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Abstract

In situated dialogue, speakers share time
and space. We present a statistical model
for understanding natural language that
works incrementally (i.e., in real, shared
time) and is grounded (i.e., links to en-
tities in the shared space). We describe
our model with an example, then estab-
lish that our model works well on non-
situated, telephony application-type utter-
ances, show that it is effective in ground-
ing language in a situated environment,
and further show that it can make good use
of embodied cues such as gaze and point-
ing in a fully multi-modal setting.

1 Introduction

Speech by necessity unfolds over time, and in spo-
ken conversation, this time is shared between the
participants. Speakers are also by necessity lo-
cated, and in face-to-face conversation, they share
their (wider) location (that is, they are co-located).
The constraints that arise from this set of facts are
often ignored in computational research on spoken
dialogue, and where they are addressed, typically
only one of the two is addressed.

Here, we present a model that computes in an
incremental fashion an intention representation for
dialogue acts that may comprise both spoken lan-
guage and embodied cues such as gestures and
gaze, where these representations are grounded in
representations of the shared visual context. The
model is trained on conversational data and can be
used as an understanding module in an incremen-
tal, situated dialogue system.

Our paper begins with related work and back-
ground and then specifies in an abstract way the
task of the model. We describe our model formally
in Section 4, followed by three experiments with
the model, the first establishing it with a traditional

spoken language understanding (SLU) setting, the
second to show that our model works well under
situated conditions, and the third shows that our
model can make use of embodied cues. We fin-
ish the paper with a general discussion and future
work.

2 Related Work and Background

The work presented in this paper connects and ex-
tends several areas of research: grounded seman-
tics (Roy, 2005; Hsiao et al., 2008; Liu et al.,
2012), which aims to connect language with the
world, but typically does not work incrementally;
semantic parsing / statistical natural language un-
derstanding (NLU), which aims to map an utter-
ance to its meaning representation (using vari-
ous routes and approaches, such as logical forms
(Zettlemoyer and Collins, 2007; Zettlemoyer and
Collins, 2009), dependency-based compositional
semantics (Liang et al., 2011), neural networks
(Huang and Er, 2010), Markov Logic Networks
(MLN) (Meurs et al., 2008; Meza-Ruiz et al.,
2008), and dynamic Bayesian networks (Meurs
et al., 2009); see also overviews in (De Mori et
al., 2008; Wang et al., 2011)), but typically nei-
ther provides situated interpretations nor incre-
mental specifications of the representations; incre-
mental NLU (DeVault et al., 2009; DeVault et al.,
2011; Aist et al., 2007; Schlangen and Skantze,
2009), which focuses on incrementality, but not
on situational grounding; integration of gaze into
language understanding (Prasov and Chai, 2010),
which was not incremental.

We move beyond this work in that we present a
model that is incremental, uses a form of grounded
semantics, can easily incorporate multi-modal in-
formation sources, and finally on which inference
can be performed quickly, satisfying the demands
of real-time dialogue. The model brings together
aspects we’ve previously looked into separately:
grounded semantics in (Siebert and Schlangen,



2008); incremental interpretation (reference res-
olution) in (Schlangen et al., 2009); incremental
general NLU in (Heintze et al., 2010); and a more
sophisticated approach that handled all of these us-
ing markov logic networks, but did not work in
real-time or with multi-modal input (Kennington
and Schlangen, 2012).

3 The Task

The task for our model is as follows: to compute at
any moment a distribution over possible intentions
(expressed as semantic frames), given the unfold-
ing utterance and possibly information about the
state of the world in which the utterance is hap-
pening. The slots of these frames are to be filled
with semantic constants, that is, they are uniquely
resolved; if appropriate, to objects in the shared
environment.

This is illustrated in Figure 1, where for
three successive incremental units (Schlangen and
Skantze, 2009) (that is, successively available bits
of information pertaining to the same act, such as
words of an utterance, or information about speech
accompanying gesture) three distributions over in-
tentions are shown.1

[   ]fe: a [   ]fe: b [   ]fe: a

IU1 IU2 IU3

Donnerstag, 2. Mai 2013

Figure 1: Schematic Illustration of Task

4 Our Model

More formally, the goal of the model is to recover
I , the intention of the speaker behind her utter-
ance, in an incremental fashion, that is, word by
word. We make the assumption that the set of
possible intentions is finite, and that they consist
of (combinations of) entities (where however even
actions like taking are considered ‘entities’; more
on this below). We observe U , the current word
that the speaker uttered as part of their utterance
(and features derived from that). We also assume
that there is an unobserved mediating variable R,

1Here, no links between these intention representations
are shown. The model we present in the next section is
an update model, that is, it builds the representation at step
tn based on that at tn−1; other possibilities are explored in
(Heintze et al., 2010) and (Kennington and Schlangen, 2012).

which represents the (visual or abstract) proper-
ties of the (visually present, or abstract) object
of the intention. So, what we need to calculate
is P (I|U,R), even though ultimately we’re inter-
ested only in P (I|U). By definition of conditional
probability, P (I|U,R) = P (I, U,R)∗P (U,R)−1.
We factorise P (I, U,R) as indicated in the follow-
ing:

P (I|R,U) =
P (R|I)P (I)P (U |R)

P (U,R)
(1)

That is, we make the assumption that R is con-
ditional only on I , and U is conditional only on
R. Marginalizing over R gets us the model we’re
interested in (and it amounts to a not uncommon
tagging model with a hidden layer):

P (I|U) = P (I)
∑
r∈R

P (U |R = r)P (R = r|I)

P (U,R = r)

(2)

Where we can move P (I) out of the summation,
as it is not dependent on R. Hence, we need three
models, P (I), P (U |R) and P (R|I), to compute
P (I|U). Figure 2 shows how these three models
interact over time.

It−2

Rt−2

Ut−2

It−1

Rt−1

Ut−1

It

Rt

Ut

Figure 2: Our model represented as an unrolled
DBN over three words.

Each sub-model will now be explained.

P(I) At the beginning of the computation for an
incoming sentence, we set the prior P (I) to a uni-
form distribution (or, if there is reason to do so, a
different distribution to encode initial expectations
about intentions; i.e., prior gaze information). For
later words, it is set to the posteriori of the pre-
vious step, and so this constitutes a Bayesian up-
dating of belief (with a trivial, constant transition
model that equates P (It−1) and P (It)).2

2In that sense, our incremental understanding could be
called “intra-sentential belief tracking,” in analogy to the cur-
rent effort to track system belief about user intentions across
turns (Ma et al., 2012; Williams, 2010).



The other models represent knowledge about
links between intentions and object properties,
P (R|I), and knowledge about language use,
P (U |R). We now explain how this knowledge is
acquired.

P(R|I) The model P (R|I) provides the link be-
tween objects (as occurring in the intentions) and
their properties. Here we follow, to our knowl-
edge, a novel approach, by deriving this distribu-
tion directly from the scene representation. This
is best explained by looking at the overall model
in a generative way. First, the intention is gener-
ated, P (I), then based on that a property, P (R|I).
We assume that with equal probability one of the
properties that the intended object actually has is
picked to be verbalised, leaving zero probability
for the ones that it does not have. This in a way is
a rationality assumption: a rational speaker will, if
at all, mention properties that are realised and not
others (at least in non-negative contexts).

P(U|R), learned directly The other model,
P (U |R), can be learned directly from data by
(smoothed) Maximum Likelihood estimation. For
training, we assume that the property R that is
picked out for verbalisation is actually observable.
In our data, we know which properties the refer-
ent actually has, and so we can simply count how
often a word (and its derived features) co-ocurred
with a given property, out of all cases where that
property was present.

P(U|R), via P(R|U) Instead of directly learn-
ing a model of the data, we can learn a discrimina-
tive model that connects words and properties.

In Equation 2, we can rewrite P (U |R) using
Bayes’ Rule:

P (I|U) = P (I)
∑
r∈R

P (U)P (R = r|U)P (R = r|I)

P (R = r)P (U,R = r)
(3)

P (U) is a constant when computing P (I|U) for
all possible values of I whose actual value does
not change the rank of each intention, and so can
be dropped. P (R) can be approximated with a
uniform distribution, and can also be dropped,
yielding:

P (I|U) = P (I)
∑
r∈R

P (R = r|U)P (R = r|I)

P (U,R = r)

(4)
Other models could also be learned here; we chose
a discriminative model to show that our model
works under varied circumstances.

word red round square green
the 0.03 0.02 0.20 0.28
red 0.82 0.009 0.09 0.01
ball 0.02 0.9 0.02 0.07

Table 1: P (U |R) for our toy domain for some
values of U and R; we assume that this model is
learned from data (columns are excerpted from a
distribution over a larger vocabulary).

int. red round square green
obj1 0.5 0.5 0 0
obj2 0.5 0 0.5 0

Table 2: P (R|I), for our example domain.

Properties An important part of our model is
the set of properties. Properties can be visual
properties such as color or shape or spatial prop-
erties (left-of, below, etc.). Though not the fo-
cus of this paper, they could also be concep-
tual properties (the verb run can have the proper-
ties of movement, use of legs, and quick).
Another example, New York has the property of
being New York. (That is generally sufficient
enough to denote New York, but note that descrip-
tive properties (e.g., “location of the Empire State
Building”) could be used as well.) The purpose
of the properties is to ground intentions with lan-
guage in a more fine-grained way than the words
alone.

We will now give an example of the generative
approach as in Equation 2 (it is straight-forward to
do the same for the discriminative model).

4.1 Example

The task is reference resolution in a shared visual
context: there is an intention to refer to a visible
object. For this example, there are two objects
obj1 and obj2, and four properties to describe
those objects, red, round, square and green.
The utterance for which we want to track a dis-
tribution over possible referents, going word-by-
word, is the red ball. obj1 happens to be a red
ball, with properties red and round; obj2 is a
red cube, with the properties red and square.

We now need the models P (U |R) and P (R|I).
We assume the former is learned from data, and
for the four properties and three words gives us re-
sults as shown in Table 1 (that is, P (U = the|R =
red) = 0.03). The model P (R|I) can be read off
the representation of the scene: if you intend to



refer to object obj1 (I = obj1), you can either
pick the property red or the property round, so
both get a probability of 0.5 and all others 0; sim-
ilar for obj2 and red and square (Table 2).

Table 3 now shows an application of the full
model to our example utterance. The cells
in the columns labeled with properties show
P (U |R)P (R|I) for the appropriate properties and
intentions (objects), the column Σ shows results
after marginalizing over R. The final column then
factors in P (I) with a uniform prior for the first
word, and the respectively previous distribution
for all others, and normalises.

I U red rnd. sq. Σ P (I|U)

obj1 the .015 .01 0 .025 .5
obj2 .015 0 .01 .025 .5
obj1 red .41 .0045 0 .41 .47
obj2 .41 0 .045 .46 .53
obj1 ball .01 .45 0 .46 .96
obj2 .01 0 .01 .02 .04

Table 3: Application of utterance the red ball,
where obj1 is the referred object

As these numbers show, the model behaves as
expected: up until ball, the utterance does not
give enough information to decide for either ob-
ject probabilities are roughly equal, once ball is
uttered obj1 is the clear winner.

This illustrated how the model works in princi-
ple and showed that it yields the expected results
in a simple toy domain. In the next section we will
show that this works in more realistic domains.

5 Experiments

Our model’s task is to predict a semantic frame,
where the required slots of the frame are known
beforehand and each slot value is predicted us-
ing a separate model P (I|U). We realise P (U |R)
as a Naive Bayes classifier (NB) which counts co-
occurrences of utterance features (words, bigrams,
trigrams; so U is actually a tuple, not a single vari-
able) and properties (but naively treats features as
independent), and which is smoothed using add-
one smoothing. As explained earlier, P (I) repre-
sents a uniform distribution at the beginning of an
utterance, and the posteriori of the previous step,
for later words. We also train a discriminative
model, P (R|U), using a maximum entropy classi-
fier (ME) using the same features as NB to classify
properties.3

3http://opennlp.apache.org/

5.1 A Non-Situated Baseline using ATIS

We performed an initial test of our model using
a corpus in traditional NLU: the air travel infor-
mation system (ATIS) corpus (Dahl et al., 1994)
using the pre-processed corpus as in (Meza-Ruiz
et al., 2008). In ATIS, the main task is to predict
the slot attributes (the values were simply words
from the utterance); however, the GOAL slot (rep-
resenting the overall utterance intent) was was al-
ways present, the value of which required a predic-
tion. We tested our model’s ability to predict the
GOAL slot (using very simple properties; the prop-
erty of a GOAL intention is itself, i.e., the property
of flight is flight) and found encouraging re-
sults (the GOAL slot baseline is 71.6%, see (Tur et
al., 2010); our NB and ME models obtained scores
of 77% and 77.9% slot value prediction accura-
cies, respectively). How our model works under
more complicated settings will now be explained.

5.2 Puzzle Domain: Speech-Only

Figure 3: Example
Pentomino Board

ACTION rotate
OBJECT object-4
RESULT clockwise


Figure 4: Pento
frame example

Data and Task The Pentomino domain
(Fernández et al., 2007) contains task-oriented
conversational data; more specifically, we worked
with the corpus also used recently in (Heintze et
al., 2010; Peldszus et al., 2012; Kennington and
Schlangen, 2012). This corpus was collected in
a Wizard-of-Oz study, where the user goal was
to instruct the computer to pick up, delete, rotate
or mirror puzzle tiles on a rectangular board (as
in Figure 3), and place them onto another one.
For each utterance, the corpus records the state of
the game board before the utterance, the immedi-
ately preceding system action, and the intended
interpretation of the utterance (as understood
by the Wizard) in the form of a semantic frame
specifying action-type and arguments, where
those arguments are objects occurring in the
description of the state of the board. The language
of the corpus is German. An example frame is
given in Figure 4.



The task that we want our model to perform is
as follows: given information about the state of
the world (i.e., game board), previous system ac-
tion, and the ongoing utterance, predict the values
of the frame. To this end, three slot values need
to be predicted, one of which links to the visual
scene. Each slot value will be predicted by an in-
dividual instantiation of our model (i.e., each has
a different I to predict). Generally, we want our
model to learn how language connects to the world
(given discourse context, visual context, domain
context, etc.). We used a combination of visual
properties (color, shape, and board position), and
simple properties to ground the utterance with I .

Our model gives probability distributions over
all possible slot values, but as we are interested
in single best candidates (or the special value
unknown if no guess can be made yet), we ap-
plied an additional decision rule to the output of
our model. If the probability of the highest candi-
date is below a threshold, unknown is returned,
otherwise that candidate is returned. Ties are bro-
ken by random selection. The thresholds for each
slot value were determined empirically on held-
out data so that a satisfactory trade-off between
letting through wrong predictions and changing
correct results to unknown was achieved.

Procedure All results were obtained by aver-
aging the results of a 10-fold validation on 1489
Pento boards (i.e., utterances+context, as in (Ken-
nington and Schlangen, 2012)). We used a sep-
arate set of 168 boards for small-scale, held-out
experiments. As this data set has been used
in previous work, we use previous results as
baselines/comparisons. For incremental process-
ing, we used InproTK (Baumann and Schlangen,
2012).4

On the incremental level, we followed
(Schlangen et al., 2009) and (Kennington and
Schlangen, 2012) for evaluation, but use a subset
of their incremental metrics, with a modification
on the edit overhead:
first correct: how deep into the utterance do we
make the first correct guess?
first final: how deep into the utterance do we
make the correct guess, and don’t subsequently
change our minds?
edit overhead: what is the ratio of unnecessary
edits / sentence length, where the only necessary
edit is that going from unknown to the final,

4http://sourceforge.net/projects/inprotk/

correct result anywhere in the sentence)?

Results The results for full utterances are given
in Table 4. Both of our model types work better
than (Heintze et al., 2010) which used support vec-
tor machines and conditional random fields, and
(Peldszus et al., 2012) which was rule-based (but
did not include utterances with pronouns like we
do here). The NB version did not work well in
comparison to (Kennington and Schlangen, 2012)
which used MLN, but the ME version did in most
metrics. Overall these are nice results as they
are achieved using a more straightforward model
with rather simple features (with room for exten-
sions). Another welcome result is performance
from noisy data (trained and evaluated on automat-
ically transcribed speech; ASR); the ME version of
our model is robust and performs well in compar-
ison to previous work.

NB ME K H P
fscore 81.16 92.26 92.18 76.9

(74.5) (89.4) (86.8)
slot 73.62 88.91 88.88

(66.4) (85.1) (81.6)
frame 42.57 74.08 74.76

(34.2) (67.2) (61.2)
action 80.05 93.62 92.62
object 76.27 90.79 84.71 64.3
result 64.4 82.34 86.65

Table 4: Comparison of results from Pento: Naive
Bayes NB, Maximum Entropy ME, (Kennington
and Schlangen, 2012) K, (Heintze et al., 2010)
H, (Peldszus et al., 2012) P; values in parenthe-
ses denote results from automatically transcribed
speech.

A big difference between our current model
and MLN is the way incrementality is realised:
MLN was restart incremental in that at each incre-
ment, features from the full utterance prefix were
used, not just the latest word; the present model is
fully incremental in that a prior belief is updated
based only on the new information. This, how-
ever, seems to lead our model to perform with less
accuracy for the result slot, which usually oc-
curs at the end of the sentence.

Incremental Table 5 shows the incremental
results in the same way as (Kennington and
Schlangen, 2012). Utterances are binned into
short, normal, and long utterance lengths (1-6,
7-8, 9-17 words, respectively) as determined by
looking at the distribution of utterance lengths,
which appeared as a normal distribution with 7 and



das graue Teil in der ersten Reihe nehmen

Figure 5: Example of reference resolution for the utterance: das graue Teil in der ersten Reihe nehmen /
the gray piece in the first row take; lighter cell background means higher probability assigned to piece.

8-word utterances having highest representation.
In comparison with (Kennington and Schlangen,
2012), our model generally takes longer to come
to a first correct for action, but is earlier for the
other two slots. For first final, our model always
takes longer, albeit with lower edit overhead. This
tells us that our model is more careful than the
MLN one; it waits longer before making a final de-
cision and it doesn’t change its mind as much in
the process, which arguably is desired behaviour
for incremental systems.

action 1-6 7-8 9-14
first correct (% into utt.) 5.78 2.56 3.64
first final (% into utt.) 38.26 36.10 30.84
edit overhead 2.37
object 1-6 7-8 9-14
first correct (% into utt.) 7.39 7.5 10.11
first final (% into utt.) 44.7 44.18 35.55
edit overhead 4.6
result 1-6 7-8 9-14
first correct (% into utt.) 15.16 23.23 20.88
first final (% into utt.) 42.55 40.57 35.21
edit overhead 10.19

Table 5: Incremental Results for Pento slots with
varying sentence lengths.

Figure 5 illustrates incremental performance by
showing the distribution over the pieces (using the
ME model; lighter means higher probability) for
the utterance das graue Teil in der ersten Reihe
nehmen (the gray piece in the first row take / take
the gray piece in the first row) for each word in
the utterance. When the first word, das is uttered,
it already assigns probabilities to the pieces with
some degree of confidence (note that in German,
das (the) denotes the neuter gender, and the piece
on the right with the lowest probability is often re-
ferred to by a noun (Treppe) other than neuter).
Once graue (gray) is uttered, the distribution is
now more even upon the three gray pieces, which
remains largely the same when Teil (piece) is ut-
tered. The next two words, in der (in the) give
more probability to the left gray piece, but once er-
sten Reihe (first row) is uttered, the most probable
piece becomes the correct one, the second piece

from the left on the top.

5.3 Puzzle Domain: Speech, Gaze and Deixis

Data and Task Our final experiment uses newly
collected data (Kousidis et al., 2013), again from
the Pentomino domain. In this Wizard-of-Oz
study, the participant was confronted with a Pento
game board containing 15 pieces in random col-
ors, shapes, and positions, where the pieces were
grouped in the four corners of the screen (exam-
ple in Figure 6). The users were seated at a table
in front of the screen. Their gaze was then cali-
brated with an eye tracker (Seeingmachines Face-
Lab) placed above the screen and their arm move-
ments (captured by a Microsoft Kinect, also above
the screen) were calibrated by pointing to each
corner of the screen, then the middle of the screen.
They were then given task instructions: (silently)
choose a Pento tile on the screen and then instruct
the computer game system to select this piece by
describing and pointing to it. When a piece was se-
lected (by the wizard), the participant had to utter
a confirmation (or give negative feedback) and a
new board was generated and the process repeated
(each instance is denoted as an episode). The ut-
terances, board states, arm movements, and gaze
information were recorded, as in (Kousidis et al.,
2012). The wizard was instructed to elicit point-
ing gestures by waiting to select the participant-
referred piece by several seconds, unless a point-
ing action by the participant had already occurred.
When the wizard misunderstood, or a technical
problem arose, the wizard had an option to flag
the episode. In total, 1214 episodes were recorded
from 8 participants (all university students). All
but one were native speakers; the non-native spoke
proficient German (see Appendix for a set of ran-
dom example utterances).

The task in this experiment was reference res-
olution (i.e., filling a single-slot frame). The in-
formation available to our model for these data
include the utterance (ASR-transcribed and repre-
sented as words, bigrams, and trigrams), the vi-



Figure 6: Example Pento board for gaze and deixis
experiment; yellow piece in the top-right quadrant
has been “selected” by the wizard after the partic-
ipant utterance.

sual context (game board), gaze information, and
deixis (pointing) information, where a rule-based
classifier predicted from the motion capture data
the quadrant of the screen at which the participant
was pointing. These data were very noisy (and
hence, realistic) despite the constrained conditions
of the task: the participants were not required to
say things a certain way (as long as it was under-
stood by the wizard); their hand movements poten-
tially covered their faces which interfered with the
eye tracker; each participant had a different way of
pointing (each had their own gesture space, hand-
edness, distance of hand from body when point-
ing, alignment of hand with face, etc.). Also, the
episodes were not split into individual utterances,
but rather interpreted as one; this indicates that the
model can deal with belief tracking over whole in-
teractions (here, if the wizard did not respond, the
participant had to clarify her intent in some way,
producing a new utterance).

Procedure Removing the flagged utterances and
the utterances of one of the participants (who had
misunderstood the task) left us with a total of 1051
utterances. We used 951 for development (fine-
tuning of parameters, see below), and 100 for eval-
uation. Evaluation was leave-one-out (i.e., 100
fold cross validation) where the training data were
all other 1050 utterances. For this experiment, we
only used the ME model as it performed much bet-
ter in the previous experiment. We give results
as resolution accuracy. We incorporate gaze and
deixis information in two ways: (1) We computed
the distribution over tiles gazed at, and quadrant
of the screen pointed at during the interval before
and during an utterance. The distributions were
then combined at the end of the utterance with the

NLU distribution (denoted as Gaze and Point); that
is, Gaze and Point had their own P (I) which were
evenly interpolated with the INLU P (I|U), and (2)
we incrementally computed properties to be pro-
vided to our INLU model; i.e., a tile has a prop-
erty in R of being looked at if it is gazed at for
some interval of time, or tiles in a quadrant of the
screen have the property of being pointed at.
These models are denoted as Gaze-F and Point-F.
As an example, Figure 7 shows an example utter-
ance, gaze, and gesture activity over time and how
they are reflected in the model (the utterance is the
observed U , where the gaze and gesture become
properties in R for the tiles that they affect). Our
baseline model is the NLU without using gaze or
deixis information; random accuracy is 7%.

We also include the percentage of the time
the gold tile is in the top 2 and top 4 rankings
(out of 15); situations in which a dialogue sys-
tem could at least provide alternatives in a clar-
ification request (if it could detect that it should
have low confidence in the best prediction; which
we didn’t investigate here). Importantly, these re-
sults are achieved with automatically transcribed
utterances; hand transcriptions do not yet exist for
these data. For gaze, we also make the naive as-
sumption that over the utterance the participant
(who in this case is the speaker) will gaze at his
chosen intended tile most of the time.

Figure 7: Human activity (top) aligned with how
modalities are reflected in the model for Gaze-F
and Point-F (bottom) over time for example utter-
ance: take the yellow tile.

Results See Table 6 for results. The models that
have access to gaze and pointing gestures can re-
solve better than those that do not. Our findings
are consistent in that referential success with gaze
alone approaches 20% (a rate found by (Pfeiffer,
2010) in a different setting). Another interest-
ing result is that the Gaze-F and Point-F variants,
that continuously integrate multi-modal informa-
tion, perform the same as or better than their non-
incremental counterparts (where the distributions
are weighted once at the end of the utterance).



Version Acc Top 2 Top 4
Gaze 18%

(baseline) NLU 50% 59% 77%
NLU + Gaze 53% 62% 80%
NLU + Point 52% 65% 90%

NLU + Gaze + Point 53% 70% 91%
NLU + Gaze-F 53% 65% 78%
NLU + Point-F 57% 68% 88%

NLU+Gaze-F+Point-F 56% 69% 85%

Table 6: Accuracies for reference resolution task
when considering NLU, gaze and pointing infor-
mation before and during the utterance (Gaze and
Point), and gaze and pointing information when
considered as properties to the NLU model (Gaze-
F and Point-F).

Incremental We also include incremental re-
sults when using gaze and deixis. We binned the
sentences in the same way as in the previous ex-
periment (the distribution of sentence lengths was
similar). Figure 8 shows how the NLU model base-
line, the (NLU+) Gaze-F, Point-F, and Gaze-F +
Point-F models perform incrementally for utter-
ances of lengths 7-8. All models increase mono-
tonically, except for Point-F at one point in the ut-
terance and Gaze-F at the end. It would appear that
the gaze as an information source is a good early
indicator of speaker intent, but should be trusted
less as the utterance progresses. Deixis is more
trustworthy overall, and the two taken together of-
fer a more stable model. Table 7 shows the re-
sults using the previously explained incremental
metrics. All models have little edit overhead, but
don’t make the correct final decision until well into
the utterances. This was expected due to the noisy
data. A consumer of the output of these models
would need to wait longer to trust the results given
by the models (though the number of words of the
utterance can never be known beforehand).

6 Discussion and Conclusions

We presented a model for the interpretation of
utterances in situated dialogue that a) works in-
crementally and b) can ground meanings in the
shared context. Taken together, the three experi-
ments we’ve reported give good evidence that our
model has the potential to be used as a success-
ful NLU component of an interactive dialogue sys-
tem. Our model can process at a speed which is
faster than the ongoing utterance, which will al-
low it to be useful in real-time, interactive exper-
iments. And, crucially, our model is able to inte-

Figure 8: Incremental process for referential accu-
racy; comparing NLU, Gaze-F, Point-F, and Gaze-
F + Point-F for utterances of length 7-8.

NLU 1-6 7-8 9-14
first correct (% into utt.) 22.2 37.2 30
first final (% into utt.) 82.4 82.4 74.8
edit overhead 2.95
Gaze-F 1-6 7-8 9-14
first correct (% into utt.) 23 32 31.1
first final (% into utt.) 84.1 81.5 75.4
edit overhead 2.89
Point-F 1-6 7-8 9-14
first correct (% into utt.) 21.4 30 23.3
first final (% into utt.) 83.5 80 72.3
edit overhead 2.59
Gaze-F + Point-F 1-6 7-8 9-14
first correct (% into utt.) 16.7 31 28
first final (% into utt.) 81.5 81 73.9
edit overhead 2.67

Table 7: Incremental results for Pento slots with
varying sentence lengths.

grate information from various sources, including
gaze and deixis. We expect the model to scale to
larger domains; the number of computations that
are required grows with |I| × |R|.

Our model makes use of properties which are
used to connect an utterance to an intention.
Knowing which properties to use requires empir-
ical testing to determine which ones are useful.
We are working on developing principled meth-
ods for selecting such properties and their con-
tribution (i.e., properties should not be uniform).
Future work also includes better use of linguistics
(instead of just n-grams), building a more sophis-
ticated DBN model that has fewer independence
assumptions, e.g. tracking properties as well by
making Rt depended on Rt−1. We are also in
the process of using the model interactively; as a
proof-of-concept, we were trivially able to plug it
into an existing dialogue manager for Pento do-
mains (see (Buß et al., 2010)).
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Appendix A: Example Utterances (Pento
Speech)

1. nimm die Brücke in der oberen Reihe
2. nimm das Teil in der mittleren Reihe das zweite
Teil in der mittleren Reihe
3. und setz ihn in die Mitte links
4. dreh das nach links
5. ähm und setz ihn oben links in die Ecke
6. nimm bitte den gelben Winkel oben
7. bewege das Kästchen die Treppe unten links
8. lösche das Teil in der Mitte
9. nimm die gelbe Krücke aus der zweiten Reihe
oben
10. und verschiebe es in die erste Zeile dritte
Spalte

Appendix B: Example Utterances (Speech,
Gaze and Deixis)

(as recognised by the ASR)
1. dieses teil genau st es oben links t
2. das t mit vier rechts oben ist d es direkt hier
rechts
3. grüne von rechts uh fläche
4. das obere grüne zähl hm so es obersten hohles
e rechts oben ecke
5. ähm das hintere kreuz unten links rechts rechts
6. äh das einzige blaue symbol oben rechts
7. das einzige grün okay oben rechts
8. hm innerhalb diesem blauen striche vorne hm
so genau in die genau rechts
9. und das sind dann nehmen diese fünf zeichen
oben nämlich genau das in der mitte so
10. oben links is die untere
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Mori. 2009. Spoken Language Interpretation: On
the Use of Dynamic Bayesian Networks for Seman-
tic Composition. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, pages
4773–4776.

Ivan Meza-Ruiz, Sebastian Riedel, and Oliver Lemon.
2008. Accurate Statistical Spoken Language Un-
derstanding from Limited Development Resources.
In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pages 5021–5024.
IEEE.

Andreas Peldszus, Okko Buß, Timo Baumann, and
David Schlangen. 2012. Joint Satisfaction of Syn-
tactic and Pragmatic Constraints Improves Incre-
mental Spoken Language Understanding. In Pro-
ceedings of the 13th EACL, pages 514–523, Avi-
gnon, France, April. Association for Computational
Linguistics.

Thies Pfeiffer. 2010. Understanding multimodal deixis
with gaze and gesture in conversational interfaces.
Ph.D. thesis, Bielefeld University.

Zahar Prasov and Joyce Y Chai. 2010. Fusing Eye
Gaze with Speech Recognition Hypotheses to Re-
solve Exophoric References in Situated Dialogue.
In EMNLP 2010, number October, pages 471–481.

Deb Roy. 2005. Grounding words in perception and
action: computational insights. Trends in Cognitive
Sciences, 9(8):389–396, August.

David Schlangen and Gabriel Skantze. 2009. A Gen-
eral, Abstract Model of Incremental Dialogue Pro-
cessing. In Proceedings of the 10th EACL, pages
710–718, Athens, Greece. Association for Compu-
tational Linguistics.

David Schlangen, Timo Baumann, and Michaela At-
terer. 2009. Incremental Reference Resolution: The
Task, Metrics for Evaluation, and a Bayesian Filter-
ing Model that is Sensitive to Disfluencies. In Pro-
ceedings of the 10th SIGdial, pages 30–37, London,
UK. Association for Computational Linguistics.

Alexander Siebert and David Schlangen. 2008. A Sim-
ple Method for Resolution of Definite Reference in
a Shared Visual Context. In Proceedings of the 9th
SIGdial, pages 84–87, Columbus, Ohio. Association
for Computational Linguistics.

Gokhan Tur, Dilek Hakkani-tür, and Larry Heck. 2010.
What Is Left to Be Understood by ATIS? In IEEE
Workshop on Spoken Language Technologies, pages
19–24, Berkeley, California. IEEE.

Ye-Yi Wang, Li Deng, and Alex Acero. 2011. Seman-
tic Frame-based Spoken Language Understanding.
Wiley.

Jason D Williams. 2010. Incremental partition re-
combination for efficient tracking of multiple dia-
log states. Acoustics Speech and Signal Processing
ICASSP 2010, pages 5382–5385.

Luke S Zettlemoyer and Michael Collins. 2007. On-
line Learning of Relaxed CCG Grammars for Pars-
ing to Logical Form. Computational Linguistics,
pages 678–687.

Luke S Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. Proceedings of the Joint
Conference of the 47th ACL and the 4th AFNLP:
Volume 2 - ACL-IJCNLP ’09, 2:976.


