
An Implemented Approach for a Visual Programming Environment in VR
Peter Biermann, Ipke Wachsmuth

Laboratory for Artificial Intelligence and Virtual Reality
University of Bielefeld

http://www.techfak.uni-bielefeld.de/ags/wbski/

Abstract: In this paper we describe a visual
programming environment which consists of
computing nodes that are described in an
XML notation and can be interactively
configured and wired. The dataflow is
realized via field connections, which are
implemented in the AVANGO toolkit. The
connections and parameters of the computing
nodes can be modified during execution via
the Scheme scripting language.
The computation of the networks is
embedded in the render-loop of the VR
application, but frame-rate independent
computation can also be done using attribute
sequences as field values.
The nodes can act as scene-graph nodes,
which makes it very easy to visualize the
nodes itself or the output of a node in the VR
environment.
Keywords: Visual Programming, VR
Applications, Scene-Graph manipulation,
XML description, Scripting

1. Introduction

Visual environments for programming languages
have become popular in many applications and
especially for computing on dataflows [Hil92]. In
VR applications visual programming environments
could be a great help when used while processing
for example the input of user devices. Most input
devices, like 6 DOF-trackers and data-gloves in VR
applications produce continuous data-streams and
therefore can be ideally processed by a dataflow
oriented programming language.
The approach presented in this paper combines a
scene-graph oriented and render-loop dependent
program style with a visual dataflow programming
paradigm. This is achieved by using field-containers
of the SGI-Performer based AVANGO toolkit
[Tra99]. Since these containers can be instantiated
as nodes of the Performer scene-graph, they are
ideal for manipulating scene-graph structures and
can easily generate geometry for visualization in the
virtual environment. More complex nodes can also
replace the normal Performer rendering with their
own rendering technique.
The field-containers were extended to gain general
purpose computing nodes that can process data-
streams independent of the frame-rate of the VR

application. For optimal performance, which is
inevitable for real-time VR applications, the nodes
are written in C++. Small computing nodes provide
a very fail-safe and stable way of coding, because
small code parts of the nodes can be easily tested
and verified.
To keep the node library flexible and easily
extendable, the nodes are described in an XML
style and are then translated to C++ code by using
an XSLT (Extensible Stylesheet Transformations
[Dou2001]) translation.
Most parameters of the compute nodes are also
accessible via field values and can be altered while
the program is running by using a Scheme (see
[Dyb96]) scripting interface. This allows a direct
feedback of the effects on the application. For more
complex control of the application the user can
define self-chosen methods for the compute nodes
that can also be called via the Scheme interface.
New nodes and field connections can be added in
the scheme interface, so that whole programs can be
dynamically altered and extended – even while
running.
The compute networks can be visualized in the
virtual environment to give the user a direct access
to the program structure while testing the program,
for example in a Cave.

2. Attribute Sequences

The program code of the single nodes is executed
once per render-frame, but most input devices in VR
applications produce data in a higher time resolution
(60-120 Hz) and detectors e.g. for natural gesture
need these high data-rates for precise results. To
realize computation on a data-stream independent of
the frame rate a data-structure had to be developed
that contains all data produced by the input devices.
These data-structures are called Attribute Sequences
(AS) and are based on a framework for multimodal
interaction: PrOSA (Patterns on Sequences of
Attributes) as presented in [Lat2001]. This
framework describes the PrOSA concepts as
fundamental building blocks for multimodal
interaction in VR. It is focused on gesture and
speech recognition and multimodal integration and
interpretation. Within this framework attribute
sequences are mainly used for the gesture
processing, consisting of gesture-detectors and
manipulators that affect the scene-graph structures.

An AS contains all data, which arose during the last
render frame. The data is stored as time-value pairs
to maintain the timing information, especially for
sources that do not produce time-equidistant data.
Each AS also holds the last value of the previous
frame to bridge the gap between two sequences.
Attribute sequences provide methods to compute a
linear interpolation for queries of arbitrary times in
the time span they cover. Valid query times for an
AS lie between the time of the bridge value and
their last value (see Fig.1).
Two or more ASs can be combined in channels,
which provide an interface for the resulting valid
time for querying values. Since in general the times
of the values of two ASs differ, it is necessary for
two or more ASs in one channel to have a master
clock, which can be a fixed rate or be given by a
master AS.

3. Compute Nodes

The compute nodes are realized within the
AVANGO toolkit, developed by the GMD. The
AVANGO library is an object oriented framework
for distributed, interactive VE applications, which
extends the SGI-Performer library among other
things with a field concept and a scripting interface.
Fields act as an interface for various types of data in
AVANGO nodes. Field values can be queried and
set by the Scheme interface and field connections
can also be established.
This allows the creation of a dataflow graph
orthogonal to the scene-graph. Field connections
automatically transfer the value from the sender to
the receiver field once per render frame.

3.1. Field container in AVANGO
All compute nodes are derived from AVANGO field
containers, which provide input and output fields
that can be connected for exchanging data. The
evaluation-method in these containers, which does
the computation of the field values, is executed once
for each render-frame if one of the input field has
changed its value. This allows a sort of lazy
evaluation, so that the computation is halted as long
as no new values are provided. The resulting
changes of field values are propagated to connected
containers, so that the complete path of the data-
stream is computed in one render frame.

3.2. XML Description
Often programs can not be created by the
connection of a set of predefined nodes. Many
visual programming languages offer a fixed set of
building blocks, and are difficult to extend. In our
approach we tried to generate a very flexible tool,
where new computing nodes can be generated and
added very fast@.
Since the Field Container in AVANGO have a much
wider purpose than building compute nodes, an
XML description of the functionality of compute
nodes was developed to simplify the creation of new
nodes.
With this XML description it is possible to:
• define input and output fields of the container
• provide the C++ code for computing the

resulting field-values
• define Scheme callbacks for complex and

interactive queries, independent of the render-
loop

Fig. 1: An attribute sequence with multiple time-stamped values for one render frame.

Last Value

Frame End

Attribute Sequence

Bridge Value

Frame Start

t

Data-Stream (e.g. Tracker-Data)

Fig. 2: An XML description of a simple compute node
for a Boolean operation.

The example in Fig. 2 shows a simple container
with two input and one output field, which are of
type bool and can all be accessed as (one-value)
fields or as attribute sequences. The fields, which
support ASs are named with the Suffix ‘_AS’ to
distinguish them from fields that only hold single
values. In this example all field entries in the XML
description result in two fields: one supporting
Boolean values and another one supporting ASs of
Booleans.
In the compute-callback an AND operation of the
two input fields is evaluated and the output field is
set to the resulting value.
The ‘compute’-tag contains C++ code that is
inserted in the compute-callback of the AVANGO
field containers when the description is translated.
The variables In1_Value and In2_Value are defined by
the programming environment and are automatically
set to the actual input values of the corresponding
field. The output function set_Out() is also provided
by the environment and can be used to set the value
of the Out field directly in case of simple fields with
one-value per frame.
The Scheme callbacks are also defined in the XML
file with the description of their arguments, the
code, and the return value.
The example in Fig. 3 shows the definition of a
callback to add a new entry in a container that holds
a history of time-stamped values. The first argument
of the callback is the value of the entry and the
second argument defines the time of the value. The
second argument is optional, because a default value
– the current time as given by an internal timer – is
provided.
To build the resulting C++ library with the nodes
resulting from the XML descriptions, the XML code
is translated to C++ headers and code files with an
XSLT translator. The resulting code contains the
definitions for the fields and Scheme callbacks, and

the environment for the computation and field
operations. The compiled library can be dynamically
linked to an existing AVANGO application.

3.3. Computing with Attribute Sequences
If one of the input fields is filled with an attribute
sequence, the code in the compute callback is not
used to fill the output field(s) directly. Instead an AS
is filled with values for the output fields which
support ASs as values. Therefore the compute
callback is not only called once for each frame, but
is evaluated several times according to the time span
of the input ASs. This functionality is provided by
the programming environment, so that the user does
not have to care about that.
In case of the AS-computing the set_… function for
the output field is used to add a new, time-stamped
value to the AS of the according output field. When
computing the last value for the AS the AS is
assigned to the output field and the single value field
is also set to this most current value.
Internally all input ASs are added to an input
channel, which provides an interface for the time
points, which are accessible for all input ASs. Two
modes are selectable for calculating the times: In the
fixed-rate mode all ASs are queried in equidistant
time periods, ignoring the times in the single ASs; in
AS-master mode one AS serves as master-beat and
the values are queried at the time spots of the values
of this master-AS.
All values which are not queried at the concrete
times of the values in the AS – generally for all AS
which are not master – are computed using linear
interpolation between the two nearest values.
Fore each time point the …_Value variables are set to
the (interpolated) value of the according AS at that
time and the compute callback is called. If some of
the input fields are only filled with single values the
variables are set to that value for all computations
within the current frame.

< Container Name=„prBoolAnd“ ParentClass=„fpDCS“ >
 < InFields >
 < Field Name=„In1“ Type=„bool“ Init=„true“
 Mode=„F,AS“ />
 < Field Name=„In2“ Type=„bool“ Init=„true“
 Mode=„F,AS“ />
 </ InFields >
 < OutFields >
 < Field Name=„Out“ Type=„bool“ Init=„true“
 Mode=„F,AS“ />
 </ OutFields>
 < compute > <![CDATA[
 bool result = In1_Value && In2_Value;
 set_Out (result);
]]> </ compute >
</ Container >

< Container Name=„prBoolHistory“

 < SchemeCallbacks >
 < Callback Name=„add-entry“ >
 < arg Name=„Entry“ Type=„bool“ />
 < arg Name=„Time“ Type=„double“
 Init=„pfGetTime()“/>
 < code > <![CDATA[
 return fp_scheme_bundle
 (self->Hist.addEntry(Entry,Time,ToTime);
]]> </ code >
 </ Callback >

 </ SchemeCallbacks >
</ Container >

Fig. 3: A sample fragment of a XML description
defining a Scheme callback

3.4. Visualization
Almost all field types can be visualized by special
visualization nodes. Since all AVANGO field
containers can be instantiated as dynamic coordinate
systems and therefore be added to the existing
scene-graph of the VR application, it is easy to
generate nodes which generate their own geometry
to visualize field-values. This visualization is shown
directly in the virtual environment and is ideal for
testing and debugging new compute networks,
which work on user-input from tracking-devices or
data-gloves, directly while interacting in the VR
scene.

Fig. 4: A VR scene with different visualizations of field
values.

Figure 4 shows a VR scene with different
visualizations of field values. The cylinders
visualize floating point numbers and the arrows
show directions of vectors. In this example the two
arrows visualize the directions of the palm-normals
of a user while performing a scaling gesture. The
cylinder on the right side shows the angle between
these normals and the right one shows the distance
of the hands.
Coordinate systems, represented by a sphere with 3
small arrows, can show the resulting transformation
of a 4x4-Matrix, and simple spheres represent a
position in the VR-space.
There are also visualization nodes for segments,
trajectories and strings, which are represented by
3D-text that can be placed in the VR-scene.
Finally, it is possible to build a geometry for every
computing node and arrange them in the scene-
graph according to their field connections to get a
complete visualization of the compute networks
currently used.

Fig.5: A simple visualization of a compute network. in
a CAVE-like display system

Figure 5 shows a visualization, automatically
generated from a compute network. The single
nodes are represented by squares with inner boxes,
which show their fields. Field connections are
visualized as arrows, which represent the dataflow
through this network. The hole network is a
container with its own input and output fields that
are shown as dark boxes and are associated with
normal fields in the network (see Section 4.4).

4. Scheme Scripting

The Scheme interface is a feature of the AVANGO
toolpack. It makes it very easy to build and
configure scene-graph structures, with a simple and
user-friendly interface. Since the AVANGO shell
comes with a Scheme interpreter it is possible to
execute Scheme code during a running application.
This allows the user to instantiate new compute
nodes, set field values and field connections and call
the user defined Scheme functions to modify and
tune the application while it is running.

4.1. Instantiation of new nodes
New computing nodes can be instantiated within the
Scheme interpreter. The corresponding Scheme
function allocates a new instance of the C++ class
and initializes the fields with the values, defined in
the XML description. The user-defined Scheme
callbacks are registered to the interpreter, so that
they can be accessed by the commandline (see
Section 4.3).

Fig. 7: Scheme code for creating a new node

Figure 7 shows an example of the Scheme code for
creating a new compute node, which can smooth a
stream of vector values by using the average within
a defined time-window.

(define average-node (make-instance-by-name “prVecAverage”))

The following groups of compute nodes were
implemented so far:
• Simple arithmetic calculation on Boolean,

integer and floating point values
• 4x4-matrix and vector calculations
• Scene-graph manipulating nodes, like node-

switches and size adjuster
• Complex render nodes which implement e.g.

CSG-rendering in OpenGL
• Visualization-nodes for almost all types of field

values
• ‘History’-nodes, which store their input values

for a certain amount of time and can be queried
for values within this time range

4.2. Setting field values and connections.
Most of the settings of the compute nodes are done
via field values, so that the parameters can be
changed interactively. Parameters which have to be
adapted to optimize the results can be changed in
the running system to directly see the changes to the
program.

Fig.8: Scheme code for field manipulations

In this example (Fig. 8) the time in which the
average of the values is computed in the average-
node of the example in Fig. 7 is set to 0.2 seconds.
After that the input field for ASs of the average-
node is connected from a node which provides the
position of a tracking device and the filtered output
is then connected to an other compute node. Since
the computation on tracking data should be
independent from the frame-rate of the rendering
system, the fields are connected as AS values.

4.3. User defined Scheme Callbacks
For input and output, where the setting of field
values is awkward – e.g. if multiple inputs have to
be set at the same time or a discrete query is desired
– the user can define Scheme callbacks as another
interface to the functionality of the compute nodes.
As seen in Section 3.2 the user can define methods
with various arguments and can return complex
Scheme structures.
Taken the example of Fig. 3 the add-entry function of
a previously defined bool-history-1 can be called
using the Scheme code shown in Fig. 9:

Fig. 9: Scheme code for calling user-defined callbacks

The first line adds the Boolean value TRUE to the
history node at time 10.0 (seconds).
The second line retrieves a previously stored entry
from the history node.

4.4. Node Containers
To build reusable groups of compute nodes, it is
possible to instantiate node containers which define
their own input and output fields and contain wired
compute nodes.
Within these containers it is possible to instantiate
nodes, make their field connections, define input
and output fields and assign them to fields of the
contained compute nodes.

Fig. 10: Scheme code for instantiating and
manipulating containers

5. Example: A simple detector for a scaling-
gesture

The following code is an example for a rather
simple detector for scaling gestures, i.e. gestures
which exert a scaling operation on a virtual object in
the dimension indicated by hand movement. The
two input fields are 4x4-matrices from tracking
devices representing the position and orientation of
the hands of the user. Then two normal-vectors,
which represent the orientation of the palms and the
angle between them, are computed. These values are
also visualized in Fig. 4 together with the distance
of the hands that defines the scaling-factor for the
object. The visualization of this compute network is
shown in detail in Fig. 11.

(define ScaleDetector (make-instance cContainer))
(send ScaleDetector 'add-field "fpMatrix" 'InLeftMat)
(send ScaleDetector 'add-field "fpMatrix" 'InRightMat)
(send ScaleDetector 'add-field "double" 'OutDist)
(send ScaleDetector 'add-field "fpVec3" 'OutDir)
(send ScaleDetector 'add-field "bool" 'isGesture)

(send ScaleDetector 'add-component "prMatField" 'LeftHandTracker)
(send ScaleDetector 'add-component "prMatField" 'RightHandTracker)
(send ScaleDetector
 'add-component "prMatRotVec" 'LeftPalmNormal)
 (send ScaleDetector
 'add-component "prMatRotVec" 'RightPalmNormal)
(send ScaleDetector 'add-component "prMatXVec" 'RightPos)
(send ScaleDetector 'add-component "prMatXVec" 'LeftPos)
(send ScaleDetector 'add-component "prVecAngle" 'Angle)
(send ScaleDetector 'add-component "prVecSub" 'LtoR)
(send ScaleDetector 'add-component "prDblThreshold" 'isAntiParallel)
(send ScaleDetector 'add-component "prVecNorm" 'Direction)
(send ScaleDetector 'add-component "prVecLength" 'Distance)

(send ScaleDetector
 'assign-field 'InLeftMat 'LeftHandTracker 'matrix_AS)
(send ScaleDetector
 'assign-field 'InRightMat 'RightHandTracker 'matrix_AS)
(send ScaleDetector 'assign-field 'OutDist 'Distance 'Out)
(send ScaleDetector 'assign-field 'OutDir 'Direction 'Out)
(send ScaleDetector 'assign-field 'isGesture 'isAntiParallel 'Out)

(set-value average-node ‘AverageTime 0.2)
(connect-fields tracker-input-node ‘OutPos_AS average-node ‘In_AS)
(connect-fields average-node ‘Out_AS subvec-node ‘In1_AS)

(-> bool-history-1 ‘add-entry #t 10.0)
(-> bool-history-1 ‘get-value-at 6.7)

(define test-container-1 (make-instance cContainer))
(send test-container-1
 ‘add-component “prVecAverage” ‘average-node)
(send test-container-1
 ‘add-field “fpVec3” ‘InPosition)
(send test-container-1
 ‘assign-field ‘InPostion ‘average-node ‘In_AS)
(send test-container-1
 ‘connect-fields ‘average-node ‘Out AS ‘next-node ‘In AS)

(send ScaleDetector 'connect-fields
 'LeftHandTracker 'matrix_AS 'LeftPalmNormal 'InMat_AS)
(send ScaleDetector 'connect-fields
 'RightHandTracker 'matrix_AS 'RightPalmNormal 'InMat_AS)
(send ScaleDetector 'connect-fields
 'LeftHandTracker 'matrix_AS 'LeftPos 'InMat_AS)
(send ScaleDetector 'connect-fields
 'RightHandTracker 'matrix_AS 'RightPos 'InMat_AS)

(send ScaleDetector 'connect-fields 'RightPalmNormal 'Out 'Angle 'In1)
(send ScaleDetector 'connect-fields 'LeftPalmNormal 'Out 'Angle 'In2)
(send ScaleDetector 'connect-fields 'Angle 'Out 'isAntiParallel 'In)

(send ScaleDetector 'connect-fields 'RightPos 'Out 'LtoR 'In1)
(send ScaleDetector 'connect-fields 'LeftPos 'Out 'LtoR 'In2)
(send ScaleDetector 'connect-fields 'LtoR 'Out 'Distance 'In)
(send ScaleDetector 'connect-fields 'LtoR 'Out 'Direction 'In)

(send ScaleDetector
 'set-value 'LeftPalmNormal 'InVec (make-vec3 0 0 -1))
(send ScaleDetector
 'set-value 'RightPalmNormal 'InVec (make-vec3 0 0 -1))
(send ScaleDetector 'set-value 'isAntiParallel 'ThresVal 2)

Fig. 11: The visualization of the container for a scaling-
gesture

6. Results & Outlook

In this paper we have presented an approach for
visual programming in a VR-environment. The
computation of the single nodes is embedded in the
render loop, but it is also possible to compute
sequences of data, independent of the frame rate.
The XML description of the nodes allows fast
development of new units to gain a very flexible
tool that is facile to be administered. With the
possibility to build containers of compute networks
with their own field definitions the programmer can
produce highly reusable code, with a well-defined
interface and which can be easily adapted to new
applications.
The close relationship to the scene-graph nodes
allows the visualization of results and intermediate
data of the compute nodes. A simple visualization in
the virtual environment of the compute nodes and
their connections was presented.
Additionally to an improved visualization, it is
planned to build a tool for altering field values and

connections in the virtual environment using a
pointing device, like a stylus. The stylus can be used
to select the field or connection which should be
altered, and to manipulate a user interface to change
the values. With the direct feedback of the effects in
the VR application of the changes in the compute
network, the tuning and debugging of programs is
readily achieved.
Since only the adjustment of the compute networks
is done via the comparably slow Scheme interface
and all computing and data flow is handled in C++
code, even large networks can be computed very
fast, which is extremely important for real-time VR
applications.
With the possibility of distributing field connections
over network – which is supported by the
AVANGO toolkit – very large computing networks
can be divided on computer clusters to gain optimal
performance.

Acknowledgement

This work is partially supported by the Deutsche
Forschungsgemeinschaft (DFG) in the Virtuelle
Werkstatt project.

Literature

[Lat2001] M.E. Latoschik: A General Framework
for Multimodal Interaction in Virtual
Reality Systems: PrOSA. In: Broll, W &
Schäfer, L. (Editors): The Future of VR
and AR Interfaces - Multimodal,
Humanoid, Adaptive and Intelligent.
Proceedings of the workshop at IEEE
Virtual Reality 2001, Yokohama, Japan.
GMD Report No. 138, March 2001, pp.
21-25.

[Tra99] Henrik Tramberend. A distributed virtual
reality framework. In Virtual Reality,
1999.

[Dyb96] R. K. Dybvig. The Scheme Programming
Language: ANSI Scheme. P T R
Prentice-Hall, Englewood Cliffs, NJ
07632, USA, second edition, 1996.

[Dou2001]Doug Tidwell. XSLT. O’Reilly, August
2001.

[Hil92] Hils, D.D. Visual Languages and
Computing Survey: Data Flow Visual
Programming Languages. JVLC, March
1992, pp. 69-101

