Exploiting distant pointing gestures for object
selection in a virtual environment

Marc Erich Latoschik and Ipke Wachsmuth

Technische Fakultdt, Universitat Bielefeld,
Postfach 100131, D-33501 Bielefeld, Germany
e-mail: {marcl,ipke}@TechFak.Uni-Bielefeld. DE

Abstract. Developing state of the art multimedia applications nowa-
days calls for the use of sophisticated visualisation and immersion tech-
niques, commonly referenced as Virtual Reality. While Virtual Reality
meanwhile reaches good results both in image quality and in fast user
feedback using parallel computation techniques, the methods for inter-
acting with these systems need to be improved. In this paper we intro-
duce a multimedia application that uses a gesture-driven interface and,
secondly, the architecture for an expandable gesture recognition system.
After different gesture types for interaction in a virtual environment are
discussed with respect to a required functionality, the implementation
of a specific gesture detection module for distant pointing recognition is
described, and the whole system design is tested for its task adequacy.

1 Introduction

When moving on from the two-dimensional window-based environments to large-
screen multimedia and Virtual Reality settings, the classical WIMP interface
turns out insufficient. In a Virtual Reality environment, mouse and keyboard are
obviously limited and restrict users when acting in large screen display environ-
ments like a CAVE or in front of a Projection Wall or a Responsive Workbench.
For many users it would be desirable not to be governed by discrete hardware
devices to express their intentions, but to use the natural modalities like gesture
and speech. The main interaction types that have to be accomplished in VR can
be separated in two areas: navigation and manipulation. There are a couple of
input devices [She88] that adapt the two-dimensional input methods to a vir-
tual environment by adding at least one or more degrees of freedom. But the
principal interaction with the system does not change. Is an object selection in
a WIMP environment accomplished with a 2D-mouse-click, VR systems often
use a space-mouse, the three-dimensional counterpart that adds the possibility
to manipulate an objects 3D position and orientation. Such an object can be a
cursor or a cross-hair located in the virtual space for selecting items, objects or
menus, again using the windows- and icon-based interaction metaphors.

Based on early ideas from the Put that there System [Bol80] and on our
own research results [LW96] we want to extend human-machine interfaces by
speech-supported gestural input and, in particular, integrate such an interface

in a multimedia application, a Virtual Reality construction system. The current
paper focuses on the design of a virtual environment for gesture-driven interac-
tion and on the evaluation and detection of distant pointing gestures for selecting
objects and locations.

Along this path, the whole evaluation and development task can be separated
in two layers. On the conceptual level we describe the scenario and the appli-
cation, pointing out what kind of interaction should be accomplished and we
examine gestures more closely to find out how they can be classified and which
gesture types might be appropriate to build a new interface upon. Since we are
actually constructing a running system, we also take a closer look at the type of
computational problem raised by gesture detection. This leads us to the second,
namely the technical, level. The problem we are attacking here is to develop a
system architecture that is capable of dealing with a number of different con-
straints. Building an interface for VR, real-time and low latency have the first
priority to achieve both, an instant system feedback and guaranteed frame-rate
to avoid user discomfort from lags in the display stream. Finally, the system
architecture should be expandable for a gradual approach of our goals by way
of incremental prototyping.

In the following sections we introduce a multimedia application that makes
use of enhanced immersion techniques and an agent-based architecture for de-
veloping an expandable multi-modal interface for interacting with that system?!.
Our first functional goal for this interface is to establish gesture-driven methods
for selecting objects and locations, described in section 3. Design and implemen-
tation details are given in section 4.

2 The virtual application environment

The testbed for our work, the multimedia backend, is the Virtual Constructor,
VC [WJ96], a system for assembling and disassembling virtual objects and aggre-
gates. This application uses mouse and typed text input as interaction methods.
Using the mouse for a specific action, the user first has to trigger the action-type
with a WIMP-style tool-bar click. In contrast to that, with a typed input, the
user can express the semantics of an intended interaction with appropriate verbs,
e.g.: ...connect the grey bar with the yellow bolt...” or ’...detach the left wheel...’.
Selecting parts is done in both ways, objects can be referenced and manipulated
with commands, e.g. ’...turn the blue square bar ...” or with a mouse-click that
enables virtual handles around the selected object, which then can be manipu-
lated by a mouse operation on these handles. There are different manipulators
for rotating about the three main axes and for moving. E.g.: dragging and drop-
ping of objects, that means selecting and moving them in the virtual scene until
they reach a user-desired location, is done by dragging the translation handle of
one part. If a collision between the graphical representation of two approaching

! This work is embedded in the SGIM project (Speech and gesture interfaces for mul-
timedia) which is part of the ,Virtuelle Wissensfabrik’, a joint project sponsored by
the federal state of North-Rhine Westfalia.

objects is detected during such a dragging action, and both objects have match-
ing ports at their collision area, the two objects are virtually connected to form
a new aggregate.

Fig. 1. Interacting with the Virtual Constructor in front of the wall: User pointing to
select an object and enable the manipulation handles.

From this short specification and the given examples, the minimal necessary
interface needs to include possibilities to select objects for moving and manip-
ulating. Fig. 1 illustrates this interaction, it shows a user standing in front of a
wall while pointing for selecting the geometric representation of a virtual bar.
Such bars are the basic parts for the project’s overall construction target: The
mobile platform ’citymobil’ (Fig. 2), a small vehicle for inner city transportation
of up to two persons.

To give an overview about the whole virtual working scene, fig. 2 and fig. 3
visualise a side-view of the real vehicles basic parts and a virtual model of the
basic frame. The application task is the construction of a complete citymobil
using basic virtual building parts like pipes, square bars or bolts.

3 Pointing in the context of gestural interaction

In this section we discuss a functional classification of gestures which groups
similar body expressions and evaluates the usefulness of these groups for building

Fig. 2. Citymobil: side-view of the real Citymobil vehicle (shown without seat and
hood).

a gesture-based interface. We already emphasised the usage of distant pointing
for spatial referencing objects and locations and we explicitly add this as a type
of deictic gesturing to a classification that sorts different gesture types according
to their functional role in a communicational act. In contrast to work in [Efr41]
and [Ken86] we follow [McN92] and [Wex94] and incorporate deictic gestures as
an independent class. Table 1 represents this classification scheme.

Being aware of the fact that distant pointing can be very ambiguous, we
plan to include another source of information. Utilisation of the users gaze,
as a hint to the ’hot spot’ area, the part of the scene representation that is
in the users current focus, thereby limiting the number of possible referenced
objects/locations. This spatial orientation of the head and the eyes belongs to
the same group of deictic gestures because our view often focuses on a referenced
object during communication about a specific item or location. Additionally,
gestures belonging to group II, mimetic gestures, seem to be useful for interaction
in a three-dimensional environment. When the upper limbs are used as place-
markers for objects, changes in their location and orientation can be reflected
in the application by an analogous location or orientation change of a formerly
selected object or a group of objects. Next, almost all human-machine interfaces
have a fixed set of commands to trigger specific actions. These commands can be
obviously coded with symbolic gestures of type IV, e.g. special hand postures to
shut the system down or, in our specific scenario, to toggle between assemble and
disassemble mode. In the following section we describe the implementation for

|Type |Classification name |Description
Used as a spatial reference to places and objects.
I E.g.: Pointing to a chair and asking: ,Can you
I 1. deict . . ’
eletie please get that chair and put it here?’
Using the upper limbs as place-markers for actions
S or behaviours of objects or states.
II 1. mimetic . .
2. iconic E.g.: Hitting both fists together when speaking
3. object related about a car crash.
To show how to use something. Acting without
. . the required objects.
111 .
1 p.hyswgraph.l ¢ E.g.: Demonstration of hammering with imagi-
2. kinetographic
. nary tools.
3. pantomimic
Contain a unique meaning. Change the mode in
v 1. svmbolic which a verbal statement has to be interpreted.
5y . E.g.: Pinkie and thumb build a ring = OK. Hand
2. mode setting .
3. emblematic rests parallel to the ground and starts shaking. =
Speaker is not quite sure about his statement.
Represent a spatial metaphorical manifestation of
v 1. ideosraphic an internal state. Relate close to an interpretation.
: grapy E.g.: Somebody says that she/he feels dizzy and
2. metaphoric . . -
L turns the index finger in the air.
3. iconic
Supply a speech rhythm. Accentuation and gestu-
VI 1. beats ral expression occur ajc the same tl.me. .
. . E.g.: Speaker emphasises and outlines important
2. gesticulation . i .
. parts of his/her speech by hitting the index finger
3. speech marking
. on a surface.
4. self regulating

Table 1. Gesture types according to their functional role (adapted from various
sources; see text)

Fig. 3. Citymobil: structure of the virtual basic frame

an expandable gesture driven interface in VR that makes use of deictic gestures,
according to table 1 type I, by evaluating distant pointing.

4 Design and implementation

4.1 Constraints for the application

The system design has to take three important restrictions into account that
are all related to the computational cost of the different tasks. Starting with the
first one, detecting gestures is closely connected to pattern matching problems
like speech analysis. In both cases a stream of discrete sensor data might embed
a sense-carrying symbol (a specific gesture like a point-to) that we want the
system to recognise. In contrast to a trackball or a mouse, there is no unique 1:1
relationship between user input and the desired system reaction. Further more,
[She88] pointed out that gestures are high-level, mapping directly to user intent.
Therefore the interpretation is ambiguous, leaving us with the need to take other
sources of information into account, i.e., verbal user input and knowledge about
the situation context to resolve this equivocalness. Hence from a computational
point of view this process is very time-consuming. Our task is to connect such
an interface to a VR-visualisation system?, thus real-time capability has the

2 We currently use a Wall with a 2m x 3m screen.

first priority. To guarantee a fixed frame rate, avoiding user sickness from lags
and unsteadiness in the display stream, the rendering loop, the second expen-
sive computational part, cannot be altered by other time-consuming analysis.
On the other hand the backend application itself also embeds functionality that
demands huge amounts of processing time. Therefore it is again desirable to
have this module separated from the rendering and detection. Hence we have
to distribute the whole system, according to the specific single-modules compu-
tational requirement, on independent processors. As a result, the next task is
to establish the minimal optimised communication interface between all parts,
avoiding to gain computational power in exchange for a higher communication
overhead.

4.2 Distributed system architecture

We pointed out that from the engineers point of view a loose coupling between
the modules gesture detection, application, and rendering is the main directive
for the connection (Fig. 4). In our approach the visualisation is accomplished
through a Performer®-based viewer whereas the detection is done by a hierarchi-
cal multi process agent-based system. Because our prototype uses only a minimal
subset of the applications facilities, the backend and the rendering module can
be hosted by one workstation, keeping in mind that the final system version
will need more computational power and will have to be separated on different
Processors.

Fig. 4. Distributed system design with agent-based gesture recognition module

3 Performer is a Silicon Graphics toolkit for 3D rendering of virtual scenes that offers
real time and multi-process options.

IPC (Inter-process Communication) [Ste92] capabilities of different kinds es-
tablish the communicational transport layers between rendering and detection
as well as between the different layers of the gesture recognition and the appli-
cation itself. Because separation on different workstations is desirable, we use,
based on [SF96], UNIX/PC sockets and ICE* for the communication transport
layer. This enables us to run all tasks - detection, rendering and application - on
different hardware platforms, making the rendering process almost independent
from the analysis and recognition.

4.3 Agents for detecting gestures

To deal with the pattern matching problem involved in gesture recognition (see
sec. 4.1) , different approaches for a computational solution are possible. One is
the use of neural networks, e.g.[VB92] and [BBS94], where the significant clas-
sification vectors of gestures are found during a training phase before the actual
system use. But in contrast to that, taking the type of gestures we want to
recognise into account, we can explicitly describe the significant features of a
gesture (see fig. 5 and fig. 7). Therefore we follow ideas for a feature detection
like in [Wex94], and we define gestures by their describing attributes based on
the gestural time-spatial expression. Fig. 4 illustrates the coupling between the
distributed system and the internal structure of the gesture detection. In the
latter the different tasks are split into separate processes or agents. For instance,
a process on the highest level evaluates significant features that describe a point-
ing gesture, like the elongation of the index finger combined with a rest in the
acceleration of the forearm. This information is distributed and delivered from
processes on lower levels that are specialised on the detection of the described
pointing gesture key features. Therefore the hierarchical level on which such a
process resides in the detection module is a raw measurement for the level of
semantic feature integration it has to accomplish. On the base level, input agents
analyse the data stream from Data Glove sensors for the hand postures and five
6DOF sensors for the relative position and orientation of specific upper limb
parts, the head, both elbows and both hand wrists. These data records are dis-
tributed via a network multicast mechanism to all workstations in our domain
and the low level processes receive, calibrate, integrate and finally broadcast the
data again via fast IPC communication (shared memory) to the next higher
levels. Due to this mainly number crunching task combined with the fact that
these processes do not embody any semantic attributes like an agent for finger-
elongation detection does, we call them light-weight agents in contrast to the
higher-level agents, e.g. for elongation or pointing detection, both from types
like we describe in the following section.

As illustrated in Fig. 4 the dataflow is not only established from bottom to
top, but the information is distributed to any other agent that can make use
of the results. One example for this cooperation is the calculation of dynamic
attributes, which in fact uses results from agents detecting static features. This

4 ICE: INTARC Communication Environment.

leads to the desired system scalability with a minimal overhead of equal multiple
calculations. We have to keep in mind: Our goal is to additionally evaluate the
users point of view and -in a later step- human voice input as another source of
information. In the next section, we introduce and examine two definitions for
pointing gestures based on descriptive higher predicates. These gesture defini-
tions are expressed in a simple rule system that evaluates the agents results and
triggers an action.

4.4 Defining a pointing gesture

Recognizable gestures are defined by quantified feature predicates and attributes
of specific bodyparts. Analysing the posture sequence of a pointing gesture (see
fig. 6), we can use the following definition:

Point_To := Elongating(Index) AND
Elongate (Index, Min(threshI)) AND
Elongate (Middle, Max(threshM)) AND
Elongate (Ring, Max(threshR)) AND
Elongate (Pinky, Max(threshP))
=> Action(Select Vector)

Where threshX is the threshold for the given
attribute and finger X

Fig. 5. Simple definition of a pointing gesture

Fig. 6. Sequence of postures during a pointing gesture

This rule is reflected by one high-level agent (Point_To) receiving input from
six different sub-agents, each representing one of the predicates Elongate(X,tx)
and Elongating(Y). After completing the rule and integrating all data into one
discrete event, the action part, in this specific case the selection of the pointed
to object/location, is triggered. Because this rule is evaluated from left to right,
there is an intrinsic order of importance for each attribute. If, for example, the
index finger would not be elongating, the other attributes would be ignored. A
more elaborated version of defining a pointing gesture in both, the expressiveness
and in the computational cost, would take all attributes into account and weight
them according to their significance.

Weight_Point_To = w(E1_I) * Elongating(Index)

+ w(E_I) * Elongate (Index, Min(threshI))
+ w(E_M) * Elongate (Middle, Max(threshM))
+ w(E_R) * Elongate (Ring, Max(threshR))

+ *

w(E_P) Elongate (Pinky, Max(threshP))

if (Weight_Point_To > thresh_point)
=> Action(Assert_Hypo(Point_To,eval(Weight_Point_To)))

where w(X) are the weights and thresh_point the overall threshold

Fig. 7. Definition of a pointing gesture with weighted attributes

The latter form (definition fig. 7) for describing a pointing action shows
another feature we are currently working on. Instead of triggering a specific
action, a hypothesis should be generated for assertion into an integration module.
This is the first step to deal with competing other high-level gesture detection
agents, stressing the fact that different gestures do not have to be exclusive at
any time. Fig. 6 illustrates this fact. During the first three phases in pointing,
there is also a rotational part about the hand-wrist, letting both kinds of gestures
occur simultaneously for a specific time-frame. Since this is dynamic, we have
to examine both gestures in parallel until the whole pointing or rotating phase
ends or reaches a certain threshold. Then we can find a final solution and we can
decide which gesture did, and which one did not occur. If we would detect one
gesture exclusively based on a key-feature, we might have to back-track when
this attribute was detected wrong. But information about the possible gestures
can be worthy during the detection phase and before the gesture reaches its
climax. We mention this fact with reference to the outlook when we discuss
information integration with different modalities, because detecting them has a
need for additional information about possible detected gestural expressions.

4.5 Assigning workload to agents

Now we have to take a closer look at the tasks a single agent has to work on.
We already emphasised the importance for separating the three main modules
on different processors. On a smaller scale we should also concentrate on the
internal structure of the agent system. How can we divide the computational
work into parts that justify the communication overhead® between the agents?
Are there any tasks with results that can be shared? Might there be the need to
further distribute the whole agent system to separate processors? To find an an-
swer to these questions we evaluated three different organisation structures with
both gesture definitions fig. 5 and fig. 7, running the application and detection
module based on each of the definitions on a single processor, and separating
application and detection based on fig. 7 on different hosts.

A rough® worst case estimation of the computational costs for the pointing ges-
ture detection based on raw glove data comes to the following result: Evaluat-
ing one set of data takes approximately 300 mathematical and data-dereference
floating point operations. Using a detection rate of 100Hz there are about 30.000
operations/sec. Compared to the possible 5.000.000 operations/sec’ a standard
workstation nowadays is capable to compute, this illustrates that there is no
direct need for splitting these operations. But in contrast to that, running both,
the detection together with the rendering on one processor decreased the frame-
rate about one third when the detecting was done based on definition fig. 7.
Using the definition for point_to shown in fig. 5, no significant negative influence
could be recognised. As a result the detection module is only split in separate
processes where the same data is used by more than one higher level process.

5 Conclusion and next work

In this article we gave a description of an expandable gesture recognition system
developed for a distributed multimedia application. A module for the scene visu-
alisation, the so called viewer, as well as a module for detecting distant pointing
gestures have been implemented from scratch using the underlying architecture,
showing satisfying results. Based on this work, our system is currently able to
pick out, from a continuous gesture stream, significant key features; to (1) clas-
sify them as belonging to a pointing gesture and (2) to identify the pointed
to direction. The rendering loop works with a minimal frame-rate around 20
frames/sec and the pointing recognition works with a very low response latency,
making it appropriate for time-critical VR applications. Furthermore, the Vir-
tual Constructor backend has been adapted to cooperate with these modules.

® running on a single processor there will always be an overhead for switching the

process-context between agent processes and enabling a communication

5 This estimation does not compare computational time on a 'used processor cycles’
basis, but illustrates the differences in order of magnitudes

7 These results were gained on a SGI Indigo2 Workstation with a MIPS 4400 running
on 175MHz and 96MB RAM. The language was C++ and no compiler optimisation
was enabled

Communication methods for both, host-to-host and interprocess information ex-
change have been evaluated and integrated into the system. As an overall result
of a performance test, our expectation about the advantages of distributed ar-
chitecture was confirmed. Further work has to be done on the lower scale when
structuring the gesture detection agent system. In addition to that we have
started to integrate dynamic manipulation of selected objects, like transforma-
tion and rotation, by way of mimetic gestures. A further step is the integration
of speech input, e.g., to issue ’...connect...’ or ’...disconnect...’ commands for se-
lected aggregate objects. Finally, two-handed gestures could be included, e.g.,
for stretching or shrinking of selected objects.

References

[BBS94] K. Béhm, W. Broll, and M. Sokolewicz. Dynamic gesture recognition using
neural networks; a fundament for advanced interaction construction. In SPIE
Conference FElectronic Imaging Science & Technology, 1994.

[Bol80] R. A. Bolt. Put-that-there: Voice and gesture at the graphics interface. In
ACM SIGGRAPH—Computer Graphics, 1980.

[Efr41] D. Efron. Gesture and Environments. King’s Crown Press, Morningside
Hights, New York, 1941.

[Ken86] A. Kendon. Current issues in the study of gestures. In Nespopulous, Rerron,
and Lecours, editors, The Biological Foundations of Gestures: Motor and
Semiotic Aspects. Lawrence Erlbaum Associates, Hillsday N.J., 1986.

[LW96] B. Lenzmann and I. Wachsmuth. Eine multimodale Eingabearchitektur. In
Fortschritte der Kinstlichen Intelligenz, 1996.

[McN92] D. McNeill. Hand and Mind: What Gestures Reveal about Thought. University
of Chicago Press, Chicago, 1992.

[SF96] I. Schniill and L. Franzen. Evaluation des kommunikationstools ice und inte-
gration in das multiagentensystem viena. KI-NRW Report 96/04, Universitét
Bielefeld, Technische Fakultit, Universitatsstr. 25, 33501 Bielefeld, 1996.

[She88] S. Sherr. Input Devices. Academic Press, 1988.

[Ste92] R. W. Stevens. Advanced Programming in the UNIX Environment. Addison-
Wesley, 1992.

[VB92] K. Véininen and K. Bohm. Gesture driven interaction as a human factor in
vi rtual environments - an approach with neural networks. In Virtual Reality
Systems, 1992.

[Wex94] A. D. Wexelblat. A feature-based approach to continous-gesture analysis.
Master’s thesis, Massachusetts Institute of Technology Advanced Human In-
terface Group, Cambridge, MA, USA, June 1994.

[WJ96] I. Wachsmuth and B. Jung. Dynamic conceptualization in a mechanical-object
assembly environment. In Artificial Intelligence Review. Kluwer Academic
Publishers Group, 1996.

