a representation system implemented in the PROLOG (PROgramming in
LOGic) language. Principles followed in modeling student knowledge are
presented and discussed. Finally, an outline is given of how the approach
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could lead to the development of a student modeling component in an
inteiligent tutoring system,

Situation Specificity and Inconsistent Student Behavior

It is a frequent observation in mathematics instruction that learners who
master a task when it is posed in a standard setting may stumble .wheq the
“same’’ task is embedded in a new context; for example. an applied situa-
tion. A possible effect is that a learner gives differen't aMSWErs 1o a ma{he:--
matical question posed in different contexts. In this sense t_he learner’s
behavior can be inconsistent across different situations involving the same
sort of mathematics. o

Empirical investigations have shown that legmers .abshty to apply
knowiedge of a subject domain cannot be consxderedAmdependentl:\-‘ of
the context in which that knowledge was acquired (Seiler. 1973). \‘_sfhen
subjects have had to demonstrate their knowledge in settings that deviated
from the situational context of instruction. they have not always been able
to do so. While formal thinking structures arise from the individual's ex-
perience with specific problems in specific situations, they rarel_v__' re_ac_h an
unrestricted. universal generality. Without further guidance an 1nd1'v1dual
may not be able to apply a given rule in novel situations. Furt?}er. itis very
probable that in one individual and with respect to one subj.ect domain.
different thinking structures can coexist that can bec_ome activated alter-
nately, depending on the symbol svstem primarily triggered or cued by a
situation (in particular ¢f. Seiler. 1973, p. 268). _

From clinical research in the realm of rational number learning. Wachs-
muth (1985a, 1983b} has presented examples thatﬁ ilfustrate some of the
points mentioned previously. One fifth-grade subject‘s. behavior in com-
paring the size of several fractions gave eviﬁlean-.: of E'.xavmg know:iedge t?u[
being unable to use it optimally in an applied situation. The evidence in-
dicated that the activation of knowledge was inhibited by the latency of,
and a lack of mutual access to, relevant subdomains of fraction knowl-
edge. It was hypothesized that the subject used one repertory of_rules to
make judgments about the equivalence or nonequ:valencg of fracF:ons and
another repertory of rules to determine the sequence (in magnitude) _of
nonequivalent fractions. When the second repertory was employfad hegwly
in arranging a set of i2 fractions according to their order re_lat10nsh1p as
numbers (represented by different gray shadings), some fractions that had
originally been recognized as being equivalent were treated as uneqpal.
The activation versus nonactivation of the different sets of rules might
explain why the subject exhibited inconsistent behavior with respect to
stating the equivalence of certain fractions. -

On the basis of another fifth grader’s performance. two competitive
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domains of fraction knowledge. specific to situations governed by certain
language. were identified. Triggered by contextual cues. each domain
could be activated independently of the other. but a connection across
the differeat situations was lacking. When the interviewer contrasted con-
tradictory answers given in the different contexts. the inconsistency in the
subject’s knowledge base caused a cognitive conflict to oceur.

With respect to the psychology of learning, the issue of inconsistency is
crucial. First, any serious attempt to improve instruction must recognize
and deal with the fact that isolated. possibly incompatible. domains—
“islands™ of knowledge—can exist in the human mind and give rise to
inconsistent behavior. Second. the discovery of inconsistencies can vield
important hints about flaws in a learner's knowledge base and indicate
where to invest remedial efforts. ldentifying the conditions and laws of
a student’s inconsistent behavior prepares the grounds for remediation.
Remediation so grounded will promote mature conceptions that are con-
sistent and stable across a broad range of situations.

In summary it is the intent of any instruction to bring about knowledge
that is widely applicable. That knowledge tends to remain situation specific
seems {0 require particular instructional attention. Such restriction in a
learner’s developing cognitive structure might be overcome by inteiligent
guidance that diagnoses the learner's condition and evaluates appropriate
tutorial strategies. A central requirement for such an effort is that the
cognitive structures of a learner be understood in terms of a framework
that allows precise description of deficits.

[earner Models

Good teaching requires an understanding of the learner’s thinking. A good
teacher’s instructional efforts are not restricted to preplaaned behavior hut
can respond to a diagnosis and remediation of the learner’s misconcep-
tions. To make decisions about pedagogical interventions successfully,
teachers must be able to put themselves in the Jearner's place, that is, make
a model of the student’s current thinking.

The construction and use of formal learner models is expected to pay off
in improved instruction through better understanding of the organization
of the learner’s subject knowledge. Computerized learner models have
become very important in attempts to apply artificial intelligence tech-
niques for educational purposes in intefligent tutoring systems. In such
a4 system a computer tutor diagnoses the student’s errors and leads the
student to an understanding of them. To do this the system uses the col-
lected knowledge base of experienced teachers of the subject domain.

Three components comprise the general framework of an inteHigent
tutoring system (cf. Barr & Feigenbaum, 1982, pp. 229-235):
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i ating
1. An “expert” component, which is charged with the task of generating

problems and evaluating the correctness of the student’s solutions

ichi : ‘s current
2. A student-model component. which: is to represent the student’s ¢

understanding of the material to be taught bl
A tutoring component. incorporating knowlcd_ge about patugai-li
‘ guage dialz)gues. teaching methods, and the subject area

H N trraty h ~
The core of this approach is to compare. in a given probi:‘.n('; :iu;;téoen\:pie;
’ i ! ideal interaction generated by 3
student’s actuai response with an i inte A et
component (Figure 4.1). The difference wili then be evaluated in orde

make a decision about appropriate tutorial strategies. ction of
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. 1 : 1 /st arner models are
i i fligent tutoring systern. Lea |
single components of an inteilig n- ! > e
regarded as one of the most important components in the coni[:i;teumost
Em:elliuent tutoring svstems but also have been found to be a%ol ?ndmdu'ﬂ
difficult. A number of approaches have attempted to %’f}o C],I ot
students’ understanding of the material to be taught: for ex.amp‘lg . by keep-
ing catalogs of the student’s response history or by settmgt_c :;'; Lo.thcr
Z 1 1 subject-matte anti .
B i ase or in a subject-matter sema
learned” flags in the rule base ter sem her
approaches ?1'}\'6 modeled student knowledge as a dumtxgn fn:%mF{;\i\E:n
‘ : i lew i . Barr gen-
ctensive review of this field cf. Ba g
knowledge. {For a more extensiv . [ this cf, Burr & Feigerr
baum. 1982, pp. 231-232). The issue of situation specificity 1s sgsrciis:
, y such ap ‘ ainly acts and rules.
cz;ptured by such approaches. because they focus_ mainly in ftc.lts(;)e“ e
while the context-bound quality of such “particles of knowledg
concern here. ‘ ‘ ‘ .
DThe nation of a learner model is concretized for the present purﬁgm
1 Y rete dAssiImp
: s a system that makes conc .
as follows: A learner model | ystem that m sumpaons
about a student's way of acting in specific simations. The generality
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FiGure 4.1. Difference modek: Learner's suboptimal performance is explaine
deviation from optimal performance.
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speciticity of a particular way of acting is then captured by the range {i.2..
number and sort} of situations associated with it.

Ia order to design a computer-implementabie representation for learner
models. the first goal is to specity a represensarion fanguage that can ex-
press pieces of student knowledge and model the use of such knowledge. A
second goal of particular importance with respect to intelligent tutoring
systems is the design of.a compornent that generates and updates actualized
hypotheses of individual learner knowledge.

As a means to describe and analyze the representation and use of do-
main-specific knowledge concisely. a formalized learner model, LAKOS.
wus developed at the University of Osnabriieck. (LAKOS is an acronym
standing for the German transtation of logical analysis of cognitive organ-
izational structures.) Its main intent is to derive hypotheses about the
cognitive structures of individual learners. Such hypotheses, expressed
in terms of the madet. should provide “logical” explanations for tearners’
behavior even if the behavior appears irrational at first glance. A com-
puterized version of the model. based on the technique of logjcal pro-
gramming. has been developed. It models tearner knowledge in terms of
actwork structures as formulated by a human experimenter.

The LAKOS model emphasizes the following:

- The linguistic competence of the learner. in the sense of what words are
availahle to the learner, what meanings are associated with these. and in
which contexts they are available and understood

2. The operational competence of the learner. in the sense of what abstract

ways 10 act {rules) are avaitable to the learner and in which situations
they can be activated and used

3. The organization of the learners knowledge as a basis for the fexibility
of his or her performance

- The disparity or connectedness of knowledge substructures

. The generality or specificity with respect to the class of situations in
which particular rules can be used

o

Afthough so far the construction of learners’ knowledge structures must
be accomplished by a human experimenter, these efforts can be an impor-
tant precursor for conceptualizing intelligent tutoring systems. Whether
our goal is to improve instructional strategies or to develop computerized
teaching systems. the main objective of modeling a learner’s knowledge
structures remains the same: to ohtain hypotheses about the learner's mis-
conceptions and suboptimal behavior such that the teacher, or the system,
can intervene in a corrective manner. In the same way that a good teacher
should be able to understand the behavior of a learner, especially where it
deviates from ideal behavior., intelligent tutoring systems should be able to
diagnose origins of behaviors in terms of a learner model on which to base
decisions about tutorial interventions.
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Description of the LAKOS Model

The first implemented version of the model is the LAKOS] system. [t
was conceptualized as a deductive question-answering system (Black.
1968) not restricted to a specific subject matter and was implemented in
the PROLOG language (a Micro PROLOG version. MLOG. was used:
Gust & Gust. 1984). The system can hold natural language dialogues of
a restricted. standardized form with a user. The user proceeds by asking
questions or probing behavior as if in a diagnostic interview. The computer
takes the role of a person. some rudiments of whom are modeled in the
machine. and answers questions or executes commands from the person’s
point of view. The system’s responses are displayed on the terminal. They
represent the actions or answer staterments of the person as predicted by
the modet. If the user asks why the computer model gives a reason for its
most recent answer.

The design of any such system requires both the specification of a repre-
sentation scheme for bodies of facts and a method for deriving conciusions.
In the LAKOSI system. the representation scheme is a combination of
formal logic and a network approach. and the reasoning method is dedue-
tive inference based on the resolution procedure (Robinson. 19635). As
“world-dependent™ components the knowledge base and the parser and
generator need to be specified with respect to a specific application.

The reactions of the LAKOS1 system are generated as knowledge-based
processes. The elements in the knowledge base are formulated as ruies
and facts. The rules are conditional statements. each consisting of one
or more phrases. the antecedent(s). followed by an arrow. followed by
another phrase. the consequent. Facts are inctuded as rules without ante-
cedents. In this approach there is no clear distinction between declara-
tive and procedural knowledge. A rule has a declarative meaning as a
descriptive statement about its constituents. In addition it has a procedural
meaning by virtue of being executable by the interpreter. Asis usual in the
PROLOG fanguage. rules are written in reverse, beginning with the con-
sequent. interpreted as a goal that recurs on the antecedents as subgoals.

A prototypical instantiation of this model is the TERR} program. which
was first presented in 1984 at the Sth International Congress on Mathe-
matical Education in Adelaide (Carss. 1986 for more information cf.
Wachsmuth, 1985a). Due to the economy of PROLOG. this program runs
on an Apple I1 micro computer {with Z80 processor). It models responses
from an uncertain pupil, not only to “straight™ guestions such as “*Which

is greater. 1 or %‘? but also to questions asking why the student gave a
1

particular answer. for example. “! is greater than | [sic] because they
3

have the same number on top and 4 is greater than 3." The student re-
sponses are not necessarily mathematically consistent but are modified in
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the light of what wordings are used or what questions have already been
asked by the user. Empizical clinical data from 3 long-term expcri;nemal
teaching study carried out in the United Stateg {the Rational Number
Project') served as a basis for the instantiation of the model.

Asisseenin Figure 4.2, the LAKOS] System consists of a dialogue inter-
face. a knowledge base referred 1o as long-term memory, and three pro-
CCSSCS. PARSE, EVALUATE. and RESPONSE. which constitute components in
the cognitive processing carried out by the system. Because of the limited
subject matter for the TERR] program. it was possible to design a rela-
tivelv simple natural language interface. (A parsing routine for arbitrary
English sentences would be far more complex than the entire deductive
svstem.} Further components of the System are a (semantic) shori-rerm
memory and a mechanism regulating the activation of knowledee coded in
long-term memory. referred to as focus, )

A working cycle of the svstem consists of three major steps:

I. Parst transforms an input sentence into an expression in the representa-
tion language. activating a subset of the knowledge recorded in long-
term memory.,

- EVALUATE searches the activated part of the knowledge base for relevant
information and makes inferences to produce an answer internallv.

3. RESPONSE generates a fanguage answer and returns it to the terminal.

2

The results of the most recent inferences are kept in short-term memory
for possible use in the evatuation of further queries. If the process fails at
any step. an apprapriate message is put out.

The knowledge in long-term memory s organized in the form of a
knowledge network. The nodes in this network contain lexical language
records and knowledge of a particutar field of discourse in the form of rules
that are interpreted as abstract ways to think and act. A single record in a
node of the knowledge network is referred to by the term knowledge ele-
ment. A knowledge element can be employed when it is marked active and
when the data or part of the data of an input string match its structure.

The activation of knowledge is realized through the focus mechanism,
which tags the network nodes that are currently accessible. The focus can
shift along the tinks in the network during a dialogue in progress, causing
a dynamic partitioning of the knowledge network into active and inactive
knowledge. In this sense access structures are determined by the topology
of the network. When a whole working cycle is completed, the focus re-

' Data and findings used stem from the Rational Number Project, which was in part
supported by the National Science Foundation under Grants No. SED 74-2059]
and No, SED §1-12643. Any opinions. findings, and conclusions expressed here are
those of the author and do not necessarily reflect the views of the National Science
Foundation.
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Ficure 4.2. The LAKOST dinjogue system. Light arrows denote access: heavy
arrows denote information flow. Shaded region refers to inactive knowledge,

mains at the current node as starting focus for the next input which one
could interpret as a “mind set”

The central idea of this modeling approach is that the potential actions
an individual is able to perform are determined by his or her knowledge
network. The explanatory power of the model thus lies in the fact that its
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actions in the course of a simulated dinlogue arise from the oreanizational
structuring of its knowledge base,

Principles in the Modeling of Student Knowledge

As the basis for the model. it is assumed that individual structures o
human memory—the “knowledge network —are constituted by .’E, 3¢S
of knowledge clements {“packets of knowledge™) and {2) connections
b ween these (“organizational o uork ). A knowledge packet is com-
pu. d of a single node or a xul‘ t consisting of several nodes {that is. a
mlu ¢¢ packet can be further sty murnd) In the first instance only
free-structured networks were assumed: if there is a theoretical reasen 1o
do o, more general structures can dlso be represented.

The modcl;nw of learner knowledge was exemplified in the realm of
cational number learning with particalar respect to size comparisons of
fractions. Students” abiliny to make relative size judgments about fractions
has been found o be an indicator for their develepment of a quastiative

understanding of rational numbers (Behr, Wachsmuth, Post. & Lesh.
1984).

Bused on the Oencml madel discussed previously. the hypothetical
knowledge structures of individual learners concerning size comparisons
of fractions were deseribed in a tree-structured network, Modular pieces
of learner knowledge were derived from subject answers given in clinical
iterviews anpd were capturad in rules that were stored in indexed memor 1
nedes. We present the general guidelines we followed to represent the
operational competence of particular students;

L Purtition the subject domain into subclasses that require specific Wavs
o act.
2. Select test items o assess the student’s performance with respect to
these subclasses.
- Formulate rules based on the student’s explanations.
4. Specify an appropriate node index to integrate a rule in the knowledge
network.

"

For example. the following major subclusses of the particular subject
domain. size comparisons of fractions. were distinguished (cf. Behr ct al.,
1984):

SN: Comparison of same-numerator fractions. for example,

8]

SD: Comparison of same-denominater fractions. "{“ and 12
i

nd &
9

A
tn

GE: Comparison of gencral fractions. 2 and S or
9

i
[l
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Some words of explanation just for the first two subclasses: While chil-
dren’s early performance is frequentty found to be dominated by whole-
number schemas (e.g.. “one third is less than one fourth because three is
less than four™). they will eventually need to separate their thinking from
the whole-number schemas and acquire a rule that puts fractions with the
same numerators in the reversed order relation with respect to their de-
nominators. In contrast the order relation of same-denominator fractions is
consistent with the order relation of the whole numbers in the numerators.
But here it is sometimes observed that at one stage the new rule that puts
same-numerator fractions in correct order is overgeneralized and used to
order same-denominator fractions in reversed fashion (e.g.. “three fifths is
less than two fifths™). At a later stage this kind of overgeneralization may
be prevented by way of further discrimination of task characteristics (same
rnumbers in the numerators vs. in the denominators).

Tasre 4.1. Formulation of rules based on subject responses (o items in fraction
subclasses early in teaching experiment.

Sample answers in subcliss SN
3 and 3
4] b
“Three eighths {is less).” Explain. *It takes more to cover.™
Band 3
3
“One s less. Three eighths.™ Explain. 1t would tke more to cover the unit.”
Source
Iiems B1-3.1 and B1-3.6. Bert (age 10:0)
Verbal description
“The second one of two fractions with equal numerator is tess, if the first denominator is
tess than the second one.™
Rule
(> XY X'V < = (Liss™Y V)

Sample answers in subelass SD*

) 2and 2
5 6

“One’s fess. Five sixths.” Explain. =1t would take more 10 cover,™
2oand 3.
& 6
“Three sixths.™ Explain. “Oh. no, five sixths is tess™ (shakes his bead in his hands).
Explain. "It takes more to cover the unit. ™
Source
ltems Bi-4.1 and B1-4.6. Bert (age 10:0}
Verbal description
“The second one 07 two fractions with equal denominator is less. if the first aumerator is
less than the seeond one.™
Ruie
(XY (TUTY)) < = (1ess* XL

$D. same denominators: SN same aumerators,
* Tncorrect ordering of SD fractions due 1o overgeneralization of reversed order relation.
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Such stages in the gradual development of 4 learner’s ability to master
tasks in the item classes mentioned can be captured in thé model by
different knowledge networks that model different levels of the learner’s
competence with respect to the taxoromy of the tasks. Tables 4.1 and 4.2
show basic examples of how student answers were used to obtain rules.?

Rules of thumb were derived from the experimental use of the model
with the objective of reproducing protocols from interview sessions with

subjects. Such “rules of thumb™ were used to specify the node indexes. For
example:

® Rules that are older with respect to the student’s learning history are

putin “higher” nodes. whereas rules acquired more recently are put in
subordinate nodes.

Taste 4.2, Formulation of rules hased on subject responses to items in fraction
subclasses lazer in teaching experiment.

Sample answer in suhclass SN*
Sand 3
2 9
“One’s less. Five twelfths, ™ Expluin. ~Well the picces, the tweifths are smalier. so . ..
butthe .. . that means they're smaller. the larger number on the bottom or top is
smalfer. . .. If the top number is the same. then the larges number on the bottom means
that's smaller.™
Source
Ttems I1-2.2, Bert (age 122y
Verbal desceription
“The first one of two fractions is less if the numerators are equal and the second
denominator is less than the first one.™

Rule
(=< ("X"Y) (*U"Vii<= {EQ"U"X} (LESS™V*Y)

Sample answer in subclass SD*

5 and 2
7 7

“One’s less, Six sevenths.” Explain. ~There are not as many pieces covered or shaded .
Source

Item I1-3.1, Bent (age 149:2)
Verbal description

“The first one of two fractions is less if the denominators are cqual and the first

numerator is less than the second one, ™

Rule

(<X (U V) < = (BQ"Y "V} (LESS“X" U}
$D. same denominators: SN, same numerators.

“ Differentiation between size of picces (reficcted by deaeminator) and sumber of pieces
(reficcted by numerator) prevents overgeneralization.

Tujms like “cover™. “pieces™. etc. refer to Imagined physical representations of
fractions as were used in the instruction.
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* Rules that are observed in a common context are given the same node
index.

*® Rule nodes that are observed to be accessible from one another are
linked to lic on a path.

® Rule nodes that are observed to be disparate are given separate access
paths from the superordinate node.

As explained in the introduction, the contextual dependency of a
learner’s operational competence is (partly) reflected in the wav that the
student understands certain words. The representation of learner knowl-
edge uses the following guidelines to incorporate this linguistic aspect:

® Identify “significant” words with respect to the subject domain, that
is. words that possess a specific meaning as distinguished from everyvday
language or words that are observed to trigger certain behavior. (Signifi-
cant words serve to activate parts of the knowledge base.)

® “Rules of thumb™;
The more generally available a significant word. the “higher™ is the node
index for integrating the word in the knowledge network: in the ex-
treme, a word that is observed to be available in all contexts with the
same meaning is put in the highest node.

The more specific a significant word, the “lower" is the node index for
the word; in the extreme. a word available in only one context (“key
word ™) is put in a leaf node (¢f. Table 4.3).

Two words, each of which is observed to be available in only one context
at the same degree of generality/specificity. obtain the same node index.

Whereas words that are understood across different CONtexts give access
10 a larger part of the knowledge base. key words limit the rules available
for inferences to the rules on the path to the leaf node that holds the key
word. With respect to the network representation, there is no principal
distinction between language knowledge and operational knowledge other
than declaring particular entries to be of type TALK Or type RULE. As “ele-
ments” of a learner's knowledge. both types of entries may be put in the
same node. Thus, particular words may be associated with particular ways
to act.

Toward a Learner Module in an Intelligent
Tutoring System

The LAKOS model was developed primarily with a psychological intent,
namely, to obtain a better notion of the way in which the organizational
structuring of the “knowledge base™ of a learner gives rise to particular
kinds of behavior. So far, a human experimenter formulates the descrip-
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TabLE 4.3, Identification of key words based on sitvational dependence of subject
Tesponse 1o items within subclass SD.
Question was: fraction] and fraction2.. are they equal or is one fess?
2and 7
M2
“They're equal. Sume size pieces and it takes the same Hmount ta cover and the same size
picces. [gestures) “Theyre equal.” OK, whar abous #Hre 97 Thar'd be nine pieces and

seven pleces. .. Thev're equal.” Whar exactly do you mean by they gre equrl?
“They have the same size pleces. 5o vou kaow, ™
el
b oang 12

13 i3

“They're cqual. Because thev have the same denominator, ™
Securce

lems VIL-2 L und VIL-3.2, Terr (age 11:6)
Key phrase

EQUAL OR ONE LEss .

Dircctions were 1o arrange fractioas in order

£oand 12

13 IN]
5
(Puts {‘; left ol‘%) Explain ~Because 6 comes hefore 1250 F thought
that's the wav vou do it
Source
ltem VII-3.1, Terr (uge [1:6)
Kev word
ORDER

SO same denominators,

tions that specify the knowledge base of an individual student on the basis
of assessments of the student's performance and explanations. To do this
the experimenter makes judgments about how to capture particles of the
student’s knowledge in rules and about how to integrate them in a knowl-
edge network. In a sense the experimenter acts as an expert in the for-
malization of student knowledge, using heuristics, rules of thumb, and so
on as previously described.

The following discussion explores how the approach presented couid

lead into the construction of 3 learner-model module to be incorporated in
an intelligent tutoring system. Although these ideas are preliminary and
none has yet been implemented in such a system, they may help to clarify
possible directions for further work.
_ The question to be atracked in the context of intelligent tutoring systems
is how to go about having an automated learner-modeling component
generate hypotheses about a learner's domain-specific knowledge in the
course of instructional sessions. Two things are necessary. First, the design
of & representation svstem for learner knowledge and, second, the design
of processes to generate and update assumptions about the user of the
tutoring system during teaching dislogues and diagnostic assessments.
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Although the modeling approach preseated in the preceding sections
seems to cover some of the requirements for a representation system. the
second topic has yet to be dealt with. In principle it requires that the ex-
perimenter’s expertise in representing learner knowledge be made explicit
enough to be captured in rules that can be executed by a computer.

A hard approach, which certainly would involve a lot of effort, might
be to let the system conduct diagnostic dialogues with the user on the
basis of which the rules are inferred by the system. Technicaily. it does
not seem totally absurd to parse students” explanations to obtain strings
in the semantic representation language. These could then serve to be
generalized nto rules. But if this idea were technically realized. it would
probably be at high cost. at least on the basis of the technology currently
available for the processing of natural language. Furthermore, bounds
would probably be reached when students could not sufficiently explain
their actions.

A way that seems much more feasible at the present stage is the follow-
ing. An empirical screening in the particular field of subject matter will
make known many strategies that students use. Some strategies—both
correct and incorrect—will be common te many learners. Such dala are
availabie from the Rational Number Project (e.g.. Behr et al.. 1984), and
probably from work in a number of other arzas. A catalog of possible rules
formally describing such strategies can then be incorporated into the sys-
tem. grouped by subclasses within which they are ordered by increasing
sophistication {e.g., in terms of the number of subgeals in a rule). The
following steps could yield a description of a learner’s current knowledge
in the domain:

® Match the student's performance on selected test items with rules in the
relevant subclass.

® For cach item choose the first (i.e.. simplest) rule that produces the same
response as the student.

® Choose an adequate node index (according to the subclass). and inte-
grate the rule in the knowledge network,

Although a rule selected in this way may not completely mimic the stu-
dent’s actual thinking. it at least captures the student’s behavior in the
sense of an “axiomatic characterization.”

A major problem to be dealt with in this approach occurs when a student
uses idiosyncratic rules with outcomes that are not produced by any of the
rules in the catalog. Another problem appears when a student exhibits
inconsistent behavior even within a subclass of items without variation of

contextual conditions. For example. a student may know that :21_ equals %

but will order less familiar equivalent fractions according to some whole
number relationships of numerators and denominators, like g less than g
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Although this case could be dealt with by creating sibnodes that allow
further discrimination of 1te_m characteristics, great problems would occur
when a studeat responded inconsistently to different presentations of the
same test item with no situational variations observable.

The next question would be how to change the rule base when changes
are observed in consecutive diagnostic assessments carried out by the
system. So far. in the psvchotogical approach to the imp]emematioﬁ of a
reproductive simulation model, no ruie previously employed is ever taken
off the network. (This allows modeling processes of :‘backslidina" o
seemingly eradicated behaviors.) Rather. if a “new" rule is diagnosed that
produces different behavior in situations that were already included in
the model. a constraint is imposed on the “ald” rule, whichiintercepts its
employment when iradequate by making firer discriminations of situa-
tional characteristics. Although the justification for this wav of modeling is
explicitly psvchological. it would probably be sensible for an intelligent
tutoring system to keep track of students’ “old™ rules in order to recognize
fallbacks. }

This article raised the issue of situation specificity to make an areument
that tutoring must not be approached too naively. If the aimof a ttztoring
system is to bring about progress in a learner's ability to utilize knowledea
in a broad range of situations, then the following two general objectives for
such a system should be taken into account:

® To help the learner master a set of rules that can support successful per-
formance in the subject matter in question

® To enable the learner 10 use these rules in a sufficiently varied set of
situations to ensure that the learner's rules will be evoked in a variety of
COMiexts

These objectives are derived from the following pragmatic assumption:
Only when learners exhibit consistent success with a variety of applied sitia-
tions involving a subject matter can they be assumed 1o have developed q
sufficientlv general understanding of the subject matter to predict success in
an even broader class of situations.

Consequently. the question arises, how shall we represent situational
characteristics of learner knowledge in the student module of an intellj-
gent tutoring system? Earlier we suggested that situational competence is
characterized by the learner’s command of certain language. A possible
way to model the situation specificity of a learner’s rules. then, might be
the following: We need to link a node holding rules of operations relevant
to certain situations as a superordinate to nodes holding linguistic units that
characterize those situations. Then the relevant rules would become active
by act%vation of any subordinate node. In case only a single situation node
can trigger activation of a rule node. that knowledge would have to be
regarded as situation specific. The more specific situations are represented
in nodes subordinate to a rule node. the broader the range of situations
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in which that knowledge can be activated. If all in a predetermined set
of situational descriptions selected for instructional tutoring are found to
be linked to the corresponding rule node. then that knowledge would be
termed situation nonspecific (with respect to the objectives of the tutoring
system).

In the LAKOS model as prototypically specified. levels of different
specificity of a student’s rules can be distinguished with respect to situa-
tions typified by certain language. We have presented some ideas about
how this approach could be developed into a student-model module of an
intelligent tutoring system. These ideas are still far from full realization
and exploitation. Probably the hardest problem to be dealt with is the
diversity of reasons that cause tearners to make errors (see the illuminat-
ing discussion of this issue by Davis. 1982). At the present stage one may
be modestly optimistic that progress in the modeling of student knowi-
edge will make some sort of “intelligent” tutoring possible upon further
advancement of current developments.
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