
Knowledge in the Loop: Semantics Representation
for Multimodal Simulative Environments

Marc Erich Latoschik, Peter Biermann, Ipke Wachsmuth

AI & VR Lab, University of Bielefeld

Fig. 1. Multimodal interaction in knowledge supported construction tasks. Left: A user selects a
wheel and connects it to a complex chassis (“Take [pointing gesture] this wheel and connect it
there…”) (Latoschik, 2001). Middle: The user and the artificial communication partner MAX
agree on the referenced part on the table (Kopp et al., 2003). Right: The user scales a
previously connected part which keeps its attributes, here the wheel’s roundness (Biermann &
Jung, 2004).

Abstract. This article describes the integration of knowledge based techniques
into simulative Virtual Reality (VR) applications. The approach is motivated
using multimodal Virtual Construction as an example domain. An abstract
Knowledge Representation Layer (KRL) is proposed which is expressive
enough to define all necessary data for diverse simulation tasks and which
additionally provides a base formalism for the integration of Artificial
Intelligence (AI) representations. The KRL supports two different
implementation methods. The first method uses XSLT processing to transform
the external KRL format into the representation formats of the diverse target
systems. The second method implements the KRL using a functionally
extendable semantic network. The semantic net library is tailored for real time
simulation systems where it interconnects the required simulation modules and
establishes access to the knowledge representations inside the simulation loop.
The KRL promotes a novel object model for simulated objects called Semantic
Entities which provides a uniform access to the KRL and which allows
extensive system modularization. The KRL approach is demonstrated in two
simulation areas. First, a generalized scene graph representation is presented
which introduces an abstract definition and implementation of geometric node
interrelations. It supports scene and application structures which can not be
expressed using common scene hierarchies or field route concepts. Second, the
KRL’s expressiveness is demonstrated in the design of multimodal interactions.
Here, the KRL defines the knowledge particularly required during the semantic
analysis of multimodal user utterances.

Introduction

VR tools have historically been built around the graphics system as the major simulation
module. Nowadays, they additionally support the VR design process with a variety of features.
These include support for application or behavior graphs via field-routing, input and output
device abstraction, networking as well as scripting capabilities. Specifically required features,
like a thorough or approximated physical simulation or gesture and speech processing for
novel—multimodal—interaction methods (see Fig 1), have to be integrated using the extension
methods provided by the VR and simulation tools utilized. Here, a promising research direction
strives for a conceptual combination of VR and AI related methods to support the design of
Intelligent Virtual Environments (IVEs) (Luck & Aylett, 2000).

AI and VR concepts have been combined in a variety of research projects using customized
and application specific integration methods. In the last few years, several approaches have
aimed at a more general way of a conceptual and technical integration of AI techniques into
simulation based systems (Cavazza & Palmer, 2000; Luck & Aylett, 2000; Peters & Shrobe,
2003; Soto & Allongue, 2002). An integration based on a common representation layer as
proposed in (Cavazza & Palmer, 2000) offers several advantages regarding adaptability and
reusability. Its content can be made persistent using an external file format where AI, graphics,
physics and other simulation related content are coequally expressed in a common format.

A fundamental integration of AI and VR provides the potential for a wide range of possible
applications including heuristic approximations of —e.g., physical—simulation features and
advanced multimodal interaction setups. For example, we have enriched our VEs with a
humanoid communication partner called MAX (Kopp et al., 2003). MAX and the human user
can communicate multimodally. Here, lexical and semantic content about the simulated scene
is mandatory during both, the analysis and the generation of multimodal utterances.

Knowledge Representation in VR

This article presents a unified and comprehensive method of knowledge integration and
access in VR-based simulation systems. This method will be illustrated in two example areas:
knowledge supported virtual construction and multimodal interaction. On shallow examination
the two areas seem to differ significantly. In a closer examination, we will illustrate how
necessary generalizations made from both, the example applications, as well as from the VR-
simulation specific data representations lead to a common knowledge layer capable of a high-
level description of advanced simulation features.

We will start with an introduction into the used terminology and a closer analysis of the built-
in semantics of existing representations of generic VR-simulation system. From a knowledge
based view, objects and structures of a simulation system can be defined by entities, attributes,
relations, and concepts.

Entities represent simulated objects. Attributes describe certain feature-value pairs of entities.
For example, simple well known attributes for the graphics part are (RGBA) colors of the
utilized lighting model where a diffuse-color-attribute carries four floats or could be
decomposed into four diffuse-color-attribute-(R|G|B|A) sub-attributes. All atomic data about
entity features are eventually described as attributes, from simple color values, diameters of
holes, entity masses up to functional features attributes like is-scalable- or is-connectable.

 Relations generally describe n-ary predicates between concepts. Concepts represent
semantically circumscribable categories or objects of the regarded target domain. Examples of
concepts in the VR-simulation domain are the entities but concepts can also be entity
descriptions such as entity patterns or classes, or they can designate attributes or attribute

descriptions A typical known relation between entities of scene graph systems is the part_of
relation that defines the scene hierarchy and grouping behavior of scene graphs.

With respect to the example domain, the term part denotes non-decomposable but modifiable
entities used in the construction process. Parts consist of sub-parts which relate to semantically
self-contained sections of parts. A sub-part is defined (1) by its position relative to a part’s
frame of reference and (2) by a set of sub-part specific attributes which describe the sub-part’s
type. Sub-parts can not exist by themselves; hence they can not be instantiated without a part to
which they are bound conceptually.

Built-in semantics of VR-simulation systems

The semantics of attributes and relations commonly used in simulation systems is defined
procedurally. The interpretation of attributes and relations is defined by the underlying
technical processes of the simulation modules. For example, color-attribute values are used to
calculate pixel-shadings with respect to utilized lighting model, and part_of scene graph
relations define the accumulative multiplication of matrices on the matrix stack. This
operational and fixed semantics limits the representations available to the predefined rendering
tasks and complicates or even inhibits their utilization for different application specific
representations. The expressiveness of the scene graph related part_of relation as well as those
of application graphs built from field route connections is strictly defined by the procedural
semantics of the simulation system.

As a consequence, additional representations are necessary for reasonably complex
applications since the existing features of the simulation engines are not expressive enough.
This often results in purpose-built solutions which lose the declarative expressiveness, the
reusability as well as the flexibility of the representation methods provided by the simulation
engines. For example, a common solution in field route based systems is to define new node
types which receive certain data and manipulate this data using specialized algorithms. Most
VR-based simulation systems include methods for such extensions, e.g., VRML (Carey et al.,
1997) supports this approach using the built-in PROTO feature.

In the worst case, none of the built-in extension features are expressive and powerful enough
for some applications. In that case, external modules are often loosely coupled to the simulation
system and data is exchanged between them using standard interprocess communication (IPC)
facilities. This in turn requires special purpose external synchronization and data-replication
which complicates application development significantly or even prevents expandability and
reusability of systems’ components. Furthermore, in certain areas a loose coupling can in fact
be insufficient. For example, continuous user interaction, e.g., dragging of an object, usually
requires a high responsiveness which can not be guaranteed at all times using loose coupling
without concurrently using IPC blocking behavior.

Simulation Knowledge Representation Layer

Our goal is a common Knowledge Representation Layer (KRL) which contains VR-
simulation specific as well as application tailored knowledge. The subsequent explanations
presuppose a simulation system which at least provides scene and behavior graph structures as
for instance offered by the AVANGO toolkit (Tramberend, 1999). Hence, relations defined in
the knowledge layer first of all have to represent the target system’s representational features,
and similar steps are necessary for other target systems.

Fig. 2. Knowledge representation of an example part (a rod with two holes, see upper right)
which supports intelligent scaling operations.

sg_part_of (scene graph parent/child): Transitive directed relation denoting grouping
behavior of scene graph nodes. Implies accumulative multiplication of existent matrix attributes
found at nodes followed in the given relation direction.

fr_connect_to (field route connection): Transitive directed relation denoting value
propagation of attributes in the given relation direction.

f_control_to (field reference): Directed relation denoting referential (not routed) read/write
access to fields of target nodes by specialized source nodes.

Additional relations are defined to express the application specific knowledge. The following

relations and their semantics support virtual construction tasks that group parts to aggregates
and specify geometric dependencies between (sub-)parts:

is_sub_part: Transitive directed relation denoting the association of a sub-part to a part.
is_a: Transitive directed relation denoting a subsumption hierarchy for part concepts. is_a

implies inheritance behavior of certain attributes, e.g., lexical information, of parent concepts.
has_FOR: Directed relation denoting the association of a frame of reference (FOR) to a

given concept, e.g., a part or a sub-part.
9DOF_dependency: Transitive directed relation denoting a geometric dependency

between two 9DOFs (9 Degrees of Freedom) as parameterized by a 9DOF_dep_mat concept
which defines the dependencies (see following sections).

9DOF_relative_to: Transitive directed relation denoting the relative position, orientation,
and scaling of a 9DOF with respect to a given 9DOF frame of reference.

Fig. 2 illustrates a segment of the resulting knowledge structure which supports intelligent

scaling operations for a rod with two holes as sub-parts which are defined to behave
independently during a scaling operation of the main part, e.g., to maintain the holes’ roundness
during scaling operations. All parts and sub-parts have associated 9DOF frames of reference
which define their position, orientation and scaling using the has_FOR relation. This ensures
that grouping and transformation are expressed independently from each other. The sub-parts’
FORs are defined to be relative to the main part’s FOR via a dependent mapping defined by the
9DOF_dependency which parameterizes the 9DOF_relative_to relation using the
9DOF_dep_mats.

The semantics of this representation is as follows: The 3x3 dependency matrix of a
9DOF_dep_mat defines how the factors for position (first matrix row entries), rotation
(second row) and scaling (third row) are concatenated following the algebraic semantics of the
9DOF_relative_to relation. In its plain assertion between two FORs, the 9DOF_relative_to
defines well known multiplication of homogenous coordinate representations which would
express common scene-graph behavior. In contrast, the chosen representation allows an
extensive parameterization of the concatenation type of two linked FORs. Fig. 3 illustrates how
arbitrary parameters—constant values as well as functions—can be defined to modulate the
algebraic effect or calculation rule of the active relation which couples two attributes.

Fig. 3. Parameterized coupling of attribute values which are calculated according to the
algebraic rule as defined by the embracing relation, here the 9DOF_absolute_to relation.

The free interconnection of attributes even allows coupling between different geometric
attributes or DOFs e.g., to have one part to rotate if another part translates or to mirror one
part’s scaling by a rotation of two other parts if two dependency matrices are used.

In Fig. 2. the two zeroes in the last row of the left and the middle 9DOF_dep_mat represent
a missing p_coupled relation and hence define partial blocking of the 9DOF_relative_to
semantics which defines a parent-child relation between the main part and the holes. This
suppresses the consecutive impact of parent part’s total scaling and only scales hole1 in the z-
and hole2 in the y-direction (the principal axes of the holes’ main directions).

Interaction Knowledge Representation Layer

The KRL is not limited to the representation of geometric dependencies as motivated for the
virtual construction task. Its overall goal is to support application specific representation
models as well as commonly required VR-related modeling tasks. This includes high level
representations of entity data and structures for the variety of involved software modules, e.g.,
for the graphics, physics and the interaction components.

The idea of a semantic representation is in fact strongly inspired by the intention to utilize
multimodal—gesture and speech driven—interactions in VEs. Processing of multimodal
utterances can be roughly divided into several phases: Speech and gesture detection, semantic
speech and gesture analysis, multimodal integration and pragmatic analysis. During processing,
several of these phases frequently access semantic content from redundant data representations
of other simulation modules. Here, a unified KRL partly solves the multiple database problem.

A major design goal for the knowledge representation layer is to support semantics, necessary
during interaction. This includes, e.g., mappings between conceptual and lexical data for a
variety of concepts and attributes. These concepts do not only represent perceivable entities and
their features in the artificial world but also abstract concepts, e.g., holes in a part or actions a
user can carry out.

Fig. 4. Conceptual and lexical knowledge representation of the two-holed rod.

The necessity for the representation of semantics is evident for the semantic analysis phase
which has to map lexical and gestural expressions to conceptual knowledge. Fig. 4 presents
another view into the semantic network which represents the example two-holed rod. The grey
nodes illustrate instantiation of a two-holed rod. The conceptual definition of a two-holed rod
(grey rectangular nodes) is used as a template for the actual instance (grey oval nodes).
Instances represent the existing entities of the simulation. Their inheritance of concepts and
attributes as defined by their conceptual templates is customizable. If they are not inherited
during instantiation, their inheritance behavior is defined per relation following the connecting
relations (here inst_of and is_a). Specialized negating relations (pattern <x>not_<y>, e.g.,
hasnot_feature) provide a method to locally override the default inheritance behavior.

Fig. 4 illustrates the interconnection between entity features which define certain simulation
behavior, e.g., whether an entity is scalable, and the representation of the according user action
by the SCALE, CONNECT and ACTION concepts. These interaction concepts further define
their required conceptual knowledge to be fulfilled, e.g., a required target or a required
interaction parameter. Where linguistic knowledge is given by linking concepts to lexical
counterparts, the semantic analysis processing module is automatically enabled to map lexical
information to conceptual knowledge which then can be instantiated during the processing.

For example, a connection of the screw and the two-holed rod in the virtual construction task
can be accomplished in two ways. The direct manipulation way is to drag the screw. When the
screw collides with the rod, the best fitting ports (here the holes) are heuristically determined
and appropriate modules will be activated to simulate the connection (see subsequent
sections).The second way is by using multimodal interaction, e.g., by saying: “Put [pointing
gesture] that screw in [pointing gesture] this hole.” (see, e.g., Fig. 1. left). Focusing on the
linguistic part, input is analyzed by mapping the incoming words to the lexicon which is
defined by the target concepts of the has_lex relation in Fig. 4. By backward traversing these
relations during the parse process (Latoschik, 2002), the matching base concepts are retrieved
from the KRL.

The conceptual knowledge is now used according to its semantics. For example, verbs found
in imperative speech such as “Give me a…”will be looked up in the lexicon. Traversing the
has_lex relation will retrieve the respective concept. If this concept is then identified as an
ACTION, e.g., by traversing the type hierarchy, matching interaction frames will be retrieved
and instantiated which define required interaction information, e.g., the required target
OBJECT instance(s). In addition to the illustration in Fig. 4, the actual existing knowledge

has_feature

has_feature feature_of

feature_of

has_wordtype

inst_of

inst_of

inst_of

ROD

2_hole_rod

hole1

hole2

body

9DOF
is_a

is_sub_part

has_lexrod
bar

hole

has_FOR

THREAD

connectable

HOLE

is_a

PART

is_a

ENTITY

is_a

has_lex

connectable

has_lex

thing
object
...

part has_lex

has_lex

CONNECT
ACTIONis_a

SCALE
is_a

thread
worm

has_lex

connect
mate

has_lex

scale
resize

has_lex

2hr_12

is_sub_part

is_sub_part

h_23

h_24

b_11

is_sub_part

scalable

scalable
resizable

has_lex

is_sub_part

9DOF_72

has_FOR

OBJECT
target
value SIZE

target OBJECT

OBJECT

source

VERB

inst_of
is_sub_part

inst_of

inst_of
inst_of

base decomposes OBJECT concepts into their substructures, relates them to the two existing
type hierarchies, and augments the linguistic structures with syntactic information.

These interaction frames, their concepts and attributes, are used as templates which are filled
during input processing. For example, if the template requires one or more objects, the parse
process will feed a reference resolving engine with the conceptual information necessary to
identify one or more target entities (Pfeiffer & Latoschik, 2004). Since the KRL interconnects
instances with the data representations of other simulation modules, this data, e.g., a
quantitative RGBA value for a color attribute will be processed in the same way. Finally,
completed interaction frames trigger the desired interaction.

Applying the KRL

To implement the KRL, a knowledge representation tool, FESN (Functionally Extendable
Semantic Network) (Latoschik & Schilling, 2003), has been developed. The FESN offers a
specialized and adaptable semantic net formalism which is implemented as a C++ library and
which has special features targeted at its utilization in VR simulation systems and for diverse
application specific representation tasks.

Attribute augmentation of concepts: FESN nodes can carry additional attributes and values
which allows a seamless transformation of a target system’s representations into the FESN.

Functional extensibility: Flexible relation semantic. New relation types can be added easily.
The semantics of relations is expressed by functions added to the relations.

Built-in event system: Changes of attribute values and the network’s structure are monitored
to enable automatic processing of changes submitted by simulation modules.

Built-in event filter: Concepts (nodes) of the FESN can be associated with multiple external
attribute sources of the same attribute. A parameterized filter concept allows automatic
evaluation and selection of concurrent—possibly conflicting—value changes.

External XML representation: The FESN supports SNIL, the Semantic Net Interchange
Language, as an XML based external representation. This provides a convenient way to define
and modify knowledge layer content (see Fig. 5).

Furthermore, the low level implementation of the FESN as a C++ library allows several
performance optimizations which conserve processing resources in contrast to commonly found
high-level (e.g. PROLOG or LISP based) semantic net realizations. This is particularly
important for the FESN’s utilization in interactive real-time simulations.

Using the FESN as the base formalism, the KRL completely defines all data and knowledge
required by a simulation system in a unified representation, including graphics, physics, audio
or even AI and interaction content. The KRL’s content is applied to simulation systems in two
ways. The first, uncoupled, method transforms knowledge bases defined by SNIL into
representations compatible with the simulation modules of the target system. Several of these
modules support external representations. Some of them support proprietary XML based
formats, e.g., we have previously developed an XML based format for a simulation module
which handles variant parts: VPML (Variant Part Markup Language) (Biermann & Jung,
2004). The required mapping between source and target representation is conveniently defined
via XSLT processing where the mapping rules only have to be statically defined once.

In contrast to the uncoupled method, the coupled method embeds the FESN as a separate
module directly into the simulation system’s process space and latches knowledge access into
the simulation loop(s) of all simulation modules which share this process space. In such setups,
the FESN acts as a central knowledge base and monitoring instance. Its event system provides a
method to control and filter value changes of attributes which might be proposed by several
modules concurrently, e.g., for the 9DOF attribute.

Semantic Entities

The coupled method provides two ways of knowledge access: First, arbitrary FESN queries
can be directly called on the instantiated semantic net structures which are mapped into the
process space of the calling modules. Second, the KRL-accessing modules canalize their
requested KRL-access to dedicated entities in their own proprietary object representation. In
effect, each of these simulation module specific entities has a corresponding counterpart
represented in the KRL. By augmenting the module specific entity representation with an
FESN-interface—for example, using object oriented multiple inheritance schemes—the KRL-
knowledge about the entities can now directly be accessed by the given simulation module.
This architecture leads to a novel object and entity model we call Semantic Entities. Semantic
Entities link proprietary entity representations with the correspondent instances of the
knowledge layer and provide a standardized way of accessing the KRL.

The uniform KRL-access via Semantic Entities allows for an increased and powerful
modularization of simulation systems. For example, a typical architecture to implement some
specific functionality for a given simulation utilizes so-called engines. Engines are dedicated
modules in scene graph based systems which implement a certain function and which apply
their results by accessing target nodes and attributes directly or by propagating attribute
changes using a behavior graph. Which nodes are to be manipulated or which attribute-routes
are to be established has to be specified by the application programmer specifically, be it for the
most simple interpolator engine or for an advanced collision and dynamics engine. Using
Semantic Entities, information about object animation and manipulation specification is
conveniently defined declaratively using the KRL. Now, this information is automatically
accessible for the appropriate engines. For example, by querying the KRL via the Semantic
Entities in the engines’ or modules’ process space, requested object features like if an object is
movable, or collidable, or any other feature a specific engine requires, can directly be accessed.

The Semantic Entity object model greatly simplifies the development of Virtual
Environments. It promotes modularization, easy adjustment and reuse of simulation
components. Components look for specific features expressed by the KRL and accessed via
Semantic Entities. Additionally, the components themselves can be represented in the KRL.
Now modules and engines share the same representation with their target objects and hence
they can be automatically matched.

During the development of our multimodal construction application, we have already built
several modules and engines which completely rely on Semantic Entity access. For example, a
reference resolution engine automatically searches for objects in the simulated scene which
have attributes (colors, shapes, etc.) that map to the semantic interpretation of a user’s
utterance. The semantic interpretation engine uses the same KRL and hence maps the
utterance’s meaning to the same concepts found for the given entities. Other components
evaluate the construction specific knowledge of entities and automatically instantiate required
simulation modules which implement a given entity feature as will be explained in the
following sections. Several other projects already reuse existing components or develop new
ones whereupon application designers often only have to add a few lines of SNIL-XML code
to, e.g., allow them to include multimodal interaction in their respective virtual environment.

Mapping knowledge to target systems

Besides KRL-access, both knowledge application methods have to map the FESN
representations to a target system’s internal representation. This mapping transforms the
modeled knowledge into structures readable and interpretable by the respective simulation
modules. For the example two-holed rod, the knowledge fragment that defines the geometric
dependency of hole1 (see Fig. 2.) is illustrated in Fig. 5 using the SNIL notation.

<semantic-net>
 <node name="2_hole_rod" type="Default"/>
 <node name="9DOF_2_hole_rod" type="Default">
 <slot name="FOR" type="9DimVect"
 inheritanceType="Attribut"
 value="0 0 0 0 0 0 1 1 1"/>
 </node>
 ...
 <node name="hole1" type="Default"/>
 <relation typeName="is_sub_part">
 <start-node nodeName="hole1"/>
 <end-node nodeName="2_hole_rod"/>
 </relation>
 <node name="9DOF_hole1" type="Default">
 <slot name="FOR" type="9DimVect"
 inheritanceType="Attribut"
 value="-.2 0 0 0 0 0 0 1 1 1"/>
 </node>
 <relation typeName="has_FOR">
 <start-node nodeName="hole1"/>
 <end-node nodeName="9DOF_hole1"/>
 </relation>
 <node name="9DOF_dep_mat_hole1" type="Default">
 <slot name="FOR" type="81DimMat”
 inheritanceType="Attribut"
 value=" … (9x6 identity)1
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1"/>
 </node>
 <relation typeName="9DOF_relative_to">
 <start-node nodeName="9DOF_dep_mat_hole1"/>
 <end-node nodeName="9DOF_2_hole_rod"/>
 </relation>
 ...
</semantic-net>

Fig. 5. SNIL fragment that partly describes the two-holed rod example. The extended
dependency matrix that defines hole1’s dependent scaling is defined as an attribute of the
9DOF_dep_mat_hole1 concept.

Our current AVANGO-based target system supports a scene graph metaphor with a field
route concept and allows implementation of new proprietary node types. This justifies grouping
of sub-parts as children of the main part. But this maps the modulated 9DOF_relative_to
relations to fixed sg_part_of relations. To overcome the fixed scene graph semantics, a new
node type called Constraint Mediator (CM) was developed which is parameterized by a
dependency matrix for constraint definition. Instead of Geometric Constraint Solvers as in
(Fernando et al., 2001), which solve the constraints in an external system, the CMs in our target
system implement the defined geometric dependencies as constraint nodes in the scene graph
and apply them directly to the 4x4 transformation matrices. In other possible target systems,
like VRML97, these constraints could be realized by using Script-Nodes, whereas the
implementation of the scripting interface in VRML is often very slow (Diehl & Keller, 2002).

The CM nodes can monitor several fields to restrict and propagate their values. Unlike
normal field connections (e,g, the field routes in VRML), CMs can propagate field-values in

1 Only the lower three matrix rows which are relevant for scaling dependencies are depicted for

readability.

both directions and can alter the values while propagating, to establish complex constraints
directly in the scene graph. These constraints implement the geometric dependencies of the
knowledge based simulation as defined by the knowledge layer in the target system.

Inter-Part Constraints (scaling / transformations)
One application area for the dependency matrices is the simulation of building parts and sub-

parts, which can have complex scaling behavior, depending on the scaling of their parent parts.
Fig. 6 shows an example of a scene graph section with CMs which prevent the deformation of
the holes when scaling the rod. When the user scales the rod in the X- or Y-direction, the two
upper CMs in Fig. 6 set the adjust-scaling of the holes to the inverse of the scaling of these
directions to maintain the size and roundness of the holes. When scaling in the Z-direction—
which is the direction of the main axis of the first hole—this hole is scaled with their parent, to
fit with the thickness of the rod. The other two CMs restrict the user scaling of the holes to be
equal in X- and Y-direction and to the identity scaling for the Z-direction. This allows the user
to adjust the diameter of the holes with respect to the defined scaling behavior of the part.

Fig. 6. Scene graph section with embedded Constraint Mediators for sub-part to part dependent
scaling. CMs implement dependency matrix semantics for scene graph systems.

The coupling of other transformations as inter-part contraints is also possible. The parameters
of parametrical changeable parts which are described in the KRL can be linked. This concept of
linked transformations allows the simulation of gears in the virtual environment (Biermann &
Wachsmuth, 2004). These gears are realized using the Constraint Mediators for the coupling of
the transformation parameters. Simple rotational gears can be generated by using a coupling of
the two rotations of the corresponding sub-parts with a certain transmission factor. E.g., a
coupling of rotational and translational parameters can lead to a pinion gear.

Part-Part Constraints (connections)
While the constraints for the scaling behaviour are normally fixed for each part, the

simulation of part-part connections requires dynamic constraints. The coupling via constraints
also allows the simulation of mating properties which can not be directly derived from the
geometry of the parts. For example, it is possible to have plane-port connections, which restrict

the movements of the parts so that the two connected planes always keep connected and in the
same orientation, while they can slide until they reach the edges of the connected plane.

The mating geometries (so called Ports) define different degrees of freedom for the
established connections. The knowledge base contains the information of the constraints for
each Port-type. The restricted movements of the connected parts are also controlled by
Constraint Mediators, which are established via the semantic net, when a new connection is
established. Technically, a connection is implemented by oriented mating points whose
possible movements are restricted by CMs configured according to the Port types’ constraints.

The example in Fig. 7 illustrates how the connection between the screw and one of the rod’s
holes is reflected in the target system’s scene graph: A CM establishes the constraints, which
simulate the connection of a screw fitted in a hole of a rod. The CM for the connection watches
the positions of the two connected extrusion Ports and—in this case—alters the matrixes of the
root nodes of the parts, if the positions of the Ports do not respect the constraints that are
defined for this type of connection.

Fig. 7. Scene graph section for two parts interconnected by a constraint mediator to implement
part-part geometric dependencies.

Conclusion

We have introduced a general integration method for knowledge representation into VR
simulation systems. It proposes an abstract knowledge representation layer (KRL) for high-
level definition of complex application designs. The FESN, the KRL’s base formalism,
provides a convenient method for AI related application solutions and additionally allows
interconnecting the data structures of the diverse simulation modules. Its external
representation format expresses simulation data as well as application logic in a human
readable way and supports reusability and extensibility of once developed representations.

Semantic Entities as object models provide the necessary method to uniformly access the
KRL during runtime. Using Semantic Entities as the central entity access facility provides
several advantages: Simulation modules can be built which automatically match their functions
to the respective target objects. Possible object actions and interactions can be specified in
advance, using a declarative notation. Developed simulation components can be reused,
adapted and modified easily. Even complex application developments can be performed by
generating a few lines of XML code for the required knowledge structure.

The usefulness of a high-level knowledge representation has been demonstrated (1) for a
generalized scene representation which extends the expressiveness of commonly used scene

graphs and (2) for the implementation of novel multimodal interaction methods. The illustrated
method is currently applied in several projects in our lab which focus on multimodal human-
computer interaction and virtual construction applications.

Future work expands the KRL to support a variety of simulation components from different
graphics packages to physics libraries. The final goal is a platform which conceptually allows
abstract definition of intelligent VR applications via the KRL with as minimal adaptations from
the utilized simulation systems core functionality. This work has already begun with the
development of an automatic data synchronization and replication framework required.

Acknowledgement: This work is partially supported by the Deutsche Forschungs-
gemeinschaft (DFG

References

Biermann, P., & Jung, B. (2004). Variant design in immersive virtual reality: A markup
language for scalable CSG parts, AMDO2004: Springer.

Biermann, P., & Wachsmuth, I. (2004). Non-physical simulation of gears and modifiable
connections in virtual reality, Proceedings Fifth Virtual Reality International
Conference (VRIC 2003) (pp. 159-164). Laval, France.

Carey, R., Bell, G., & Marrin, C. (1997). Iso/iec 14772-1:1997 virtual reality modeling
language (vrml): The VRML Consortium Incorporated.

Cavazza, M., & Palmer, I. (2000). High-level interpretation in dynamic virtual environments.
Applied Artificial Intelligence, 14(1), 125-144.

Diehl, S., & Keller, J. (2002). Constraints for 3D graphics on the internet, Proceedings of 5th
International Conference on Computer Graphics and Artificial Intelligence 3IA'2002.
Limoges, France.

Fernando, T., Marcelino, L., & Wimalaratne, P. (2001). Constraint-based immersive virtual
environment for supporting assembly and maintenance task, Human Computer
Interaction International 2001. New Orleans, USA.

Kopp, S., Jung, B., Lessmann, N., & Wachsmuth, I. (2003). Max—a multimodal assistant in
virtual reality construction. KI-Künstliche Intelligenz, 03(4), 11-17.

Latoschik, M. E. (2001). A gesture processing framework for multimodal interaction in virtual
reality. In A. Chalmers & V. Lalioti (Eds.), AFRIGRAPH 2001, 1st International
Conference on Computer Graphics, Virtual Reality and Visualisation in Africa (pp.
95-100): ACM Press.

Latoschik, M. E. (2002). Designing transition networks for multimodal VR-interactions using a
markup language, Fourth IEEE International Conference on Multimodal Interfaces
ICMI'02 (pp. 411�416). Pittsburgh, Pennsylvania: IEEE Press.

Latoschik, M. E., & Schilling, M. (2003). Incorporating VR databases into AI knowledge
representations: A framework for intelligent graphics applications, Sixth IASTED
International Conference on Computer Graphics and Imaging (pp. 79-84): ACTA
Press.

Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent
virtual environments. Applied Artificial Intelligence, 14(1), 3-32.

Peters, S., & Shrobe, H. (2003). Using semantic networks for knowledge representation in an
intelligent environment, PerCom'03: 1st Annual IEEE International Conference on
Pervasive Computing and Communications. Ft. Worth, TX, USA: IEEE.

Pfeiffer, T., & Latoschik, M. E. (2004). Resolving object references in multimodal dialogues
for immersive virtual environments, IEEE VR2004 (pp. 35-42). Chicago: IEEE.

Soto, M., & Allongue, S. (2002). Modeling methods for reusable and interoperable virtual
entities in multimedia virtual worlds. Multimedia Tools Appl., 16(1-2), 161-177.

Tramberend, H. (1999). Avocado: A distributed virtual reality framework, 1999 IEEE Virtual
Reality Conference (VR99) (pp. 14-21). Houston, Texas: IEEE.

